1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Block data types and constants. Directly include this file only to
4 * break include dependency loop.
5 */
6 #ifndef __LINUX_BLK_TYPES_H
7 #define __LINUX_BLK_TYPES_H
8
9 #include <linux/types.h>
10 #include <linux/bvec.h>
11 #include <linux/ktime.h>
12 #include <linux/android_kabi.h>
13
14 struct bio_set;
15 struct bio;
16 struct bio_integrity_payload;
17 struct page;
18 struct block_device;
19 struct io_context;
20 struct cgroup_subsys_state;
21 typedef void (bio_end_io_t) (struct bio *);
22 struct bio_crypt_ctx;
23
24 /*
25 * Block error status values. See block/blk-core:blk_errors for the details.
26 * Alpha cannot write a byte atomically, so we need to use 32-bit value.
27 */
28 #if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__)
29 typedef u32 __bitwise blk_status_t;
30 #else
31 typedef u8 __bitwise blk_status_t;
32 #endif
33 #define BLK_STS_OK 0
34 #define BLK_STS_NOTSUPP ((__force blk_status_t)1)
35 #define BLK_STS_TIMEOUT ((__force blk_status_t)2)
36 #define BLK_STS_NOSPC ((__force blk_status_t)3)
37 #define BLK_STS_TRANSPORT ((__force blk_status_t)4)
38 #define BLK_STS_TARGET ((__force blk_status_t)5)
39 #define BLK_STS_NEXUS ((__force blk_status_t)6)
40 #define BLK_STS_MEDIUM ((__force blk_status_t)7)
41 #define BLK_STS_PROTECTION ((__force blk_status_t)8)
42 #define BLK_STS_RESOURCE ((__force blk_status_t)9)
43 #define BLK_STS_IOERR ((__force blk_status_t)10)
44
45 /* hack for device mapper, don't use elsewhere: */
46 #define BLK_STS_DM_REQUEUE ((__force blk_status_t)11)
47
48 #define BLK_STS_AGAIN ((__force blk_status_t)12)
49
50 /*
51 * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if
52 * device related resources are unavailable, but the driver can guarantee
53 * that the queue will be rerun in the future once resources become
54 * available again. This is typically the case for device specific
55 * resources that are consumed for IO. If the driver fails allocating these
56 * resources, we know that inflight (or pending) IO will free these
57 * resource upon completion.
58 *
59 * This is different from BLK_STS_RESOURCE in that it explicitly references
60 * a device specific resource. For resources of wider scope, allocation
61 * failure can happen without having pending IO. This means that we can't
62 * rely on request completions freeing these resources, as IO may not be in
63 * flight. Examples of that are kernel memory allocations, DMA mappings, or
64 * any other system wide resources.
65 */
66 #define BLK_STS_DEV_RESOURCE ((__force blk_status_t)13)
67
68 /**
69 * blk_path_error - returns true if error may be path related
70 * @error: status the request was completed with
71 *
72 * Description:
73 * This classifies block error status into non-retryable errors and ones
74 * that may be successful if retried on a failover path.
75 *
76 * Return:
77 * %false - retrying failover path will not help
78 * %true - may succeed if retried
79 */
blk_path_error(blk_status_t error)80 static inline bool blk_path_error(blk_status_t error)
81 {
82 switch (error) {
83 case BLK_STS_NOTSUPP:
84 case BLK_STS_NOSPC:
85 case BLK_STS_TARGET:
86 case BLK_STS_NEXUS:
87 case BLK_STS_MEDIUM:
88 case BLK_STS_PROTECTION:
89 return false;
90 }
91
92 /* Anything else could be a path failure, so should be retried */
93 return true;
94 }
95
96 /*
97 * From most significant bit:
98 * 1 bit: reserved for other usage, see below
99 * 12 bits: original size of bio
100 * 51 bits: issue time of bio
101 */
102 #define BIO_ISSUE_RES_BITS 1
103 #define BIO_ISSUE_SIZE_BITS 12
104 #define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS)
105 #define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
106 #define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
107 #define BIO_ISSUE_SIZE_MASK \
108 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
109 #define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
110
111 /* Reserved bit for blk-throtl */
112 #define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
113
114 struct bio_issue {
115 u64 value;
116 };
117
__bio_issue_time(u64 time)118 static inline u64 __bio_issue_time(u64 time)
119 {
120 return time & BIO_ISSUE_TIME_MASK;
121 }
122
bio_issue_time(struct bio_issue * issue)123 static inline u64 bio_issue_time(struct bio_issue *issue)
124 {
125 return __bio_issue_time(issue->value);
126 }
127
bio_issue_size(struct bio_issue * issue)128 static inline sector_t bio_issue_size(struct bio_issue *issue)
129 {
130 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
131 }
132
bio_issue_init(struct bio_issue * issue,sector_t size)133 static inline void bio_issue_init(struct bio_issue *issue,
134 sector_t size)
135 {
136 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
137 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
138 (ktime_get_ns() & BIO_ISSUE_TIME_MASK) |
139 ((u64)size << BIO_ISSUE_SIZE_SHIFT));
140 }
141
142 /*
143 * main unit of I/O for the block layer and lower layers (ie drivers and
144 * stacking drivers)
145 */
146 struct bio {
147 struct bio *bi_next; /* request queue link */
148 struct gendisk *bi_disk;
149 unsigned int bi_opf; /* bottom bits req flags,
150 * top bits REQ_OP. Use
151 * accessors.
152 */
153 unsigned short bi_flags; /* status, etc and bvec pool number */
154 unsigned short bi_ioprio;
155 unsigned short bi_write_hint;
156 blk_status_t bi_status;
157 u8 bi_partno;
158
159 struct bvec_iter bi_iter;
160
161 atomic_t __bi_remaining;
162 bio_end_io_t *bi_end_io;
163
164 void *bi_private;
165 #ifdef CONFIG_BLK_CGROUP
166 /*
167 * Represents the association of the css and request_queue for the bio.
168 * If a bio goes direct to device, it will not have a blkg as it will
169 * not have a request_queue associated with it. The reference is put
170 * on release of the bio.
171 */
172 struct blkcg_gq *bi_blkg;
173 struct bio_issue bi_issue;
174 #ifdef CONFIG_BLK_CGROUP_IOCOST
175 u64 bi_iocost_cost;
176 #endif
177 #endif
178
179 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
180 struct bio_crypt_ctx *bi_crypt_context;
181 #if IS_ENABLED(CONFIG_DM_DEFAULT_KEY)
182 bool bi_skip_dm_default_key;
183 #endif
184 #endif
185
186 union {
187 #if defined(CONFIG_BLK_DEV_INTEGRITY)
188 struct bio_integrity_payload *bi_integrity; /* data integrity */
189 #endif
190 };
191
192 unsigned short bi_vcnt; /* how many bio_vec's */
193
194 /*
195 * Everything starting with bi_max_vecs will be preserved by bio_reset()
196 */
197
198 unsigned short bi_max_vecs; /* max bvl_vecs we can hold */
199
200 atomic_t __bi_cnt; /* pin count */
201
202 struct bio_vec *bi_io_vec; /* the actual vec list */
203
204 struct bio_set *bi_pool;
205
206 ANDROID_KABI_RESERVE(1);
207 ANDROID_KABI_RESERVE(2);
208
209 /*
210 * We can inline a number of vecs at the end of the bio, to avoid
211 * double allocations for a small number of bio_vecs. This member
212 * MUST obviously be kept at the very end of the bio.
213 */
214 struct bio_vec bi_inline_vecs[0];
215 };
216
217 #define BIO_RESET_BYTES offsetof(struct bio, bi_max_vecs)
218
219 /*
220 * bio flags
221 */
222 enum {
223 BIO_NO_PAGE_REF, /* don't put release vec pages */
224 BIO_CLONED, /* doesn't own data */
225 BIO_BOUNCED, /* bio is a bounce bio */
226 BIO_USER_MAPPED, /* contains user pages */
227 BIO_NULL_MAPPED, /* contains invalid user pages */
228 BIO_WORKINGSET, /* contains userspace workingset pages */
229 BIO_QUIET, /* Make BIO Quiet */
230 BIO_CHAIN, /* chained bio, ->bi_remaining in effect */
231 BIO_REFFED, /* bio has elevated ->bi_cnt */
232 BIO_THROTTLED, /* This bio has already been subjected to
233 * throttling rules. Don't do it again. */
234 BIO_TRACE_COMPLETION, /* bio_endio() should trace the final completion
235 * of this bio. */
236 BIO_QUEUE_ENTERED, /* can use blk_queue_enter_live() */
237 BIO_TRACKED, /* set if bio goes through the rq_qos path */
238 BIO_FLAG_LAST
239 };
240
241 /* See BVEC_POOL_OFFSET below before adding new flags */
242
243 /*
244 * We support 6 different bvec pools, the last one is magic in that it
245 * is backed by a mempool.
246 */
247 #define BVEC_POOL_NR 6
248 #define BVEC_POOL_MAX (BVEC_POOL_NR - 1)
249
250 /*
251 * Top 3 bits of bio flags indicate the pool the bvecs came from. We add
252 * 1 to the actual index so that 0 indicates that there are no bvecs to be
253 * freed.
254 */
255 #define BVEC_POOL_BITS (3)
256 #define BVEC_POOL_OFFSET (16 - BVEC_POOL_BITS)
257 #define BVEC_POOL_IDX(bio) ((bio)->bi_flags >> BVEC_POOL_OFFSET)
258 #if (1<< BVEC_POOL_BITS) < (BVEC_POOL_NR+1)
259 # error "BVEC_POOL_BITS is too small"
260 #endif
261
262 /*
263 * Flags starting here get preserved by bio_reset() - this includes
264 * only BVEC_POOL_IDX()
265 */
266 #define BIO_RESET_BITS BVEC_POOL_OFFSET
267
268 typedef __u32 __bitwise blk_mq_req_flags_t;
269
270 /*
271 * Operations and flags common to the bio and request structures.
272 * We use 8 bits for encoding the operation, and the remaining 24 for flags.
273 *
274 * The least significant bit of the operation number indicates the data
275 * transfer direction:
276 *
277 * - if the least significant bit is set transfers are TO the device
278 * - if the least significant bit is not set transfers are FROM the device
279 *
280 * If a operation does not transfer data the least significant bit has no
281 * meaning.
282 */
283 #define REQ_OP_BITS 8
284 #define REQ_OP_MASK ((1 << REQ_OP_BITS) - 1)
285 #define REQ_FLAG_BITS 24
286
287 enum req_opf {
288 /* read sectors from the device */
289 REQ_OP_READ = 0,
290 /* write sectors to the device */
291 REQ_OP_WRITE = 1,
292 /* flush the volatile write cache */
293 REQ_OP_FLUSH = 2,
294 /* discard sectors */
295 REQ_OP_DISCARD = 3,
296 /* securely erase sectors */
297 REQ_OP_SECURE_ERASE = 5,
298 /* reset a zone write pointer */
299 REQ_OP_ZONE_RESET = 6,
300 /* write the same sector many times */
301 REQ_OP_WRITE_SAME = 7,
302 /* reset all the zone present on the device */
303 REQ_OP_ZONE_RESET_ALL = 8,
304 /* write the zero filled sector many times */
305 REQ_OP_WRITE_ZEROES = 9,
306 /* Open a zone */
307 REQ_OP_ZONE_OPEN = 10,
308 /* Close a zone */
309 REQ_OP_ZONE_CLOSE = 11,
310 /* Transition a zone to full */
311 REQ_OP_ZONE_FINISH = 12,
312
313 /* SCSI passthrough using struct scsi_request */
314 REQ_OP_SCSI_IN = 32,
315 REQ_OP_SCSI_OUT = 33,
316 /* Driver private requests */
317 REQ_OP_DRV_IN = 34,
318 REQ_OP_DRV_OUT = 35,
319
320 REQ_OP_LAST,
321 };
322
323 enum req_flag_bits {
324 __REQ_FAILFAST_DEV = /* no driver retries of device errors */
325 REQ_OP_BITS,
326 __REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */
327 __REQ_FAILFAST_DRIVER, /* no driver retries of driver errors */
328 __REQ_SYNC, /* request is sync (sync write or read) */
329 __REQ_META, /* metadata io request */
330 __REQ_PRIO, /* boost priority in cfq */
331 __REQ_NOMERGE, /* don't touch this for merging */
332 __REQ_IDLE, /* anticipate more IO after this one */
333 __REQ_INTEGRITY, /* I/O includes block integrity payload */
334 __REQ_FUA, /* forced unit access */
335 __REQ_PREFLUSH, /* request for cache flush */
336 __REQ_RAHEAD, /* read ahead, can fail anytime */
337 __REQ_BACKGROUND, /* background IO */
338 __REQ_NOWAIT, /* Don't wait if request will block */
339 __REQ_NOWAIT_INLINE, /* Return would-block error inline */
340 /*
341 * When a shared kthread needs to issue a bio for a cgroup, doing
342 * so synchronously can lead to priority inversions as the kthread
343 * can be trapped waiting for that cgroup. CGROUP_PUNT flag makes
344 * submit_bio() punt the actual issuing to a dedicated per-blkcg
345 * work item to avoid such priority inversions.
346 */
347 __REQ_CGROUP_PUNT,
348
349 /* command specific flags for REQ_OP_WRITE_ZEROES: */
350 __REQ_NOUNMAP, /* do not free blocks when zeroing */
351
352 __REQ_HIPRI,
353
354 /* for driver use */
355 __REQ_DRV,
356 __REQ_SWAP, /* swapping request. */
357 __REQ_NR_BITS, /* stops here */
358 };
359
360 #define REQ_FAILFAST_DEV (1ULL << __REQ_FAILFAST_DEV)
361 #define REQ_FAILFAST_TRANSPORT (1ULL << __REQ_FAILFAST_TRANSPORT)
362 #define REQ_FAILFAST_DRIVER (1ULL << __REQ_FAILFAST_DRIVER)
363 #define REQ_SYNC (1ULL << __REQ_SYNC)
364 #define REQ_META (1ULL << __REQ_META)
365 #define REQ_PRIO (1ULL << __REQ_PRIO)
366 #define REQ_NOMERGE (1ULL << __REQ_NOMERGE)
367 #define REQ_IDLE (1ULL << __REQ_IDLE)
368 #define REQ_INTEGRITY (1ULL << __REQ_INTEGRITY)
369 #define REQ_FUA (1ULL << __REQ_FUA)
370 #define REQ_PREFLUSH (1ULL << __REQ_PREFLUSH)
371 #define REQ_RAHEAD (1ULL << __REQ_RAHEAD)
372 #define REQ_BACKGROUND (1ULL << __REQ_BACKGROUND)
373 #define REQ_NOWAIT (1ULL << __REQ_NOWAIT)
374 #define REQ_NOWAIT_INLINE (1ULL << __REQ_NOWAIT_INLINE)
375 #define REQ_CGROUP_PUNT (1ULL << __REQ_CGROUP_PUNT)
376
377 #define REQ_NOUNMAP (1ULL << __REQ_NOUNMAP)
378 #define REQ_HIPRI (1ULL << __REQ_HIPRI)
379
380 #define REQ_DRV (1ULL << __REQ_DRV)
381 #define REQ_SWAP (1ULL << __REQ_SWAP)
382
383 #define REQ_FAILFAST_MASK \
384 (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER)
385
386 #define REQ_NOMERGE_FLAGS \
387 (REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA)
388
389 enum stat_group {
390 STAT_READ,
391 STAT_WRITE,
392 STAT_DISCARD,
393
394 NR_STAT_GROUPS
395 };
396
397 #define bio_op(bio) \
398 ((bio)->bi_opf & REQ_OP_MASK)
399 #define req_op(req) \
400 ((req)->cmd_flags & REQ_OP_MASK)
401
402 /* obsolete, don't use in new code */
bio_set_op_attrs(struct bio * bio,unsigned op,unsigned op_flags)403 static inline void bio_set_op_attrs(struct bio *bio, unsigned op,
404 unsigned op_flags)
405 {
406 bio->bi_opf = op | op_flags;
407 }
408
op_is_write(unsigned int op)409 static inline bool op_is_write(unsigned int op)
410 {
411 return (op & 1);
412 }
413
414 /*
415 * Check if the bio or request is one that needs special treatment in the
416 * flush state machine.
417 */
op_is_flush(unsigned int op)418 static inline bool op_is_flush(unsigned int op)
419 {
420 return op & (REQ_FUA | REQ_PREFLUSH);
421 }
422
423 /*
424 * Reads are always treated as synchronous, as are requests with the FUA or
425 * PREFLUSH flag. Other operations may be marked as synchronous using the
426 * REQ_SYNC flag.
427 */
op_is_sync(unsigned int op)428 static inline bool op_is_sync(unsigned int op)
429 {
430 return (op & REQ_OP_MASK) == REQ_OP_READ ||
431 (op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH));
432 }
433
op_is_discard(unsigned int op)434 static inline bool op_is_discard(unsigned int op)
435 {
436 return (op & REQ_OP_MASK) == REQ_OP_DISCARD;
437 }
438
439 /*
440 * Check if a bio or request operation is a zone management operation, with
441 * the exception of REQ_OP_ZONE_RESET_ALL which is treated as a special case
442 * due to its different handling in the block layer and device response in
443 * case of command failure.
444 */
op_is_zone_mgmt(enum req_opf op)445 static inline bool op_is_zone_mgmt(enum req_opf op)
446 {
447 switch (op & REQ_OP_MASK) {
448 case REQ_OP_ZONE_RESET:
449 case REQ_OP_ZONE_OPEN:
450 case REQ_OP_ZONE_CLOSE:
451 case REQ_OP_ZONE_FINISH:
452 return true;
453 default:
454 return false;
455 }
456 }
457
op_stat_group(unsigned int op)458 static inline int op_stat_group(unsigned int op)
459 {
460 if (op_is_discard(op))
461 return STAT_DISCARD;
462 return op_is_write(op);
463 }
464
465 typedef unsigned int blk_qc_t;
466 #define BLK_QC_T_NONE -1U
467 #define BLK_QC_T_EAGAIN -2U
468 #define BLK_QC_T_SHIFT 16
469 #define BLK_QC_T_INTERNAL (1U << 31)
470
blk_qc_t_valid(blk_qc_t cookie)471 static inline bool blk_qc_t_valid(blk_qc_t cookie)
472 {
473 return cookie != BLK_QC_T_NONE && cookie != BLK_QC_T_EAGAIN;
474 }
475
blk_qc_t_to_queue_num(blk_qc_t cookie)476 static inline unsigned int blk_qc_t_to_queue_num(blk_qc_t cookie)
477 {
478 return (cookie & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT;
479 }
480
blk_qc_t_to_tag(blk_qc_t cookie)481 static inline unsigned int blk_qc_t_to_tag(blk_qc_t cookie)
482 {
483 return cookie & ((1u << BLK_QC_T_SHIFT) - 1);
484 }
485
blk_qc_t_is_internal(blk_qc_t cookie)486 static inline bool blk_qc_t_is_internal(blk_qc_t cookie)
487 {
488 return (cookie & BLK_QC_T_INTERNAL) != 0;
489 }
490
491 struct blk_rq_stat {
492 u64 mean;
493 u64 min;
494 u64 max;
495 u32 nr_samples;
496 u64 batch;
497 };
498
499 #endif /* __LINUX_BLK_TYPES_H */
500