• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages not added to the page allocator when onlining a section because
34  *   they were excluded via the online_page_callback() or because they are
35  *   PG_hwpoison.
36  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37  *   control pages, vmcoreinfo)
38  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39  *   not marked PG_reserved (as they might be in use by somebody else who does
40  *   not respect the caching strategy).
41  * - Pages part of an offline section (struct pages of offline sections should
42  *   not be trusted as they will be initialized when first onlined).
43  * - MCA pages on ia64
44  * - Pages holding CPU notes for POWER Firmware Assisted Dump
45  * - Device memory (e.g. PMEM, DAX, HMM)
46  * Some PG_reserved pages will be excluded from the hibernation image.
47  * PG_reserved does in general not hinder anybody from dumping or swapping
48  * and is no longer required for remap_pfn_range(). ioremap might require it.
49  * Consequently, PG_reserved for a page mapped into user space can indicate
50  * the zero page, the vDSO, MMIO pages or device memory.
51  *
52  * The PG_private bitflag is set on pagecache pages if they contain filesystem
53  * specific data (which is normally at page->private). It can be used by
54  * private allocations for its own usage.
55  *
56  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58  * is set before writeback starts and cleared when it finishes.
59  *
60  * PG_locked also pins a page in pagecache, and blocks truncation of the file
61  * while it is held.
62  *
63  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64  * to become unlocked.
65  *
66  * PG_uptodate tells whether the page's contents is valid.  When a read
67  * completes, the page becomes uptodate, unless a disk I/O error happened.
68  *
69  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
70  * file-backed pagecache (see mm/vmscan.c).
71  *
72  * PG_error is set to indicate that an I/O error occurred on this page.
73  *
74  * PG_arch_1 is an architecture specific page state bit.  The generic code
75  * guarantees that this bit is cleared for a page when it first is entered into
76  * the page cache.
77  *
78  * PG_hwpoison indicates that a page got corrupted in hardware and contains
79  * data with incorrect ECC bits that triggered a machine check. Accessing is
80  * not safe since it may cause another machine check. Don't touch!
81  */
82 
83 /*
84  * Don't use the *_dontuse flags.  Use the macros.  Otherwise you'll break
85  * locked- and dirty-page accounting.
86  *
87  * The page flags field is split into two parts, the main flags area
88  * which extends from the low bits upwards, and the fields area which
89  * extends from the high bits downwards.
90  *
91  *  | FIELD | ... | FLAGS |
92  *  N-1           ^       0
93  *               (NR_PAGEFLAGS)
94  *
95  * The fields area is reserved for fields mapping zone, node (for NUMA) and
96  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
97  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
98  */
99 enum pageflags {
100 	PG_locked,		/* Page is locked. Don't touch. */
101 	PG_referenced,
102 	PG_uptodate,
103 	PG_dirty,
104 	PG_lru,
105 	PG_active,
106 	PG_workingset,
107 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
108 	PG_error,
109 	PG_slab,
110 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
111 	PG_arch_1,
112 	PG_reserved,
113 	PG_private,		/* If pagecache, has fs-private data */
114 	PG_private_2,		/* If pagecache, has fs aux data */
115 	PG_writeback,		/* Page is under writeback */
116 	PG_head,		/* A head page */
117 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
118 	PG_reclaim,		/* To be reclaimed asap */
119 	PG_swapbacked,		/* Page is backed by RAM/swap */
120 	PG_unevictable,		/* Page is "unevictable"  */
121 #ifdef CONFIG_MMU
122 	PG_mlocked,		/* Page is vma mlocked */
123 #endif
124 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
125 	PG_uncached,		/* Page has been mapped as uncached */
126 #endif
127 #ifdef CONFIG_MEMORY_FAILURE
128 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
129 #endif
130 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
131 	PG_young,
132 	PG_idle,
133 #endif
134 	__NR_PAGEFLAGS,
135 
136 	/* Filesystems */
137 	PG_checked = PG_owner_priv_1,
138 
139 	/* SwapBacked */
140 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
141 
142 	/* Two page bits are conscripted by FS-Cache to maintain local caching
143 	 * state.  These bits are set on pages belonging to the netfs's inodes
144 	 * when those inodes are being locally cached.
145 	 */
146 	PG_fscache = PG_private_2,	/* page backed by cache */
147 
148 	/* XEN */
149 	/* Pinned in Xen as a read-only pagetable page. */
150 	PG_pinned = PG_owner_priv_1,
151 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
152 	PG_savepinned = PG_dirty,
153 	/* Has a grant mapping of another (foreign) domain's page. */
154 	PG_foreign = PG_owner_priv_1,
155 	/* Remapped by swiotlb-xen. */
156 	PG_xen_remapped = PG_owner_priv_1,
157 
158 	/* SLOB */
159 	PG_slob_free = PG_private,
160 
161 	/* Compound pages. Stored in first tail page's flags */
162 	PG_double_map = PG_private_2,
163 
164 	/* non-lru isolated movable page */
165 	PG_isolated = PG_reclaim,
166 };
167 
168 #ifndef __GENERATING_BOUNDS_H
169 
170 struct page;	/* forward declaration */
171 
compound_head(struct page * page)172 static inline struct page *compound_head(struct page *page)
173 {
174 	unsigned long head = READ_ONCE(page->compound_head);
175 
176 	if (unlikely(head & 1))
177 		return (struct page *) (head - 1);
178 	return page;
179 }
180 
PageTail(struct page * page)181 static __always_inline int PageTail(struct page *page)
182 {
183 	return READ_ONCE(page->compound_head) & 1;
184 }
185 
PageCompound(struct page * page)186 static __always_inline int PageCompound(struct page *page)
187 {
188 	return test_bit(PG_head, &page->flags) || PageTail(page);
189 }
190 
191 #define	PAGE_POISON_PATTERN	-1l
PagePoisoned(const struct page * page)192 static inline int PagePoisoned(const struct page *page)
193 {
194 	return page->flags == PAGE_POISON_PATTERN;
195 }
196 
197 #ifdef CONFIG_DEBUG_VM
198 void page_init_poison(struct page *page, size_t size);
199 #else
page_init_poison(struct page * page,size_t size)200 static inline void page_init_poison(struct page *page, size_t size)
201 {
202 }
203 #endif
204 
205 /*
206  * Page flags policies wrt compound pages
207  *
208  * PF_POISONED_CHECK
209  *     check if this struct page poisoned/uninitialized
210  *
211  * PF_ANY:
212  *     the page flag is relevant for small, head and tail pages.
213  *
214  * PF_HEAD:
215  *     for compound page all operations related to the page flag applied to
216  *     head page.
217  *
218  * PF_ONLY_HEAD:
219  *     for compound page, callers only ever operate on the head page.
220  *
221  * PF_NO_TAIL:
222  *     modifications of the page flag must be done on small or head pages,
223  *     checks can be done on tail pages too.
224  *
225  * PF_NO_COMPOUND:
226  *     the page flag is not relevant for compound pages.
227  */
228 #define PF_POISONED_CHECK(page) ({					\
229 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
230 		page; })
231 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
232 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
233 #define PF_ONLY_HEAD(page, enforce) ({					\
234 		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
235 		PF_POISONED_CHECK(page); })
236 #define PF_NO_TAIL(page, enforce) ({					\
237 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
238 		PF_POISONED_CHECK(compound_head(page)); })
239 #define PF_NO_COMPOUND(page, enforce) ({				\
240 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
241 		PF_POISONED_CHECK(page); })
242 
243 /*
244  * Macros to create function definitions for page flags
245  */
246 #define TESTPAGEFLAG(uname, lname, policy)				\
247 static __always_inline int Page##uname(struct page *page)		\
248 	{ return test_bit(PG_##lname, &policy(page, 0)->flags); }
249 
250 #define SETPAGEFLAG(uname, lname, policy)				\
251 static __always_inline void SetPage##uname(struct page *page)		\
252 	{ set_bit(PG_##lname, &policy(page, 1)->flags); }
253 
254 #define CLEARPAGEFLAG(uname, lname, policy)				\
255 static __always_inline void ClearPage##uname(struct page *page)		\
256 	{ clear_bit(PG_##lname, &policy(page, 1)->flags); }
257 
258 #define __SETPAGEFLAG(uname, lname, policy)				\
259 static __always_inline void __SetPage##uname(struct page *page)		\
260 	{ __set_bit(PG_##lname, &policy(page, 1)->flags); }
261 
262 #define __CLEARPAGEFLAG(uname, lname, policy)				\
263 static __always_inline void __ClearPage##uname(struct page *page)	\
264 	{ __clear_bit(PG_##lname, &policy(page, 1)->flags); }
265 
266 #define TESTSETFLAG(uname, lname, policy)				\
267 static __always_inline int TestSetPage##uname(struct page *page)	\
268 	{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
269 
270 #define TESTCLEARFLAG(uname, lname, policy)				\
271 static __always_inline int TestClearPage##uname(struct page *page)	\
272 	{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
273 
274 #define PAGEFLAG(uname, lname, policy)					\
275 	TESTPAGEFLAG(uname, lname, policy)				\
276 	SETPAGEFLAG(uname, lname, policy)				\
277 	CLEARPAGEFLAG(uname, lname, policy)
278 
279 #define __PAGEFLAG(uname, lname, policy)				\
280 	TESTPAGEFLAG(uname, lname, policy)				\
281 	__SETPAGEFLAG(uname, lname, policy)				\
282 	__CLEARPAGEFLAG(uname, lname, policy)
283 
284 #define TESTSCFLAG(uname, lname, policy)				\
285 	TESTSETFLAG(uname, lname, policy)				\
286 	TESTCLEARFLAG(uname, lname, policy)
287 
288 #define TESTPAGEFLAG_FALSE(uname)					\
289 static inline int Page##uname(const struct page *page) { return 0; }
290 
291 #define SETPAGEFLAG_NOOP(uname)						\
292 static inline void SetPage##uname(struct page *page) {  }
293 
294 #define CLEARPAGEFLAG_NOOP(uname)					\
295 static inline void ClearPage##uname(struct page *page) {  }
296 
297 #define __CLEARPAGEFLAG_NOOP(uname)					\
298 static inline void __ClearPage##uname(struct page *page) {  }
299 
300 #define TESTSETFLAG_FALSE(uname)					\
301 static inline int TestSetPage##uname(struct page *page) { return 0; }
302 
303 #define TESTCLEARFLAG_FALSE(uname)					\
304 static inline int TestClearPage##uname(struct page *page) { return 0; }
305 
306 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)			\
307 	SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
308 
309 #define TESTSCFLAG_FALSE(uname)						\
310 	TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
311 
312 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
313 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
314 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
315 PAGEFLAG(Referenced, referenced, PF_HEAD)
316 	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
317 	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
318 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
319 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
320 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
321 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
322 	TESTCLEARFLAG(Active, active, PF_HEAD)
323 PAGEFLAG(Workingset, workingset, PF_HEAD)
324 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
325 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
326 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
327 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
328 
329 /* Xen */
330 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
331 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
332 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
333 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
PAGEFLAG(XenRemapped,xen_remapped,PF_NO_COMPOUND)334 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
335 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
336 
337 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
338 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
339 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
340 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
341 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
342 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
343 
344 /*
345  * Private page markings that may be used by the filesystem that owns the page
346  * for its own purposes.
347  * - PG_private and PG_private_2 cause releasepage() and co to be invoked
348  */
349 PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
350 	__CLEARPAGEFLAG(Private, private, PF_ANY)
351 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
352 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
353 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
354 
355 /*
356  * Only test-and-set exist for PG_writeback.  The unconditional operators are
357  * risky: they bypass page accounting.
358  */
359 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
360 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
361 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
362 
363 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
364 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
365 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
366 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
367 	TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
368 
369 #ifdef CONFIG_HIGHMEM
370 /*
371  * Must use a macro here due to header dependency issues. page_zone() is not
372  * available at this point.
373  */
374 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
375 #else
376 PAGEFLAG_FALSE(HighMem)
377 #endif
378 
379 #ifdef CONFIG_SWAP
380 static __always_inline int PageSwapCache(struct page *page)
381 {
382 #ifdef CONFIG_THP_SWAP
383 	page = compound_head(page);
384 #endif
385 	return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
386 
387 }
388 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
389 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
390 #else
391 PAGEFLAG_FALSE(SwapCache)
392 #endif
393 
394 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
395 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
396 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
397 
398 #ifdef CONFIG_MMU
399 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
400 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
401 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
402 #else
403 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
404 	TESTSCFLAG_FALSE(Mlocked)
405 #endif
406 
407 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
408 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
409 #else
410 PAGEFLAG_FALSE(Uncached)
411 #endif
412 
413 #ifdef CONFIG_MEMORY_FAILURE
414 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
415 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
416 #define __PG_HWPOISON (1UL << PG_hwpoison)
417 extern bool set_hwpoison_free_buddy_page(struct page *page);
418 #else
419 PAGEFLAG_FALSE(HWPoison)
420 static inline bool set_hwpoison_free_buddy_page(struct page *page)
421 {
422 	return 0;
423 }
424 #define __PG_HWPOISON 0
425 #endif
426 
427 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
TESTPAGEFLAG(Young,young,PF_ANY)428 TESTPAGEFLAG(Young, young, PF_ANY)
429 SETPAGEFLAG(Young, young, PF_ANY)
430 TESTCLEARFLAG(Young, young, PF_ANY)
431 PAGEFLAG(Idle, idle, PF_ANY)
432 #endif
433 
434 /*
435  * On an anonymous page mapped into a user virtual memory area,
436  * page->mapping points to its anon_vma, not to a struct address_space;
437  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
438  *
439  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
440  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
441  * bit; and then page->mapping points, not to an anon_vma, but to a private
442  * structure which KSM associates with that merged page.  See ksm.h.
443  *
444  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
445  * page and then page->mapping points a struct address_space.
446  *
447  * Please note that, confusingly, "page_mapping" refers to the inode
448  * address_space which maps the page from disk; whereas "page_mapped"
449  * refers to user virtual address space into which the page is mapped.
450  */
451 #define PAGE_MAPPING_ANON	0x1
452 #define PAGE_MAPPING_MOVABLE	0x2
453 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
454 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
455 
456 static __always_inline int PageMappingFlags(struct page *page)
457 {
458 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
459 }
460 
PageAnon(struct page * page)461 static __always_inline int PageAnon(struct page *page)
462 {
463 	page = compound_head(page);
464 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
465 }
466 
__PageMovable(struct page * page)467 static __always_inline int __PageMovable(struct page *page)
468 {
469 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
470 				PAGE_MAPPING_MOVABLE;
471 }
472 
473 #ifdef CONFIG_KSM
474 /*
475  * A KSM page is one of those write-protected "shared pages" or "merged pages"
476  * which KSM maps into multiple mms, wherever identical anonymous page content
477  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
478  * anon_vma, but to that page's node of the stable tree.
479  */
PageKsm(struct page * page)480 static __always_inline int PageKsm(struct page *page)
481 {
482 	page = compound_head(page);
483 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
484 				PAGE_MAPPING_KSM;
485 }
486 #else
487 TESTPAGEFLAG_FALSE(Ksm)
488 #endif
489 
490 u64 stable_page_flags(struct page *page);
491 
PageUptodate(struct page * page)492 static inline int PageUptodate(struct page *page)
493 {
494 	int ret;
495 	page = compound_head(page);
496 	ret = test_bit(PG_uptodate, &(page)->flags);
497 	/*
498 	 * Must ensure that the data we read out of the page is loaded
499 	 * _after_ we've loaded page->flags to check for PageUptodate.
500 	 * We can skip the barrier if the page is not uptodate, because
501 	 * we wouldn't be reading anything from it.
502 	 *
503 	 * See SetPageUptodate() for the other side of the story.
504 	 */
505 	if (ret)
506 		smp_rmb();
507 
508 	return ret;
509 }
510 
__SetPageUptodate(struct page * page)511 static __always_inline void __SetPageUptodate(struct page *page)
512 {
513 	VM_BUG_ON_PAGE(PageTail(page), page);
514 	smp_wmb();
515 	__set_bit(PG_uptodate, &page->flags);
516 }
517 
SetPageUptodate(struct page * page)518 static __always_inline void SetPageUptodate(struct page *page)
519 {
520 	VM_BUG_ON_PAGE(PageTail(page), page);
521 	/*
522 	 * Memory barrier must be issued before setting the PG_uptodate bit,
523 	 * so that all previous stores issued in order to bring the page
524 	 * uptodate are actually visible before PageUptodate becomes true.
525 	 */
526 	smp_wmb();
527 	set_bit(PG_uptodate, &page->flags);
528 }
529 
530 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
531 
532 int test_clear_page_writeback(struct page *page);
533 int __test_set_page_writeback(struct page *page, bool keep_write);
534 
535 #define test_set_page_writeback(page)			\
536 	__test_set_page_writeback(page, false)
537 #define test_set_page_writeback_keepwrite(page)	\
538 	__test_set_page_writeback(page, true)
539 
set_page_writeback(struct page * page)540 static inline void set_page_writeback(struct page *page)
541 {
542 	test_set_page_writeback(page);
543 }
544 
set_page_writeback_keepwrite(struct page * page)545 static inline void set_page_writeback_keepwrite(struct page *page)
546 {
547 	test_set_page_writeback_keepwrite(page);
548 }
549 
__PAGEFLAG(Head,head,PF_ANY)550 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
551 
552 static __always_inline void set_compound_head(struct page *page, struct page *head)
553 {
554 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
555 }
556 
clear_compound_head(struct page * page)557 static __always_inline void clear_compound_head(struct page *page)
558 {
559 	WRITE_ONCE(page->compound_head, 0);
560 }
561 
562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
ClearPageCompound(struct page * page)563 static inline void ClearPageCompound(struct page *page)
564 {
565 	BUG_ON(!PageHead(page));
566 	ClearPageHead(page);
567 }
568 #endif
569 
570 #define PG_head_mask ((1UL << PG_head))
571 
572 #ifdef CONFIG_HUGETLB_PAGE
573 int PageHuge(struct page *page);
574 int PageHeadHuge(struct page *page);
575 bool page_huge_active(struct page *page);
576 #else
577 TESTPAGEFLAG_FALSE(Huge)
TESTPAGEFLAG_FALSE(HeadHuge)578 TESTPAGEFLAG_FALSE(HeadHuge)
579 
580 static inline bool page_huge_active(struct page *page)
581 {
582 	return 0;
583 }
584 #endif
585 
586 
587 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
588 /*
589  * PageHuge() only returns true for hugetlbfs pages, but not for
590  * normal or transparent huge pages.
591  *
592  * PageTransHuge() returns true for both transparent huge and
593  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
594  * called only in the core VM paths where hugetlbfs pages can't exist.
595  */
PageTransHuge(struct page * page)596 static inline int PageTransHuge(struct page *page)
597 {
598 	VM_BUG_ON_PAGE(PageTail(page), page);
599 	return PageHead(page);
600 }
601 
602 /*
603  * PageTransCompound returns true for both transparent huge pages
604  * and hugetlbfs pages, so it should only be called when it's known
605  * that hugetlbfs pages aren't involved.
606  */
PageTransCompound(struct page * page)607 static inline int PageTransCompound(struct page *page)
608 {
609 	return PageCompound(page);
610 }
611 
612 /*
613  * PageTransCompoundMap is the same as PageTransCompound, but it also
614  * guarantees the primary MMU has the entire compound page mapped
615  * through pmd_trans_huge, which in turn guarantees the secondary MMUs
616  * can also map the entire compound page. This allows the secondary
617  * MMUs to call get_user_pages() only once for each compound page and
618  * to immediately map the entire compound page with a single secondary
619  * MMU fault. If there will be a pmd split later, the secondary MMUs
620  * will get an update through the MMU notifier invalidation through
621  * split_huge_pmd().
622  *
623  * Unlike PageTransCompound, this is safe to be called only while
624  * split_huge_pmd() cannot run from under us, like if protected by the
625  * MMU notifier, otherwise it may result in page->_mapcount check false
626  * positives.
627  *
628  * We have to treat page cache THP differently since every subpage of it
629  * would get _mapcount inc'ed once it is PMD mapped.  But, it may be PTE
630  * mapped in the current process so comparing subpage's _mapcount to
631  * compound_mapcount to filter out PTE mapped case.
632  */
PageTransCompoundMap(struct page * page)633 static inline int PageTransCompoundMap(struct page *page)
634 {
635 	struct page *head;
636 
637 	if (!PageTransCompound(page))
638 		return 0;
639 
640 	if (PageAnon(page))
641 		return atomic_read(&page->_mapcount) < 0;
642 
643 	head = compound_head(page);
644 	/* File THP is PMD mapped and not PTE mapped */
645 	return atomic_read(&page->_mapcount) ==
646 	       atomic_read(compound_mapcount_ptr(head));
647 }
648 
649 /*
650  * PageTransTail returns true for both transparent huge pages
651  * and hugetlbfs pages, so it should only be called when it's known
652  * that hugetlbfs pages aren't involved.
653  */
PageTransTail(struct page * page)654 static inline int PageTransTail(struct page *page)
655 {
656 	return PageTail(page);
657 }
658 
659 /*
660  * PageDoubleMap indicates that the compound page is mapped with PTEs as well
661  * as PMDs.
662  *
663  * This is required for optimization of rmap operations for THP: we can postpone
664  * per small page mapcount accounting (and its overhead from atomic operations)
665  * until the first PMD split.
666  *
667  * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
668  * by one. This reference will go away with last compound_mapcount.
669  *
670  * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
671  */
PageDoubleMap(struct page * page)672 static inline int PageDoubleMap(struct page *page)
673 {
674 	return PageHead(page) && test_bit(PG_double_map, &page[1].flags);
675 }
676 
SetPageDoubleMap(struct page * page)677 static inline void SetPageDoubleMap(struct page *page)
678 {
679 	VM_BUG_ON_PAGE(!PageHead(page), page);
680 	set_bit(PG_double_map, &page[1].flags);
681 }
682 
ClearPageDoubleMap(struct page * page)683 static inline void ClearPageDoubleMap(struct page *page)
684 {
685 	VM_BUG_ON_PAGE(!PageHead(page), page);
686 	clear_bit(PG_double_map, &page[1].flags);
687 }
TestSetPageDoubleMap(struct page * page)688 static inline int TestSetPageDoubleMap(struct page *page)
689 {
690 	VM_BUG_ON_PAGE(!PageHead(page), page);
691 	return test_and_set_bit(PG_double_map, &page[1].flags);
692 }
693 
TestClearPageDoubleMap(struct page * page)694 static inline int TestClearPageDoubleMap(struct page *page)
695 {
696 	VM_BUG_ON_PAGE(!PageHead(page), page);
697 	return test_and_clear_bit(PG_double_map, &page[1].flags);
698 }
699 
700 #else
701 TESTPAGEFLAG_FALSE(TransHuge)
TESTPAGEFLAG_FALSE(TransCompound)702 TESTPAGEFLAG_FALSE(TransCompound)
703 TESTPAGEFLAG_FALSE(TransCompoundMap)
704 TESTPAGEFLAG_FALSE(TransTail)
705 PAGEFLAG_FALSE(DoubleMap)
706 	TESTSETFLAG_FALSE(DoubleMap)
707 	TESTCLEARFLAG_FALSE(DoubleMap)
708 #endif
709 
710 /*
711  * For pages that are never mapped to userspace (and aren't PageSlab),
712  * page_type may be used.  Because it is initialised to -1, we invert the
713  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
714  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
715  * low bits so that an underflow or overflow of page_mapcount() won't be
716  * mistaken for a page type value.
717  */
718 
719 #define PAGE_TYPE_BASE	0xf0000000
720 /* Reserve		0x0000007f to catch underflows of page_mapcount */
721 #define PAGE_MAPCOUNT_RESERVE	-128
722 #define PG_buddy	0x00000080
723 #define PG_offline	0x00000100
724 #define PG_kmemcg	0x00000200
725 #define PG_table	0x00000400
726 #define PG_guard	0x00000800
727 
728 #define PageType(page, flag)						\
729 	((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
730 
731 static inline int page_has_type(struct page *page)
732 {
733 	return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
734 }
735 
736 #define PAGE_TYPE_OPS(uname, lname)					\
737 static __always_inline int Page##uname(struct page *page)		\
738 {									\
739 	return PageType(page, PG_##lname);				\
740 }									\
741 static __always_inline void __SetPage##uname(struct page *page)		\
742 {									\
743 	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
744 	page->page_type &= ~PG_##lname;					\
745 }									\
746 static __always_inline void __ClearPage##uname(struct page *page)	\
747 {									\
748 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
749 	page->page_type |= PG_##lname;					\
750 }
751 
752 /*
753  * PageBuddy() indicates that the page is free and in the buddy system
754  * (see mm/page_alloc.c).
755  */
756 PAGE_TYPE_OPS(Buddy, buddy)
757 
758 /*
759  * PageOffline() indicates that the page is logically offline although the
760  * containing section is online. (e.g. inflated in a balloon driver or
761  * not onlined when onlining the section).
762  * The content of these pages is effectively stale. Such pages should not
763  * be touched (read/write/dump/save) except by their owner.
764  */
765 PAGE_TYPE_OPS(Offline, offline)
766 
767 /*
768  * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
769  * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
770  */
771 PAGE_TYPE_OPS(Kmemcg, kmemcg)
772 
773 /*
774  * Marks pages in use as page tables.
775  */
776 PAGE_TYPE_OPS(Table, table)
777 
778 /*
779  * Marks guardpages used with debug_pagealloc.
780  */
781 PAGE_TYPE_OPS(Guard, guard)
782 
783 extern bool is_free_buddy_page(struct page *page);
784 
785 __PAGEFLAG(Isolated, isolated, PF_ANY);
786 
787 /*
788  * If network-based swap is enabled, sl*b must keep track of whether pages
789  * were allocated from pfmemalloc reserves.
790  */
PageSlabPfmemalloc(struct page * page)791 static inline int PageSlabPfmemalloc(struct page *page)
792 {
793 	VM_BUG_ON_PAGE(!PageSlab(page), page);
794 	return PageActive(page);
795 }
796 
SetPageSlabPfmemalloc(struct page * page)797 static inline void SetPageSlabPfmemalloc(struct page *page)
798 {
799 	VM_BUG_ON_PAGE(!PageSlab(page), page);
800 	SetPageActive(page);
801 }
802 
__ClearPageSlabPfmemalloc(struct page * page)803 static inline void __ClearPageSlabPfmemalloc(struct page *page)
804 {
805 	VM_BUG_ON_PAGE(!PageSlab(page), page);
806 	__ClearPageActive(page);
807 }
808 
ClearPageSlabPfmemalloc(struct page * page)809 static inline void ClearPageSlabPfmemalloc(struct page *page)
810 {
811 	VM_BUG_ON_PAGE(!PageSlab(page), page);
812 	ClearPageActive(page);
813 }
814 
815 #ifdef CONFIG_MMU
816 #define __PG_MLOCKED		(1UL << PG_mlocked)
817 #else
818 #define __PG_MLOCKED		0
819 #endif
820 
821 /*
822  * Flags checked when a page is freed.  Pages being freed should not have
823  * these flags set.  It they are, there is a problem.
824  */
825 #define PAGE_FLAGS_CHECK_AT_FREE				\
826 	(1UL << PG_lru		| 1UL << PG_locked	|	\
827 	 1UL << PG_private	| 1UL << PG_private_2	|	\
828 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
829 	 1UL << PG_slab		| 1UL << PG_active 	|	\
830 	 1UL << PG_unevictable	| __PG_MLOCKED)
831 
832 /*
833  * Flags checked when a page is prepped for return by the page allocator.
834  * Pages being prepped should not have these flags set.  It they are set,
835  * there has been a kernel bug or struct page corruption.
836  *
837  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
838  * alloc-free cycle to prevent from reusing the page.
839  */
840 #define PAGE_FLAGS_CHECK_AT_PREP	\
841 	(((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
842 
843 #define PAGE_FLAGS_PRIVATE				\
844 	(1UL << PG_private | 1UL << PG_private_2)
845 /**
846  * page_has_private - Determine if page has private stuff
847  * @page: The page to be checked
848  *
849  * Determine if a page has private stuff, indicating that release routines
850  * should be invoked upon it.
851  */
page_has_private(struct page * page)852 static inline int page_has_private(struct page *page)
853 {
854 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
855 }
856 
857 #undef PF_ANY
858 #undef PF_HEAD
859 #undef PF_ONLY_HEAD
860 #undef PF_NO_TAIL
861 #undef PF_NO_COMPOUND
862 #endif /* !__GENERATING_BOUNDS_H */
863 
864 #endif	/* PAGE_FLAGS_H */
865