1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * linux/cgroup-defs.h - basic definitions for cgroup
4 *
5 * This file provides basic type and interface. Include this file directly
6 * only if necessary to avoid cyclic dependencies.
7 */
8 #ifndef _LINUX_CGROUP_DEFS_H
9 #define _LINUX_CGROUP_DEFS_H
10
11 #include <linux/limits.h>
12 #include <linux/list.h>
13 #include <linux/idr.h>
14 #include <linux/wait.h>
15 #include <linux/mutex.h>
16 #include <linux/rcupdate.h>
17 #include <linux/refcount.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/percpu-rwsem.h>
20 #include <linux/u64_stats_sync.h>
21 #include <linux/workqueue.h>
22 #include <linux/bpf-cgroup.h>
23 #include <linux/psi_types.h>
24
25 #ifdef CONFIG_CGROUPS
26
27 struct cgroup;
28 struct cgroup_root;
29 struct cgroup_subsys;
30 struct cgroup_taskset;
31 struct kernfs_node;
32 struct kernfs_ops;
33 struct kernfs_open_file;
34 struct seq_file;
35 struct poll_table_struct;
36
37 #define MAX_CGROUP_TYPE_NAMELEN 32
38 #define MAX_CGROUP_ROOT_NAMELEN 64
39 #define MAX_CFTYPE_NAME 64
40
41 /* define the enumeration of all cgroup subsystems */
42 #define SUBSYS(_x) _x ## _cgrp_id,
43 enum cgroup_subsys_id {
44 #include <linux/cgroup_subsys.h>
45 CGROUP_SUBSYS_COUNT,
46 };
47 #undef SUBSYS
48
49 /* bits in struct cgroup_subsys_state flags field */
50 enum {
51 CSS_NO_REF = (1 << 0), /* no reference counting for this css */
52 CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */
53 CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */
54 CSS_VISIBLE = (1 << 3), /* css is visible to userland */
55 CSS_DYING = (1 << 4), /* css is dying */
56 };
57
58 /* bits in struct cgroup flags field */
59 enum {
60 /* Control Group requires release notifications to userspace */
61 CGRP_NOTIFY_ON_RELEASE,
62 /*
63 * Clone the parent's configuration when creating a new child
64 * cpuset cgroup. For historical reasons, this option can be
65 * specified at mount time and thus is implemented here.
66 */
67 CGRP_CPUSET_CLONE_CHILDREN,
68
69 /* Control group has to be frozen. */
70 CGRP_FREEZE,
71
72 /* Cgroup is frozen. */
73 CGRP_FROZEN,
74 };
75
76 /* cgroup_root->flags */
77 enum {
78 CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */
79 CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */
80
81 /*
82 * Consider namespaces as delegation boundaries. If this flag is
83 * set, controller specific interface files in a namespace root
84 * aren't writeable from inside the namespace.
85 */
86 CGRP_ROOT_NS_DELEGATE = (1 << 3),
87
88 /*
89 * Enable cpuset controller in v1 cgroup to use v2 behavior.
90 */
91 CGRP_ROOT_CPUSET_V2_MODE = (1 << 4),
92
93 /*
94 * Enable legacy local memory.events.
95 */
96 CGRP_ROOT_MEMORY_LOCAL_EVENTS = (1 << 5),
97 };
98
99 /* cftype->flags */
100 enum {
101 CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */
102 CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */
103 CFTYPE_NS_DELEGATABLE = (1 << 2), /* writeable beyond delegation boundaries */
104
105 CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */
106 CFTYPE_WORLD_WRITABLE = (1 << 4), /* (DON'T USE FOR NEW FILES) S_IWUGO */
107 CFTYPE_DEBUG = (1 << 5), /* create when cgroup_debug */
108
109 /* internal flags, do not use outside cgroup core proper */
110 __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */
111 __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */
112 };
113
114 /*
115 * cgroup_file is the handle for a file instance created in a cgroup which
116 * is used, for example, to generate file changed notifications. This can
117 * be obtained by setting cftype->file_offset.
118 */
119 struct cgroup_file {
120 /* do not access any fields from outside cgroup core */
121 struct kernfs_node *kn;
122 unsigned long notified_at;
123 struct timer_list notify_timer;
124 };
125
126 /*
127 * Per-subsystem/per-cgroup state maintained by the system. This is the
128 * fundamental structural building block that controllers deal with.
129 *
130 * Fields marked with "PI:" are public and immutable and may be accessed
131 * directly without synchronization.
132 */
133 struct cgroup_subsys_state {
134 /* PI: the cgroup that this css is attached to */
135 struct cgroup *cgroup;
136
137 /* PI: the cgroup subsystem that this css is attached to */
138 struct cgroup_subsys *ss;
139
140 /* reference count - access via css_[try]get() and css_put() */
141 struct percpu_ref refcnt;
142
143 /* siblings list anchored at the parent's ->children */
144 struct list_head sibling;
145 struct list_head children;
146
147 /* flush target list anchored at cgrp->rstat_css_list */
148 struct list_head rstat_css_node;
149
150 /*
151 * PI: Subsys-unique ID. 0 is unused and root is always 1. The
152 * matching css can be looked up using css_from_id().
153 */
154 int id;
155
156 unsigned int flags;
157
158 /*
159 * Monotonically increasing unique serial number which defines a
160 * uniform order among all csses. It's guaranteed that all
161 * ->children lists are in the ascending order of ->serial_nr and
162 * used to allow interrupting and resuming iterations.
163 */
164 u64 serial_nr;
165
166 /*
167 * Incremented by online self and children. Used to guarantee that
168 * parents are not offlined before their children.
169 */
170 atomic_t online_cnt;
171
172 /* percpu_ref killing and RCU release */
173 struct work_struct destroy_work;
174 struct rcu_work destroy_rwork;
175
176 /*
177 * PI: the parent css. Placed here for cache proximity to following
178 * fields of the containing structure.
179 */
180 struct cgroup_subsys_state *parent;
181 };
182
183 /*
184 * A css_set is a structure holding pointers to a set of
185 * cgroup_subsys_state objects. This saves space in the task struct
186 * object and speeds up fork()/exit(), since a single inc/dec and a
187 * list_add()/del() can bump the reference count on the entire cgroup
188 * set for a task.
189 */
190 struct css_set {
191 /*
192 * Set of subsystem states, one for each subsystem. This array is
193 * immutable after creation apart from the init_css_set during
194 * subsystem registration (at boot time).
195 */
196 struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
197
198 /* reference count */
199 refcount_t refcount;
200
201 /*
202 * For a domain cgroup, the following points to self. If threaded,
203 * to the matching cset of the nearest domain ancestor. The
204 * dom_cset provides access to the domain cgroup and its csses to
205 * which domain level resource consumptions should be charged.
206 */
207 struct css_set *dom_cset;
208
209 /* the default cgroup associated with this css_set */
210 struct cgroup *dfl_cgrp;
211
212 /* internal task count, protected by css_set_lock */
213 int nr_tasks;
214
215 /*
216 * Lists running through all tasks using this cgroup group.
217 * mg_tasks lists tasks which belong to this cset but are in the
218 * process of being migrated out or in. Protected by
219 * css_set_rwsem, but, during migration, once tasks are moved to
220 * mg_tasks, it can be read safely while holding cgroup_mutex.
221 */
222 struct list_head tasks;
223 struct list_head mg_tasks;
224 struct list_head dying_tasks;
225
226 /* all css_task_iters currently walking this cset */
227 struct list_head task_iters;
228
229 /*
230 * On the default hierarhcy, ->subsys[ssid] may point to a css
231 * attached to an ancestor instead of the cgroup this css_set is
232 * associated with. The following node is anchored at
233 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
234 * iterate through all css's attached to a given cgroup.
235 */
236 struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
237
238 /* all threaded csets whose ->dom_cset points to this cset */
239 struct list_head threaded_csets;
240 struct list_head threaded_csets_node;
241
242 /*
243 * List running through all cgroup groups in the same hash
244 * slot. Protected by css_set_lock
245 */
246 struct hlist_node hlist;
247
248 /*
249 * List of cgrp_cset_links pointing at cgroups referenced from this
250 * css_set. Protected by css_set_lock.
251 */
252 struct list_head cgrp_links;
253
254 /*
255 * List of csets participating in the on-going migration either as
256 * source or destination. Protected by cgroup_mutex.
257 */
258 struct list_head mg_preload_node;
259 struct list_head mg_node;
260
261 /*
262 * If this cset is acting as the source of migration the following
263 * two fields are set. mg_src_cgrp and mg_dst_cgrp are
264 * respectively the source and destination cgroups of the on-going
265 * migration. mg_dst_cset is the destination cset the target tasks
266 * on this cset should be migrated to. Protected by cgroup_mutex.
267 */
268 struct cgroup *mg_src_cgrp;
269 struct cgroup *mg_dst_cgrp;
270 struct css_set *mg_dst_cset;
271
272 /* dead and being drained, ignore for migration */
273 bool dead;
274
275 /* For RCU-protected deletion */
276 struct rcu_head rcu_head;
277 };
278
279 struct ext_css_set {
280 struct css_set cset;
281
282 struct list_head mg_src_preload_node;
283 struct list_head mg_dst_preload_node;
284 };
285
286 struct cgroup_base_stat {
287 struct task_cputime cputime;
288 };
289
290 /*
291 * rstat - cgroup scalable recursive statistics. Accounting is done
292 * per-cpu in cgroup_rstat_cpu which is then lazily propagated up the
293 * hierarchy on reads.
294 *
295 * When a stat gets updated, the cgroup_rstat_cpu and its ancestors are
296 * linked into the updated tree. On the following read, propagation only
297 * considers and consumes the updated tree. This makes reading O(the
298 * number of descendants which have been active since last read) instead of
299 * O(the total number of descendants).
300 *
301 * This is important because there can be a lot of (draining) cgroups which
302 * aren't active and stat may be read frequently. The combination can
303 * become very expensive. By propagating selectively, increasing reading
304 * frequency decreases the cost of each read.
305 *
306 * This struct hosts both the fields which implement the above -
307 * updated_children and updated_next - and the fields which track basic
308 * resource statistics on top of it - bsync, bstat and last_bstat.
309 */
310 struct cgroup_rstat_cpu {
311 /*
312 * ->bsync protects ->bstat. These are the only fields which get
313 * updated in the hot path.
314 */
315 struct u64_stats_sync bsync;
316 struct cgroup_base_stat bstat;
317
318 /*
319 * Snapshots at the last reading. These are used to calculate the
320 * deltas to propagate to the global counters.
321 */
322 struct cgroup_base_stat last_bstat;
323
324 /*
325 * Child cgroups with stat updates on this cpu since the last read
326 * are linked on the parent's ->updated_children through
327 * ->updated_next.
328 *
329 * In addition to being more compact, singly-linked list pointing
330 * to the cgroup makes it unnecessary for each per-cpu struct to
331 * point back to the associated cgroup.
332 *
333 * Protected by per-cpu cgroup_rstat_cpu_lock.
334 */
335 struct cgroup *updated_children; /* terminated by self cgroup */
336 struct cgroup *updated_next; /* NULL iff not on the list */
337 };
338
339 struct cgroup_freezer_state {
340 /* Should the cgroup and its descendants be frozen. */
341 bool freeze;
342
343 /* Should the cgroup actually be frozen? */
344 int e_freeze;
345
346 /* Fields below are protected by css_set_lock */
347
348 /* Number of frozen descendant cgroups */
349 int nr_frozen_descendants;
350
351 /*
352 * Number of tasks, which are counted as frozen:
353 * frozen, SIGSTOPped, and PTRACEd.
354 */
355 int nr_frozen_tasks;
356 };
357
358 struct cgroup {
359 /* self css with NULL ->ss, points back to this cgroup */
360 struct cgroup_subsys_state self;
361
362 unsigned long flags; /* "unsigned long" so bitops work */
363
364 /*
365 * idr allocated in-hierarchy ID.
366 *
367 * ID 0 is not used, the ID of the root cgroup is always 1, and a
368 * new cgroup will be assigned with a smallest available ID.
369 *
370 * Allocating/Removing ID must be protected by cgroup_mutex.
371 */
372 int id;
373
374 /*
375 * The depth this cgroup is at. The root is at depth zero and each
376 * step down the hierarchy increments the level. This along with
377 * ancestor_ids[] can determine whether a given cgroup is a
378 * descendant of another without traversing the hierarchy.
379 */
380 int level;
381
382 /* Maximum allowed descent tree depth */
383 int max_depth;
384
385 /*
386 * Keep track of total numbers of visible and dying descent cgroups.
387 * Dying cgroups are cgroups which were deleted by a user,
388 * but are still existing because someone else is holding a reference.
389 * max_descendants is a maximum allowed number of descent cgroups.
390 *
391 * nr_descendants and nr_dying_descendants are protected
392 * by cgroup_mutex and css_set_lock. It's fine to read them holding
393 * any of cgroup_mutex and css_set_lock; for writing both locks
394 * should be held.
395 */
396 int nr_descendants;
397 int nr_dying_descendants;
398 int max_descendants;
399
400 /*
401 * Each non-empty css_set associated with this cgroup contributes
402 * one to nr_populated_csets. The counter is zero iff this cgroup
403 * doesn't have any tasks.
404 *
405 * All children which have non-zero nr_populated_csets and/or
406 * nr_populated_children of their own contribute one to either
407 * nr_populated_domain_children or nr_populated_threaded_children
408 * depending on their type. Each counter is zero iff all cgroups
409 * of the type in the subtree proper don't have any tasks.
410 */
411 int nr_populated_csets;
412 int nr_populated_domain_children;
413 int nr_populated_threaded_children;
414
415 int nr_threaded_children; /* # of live threaded child cgroups */
416
417 struct kernfs_node *kn; /* cgroup kernfs entry */
418 struct cgroup_file procs_file; /* handle for "cgroup.procs" */
419 struct cgroup_file events_file; /* handle for "cgroup.events" */
420
421 /*
422 * The bitmask of subsystems enabled on the child cgroups.
423 * ->subtree_control is the one configured through
424 * "cgroup.subtree_control" while ->child_ss_mask is the effective
425 * one which may have more subsystems enabled. Controller knobs
426 * are made available iff it's enabled in ->subtree_control.
427 */
428 u16 subtree_control;
429 u16 subtree_ss_mask;
430 u16 old_subtree_control;
431 u16 old_subtree_ss_mask;
432
433 /* Private pointers for each registered subsystem */
434 struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
435
436 struct cgroup_root *root;
437
438 /*
439 * List of cgrp_cset_links pointing at css_sets with tasks in this
440 * cgroup. Protected by css_set_lock.
441 */
442 struct list_head cset_links;
443
444 /*
445 * On the default hierarchy, a css_set for a cgroup with some
446 * susbsys disabled will point to css's which are associated with
447 * the closest ancestor which has the subsys enabled. The
448 * following lists all css_sets which point to this cgroup's css
449 * for the given subsystem.
450 */
451 struct list_head e_csets[CGROUP_SUBSYS_COUNT];
452
453 /*
454 * If !threaded, self. If threaded, it points to the nearest
455 * domain ancestor. Inside a threaded subtree, cgroups are exempt
456 * from process granularity and no-internal-task constraint.
457 * Domain level resource consumptions which aren't tied to a
458 * specific task are charged to the dom_cgrp.
459 */
460 struct cgroup *dom_cgrp;
461 struct cgroup *old_dom_cgrp; /* used while enabling threaded */
462
463 /* per-cpu recursive resource statistics */
464 struct cgroup_rstat_cpu __percpu *rstat_cpu;
465 struct list_head rstat_css_list;
466
467 /* cgroup basic resource statistics */
468 struct cgroup_base_stat pending_bstat; /* pending from children */
469 struct cgroup_base_stat bstat;
470 struct prev_cputime prev_cputime; /* for printing out cputime */
471
472 /*
473 * list of pidlists, up to two for each namespace (one for procs, one
474 * for tasks); created on demand.
475 */
476 struct list_head pidlists;
477 struct mutex pidlist_mutex;
478
479 /* used to wait for offlining of csses */
480 wait_queue_head_t offline_waitq;
481
482 /* used to schedule release agent */
483 struct work_struct release_agent_work;
484
485 /* used to track pressure stalls */
486 struct psi_group psi;
487
488 /* used to store eBPF programs */
489 struct cgroup_bpf bpf;
490
491 /* If there is block congestion on this cgroup. */
492 atomic_t congestion_count;
493
494 /* Used to store internal freezer state */
495 struct cgroup_freezer_state freezer;
496
497 /* ids of the ancestors at each level including self */
498 int ancestor_ids[];
499 };
500
501 /*
502 * A cgroup_root represents the root of a cgroup hierarchy, and may be
503 * associated with a kernfs_root to form an active hierarchy. This is
504 * internal to cgroup core. Don't access directly from controllers.
505 */
506 struct cgroup_root {
507 struct kernfs_root *kf_root;
508
509 /* The bitmask of subsystems attached to this hierarchy */
510 unsigned int subsys_mask;
511
512 /* Unique id for this hierarchy. */
513 int hierarchy_id;
514
515 /* The root cgroup. Root is destroyed on its release. */
516 struct cgroup cgrp;
517
518 /* for cgrp->ancestor_ids[0] */
519 int cgrp_ancestor_id_storage;
520
521 /* Number of cgroups in the hierarchy, used only for /proc/cgroups */
522 atomic_t nr_cgrps;
523
524 /* A list running through the active hierarchies */
525 struct list_head root_list;
526
527 /* Hierarchy-specific flags */
528 unsigned int flags;
529
530 /* IDs for cgroups in this hierarchy */
531 struct idr cgroup_idr;
532
533 /* The path to use for release notifications. */
534 char release_agent_path[PATH_MAX];
535
536 /* The name for this hierarchy - may be empty */
537 char name[MAX_CGROUP_ROOT_NAMELEN];
538 };
539
540 /*
541 * struct cftype: handler definitions for cgroup control files
542 *
543 * When reading/writing to a file:
544 * - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
545 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata
546 */
547 struct cftype {
548 /*
549 * By convention, the name should begin with the name of the
550 * subsystem, followed by a period. Zero length string indicates
551 * end of cftype array.
552 */
553 char name[MAX_CFTYPE_NAME];
554 unsigned long private;
555
556 /*
557 * The maximum length of string, excluding trailing nul, that can
558 * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
559 */
560 size_t max_write_len;
561
562 /* CFTYPE_* flags */
563 unsigned int flags;
564
565 /*
566 * If non-zero, should contain the offset from the start of css to
567 * a struct cgroup_file field. cgroup will record the handle of
568 * the created file into it. The recorded handle can be used as
569 * long as the containing css remains accessible.
570 */
571 unsigned int file_offset;
572
573 /*
574 * Fields used for internal bookkeeping. Initialized automatically
575 * during registration.
576 */
577 struct cgroup_subsys *ss; /* NULL for cgroup core files */
578 struct list_head node; /* anchored at ss->cfts */
579 struct kernfs_ops *kf_ops;
580
581 int (*open)(struct kernfs_open_file *of);
582 void (*release)(struct kernfs_open_file *of);
583
584 /*
585 * read_u64() is a shortcut for the common case of returning a
586 * single integer. Use it in place of read()
587 */
588 u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
589 /*
590 * read_s64() is a signed version of read_u64()
591 */
592 s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
593
594 /* generic seq_file read interface */
595 int (*seq_show)(struct seq_file *sf, void *v);
596
597 /* optional ops, implement all or none */
598 void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
599 void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
600 void (*seq_stop)(struct seq_file *sf, void *v);
601
602 /*
603 * write_u64() is a shortcut for the common case of accepting
604 * a single integer (as parsed by simple_strtoull) from
605 * userspace. Use in place of write(); return 0 or error.
606 */
607 int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
608 u64 val);
609 /*
610 * write_s64() is a signed version of write_u64()
611 */
612 int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
613 s64 val);
614
615 /*
616 * write() is the generic write callback which maps directly to
617 * kernfs write operation and overrides all other operations.
618 * Maximum write size is determined by ->max_write_len. Use
619 * of_css/cft() to access the associated css and cft.
620 */
621 ssize_t (*write)(struct kernfs_open_file *of,
622 char *buf, size_t nbytes, loff_t off);
623
624 __poll_t (*poll)(struct kernfs_open_file *of,
625 struct poll_table_struct *pt);
626
627 #ifdef CONFIG_DEBUG_LOCK_ALLOC
628 struct lock_class_key lockdep_key;
629 #endif
630 };
631
632 /*
633 * Control Group subsystem type.
634 * See Documentation/admin-guide/cgroup-v1/cgroups.rst for details
635 */
636 struct cgroup_subsys {
637 struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
638 int (*css_online)(struct cgroup_subsys_state *css);
639 void (*css_offline)(struct cgroup_subsys_state *css);
640 void (*css_released)(struct cgroup_subsys_state *css);
641 void (*css_free)(struct cgroup_subsys_state *css);
642 void (*css_reset)(struct cgroup_subsys_state *css);
643 void (*css_rstat_flush)(struct cgroup_subsys_state *css, int cpu);
644 int (*css_extra_stat_show)(struct seq_file *seq,
645 struct cgroup_subsys_state *css);
646
647 int (*can_attach)(struct cgroup_taskset *tset);
648 void (*cancel_attach)(struct cgroup_taskset *tset);
649 void (*attach)(struct cgroup_taskset *tset);
650 void (*post_attach)(void);
651 int (*can_fork)(struct task_struct *task);
652 void (*cancel_fork)(struct task_struct *task);
653 void (*fork)(struct task_struct *task);
654 void (*exit)(struct task_struct *task);
655 void (*release)(struct task_struct *task);
656 void (*bind)(struct cgroup_subsys_state *root_css);
657
658 bool early_init:1;
659
660 /*
661 * If %true, the controller, on the default hierarchy, doesn't show
662 * up in "cgroup.controllers" or "cgroup.subtree_control", is
663 * implicitly enabled on all cgroups on the default hierarchy, and
664 * bypasses the "no internal process" constraint. This is for
665 * utility type controllers which is transparent to userland.
666 *
667 * An implicit controller can be stolen from the default hierarchy
668 * anytime and thus must be okay with offline csses from previous
669 * hierarchies coexisting with csses for the current one.
670 */
671 bool implicit_on_dfl:1;
672
673 /*
674 * If %true, the controller, supports threaded mode on the default
675 * hierarchy. In a threaded subtree, both process granularity and
676 * no-internal-process constraint are ignored and a threaded
677 * controllers should be able to handle that.
678 *
679 * Note that as an implicit controller is automatically enabled on
680 * all cgroups on the default hierarchy, it should also be
681 * threaded. implicit && !threaded is not supported.
682 */
683 bool threaded:1;
684
685 /*
686 * If %false, this subsystem is properly hierarchical -
687 * configuration, resource accounting and restriction on a parent
688 * cgroup cover those of its children. If %true, hierarchy support
689 * is broken in some ways - some subsystems ignore hierarchy
690 * completely while others are only implemented half-way.
691 *
692 * It's now disallowed to create nested cgroups if the subsystem is
693 * broken and cgroup core will emit a warning message on such
694 * cases. Eventually, all subsystems will be made properly
695 * hierarchical and this will go away.
696 */
697 bool broken_hierarchy:1;
698 bool warned_broken_hierarchy:1;
699
700 /* the following two fields are initialized automtically during boot */
701 int id;
702 const char *name;
703
704 /* optional, initialized automatically during boot if not set */
705 const char *legacy_name;
706
707 /* link to parent, protected by cgroup_lock() */
708 struct cgroup_root *root;
709
710 /* idr for css->id */
711 struct idr css_idr;
712
713 /*
714 * List of cftypes. Each entry is the first entry of an array
715 * terminated by zero length name.
716 */
717 struct list_head cfts;
718
719 /*
720 * Base cftypes which are automatically registered. The two can
721 * point to the same array.
722 */
723 struct cftype *dfl_cftypes; /* for the default hierarchy */
724 struct cftype *legacy_cftypes; /* for the legacy hierarchies */
725
726 /*
727 * A subsystem may depend on other subsystems. When such subsystem
728 * is enabled on a cgroup, the depended-upon subsystems are enabled
729 * together if available. Subsystems enabled due to dependency are
730 * not visible to userland until explicitly enabled. The following
731 * specifies the mask of subsystems that this one depends on.
732 */
733 unsigned int depends_on;
734 };
735
736 extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
737
738 /**
739 * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
740 * @tsk: target task
741 *
742 * Allows cgroup operations to synchronize against threadgroup changes
743 * using a percpu_rw_semaphore.
744 */
cgroup_threadgroup_change_begin(struct task_struct * tsk)745 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
746 {
747 percpu_down_read(&cgroup_threadgroup_rwsem);
748 }
749
750 /**
751 * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
752 * @tsk: target task
753 *
754 * Counterpart of cgroup_threadcgroup_change_begin().
755 */
cgroup_threadgroup_change_end(struct task_struct * tsk)756 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
757 {
758 percpu_up_read(&cgroup_threadgroup_rwsem);
759 }
760
761 #else /* CONFIG_CGROUPS */
762
763 #define CGROUP_SUBSYS_COUNT 0
764
cgroup_threadgroup_change_begin(struct task_struct * tsk)765 static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
766 {
767 might_sleep();
768 }
769
cgroup_threadgroup_change_end(struct task_struct * tsk)770 static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
771
772 #endif /* CONFIG_CGROUPS */
773
774 #ifdef CONFIG_SOCK_CGROUP_DATA
775
776 /*
777 * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
778 * per-socket cgroup information except for memcg association.
779 *
780 * On legacy hierarchies, net_prio and net_cls controllers directly set
781 * attributes on each sock which can then be tested by the network layer.
782 * On the default hierarchy, each sock is associated with the cgroup it was
783 * created in and the networking layer can match the cgroup directly.
784 *
785 * To avoid carrying all three cgroup related fields separately in sock,
786 * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
787 * On boot, sock_cgroup_data records the cgroup that the sock was created
788 * in so that cgroup2 matches can be made; however, once either net_prio or
789 * net_cls starts being used, the area is overriden to carry prioidx and/or
790 * classid. The two modes are distinguished by whether the lowest bit is
791 * set. Clear bit indicates cgroup pointer while set bit prioidx and
792 * classid.
793 *
794 * While userland may start using net_prio or net_cls at any time, once
795 * either is used, cgroup2 matching no longer works. There is no reason to
796 * mix the two and this is in line with how legacy and v2 compatibility is
797 * handled. On mode switch, cgroup references which are already being
798 * pointed to by socks may be leaked. While this can be remedied by adding
799 * synchronization around sock_cgroup_data, given that the number of leaked
800 * cgroups is bound and highly unlikely to be high, this seems to be the
801 * better trade-off.
802 */
803 struct sock_cgroup_data {
804 union {
805 #ifdef __LITTLE_ENDIAN
806 struct {
807 #ifdef __GENKSYMS__
808 u8 is_data;
809 #else
810 u8 is_data : 1;
811 u8 no_refcnt : 1;
812 u8 unused : 6;
813 #endif
814 u8 padding;
815 u16 prioidx;
816 u32 classid;
817 } __packed;
818 #else
819 struct {
820 u32 classid;
821 u16 prioidx;
822 u8 padding;
823 u8 unused : 6;
824 u8 no_refcnt : 1;
825 u8 is_data : 1;
826 } __packed;
827 #endif
828 u64 val;
829 };
830 };
831
832 /*
833 * There's a theoretical window where the following accessors race with
834 * updaters and return part of the previous pointer as the prioidx or
835 * classid. Such races are short-lived and the result isn't critical.
836 */
sock_cgroup_prioidx(const struct sock_cgroup_data * skcd)837 static inline u16 sock_cgroup_prioidx(const struct sock_cgroup_data *skcd)
838 {
839 /* fallback to 1 which is always the ID of the root cgroup */
840 return (skcd->is_data & 1) ? skcd->prioidx : 1;
841 }
842
sock_cgroup_classid(const struct sock_cgroup_data * skcd)843 static inline u32 sock_cgroup_classid(const struct sock_cgroup_data *skcd)
844 {
845 /* fallback to 0 which is the unconfigured default classid */
846 return (skcd->is_data & 1) ? skcd->classid : 0;
847 }
848
849 /*
850 * If invoked concurrently, the updaters may clobber each other. The
851 * caller is responsible for synchronization.
852 */
sock_cgroup_set_prioidx(struct sock_cgroup_data * skcd,u16 prioidx)853 static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
854 u16 prioidx)
855 {
856 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
857
858 if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
859 return;
860
861 if (!(skcd_buf.is_data & 1)) {
862 skcd_buf.val = 0;
863 skcd_buf.is_data = 1;
864 }
865
866 skcd_buf.prioidx = prioidx;
867 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */
868 }
869
sock_cgroup_set_classid(struct sock_cgroup_data * skcd,u32 classid)870 static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
871 u32 classid)
872 {
873 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
874
875 if (sock_cgroup_classid(&skcd_buf) == classid)
876 return;
877
878 if (!(skcd_buf.is_data & 1)) {
879 skcd_buf.val = 0;
880 skcd_buf.is_data = 1;
881 }
882
883 skcd_buf.classid = classid;
884 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */
885 }
886
887 #else /* CONFIG_SOCK_CGROUP_DATA */
888
889 struct sock_cgroup_data {
890 };
891
892 #endif /* CONFIG_SOCK_CGROUP_DATA */
893
894 #endif /* _LINUX_CGROUP_DEFS_H */
895