1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
4 */
5
6 #ifndef __ASM_CPUFEATURE_H
7 #define __ASM_CPUFEATURE_H
8
9 #include <asm/cpucaps.h>
10 #include <asm/cputype.h>
11 #include <asm/hwcap.h>
12 #include <asm/sysreg.h>
13
14 #define MAX_CPU_FEATURES 64
15 #define cpu_feature(x) KERNEL_HWCAP_ ## x
16
17 #ifndef __ASSEMBLY__
18
19 #include <linux/bug.h>
20 #include <linux/jump_label.h>
21 #include <linux/kernel.h>
22
23 /*
24 * CPU feature register tracking
25 *
26 * The safe value of a CPUID feature field is dependent on the implications
27 * of the values assigned to it by the architecture. Based on the relationship
28 * between the values, the features are classified into 3 types - LOWER_SAFE,
29 * HIGHER_SAFE and EXACT.
30 *
31 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
32 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
33 * a field when EXACT is specified, failing which, the safe value specified
34 * in the table is chosen.
35 */
36
37 enum ftr_type {
38 FTR_EXACT, /* Use a predefined safe value */
39 FTR_LOWER_SAFE, /* Smaller value is safe */
40 FTR_HIGHER_SAFE, /* Bigger value is safe */
41 FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */
42 };
43
44 #define FTR_STRICT true /* SANITY check strict matching required */
45 #define FTR_NONSTRICT false /* SANITY check ignored */
46
47 #define FTR_SIGNED true /* Value should be treated as signed */
48 #define FTR_UNSIGNED false /* Value should be treated as unsigned */
49
50 #define FTR_VISIBLE true /* Feature visible to the user space */
51 #define FTR_HIDDEN false /* Feature is hidden from the user */
52
53 #define FTR_VISIBLE_IF_IS_ENABLED(config) \
54 (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
55
56 struct arm64_ftr_bits {
57 bool sign; /* Value is signed ? */
58 bool visible;
59 bool strict; /* CPU Sanity check: strict matching required ? */
60 enum ftr_type type;
61 u8 shift;
62 u8 width;
63 s64 safe_val; /* safe value for FTR_EXACT features */
64 };
65
66 /*
67 * @arm64_ftr_reg - Feature register
68 * @strict_mask Bits which should match across all CPUs for sanity.
69 * @sys_val Safe value across the CPUs (system view)
70 */
71 struct arm64_ftr_reg {
72 const char *name;
73 u64 strict_mask;
74 u64 user_mask;
75 u64 sys_val;
76 u64 user_val;
77 const struct arm64_ftr_bits *ftr_bits;
78 };
79
80 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
81
82 /*
83 * CPU capabilities:
84 *
85 * We use arm64_cpu_capabilities to represent system features, errata work
86 * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
87 * ELF HWCAPs (which are exposed to user).
88 *
89 * To support systems with heterogeneous CPUs, we need to make sure that we
90 * detect the capabilities correctly on the system and take appropriate
91 * measures to ensure there are no incompatibilities.
92 *
93 * This comment tries to explain how we treat the capabilities.
94 * Each capability has the following list of attributes :
95 *
96 * 1) Scope of Detection : The system detects a given capability by
97 * performing some checks at runtime. This could be, e.g, checking the
98 * value of a field in CPU ID feature register or checking the cpu
99 * model. The capability provides a call back ( @matches() ) to
100 * perform the check. Scope defines how the checks should be performed.
101 * There are three cases:
102 *
103 * a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
104 * matches. This implies, we have to run the check on all the
105 * booting CPUs, until the system decides that state of the
106 * capability is finalised. (See section 2 below)
107 * Or
108 * b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
109 * matches. This implies, we run the check only once, when the
110 * system decides to finalise the state of the capability. If the
111 * capability relies on a field in one of the CPU ID feature
112 * registers, we use the sanitised value of the register from the
113 * CPU feature infrastructure to make the decision.
114 * Or
115 * c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
116 * feature. This category is for features that are "finalised"
117 * (or used) by the kernel very early even before the SMP cpus
118 * are brought up.
119 *
120 * The process of detection is usually denoted by "update" capability
121 * state in the code.
122 *
123 * 2) Finalise the state : The kernel should finalise the state of a
124 * capability at some point during its execution and take necessary
125 * actions if any. Usually, this is done, after all the boot-time
126 * enabled CPUs are brought up by the kernel, so that it can make
127 * better decision based on the available set of CPUs. However, there
128 * are some special cases, where the action is taken during the early
129 * boot by the primary boot CPU. (e.g, running the kernel at EL2 with
130 * Virtualisation Host Extensions). The kernel usually disallows any
131 * changes to the state of a capability once it finalises the capability
132 * and takes any action, as it may be impossible to execute the actions
133 * safely. A CPU brought up after a capability is "finalised" is
134 * referred to as "Late CPU" w.r.t the capability. e.g, all secondary
135 * CPUs are treated "late CPUs" for capabilities determined by the boot
136 * CPU.
137 *
138 * At the moment there are two passes of finalising the capabilities.
139 * a) Boot CPU scope capabilities - Finalised by primary boot CPU via
140 * setup_boot_cpu_capabilities().
141 * b) Everything except (a) - Run via setup_system_capabilities().
142 *
143 * 3) Verification: When a CPU is brought online (e.g, by user or by the
144 * kernel), the kernel should make sure that it is safe to use the CPU,
145 * by verifying that the CPU is compliant with the state of the
146 * capabilities finalised already. This happens via :
147 *
148 * secondary_start_kernel()-> check_local_cpu_capabilities()
149 *
150 * As explained in (2) above, capabilities could be finalised at
151 * different points in the execution. Each newly booted CPU is verified
152 * against the capabilities that have been finalised by the time it
153 * boots.
154 *
155 * a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
156 * except for the primary boot CPU.
157 *
158 * b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
159 * user after the kernel boot are verified against the capability.
160 *
161 * If there is a conflict, the kernel takes an action, based on the
162 * severity (e.g, a CPU could be prevented from booting or cause a
163 * kernel panic). The CPU is allowed to "affect" the state of the
164 * capability, if it has not been finalised already. See section 5
165 * for more details on conflicts.
166 *
167 * 4) Action: As mentioned in (2), the kernel can take an action for each
168 * detected capability, on all CPUs on the system. Appropriate actions
169 * include, turning on an architectural feature, modifying the control
170 * registers (e.g, SCTLR, TCR etc.) or patching the kernel via
171 * alternatives. The kernel patching is batched and performed at later
172 * point. The actions are always initiated only after the capability
173 * is finalised. This is usally denoted by "enabling" the capability.
174 * The actions are initiated as follows :
175 * a) Action is triggered on all online CPUs, after the capability is
176 * finalised, invoked within the stop_machine() context from
177 * enable_cpu_capabilitie().
178 *
179 * b) Any late CPU, brought up after (1), the action is triggered via:
180 *
181 * check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
182 *
183 * 5) Conflicts: Based on the state of the capability on a late CPU vs.
184 * the system state, we could have the following combinations :
185 *
186 * x-----------------------------x
187 * | Type | System | Late CPU |
188 * |-----------------------------|
189 * | a | y | n |
190 * |-----------------------------|
191 * | b | n | y |
192 * x-----------------------------x
193 *
194 * Two separate flag bits are defined to indicate whether each kind of
195 * conflict can be allowed:
196 * ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
197 * ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
198 *
199 * Case (a) is not permitted for a capability that the system requires
200 * all CPUs to have in order for the capability to be enabled. This is
201 * typical for capabilities that represent enhanced functionality.
202 *
203 * Case (b) is not permitted for a capability that must be enabled
204 * during boot if any CPU in the system requires it in order to run
205 * safely. This is typical for erratum work arounds that cannot be
206 * enabled after the corresponding capability is finalised.
207 *
208 * In some non-typical cases either both (a) and (b), or neither,
209 * should be permitted. This can be described by including neither
210 * or both flags in the capability's type field.
211 */
212
213
214 /*
215 * Decide how the capability is detected.
216 * On any local CPU vs System wide vs the primary boot CPU
217 */
218 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU ((u16)BIT(0))
219 #define ARM64_CPUCAP_SCOPE_SYSTEM ((u16)BIT(1))
220 /*
221 * The capabilitiy is detected on the Boot CPU and is used by kernel
222 * during early boot. i.e, the capability should be "detected" and
223 * "enabled" as early as possibly on all booting CPUs.
224 */
225 #define ARM64_CPUCAP_SCOPE_BOOT_CPU ((u16)BIT(2))
226 #define ARM64_CPUCAP_SCOPE_MASK \
227 (ARM64_CPUCAP_SCOPE_SYSTEM | \
228 ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
229 ARM64_CPUCAP_SCOPE_BOOT_CPU)
230
231 #define SCOPE_SYSTEM ARM64_CPUCAP_SCOPE_SYSTEM
232 #define SCOPE_LOCAL_CPU ARM64_CPUCAP_SCOPE_LOCAL_CPU
233 #define SCOPE_BOOT_CPU ARM64_CPUCAP_SCOPE_BOOT_CPU
234 #define SCOPE_ALL ARM64_CPUCAP_SCOPE_MASK
235
236 /*
237 * Is it permitted for a late CPU to have this capability when system
238 * hasn't already enabled it ?
239 */
240 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU ((u16)BIT(4))
241 /* Is it safe for a late CPU to miss this capability when system has it */
242 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU ((u16)BIT(5))
243
244 /*
245 * CPU errata workarounds that need to be enabled at boot time if one or
246 * more CPUs in the system requires it. When one of these capabilities
247 * has been enabled, it is safe to allow any CPU to boot that doesn't
248 * require the workaround. However, it is not safe if a "late" CPU
249 * requires a workaround and the system hasn't enabled it already.
250 */
251 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM \
252 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
253 /*
254 * CPU feature detected at boot time based on system-wide value of a
255 * feature. It is safe for a late CPU to have this feature even though
256 * the system hasn't enabled it, although the feature will not be used
257 * by Linux in this case. If the system has enabled this feature already,
258 * then every late CPU must have it.
259 */
260 #define ARM64_CPUCAP_SYSTEM_FEATURE \
261 (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
262 /*
263 * CPU feature detected at boot time based on feature of one or more CPUs.
264 * All possible conflicts for a late CPU are ignored.
265 * NOTE: this means that a late CPU with the feature will *not* cause the
266 * capability to be advertised by cpus_have_*cap()!
267 */
268 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE \
269 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
270 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU | \
271 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
272
273 /*
274 * CPU feature detected at boot time, on one or more CPUs. A late CPU
275 * is not allowed to have the capability when the system doesn't have it.
276 * It is Ok for a late CPU to miss the feature.
277 */
278 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE \
279 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
280 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
281
282 /*
283 * CPU feature used early in the boot based on the boot CPU. All secondary
284 * CPUs must match the state of the capability as detected by the boot CPU.
285 */
286 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE ARM64_CPUCAP_SCOPE_BOOT_CPU
287
288 struct arm64_cpu_capabilities {
289 const char *desc;
290 u16 capability;
291 u16 type;
292 bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
293 /*
294 * Take the appropriate actions to configure this capability
295 * for this CPU. If the capability is detected by the kernel
296 * this will be called on all the CPUs in the system,
297 * including the hotplugged CPUs, regardless of whether the
298 * capability is available on that specific CPU. This is
299 * useful for some capabilities (e.g, working around CPU
300 * errata), where all the CPUs must take some action (e.g,
301 * changing system control/configuration). Thus, if an action
302 * is required only if the CPU has the capability, then the
303 * routine must check it before taking any action.
304 */
305 void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
306 union {
307 struct { /* To be used for erratum handling only */
308 struct midr_range midr_range;
309 const struct arm64_midr_revidr {
310 u32 midr_rv; /* revision/variant */
311 u32 revidr_mask;
312 } * const fixed_revs;
313 };
314
315 const struct midr_range *midr_range_list;
316 struct { /* Feature register checking */
317 u32 sys_reg;
318 u8 field_pos;
319 u8 min_field_value;
320 u8 hwcap_type;
321 bool sign;
322 unsigned long hwcap;
323 };
324 };
325
326 /*
327 * An optional list of "matches/cpu_enable" pair for the same
328 * "capability" of the same "type" as described by the parent.
329 * Only matches(), cpu_enable() and fields relevant to these
330 * methods are significant in the list. The cpu_enable is
331 * invoked only if the corresponding entry "matches()".
332 * However, if a cpu_enable() method is associated
333 * with multiple matches(), care should be taken that either
334 * the match criteria are mutually exclusive, or that the
335 * method is robust against being called multiple times.
336 */
337 const struct arm64_cpu_capabilities *match_list;
338 };
339
cpucap_default_scope(const struct arm64_cpu_capabilities * cap)340 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
341 {
342 return cap->type & ARM64_CPUCAP_SCOPE_MASK;
343 }
344
345 static inline bool
cpucap_late_cpu_optional(const struct arm64_cpu_capabilities * cap)346 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
347 {
348 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
349 }
350
351 static inline bool
cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities * cap)352 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
353 {
354 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
355 }
356
357 /*
358 * Generic helper for handling capabilties with multiple (match,enable) pairs
359 * of call backs, sharing the same capability bit.
360 * Iterate over each entry to see if at least one matches.
361 */
362 static inline bool
cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities * entry,int scope)363 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
364 int scope)
365 {
366 const struct arm64_cpu_capabilities *caps;
367
368 for (caps = entry->match_list; caps->matches; caps++)
369 if (caps->matches(caps, scope))
370 return true;
371
372 return false;
373 }
374
375 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
376 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
377 extern struct static_key_false arm64_const_caps_ready;
378
379 /* ARM64 CAPS + alternative_cb */
380 #define ARM64_NPATCHABLE (ARM64_NCAPS + 1)
381 extern DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
382
383 #define for_each_available_cap(cap) \
384 for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS)
385
386 bool this_cpu_has_cap(unsigned int cap);
387 void cpu_set_feature(unsigned int num);
388 bool cpu_have_feature(unsigned int num);
389 unsigned long cpu_get_elf_hwcap(void);
390 unsigned long cpu_get_elf_hwcap2(void);
391
392 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
393 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
394
395 /* System capability check for constant caps */
__cpus_have_const_cap(int num)396 static __always_inline bool __cpus_have_const_cap(int num)
397 {
398 if (num >= ARM64_NCAPS)
399 return false;
400 return static_branch_unlikely(&cpu_hwcap_keys[num]);
401 }
402
cpus_have_cap(unsigned int num)403 static inline bool cpus_have_cap(unsigned int num)
404 {
405 if (num >= ARM64_NCAPS)
406 return false;
407 return test_bit(num, cpu_hwcaps);
408 }
409
cpus_have_const_cap(int num)410 static __always_inline bool cpus_have_const_cap(int num)
411 {
412 if (static_branch_likely(&arm64_const_caps_ready))
413 return __cpus_have_const_cap(num);
414 else
415 return cpus_have_cap(num);
416 }
417
cpus_set_cap(unsigned int num)418 static inline void cpus_set_cap(unsigned int num)
419 {
420 if (num >= ARM64_NCAPS) {
421 pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
422 num, ARM64_NCAPS);
423 } else {
424 __set_bit(num, cpu_hwcaps);
425 }
426 }
427
428 static inline int __attribute_const__
cpuid_feature_extract_signed_field_width(u64 features,int field,int width)429 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
430 {
431 return (s64)(features << (64 - width - field)) >> (64 - width);
432 }
433
434 static inline int __attribute_const__
cpuid_feature_extract_signed_field(u64 features,int field)435 cpuid_feature_extract_signed_field(u64 features, int field)
436 {
437 return cpuid_feature_extract_signed_field_width(features, field, 4);
438 }
439
440 static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field_width(u64 features,int field,int width)441 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
442 {
443 return (u64)(features << (64 - width - field)) >> (64 - width);
444 }
445
446 static inline unsigned int __attribute_const__
cpuid_feature_extract_unsigned_field(u64 features,int field)447 cpuid_feature_extract_unsigned_field(u64 features, int field)
448 {
449 return cpuid_feature_extract_unsigned_field_width(features, field, 4);
450 }
451
452 /*
453 * Fields that identify the version of the Performance Monitors Extension do
454 * not follow the standard ID scheme. See ARM DDI 0487E.a page D13-2825,
455 * "Alternative ID scheme used for the Performance Monitors Extension version".
456 */
457 static inline u64 __attribute_const__
cpuid_feature_cap_perfmon_field(u64 features,int field,u64 cap)458 cpuid_feature_cap_perfmon_field(u64 features, int field, u64 cap)
459 {
460 u64 val = cpuid_feature_extract_unsigned_field(features, field);
461 u64 mask = GENMASK_ULL(field + 3, field);
462
463 /* Treat IMPLEMENTATION DEFINED functionality as unimplemented */
464 if (val == 0xf)
465 val = 0;
466
467 if (val > cap) {
468 features &= ~mask;
469 features |= (cap << field) & mask;
470 }
471
472 return features;
473 }
474
arm64_ftr_mask(const struct arm64_ftr_bits * ftrp)475 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
476 {
477 return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
478 }
479
arm64_ftr_reg_user_value(const struct arm64_ftr_reg * reg)480 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
481 {
482 return (reg->user_val | (reg->sys_val & reg->user_mask));
483 }
484
485 static inline int __attribute_const__
cpuid_feature_extract_field_width(u64 features,int field,int width,bool sign)486 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
487 {
488 return (sign) ?
489 cpuid_feature_extract_signed_field_width(features, field, width) :
490 cpuid_feature_extract_unsigned_field_width(features, field, width);
491 }
492
493 static inline int __attribute_const__
cpuid_feature_extract_field(u64 features,int field,bool sign)494 cpuid_feature_extract_field(u64 features, int field, bool sign)
495 {
496 return cpuid_feature_extract_field_width(features, field, 4, sign);
497 }
498
arm64_ftr_value(const struct arm64_ftr_bits * ftrp,u64 val)499 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
500 {
501 return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
502 }
503
id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)504 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
505 {
506 return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
507 cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
508 }
509
id_aa64pfr0_32bit_el0(u64 pfr0)510 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
511 {
512 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
513
514 return val == ID_AA64PFR0_EL0_32BIT_64BIT;
515 }
516
id_aa64pfr0_sve(u64 pfr0)517 static inline bool id_aa64pfr0_sve(u64 pfr0)
518 {
519 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
520
521 return val > 0;
522 }
523
524 void __init setup_cpu_features(void);
525 void check_local_cpu_capabilities(void);
526
527 u64 read_sanitised_ftr_reg(u32 id);
528
cpu_supports_mixed_endian_el0(void)529 static inline bool cpu_supports_mixed_endian_el0(void)
530 {
531 return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
532 }
533
supports_csv2p3(int scope)534 static inline bool supports_csv2p3(int scope)
535 {
536 u64 pfr0;
537 u8 csv2_val;
538
539 if (scope == SCOPE_LOCAL_CPU)
540 pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
541 else
542 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
543
544 csv2_val = cpuid_feature_extract_unsigned_field(pfr0,
545 ID_AA64PFR0_CSV2_SHIFT);
546 return csv2_val == 3;
547 }
548
supports_clearbhb(int scope)549 static inline bool supports_clearbhb(int scope)
550 {
551 u64 isar2;
552
553 if (scope == SCOPE_LOCAL_CPU)
554 isar2 = read_sysreg_s(SYS_ID_AA64ISAR2_EL1);
555 else
556 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
557
558 return cpuid_feature_extract_unsigned_field(isar2,
559 ID_AA64ISAR2_CLEARBHB_SHIFT);
560 }
561
system_supports_32bit_el0(void)562 static inline bool system_supports_32bit_el0(void)
563 {
564 return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
565 }
566
system_supports_4kb_granule(void)567 static inline bool system_supports_4kb_granule(void)
568 {
569 u64 mmfr0;
570 u32 val;
571
572 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
573 val = cpuid_feature_extract_unsigned_field(mmfr0,
574 ID_AA64MMFR0_TGRAN4_SHIFT);
575
576 return val == ID_AA64MMFR0_TGRAN4_SUPPORTED;
577 }
578
system_supports_64kb_granule(void)579 static inline bool system_supports_64kb_granule(void)
580 {
581 u64 mmfr0;
582 u32 val;
583
584 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
585 val = cpuid_feature_extract_unsigned_field(mmfr0,
586 ID_AA64MMFR0_TGRAN64_SHIFT);
587
588 return val == ID_AA64MMFR0_TGRAN64_SUPPORTED;
589 }
590
system_supports_16kb_granule(void)591 static inline bool system_supports_16kb_granule(void)
592 {
593 u64 mmfr0;
594 u32 val;
595
596 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
597 val = cpuid_feature_extract_unsigned_field(mmfr0,
598 ID_AA64MMFR0_TGRAN16_SHIFT);
599
600 return val == ID_AA64MMFR0_TGRAN16_SUPPORTED;
601 }
602
system_supports_mixed_endian_el0(void)603 static inline bool system_supports_mixed_endian_el0(void)
604 {
605 return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
606 }
607
system_supports_mixed_endian(void)608 static inline bool system_supports_mixed_endian(void)
609 {
610 u64 mmfr0;
611 u32 val;
612
613 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
614 val = cpuid_feature_extract_unsigned_field(mmfr0,
615 ID_AA64MMFR0_BIGENDEL_SHIFT);
616
617 return val == 0x1;
618 }
619
system_supports_fpsimd(void)620 static inline bool system_supports_fpsimd(void)
621 {
622 return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
623 }
624
system_uses_ttbr0_pan(void)625 static inline bool system_uses_ttbr0_pan(void)
626 {
627 return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
628 !cpus_have_const_cap(ARM64_HAS_PAN);
629 }
630
system_supports_sve(void)631 static inline bool system_supports_sve(void)
632 {
633 return IS_ENABLED(CONFIG_ARM64_SVE) &&
634 cpus_have_const_cap(ARM64_SVE);
635 }
636
system_supports_cnp(void)637 static inline bool system_supports_cnp(void)
638 {
639 return IS_ENABLED(CONFIG_ARM64_CNP) &&
640 cpus_have_const_cap(ARM64_HAS_CNP);
641 }
642
system_supports_address_auth(void)643 static inline bool system_supports_address_auth(void)
644 {
645 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
646 (cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_ARCH) ||
647 cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_IMP_DEF));
648 }
649
system_supports_generic_auth(void)650 static inline bool system_supports_generic_auth(void)
651 {
652 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
653 (cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
654 cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF));
655 }
656
system_uses_irq_prio_masking(void)657 static __always_inline bool system_uses_irq_prio_masking(void)
658 {
659 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
660 cpus_have_const_cap(ARM64_HAS_IRQ_PRIO_MASKING);
661 }
662
system_has_prio_mask_debugging(void)663 static inline bool system_has_prio_mask_debugging(void)
664 {
665 return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
666 system_uses_irq_prio_masking();
667 }
668
669 #define ARM64_BP_HARDEN_UNKNOWN -1
670 #define ARM64_BP_HARDEN_WA_NEEDED 0
671 #define ARM64_BP_HARDEN_NOT_REQUIRED 1
672
673 int get_spectre_v2_workaround_state(void);
674
675 #define ARM64_SSBD_UNKNOWN -1
676 #define ARM64_SSBD_FORCE_DISABLE 0
677 #define ARM64_SSBD_KERNEL 1
678 #define ARM64_SSBD_FORCE_ENABLE 2
679 #define ARM64_SSBD_MITIGATED 3
680
arm64_get_ssbd_state(void)681 static inline int arm64_get_ssbd_state(void)
682 {
683 #ifdef CONFIG_ARM64_SSBD
684 extern int ssbd_state;
685 return ssbd_state;
686 #else
687 return ARM64_SSBD_UNKNOWN;
688 #endif
689 }
690
691 void arm64_set_ssbd_mitigation(bool state);
692
693 /* Watch out, ordering is important here. */
694 enum mitigation_state {
695 SPECTRE_UNAFFECTED,
696 SPECTRE_MITIGATED,
697 SPECTRE_VULNERABLE,
698 };
699
700 enum mitigation_state arm64_get_spectre_bhb_state(void);
701 bool is_spectre_bhb_affected(const struct arm64_cpu_capabilities *entry, int scope);
702 u8 spectre_bhb_loop_affected(int scope);
703 void spectre_bhb_enable_mitigation(const struct arm64_cpu_capabilities *__unused);
704
705 extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
706
id_aa64mmfr0_parange_to_phys_shift(int parange)707 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
708 {
709 switch (parange) {
710 case 0: return 32;
711 case 1: return 36;
712 case 2: return 40;
713 case 3: return 42;
714 case 4: return 44;
715 case 5: return 48;
716 case 6: return 52;
717 /*
718 * A future PE could use a value unknown to the kernel.
719 * However, by the "D10.1.4 Principles of the ID scheme
720 * for fields in ID registers", ARM DDI 0487C.a, any new
721 * value is guaranteed to be higher than what we know already.
722 * As a safe limit, we return the limit supported by the kernel.
723 */
724 default: return CONFIG_ARM64_PA_BITS;
725 }
726 }
727
728 #ifdef CONFIG_ARM64_AMU_EXTN
729 /* Check whether the cpu supports the Activity Monitors Unit (AMU) */
730 extern bool cpu_has_amu_feat(int cpu);
731 #endif
732
733 #endif /* __ASSEMBLY__ */
734
735 #endif
736