1 /*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14 #include <linux/ctype.h>
15 #include <linux/types.h>
16 #include <linux/string.h>
17 #include <linux/kernel.h>
18 #include <linux/kmsg_dump.h>
19 #include <linux/reboot.h>
20 #include <linux/sched.h>
21 #include <linux/sched/loadavg.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sysrq.h>
25 #include <linux/smp.h>
26 #include <linux/utsname.h>
27 #include <linux/vmalloc.h>
28 #include <linux/atomic.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mm.h>
32 #include <linux/init.h>
33 #include <linux/kallsyms.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdb.h>
36 #include <linux/notifier.h>
37 #include <linux/interrupt.h>
38 #include <linux/delay.h>
39 #include <linux/nmi.h>
40 #include <linux/time.h>
41 #include <linux/ptrace.h>
42 #include <linux/sysctl.h>
43 #include <linux/cpu.h>
44 #include <linux/kdebug.h>
45 #include <linux/proc_fs.h>
46 #include <linux/uaccess.h>
47 #include <linux/slab.h>
48 #include <linux/security.h>
49 #include "kdb_private.h"
50
51 #undef MODULE_PARAM_PREFIX
52 #define MODULE_PARAM_PREFIX "kdb."
53
54 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
55 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
56
57 char kdb_grep_string[KDB_GREP_STRLEN];
58 int kdb_grepping_flag;
59 EXPORT_SYMBOL(kdb_grepping_flag);
60 int kdb_grep_leading;
61 int kdb_grep_trailing;
62
63 /*
64 * Kernel debugger state flags
65 */
66 int kdb_flags;
67
68 /*
69 * kdb_lock protects updates to kdb_initial_cpu. Used to
70 * single thread processors through the kernel debugger.
71 */
72 int kdb_initial_cpu = -1; /* cpu number that owns kdb */
73 int kdb_nextline = 1;
74 int kdb_state; /* General KDB state */
75
76 struct task_struct *kdb_current_task;
77 EXPORT_SYMBOL(kdb_current_task);
78 struct pt_regs *kdb_current_regs;
79
80 const char *kdb_diemsg;
81 static int kdb_go_count;
82 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
83 static unsigned int kdb_continue_catastrophic =
84 CONFIG_KDB_CONTINUE_CATASTROPHIC;
85 #else
86 static unsigned int kdb_continue_catastrophic;
87 #endif
88
89 /* kdb_commands describes the available commands. */
90 static kdbtab_t *kdb_commands;
91 #define KDB_BASE_CMD_MAX 50
92 static int kdb_max_commands = KDB_BASE_CMD_MAX;
93 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
94 #define for_each_kdbcmd(cmd, num) \
95 for ((cmd) = kdb_base_commands, (num) = 0; \
96 num < kdb_max_commands; \
97 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
98
99 typedef struct _kdbmsg {
100 int km_diag; /* kdb diagnostic */
101 char *km_msg; /* Corresponding message text */
102 } kdbmsg_t;
103
104 #define KDBMSG(msgnum, text) \
105 { KDB_##msgnum, text }
106
107 static kdbmsg_t kdbmsgs[] = {
108 KDBMSG(NOTFOUND, "Command Not Found"),
109 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
110 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
111 "8 is only allowed on 64 bit systems"),
112 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
113 KDBMSG(NOTENV, "Cannot find environment variable"),
114 KDBMSG(NOENVVALUE, "Environment variable should have value"),
115 KDBMSG(NOTIMP, "Command not implemented"),
116 KDBMSG(ENVFULL, "Environment full"),
117 KDBMSG(ENVBUFFULL, "Environment buffer full"),
118 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
119 #ifdef CONFIG_CPU_XSCALE
120 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
121 #else
122 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
123 #endif
124 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
125 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
126 KDBMSG(BADMODE, "Invalid IDMODE"),
127 KDBMSG(BADINT, "Illegal numeric value"),
128 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
129 KDBMSG(BADREG, "Invalid register name"),
130 KDBMSG(BADCPUNUM, "Invalid cpu number"),
131 KDBMSG(BADLENGTH, "Invalid length field"),
132 KDBMSG(NOBP, "No Breakpoint exists"),
133 KDBMSG(BADADDR, "Invalid address"),
134 KDBMSG(NOPERM, "Permission denied"),
135 };
136 #undef KDBMSG
137
138 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
139
140
141 /*
142 * Initial environment. This is all kept static and local to
143 * this file. We don't want to rely on the memory allocation
144 * mechanisms in the kernel, so we use a very limited allocate-only
145 * heap for new and altered environment variables. The entire
146 * environment is limited to a fixed number of entries (add more
147 * to __env[] if required) and a fixed amount of heap (add more to
148 * KDB_ENVBUFSIZE if required).
149 */
150
151 static char *__env[] = {
152 #if defined(CONFIG_SMP)
153 "PROMPT=[%d]kdb> ",
154 #else
155 "PROMPT=kdb> ",
156 #endif
157 "MOREPROMPT=more> ",
158 "RADIX=16",
159 "MDCOUNT=8", /* lines of md output */
160 KDB_PLATFORM_ENV,
161 "DTABCOUNT=30",
162 "NOSECT=1",
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183 (char *)0,
184 (char *)0,
185 (char *)0,
186 (char *)0,
187 };
188
189 static const int __nenv = ARRAY_SIZE(__env);
190
kdb_curr_task(int cpu)191 struct task_struct *kdb_curr_task(int cpu)
192 {
193 struct task_struct *p = curr_task(cpu);
194 #ifdef _TIF_MCA_INIT
195 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
196 p = krp->p;
197 #endif
198 return p;
199 }
200
201 /*
202 * Update the permissions flags (kdb_cmd_enabled) to match the
203 * current lockdown state.
204 *
205 * Within this function the calls to security_locked_down() are "lazy". We
206 * avoid calling them if the current value of kdb_cmd_enabled already excludes
207 * flags that might be subject to lockdown. Additionally we deliberately check
208 * the lockdown flags independently (even though read lockdown implies write
209 * lockdown) since that results in both simpler code and clearer messages to
210 * the user on first-time debugger entry.
211 *
212 * The permission masks during a read+write lockdown permits the following
213 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
214 *
215 * The INSPECT commands are not blocked during lockdown because they are
216 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
217 * forcing them to have no arguments) and lsmod. These commands do expose
218 * some kernel state but do not allow the developer seated at the console to
219 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
220 * given these are allowed for root during lockdown already.
221 */
kdb_check_for_lockdown(void)222 static void kdb_check_for_lockdown(void)
223 {
224 const int write_flags = KDB_ENABLE_MEM_WRITE |
225 KDB_ENABLE_REG_WRITE |
226 KDB_ENABLE_FLOW_CTRL;
227 const int read_flags = KDB_ENABLE_MEM_READ |
228 KDB_ENABLE_REG_READ;
229
230 bool need_to_lockdown_write = false;
231 bool need_to_lockdown_read = false;
232
233 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
234 need_to_lockdown_write =
235 security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
236
237 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
238 need_to_lockdown_read =
239 security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
240
241 /* De-compose KDB_ENABLE_ALL if required */
242 if (need_to_lockdown_write || need_to_lockdown_read)
243 if (kdb_cmd_enabled & KDB_ENABLE_ALL)
244 kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
245
246 if (need_to_lockdown_write)
247 kdb_cmd_enabled &= ~write_flags;
248
249 if (need_to_lockdown_read)
250 kdb_cmd_enabled &= ~read_flags;
251 }
252
253 /*
254 * Check whether the flags of the current command, the permissions of the kdb
255 * console and the lockdown state allow a command to be run.
256 */
kdb_check_flags(kdb_cmdflags_t flags,int permissions,bool no_args)257 static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
258 bool no_args)
259 {
260 /* permissions comes from userspace so needs massaging slightly */
261 permissions &= KDB_ENABLE_MASK;
262 permissions |= KDB_ENABLE_ALWAYS_SAFE;
263
264 /* some commands change group when launched with no arguments */
265 if (no_args)
266 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
267
268 flags |= KDB_ENABLE_ALL;
269
270 return permissions & flags;
271 }
272
273 /*
274 * kdbgetenv - This function will return the character string value of
275 * an environment variable.
276 * Parameters:
277 * match A character string representing an environment variable.
278 * Returns:
279 * NULL No environment variable matches 'match'
280 * char* Pointer to string value of environment variable.
281 */
kdbgetenv(const char * match)282 char *kdbgetenv(const char *match)
283 {
284 char **ep = __env;
285 int matchlen = strlen(match);
286 int i;
287
288 for (i = 0; i < __nenv; i++) {
289 char *e = *ep++;
290
291 if (!e)
292 continue;
293
294 if ((strncmp(match, e, matchlen) == 0)
295 && ((e[matchlen] == '\0')
296 || (e[matchlen] == '='))) {
297 char *cp = strchr(e, '=');
298 return cp ? ++cp : "";
299 }
300 }
301 return NULL;
302 }
303
304 /*
305 * kdballocenv - This function is used to allocate bytes for
306 * environment entries.
307 * Parameters:
308 * match A character string representing a numeric value
309 * Outputs:
310 * *value the unsigned long representation of the env variable 'match'
311 * Returns:
312 * Zero on success, a kdb diagnostic on failure.
313 * Remarks:
314 * We use a static environment buffer (envbuffer) to hold the values
315 * of dynamically generated environment variables (see kdb_set). Buffer
316 * space once allocated is never free'd, so over time, the amount of space
317 * (currently 512 bytes) will be exhausted if env variables are changed
318 * frequently.
319 */
kdballocenv(size_t bytes)320 static char *kdballocenv(size_t bytes)
321 {
322 #define KDB_ENVBUFSIZE 512
323 static char envbuffer[KDB_ENVBUFSIZE];
324 static int envbufsize;
325 char *ep = NULL;
326
327 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
328 ep = &envbuffer[envbufsize];
329 envbufsize += bytes;
330 }
331 return ep;
332 }
333
334 /*
335 * kdbgetulenv - This function will return the value of an unsigned
336 * long-valued environment variable.
337 * Parameters:
338 * match A character string representing a numeric value
339 * Outputs:
340 * *value the unsigned long represntation of the env variable 'match'
341 * Returns:
342 * Zero on success, a kdb diagnostic on failure.
343 */
kdbgetulenv(const char * match,unsigned long * value)344 static int kdbgetulenv(const char *match, unsigned long *value)
345 {
346 char *ep;
347
348 ep = kdbgetenv(match);
349 if (!ep)
350 return KDB_NOTENV;
351 if (strlen(ep) == 0)
352 return KDB_NOENVVALUE;
353
354 *value = simple_strtoul(ep, NULL, 0);
355
356 return 0;
357 }
358
359 /*
360 * kdbgetintenv - This function will return the value of an
361 * integer-valued environment variable.
362 * Parameters:
363 * match A character string representing an integer-valued env variable
364 * Outputs:
365 * *value the integer representation of the environment variable 'match'
366 * Returns:
367 * Zero on success, a kdb diagnostic on failure.
368 */
kdbgetintenv(const char * match,int * value)369 int kdbgetintenv(const char *match, int *value)
370 {
371 unsigned long val;
372 int diag;
373
374 diag = kdbgetulenv(match, &val);
375 if (!diag)
376 *value = (int) val;
377 return diag;
378 }
379
380 /*
381 * kdbgetularg - This function will convert a numeric string into an
382 * unsigned long value.
383 * Parameters:
384 * arg A character string representing a numeric value
385 * Outputs:
386 * *value the unsigned long represntation of arg.
387 * Returns:
388 * Zero on success, a kdb diagnostic on failure.
389 */
kdbgetularg(const char * arg,unsigned long * value)390 int kdbgetularg(const char *arg, unsigned long *value)
391 {
392 char *endp;
393 unsigned long val;
394
395 val = simple_strtoul(arg, &endp, 0);
396
397 if (endp == arg) {
398 /*
399 * Also try base 16, for us folks too lazy to type the
400 * leading 0x...
401 */
402 val = simple_strtoul(arg, &endp, 16);
403 if (endp == arg)
404 return KDB_BADINT;
405 }
406
407 *value = val;
408
409 return 0;
410 }
411
kdbgetu64arg(const char * arg,u64 * value)412 int kdbgetu64arg(const char *arg, u64 *value)
413 {
414 char *endp;
415 u64 val;
416
417 val = simple_strtoull(arg, &endp, 0);
418
419 if (endp == arg) {
420
421 val = simple_strtoull(arg, &endp, 16);
422 if (endp == arg)
423 return KDB_BADINT;
424 }
425
426 *value = val;
427
428 return 0;
429 }
430
431 /*
432 * kdb_set - This function implements the 'set' command. Alter an
433 * existing environment variable or create a new one.
434 */
kdb_set(int argc,const char ** argv)435 int kdb_set(int argc, const char **argv)
436 {
437 int i;
438 char *ep;
439 size_t varlen, vallen;
440
441 /*
442 * we can be invoked two ways:
443 * set var=value argv[1]="var", argv[2]="value"
444 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
445 * - if the latter, shift 'em down.
446 */
447 if (argc == 3) {
448 argv[2] = argv[3];
449 argc--;
450 }
451
452 if (argc != 2)
453 return KDB_ARGCOUNT;
454
455 /*
456 * Censor sensitive variables
457 */
458 if (strcmp(argv[1], "PROMPT") == 0 &&
459 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
460 return KDB_NOPERM;
461
462 /*
463 * Check for internal variables
464 */
465 if (strcmp(argv[1], "KDBDEBUG") == 0) {
466 unsigned int debugflags;
467 char *cp;
468
469 debugflags = simple_strtoul(argv[2], &cp, 0);
470 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
471 kdb_printf("kdb: illegal debug flags '%s'\n",
472 argv[2]);
473 return 0;
474 }
475 kdb_flags = (kdb_flags &
476 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
477 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
478
479 return 0;
480 }
481
482 /*
483 * Tokenizer squashed the '=' sign. argv[1] is variable
484 * name, argv[2] = value.
485 */
486 varlen = strlen(argv[1]);
487 vallen = strlen(argv[2]);
488 ep = kdballocenv(varlen + vallen + 2);
489 if (ep == (char *)0)
490 return KDB_ENVBUFFULL;
491
492 sprintf(ep, "%s=%s", argv[1], argv[2]);
493
494 ep[varlen+vallen+1] = '\0';
495
496 for (i = 0; i < __nenv; i++) {
497 if (__env[i]
498 && ((strncmp(__env[i], argv[1], varlen) == 0)
499 && ((__env[i][varlen] == '\0')
500 || (__env[i][varlen] == '=')))) {
501 __env[i] = ep;
502 return 0;
503 }
504 }
505
506 /*
507 * Wasn't existing variable. Fit into slot.
508 */
509 for (i = 0; i < __nenv-1; i++) {
510 if (__env[i] == (char *)0) {
511 __env[i] = ep;
512 return 0;
513 }
514 }
515
516 return KDB_ENVFULL;
517 }
518
kdb_check_regs(void)519 static int kdb_check_regs(void)
520 {
521 if (!kdb_current_regs) {
522 kdb_printf("No current kdb registers."
523 " You may need to select another task\n");
524 return KDB_BADREG;
525 }
526 return 0;
527 }
528
529 /*
530 * kdbgetaddrarg - This function is responsible for parsing an
531 * address-expression and returning the value of the expression,
532 * symbol name, and offset to the caller.
533 *
534 * The argument may consist of a numeric value (decimal or
535 * hexidecimal), a symbol name, a register name (preceded by the
536 * percent sign), an environment variable with a numeric value
537 * (preceded by a dollar sign) or a simple arithmetic expression
538 * consisting of a symbol name, +/-, and a numeric constant value
539 * (offset).
540 * Parameters:
541 * argc - count of arguments in argv
542 * argv - argument vector
543 * *nextarg - index to next unparsed argument in argv[]
544 * regs - Register state at time of KDB entry
545 * Outputs:
546 * *value - receives the value of the address-expression
547 * *offset - receives the offset specified, if any
548 * *name - receives the symbol name, if any
549 * *nextarg - index to next unparsed argument in argv[]
550 * Returns:
551 * zero is returned on success, a kdb diagnostic code is
552 * returned on error.
553 */
kdbgetaddrarg(int argc,const char ** argv,int * nextarg,unsigned long * value,long * offset,char ** name)554 int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
555 unsigned long *value, long *offset,
556 char **name)
557 {
558 unsigned long addr;
559 unsigned long off = 0;
560 int positive;
561 int diag;
562 int found = 0;
563 char *symname;
564 char symbol = '\0';
565 char *cp;
566 kdb_symtab_t symtab;
567
568 /*
569 * If the enable flags prohibit both arbitrary memory access
570 * and flow control then there are no reasonable grounds to
571 * provide symbol lookup.
572 */
573 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
574 kdb_cmd_enabled, false))
575 return KDB_NOPERM;
576
577 /*
578 * Process arguments which follow the following syntax:
579 *
580 * symbol | numeric-address [+/- numeric-offset]
581 * %register
582 * $environment-variable
583 */
584
585 if (*nextarg > argc)
586 return KDB_ARGCOUNT;
587
588 symname = (char *)argv[*nextarg];
589
590 /*
591 * If there is no whitespace between the symbol
592 * or address and the '+' or '-' symbols, we
593 * remember the character and replace it with a
594 * null so the symbol/value can be properly parsed
595 */
596 cp = strpbrk(symname, "+-");
597 if (cp != NULL) {
598 symbol = *cp;
599 *cp++ = '\0';
600 }
601
602 if (symname[0] == '$') {
603 diag = kdbgetulenv(&symname[1], &addr);
604 if (diag)
605 return diag;
606 } else if (symname[0] == '%') {
607 diag = kdb_check_regs();
608 if (diag)
609 return diag;
610 /* Implement register values with % at a later time as it is
611 * arch optional.
612 */
613 return KDB_NOTIMP;
614 } else {
615 found = kdbgetsymval(symname, &symtab);
616 if (found) {
617 addr = symtab.sym_start;
618 } else {
619 diag = kdbgetularg(argv[*nextarg], &addr);
620 if (diag)
621 return diag;
622 }
623 }
624
625 if (!found)
626 found = kdbnearsym(addr, &symtab);
627
628 (*nextarg)++;
629
630 if (name)
631 *name = symname;
632 if (value)
633 *value = addr;
634 if (offset && name && *name)
635 *offset = addr - symtab.sym_start;
636
637 if ((*nextarg > argc)
638 && (symbol == '\0'))
639 return 0;
640
641 /*
642 * check for +/- and offset
643 */
644
645 if (symbol == '\0') {
646 if ((argv[*nextarg][0] != '+')
647 && (argv[*nextarg][0] != '-')) {
648 /*
649 * Not our argument. Return.
650 */
651 return 0;
652 } else {
653 positive = (argv[*nextarg][0] == '+');
654 (*nextarg)++;
655 }
656 } else
657 positive = (symbol == '+');
658
659 /*
660 * Now there must be an offset!
661 */
662 if ((*nextarg > argc)
663 && (symbol == '\0')) {
664 return KDB_INVADDRFMT;
665 }
666
667 if (!symbol) {
668 cp = (char *)argv[*nextarg];
669 (*nextarg)++;
670 }
671
672 diag = kdbgetularg(cp, &off);
673 if (diag)
674 return diag;
675
676 if (!positive)
677 off = -off;
678
679 if (offset)
680 *offset += off;
681
682 if (value)
683 *value += off;
684
685 return 0;
686 }
687
kdb_cmderror(int diag)688 static void kdb_cmderror(int diag)
689 {
690 int i;
691
692 if (diag >= 0) {
693 kdb_printf("no error detected (diagnostic is %d)\n", diag);
694 return;
695 }
696
697 for (i = 0; i < __nkdb_err; i++) {
698 if (kdbmsgs[i].km_diag == diag) {
699 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
700 return;
701 }
702 }
703
704 kdb_printf("Unknown diag %d\n", -diag);
705 }
706
707 /*
708 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
709 * command which defines one command as a set of other commands,
710 * terminated by endefcmd. kdb_defcmd processes the initial
711 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
712 * the following commands until 'endefcmd'.
713 * Inputs:
714 * argc argument count
715 * argv argument vector
716 * Returns:
717 * zero for success, a kdb diagnostic if error
718 */
719 struct defcmd_set {
720 int count;
721 bool usable;
722 char *name;
723 char *usage;
724 char *help;
725 char **command;
726 };
727 static struct defcmd_set *defcmd_set;
728 static int defcmd_set_count;
729 static bool defcmd_in_progress;
730
731 /* Forward references */
732 static int kdb_exec_defcmd(int argc, const char **argv);
733
kdb_defcmd2(const char * cmdstr,const char * argv0)734 static int kdb_defcmd2(const char *cmdstr, const char *argv0)
735 {
736 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
737 char **save_command = s->command;
738 if (strcmp(argv0, "endefcmd") == 0) {
739 defcmd_in_progress = false;
740 if (!s->count)
741 s->usable = false;
742 if (s->usable)
743 /* macros are always safe because when executed each
744 * internal command re-enters kdb_parse() and is
745 * safety checked individually.
746 */
747 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
748 s->help, 0,
749 KDB_ENABLE_ALWAYS_SAFE);
750 return 0;
751 }
752 if (!s->usable)
753 return KDB_NOTIMP;
754 s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
755 if (!s->command) {
756 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
757 cmdstr);
758 s->usable = false;
759 return KDB_NOTIMP;
760 }
761 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
762 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
763 kfree(save_command);
764 return 0;
765 }
766
kdb_defcmd(int argc,const char ** argv)767 static int kdb_defcmd(int argc, const char **argv)
768 {
769 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
770 if (defcmd_in_progress) {
771 kdb_printf("kdb: nested defcmd detected, assuming missing "
772 "endefcmd\n");
773 kdb_defcmd2("endefcmd", "endefcmd");
774 }
775 if (argc == 0) {
776 int i;
777 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
778 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
779 s->usage, s->help);
780 for (i = 0; i < s->count; ++i)
781 kdb_printf("%s", s->command[i]);
782 kdb_printf("endefcmd\n");
783 }
784 return 0;
785 }
786 if (argc != 3)
787 return KDB_ARGCOUNT;
788 if (in_dbg_master()) {
789 kdb_printf("Command only available during kdb_init()\n");
790 return KDB_NOTIMP;
791 }
792 defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
793 GFP_KDB);
794 if (!defcmd_set)
795 goto fail_defcmd;
796 memcpy(defcmd_set, save_defcmd_set,
797 defcmd_set_count * sizeof(*defcmd_set));
798 s = defcmd_set + defcmd_set_count;
799 memset(s, 0, sizeof(*s));
800 s->usable = true;
801 s->name = kdb_strdup(argv[1], GFP_KDB);
802 if (!s->name)
803 goto fail_name;
804 s->usage = kdb_strdup(argv[2], GFP_KDB);
805 if (!s->usage)
806 goto fail_usage;
807 s->help = kdb_strdup(argv[3], GFP_KDB);
808 if (!s->help)
809 goto fail_help;
810 if (s->usage[0] == '"') {
811 strcpy(s->usage, argv[2]+1);
812 s->usage[strlen(s->usage)-1] = '\0';
813 }
814 if (s->help[0] == '"') {
815 strcpy(s->help, argv[3]+1);
816 s->help[strlen(s->help)-1] = '\0';
817 }
818 ++defcmd_set_count;
819 defcmd_in_progress = true;
820 kfree(save_defcmd_set);
821 return 0;
822 fail_help:
823 kfree(s->usage);
824 fail_usage:
825 kfree(s->name);
826 fail_name:
827 kfree(defcmd_set);
828 fail_defcmd:
829 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
830 defcmd_set = save_defcmd_set;
831 return KDB_NOTIMP;
832 }
833
834 /*
835 * kdb_exec_defcmd - Execute the set of commands associated with this
836 * defcmd name.
837 * Inputs:
838 * argc argument count
839 * argv argument vector
840 * Returns:
841 * zero for success, a kdb diagnostic if error
842 */
kdb_exec_defcmd(int argc,const char ** argv)843 static int kdb_exec_defcmd(int argc, const char **argv)
844 {
845 int i, ret;
846 struct defcmd_set *s;
847 if (argc != 0)
848 return KDB_ARGCOUNT;
849 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
850 if (strcmp(s->name, argv[0]) == 0)
851 break;
852 }
853 if (i == defcmd_set_count) {
854 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
855 argv[0]);
856 return KDB_NOTIMP;
857 }
858 for (i = 0; i < s->count; ++i) {
859 /* Recursive use of kdb_parse, do not use argv after
860 * this point */
861 argv = NULL;
862 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
863 ret = kdb_parse(s->command[i]);
864 if (ret)
865 return ret;
866 }
867 return 0;
868 }
869
870 /* Command history */
871 #define KDB_CMD_HISTORY_COUNT 32
872 #define CMD_BUFLEN 200 /* kdb_printf: max printline
873 * size == 256 */
874 static unsigned int cmd_head, cmd_tail;
875 static unsigned int cmdptr;
876 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
877 static char cmd_cur[CMD_BUFLEN];
878
879 /*
880 * The "str" argument may point to something like | grep xyz
881 */
parse_grep(const char * str)882 static void parse_grep(const char *str)
883 {
884 int len;
885 char *cp = (char *)str, *cp2;
886
887 /* sanity check: we should have been called with the \ first */
888 if (*cp != '|')
889 return;
890 cp++;
891 while (isspace(*cp))
892 cp++;
893 if (!str_has_prefix(cp, "grep ")) {
894 kdb_printf("invalid 'pipe', see grephelp\n");
895 return;
896 }
897 cp += 5;
898 while (isspace(*cp))
899 cp++;
900 cp2 = strchr(cp, '\n');
901 if (cp2)
902 *cp2 = '\0'; /* remove the trailing newline */
903 len = strlen(cp);
904 if (len == 0) {
905 kdb_printf("invalid 'pipe', see grephelp\n");
906 return;
907 }
908 /* now cp points to a nonzero length search string */
909 if (*cp == '"') {
910 /* allow it be "x y z" by removing the "'s - there must
911 be two of them */
912 cp++;
913 cp2 = strchr(cp, '"');
914 if (!cp2) {
915 kdb_printf("invalid quoted string, see grephelp\n");
916 return;
917 }
918 *cp2 = '\0'; /* end the string where the 2nd " was */
919 }
920 kdb_grep_leading = 0;
921 if (*cp == '^') {
922 kdb_grep_leading = 1;
923 cp++;
924 }
925 len = strlen(cp);
926 kdb_grep_trailing = 0;
927 if (*(cp+len-1) == '$') {
928 kdb_grep_trailing = 1;
929 *(cp+len-1) = '\0';
930 }
931 len = strlen(cp);
932 if (!len)
933 return;
934 if (len >= KDB_GREP_STRLEN) {
935 kdb_printf("search string too long\n");
936 return;
937 }
938 strcpy(kdb_grep_string, cp);
939 kdb_grepping_flag++;
940 return;
941 }
942
943 /*
944 * kdb_parse - Parse the command line, search the command table for a
945 * matching command and invoke the command function. This
946 * function may be called recursively, if it is, the second call
947 * will overwrite argv and cbuf. It is the caller's
948 * responsibility to save their argv if they recursively call
949 * kdb_parse().
950 * Parameters:
951 * cmdstr The input command line to be parsed.
952 * regs The registers at the time kdb was entered.
953 * Returns:
954 * Zero for success, a kdb diagnostic if failure.
955 * Remarks:
956 * Limited to 20 tokens.
957 *
958 * Real rudimentary tokenization. Basically only whitespace
959 * is considered a token delimeter (but special consideration
960 * is taken of the '=' sign as used by the 'set' command).
961 *
962 * The algorithm used to tokenize the input string relies on
963 * there being at least one whitespace (or otherwise useless)
964 * character between tokens as the character immediately following
965 * the token is altered in-place to a null-byte to terminate the
966 * token string.
967 */
968
969 #define MAXARGC 20
970
kdb_parse(const char * cmdstr)971 int kdb_parse(const char *cmdstr)
972 {
973 static char *argv[MAXARGC];
974 static int argc;
975 static char cbuf[CMD_BUFLEN+2];
976 char *cp;
977 char *cpp, quoted;
978 kdbtab_t *tp;
979 int i, escaped, ignore_errors = 0, check_grep = 0;
980
981 /*
982 * First tokenize the command string.
983 */
984 cp = (char *)cmdstr;
985
986 if (KDB_FLAG(CMD_INTERRUPT)) {
987 /* Previous command was interrupted, newline must not
988 * repeat the command */
989 KDB_FLAG_CLEAR(CMD_INTERRUPT);
990 KDB_STATE_SET(PAGER);
991 argc = 0; /* no repeat */
992 }
993
994 if (*cp != '\n' && *cp != '\0') {
995 argc = 0;
996 cpp = cbuf;
997 while (*cp) {
998 /* skip whitespace */
999 while (isspace(*cp))
1000 cp++;
1001 if ((*cp == '\0') || (*cp == '\n') ||
1002 (*cp == '#' && !defcmd_in_progress))
1003 break;
1004 /* special case: check for | grep pattern */
1005 if (*cp == '|') {
1006 check_grep++;
1007 break;
1008 }
1009 if (cpp >= cbuf + CMD_BUFLEN) {
1010 kdb_printf("kdb_parse: command buffer "
1011 "overflow, command ignored\n%s\n",
1012 cmdstr);
1013 return KDB_NOTFOUND;
1014 }
1015 if (argc >= MAXARGC - 1) {
1016 kdb_printf("kdb_parse: too many arguments, "
1017 "command ignored\n%s\n", cmdstr);
1018 return KDB_NOTFOUND;
1019 }
1020 argv[argc++] = cpp;
1021 escaped = 0;
1022 quoted = '\0';
1023 /* Copy to next unquoted and unescaped
1024 * whitespace or '=' */
1025 while (*cp && *cp != '\n' &&
1026 (escaped || quoted || !isspace(*cp))) {
1027 if (cpp >= cbuf + CMD_BUFLEN)
1028 break;
1029 if (escaped) {
1030 escaped = 0;
1031 *cpp++ = *cp++;
1032 continue;
1033 }
1034 if (*cp == '\\') {
1035 escaped = 1;
1036 ++cp;
1037 continue;
1038 }
1039 if (*cp == quoted)
1040 quoted = '\0';
1041 else if (*cp == '\'' || *cp == '"')
1042 quoted = *cp;
1043 *cpp = *cp++;
1044 if (*cpp == '=' && !quoted)
1045 break;
1046 ++cpp;
1047 }
1048 *cpp++ = '\0'; /* Squash a ws or '=' character */
1049 }
1050 }
1051 if (!argc)
1052 return 0;
1053 if (check_grep)
1054 parse_grep(cp);
1055 if (defcmd_in_progress) {
1056 int result = kdb_defcmd2(cmdstr, argv[0]);
1057 if (!defcmd_in_progress) {
1058 argc = 0; /* avoid repeat on endefcmd */
1059 *(argv[0]) = '\0';
1060 }
1061 return result;
1062 }
1063 if (argv[0][0] == '-' && argv[0][1] &&
1064 (argv[0][1] < '0' || argv[0][1] > '9')) {
1065 ignore_errors = 1;
1066 ++argv[0];
1067 }
1068
1069 for_each_kdbcmd(tp, i) {
1070 if (tp->cmd_name) {
1071 /*
1072 * If this command is allowed to be abbreviated,
1073 * check to see if this is it.
1074 */
1075
1076 if (tp->cmd_minlen
1077 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1078 if (strncmp(argv[0],
1079 tp->cmd_name,
1080 tp->cmd_minlen) == 0) {
1081 break;
1082 }
1083 }
1084
1085 if (strcmp(argv[0], tp->cmd_name) == 0)
1086 break;
1087 }
1088 }
1089
1090 /*
1091 * If we don't find a command by this name, see if the first
1092 * few characters of this match any of the known commands.
1093 * e.g., md1c20 should match md.
1094 */
1095 if (i == kdb_max_commands) {
1096 for_each_kdbcmd(tp, i) {
1097 if (tp->cmd_name) {
1098 if (strncmp(argv[0],
1099 tp->cmd_name,
1100 strlen(tp->cmd_name)) == 0) {
1101 break;
1102 }
1103 }
1104 }
1105 }
1106
1107 if (i < kdb_max_commands) {
1108 int result;
1109
1110 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1111 return KDB_NOPERM;
1112
1113 KDB_STATE_SET(CMD);
1114 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1115 if (result && ignore_errors && result > KDB_CMD_GO)
1116 result = 0;
1117 KDB_STATE_CLEAR(CMD);
1118
1119 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1120 return result;
1121
1122 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1123 if (argv[argc])
1124 *(argv[argc]) = '\0';
1125 return result;
1126 }
1127
1128 /*
1129 * If the input with which we were presented does not
1130 * map to an existing command, attempt to parse it as an
1131 * address argument and display the result. Useful for
1132 * obtaining the address of a variable, or the nearest symbol
1133 * to an address contained in a register.
1134 */
1135 {
1136 unsigned long value;
1137 char *name = NULL;
1138 long offset;
1139 int nextarg = 0;
1140
1141 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1142 &value, &offset, &name)) {
1143 return KDB_NOTFOUND;
1144 }
1145
1146 kdb_printf("%s = ", argv[0]);
1147 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1148 kdb_printf("\n");
1149 return 0;
1150 }
1151 }
1152
1153
handle_ctrl_cmd(char * cmd)1154 static int handle_ctrl_cmd(char *cmd)
1155 {
1156 #define CTRL_P 16
1157 #define CTRL_N 14
1158
1159 /* initial situation */
1160 if (cmd_head == cmd_tail)
1161 return 0;
1162 switch (*cmd) {
1163 case CTRL_P:
1164 if (cmdptr != cmd_tail)
1165 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1166 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1167 return 1;
1168 case CTRL_N:
1169 if (cmdptr != cmd_head)
1170 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1171 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1172 return 1;
1173 }
1174 return 0;
1175 }
1176
1177 /*
1178 * kdb_reboot - This function implements the 'reboot' command. Reboot
1179 * the system immediately, or loop for ever on failure.
1180 */
kdb_reboot(int argc,const char ** argv)1181 static int kdb_reboot(int argc, const char **argv)
1182 {
1183 emergency_restart();
1184 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1185 while (1)
1186 cpu_relax();
1187 /* NOTREACHED */
1188 return 0;
1189 }
1190
kdb_dumpregs(struct pt_regs * regs)1191 static void kdb_dumpregs(struct pt_regs *regs)
1192 {
1193 int old_lvl = console_loglevel;
1194 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1195 kdb_trap_printk++;
1196 show_regs(regs);
1197 kdb_trap_printk--;
1198 kdb_printf("\n");
1199 console_loglevel = old_lvl;
1200 }
1201
kdb_set_current_task(struct task_struct * p)1202 void kdb_set_current_task(struct task_struct *p)
1203 {
1204 kdb_current_task = p;
1205
1206 if (kdb_task_has_cpu(p)) {
1207 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1208 return;
1209 }
1210 kdb_current_regs = NULL;
1211 }
1212
drop_newline(char * buf)1213 static void drop_newline(char *buf)
1214 {
1215 size_t len = strlen(buf);
1216
1217 if (len == 0)
1218 return;
1219 if (*(buf + len - 1) == '\n')
1220 *(buf + len - 1) = '\0';
1221 }
1222
1223 /*
1224 * kdb_local - The main code for kdb. This routine is invoked on a
1225 * specific processor, it is not global. The main kdb() routine
1226 * ensures that only one processor at a time is in this routine.
1227 * This code is called with the real reason code on the first
1228 * entry to a kdb session, thereafter it is called with reason
1229 * SWITCH, even if the user goes back to the original cpu.
1230 * Inputs:
1231 * reason The reason KDB was invoked
1232 * error The hardware-defined error code
1233 * regs The exception frame at time of fault/breakpoint.
1234 * db_result Result code from the break or debug point.
1235 * Returns:
1236 * 0 KDB was invoked for an event which it wasn't responsible
1237 * 1 KDB handled the event for which it was invoked.
1238 * KDB_CMD_GO User typed 'go'.
1239 * KDB_CMD_CPU User switched to another cpu.
1240 * KDB_CMD_SS Single step.
1241 */
kdb_local(kdb_reason_t reason,int error,struct pt_regs * regs,kdb_dbtrap_t db_result)1242 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1243 kdb_dbtrap_t db_result)
1244 {
1245 char *cmdbuf;
1246 int diag;
1247 struct task_struct *kdb_current =
1248 kdb_curr_task(raw_smp_processor_id());
1249
1250 KDB_DEBUG_STATE("kdb_local 1", reason);
1251
1252 kdb_check_for_lockdown();
1253
1254 kdb_go_count = 0;
1255 if (reason == KDB_REASON_DEBUG) {
1256 /* special case below */
1257 } else {
1258 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1259 kdb_current, kdb_current ? kdb_current->pid : 0);
1260 #if defined(CONFIG_SMP)
1261 kdb_printf("on processor %d ", raw_smp_processor_id());
1262 #endif
1263 }
1264
1265 switch (reason) {
1266 case KDB_REASON_DEBUG:
1267 {
1268 /*
1269 * If re-entering kdb after a single step
1270 * command, don't print the message.
1271 */
1272 switch (db_result) {
1273 case KDB_DB_BPT:
1274 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1275 kdb_current, kdb_current->pid);
1276 #if defined(CONFIG_SMP)
1277 kdb_printf("on processor %d ", raw_smp_processor_id());
1278 #endif
1279 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1280 instruction_pointer(regs));
1281 break;
1282 case KDB_DB_SS:
1283 break;
1284 case KDB_DB_SSBPT:
1285 KDB_DEBUG_STATE("kdb_local 4", reason);
1286 return 1; /* kdba_db_trap did the work */
1287 default:
1288 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1289 db_result);
1290 break;
1291 }
1292
1293 }
1294 break;
1295 case KDB_REASON_ENTER:
1296 if (KDB_STATE(KEYBOARD))
1297 kdb_printf("due to Keyboard Entry\n");
1298 else
1299 kdb_printf("due to KDB_ENTER()\n");
1300 break;
1301 case KDB_REASON_KEYBOARD:
1302 KDB_STATE_SET(KEYBOARD);
1303 kdb_printf("due to Keyboard Entry\n");
1304 break;
1305 case KDB_REASON_ENTER_SLAVE:
1306 /* drop through, slaves only get released via cpu switch */
1307 case KDB_REASON_SWITCH:
1308 kdb_printf("due to cpu switch\n");
1309 break;
1310 case KDB_REASON_OOPS:
1311 kdb_printf("Oops: %s\n", kdb_diemsg);
1312 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1313 instruction_pointer(regs));
1314 kdb_dumpregs(regs);
1315 break;
1316 case KDB_REASON_SYSTEM_NMI:
1317 kdb_printf("due to System NonMaskable Interrupt\n");
1318 break;
1319 case KDB_REASON_NMI:
1320 kdb_printf("due to NonMaskable Interrupt @ "
1321 kdb_machreg_fmt "\n",
1322 instruction_pointer(regs));
1323 break;
1324 case KDB_REASON_SSTEP:
1325 case KDB_REASON_BREAK:
1326 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1327 reason == KDB_REASON_BREAK ?
1328 "Breakpoint" : "SS trap", instruction_pointer(regs));
1329 /*
1330 * Determine if this breakpoint is one that we
1331 * are interested in.
1332 */
1333 if (db_result != KDB_DB_BPT) {
1334 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1335 db_result);
1336 KDB_DEBUG_STATE("kdb_local 6", reason);
1337 return 0; /* Not for us, dismiss it */
1338 }
1339 break;
1340 case KDB_REASON_RECURSE:
1341 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1342 instruction_pointer(regs));
1343 break;
1344 default:
1345 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1346 KDB_DEBUG_STATE("kdb_local 8", reason);
1347 return 0; /* Not for us, dismiss it */
1348 }
1349
1350 while (1) {
1351 /*
1352 * Initialize pager context.
1353 */
1354 kdb_nextline = 1;
1355 KDB_STATE_CLEAR(SUPPRESS);
1356 kdb_grepping_flag = 0;
1357 /* ensure the old search does not leak into '/' commands */
1358 kdb_grep_string[0] = '\0';
1359
1360 cmdbuf = cmd_cur;
1361 *cmdbuf = '\0';
1362 *(cmd_hist[cmd_head]) = '\0';
1363
1364 do_full_getstr:
1365 /* PROMPT can only be set if we have MEM_READ permission. */
1366 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1367 raw_smp_processor_id());
1368
1369 /*
1370 * Fetch command from keyboard
1371 */
1372 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1373 if (*cmdbuf != '\n') {
1374 if (*cmdbuf < 32) {
1375 if (cmdptr == cmd_head) {
1376 strncpy(cmd_hist[cmd_head], cmd_cur,
1377 CMD_BUFLEN);
1378 *(cmd_hist[cmd_head] +
1379 strlen(cmd_hist[cmd_head])-1) = '\0';
1380 }
1381 if (!handle_ctrl_cmd(cmdbuf))
1382 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1383 cmdbuf = cmd_cur;
1384 goto do_full_getstr;
1385 } else {
1386 strncpy(cmd_hist[cmd_head], cmd_cur,
1387 CMD_BUFLEN);
1388 }
1389
1390 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1391 if (cmd_head == cmd_tail)
1392 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1393 }
1394
1395 cmdptr = cmd_head;
1396 diag = kdb_parse(cmdbuf);
1397 if (diag == KDB_NOTFOUND) {
1398 drop_newline(cmdbuf);
1399 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1400 diag = 0;
1401 }
1402 if (diag == KDB_CMD_GO
1403 || diag == KDB_CMD_CPU
1404 || diag == KDB_CMD_SS
1405 || diag == KDB_CMD_KGDB)
1406 break;
1407
1408 if (diag)
1409 kdb_cmderror(diag);
1410 }
1411 KDB_DEBUG_STATE("kdb_local 9", diag);
1412 return diag;
1413 }
1414
1415
1416 /*
1417 * kdb_print_state - Print the state data for the current processor
1418 * for debugging.
1419 * Inputs:
1420 * text Identifies the debug point
1421 * value Any integer value to be printed, e.g. reason code.
1422 */
kdb_print_state(const char * text,int value)1423 void kdb_print_state(const char *text, int value)
1424 {
1425 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1426 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1427 kdb_state);
1428 }
1429
1430 /*
1431 * kdb_main_loop - After initial setup and assignment of the
1432 * controlling cpu, all cpus are in this loop. One cpu is in
1433 * control and will issue the kdb prompt, the others will spin
1434 * until 'go' or cpu switch.
1435 *
1436 * To get a consistent view of the kernel stacks for all
1437 * processes, this routine is invoked from the main kdb code via
1438 * an architecture specific routine. kdba_main_loop is
1439 * responsible for making the kernel stacks consistent for all
1440 * processes, there should be no difference between a blocked
1441 * process and a running process as far as kdb is concerned.
1442 * Inputs:
1443 * reason The reason KDB was invoked
1444 * error The hardware-defined error code
1445 * reason2 kdb's current reason code.
1446 * Initially error but can change
1447 * according to kdb state.
1448 * db_result Result code from break or debug point.
1449 * regs The exception frame at time of fault/breakpoint.
1450 * should always be valid.
1451 * Returns:
1452 * 0 KDB was invoked for an event which it wasn't responsible
1453 * 1 KDB handled the event for which it was invoked.
1454 */
kdb_main_loop(kdb_reason_t reason,kdb_reason_t reason2,int error,kdb_dbtrap_t db_result,struct pt_regs * regs)1455 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1456 kdb_dbtrap_t db_result, struct pt_regs *regs)
1457 {
1458 int result = 1;
1459 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1460 while (1) {
1461 /*
1462 * All processors except the one that is in control
1463 * will spin here.
1464 */
1465 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1466 while (KDB_STATE(HOLD_CPU)) {
1467 /* state KDB is turned off by kdb_cpu to see if the
1468 * other cpus are still live, each cpu in this loop
1469 * turns it back on.
1470 */
1471 if (!KDB_STATE(KDB))
1472 KDB_STATE_SET(KDB);
1473 }
1474
1475 KDB_STATE_CLEAR(SUPPRESS);
1476 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1477 if (KDB_STATE(LEAVING))
1478 break; /* Another cpu said 'go' */
1479 /* Still using kdb, this processor is in control */
1480 result = kdb_local(reason2, error, regs, db_result);
1481 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1482
1483 if (result == KDB_CMD_CPU)
1484 break;
1485
1486 if (result == KDB_CMD_SS) {
1487 KDB_STATE_SET(DOING_SS);
1488 break;
1489 }
1490
1491 if (result == KDB_CMD_KGDB) {
1492 if (!KDB_STATE(DOING_KGDB))
1493 kdb_printf("Entering please attach debugger "
1494 "or use $D#44+ or $3#33\n");
1495 break;
1496 }
1497 if (result && result != 1 && result != KDB_CMD_GO)
1498 kdb_printf("\nUnexpected kdb_local return code %d\n",
1499 result);
1500 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1501 break;
1502 }
1503 if (KDB_STATE(DOING_SS))
1504 KDB_STATE_CLEAR(SSBPT);
1505
1506 /* Clean up any keyboard devices before leaving */
1507 kdb_kbd_cleanup_state();
1508
1509 return result;
1510 }
1511
1512 /*
1513 * kdb_mdr - This function implements the guts of the 'mdr', memory
1514 * read command.
1515 * mdr <addr arg>,<byte count>
1516 * Inputs:
1517 * addr Start address
1518 * count Number of bytes
1519 * Returns:
1520 * Always 0. Any errors are detected and printed by kdb_getarea.
1521 */
kdb_mdr(unsigned long addr,unsigned int count)1522 static int kdb_mdr(unsigned long addr, unsigned int count)
1523 {
1524 unsigned char c;
1525 while (count--) {
1526 if (kdb_getarea(c, addr))
1527 return 0;
1528 kdb_printf("%02x", c);
1529 addr++;
1530 }
1531 kdb_printf("\n");
1532 return 0;
1533 }
1534
1535 /*
1536 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1537 * 'md8' 'mdr' and 'mds' commands.
1538 *
1539 * md|mds [<addr arg> [<line count> [<radix>]]]
1540 * mdWcN [<addr arg> [<line count> [<radix>]]]
1541 * where W = is the width (1, 2, 4 or 8) and N is the count.
1542 * for eg., md1c20 reads 20 bytes, 1 at a time.
1543 * mdr <addr arg>,<byte count>
1544 */
kdb_md_line(const char * fmtstr,unsigned long addr,int symbolic,int nosect,int bytesperword,int num,int repeat,int phys)1545 static void kdb_md_line(const char *fmtstr, unsigned long addr,
1546 int symbolic, int nosect, int bytesperword,
1547 int num, int repeat, int phys)
1548 {
1549 /* print just one line of data */
1550 kdb_symtab_t symtab;
1551 char cbuf[32];
1552 char *c = cbuf;
1553 int i;
1554 int j;
1555 unsigned long word;
1556
1557 memset(cbuf, '\0', sizeof(cbuf));
1558 if (phys)
1559 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1560 else
1561 kdb_printf(kdb_machreg_fmt0 " ", addr);
1562
1563 for (i = 0; i < num && repeat--; i++) {
1564 if (phys) {
1565 if (kdb_getphysword(&word, addr, bytesperword))
1566 break;
1567 } else if (kdb_getword(&word, addr, bytesperword))
1568 break;
1569 kdb_printf(fmtstr, word);
1570 if (symbolic)
1571 kdbnearsym(word, &symtab);
1572 else
1573 memset(&symtab, 0, sizeof(symtab));
1574 if (symtab.sym_name) {
1575 kdb_symbol_print(word, &symtab, 0);
1576 if (!nosect) {
1577 kdb_printf("\n");
1578 kdb_printf(" %s %s "
1579 kdb_machreg_fmt " "
1580 kdb_machreg_fmt " "
1581 kdb_machreg_fmt, symtab.mod_name,
1582 symtab.sec_name, symtab.sec_start,
1583 symtab.sym_start, symtab.sym_end);
1584 }
1585 addr += bytesperword;
1586 } else {
1587 union {
1588 u64 word;
1589 unsigned char c[8];
1590 } wc;
1591 unsigned char *cp;
1592 #ifdef __BIG_ENDIAN
1593 cp = wc.c + 8 - bytesperword;
1594 #else
1595 cp = wc.c;
1596 #endif
1597 wc.word = word;
1598 #define printable_char(c) \
1599 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1600 for (j = 0; j < bytesperword; j++)
1601 *c++ = printable_char(*cp++);
1602 addr += bytesperword;
1603 #undef printable_char
1604 }
1605 }
1606 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1607 " ", cbuf);
1608 }
1609
kdb_md(int argc,const char ** argv)1610 static int kdb_md(int argc, const char **argv)
1611 {
1612 static unsigned long last_addr;
1613 static int last_radix, last_bytesperword, last_repeat;
1614 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1615 int nosect = 0;
1616 char fmtchar, fmtstr[64];
1617 unsigned long addr;
1618 unsigned long word;
1619 long offset = 0;
1620 int symbolic = 0;
1621 int valid = 0;
1622 int phys = 0;
1623 int raw = 0;
1624
1625 kdbgetintenv("MDCOUNT", &mdcount);
1626 kdbgetintenv("RADIX", &radix);
1627 kdbgetintenv("BYTESPERWORD", &bytesperword);
1628
1629 /* Assume 'md <addr>' and start with environment values */
1630 repeat = mdcount * 16 / bytesperword;
1631
1632 if (strcmp(argv[0], "mdr") == 0) {
1633 if (argc == 2 || (argc == 0 && last_addr != 0))
1634 valid = raw = 1;
1635 else
1636 return KDB_ARGCOUNT;
1637 } else if (isdigit(argv[0][2])) {
1638 bytesperword = (int)(argv[0][2] - '0');
1639 if (bytesperword == 0) {
1640 bytesperword = last_bytesperword;
1641 if (bytesperword == 0)
1642 bytesperword = 4;
1643 }
1644 last_bytesperword = bytesperword;
1645 repeat = mdcount * 16 / bytesperword;
1646 if (!argv[0][3])
1647 valid = 1;
1648 else if (argv[0][3] == 'c' && argv[0][4]) {
1649 char *p;
1650 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1651 mdcount = ((repeat * bytesperword) + 15) / 16;
1652 valid = !*p;
1653 }
1654 last_repeat = repeat;
1655 } else if (strcmp(argv[0], "md") == 0)
1656 valid = 1;
1657 else if (strcmp(argv[0], "mds") == 0)
1658 valid = 1;
1659 else if (strcmp(argv[0], "mdp") == 0) {
1660 phys = valid = 1;
1661 }
1662 if (!valid)
1663 return KDB_NOTFOUND;
1664
1665 if (argc == 0) {
1666 if (last_addr == 0)
1667 return KDB_ARGCOUNT;
1668 addr = last_addr;
1669 radix = last_radix;
1670 bytesperword = last_bytesperword;
1671 repeat = last_repeat;
1672 if (raw)
1673 mdcount = repeat;
1674 else
1675 mdcount = ((repeat * bytesperword) + 15) / 16;
1676 }
1677
1678 if (argc) {
1679 unsigned long val;
1680 int diag, nextarg = 1;
1681 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1682 &offset, NULL);
1683 if (diag)
1684 return diag;
1685 if (argc > nextarg+2)
1686 return KDB_ARGCOUNT;
1687
1688 if (argc >= nextarg) {
1689 diag = kdbgetularg(argv[nextarg], &val);
1690 if (!diag) {
1691 mdcount = (int) val;
1692 if (raw)
1693 repeat = mdcount;
1694 else
1695 repeat = mdcount * 16 / bytesperword;
1696 }
1697 }
1698 if (argc >= nextarg+1) {
1699 diag = kdbgetularg(argv[nextarg+1], &val);
1700 if (!diag)
1701 radix = (int) val;
1702 }
1703 }
1704
1705 if (strcmp(argv[0], "mdr") == 0) {
1706 int ret;
1707 last_addr = addr;
1708 ret = kdb_mdr(addr, mdcount);
1709 last_addr += mdcount;
1710 last_repeat = mdcount;
1711 last_bytesperword = bytesperword; // to make REPEAT happy
1712 return ret;
1713 }
1714
1715 switch (radix) {
1716 case 10:
1717 fmtchar = 'd';
1718 break;
1719 case 16:
1720 fmtchar = 'x';
1721 break;
1722 case 8:
1723 fmtchar = 'o';
1724 break;
1725 default:
1726 return KDB_BADRADIX;
1727 }
1728
1729 last_radix = radix;
1730
1731 if (bytesperword > KDB_WORD_SIZE)
1732 return KDB_BADWIDTH;
1733
1734 switch (bytesperword) {
1735 case 8:
1736 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1737 break;
1738 case 4:
1739 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1740 break;
1741 case 2:
1742 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1743 break;
1744 case 1:
1745 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1746 break;
1747 default:
1748 return KDB_BADWIDTH;
1749 }
1750
1751 last_repeat = repeat;
1752 last_bytesperword = bytesperword;
1753
1754 if (strcmp(argv[0], "mds") == 0) {
1755 symbolic = 1;
1756 /* Do not save these changes as last_*, they are temporary mds
1757 * overrides.
1758 */
1759 bytesperword = KDB_WORD_SIZE;
1760 repeat = mdcount;
1761 kdbgetintenv("NOSECT", &nosect);
1762 }
1763
1764 /* Round address down modulo BYTESPERWORD */
1765
1766 addr &= ~(bytesperword-1);
1767
1768 while (repeat > 0) {
1769 unsigned long a;
1770 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1771
1772 if (KDB_FLAG(CMD_INTERRUPT))
1773 return 0;
1774 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1775 if (phys) {
1776 if (kdb_getphysword(&word, a, bytesperword)
1777 || word)
1778 break;
1779 } else if (kdb_getword(&word, a, bytesperword) || word)
1780 break;
1781 }
1782 n = min(num, repeat);
1783 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1784 num, repeat, phys);
1785 addr += bytesperword * n;
1786 repeat -= n;
1787 z = (z + num - 1) / num;
1788 if (z > 2) {
1789 int s = num * (z-2);
1790 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1791 " zero suppressed\n",
1792 addr, addr + bytesperword * s - 1);
1793 addr += bytesperword * s;
1794 repeat -= s;
1795 }
1796 }
1797 last_addr = addr;
1798
1799 return 0;
1800 }
1801
1802 /*
1803 * kdb_mm - This function implements the 'mm' command.
1804 * mm address-expression new-value
1805 * Remarks:
1806 * mm works on machine words, mmW works on bytes.
1807 */
kdb_mm(int argc,const char ** argv)1808 static int kdb_mm(int argc, const char **argv)
1809 {
1810 int diag;
1811 unsigned long addr;
1812 long offset = 0;
1813 unsigned long contents;
1814 int nextarg;
1815 int width;
1816
1817 if (argv[0][2] && !isdigit(argv[0][2]))
1818 return KDB_NOTFOUND;
1819
1820 if (argc < 2)
1821 return KDB_ARGCOUNT;
1822
1823 nextarg = 1;
1824 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1825 if (diag)
1826 return diag;
1827
1828 if (nextarg > argc)
1829 return KDB_ARGCOUNT;
1830 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1831 if (diag)
1832 return diag;
1833
1834 if (nextarg != argc + 1)
1835 return KDB_ARGCOUNT;
1836
1837 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1838 diag = kdb_putword(addr, contents, width);
1839 if (diag)
1840 return diag;
1841
1842 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1843
1844 return 0;
1845 }
1846
1847 /*
1848 * kdb_go - This function implements the 'go' command.
1849 * go [address-expression]
1850 */
kdb_go(int argc,const char ** argv)1851 static int kdb_go(int argc, const char **argv)
1852 {
1853 unsigned long addr;
1854 int diag;
1855 int nextarg;
1856 long offset;
1857
1858 if (raw_smp_processor_id() != kdb_initial_cpu) {
1859 kdb_printf("go must execute on the entry cpu, "
1860 "please use \"cpu %d\" and then execute go\n",
1861 kdb_initial_cpu);
1862 return KDB_BADCPUNUM;
1863 }
1864 if (argc == 1) {
1865 nextarg = 1;
1866 diag = kdbgetaddrarg(argc, argv, &nextarg,
1867 &addr, &offset, NULL);
1868 if (diag)
1869 return diag;
1870 } else if (argc) {
1871 return KDB_ARGCOUNT;
1872 }
1873
1874 diag = KDB_CMD_GO;
1875 if (KDB_FLAG(CATASTROPHIC)) {
1876 kdb_printf("Catastrophic error detected\n");
1877 kdb_printf("kdb_continue_catastrophic=%d, ",
1878 kdb_continue_catastrophic);
1879 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1880 kdb_printf("type go a second time if you really want "
1881 "to continue\n");
1882 return 0;
1883 }
1884 if (kdb_continue_catastrophic == 2) {
1885 kdb_printf("forcing reboot\n");
1886 kdb_reboot(0, NULL);
1887 }
1888 kdb_printf("attempting to continue\n");
1889 }
1890 return diag;
1891 }
1892
1893 /*
1894 * kdb_rd - This function implements the 'rd' command.
1895 */
kdb_rd(int argc,const char ** argv)1896 static int kdb_rd(int argc, const char **argv)
1897 {
1898 int len = kdb_check_regs();
1899 #if DBG_MAX_REG_NUM > 0
1900 int i;
1901 char *rname;
1902 int rsize;
1903 u64 reg64;
1904 u32 reg32;
1905 u16 reg16;
1906 u8 reg8;
1907
1908 if (len)
1909 return len;
1910
1911 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1912 rsize = dbg_reg_def[i].size * 2;
1913 if (rsize > 16)
1914 rsize = 2;
1915 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1916 len = 0;
1917 kdb_printf("\n");
1918 }
1919 if (len)
1920 len += kdb_printf(" ");
1921 switch(dbg_reg_def[i].size * 8) {
1922 case 8:
1923 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1924 if (!rname)
1925 break;
1926 len += kdb_printf("%s: %02x", rname, reg8);
1927 break;
1928 case 16:
1929 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1930 if (!rname)
1931 break;
1932 len += kdb_printf("%s: %04x", rname, reg16);
1933 break;
1934 case 32:
1935 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1936 if (!rname)
1937 break;
1938 len += kdb_printf("%s: %08x", rname, reg32);
1939 break;
1940 case 64:
1941 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1942 if (!rname)
1943 break;
1944 len += kdb_printf("%s: %016llx", rname, reg64);
1945 break;
1946 default:
1947 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1948 }
1949 }
1950 kdb_printf("\n");
1951 #else
1952 if (len)
1953 return len;
1954
1955 kdb_dumpregs(kdb_current_regs);
1956 #endif
1957 return 0;
1958 }
1959
1960 /*
1961 * kdb_rm - This function implements the 'rm' (register modify) command.
1962 * rm register-name new-contents
1963 * Remarks:
1964 * Allows register modification with the same restrictions as gdb
1965 */
kdb_rm(int argc,const char ** argv)1966 static int kdb_rm(int argc, const char **argv)
1967 {
1968 #if DBG_MAX_REG_NUM > 0
1969 int diag;
1970 const char *rname;
1971 int i;
1972 u64 reg64;
1973 u32 reg32;
1974 u16 reg16;
1975 u8 reg8;
1976
1977 if (argc != 2)
1978 return KDB_ARGCOUNT;
1979 /*
1980 * Allow presence or absence of leading '%' symbol.
1981 */
1982 rname = argv[1];
1983 if (*rname == '%')
1984 rname++;
1985
1986 diag = kdbgetu64arg(argv[2], ®64);
1987 if (diag)
1988 return diag;
1989
1990 diag = kdb_check_regs();
1991 if (diag)
1992 return diag;
1993
1994 diag = KDB_BADREG;
1995 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1996 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1997 diag = 0;
1998 break;
1999 }
2000 }
2001 if (!diag) {
2002 switch(dbg_reg_def[i].size * 8) {
2003 case 8:
2004 reg8 = reg64;
2005 dbg_set_reg(i, ®8, kdb_current_regs);
2006 break;
2007 case 16:
2008 reg16 = reg64;
2009 dbg_set_reg(i, ®16, kdb_current_regs);
2010 break;
2011 case 32:
2012 reg32 = reg64;
2013 dbg_set_reg(i, ®32, kdb_current_regs);
2014 break;
2015 case 64:
2016 dbg_set_reg(i, ®64, kdb_current_regs);
2017 break;
2018 }
2019 }
2020 return diag;
2021 #else
2022 kdb_printf("ERROR: Register set currently not implemented\n");
2023 return 0;
2024 #endif
2025 }
2026
2027 #if defined(CONFIG_MAGIC_SYSRQ)
2028 /*
2029 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
2030 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
2031 * sr <magic-sysrq-code>
2032 */
kdb_sr(int argc,const char ** argv)2033 static int kdb_sr(int argc, const char **argv)
2034 {
2035 bool check_mask =
2036 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
2037
2038 if (argc != 1)
2039 return KDB_ARGCOUNT;
2040
2041 kdb_trap_printk++;
2042 __handle_sysrq(*argv[1], check_mask);
2043 kdb_trap_printk--;
2044
2045 return 0;
2046 }
2047 #endif /* CONFIG_MAGIC_SYSRQ */
2048
2049 /*
2050 * kdb_ef - This function implements the 'regs' (display exception
2051 * frame) command. This command takes an address and expects to
2052 * find an exception frame at that address, formats and prints
2053 * it.
2054 * regs address-expression
2055 * Remarks:
2056 * Not done yet.
2057 */
kdb_ef(int argc,const char ** argv)2058 static int kdb_ef(int argc, const char **argv)
2059 {
2060 int diag;
2061 unsigned long addr;
2062 long offset;
2063 int nextarg;
2064
2065 if (argc != 1)
2066 return KDB_ARGCOUNT;
2067
2068 nextarg = 1;
2069 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2070 if (diag)
2071 return diag;
2072 show_regs((struct pt_regs *)addr);
2073 return 0;
2074 }
2075
2076 #if defined(CONFIG_MODULES)
2077 /*
2078 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2079 * currently loaded kernel modules.
2080 * Mostly taken from userland lsmod.
2081 */
kdb_lsmod(int argc,const char ** argv)2082 static int kdb_lsmod(int argc, const char **argv)
2083 {
2084 struct module *mod;
2085
2086 if (argc != 0)
2087 return KDB_ARGCOUNT;
2088
2089 kdb_printf("Module Size modstruct Used by\n");
2090 list_for_each_entry(mod, kdb_modules, list) {
2091 if (mod->state == MODULE_STATE_UNFORMED)
2092 continue;
2093
2094 kdb_printf("%-20s%8u 0x%px ", mod->name,
2095 mod->core_layout.size, (void *)mod);
2096 #ifdef CONFIG_MODULE_UNLOAD
2097 kdb_printf("%4d ", module_refcount(mod));
2098 #endif
2099 if (mod->state == MODULE_STATE_GOING)
2100 kdb_printf(" (Unloading)");
2101 else if (mod->state == MODULE_STATE_COMING)
2102 kdb_printf(" (Loading)");
2103 else
2104 kdb_printf(" (Live)");
2105 kdb_printf(" 0x%px", mod->core_layout.base);
2106
2107 #ifdef CONFIG_MODULE_UNLOAD
2108 {
2109 struct module_use *use;
2110 kdb_printf(" [ ");
2111 list_for_each_entry(use, &mod->source_list,
2112 source_list)
2113 kdb_printf("%s ", use->target->name);
2114 kdb_printf("]\n");
2115 }
2116 #endif
2117 }
2118
2119 return 0;
2120 }
2121
2122 #endif /* CONFIG_MODULES */
2123
2124 /*
2125 * kdb_env - This function implements the 'env' command. Display the
2126 * current environment variables.
2127 */
2128
kdb_env(int argc,const char ** argv)2129 static int kdb_env(int argc, const char **argv)
2130 {
2131 int i;
2132
2133 for (i = 0; i < __nenv; i++) {
2134 if (__env[i])
2135 kdb_printf("%s\n", __env[i]);
2136 }
2137
2138 if (KDB_DEBUG(MASK))
2139 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2140
2141 return 0;
2142 }
2143
2144 #ifdef CONFIG_PRINTK
2145 /*
2146 * kdb_dmesg - This function implements the 'dmesg' command to display
2147 * the contents of the syslog buffer.
2148 * dmesg [lines] [adjust]
2149 */
kdb_dmesg(int argc,const char ** argv)2150 static int kdb_dmesg(int argc, const char **argv)
2151 {
2152 int diag;
2153 int logging;
2154 int lines = 0;
2155 int adjust = 0;
2156 int n = 0;
2157 int skip = 0;
2158 struct kmsg_dumper dumper = { .active = 1 };
2159 size_t len;
2160 char buf[201];
2161
2162 if (argc > 2)
2163 return KDB_ARGCOUNT;
2164 if (argc) {
2165 char *cp;
2166 lines = simple_strtol(argv[1], &cp, 0);
2167 if (*cp)
2168 lines = 0;
2169 if (argc > 1) {
2170 adjust = simple_strtoul(argv[2], &cp, 0);
2171 if (*cp || adjust < 0)
2172 adjust = 0;
2173 }
2174 }
2175
2176 /* disable LOGGING if set */
2177 diag = kdbgetintenv("LOGGING", &logging);
2178 if (!diag && logging) {
2179 const char *setargs[] = { "set", "LOGGING", "0" };
2180 kdb_set(2, setargs);
2181 }
2182
2183 kmsg_dump_rewind_nolock(&dumper);
2184 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2185 n++;
2186
2187 if (lines < 0) {
2188 if (adjust >= n)
2189 kdb_printf("buffer only contains %d lines, nothing "
2190 "printed\n", n);
2191 else if (adjust - lines >= n)
2192 kdb_printf("buffer only contains %d lines, last %d "
2193 "lines printed\n", n, n - adjust);
2194 skip = adjust;
2195 lines = abs(lines);
2196 } else if (lines > 0) {
2197 skip = n - lines - adjust;
2198 lines = abs(lines);
2199 if (adjust >= n) {
2200 kdb_printf("buffer only contains %d lines, "
2201 "nothing printed\n", n);
2202 skip = n;
2203 } else if (skip < 0) {
2204 lines += skip;
2205 skip = 0;
2206 kdb_printf("buffer only contains %d lines, first "
2207 "%d lines printed\n", n, lines);
2208 }
2209 } else {
2210 lines = n;
2211 }
2212
2213 if (skip >= n || skip < 0)
2214 return 0;
2215
2216 kmsg_dump_rewind_nolock(&dumper);
2217 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2218 if (skip) {
2219 skip--;
2220 continue;
2221 }
2222 if (!lines--)
2223 break;
2224 if (KDB_FLAG(CMD_INTERRUPT))
2225 return 0;
2226
2227 kdb_printf("%.*s\n", (int)len - 1, buf);
2228 }
2229
2230 return 0;
2231 }
2232 #endif /* CONFIG_PRINTK */
2233
2234 /* Make sure we balance enable/disable calls, must disable first. */
2235 static atomic_t kdb_nmi_disabled;
2236
kdb_disable_nmi(int argc,const char * argv[])2237 static int kdb_disable_nmi(int argc, const char *argv[])
2238 {
2239 if (atomic_read(&kdb_nmi_disabled))
2240 return 0;
2241 atomic_set(&kdb_nmi_disabled, 1);
2242 arch_kgdb_ops.enable_nmi(0);
2243 return 0;
2244 }
2245
kdb_param_enable_nmi(const char * val,const struct kernel_param * kp)2246 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2247 {
2248 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2249 return -EINVAL;
2250 arch_kgdb_ops.enable_nmi(1);
2251 return 0;
2252 }
2253
2254 static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2255 .set = kdb_param_enable_nmi,
2256 };
2257 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2258
2259 /*
2260 * kdb_cpu - This function implements the 'cpu' command.
2261 * cpu [<cpunum>]
2262 * Returns:
2263 * KDB_CMD_CPU for success, a kdb diagnostic if error
2264 */
kdb_cpu_status(void)2265 static void kdb_cpu_status(void)
2266 {
2267 int i, start_cpu, first_print = 1;
2268 char state, prev_state = '?';
2269
2270 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2271 kdb_printf("Available cpus: ");
2272 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2273 if (!cpu_online(i)) {
2274 state = 'F'; /* cpu is offline */
2275 } else if (!kgdb_info[i].enter_kgdb) {
2276 state = 'D'; /* cpu is online but unresponsive */
2277 } else {
2278 state = ' '; /* cpu is responding to kdb */
2279 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2280 state = 'I'; /* idle task */
2281 }
2282 if (state != prev_state) {
2283 if (prev_state != '?') {
2284 if (!first_print)
2285 kdb_printf(", ");
2286 first_print = 0;
2287 kdb_printf("%d", start_cpu);
2288 if (start_cpu < i-1)
2289 kdb_printf("-%d", i-1);
2290 if (prev_state != ' ')
2291 kdb_printf("(%c)", prev_state);
2292 }
2293 prev_state = state;
2294 start_cpu = i;
2295 }
2296 }
2297 /* print the trailing cpus, ignoring them if they are all offline */
2298 if (prev_state != 'F') {
2299 if (!first_print)
2300 kdb_printf(", ");
2301 kdb_printf("%d", start_cpu);
2302 if (start_cpu < i-1)
2303 kdb_printf("-%d", i-1);
2304 if (prev_state != ' ')
2305 kdb_printf("(%c)", prev_state);
2306 }
2307 kdb_printf("\n");
2308 }
2309
kdb_cpu(int argc,const char ** argv)2310 static int kdb_cpu(int argc, const char **argv)
2311 {
2312 unsigned long cpunum;
2313 int diag;
2314
2315 if (argc == 0) {
2316 kdb_cpu_status();
2317 return 0;
2318 }
2319
2320 if (argc != 1)
2321 return KDB_ARGCOUNT;
2322
2323 diag = kdbgetularg(argv[1], &cpunum);
2324 if (diag)
2325 return diag;
2326
2327 /*
2328 * Validate cpunum
2329 */
2330 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2331 return KDB_BADCPUNUM;
2332
2333 dbg_switch_cpu = cpunum;
2334
2335 /*
2336 * Switch to other cpu
2337 */
2338 return KDB_CMD_CPU;
2339 }
2340
2341 /* The user may not realize that ps/bta with no parameters does not print idle
2342 * or sleeping system daemon processes, so tell them how many were suppressed.
2343 */
kdb_ps_suppressed(void)2344 void kdb_ps_suppressed(void)
2345 {
2346 int idle = 0, daemon = 0;
2347 unsigned long mask_I = kdb_task_state_string("I"),
2348 mask_M = kdb_task_state_string("M");
2349 unsigned long cpu;
2350 const struct task_struct *p, *g;
2351 for_each_online_cpu(cpu) {
2352 p = kdb_curr_task(cpu);
2353 if (kdb_task_state(p, mask_I))
2354 ++idle;
2355 }
2356 kdb_do_each_thread(g, p) {
2357 if (kdb_task_state(p, mask_M))
2358 ++daemon;
2359 } kdb_while_each_thread(g, p);
2360 if (idle || daemon) {
2361 if (idle)
2362 kdb_printf("%d idle process%s (state I)%s\n",
2363 idle, idle == 1 ? "" : "es",
2364 daemon ? " and " : "");
2365 if (daemon)
2366 kdb_printf("%d sleeping system daemon (state M) "
2367 "process%s", daemon,
2368 daemon == 1 ? "" : "es");
2369 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2370 }
2371 }
2372
2373 /*
2374 * kdb_ps - This function implements the 'ps' command which shows a
2375 * list of the active processes.
2376 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2377 */
kdb_ps1(const struct task_struct * p)2378 void kdb_ps1(const struct task_struct *p)
2379 {
2380 int cpu;
2381 unsigned long tmp;
2382
2383 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2384 return;
2385
2386 cpu = kdb_process_cpu(p);
2387 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
2388 (void *)p, p->pid, p->parent->pid,
2389 kdb_task_has_cpu(p), kdb_process_cpu(p),
2390 kdb_task_state_char(p),
2391 (void *)(&p->thread),
2392 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2393 p->comm);
2394 if (kdb_task_has_cpu(p)) {
2395 if (!KDB_TSK(cpu)) {
2396 kdb_printf(" Error: no saved data for this cpu\n");
2397 } else {
2398 if (KDB_TSK(cpu) != p)
2399 kdb_printf(" Error: does not match running "
2400 "process table (0x%px)\n", KDB_TSK(cpu));
2401 }
2402 }
2403 }
2404
kdb_ps(int argc,const char ** argv)2405 static int kdb_ps(int argc, const char **argv)
2406 {
2407 struct task_struct *g, *p;
2408 unsigned long mask, cpu;
2409
2410 if (argc == 0)
2411 kdb_ps_suppressed();
2412 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2413 (int)(2*sizeof(void *))+2, "Task Addr",
2414 (int)(2*sizeof(void *))+2, "Thread");
2415 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2416 /* Run the active tasks first */
2417 for_each_online_cpu(cpu) {
2418 if (KDB_FLAG(CMD_INTERRUPT))
2419 return 0;
2420 p = kdb_curr_task(cpu);
2421 if (kdb_task_state(p, mask))
2422 kdb_ps1(p);
2423 }
2424 kdb_printf("\n");
2425 /* Now the real tasks */
2426 kdb_do_each_thread(g, p) {
2427 if (KDB_FLAG(CMD_INTERRUPT))
2428 return 0;
2429 if (kdb_task_state(p, mask))
2430 kdb_ps1(p);
2431 } kdb_while_each_thread(g, p);
2432
2433 return 0;
2434 }
2435
2436 /*
2437 * kdb_pid - This function implements the 'pid' command which switches
2438 * the currently active process.
2439 * pid [<pid> | R]
2440 */
kdb_pid(int argc,const char ** argv)2441 static int kdb_pid(int argc, const char **argv)
2442 {
2443 struct task_struct *p;
2444 unsigned long val;
2445 int diag;
2446
2447 if (argc > 1)
2448 return KDB_ARGCOUNT;
2449
2450 if (argc) {
2451 if (strcmp(argv[1], "R") == 0) {
2452 p = KDB_TSK(kdb_initial_cpu);
2453 } else {
2454 diag = kdbgetularg(argv[1], &val);
2455 if (diag)
2456 return KDB_BADINT;
2457
2458 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2459 if (!p) {
2460 kdb_printf("No task with pid=%d\n", (pid_t)val);
2461 return 0;
2462 }
2463 }
2464 kdb_set_current_task(p);
2465 }
2466 kdb_printf("KDB current process is %s(pid=%d)\n",
2467 kdb_current_task->comm,
2468 kdb_current_task->pid);
2469
2470 return 0;
2471 }
2472
kdb_kgdb(int argc,const char ** argv)2473 static int kdb_kgdb(int argc, const char **argv)
2474 {
2475 return KDB_CMD_KGDB;
2476 }
2477
2478 /*
2479 * kdb_help - This function implements the 'help' and '?' commands.
2480 */
kdb_help(int argc,const char ** argv)2481 static int kdb_help(int argc, const char **argv)
2482 {
2483 kdbtab_t *kt;
2484 int i;
2485
2486 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2487 kdb_printf("-----------------------------"
2488 "-----------------------------\n");
2489 for_each_kdbcmd(kt, i) {
2490 char *space = "";
2491 if (KDB_FLAG(CMD_INTERRUPT))
2492 return 0;
2493 if (!kt->cmd_name)
2494 continue;
2495 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2496 continue;
2497 if (strlen(kt->cmd_usage) > 20)
2498 space = "\n ";
2499 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2500 kt->cmd_usage, space, kt->cmd_help);
2501 }
2502 return 0;
2503 }
2504
2505 /*
2506 * kdb_kill - This function implements the 'kill' commands.
2507 */
kdb_kill(int argc,const char ** argv)2508 static int kdb_kill(int argc, const char **argv)
2509 {
2510 long sig, pid;
2511 char *endp;
2512 struct task_struct *p;
2513
2514 if (argc != 2)
2515 return KDB_ARGCOUNT;
2516
2517 sig = simple_strtol(argv[1], &endp, 0);
2518 if (*endp)
2519 return KDB_BADINT;
2520 if ((sig >= 0) || !valid_signal(-sig)) {
2521 kdb_printf("Invalid signal parameter.<-signal>\n");
2522 return 0;
2523 }
2524 sig = -sig;
2525
2526 pid = simple_strtol(argv[2], &endp, 0);
2527 if (*endp)
2528 return KDB_BADINT;
2529 if (pid <= 0) {
2530 kdb_printf("Process ID must be large than 0.\n");
2531 return 0;
2532 }
2533
2534 /* Find the process. */
2535 p = find_task_by_pid_ns(pid, &init_pid_ns);
2536 if (!p) {
2537 kdb_printf("The specified process isn't found.\n");
2538 return 0;
2539 }
2540 p = p->group_leader;
2541 kdb_send_sig(p, sig);
2542 return 0;
2543 }
2544
2545 /*
2546 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2547 * I cannot call that code directly from kdb, it has an unconditional
2548 * cli()/sti() and calls routines that take locks which can stop the debugger.
2549 */
kdb_sysinfo(struct sysinfo * val)2550 static void kdb_sysinfo(struct sysinfo *val)
2551 {
2552 u64 uptime = ktime_get_mono_fast_ns();
2553
2554 memset(val, 0, sizeof(*val));
2555 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2556 val->loads[0] = avenrun[0];
2557 val->loads[1] = avenrun[1];
2558 val->loads[2] = avenrun[2];
2559 val->procs = nr_threads-1;
2560 si_meminfo(val);
2561
2562 return;
2563 }
2564
2565 /*
2566 * kdb_summary - This function implements the 'summary' command.
2567 */
kdb_summary(int argc,const char ** argv)2568 static int kdb_summary(int argc, const char **argv)
2569 {
2570 time64_t now;
2571 struct tm tm;
2572 struct sysinfo val;
2573
2574 if (argc)
2575 return KDB_ARGCOUNT;
2576
2577 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2578 kdb_printf("release %s\n", init_uts_ns.name.release);
2579 kdb_printf("version %s\n", init_uts_ns.name.version);
2580 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2581 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2582 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2583
2584 now = __ktime_get_real_seconds();
2585 time64_to_tm(now, 0, &tm);
2586 kdb_printf("date %04ld-%02d-%02d %02d:%02d:%02d "
2587 "tz_minuteswest %d\n",
2588 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2589 tm.tm_hour, tm.tm_min, tm.tm_sec,
2590 sys_tz.tz_minuteswest);
2591
2592 kdb_sysinfo(&val);
2593 kdb_printf("uptime ");
2594 if (val.uptime > (24*60*60)) {
2595 int days = val.uptime / (24*60*60);
2596 val.uptime %= (24*60*60);
2597 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2598 }
2599 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2600
2601 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2602 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2603 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2604 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2605
2606 /* Display in kilobytes */
2607 #define K(x) ((x) << (PAGE_SHIFT - 10))
2608 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2609 "Buffers: %8lu kB\n",
2610 K(val.totalram), K(val.freeram), K(val.bufferram));
2611 return 0;
2612 }
2613
2614 /*
2615 * kdb_per_cpu - This function implements the 'per_cpu' command.
2616 */
kdb_per_cpu(int argc,const char ** argv)2617 static int kdb_per_cpu(int argc, const char **argv)
2618 {
2619 char fmtstr[64];
2620 int cpu, diag, nextarg = 1;
2621 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2622
2623 if (argc < 1 || argc > 3)
2624 return KDB_ARGCOUNT;
2625
2626 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2627 if (diag)
2628 return diag;
2629
2630 if (argc >= 2) {
2631 diag = kdbgetularg(argv[2], &bytesperword);
2632 if (diag)
2633 return diag;
2634 }
2635 if (!bytesperword)
2636 bytesperword = KDB_WORD_SIZE;
2637 else if (bytesperword > KDB_WORD_SIZE)
2638 return KDB_BADWIDTH;
2639 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2640 if (argc >= 3) {
2641 diag = kdbgetularg(argv[3], &whichcpu);
2642 if (diag)
2643 return diag;
2644 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2645 kdb_printf("cpu %ld is not online\n", whichcpu);
2646 return KDB_BADCPUNUM;
2647 }
2648 }
2649
2650 /* Most architectures use __per_cpu_offset[cpu], some use
2651 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2652 */
2653 #ifdef __per_cpu_offset
2654 #define KDB_PCU(cpu) __per_cpu_offset(cpu)
2655 #else
2656 #ifdef CONFIG_SMP
2657 #define KDB_PCU(cpu) __per_cpu_offset[cpu]
2658 #else
2659 #define KDB_PCU(cpu) 0
2660 #endif
2661 #endif
2662 for_each_online_cpu(cpu) {
2663 if (KDB_FLAG(CMD_INTERRUPT))
2664 return 0;
2665
2666 if (whichcpu != ~0UL && whichcpu != cpu)
2667 continue;
2668 addr = symaddr + KDB_PCU(cpu);
2669 diag = kdb_getword(&val, addr, bytesperword);
2670 if (diag) {
2671 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2672 "read, diag=%d\n", cpu, addr, diag);
2673 continue;
2674 }
2675 kdb_printf("%5d ", cpu);
2676 kdb_md_line(fmtstr, addr,
2677 bytesperword == KDB_WORD_SIZE,
2678 1, bytesperword, 1, 1, 0);
2679 }
2680 #undef KDB_PCU
2681 return 0;
2682 }
2683
2684 /*
2685 * display help for the use of cmd | grep pattern
2686 */
kdb_grep_help(int argc,const char ** argv)2687 static int kdb_grep_help(int argc, const char **argv)
2688 {
2689 kdb_printf("Usage of cmd args | grep pattern:\n");
2690 kdb_printf(" Any command's output may be filtered through an ");
2691 kdb_printf("emulated 'pipe'.\n");
2692 kdb_printf(" 'grep' is just a key word.\n");
2693 kdb_printf(" The pattern may include a very limited set of "
2694 "metacharacters:\n");
2695 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2696 kdb_printf(" And if there are spaces in the pattern, you may "
2697 "quote it:\n");
2698 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2699 " or \"^pat tern$\"\n");
2700 return 0;
2701 }
2702
2703 /*
2704 * kdb_register_flags - This function is used to register a kernel
2705 * debugger command.
2706 * Inputs:
2707 * cmd Command name
2708 * func Function to execute the command
2709 * usage A simple usage string showing arguments
2710 * help A simple help string describing command
2711 * repeat Does the command auto repeat on enter?
2712 * Returns:
2713 * zero for success, one if a duplicate command.
2714 */
2715 #define kdb_command_extend 50 /* arbitrary */
kdb_register_flags(char * cmd,kdb_func_t func,char * usage,char * help,short minlen,kdb_cmdflags_t flags)2716 int kdb_register_flags(char *cmd,
2717 kdb_func_t func,
2718 char *usage,
2719 char *help,
2720 short minlen,
2721 kdb_cmdflags_t flags)
2722 {
2723 int i;
2724 kdbtab_t *kp;
2725
2726 /*
2727 * Brute force method to determine duplicates
2728 */
2729 for_each_kdbcmd(kp, i) {
2730 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2731 kdb_printf("Duplicate kdb command registered: "
2732 "%s, func %px help %s\n", cmd, func, help);
2733 return 1;
2734 }
2735 }
2736
2737 /*
2738 * Insert command into first available location in table
2739 */
2740 for_each_kdbcmd(kp, i) {
2741 if (kp->cmd_name == NULL)
2742 break;
2743 }
2744
2745 if (i >= kdb_max_commands) {
2746 kdbtab_t *new = kmalloc_array(kdb_max_commands -
2747 KDB_BASE_CMD_MAX +
2748 kdb_command_extend,
2749 sizeof(*new),
2750 GFP_KDB);
2751 if (!new) {
2752 kdb_printf("Could not allocate new kdb_command "
2753 "table\n");
2754 return 1;
2755 }
2756 if (kdb_commands) {
2757 memcpy(new, kdb_commands,
2758 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2759 kfree(kdb_commands);
2760 }
2761 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2762 kdb_command_extend * sizeof(*new));
2763 kdb_commands = new;
2764 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2765 kdb_max_commands += kdb_command_extend;
2766 }
2767
2768 kp->cmd_name = cmd;
2769 kp->cmd_func = func;
2770 kp->cmd_usage = usage;
2771 kp->cmd_help = help;
2772 kp->cmd_minlen = minlen;
2773 kp->cmd_flags = flags;
2774
2775 return 0;
2776 }
2777 EXPORT_SYMBOL_GPL(kdb_register_flags);
2778
2779
2780 /*
2781 * kdb_register - Compatibility register function for commands that do
2782 * not need to specify a repeat state. Equivalent to
2783 * kdb_register_flags with flags set to 0.
2784 * Inputs:
2785 * cmd Command name
2786 * func Function to execute the command
2787 * usage A simple usage string showing arguments
2788 * help A simple help string describing command
2789 * Returns:
2790 * zero for success, one if a duplicate command.
2791 */
kdb_register(char * cmd,kdb_func_t func,char * usage,char * help,short minlen)2792 int kdb_register(char *cmd,
2793 kdb_func_t func,
2794 char *usage,
2795 char *help,
2796 short minlen)
2797 {
2798 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2799 }
2800 EXPORT_SYMBOL_GPL(kdb_register);
2801
2802 /*
2803 * kdb_unregister - This function is used to unregister a kernel
2804 * debugger command. It is generally called when a module which
2805 * implements kdb commands is unloaded.
2806 * Inputs:
2807 * cmd Command name
2808 * Returns:
2809 * zero for success, one command not registered.
2810 */
kdb_unregister(char * cmd)2811 int kdb_unregister(char *cmd)
2812 {
2813 int i;
2814 kdbtab_t *kp;
2815
2816 /*
2817 * find the command.
2818 */
2819 for_each_kdbcmd(kp, i) {
2820 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2821 kp->cmd_name = NULL;
2822 return 0;
2823 }
2824 }
2825
2826 /* Couldn't find it. */
2827 return 1;
2828 }
2829 EXPORT_SYMBOL_GPL(kdb_unregister);
2830
2831 /* Initialize the kdb command table. */
kdb_inittab(void)2832 static void __init kdb_inittab(void)
2833 {
2834 int i;
2835 kdbtab_t *kp;
2836
2837 for_each_kdbcmd(kp, i)
2838 kp->cmd_name = NULL;
2839
2840 kdb_register_flags("md", kdb_md, "<vaddr>",
2841 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2842 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2843 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2844 "Display Raw Memory", 0,
2845 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2846 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2847 "Display Physical Memory", 0,
2848 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2849 kdb_register_flags("mds", kdb_md, "<vaddr>",
2850 "Display Memory Symbolically", 0,
2851 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2852 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2853 "Modify Memory Contents", 0,
2854 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2855 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2856 "Continue Execution", 1,
2857 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2858 kdb_register_flags("rd", kdb_rd, "",
2859 "Display Registers", 0,
2860 KDB_ENABLE_REG_READ);
2861 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2862 "Modify Registers", 0,
2863 KDB_ENABLE_REG_WRITE);
2864 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2865 "Display exception frame", 0,
2866 KDB_ENABLE_MEM_READ);
2867 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2868 "Stack traceback", 1,
2869 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2870 kdb_register_flags("btp", kdb_bt, "<pid>",
2871 "Display stack for process <pid>", 0,
2872 KDB_ENABLE_INSPECT);
2873 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2874 "Backtrace all processes matching state flag", 0,
2875 KDB_ENABLE_INSPECT);
2876 kdb_register_flags("btc", kdb_bt, "",
2877 "Backtrace current process on each cpu", 0,
2878 KDB_ENABLE_INSPECT);
2879 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2880 "Backtrace process given its struct task address", 0,
2881 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2882 kdb_register_flags("env", kdb_env, "",
2883 "Show environment variables", 0,
2884 KDB_ENABLE_ALWAYS_SAFE);
2885 kdb_register_flags("set", kdb_set, "",
2886 "Set environment variables", 0,
2887 KDB_ENABLE_ALWAYS_SAFE);
2888 kdb_register_flags("help", kdb_help, "",
2889 "Display Help Message", 1,
2890 KDB_ENABLE_ALWAYS_SAFE);
2891 kdb_register_flags("?", kdb_help, "",
2892 "Display Help Message", 0,
2893 KDB_ENABLE_ALWAYS_SAFE);
2894 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2895 "Switch to new cpu", 0,
2896 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2897 kdb_register_flags("kgdb", kdb_kgdb, "",
2898 "Enter kgdb mode", 0, 0);
2899 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2900 "Display active task list", 0,
2901 KDB_ENABLE_INSPECT);
2902 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2903 "Switch to another task", 0,
2904 KDB_ENABLE_INSPECT);
2905 kdb_register_flags("reboot", kdb_reboot, "",
2906 "Reboot the machine immediately", 0,
2907 KDB_ENABLE_REBOOT);
2908 #if defined(CONFIG_MODULES)
2909 kdb_register_flags("lsmod", kdb_lsmod, "",
2910 "List loaded kernel modules", 0,
2911 KDB_ENABLE_INSPECT);
2912 #endif
2913 #if defined(CONFIG_MAGIC_SYSRQ)
2914 kdb_register_flags("sr", kdb_sr, "<key>",
2915 "Magic SysRq key", 0,
2916 KDB_ENABLE_ALWAYS_SAFE);
2917 #endif
2918 #if defined(CONFIG_PRINTK)
2919 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2920 "Display syslog buffer", 0,
2921 KDB_ENABLE_ALWAYS_SAFE);
2922 #endif
2923 if (arch_kgdb_ops.enable_nmi) {
2924 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2925 "Disable NMI entry to KDB", 0,
2926 KDB_ENABLE_ALWAYS_SAFE);
2927 }
2928 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2929 "Define a set of commands, down to endefcmd", 0,
2930 KDB_ENABLE_ALWAYS_SAFE);
2931 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2932 "Send a signal to a process", 0,
2933 KDB_ENABLE_SIGNAL);
2934 kdb_register_flags("summary", kdb_summary, "",
2935 "Summarize the system", 4,
2936 KDB_ENABLE_ALWAYS_SAFE);
2937 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2938 "Display per_cpu variables", 3,
2939 KDB_ENABLE_MEM_READ);
2940 kdb_register_flags("grephelp", kdb_grep_help, "",
2941 "Display help on | grep", 0,
2942 KDB_ENABLE_ALWAYS_SAFE);
2943 }
2944
2945 /* Execute any commands defined in kdb_cmds. */
kdb_cmd_init(void)2946 static void __init kdb_cmd_init(void)
2947 {
2948 int i, diag;
2949 for (i = 0; kdb_cmds[i]; ++i) {
2950 diag = kdb_parse(kdb_cmds[i]);
2951 if (diag)
2952 kdb_printf("kdb command %s failed, kdb diag %d\n",
2953 kdb_cmds[i], diag);
2954 }
2955 if (defcmd_in_progress) {
2956 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2957 kdb_parse("endefcmd");
2958 }
2959 }
2960
2961 /* Initialize kdb_printf, breakpoint tables and kdb state */
kdb_init(int lvl)2962 void __init kdb_init(int lvl)
2963 {
2964 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2965 int i;
2966
2967 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2968 return;
2969 for (i = kdb_init_lvl; i < lvl; i++) {
2970 switch (i) {
2971 case KDB_NOT_INITIALIZED:
2972 kdb_inittab(); /* Initialize Command Table */
2973 kdb_initbptab(); /* Initialize Breakpoints */
2974 break;
2975 case KDB_INIT_EARLY:
2976 kdb_cmd_init(); /* Build kdb_cmds tables */
2977 break;
2978 }
2979 }
2980 kdb_init_lvl = lvl;
2981 }
2982