// SPDX-License-Identifier: GPL-2.0-or-later /* * PowerNV OPAL high level interfaces * * Copyright 2011 IBM Corp. */ #define pr_fmt(fmt) "opal: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "powernv.h" /* /sys/firmware/opal */ struct kobject *opal_kobj; struct opal { u64 base; u64 entry; u64 size; } opal; struct mcheck_recoverable_range { u64 start_addr; u64 end_addr; u64 recover_addr; }; static struct mcheck_recoverable_range *mc_recoverable_range; static int mc_recoverable_range_len; struct device_node *opal_node; static DEFINE_SPINLOCK(opal_write_lock); static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX]; static uint32_t opal_heartbeat; static struct task_struct *kopald_tsk; static struct opal_msg *opal_msg; static u32 opal_msg_size __ro_after_init; void opal_configure_cores(void) { u64 reinit_flags = 0; /* Do the actual re-init, This will clobber all FPRs, VRs, etc... * * It will preserve non volatile GPRs and HSPRG0/1. It will * also restore HIDs and other SPRs to their original value * but it might clobber a bunch. */ #ifdef __BIG_ENDIAN__ reinit_flags |= OPAL_REINIT_CPUS_HILE_BE; #else reinit_flags |= OPAL_REINIT_CPUS_HILE_LE; #endif /* * POWER9 always support running hash: * ie. Host hash supports hash guests * Host radix supports hash/radix guests */ if (early_cpu_has_feature(CPU_FTR_ARCH_300)) { reinit_flags |= OPAL_REINIT_CPUS_MMU_HASH; if (early_radix_enabled()) reinit_flags |= OPAL_REINIT_CPUS_MMU_RADIX; } opal_reinit_cpus(reinit_flags); /* Restore some bits */ if (cur_cpu_spec->cpu_restore) cur_cpu_spec->cpu_restore(); } int __init early_init_dt_scan_opal(unsigned long node, const char *uname, int depth, void *data) { const void *basep, *entryp, *sizep; int basesz, entrysz, runtimesz; if (depth != 1 || strcmp(uname, "ibm,opal") != 0) return 0; basep = of_get_flat_dt_prop(node, "opal-base-address", &basesz); entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz); sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz); if (!basep || !entryp || !sizep) return 1; opal.base = of_read_number(basep, basesz/4); opal.entry = of_read_number(entryp, entrysz/4); opal.size = of_read_number(sizep, runtimesz/4); pr_debug("OPAL Base = 0x%llx (basep=%p basesz=%d)\n", opal.base, basep, basesz); pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n", opal.entry, entryp, entrysz); pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n", opal.size, sizep, runtimesz); if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) { powerpc_firmware_features |= FW_FEATURE_OPAL; pr_debug("OPAL detected !\n"); } else { panic("OPAL != V3 detected, no longer supported.\n"); } return 1; } int __init early_init_dt_scan_recoverable_ranges(unsigned long node, const char *uname, int depth, void *data) { int i, psize, size; const __be32 *prop; if (depth != 1 || strcmp(uname, "ibm,opal") != 0) return 0; prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize); if (!prop) return 1; pr_debug("Found machine check recoverable ranges.\n"); /* * Calculate number of available entries. * * Each recoverable address range entry is (start address, len, * recovery address), 2 cells each for start and recovery address, * 1 cell for len, totalling 5 cells per entry. */ mc_recoverable_range_len = psize / (sizeof(*prop) * 5); /* Sanity check */ if (!mc_recoverable_range_len) return 1; /* Size required to hold all the entries. */ size = mc_recoverable_range_len * sizeof(struct mcheck_recoverable_range); /* * Allocate a buffer to hold the MC recoverable ranges. */ mc_recoverable_range = memblock_alloc(size, __alignof__(u64)); if (!mc_recoverable_range) panic("%s: Failed to allocate %u bytes align=0x%lx\n", __func__, size, __alignof__(u64)); for (i = 0; i < mc_recoverable_range_len; i++) { mc_recoverable_range[i].start_addr = of_read_number(prop + (i * 5) + 0, 2); mc_recoverable_range[i].end_addr = mc_recoverable_range[i].start_addr + of_read_number(prop + (i * 5) + 2, 1); mc_recoverable_range[i].recover_addr = of_read_number(prop + (i * 5) + 3, 2); pr_debug("Machine check recoverable range: %llx..%llx: %llx\n", mc_recoverable_range[i].start_addr, mc_recoverable_range[i].end_addr, mc_recoverable_range[i].recover_addr); } return 1; } static int __init opal_register_exception_handlers(void) { #ifdef __BIG_ENDIAN__ u64 glue; if (!(powerpc_firmware_features & FW_FEATURE_OPAL)) return -ENODEV; /* Hookup some exception handlers except machine check. We use the * fwnmi area at 0x7000 to provide the glue space to OPAL */ glue = 0x7000; /* * Only ancient OPAL firmware requires this. * Specifically, firmware from FW810.00 (released June 2014) * through FW810.20 (Released October 2014). * * Check if we are running on newer (post Oct 2014) firmware that * exports the OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to * patch the HMI interrupt and we catch it directly in Linux. * * For older firmware (i.e < FW810.20), we fallback to old behavior and * let OPAL patch the HMI vector and handle it inside OPAL firmware. * * For newer firmware we catch/handle the HMI directly in Linux. */ if (!opal_check_token(OPAL_HANDLE_HMI)) { pr_info("Old firmware detected, OPAL handles HMIs.\n"); opal_register_exception_handler( OPAL_HYPERVISOR_MAINTENANCE_HANDLER, 0, glue); glue += 128; } /* * Only applicable to ancient firmware, all modern * (post March 2015/skiboot 5.0) firmware will just return * OPAL_UNSUPPORTED. */ opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue); #endif return 0; } machine_early_initcall(powernv, opal_register_exception_handlers); /* * Opal message notifier based on message type. Allow subscribers to get * notified for specific messgae type. */ int opal_message_notifier_register(enum opal_msg_type msg_type, struct notifier_block *nb) { if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) { pr_warn("%s: Invalid arguments, msg_type:%d\n", __func__, msg_type); return -EINVAL; } return atomic_notifier_chain_register( &opal_msg_notifier_head[msg_type], nb); } EXPORT_SYMBOL_GPL(opal_message_notifier_register); int opal_message_notifier_unregister(enum opal_msg_type msg_type, struct notifier_block *nb) { return atomic_notifier_chain_unregister( &opal_msg_notifier_head[msg_type], nb); } EXPORT_SYMBOL_GPL(opal_message_notifier_unregister); static void opal_message_do_notify(uint32_t msg_type, void *msg) { /* notify subscribers */ atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type], msg_type, msg); } static void opal_handle_message(void) { s64 ret; u32 type; ret = opal_get_msg(__pa(opal_msg), opal_msg_size); /* No opal message pending. */ if (ret == OPAL_RESOURCE) return; /* check for errors. */ if (ret) { pr_warn("%s: Failed to retrieve opal message, err=%lld\n", __func__, ret); return; } type = be32_to_cpu(opal_msg->msg_type); /* Sanity check */ if (type >= OPAL_MSG_TYPE_MAX) { pr_warn_once("%s: Unknown message type: %u\n", __func__, type); return; } opal_message_do_notify(type, (void *)opal_msg); } static irqreturn_t opal_message_notify(int irq, void *data) { opal_handle_message(); return IRQ_HANDLED; } static int __init opal_message_init(struct device_node *opal_node) { int ret, i, irq; ret = of_property_read_u32(opal_node, "opal-msg-size", &opal_msg_size); if (ret) { pr_notice("Failed to read opal-msg-size property\n"); opal_msg_size = sizeof(struct opal_msg); } opal_msg = kmalloc(opal_msg_size, GFP_KERNEL); if (!opal_msg) { opal_msg_size = sizeof(struct opal_msg); /* Try to allocate fixed message size */ opal_msg = kmalloc(opal_msg_size, GFP_KERNEL); BUG_ON(opal_msg == NULL); } for (i = 0; i < OPAL_MSG_TYPE_MAX; i++) ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]); irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING)); if (!irq) { pr_err("%s: Can't register OPAL event irq (%d)\n", __func__, irq); return irq; } ret = request_irq(irq, opal_message_notify, IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL); if (ret) { pr_err("%s: Can't request OPAL event irq (%d)\n", __func__, ret); return ret; } return 0; } int opal_get_chars(uint32_t vtermno, char *buf, int count) { s64 rc; __be64 evt, len; if (!opal.entry) return -ENODEV; opal_poll_events(&evt); if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0) return 0; len = cpu_to_be64(count); rc = opal_console_read(vtermno, &len, buf); if (rc == OPAL_SUCCESS) return be64_to_cpu(len); return 0; } static int __opal_put_chars(uint32_t vtermno, const char *data, int total_len, bool atomic) { unsigned long flags = 0 /* shut up gcc */; int written; __be64 olen; s64 rc; if (!opal.entry) return -ENODEV; if (atomic) spin_lock_irqsave(&opal_write_lock, flags); rc = opal_console_write_buffer_space(vtermno, &olen); if (rc || be64_to_cpu(olen) < total_len) { /* Closed -> drop characters */ if (rc) written = total_len; else written = -EAGAIN; goto out; } /* Should not get a partial write here because space is available. */ olen = cpu_to_be64(total_len); rc = opal_console_write(vtermno, &olen, data); if (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) { if (rc == OPAL_BUSY_EVENT) opal_poll_events(NULL); written = -EAGAIN; goto out; } /* Closed or other error drop */ if (rc != OPAL_SUCCESS) { written = opal_error_code(rc); goto out; } written = be64_to_cpu(olen); if (written < total_len) { if (atomic) { /* Should not happen */ pr_warn("atomic console write returned partial " "len=%d written=%d\n", total_len, written); } if (!written) written = -EAGAIN; } out: if (atomic) spin_unlock_irqrestore(&opal_write_lock, flags); return written; } int opal_put_chars(uint32_t vtermno, const char *data, int total_len) { return __opal_put_chars(vtermno, data, total_len, false); } /* * opal_put_chars_atomic will not perform partial-writes. Data will be * atomically written to the terminal or not at all. This is not strictly * true at the moment because console space can race with OPAL's console * writes. */ int opal_put_chars_atomic(uint32_t vtermno, const char *data, int total_len) { return __opal_put_chars(vtermno, data, total_len, true); } static s64 __opal_flush_console(uint32_t vtermno) { s64 rc; if (!opal_check_token(OPAL_CONSOLE_FLUSH)) { __be64 evt; /* * If OPAL_CONSOLE_FLUSH is not implemented in the firmware, * the console can still be flushed by calling the polling * function while it has OPAL_EVENT_CONSOLE_OUTPUT events. */ WARN_ONCE(1, "opal: OPAL_CONSOLE_FLUSH missing.\n"); opal_poll_events(&evt); if (!(be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT)) return OPAL_SUCCESS; return OPAL_BUSY; } else { rc = opal_console_flush(vtermno); if (rc == OPAL_BUSY_EVENT) { opal_poll_events(NULL); rc = OPAL_BUSY; } return rc; } } /* * opal_flush_console spins until the console is flushed */ int opal_flush_console(uint32_t vtermno) { for (;;) { s64 rc = __opal_flush_console(vtermno); if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) { mdelay(1); continue; } return opal_error_code(rc); } } /* * opal_flush_chars is an hvc interface that sleeps until the console is * flushed if wait, otherwise it will return -EBUSY if the console has data, * -EAGAIN if it has data and some of it was flushed. */ int opal_flush_chars(uint32_t vtermno, bool wait) { for (;;) { s64 rc = __opal_flush_console(vtermno); if (rc == OPAL_BUSY || rc == OPAL_PARTIAL) { if (wait) { msleep(OPAL_BUSY_DELAY_MS); continue; } if (rc == OPAL_PARTIAL) return -EAGAIN; } return opal_error_code(rc); } } static int opal_recover_mce(struct pt_regs *regs, struct machine_check_event *evt) { int recovered = 0; if (!(regs->msr & MSR_RI)) { /* If MSR_RI isn't set, we cannot recover */ pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n"); recovered = 0; } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) { /* Platform corrected itself */ recovered = 1; } else if (evt->severity == MCE_SEV_FATAL) { /* Fatal machine check */ pr_err("Machine check interrupt is fatal\n"); recovered = 0; } if (!recovered && evt->sync_error) { /* * Try to kill processes if we get a synchronous machine check * (e.g., one caused by execution of this instruction). This * will devolve into a panic if we try to kill init or are in * an interrupt etc. * * TODO: Queue up this address for hwpoisioning later. * TODO: This is not quite right for d-side machine * checks ->nip is not necessarily the important * address. */ if ((user_mode(regs))) { _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip); recovered = 1; } else if (die_will_crash()) { /* * die() would kill the kernel, so better to go via * the platform reboot code that will log the * machine check. */ recovered = 0; } else { die("Machine check", regs, SIGBUS); recovered = 1; } } return recovered; } void __noreturn pnv_platform_error_reboot(struct pt_regs *regs, const char *msg) { panic_flush_kmsg_start(); pr_emerg("Hardware platform error: %s\n", msg); if (regs) show_regs(regs); smp_send_stop(); panic_flush_kmsg_end(); /* * Don't bother to shut things down because this will * xstop the system. */ if (opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR, msg) == OPAL_UNSUPPORTED) { pr_emerg("Reboot type %d not supported for %s\n", OPAL_REBOOT_PLATFORM_ERROR, msg); } /* * We reached here. There can be three possibilities: * 1. We are running on a firmware level that do not support * opal_cec_reboot2() * 2. We are running on a firmware level that do not support * OPAL_REBOOT_PLATFORM_ERROR reboot type. * 3. We are running on FSP based system that does not need * opal to trigger checkstop explicitly for error analysis. * The FSP PRD component would have already got notified * about this error through other channels. * 4. We are running on a newer skiboot that by default does * not cause a checkstop, drops us back to the kernel to * extract context and state at the time of the error. */ panic(msg); } int opal_machine_check(struct pt_regs *regs) { struct machine_check_event evt; if (!get_mce_event(&evt, MCE_EVENT_RELEASE)) return 0; /* Print things out */ if (evt.version != MCE_V1) { pr_err("Machine Check Exception, Unknown event version %d !\n", evt.version); return 0; } machine_check_print_event_info(&evt, user_mode(regs), false); if (opal_recover_mce(regs, &evt)) return 1; pnv_platform_error_reboot(regs, "Unrecoverable Machine Check exception"); } /* Early hmi handler called in real mode. */ int opal_hmi_exception_early(struct pt_regs *regs) { s64 rc; /* * call opal hmi handler. Pass paca address as token. * The return value OPAL_SUCCESS is an indication that there is * an HMI event generated waiting to pull by Linux. */ rc = opal_handle_hmi(); if (rc == OPAL_SUCCESS) { local_paca->hmi_event_available = 1; return 1; } return 0; } int opal_hmi_exception_early2(struct pt_regs *regs) { s64 rc; __be64 out_flags; /* * call opal hmi handler. * Check 64-bit flag mask to find out if an event was generated, * and whether TB is still valid or not etc. */ rc = opal_handle_hmi2(&out_flags); if (rc != OPAL_SUCCESS) return 0; if (be64_to_cpu(out_flags) & OPAL_HMI_FLAGS_NEW_EVENT) local_paca->hmi_event_available = 1; if (be64_to_cpu(out_flags) & OPAL_HMI_FLAGS_TOD_TB_FAIL) tb_invalid = true; return 1; } /* HMI exception handler called in virtual mode during check_irq_replay. */ int opal_handle_hmi_exception(struct pt_regs *regs) { /* * Check if HMI event is available. * if Yes, then wake kopald to process them. */ if (!local_paca->hmi_event_available) return 0; local_paca->hmi_event_available = 0; opal_wake_poller(); return 1; } static uint64_t find_recovery_address(uint64_t nip) { int i; for (i = 0; i < mc_recoverable_range_len; i++) if ((nip >= mc_recoverable_range[i].start_addr) && (nip < mc_recoverable_range[i].end_addr)) return mc_recoverable_range[i].recover_addr; return 0; } bool opal_mce_check_early_recovery(struct pt_regs *regs) { uint64_t recover_addr = 0; if (!opal.base || !opal.size) goto out; if ((regs->nip >= opal.base) && (regs->nip < (opal.base + opal.size))) recover_addr = find_recovery_address(regs->nip); /* * Setup regs->nip to rfi into fixup address. */ if (recover_addr) regs->nip = recover_addr; out: return !!recover_addr; } static int opal_sysfs_init(void) { opal_kobj = kobject_create_and_add("opal", firmware_kobj); if (!opal_kobj) { pr_warn("kobject_create_and_add opal failed\n"); return -ENOMEM; } return 0; } static ssize_t symbol_map_read(struct file *fp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { return memory_read_from_buffer(buf, count, &off, bin_attr->private, bin_attr->size); } static struct bin_attribute symbol_map_attr = { .attr = {.name = "symbol_map", .mode = 0400}, .read = symbol_map_read }; static void opal_export_symmap(void) { const __be64 *syms; unsigned int size; struct device_node *fw; int rc; fw = of_find_node_by_path("/ibm,opal/firmware"); if (!fw) return; syms = of_get_property(fw, "symbol-map", &size); if (!syms || size != 2 * sizeof(__be64)) return; /* Setup attributes */ symbol_map_attr.private = __va(be64_to_cpu(syms[0])); symbol_map_attr.size = be64_to_cpu(syms[1]); rc = sysfs_create_bin_file(opal_kobj, &symbol_map_attr); if (rc) pr_warn("Error %d creating OPAL symbols file\n", rc); } static ssize_t export_attr_read(struct file *fp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { return memory_read_from_buffer(buf, count, &off, bin_attr->private, bin_attr->size); } /* * opal_export_attrs: creates a sysfs node for each property listed in * the device-tree under /ibm,opal/firmware/exports/ * All new sysfs nodes are created under /opal/exports/. * This allows for reserved memory regions (e.g. HDAT) to be read. * The new sysfs nodes are only readable by root. */ static void opal_export_attrs(void) { struct bin_attribute *attr; struct device_node *np; struct property *prop; struct kobject *kobj; u64 vals[2]; int rc; np = of_find_node_by_path("/ibm,opal/firmware/exports"); if (!np) return; /* Create new 'exports' directory - /sys/firmware/opal/exports */ kobj = kobject_create_and_add("exports", opal_kobj); if (!kobj) { pr_warn("kobject_create_and_add() of exports failed\n"); of_node_put(np); return; } for_each_property_of_node(np, prop) { if (!strcmp(prop->name, "name") || !strcmp(prop->name, "phandle")) continue; if (of_property_read_u64_array(np, prop->name, &vals[0], 2)) continue; attr = kzalloc(sizeof(*attr), GFP_KERNEL); if (attr == NULL) { pr_warn("Failed kmalloc for bin_attribute!"); continue; } sysfs_bin_attr_init(attr); attr->attr.name = kstrdup(prop->name, GFP_KERNEL); attr->attr.mode = 0400; attr->read = export_attr_read; attr->private = __va(vals[0]); attr->size = vals[1]; if (attr->attr.name == NULL) { pr_warn("Failed kstrdup for bin_attribute attr.name"); kfree(attr); continue; } rc = sysfs_create_bin_file(kobj, attr); if (rc) { pr_warn("Error %d creating OPAL sysfs exports/%s file\n", rc, prop->name); kfree(attr->attr.name); kfree(attr); } } of_node_put(np); } static void __init opal_dump_region_init(void) { void *addr; uint64_t size; int rc; if (!opal_check_token(OPAL_REGISTER_DUMP_REGION)) return; /* Register kernel log buffer */ addr = log_buf_addr_get(); if (addr == NULL) return; size = log_buf_len_get(); if (size == 0) return; rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF, __pa(addr), size); /* Don't warn if this is just an older OPAL that doesn't * know about that call */ if (rc && rc != OPAL_UNSUPPORTED) pr_warn("DUMP: Failed to register kernel log buffer. " "rc = %d\n", rc); } static void opal_pdev_init(const char *compatible) { struct device_node *np; for_each_compatible_node(np, NULL, compatible) of_platform_device_create(np, NULL, NULL); } static void __init opal_imc_init_dev(void) { struct device_node *np; np = of_find_compatible_node(NULL, NULL, IMC_DTB_COMPAT); if (np) of_platform_device_create(np, NULL, NULL); } static int kopald(void *unused) { unsigned long timeout = msecs_to_jiffies(opal_heartbeat) + 1; set_freezable(); do { try_to_freeze(); opal_handle_events(); set_current_state(TASK_INTERRUPTIBLE); if (opal_have_pending_events()) __set_current_state(TASK_RUNNING); else schedule_timeout(timeout); } while (!kthread_should_stop()); return 0; } void opal_wake_poller(void) { if (kopald_tsk) wake_up_process(kopald_tsk); } static void opal_init_heartbeat(void) { /* Old firwmware, we assume the HVC heartbeat is sufficient */ if (of_property_read_u32(opal_node, "ibm,heartbeat-ms", &opal_heartbeat) != 0) opal_heartbeat = 0; if (opal_heartbeat) kopald_tsk = kthread_run(kopald, NULL, "kopald"); } static int __init opal_init(void) { struct device_node *np, *consoles, *leds; int rc; opal_node = of_find_node_by_path("/ibm,opal"); if (!opal_node) { pr_warn("Device node not found\n"); return -ENODEV; } /* Register OPAL consoles if any ports */ consoles = of_find_node_by_path("/ibm,opal/consoles"); if (consoles) { for_each_child_of_node(consoles, np) { if (!of_node_name_eq(np, "serial")) continue; of_platform_device_create(np, NULL, NULL); } of_node_put(consoles); } /* Initialise OPAL messaging system */ opal_message_init(opal_node); /* Initialise OPAL asynchronous completion interface */ opal_async_comp_init(); /* Initialise OPAL sensor interface */ opal_sensor_init(); /* Initialise OPAL hypervisor maintainence interrupt handling */ opal_hmi_handler_init(); /* Create i2c platform devices */ opal_pdev_init("ibm,opal-i2c"); /* Handle non-volatile memory devices */ opal_pdev_init("pmem-region"); /* Setup a heatbeat thread if requested by OPAL */ opal_init_heartbeat(); /* Detect In-Memory Collection counters and create devices*/ opal_imc_init_dev(); /* Create leds platform devices */ leds = of_find_node_by_path("/ibm,opal/leds"); if (leds) { of_platform_device_create(leds, "opal_leds", NULL); of_node_put(leds); } /* Initialise OPAL message log interface */ opal_msglog_init(); /* Create "opal" kobject under /sys/firmware */ rc = opal_sysfs_init(); if (rc == 0) { /* Export symbol map to userspace */ opal_export_symmap(); /* Setup dump region interface */ opal_dump_region_init(); /* Setup error log interface */ rc = opal_elog_init(); /* Setup code update interface */ opal_flash_update_init(); /* Setup platform dump extract interface */ opal_platform_dump_init(); /* Setup system parameters interface */ opal_sys_param_init(); /* Setup message log sysfs interface. */ opal_msglog_sysfs_init(); } /* Export all properties */ opal_export_attrs(); /* Initialize platform devices: IPMI backend, PRD & flash interface */ opal_pdev_init("ibm,opal-ipmi"); opal_pdev_init("ibm,opal-flash"); opal_pdev_init("ibm,opal-prd"); /* Initialise platform device: oppanel interface */ opal_pdev_init("ibm,opal-oppanel"); /* Initialise OPAL kmsg dumper for flushing console on panic */ opal_kmsg_init(); /* Initialise OPAL powercap interface */ opal_powercap_init(); /* Initialise OPAL Power-Shifting-Ratio interface */ opal_psr_init(); /* Initialise OPAL sensor groups */ opal_sensor_groups_init(); /* Initialise OPAL Power control interface */ opal_power_control_init(); return 0; } machine_subsys_initcall(powernv, opal_init); void opal_shutdown(void) { long rc = OPAL_BUSY; opal_event_shutdown(); /* * Then sync with OPAL which ensure anything that can * potentially write to our memory has completed such * as an ongoing dump retrieval */ while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) { rc = opal_sync_host_reboot(); if (rc == OPAL_BUSY) opal_poll_events(NULL); else mdelay(10); } /* Unregister memory dump region */ if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION)) opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF); } /* Export this so that test modules can use it */ EXPORT_SYMBOL_GPL(opal_invalid_call); EXPORT_SYMBOL_GPL(opal_xscom_read); EXPORT_SYMBOL_GPL(opal_xscom_write); EXPORT_SYMBOL_GPL(opal_ipmi_send); EXPORT_SYMBOL_GPL(opal_ipmi_recv); EXPORT_SYMBOL_GPL(opal_flash_read); EXPORT_SYMBOL_GPL(opal_flash_write); EXPORT_SYMBOL_GPL(opal_flash_erase); EXPORT_SYMBOL_GPL(opal_prd_msg); EXPORT_SYMBOL_GPL(opal_check_token); /* Convert a region of vmalloc memory to an opal sg list */ struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr, unsigned long vmalloc_size) { struct opal_sg_list *sg, *first = NULL; unsigned long i = 0; sg = kzalloc(PAGE_SIZE, GFP_KERNEL); if (!sg) goto nomem; first = sg; while (vmalloc_size > 0) { uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT; uint64_t length = min(vmalloc_size, PAGE_SIZE); sg->entry[i].data = cpu_to_be64(data); sg->entry[i].length = cpu_to_be64(length); i++; if (i >= SG_ENTRIES_PER_NODE) { struct opal_sg_list *next; next = kzalloc(PAGE_SIZE, GFP_KERNEL); if (!next) goto nomem; sg->length = cpu_to_be64( i * sizeof(struct opal_sg_entry) + 16); i = 0; sg->next = cpu_to_be64(__pa(next)); sg = next; } vmalloc_addr += length; vmalloc_size -= length; } sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16); return first; nomem: pr_err("%s : Failed to allocate memory\n", __func__); opal_free_sg_list(first); return NULL; } void opal_free_sg_list(struct opal_sg_list *sg) { while (sg) { uint64_t next = be64_to_cpu(sg->next); kfree(sg); if (next) sg = __va(next); else sg = NULL; } } int opal_error_code(int rc) { switch (rc) { case OPAL_SUCCESS: return 0; case OPAL_PARAMETER: return -EINVAL; case OPAL_ASYNC_COMPLETION: return -EINPROGRESS; case OPAL_BUSY: case OPAL_BUSY_EVENT: return -EBUSY; case OPAL_NO_MEM: return -ENOMEM; case OPAL_PERMISSION: return -EPERM; case OPAL_UNSUPPORTED: return -EIO; case OPAL_HARDWARE: return -EIO; case OPAL_INTERNAL_ERROR: return -EIO; case OPAL_TIMEOUT: return -ETIMEDOUT; default: pr_err("%s: unexpected OPAL error %d\n", __func__, rc); return -EIO; } } void powernv_set_nmmu_ptcr(unsigned long ptcr) { int rc; if (firmware_has_feature(FW_FEATURE_OPAL)) { rc = opal_nmmu_set_ptcr(-1UL, ptcr); if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) pr_warn("%s: Unable to set nest mmu ptcr\n", __func__); } } EXPORT_SYMBOL_GPL(opal_poll_events); EXPORT_SYMBOL_GPL(opal_rtc_read); EXPORT_SYMBOL_GPL(opal_rtc_write); EXPORT_SYMBOL_GPL(opal_tpo_read); EXPORT_SYMBOL_GPL(opal_tpo_write); EXPORT_SYMBOL_GPL(opal_i2c_request); /* Export these symbols for PowerNV LED class driver */ EXPORT_SYMBOL_GPL(opal_leds_get_ind); EXPORT_SYMBOL_GPL(opal_leds_set_ind); /* Export this symbol for PowerNV Operator Panel class driver */ EXPORT_SYMBOL_GPL(opal_write_oppanel_async); /* Export this for KVM */ EXPORT_SYMBOL_GPL(opal_int_set_mfrr); EXPORT_SYMBOL_GPL(opal_int_eoi); EXPORT_SYMBOL_GPL(opal_error_code); /* Export the below symbol for NX compression */ EXPORT_SYMBOL(opal_nx_coproc_init);