1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6
7 #ifdef __KERNEL__
8
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page_ref.h>
28 #include <linux/memremap.h>
29 #include <linux/overflow.h>
30 #include <linux/sizes.h>
31 #include <linux/android_kabi.h>
32 #include <linux/android_vendor.h>
33
34 struct mempolicy;
35 struct anon_vma;
36 struct anon_vma_chain;
37 struct file_ra_state;
38 struct user_struct;
39 struct writeback_control;
40 struct bdi_writeback;
41
42 extern int sysctl_page_lock_unfairness;
43
44 void init_mm_internals(void);
45
46 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
47 extern unsigned long max_mapnr;
48
set_max_mapnr(unsigned long limit)49 static inline void set_max_mapnr(unsigned long limit)
50 {
51 max_mapnr = limit;
52 }
53 #else
set_max_mapnr(unsigned long limit)54 static inline void set_max_mapnr(unsigned long limit) { }
55 #endif
56
57 extern atomic_long_t _totalram_pages;
totalram_pages(void)58 static inline unsigned long totalram_pages(void)
59 {
60 return (unsigned long)atomic_long_read(&_totalram_pages);
61 }
62
totalram_pages_inc(void)63 static inline void totalram_pages_inc(void)
64 {
65 atomic_long_inc(&_totalram_pages);
66 }
67
totalram_pages_dec(void)68 static inline void totalram_pages_dec(void)
69 {
70 atomic_long_dec(&_totalram_pages);
71 }
72
totalram_pages_add(long count)73 static inline void totalram_pages_add(long count)
74 {
75 atomic_long_add(count, &_totalram_pages);
76 }
77
totalram_pages_set(long val)78 static inline void totalram_pages_set(long val)
79 {
80 atomic_long_set(&_totalram_pages, val);
81 }
82
83 extern void * high_memory;
84 extern int page_cluster;
85
86 #ifdef CONFIG_SYSCTL
87 extern int sysctl_legacy_va_layout;
88 #else
89 #define sysctl_legacy_va_layout 0
90 #endif
91
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
93 extern const int mmap_rnd_bits_min;
94 extern const int mmap_rnd_bits_max;
95 extern int mmap_rnd_bits __read_mostly;
96 #endif
97 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
98 extern const int mmap_rnd_compat_bits_min;
99 extern const int mmap_rnd_compat_bits_max;
100 extern int mmap_rnd_compat_bits __read_mostly;
101 #endif
102
103 #include <asm/page.h>
104 #include <asm/pgtable.h>
105 #include <asm/processor.h>
106
107 /*
108 * Architectures that support memory tagging (assigning tags to memory regions,
109 * embedding these tags into addresses that point to these memory regions, and
110 * checking that the memory and the pointer tags match on memory accesses)
111 * redefine this macro to strip tags from pointers.
112 * It's defined as noop for arcitectures that don't support memory tagging.
113 */
114 #ifndef untagged_addr
115 #define untagged_addr(addr) (addr)
116 #endif
117
118 #ifndef __pa_symbol
119 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
120 #endif
121
122 #ifndef __va_function
123 #define __va_function(x) (x)
124 #endif
125
126 #ifndef __pa_function
127 #define __pa_function(x) __pa_symbol(x)
128 #endif
129
130 #ifndef page_to_virt
131 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
132 #endif
133
134 #ifndef lm_alias
135 #define lm_alias(x) __va(__pa_symbol(x))
136 #endif
137
138 /*
139 * To prevent common memory management code establishing
140 * a zero page mapping on a read fault.
141 * This macro should be defined within <asm/pgtable.h>.
142 * s390 does this to prevent multiplexing of hardware bits
143 * related to the physical page in case of virtualization.
144 */
145 #ifndef mm_forbids_zeropage
146 #define mm_forbids_zeropage(X) (0)
147 #endif
148
149 /*
150 * On some architectures it is expensive to call memset() for small sizes.
151 * If an architecture decides to implement their own version of
152 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
153 * define their own version of this macro in <asm/pgtable.h>
154 */
155 #if BITS_PER_LONG == 64
156 /* This function must be updated when the size of struct page grows above 80
157 * or reduces below 56. The idea that compiler optimizes out switch()
158 * statement, and only leaves move/store instructions. Also the compiler can
159 * combine write statments if they are both assignments and can be reordered,
160 * this can result in several of the writes here being dropped.
161 */
162 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)163 static inline void __mm_zero_struct_page(struct page *page)
164 {
165 unsigned long *_pp = (void *)page;
166
167 /* Check that struct page is either 56, 64, 72, or 80 bytes */
168 BUILD_BUG_ON(sizeof(struct page) & 7);
169 BUILD_BUG_ON(sizeof(struct page) < 56);
170 BUILD_BUG_ON(sizeof(struct page) > 80);
171
172 switch (sizeof(struct page)) {
173 case 80:
174 _pp[9] = 0; /* fallthrough */
175 case 72:
176 _pp[8] = 0; /* fallthrough */
177 case 64:
178 _pp[7] = 0; /* fallthrough */
179 case 56:
180 _pp[6] = 0;
181 _pp[5] = 0;
182 _pp[4] = 0;
183 _pp[3] = 0;
184 _pp[2] = 0;
185 _pp[1] = 0;
186 _pp[0] = 0;
187 }
188 }
189 #else
190 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
191 #endif
192
193 /*
194 * Default maximum number of active map areas, this limits the number of vmas
195 * per mm struct. Users can overwrite this number by sysctl but there is a
196 * problem.
197 *
198 * When a program's coredump is generated as ELF format, a section is created
199 * per a vma. In ELF, the number of sections is represented in unsigned short.
200 * This means the number of sections should be smaller than 65535 at coredump.
201 * Because the kernel adds some informative sections to a image of program at
202 * generating coredump, we need some margin. The number of extra sections is
203 * 1-3 now and depends on arch. We use "5" as safe margin, here.
204 *
205 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
206 * not a hard limit any more. Although some userspace tools can be surprised by
207 * that.
208 */
209 #define MAPCOUNT_ELF_CORE_MARGIN (5)
210 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
211
212 extern int sysctl_max_map_count;
213
214 extern unsigned long sysctl_user_reserve_kbytes;
215 extern unsigned long sysctl_admin_reserve_kbytes;
216
217 extern int sysctl_overcommit_memory;
218 extern int sysctl_overcommit_ratio;
219 extern unsigned long sysctl_overcommit_kbytes;
220
221 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
222 size_t *, loff_t *);
223 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
224 size_t *, loff_t *);
225
226 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
227
228 /* to align the pointer to the (next) page boundary */
229 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
230
231 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
232 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
233
234 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
235
236 /*
237 * Linux kernel virtual memory manager primitives.
238 * The idea being to have a "virtual" mm in the same way
239 * we have a virtual fs - giving a cleaner interface to the
240 * mm details, and allowing different kinds of memory mappings
241 * (from shared memory to executable loading to arbitrary
242 * mmap() functions).
243 */
244
245 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
246 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
247 void vm_area_free(struct vm_area_struct *);
248
249 #ifndef CONFIG_MMU
250 extern struct rb_root nommu_region_tree;
251 extern struct rw_semaphore nommu_region_sem;
252
253 extern unsigned int kobjsize(const void *objp);
254 #endif
255
256 /*
257 * vm_flags in vm_area_struct, see mm_types.h.
258 * When changing, update also include/trace/events/mmflags.h
259 */
260 #define VM_NONE 0x00000000
261
262 #define VM_READ 0x00000001 /* currently active flags */
263 #define VM_WRITE 0x00000002
264 #define VM_EXEC 0x00000004
265 #define VM_SHARED 0x00000008
266
267 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
268 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
269 #define VM_MAYWRITE 0x00000020
270 #define VM_MAYEXEC 0x00000040
271 #define VM_MAYSHARE 0x00000080
272
273 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
274 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
275 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
276 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
277 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
278
279 #define VM_LOCKED 0x00002000
280 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
281
282 /* Used by sys_madvise() */
283 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
284 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
285
286 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
287 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
288 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
289 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
290 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
291 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
292 #define VM_SYNC 0x00800000 /* Synchronous page faults */
293 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
294 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
295 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
296
297 #ifdef CONFIG_MEM_SOFT_DIRTY
298 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
299 #else
300 # define VM_SOFTDIRTY 0
301 #endif
302
303 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
304 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
305 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
306 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
307
308 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
309 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
310 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
311 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
312 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
313 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
314 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
315 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
316 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
317 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
318 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
319 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
320
321 #ifdef CONFIG_ARCH_HAS_PKEYS
322 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
323 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
324 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
325 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
326 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
327 #ifdef CONFIG_PPC
328 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
329 #else
330 # define VM_PKEY_BIT4 0
331 #endif
332 #endif /* CONFIG_ARCH_HAS_PKEYS */
333
334 #if defined(CONFIG_X86)
335 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
336 #elif defined(CONFIG_PPC)
337 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
338 #elif defined(CONFIG_PARISC)
339 # define VM_GROWSUP VM_ARCH_1
340 #elif defined(CONFIG_IA64)
341 # define VM_GROWSUP VM_ARCH_1
342 #elif defined(CONFIG_SPARC64)
343 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
344 # define VM_ARCH_CLEAR VM_SPARC_ADI
345 #elif !defined(CONFIG_MMU)
346 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
347 #endif
348
349 #if defined(CONFIG_X86_INTEL_MPX)
350 /* MPX specific bounds table or bounds directory */
351 # define VM_MPX VM_HIGH_ARCH_4
352 #else
353 # define VM_MPX VM_NONE
354 #endif
355
356 #ifndef VM_GROWSUP
357 # define VM_GROWSUP VM_NONE
358 #endif
359
360 /* Bits set in the VMA until the stack is in its final location */
361 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
362
363 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
364 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
365 #endif
366
367 #ifdef CONFIG_STACK_GROWSUP
368 #define VM_STACK VM_GROWSUP
369 #else
370 #define VM_STACK VM_GROWSDOWN
371 #endif
372
373 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
374
375 /*
376 * Special vmas that are non-mergable, non-mlock()able.
377 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
378 */
379 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
380
381 /* This mask defines which mm->def_flags a process can inherit its parent */
382 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
383
384 /* This mask is used to clear all the VMA flags used by mlock */
385 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
386
387 /* Arch-specific flags to clear when updating VM flags on protection change */
388 #ifndef VM_ARCH_CLEAR
389 # define VM_ARCH_CLEAR VM_NONE
390 #endif
391 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
392
393 /*
394 * mapping from the currently active vm_flags protection bits (the
395 * low four bits) to a page protection mask..
396 */
397 extern pgprot_t protection_map[16];
398
399 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
400 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
401 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
402 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
403 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
404 #define FAULT_FLAG_TRIED 0x20 /* Second try */
405 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
406 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
407 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
408
409 #define FAULT_FLAG_TRACE \
410 { FAULT_FLAG_WRITE, "WRITE" }, \
411 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
412 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
413 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
414 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
415 { FAULT_FLAG_TRIED, "TRIED" }, \
416 { FAULT_FLAG_USER, "USER" }, \
417 { FAULT_FLAG_REMOTE, "REMOTE" }, \
418 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
419
420 /*
421 * vm_fault is filled by the the pagefault handler and passed to the vma's
422 * ->fault function. The vma's ->fault is responsible for returning a bitmask
423 * of VM_FAULT_xxx flags that give details about how the fault was handled.
424 *
425 * MM layer fills up gfp_mask for page allocations but fault handler might
426 * alter it if its implementation requires a different allocation context.
427 *
428 * pgoff should be used in favour of virtual_address, if possible.
429 */
430 struct vm_fault {
431 struct vm_area_struct *vma; /* Target VMA */
432 unsigned int flags; /* FAULT_FLAG_xxx flags */
433 gfp_t gfp_mask; /* gfp mask to be used for allocations */
434 pgoff_t pgoff; /* Logical page offset based on vma */
435 unsigned long address; /* Faulting virtual address */
436 pmd_t *pmd; /* Pointer to pmd entry matching
437 * the 'address' */
438 pud_t *pud; /* Pointer to pud entry matching
439 * the 'address'
440 */
441 pte_t orig_pte; /* Value of PTE at the time of fault */
442
443 struct page *cow_page; /* Page handler may use for COW fault */
444 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
445 struct page *page; /* ->fault handlers should return a
446 * page here, unless VM_FAULT_NOPAGE
447 * is set (which is also implied by
448 * VM_FAULT_ERROR).
449 */
450 /* These three entries are valid only while holding ptl lock */
451 pte_t *pte; /* Pointer to pte entry matching
452 * the 'address'. NULL if the page
453 * table hasn't been allocated.
454 */
455 spinlock_t *ptl; /* Page table lock.
456 * Protects pte page table if 'pte'
457 * is not NULL, otherwise pmd.
458 */
459 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
460 * vm_ops->map_pages() calls
461 * alloc_set_pte() from atomic context.
462 * do_fault_around() pre-allocates
463 * page table to avoid allocation from
464 * atomic context.
465 */
466 unsigned long vma_flags; /* Speculative Page Fault field */
467 pgprot_t vma_page_prot; /* Speculative Page Fault field */
468 ANDROID_VENDOR_DATA(1);
469 ANDROID_VENDOR_DATA(2);
470 };
471
472 /* page entry size for vm->huge_fault() */
473 enum page_entry_size {
474 PE_SIZE_PTE = 0,
475 PE_SIZE_PMD,
476 PE_SIZE_PUD,
477 };
478
479 /*
480 * These are the virtual MM functions - opening of an area, closing and
481 * unmapping it (needed to keep files on disk up-to-date etc), pointer
482 * to the functions called when a no-page or a wp-page exception occurs.
483 */
484 struct vm_operations_struct {
485 void (*open)(struct vm_area_struct * area);
486 void (*close)(struct vm_area_struct * area);
487 int (*split)(struct vm_area_struct * area, unsigned long addr);
488 int (*mremap)(struct vm_area_struct * area);
489 vm_fault_t (*fault)(struct vm_fault *vmf);
490 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
491 enum page_entry_size pe_size);
492 void (*map_pages)(struct vm_fault *vmf,
493 pgoff_t start_pgoff, pgoff_t end_pgoff);
494 unsigned long (*pagesize)(struct vm_area_struct * area);
495
496 /* notification that a previously read-only page is about to become
497 * writable, if an error is returned it will cause a SIGBUS */
498 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
499
500 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
501 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
502
503 /* called by access_process_vm when get_user_pages() fails, typically
504 * for use by special VMAs that can switch between memory and hardware
505 */
506 int (*access)(struct vm_area_struct *vma, unsigned long addr,
507 void *buf, int len, int write);
508
509 /* Called by the /proc/PID/maps code to ask the vma whether it
510 * has a special name. Returning non-NULL will also cause this
511 * vma to be dumped unconditionally. */
512 const char *(*name)(struct vm_area_struct *vma);
513
514 #ifdef CONFIG_NUMA
515 /*
516 * set_policy() op must add a reference to any non-NULL @new mempolicy
517 * to hold the policy upon return. Caller should pass NULL @new to
518 * remove a policy and fall back to surrounding context--i.e. do not
519 * install a MPOL_DEFAULT policy, nor the task or system default
520 * mempolicy.
521 */
522 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
523
524 /*
525 * get_policy() op must add reference [mpol_get()] to any policy at
526 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
527 * in mm/mempolicy.c will do this automatically.
528 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
529 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
530 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
531 * must return NULL--i.e., do not "fallback" to task or system default
532 * policy.
533 */
534 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
535 unsigned long addr);
536 #endif
537 /*
538 * Called by vm_normal_page() for special PTEs to find the
539 * page for @addr. This is useful if the default behavior
540 * (using pte_page()) would not find the correct page.
541 */
542 struct page *(*find_special_page)(struct vm_area_struct *vma,
543 unsigned long addr);
544
545 ANDROID_KABI_RESERVE(1);
546 ANDROID_KABI_RESERVE(2);
547 ANDROID_KABI_RESERVE(3);
548 ANDROID_KABI_RESERVE(4);
549 };
550
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)551 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
552 {
553 static const struct vm_operations_struct dummy_vm_ops = {};
554
555 memset(vma, 0, sizeof(*vma));
556 vma->vm_mm = mm;
557 vma->vm_ops = &dummy_vm_ops;
558 INIT_LIST_HEAD(&vma->anon_vma_chain);
559 }
560
vma_set_anonymous(struct vm_area_struct * vma)561 static inline void vma_set_anonymous(struct vm_area_struct *vma)
562 {
563 vma->vm_ops = NULL;
564 }
565
vma_is_anonymous(struct vm_area_struct * vma)566 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
567 {
568 return !vma->vm_ops;
569 }
570
571 #ifdef CONFIG_SHMEM
572 /*
573 * The vma_is_shmem is not inline because it is used only by slow
574 * paths in userfault.
575 */
576 bool vma_is_shmem(struct vm_area_struct *vma);
577 #else
vma_is_shmem(struct vm_area_struct * vma)578 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
579 #endif
580
581 int vma_is_stack_for_current(struct vm_area_struct *vma);
582
583 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
584 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
585
586 struct mmu_gather;
587 struct inode;
588
589 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
pmd_devmap(pmd_t pmd)590 static inline int pmd_devmap(pmd_t pmd)
591 {
592 return 0;
593 }
pud_devmap(pud_t pud)594 static inline int pud_devmap(pud_t pud)
595 {
596 return 0;
597 }
pgd_devmap(pgd_t pgd)598 static inline int pgd_devmap(pgd_t pgd)
599 {
600 return 0;
601 }
602 #endif
603
604 /*
605 * FIXME: take this include out, include page-flags.h in
606 * files which need it (119 of them)
607 */
608 #include <linux/page-flags.h>
609 #include <linux/huge_mm.h>
610
611 /*
612 * Methods to modify the page usage count.
613 *
614 * What counts for a page usage:
615 * - cache mapping (page->mapping)
616 * - private data (page->private)
617 * - page mapped in a task's page tables, each mapping
618 * is counted separately
619 *
620 * Also, many kernel routines increase the page count before a critical
621 * routine so they can be sure the page doesn't go away from under them.
622 */
623
624 /*
625 * Drop a ref, return true if the refcount fell to zero (the page has no users)
626 */
put_page_testzero(struct page * page)627 static inline int put_page_testzero(struct page *page)
628 {
629 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
630 return page_ref_dec_and_test(page);
631 }
632
633 /*
634 * Try to grab a ref unless the page has a refcount of zero, return false if
635 * that is the case.
636 * This can be called when MMU is off so it must not access
637 * any of the virtual mappings.
638 */
get_page_unless_zero(struct page * page)639 static inline int get_page_unless_zero(struct page *page)
640 {
641 return page_ref_add_unless(page, 1, 0);
642 }
643
644 extern int page_is_ram(unsigned long pfn);
645
646 enum {
647 REGION_INTERSECTS,
648 REGION_DISJOINT,
649 REGION_MIXED,
650 };
651
652 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
653 unsigned long desc);
654
655 /* Support for virtually mapped pages */
656 struct page *vmalloc_to_page(const void *addr);
657 unsigned long vmalloc_to_pfn(const void *addr);
658
659 /*
660 * Determine if an address is within the vmalloc range
661 *
662 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
663 * is no special casing required.
664 */
is_vmalloc_addr(const void * x)665 static inline bool is_vmalloc_addr(const void *x)
666 {
667 #ifdef CONFIG_MMU
668 unsigned long addr = (unsigned long)x;
669
670 return addr >= VMALLOC_START && addr < VMALLOC_END;
671 #else
672 return false;
673 #endif
674 }
675
676 #ifndef is_ioremap_addr
677 #define is_ioremap_addr(x) is_vmalloc_addr(x)
678 #endif
679
680 #ifdef CONFIG_MMU
681 extern int is_vmalloc_or_module_addr(const void *x);
682 #else
is_vmalloc_or_module_addr(const void * x)683 static inline int is_vmalloc_or_module_addr(const void *x)
684 {
685 return 0;
686 }
687 #endif
688
689 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
kvmalloc(size_t size,gfp_t flags)690 static inline void *kvmalloc(size_t size, gfp_t flags)
691 {
692 return kvmalloc_node(size, flags, NUMA_NO_NODE);
693 }
kvzalloc_node(size_t size,gfp_t flags,int node)694 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
695 {
696 return kvmalloc_node(size, flags | __GFP_ZERO, node);
697 }
kvzalloc(size_t size,gfp_t flags)698 static inline void *kvzalloc(size_t size, gfp_t flags)
699 {
700 return kvmalloc(size, flags | __GFP_ZERO);
701 }
702
kvmalloc_array(size_t n,size_t size,gfp_t flags)703 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
704 {
705 size_t bytes;
706
707 if (unlikely(check_mul_overflow(n, size, &bytes)))
708 return NULL;
709
710 return kvmalloc(bytes, flags);
711 }
712
kvcalloc(size_t n,size_t size,gfp_t flags)713 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
714 {
715 return kvmalloc_array(n, size, flags | __GFP_ZERO);
716 }
717
718 extern void kvfree(const void *addr);
719 extern void kvfree_sensitive(const void *addr, size_t len);
720
721 /*
722 * Mapcount of compound page as a whole, does not include mapped sub-pages.
723 *
724 * Must be called only for compound pages or any their tail sub-pages.
725 */
compound_mapcount(struct page * page)726 static inline int compound_mapcount(struct page *page)
727 {
728 VM_BUG_ON_PAGE(!PageCompound(page), page);
729 page = compound_head(page);
730 return atomic_read(compound_mapcount_ptr(page)) + 1;
731 }
732
733 /*
734 * The atomic page->_mapcount, starts from -1: so that transitions
735 * both from it and to it can be tracked, using atomic_inc_and_test
736 * and atomic_add_negative(-1).
737 */
page_mapcount_reset(struct page * page)738 static inline void page_mapcount_reset(struct page *page)
739 {
740 atomic_set(&(page)->_mapcount, -1);
741 }
742
743 int __page_mapcount(struct page *page);
744
745 /*
746 * Mapcount of 0-order page; when compound sub-page, includes
747 * compound_mapcount().
748 *
749 * Result is undefined for pages which cannot be mapped into userspace.
750 * For example SLAB or special types of pages. See function page_has_type().
751 * They use this place in struct page differently.
752 */
page_mapcount(struct page * page)753 static inline int page_mapcount(struct page *page)
754 {
755 if (unlikely(PageCompound(page)))
756 return __page_mapcount(page);
757 return atomic_read(&page->_mapcount) + 1;
758 }
759
760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
761 int total_mapcount(struct page *page);
762 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
763 #else
total_mapcount(struct page * page)764 static inline int total_mapcount(struct page *page)
765 {
766 return page_mapcount(page);
767 }
page_trans_huge_mapcount(struct page * page,int * total_mapcount)768 static inline int page_trans_huge_mapcount(struct page *page,
769 int *total_mapcount)
770 {
771 int mapcount = page_mapcount(page);
772 if (total_mapcount)
773 *total_mapcount = mapcount;
774 return mapcount;
775 }
776 #endif
777
virt_to_head_page(const void * x)778 static inline struct page *virt_to_head_page(const void *x)
779 {
780 struct page *page = virt_to_page(x);
781
782 return compound_head(page);
783 }
784
785 void __put_page(struct page *page);
786
787 void put_pages_list(struct list_head *pages);
788
789 void split_page(struct page *page, unsigned int order);
790
791 /*
792 * Compound pages have a destructor function. Provide a
793 * prototype for that function and accessor functions.
794 * These are _only_ valid on the head of a compound page.
795 */
796 typedef void compound_page_dtor(struct page *);
797
798 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
799 enum compound_dtor_id {
800 NULL_COMPOUND_DTOR,
801 COMPOUND_PAGE_DTOR,
802 #ifdef CONFIG_HUGETLB_PAGE
803 HUGETLB_PAGE_DTOR,
804 #endif
805 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_GKI_OPT_FEATURES)
806 TRANSHUGE_PAGE_DTOR,
807 #endif
808 NR_COMPOUND_DTORS,
809 };
810 extern compound_page_dtor * const compound_page_dtors[];
811
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)812 static inline void set_compound_page_dtor(struct page *page,
813 enum compound_dtor_id compound_dtor)
814 {
815 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
816 page[1].compound_dtor = compound_dtor;
817 }
818
get_compound_page_dtor(struct page * page)819 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
820 {
821 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
822 return compound_page_dtors[page[1].compound_dtor];
823 }
824
compound_order(struct page * page)825 static inline unsigned int compound_order(struct page *page)
826 {
827 if (!PageHead(page))
828 return 0;
829 return page[1].compound_order;
830 }
831
set_compound_order(struct page * page,unsigned int order)832 static inline void set_compound_order(struct page *page, unsigned int order)
833 {
834 page[1].compound_order = order;
835 }
836
837 /* Returns the number of pages in this potentially compound page. */
compound_nr(struct page * page)838 static inline unsigned long compound_nr(struct page *page)
839 {
840 return 1UL << compound_order(page);
841 }
842
843 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)844 static inline unsigned long page_size(struct page *page)
845 {
846 return PAGE_SIZE << compound_order(page);
847 }
848
849 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)850 static inline unsigned int page_shift(struct page *page)
851 {
852 return PAGE_SHIFT + compound_order(page);
853 }
854
855 void free_compound_page(struct page *page);
856
857 #ifdef CONFIG_MMU
858 /*
859 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
860 * servicing faults for write access. In the normal case, do always want
861 * pte_mkwrite. But get_user_pages can cause write faults for mappings
862 * that do not have writing enabled, when used by access_process_vm.
863 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)864 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
865 {
866 if (likely(vma->vm_flags & VM_WRITE))
867 pte = pte_mkwrite(pte);
868 return pte;
869 }
870
871 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
872 struct page *page);
873 vm_fault_t finish_fault(struct vm_fault *vmf);
874 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
875 #endif
876
877 /*
878 * Multiple processes may "see" the same page. E.g. for untouched
879 * mappings of /dev/null, all processes see the same page full of
880 * zeroes, and text pages of executables and shared libraries have
881 * only one copy in memory, at most, normally.
882 *
883 * For the non-reserved pages, page_count(page) denotes a reference count.
884 * page_count() == 0 means the page is free. page->lru is then used for
885 * freelist management in the buddy allocator.
886 * page_count() > 0 means the page has been allocated.
887 *
888 * Pages are allocated by the slab allocator in order to provide memory
889 * to kmalloc and kmem_cache_alloc. In this case, the management of the
890 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
891 * unless a particular usage is carefully commented. (the responsibility of
892 * freeing the kmalloc memory is the caller's, of course).
893 *
894 * A page may be used by anyone else who does a __get_free_page().
895 * In this case, page_count still tracks the references, and should only
896 * be used through the normal accessor functions. The top bits of page->flags
897 * and page->virtual store page management information, but all other fields
898 * are unused and could be used privately, carefully. The management of this
899 * page is the responsibility of the one who allocated it, and those who have
900 * subsequently been given references to it.
901 *
902 * The other pages (we may call them "pagecache pages") are completely
903 * managed by the Linux memory manager: I/O, buffers, swapping etc.
904 * The following discussion applies only to them.
905 *
906 * A pagecache page contains an opaque `private' member, which belongs to the
907 * page's address_space. Usually, this is the address of a circular list of
908 * the page's disk buffers. PG_private must be set to tell the VM to call
909 * into the filesystem to release these pages.
910 *
911 * A page may belong to an inode's memory mapping. In this case, page->mapping
912 * is the pointer to the inode, and page->index is the file offset of the page,
913 * in units of PAGE_SIZE.
914 *
915 * If pagecache pages are not associated with an inode, they are said to be
916 * anonymous pages. These may become associated with the swapcache, and in that
917 * case PG_swapcache is set, and page->private is an offset into the swapcache.
918 *
919 * In either case (swapcache or inode backed), the pagecache itself holds one
920 * reference to the page. Setting PG_private should also increment the
921 * refcount. The each user mapping also has a reference to the page.
922 *
923 * The pagecache pages are stored in a per-mapping radix tree, which is
924 * rooted at mapping->i_pages, and indexed by offset.
925 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
926 * lists, we instead now tag pages as dirty/writeback in the radix tree.
927 *
928 * All pagecache pages may be subject to I/O:
929 * - inode pages may need to be read from disk,
930 * - inode pages which have been modified and are MAP_SHARED may need
931 * to be written back to the inode on disk,
932 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
933 * modified may need to be swapped out to swap space and (later) to be read
934 * back into memory.
935 */
936
937 /*
938 * The zone field is never updated after free_area_init_core()
939 * sets it, so none of the operations on it need to be atomic.
940 */
941
942 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
943 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
944 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
945 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
946 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
947 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
948
949 /*
950 * Define the bit shifts to access each section. For non-existent
951 * sections we define the shift as 0; that plus a 0 mask ensures
952 * the compiler will optimise away reference to them.
953 */
954 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
955 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
956 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
957 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
958 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
959
960 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
961 #ifdef NODE_NOT_IN_PAGE_FLAGS
962 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
963 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
964 SECTIONS_PGOFF : ZONES_PGOFF)
965 #else
966 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
967 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
968 NODES_PGOFF : ZONES_PGOFF)
969 #endif
970
971 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
972
973 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
974 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
975 #endif
976
977 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
978 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
979 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
980 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
981 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
982 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
983
page_zonenum(const struct page * page)984 static inline enum zone_type page_zonenum(const struct page *page)
985 {
986 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
987 }
988
989 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)990 static inline bool is_zone_device_page(const struct page *page)
991 {
992 return page_zonenum(page) == ZONE_DEVICE;
993 }
994 extern void memmap_init_zone_device(struct zone *, unsigned long,
995 unsigned long, struct dev_pagemap *);
996 #else
is_zone_device_page(const struct page * page)997 static inline bool is_zone_device_page(const struct page *page)
998 {
999 return false;
1000 }
1001 #endif
1002
1003 #ifdef CONFIG_DEV_PAGEMAP_OPS
1004 void __put_devmap_managed_page(struct page *page);
1005 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
put_devmap_managed_page(struct page * page)1006 static inline bool put_devmap_managed_page(struct page *page)
1007 {
1008 if (!static_branch_unlikely(&devmap_managed_key))
1009 return false;
1010 if (!is_zone_device_page(page))
1011 return false;
1012 switch (page->pgmap->type) {
1013 case MEMORY_DEVICE_PRIVATE:
1014 case MEMORY_DEVICE_FS_DAX:
1015 __put_devmap_managed_page(page);
1016 return true;
1017 default:
1018 break;
1019 }
1020 return false;
1021 }
1022
1023 #else /* CONFIG_DEV_PAGEMAP_OPS */
put_devmap_managed_page(struct page * page)1024 static inline bool put_devmap_managed_page(struct page *page)
1025 {
1026 return false;
1027 }
1028 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1029
is_device_private_page(const struct page * page)1030 static inline bool is_device_private_page(const struct page *page)
1031 {
1032 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1033 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1034 is_zone_device_page(page) &&
1035 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1036 }
1037
is_pci_p2pdma_page(const struct page * page)1038 static inline bool is_pci_p2pdma_page(const struct page *page)
1039 {
1040 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1041 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1042 is_zone_device_page(page) &&
1043 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1044 }
1045
1046 /* 127: arbitrary random number, small enough to assemble well */
1047 #define page_ref_zero_or_close_to_overflow(page) \
1048 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1049
get_page(struct page * page)1050 static inline void get_page(struct page *page)
1051 {
1052 page = compound_head(page);
1053 /*
1054 * Getting a normal page or the head of a compound page
1055 * requires to already have an elevated page->_refcount.
1056 */
1057 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1058 page_ref_inc(page);
1059 }
1060
try_get_page(struct page * page)1061 static inline __must_check bool try_get_page(struct page *page)
1062 {
1063 page = compound_head(page);
1064 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1065 return false;
1066 page_ref_inc(page);
1067 return true;
1068 }
1069
put_page(struct page * page)1070 static inline void put_page(struct page *page)
1071 {
1072 page = compound_head(page);
1073
1074 /*
1075 * For devmap managed pages we need to catch refcount transition from
1076 * 2 to 1, when refcount reach one it means the page is free and we
1077 * need to inform the device driver through callback. See
1078 * include/linux/memremap.h and HMM for details.
1079 */
1080 if (put_devmap_managed_page(page))
1081 return;
1082
1083 if (put_page_testzero(page))
1084 __put_page(page);
1085 }
1086
1087 /**
1088 * put_user_page() - release a gup-pinned page
1089 * @page: pointer to page to be released
1090 *
1091 * Pages that were pinned via get_user_pages*() must be released via
1092 * either put_user_page(), or one of the put_user_pages*() routines
1093 * below. This is so that eventually, pages that are pinned via
1094 * get_user_pages*() can be separately tracked and uniquely handled. In
1095 * particular, interactions with RDMA and filesystems need special
1096 * handling.
1097 *
1098 * put_user_page() and put_page() are not interchangeable, despite this early
1099 * implementation that makes them look the same. put_user_page() calls must
1100 * be perfectly matched up with get_user_page() calls.
1101 */
put_user_page(struct page * page)1102 static inline void put_user_page(struct page *page)
1103 {
1104 put_page(page);
1105 }
1106
1107 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1108 bool make_dirty);
1109
1110 void put_user_pages(struct page **pages, unsigned long npages);
1111
1112 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1113 #define SECTION_IN_PAGE_FLAGS
1114 #endif
1115
1116 /*
1117 * The identification function is mainly used by the buddy allocator for
1118 * determining if two pages could be buddies. We are not really identifying
1119 * the zone since we could be using the section number id if we do not have
1120 * node id available in page flags.
1121 * We only guarantee that it will return the same value for two combinable
1122 * pages in a zone.
1123 */
page_zone_id(struct page * page)1124 static inline int page_zone_id(struct page *page)
1125 {
1126 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1127 }
1128
1129 #ifdef NODE_NOT_IN_PAGE_FLAGS
1130 extern int page_to_nid(const struct page *page);
1131 #else
page_to_nid(const struct page * page)1132 static inline int page_to_nid(const struct page *page)
1133 {
1134 struct page *p = (struct page *)page;
1135
1136 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1137 }
1138 #endif
1139
1140 #ifdef CONFIG_NUMA_BALANCING
cpu_pid_to_cpupid(int cpu,int pid)1141 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1142 {
1143 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1144 }
1145
cpupid_to_pid(int cpupid)1146 static inline int cpupid_to_pid(int cpupid)
1147 {
1148 return cpupid & LAST__PID_MASK;
1149 }
1150
cpupid_to_cpu(int cpupid)1151 static inline int cpupid_to_cpu(int cpupid)
1152 {
1153 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1154 }
1155
cpupid_to_nid(int cpupid)1156 static inline int cpupid_to_nid(int cpupid)
1157 {
1158 return cpu_to_node(cpupid_to_cpu(cpupid));
1159 }
1160
cpupid_pid_unset(int cpupid)1161 static inline bool cpupid_pid_unset(int cpupid)
1162 {
1163 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1164 }
1165
cpupid_cpu_unset(int cpupid)1166 static inline bool cpupid_cpu_unset(int cpupid)
1167 {
1168 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1169 }
1170
__cpupid_match_pid(pid_t task_pid,int cpupid)1171 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1172 {
1173 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1174 }
1175
1176 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1177 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1178 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1179 {
1180 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1181 }
1182
page_cpupid_last(struct page * page)1183 static inline int page_cpupid_last(struct page *page)
1184 {
1185 return page->_last_cpupid;
1186 }
page_cpupid_reset_last(struct page * page)1187 static inline void page_cpupid_reset_last(struct page *page)
1188 {
1189 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1190 }
1191 #else
page_cpupid_last(struct page * page)1192 static inline int page_cpupid_last(struct page *page)
1193 {
1194 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1195 }
1196
1197 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1198
page_cpupid_reset_last(struct page * page)1199 static inline void page_cpupid_reset_last(struct page *page)
1200 {
1201 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1202 }
1203 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1204 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1205 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1206 {
1207 return page_to_nid(page); /* XXX */
1208 }
1209
page_cpupid_last(struct page * page)1210 static inline int page_cpupid_last(struct page *page)
1211 {
1212 return page_to_nid(page); /* XXX */
1213 }
1214
cpupid_to_nid(int cpupid)1215 static inline int cpupid_to_nid(int cpupid)
1216 {
1217 return -1;
1218 }
1219
cpupid_to_pid(int cpupid)1220 static inline int cpupid_to_pid(int cpupid)
1221 {
1222 return -1;
1223 }
1224
cpupid_to_cpu(int cpupid)1225 static inline int cpupid_to_cpu(int cpupid)
1226 {
1227 return -1;
1228 }
1229
cpu_pid_to_cpupid(int nid,int pid)1230 static inline int cpu_pid_to_cpupid(int nid, int pid)
1231 {
1232 return -1;
1233 }
1234
cpupid_pid_unset(int cpupid)1235 static inline bool cpupid_pid_unset(int cpupid)
1236 {
1237 return 1;
1238 }
1239
page_cpupid_reset_last(struct page * page)1240 static inline void page_cpupid_reset_last(struct page *page)
1241 {
1242 }
1243
cpupid_match_pid(struct task_struct * task,int cpupid)1244 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1245 {
1246 return false;
1247 }
1248 #endif /* CONFIG_NUMA_BALANCING */
1249
1250 #ifdef CONFIG_KASAN_SW_TAGS
1251
1252 /*
1253 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1254 * setting tags for all pages to native kernel tag value 0xff, as the default
1255 * value 0x00 maps to 0xff.
1256 */
1257
page_kasan_tag(const struct page * page)1258 static inline u8 page_kasan_tag(const struct page *page)
1259 {
1260 u8 tag;
1261
1262 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1263 tag ^= 0xff;
1264
1265 return tag;
1266 }
1267
page_kasan_tag_set(struct page * page,u8 tag)1268 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1269 {
1270 tag ^= 0xff;
1271 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1272 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1273 }
1274
page_kasan_tag_reset(struct page * page)1275 static inline void page_kasan_tag_reset(struct page *page)
1276 {
1277 page_kasan_tag_set(page, 0xff);
1278 }
1279 #else
page_kasan_tag(const struct page * page)1280 static inline u8 page_kasan_tag(const struct page *page)
1281 {
1282 return 0xff;
1283 }
1284
page_kasan_tag_set(struct page * page,u8 tag)1285 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1286 static inline void page_kasan_tag_reset(struct page *page) { }
1287 #endif
1288
page_zone(const struct page * page)1289 static inline struct zone *page_zone(const struct page *page)
1290 {
1291 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1292 }
1293
page_pgdat(const struct page * page)1294 static inline pg_data_t *page_pgdat(const struct page *page)
1295 {
1296 return NODE_DATA(page_to_nid(page));
1297 }
1298
1299 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1300 static inline void set_page_section(struct page *page, unsigned long section)
1301 {
1302 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1303 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1304 }
1305
page_to_section(const struct page * page)1306 static inline unsigned long page_to_section(const struct page *page)
1307 {
1308 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1309 }
1310 #endif
1311
set_page_zone(struct page * page,enum zone_type zone)1312 static inline void set_page_zone(struct page *page, enum zone_type zone)
1313 {
1314 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1315 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1316 }
1317
set_page_node(struct page * page,unsigned long node)1318 static inline void set_page_node(struct page *page, unsigned long node)
1319 {
1320 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1321 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1322 }
1323
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1324 static inline void set_page_links(struct page *page, enum zone_type zone,
1325 unsigned long node, unsigned long pfn)
1326 {
1327 set_page_zone(page, zone);
1328 set_page_node(page, node);
1329 #ifdef SECTION_IN_PAGE_FLAGS
1330 set_page_section(page, pfn_to_section_nr(pfn));
1331 #endif
1332 }
1333
1334 #ifdef CONFIG_MEMCG
page_memcg(struct page * page)1335 static inline struct mem_cgroup *page_memcg(struct page *page)
1336 {
1337 return page->mem_cgroup;
1338 }
page_memcg_rcu(struct page * page)1339 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1340 {
1341 WARN_ON_ONCE(!rcu_read_lock_held());
1342 return READ_ONCE(page->mem_cgroup);
1343 }
1344 #else
page_memcg(struct page * page)1345 static inline struct mem_cgroup *page_memcg(struct page *page)
1346 {
1347 return NULL;
1348 }
page_memcg_rcu(struct page * page)1349 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1350 {
1351 WARN_ON_ONCE(!rcu_read_lock_held());
1352 return NULL;
1353 }
1354 #endif
1355
1356 /*
1357 * Some inline functions in vmstat.h depend on page_zone()
1358 */
1359 #include <linux/vmstat.h>
1360
lowmem_page_address(const struct page * page)1361 static __always_inline void *lowmem_page_address(const struct page *page)
1362 {
1363 return page_to_virt(page);
1364 }
1365
1366 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1367 #define HASHED_PAGE_VIRTUAL
1368 #endif
1369
1370 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1371 static inline void *page_address(const struct page *page)
1372 {
1373 return page->virtual;
1374 }
set_page_address(struct page * page,void * address)1375 static inline void set_page_address(struct page *page, void *address)
1376 {
1377 page->virtual = address;
1378 }
1379 #define page_address_init() do { } while(0)
1380 #endif
1381
1382 #if defined(HASHED_PAGE_VIRTUAL)
1383 void *page_address(const struct page *page);
1384 void set_page_address(struct page *page, void *virtual);
1385 void page_address_init(void);
1386 #endif
1387
1388 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1389 #define page_address(page) lowmem_page_address(page)
1390 #define set_page_address(page, address) do { } while(0)
1391 #define page_address_init() do { } while(0)
1392 #endif
1393
1394 extern void *page_rmapping(struct page *page);
1395 extern struct anon_vma *page_anon_vma(struct page *page);
1396 extern struct address_space *page_mapping(struct page *page);
1397
1398 extern struct address_space *__page_file_mapping(struct page *);
1399
1400 static inline
page_file_mapping(struct page * page)1401 struct address_space *page_file_mapping(struct page *page)
1402 {
1403 if (unlikely(PageSwapCache(page)))
1404 return __page_file_mapping(page);
1405
1406 return page->mapping;
1407 }
1408
1409 extern pgoff_t __page_file_index(struct page *page);
1410
1411 /*
1412 * Return the pagecache index of the passed page. Regular pagecache pages
1413 * use ->index whereas swapcache pages use swp_offset(->private)
1414 */
page_index(struct page * page)1415 static inline pgoff_t page_index(struct page *page)
1416 {
1417 if (unlikely(PageSwapCache(page)))
1418 return __page_file_index(page);
1419 return page->index;
1420 }
1421
1422 bool page_mapped(struct page *page);
1423 struct address_space *page_mapping(struct page *page);
1424 struct address_space *page_mapping_file(struct page *page);
1425
1426 /*
1427 * Return true only if the page has been allocated with
1428 * ALLOC_NO_WATERMARKS and the low watermark was not
1429 * met implying that the system is under some pressure.
1430 */
page_is_pfmemalloc(struct page * page)1431 static inline bool page_is_pfmemalloc(struct page *page)
1432 {
1433 /*
1434 * Page index cannot be this large so this must be
1435 * a pfmemalloc page.
1436 */
1437 return page->index == -1UL;
1438 }
1439
1440 /*
1441 * Only to be called by the page allocator on a freshly allocated
1442 * page.
1443 */
set_page_pfmemalloc(struct page * page)1444 static inline void set_page_pfmemalloc(struct page *page)
1445 {
1446 page->index = -1UL;
1447 }
1448
clear_page_pfmemalloc(struct page * page)1449 static inline void clear_page_pfmemalloc(struct page *page)
1450 {
1451 page->index = 0;
1452 }
1453
1454 /*
1455 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1456 */
1457 extern void pagefault_out_of_memory(void);
1458
1459 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1460
1461 /*
1462 * Flags passed to show_mem() and show_free_areas() to suppress output in
1463 * various contexts.
1464 */
1465 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1466
1467 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1468
1469 #ifdef CONFIG_MMU
1470 extern bool can_do_mlock(void);
1471 #else
can_do_mlock(void)1472 static inline bool can_do_mlock(void) { return false; }
1473 #endif
1474 extern int user_shm_lock(size_t, struct user_struct *);
1475 extern void user_shm_unlock(size_t, struct user_struct *);
1476
1477 /*
1478 * Parameter block passed down to zap_pte_range in exceptional cases.
1479 */
1480 struct zap_details {
1481 struct address_space *check_mapping; /* Check page->mapping if set */
1482 pgoff_t first_index; /* Lowest page->index to unmap */
1483 pgoff_t last_index; /* Highest page->index to unmap */
1484 struct page *single_page; /* Locked page to be unmapped */
1485 };
1486
1487 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1488 pte_t pte);
1489 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1490 pmd_t pmd);
1491
1492 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1493 unsigned long size);
1494 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1495 unsigned long size);
1496 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1497 unsigned long start, unsigned long end);
1498
1499 struct mmu_notifier_range;
1500
1501 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1502 unsigned long end, unsigned long floor, unsigned long ceiling);
1503 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1504 struct vm_area_struct *vma);
1505 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1506 struct mmu_notifier_range *range, pte_t **ptepp,
1507 pmd_t **pmdpp, spinlock_t **ptlp);
1508 int follow_pte(struct mm_struct *mm, unsigned long address,
1509 pte_t **ptepp, spinlock_t **ptlp);
1510 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1511 unsigned long *pfn);
1512 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1513 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1514 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1515 void *buf, int len, int write);
1516
1517 extern void truncate_pagecache(struct inode *inode, loff_t new);
1518 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1519 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1520 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1521 int truncate_inode_page(struct address_space *mapping, struct page *page);
1522 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1523 int invalidate_inode_page(struct page *page);
1524
1525 #ifdef CONFIG_MMU
1526 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1527 unsigned long address, unsigned int flags);
1528 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1529 unsigned long address, unsigned int fault_flags,
1530 bool *unlocked);
1531 void unmap_mapping_page(struct page *page);
1532 void unmap_mapping_pages(struct address_space *mapping,
1533 pgoff_t start, pgoff_t nr, bool even_cows);
1534 void unmap_mapping_range(struct address_space *mapping,
1535 loff_t const holebegin, loff_t const holelen, int even_cows);
1536 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)1537 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1538 unsigned long address, unsigned int flags)
1539 {
1540 /* should never happen if there's no MMU */
1541 BUG();
1542 return VM_FAULT_SIGBUS;
1543 }
fixup_user_fault(struct task_struct * tsk,struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1544 static inline int fixup_user_fault(struct task_struct *tsk,
1545 struct mm_struct *mm, unsigned long address,
1546 unsigned int fault_flags, bool *unlocked)
1547 {
1548 /* should never happen if there's no MMU */
1549 BUG();
1550 return -EFAULT;
1551 }
unmap_mapping_page(struct page * page)1552 static inline void unmap_mapping_page(struct page *page) { }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)1553 static inline void unmap_mapping_pages(struct address_space *mapping,
1554 pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1555 static inline void unmap_mapping_range(struct address_space *mapping,
1556 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1557 #endif
1558
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1559 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1560 loff_t const holebegin, loff_t const holelen)
1561 {
1562 unmap_mapping_range(mapping, holebegin, holelen, 0);
1563 }
1564
1565 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1566 void *buf, int len, unsigned int gup_flags);
1567 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1568 void *buf, int len, unsigned int gup_flags);
1569 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1570 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1571
1572 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1573 unsigned long start, unsigned long nr_pages,
1574 unsigned int gup_flags, struct page **pages,
1575 struct vm_area_struct **vmas, int *locked);
1576 long get_user_pages(unsigned long start, unsigned long nr_pages,
1577 unsigned int gup_flags, struct page **pages,
1578 struct vm_area_struct **vmas);
1579 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1580 unsigned int gup_flags, struct page **pages, int *locked);
1581 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1582 struct page **pages, unsigned int gup_flags);
1583
1584 int get_user_pages_fast(unsigned long start, int nr_pages,
1585 unsigned int gup_flags, struct page **pages);
1586
1587 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1588 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1589 struct task_struct *task, bool bypass_rlim);
1590
1591 /* Container for pinned pfns / pages */
1592 struct frame_vector {
1593 unsigned int nr_allocated; /* Number of frames we have space for */
1594 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1595 bool got_ref; /* Did we pin pages by getting page ref? */
1596 bool is_pfns; /* Does array contain pages or pfns? */
1597 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1598 * pfns_vector_pages() or pfns_vector_pfns()
1599 * for access */
1600 };
1601
1602 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1603 void frame_vector_destroy(struct frame_vector *vec);
1604 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1605 unsigned int gup_flags, struct frame_vector *vec);
1606 void put_vaddr_frames(struct frame_vector *vec);
1607 int frame_vector_to_pages(struct frame_vector *vec);
1608 void frame_vector_to_pfns(struct frame_vector *vec);
1609
frame_vector_count(struct frame_vector * vec)1610 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1611 {
1612 return vec->nr_frames;
1613 }
1614
frame_vector_pages(struct frame_vector * vec)1615 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1616 {
1617 if (vec->is_pfns) {
1618 int err = frame_vector_to_pages(vec);
1619
1620 if (err)
1621 return ERR_PTR(err);
1622 }
1623 return (struct page **)(vec->ptrs);
1624 }
1625
frame_vector_pfns(struct frame_vector * vec)1626 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1627 {
1628 if (!vec->is_pfns)
1629 frame_vector_to_pfns(vec);
1630 return (unsigned long *)(vec->ptrs);
1631 }
1632
1633 struct kvec;
1634 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1635 struct page **pages);
1636 int get_kernel_page(unsigned long start, int write, struct page **pages);
1637 struct page *get_dump_page(unsigned long addr);
1638
1639 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1640 extern void do_invalidatepage(struct page *page, unsigned int offset,
1641 unsigned int length);
1642
1643 void __set_page_dirty(struct page *, struct address_space *, int warn);
1644 int __set_page_dirty_nobuffers(struct page *page);
1645 int __set_page_dirty_no_writeback(struct page *page);
1646 int redirty_page_for_writepage(struct writeback_control *wbc,
1647 struct page *page);
1648 void account_page_dirtied(struct page *page, struct address_space *mapping);
1649 void account_page_cleaned(struct page *page, struct address_space *mapping,
1650 struct bdi_writeback *wb);
1651 int set_page_dirty(struct page *page);
1652 int set_page_dirty_lock(struct page *page);
1653 void __cancel_dirty_page(struct page *page);
cancel_dirty_page(struct page * page)1654 static inline void cancel_dirty_page(struct page *page)
1655 {
1656 /* Avoid atomic ops, locking, etc. when not actually needed. */
1657 if (PageDirty(page))
1658 __cancel_dirty_page(page);
1659 }
1660 int clear_page_dirty_for_io(struct page *page);
1661
1662 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1663
1664 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1665 unsigned long old_addr, struct vm_area_struct *new_vma,
1666 unsigned long new_addr, unsigned long len,
1667 bool need_rmap_locks);
1668 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1669 unsigned long end, pgprot_t newprot,
1670 int dirty_accountable, int prot_numa);
1671 extern int mprotect_fixup(struct vm_area_struct *vma,
1672 struct vm_area_struct **pprev, unsigned long start,
1673 unsigned long end, unsigned long newflags);
1674
1675 /*
1676 * doesn't attempt to fault and will return short.
1677 */
1678 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1679 struct page **pages);
1680 /*
1681 * per-process(per-mm_struct) statistics.
1682 */
get_mm_counter(struct mm_struct * mm,int member)1683 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1684 {
1685 long val = atomic_long_read(&mm->rss_stat.count[member]);
1686
1687 #ifdef SPLIT_RSS_COUNTING
1688 /*
1689 * counter is updated in asynchronous manner and may go to minus.
1690 * But it's never be expected number for users.
1691 */
1692 if (val < 0)
1693 val = 0;
1694 #endif
1695 return (unsigned long)val;
1696 }
1697
1698 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count,
1699 long value);
1700
add_mm_counter(struct mm_struct * mm,int member,long value)1701 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1702 {
1703 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1704
1705 mm_trace_rss_stat(mm, member, count, value);
1706 }
1707
inc_mm_counter(struct mm_struct * mm,int member)1708 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1709 {
1710 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1711
1712 mm_trace_rss_stat(mm, member, count, 1);
1713 }
1714
dec_mm_counter(struct mm_struct * mm,int member)1715 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1716 {
1717 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1718
1719 mm_trace_rss_stat(mm, member, count, -1);
1720 }
1721
1722 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)1723 static inline int mm_counter_file(struct page *page)
1724 {
1725 if (PageSwapBacked(page))
1726 return MM_SHMEMPAGES;
1727 return MM_FILEPAGES;
1728 }
1729
mm_counter(struct page * page)1730 static inline int mm_counter(struct page *page)
1731 {
1732 if (PageAnon(page))
1733 return MM_ANONPAGES;
1734 return mm_counter_file(page);
1735 }
1736
get_mm_rss(struct mm_struct * mm)1737 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1738 {
1739 return get_mm_counter(mm, MM_FILEPAGES) +
1740 get_mm_counter(mm, MM_ANONPAGES) +
1741 get_mm_counter(mm, MM_SHMEMPAGES);
1742 }
1743
get_mm_hiwater_rss(struct mm_struct * mm)1744 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1745 {
1746 return max(mm->hiwater_rss, get_mm_rss(mm));
1747 }
1748
get_mm_hiwater_vm(struct mm_struct * mm)1749 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1750 {
1751 return max(mm->hiwater_vm, mm->total_vm);
1752 }
1753
update_hiwater_rss(struct mm_struct * mm)1754 static inline void update_hiwater_rss(struct mm_struct *mm)
1755 {
1756 unsigned long _rss = get_mm_rss(mm);
1757
1758 if ((mm)->hiwater_rss < _rss)
1759 (mm)->hiwater_rss = _rss;
1760 }
1761
update_hiwater_vm(struct mm_struct * mm)1762 static inline void update_hiwater_vm(struct mm_struct *mm)
1763 {
1764 if (mm->hiwater_vm < mm->total_vm)
1765 mm->hiwater_vm = mm->total_vm;
1766 }
1767
reset_mm_hiwater_rss(struct mm_struct * mm)1768 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1769 {
1770 mm->hiwater_rss = get_mm_rss(mm);
1771 }
1772
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)1773 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1774 struct mm_struct *mm)
1775 {
1776 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1777
1778 if (*maxrss < hiwater_rss)
1779 *maxrss = hiwater_rss;
1780 }
1781
1782 #if defined(SPLIT_RSS_COUNTING)
1783 void sync_mm_rss(struct mm_struct *mm);
1784 #else
sync_mm_rss(struct mm_struct * mm)1785 static inline void sync_mm_rss(struct mm_struct *mm)
1786 {
1787 }
1788 #endif
1789
1790 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)1791 static inline int pte_devmap(pte_t pte)
1792 {
1793 return 0;
1794 }
1795 #endif
1796
1797 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1798
1799 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1800 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1801 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1802 spinlock_t **ptl)
1803 {
1804 pte_t *ptep;
1805 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1806 return ptep;
1807 }
1808
1809 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1810 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1811 unsigned long address)
1812 {
1813 return 0;
1814 }
1815 #else
1816 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1817 #endif
1818
1819 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)1820 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1821 unsigned long address)
1822 {
1823 return 0;
1824 }
mm_inc_nr_puds(struct mm_struct * mm)1825 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)1826 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1827
1828 #else
1829 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1830
mm_inc_nr_puds(struct mm_struct * mm)1831 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1832 {
1833 if (mm_pud_folded(mm))
1834 return;
1835 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1836 }
1837
mm_dec_nr_puds(struct mm_struct * mm)1838 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1839 {
1840 if (mm_pud_folded(mm))
1841 return;
1842 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1843 }
1844 #endif
1845
1846 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1847 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1848 unsigned long address)
1849 {
1850 return 0;
1851 }
1852
mm_inc_nr_pmds(struct mm_struct * mm)1853 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)1854 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1855
1856 #else
1857 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1858
mm_inc_nr_pmds(struct mm_struct * mm)1859 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1860 {
1861 if (mm_pmd_folded(mm))
1862 return;
1863 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1864 }
1865
mm_dec_nr_pmds(struct mm_struct * mm)1866 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1867 {
1868 if (mm_pmd_folded(mm))
1869 return;
1870 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1871 }
1872 #endif
1873
1874 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)1875 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1876 {
1877 atomic_long_set(&mm->pgtables_bytes, 0);
1878 }
1879
mm_pgtables_bytes(const struct mm_struct * mm)1880 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1881 {
1882 return atomic_long_read(&mm->pgtables_bytes);
1883 }
1884
mm_inc_nr_ptes(struct mm_struct * mm)1885 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1886 {
1887 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1888 }
1889
mm_dec_nr_ptes(struct mm_struct * mm)1890 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1891 {
1892 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1893 }
1894 #else
1895
mm_pgtables_bytes_init(struct mm_struct * mm)1896 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)1897 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1898 {
1899 return 0;
1900 }
1901
mm_inc_nr_ptes(struct mm_struct * mm)1902 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)1903 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1904 #endif
1905
1906 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1907 int __pte_alloc_kernel(pmd_t *pmd);
1908
1909 /*
1910 * The following ifdef needed to get the 4level-fixup.h header to work.
1911 * Remove it when 4level-fixup.h has been removed.
1912 */
1913 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1914
1915 #ifndef __ARCH_HAS_5LEVEL_HACK
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)1916 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1917 unsigned long address)
1918 {
1919 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1920 NULL : p4d_offset(pgd, address);
1921 }
1922
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)1923 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1924 unsigned long address)
1925 {
1926 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1927 NULL : pud_offset(p4d, address);
1928 }
1929 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1930
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)1931 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1932 {
1933 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1934 NULL: pmd_offset(pud, address);
1935 }
1936 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1937
1938 #if USE_SPLIT_PTE_PTLOCKS
1939 #if ALLOC_SPLIT_PTLOCKS
1940 void __init ptlock_cache_init(void);
1941 extern bool ptlock_alloc(struct page *page);
1942 extern void ptlock_free(struct page *page);
1943
ptlock_ptr(struct page * page)1944 static inline spinlock_t *ptlock_ptr(struct page *page)
1945 {
1946 return page->ptl;
1947 }
1948 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)1949 static inline void ptlock_cache_init(void)
1950 {
1951 }
1952
ptlock_alloc(struct page * page)1953 static inline bool ptlock_alloc(struct page *page)
1954 {
1955 return true;
1956 }
1957
ptlock_free(struct page * page)1958 static inline void ptlock_free(struct page *page)
1959 {
1960 }
1961
ptlock_ptr(struct page * page)1962 static inline spinlock_t *ptlock_ptr(struct page *page)
1963 {
1964 return &page->ptl;
1965 }
1966 #endif /* ALLOC_SPLIT_PTLOCKS */
1967
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)1968 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1969 {
1970 return ptlock_ptr(pmd_page(*pmd));
1971 }
1972
ptlock_init(struct page * page)1973 static inline bool ptlock_init(struct page *page)
1974 {
1975 /*
1976 * prep_new_page() initialize page->private (and therefore page->ptl)
1977 * with 0. Make sure nobody took it in use in between.
1978 *
1979 * It can happen if arch try to use slab for page table allocation:
1980 * slab code uses page->slab_cache, which share storage with page->ptl.
1981 */
1982 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1983 if (!ptlock_alloc(page))
1984 return false;
1985 spin_lock_init(ptlock_ptr(page));
1986 return true;
1987 }
1988
1989 #else /* !USE_SPLIT_PTE_PTLOCKS */
1990 /*
1991 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1992 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)1993 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1994 {
1995 return &mm->page_table_lock;
1996 }
ptlock_cache_init(void)1997 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)1998 static inline bool ptlock_init(struct page *page) { return true; }
ptlock_free(struct page * page)1999 static inline void ptlock_free(struct page *page) {}
2000 #endif /* USE_SPLIT_PTE_PTLOCKS */
2001
pgtable_init(void)2002 static inline void pgtable_init(void)
2003 {
2004 ptlock_cache_init();
2005 pgtable_cache_init();
2006 }
2007
pgtable_pte_page_ctor(struct page * page)2008 static inline bool pgtable_pte_page_ctor(struct page *page)
2009 {
2010 if (!ptlock_init(page))
2011 return false;
2012 __SetPageTable(page);
2013 inc_zone_page_state(page, NR_PAGETABLE);
2014 return true;
2015 }
2016
pgtable_pte_page_dtor(struct page * page)2017 static inline void pgtable_pte_page_dtor(struct page *page)
2018 {
2019 ptlock_free(page);
2020 __ClearPageTable(page);
2021 dec_zone_page_state(page, NR_PAGETABLE);
2022 }
2023
2024 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
2025 ({ \
2026 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2027 pte_t *__pte = pte_offset_map(pmd, address); \
2028 *(ptlp) = __ptl; \
2029 spin_lock(__ptl); \
2030 __pte; \
2031 })
2032
2033 #define pte_unmap_unlock(pte, ptl) do { \
2034 spin_unlock(ptl); \
2035 pte_unmap(pte); \
2036 } while (0)
2037
2038 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2039
2040 #define pte_alloc_map(mm, pmd, address) \
2041 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2042
2043 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2044 (pte_alloc(mm, pmd) ? \
2045 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2046
2047 #define pte_alloc_kernel(pmd, address) \
2048 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2049 NULL: pte_offset_kernel(pmd, address))
2050
2051 #if USE_SPLIT_PMD_PTLOCKS
2052
pmd_to_page(pmd_t * pmd)2053 static struct page *pmd_to_page(pmd_t *pmd)
2054 {
2055 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2056 return virt_to_page((void *)((unsigned long) pmd & mask));
2057 }
2058
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2059 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2060 {
2061 return ptlock_ptr(pmd_to_page(pmd));
2062 }
2063
pgtable_pmd_page_ctor(struct page * page)2064 static inline bool pgtable_pmd_page_ctor(struct page *page)
2065 {
2066 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2067 page->pmd_huge_pte = NULL;
2068 #endif
2069 return ptlock_init(page);
2070 }
2071
pgtable_pmd_page_dtor(struct page * page)2072 static inline void pgtable_pmd_page_dtor(struct page *page)
2073 {
2074 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2075 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2076 #endif
2077 ptlock_free(page);
2078 }
2079
2080 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2081
2082 #else
2083
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2084 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2085 {
2086 return &mm->page_table_lock;
2087 }
2088
pgtable_pmd_page_ctor(struct page * page)2089 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
pgtable_pmd_page_dtor(struct page * page)2090 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2091
2092 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2093
2094 #endif
2095
pmd_lock(struct mm_struct * mm,pmd_t * pmd)2096 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2097 {
2098 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2099 spin_lock(ptl);
2100 return ptl;
2101 }
2102
2103 /*
2104 * No scalability reason to split PUD locks yet, but follow the same pattern
2105 * as the PMD locks to make it easier if we decide to. The VM should not be
2106 * considered ready to switch to split PUD locks yet; there may be places
2107 * which need to be converted from page_table_lock.
2108 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)2109 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2110 {
2111 return &mm->page_table_lock;
2112 }
2113
pud_lock(struct mm_struct * mm,pud_t * pud)2114 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2115 {
2116 spinlock_t *ptl = pud_lockptr(mm, pud);
2117
2118 spin_lock(ptl);
2119 return ptl;
2120 }
2121
2122 extern void __init pagecache_init(void);
2123 extern void free_area_init(unsigned long * zones_size);
2124 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2125 unsigned long zone_start_pfn, unsigned long *zholes_size);
2126 extern void free_initmem(void);
2127
2128 /*
2129 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2130 * into the buddy system. The freed pages will be poisoned with pattern
2131 * "poison" if it's within range [0, UCHAR_MAX].
2132 * Return pages freed into the buddy system.
2133 */
2134 extern unsigned long free_reserved_area(void *start, void *end,
2135 int poison, const char *s);
2136
2137 #ifdef CONFIG_HIGHMEM
2138 /*
2139 * Free a highmem page into the buddy system, adjusting totalhigh_pages
2140 * and totalram_pages.
2141 */
2142 extern void free_highmem_page(struct page *page);
2143 #endif
2144
2145 extern void adjust_managed_page_count(struct page *page, long count);
2146 extern void mem_init_print_info(const char *str);
2147
2148 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2149
2150 /* Free the reserved page into the buddy system, so it gets managed. */
__free_reserved_page(struct page * page)2151 static inline void __free_reserved_page(struct page *page)
2152 {
2153 ClearPageReserved(page);
2154 init_page_count(page);
2155 __free_page(page);
2156 }
2157
free_reserved_page(struct page * page)2158 static inline void free_reserved_page(struct page *page)
2159 {
2160 __free_reserved_page(page);
2161 adjust_managed_page_count(page, 1);
2162 }
2163
mark_page_reserved(struct page * page)2164 static inline void mark_page_reserved(struct page *page)
2165 {
2166 SetPageReserved(page);
2167 adjust_managed_page_count(page, -1);
2168 }
2169
2170 /*
2171 * Default method to free all the __init memory into the buddy system.
2172 * The freed pages will be poisoned with pattern "poison" if it's within
2173 * range [0, UCHAR_MAX].
2174 * Return pages freed into the buddy system.
2175 */
free_initmem_default(int poison)2176 static inline unsigned long free_initmem_default(int poison)
2177 {
2178 extern char __init_begin[], __init_end[];
2179
2180 return free_reserved_area(&__init_begin, &__init_end,
2181 poison, "unused kernel");
2182 }
2183
get_num_physpages(void)2184 static inline unsigned long get_num_physpages(void)
2185 {
2186 int nid;
2187 unsigned long phys_pages = 0;
2188
2189 for_each_online_node(nid)
2190 phys_pages += node_present_pages(nid);
2191
2192 return phys_pages;
2193 }
2194
2195 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2196 /*
2197 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2198 * zones, allocate the backing mem_map and account for memory holes in a more
2199 * architecture independent manner. This is a substitute for creating the
2200 * zone_sizes[] and zholes_size[] arrays and passing them to
2201 * free_area_init_node()
2202 *
2203 * An architecture is expected to register range of page frames backed by
2204 * physical memory with memblock_add[_node]() before calling
2205 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2206 * usage, an architecture is expected to do something like
2207 *
2208 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2209 * max_highmem_pfn};
2210 * for_each_valid_physical_page_range()
2211 * memblock_add_node(base, size, nid)
2212 * free_area_init_nodes(max_zone_pfns);
2213 *
2214 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2215 * registered physical page range. Similarly
2216 * sparse_memory_present_with_active_regions() calls memory_present() for
2217 * each range when SPARSEMEM is enabled.
2218 *
2219 * See mm/page_alloc.c for more information on each function exposed by
2220 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2221 */
2222 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2223 unsigned long node_map_pfn_alignment(void);
2224 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2225 unsigned long end_pfn);
2226 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2227 unsigned long end_pfn);
2228 extern void get_pfn_range_for_nid(unsigned int nid,
2229 unsigned long *start_pfn, unsigned long *end_pfn);
2230 extern unsigned long find_min_pfn_with_active_regions(void);
2231 extern void free_bootmem_with_active_regions(int nid,
2232 unsigned long max_low_pfn);
2233 extern void sparse_memory_present_with_active_regions(int nid);
2234
2235 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2236
2237 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2238 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)2239 static inline int __early_pfn_to_nid(unsigned long pfn,
2240 struct mminit_pfnnid_cache *state)
2241 {
2242 return 0;
2243 }
2244 #else
2245 /* please see mm/page_alloc.c */
2246 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2247 /* there is a per-arch backend function. */
2248 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2249 struct mminit_pfnnid_cache *state);
2250 #endif
2251
2252 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2253 void zero_resv_unavail(void);
2254 #else
zero_resv_unavail(void)2255 static inline void zero_resv_unavail(void) {}
2256 #endif
2257
2258 extern void set_dma_reserve(unsigned long new_dma_reserve);
2259 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2260 enum meminit_context, struct vmem_altmap *);
2261 extern void setup_per_zone_wmarks(void);
2262 extern int __meminit init_per_zone_wmark_min(void);
2263 extern void mem_init(void);
2264 extern void __init mmap_init(void);
2265 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2266 extern long si_mem_available(void);
2267 extern void si_meminfo(struct sysinfo * val);
2268 extern void si_meminfo_node(struct sysinfo *val, int nid);
2269 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2270 extern unsigned long arch_reserved_kernel_pages(void);
2271 #endif
2272
2273 extern __printf(3, 4)
2274 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2275
2276 extern void setup_per_cpu_pageset(void);
2277
2278 extern void zone_pcp_update(struct zone *zone);
2279 extern void zone_pcp_reset(struct zone *zone);
2280
2281 /* page_alloc.c */
2282 extern int min_free_kbytes;
2283 extern int watermark_boost_factor;
2284 extern int watermark_scale_factor;
2285
2286 /* nommu.c */
2287 extern atomic_long_t mmap_pages_allocated;
2288 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2289
2290 /* interval_tree.c */
2291 void vma_interval_tree_insert(struct vm_area_struct *node,
2292 struct rb_root_cached *root);
2293 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2294 struct vm_area_struct *prev,
2295 struct rb_root_cached *root);
2296 void vma_interval_tree_remove(struct vm_area_struct *node,
2297 struct rb_root_cached *root);
2298 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2299 unsigned long start, unsigned long last);
2300 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2301 unsigned long start, unsigned long last);
2302
2303 #define vma_interval_tree_foreach(vma, root, start, last) \
2304 for (vma = vma_interval_tree_iter_first(root, start, last); \
2305 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2306
2307 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2308 struct rb_root_cached *root);
2309 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2310 struct rb_root_cached *root);
2311 struct anon_vma_chain *
2312 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2313 unsigned long start, unsigned long last);
2314 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2315 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2316 #ifdef CONFIG_DEBUG_VM_RB
2317 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2318 #endif
2319
2320 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2321 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2322 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2323
2324 /* mmap.c */
2325 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2326 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2327 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2328 struct vm_area_struct *expand);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)2329 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2330 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2331 {
2332 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2333 }
2334 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2335 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2336 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2337 struct mempolicy *, struct vm_userfaultfd_ctx, const char __user *);
2338 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2339 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2340 unsigned long addr, int new_below);
2341 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2342 unsigned long addr, int new_below);
2343 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2344 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2345 struct rb_node **, struct rb_node *);
2346 extern void unlink_file_vma(struct vm_area_struct *);
2347 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2348 unsigned long addr, unsigned long len, pgoff_t pgoff,
2349 bool *need_rmap_locks);
2350 extern void exit_mmap(struct mm_struct *);
2351
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)2352 static inline int check_data_rlimit(unsigned long rlim,
2353 unsigned long new,
2354 unsigned long start,
2355 unsigned long end_data,
2356 unsigned long start_data)
2357 {
2358 if (rlim < RLIM_INFINITY) {
2359 if (((new - start) + (end_data - start_data)) > rlim)
2360 return -ENOSPC;
2361 }
2362
2363 return 0;
2364 }
2365
2366 extern int mm_take_all_locks(struct mm_struct *mm);
2367 extern void mm_drop_all_locks(struct mm_struct *mm);
2368
2369 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2370 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2371 extern struct file *get_task_exe_file(struct task_struct *task);
2372
2373 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2374 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2375
2376 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2377 const struct vm_special_mapping *sm);
2378 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2379 unsigned long addr, unsigned long len,
2380 unsigned long flags,
2381 const struct vm_special_mapping *spec);
2382 /* This is an obsolete alternative to _install_special_mapping. */
2383 extern int install_special_mapping(struct mm_struct *mm,
2384 unsigned long addr, unsigned long len,
2385 unsigned long flags, struct page **pages);
2386
2387 unsigned long randomize_stack_top(unsigned long stack_top);
2388 unsigned long randomize_page(unsigned long start, unsigned long range);
2389
2390 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2391
2392 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2393 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2394 struct list_head *uf);
2395 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2396 unsigned long len, unsigned long prot, unsigned long flags,
2397 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2398 struct list_head *uf);
2399 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2400 struct list_head *uf, bool downgrade);
2401 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2402 struct list_head *uf);
2403
2404 static inline unsigned long
do_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)2405 do_mmap_pgoff(struct file *file, unsigned long addr,
2406 unsigned long len, unsigned long prot, unsigned long flags,
2407 unsigned long pgoff, unsigned long *populate,
2408 struct list_head *uf)
2409 {
2410 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2411 }
2412
2413 #ifdef CONFIG_MMU
2414 extern int __mm_populate(unsigned long addr, unsigned long len,
2415 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2416 static inline void mm_populate(unsigned long addr, unsigned long len)
2417 {
2418 /* Ignore errors */
2419 (void) __mm_populate(addr, len, 1);
2420 }
2421 #else
mm_populate(unsigned long addr,unsigned long len)2422 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2423 #endif
2424
2425 /* These take the mm semaphore themselves */
2426 extern int __must_check vm_brk(unsigned long, unsigned long);
2427 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2428 extern int vm_munmap(unsigned long, size_t);
2429 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2430 unsigned long, unsigned long,
2431 unsigned long, unsigned long);
2432
2433 struct vm_unmapped_area_info {
2434 #define VM_UNMAPPED_AREA_TOPDOWN 1
2435 unsigned long flags;
2436 unsigned long length;
2437 unsigned long low_limit;
2438 unsigned long high_limit;
2439 unsigned long align_mask;
2440 unsigned long align_offset;
2441 };
2442
2443 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2444 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2445
2446 /*
2447 * Search for an unmapped address range.
2448 *
2449 * We are looking for a range that:
2450 * - does not intersect with any VMA;
2451 * - is contained within the [low_limit, high_limit) interval;
2452 * - is at least the desired size.
2453 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2454 */
2455 static inline unsigned long
vm_unmapped_area(struct vm_unmapped_area_info * info)2456 vm_unmapped_area(struct vm_unmapped_area_info *info)
2457 {
2458 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2459 return unmapped_area_topdown(info);
2460 else
2461 return unmapped_area(info);
2462 }
2463
2464 /* truncate.c */
2465 extern void truncate_inode_pages(struct address_space *, loff_t);
2466 extern void truncate_inode_pages_range(struct address_space *,
2467 loff_t lstart, loff_t lend);
2468 extern void truncate_inode_pages_final(struct address_space *);
2469
2470 /* generic vm_area_ops exported for stackable file systems */
2471 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2472 extern void filemap_map_pages(struct vm_fault *vmf,
2473 pgoff_t start_pgoff, pgoff_t end_pgoff);
2474 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2475
2476 /* mm/page-writeback.c */
2477 int __must_check write_one_page(struct page *page);
2478 void task_dirty_inc(struct task_struct *tsk);
2479
2480 /* readahead.c */
2481 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
2482
2483 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2484 pgoff_t offset, unsigned long nr_to_read);
2485
2486 void page_cache_sync_readahead(struct address_space *mapping,
2487 struct file_ra_state *ra,
2488 struct file *filp,
2489 pgoff_t offset,
2490 unsigned long size);
2491
2492 void page_cache_async_readahead(struct address_space *mapping,
2493 struct file_ra_state *ra,
2494 struct file *filp,
2495 struct page *pg,
2496 pgoff_t offset,
2497 unsigned long size);
2498
2499 extern unsigned long stack_guard_gap;
2500 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2501 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2502
2503 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2504 extern int expand_downwards(struct vm_area_struct *vma,
2505 unsigned long address);
2506 #if VM_GROWSUP
2507 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2508 #else
2509 #define expand_upwards(vma, address) (0)
2510 #endif
2511
2512 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2513 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2514 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2515 struct vm_area_struct **pprev);
2516
2517 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2518 NULL if none. Assume start_addr < end_addr. */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)2519 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2520 {
2521 struct vm_area_struct * vma = find_vma(mm,start_addr);
2522
2523 if (vma && end_addr <= vma->vm_start)
2524 vma = NULL;
2525 return vma;
2526 }
2527
vm_start_gap(struct vm_area_struct * vma)2528 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2529 {
2530 unsigned long vm_start = vma->vm_start;
2531
2532 if (vma->vm_flags & VM_GROWSDOWN) {
2533 vm_start -= stack_guard_gap;
2534 if (vm_start > vma->vm_start)
2535 vm_start = 0;
2536 }
2537 return vm_start;
2538 }
2539
vm_end_gap(struct vm_area_struct * vma)2540 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2541 {
2542 unsigned long vm_end = vma->vm_end;
2543
2544 if (vma->vm_flags & VM_GROWSUP) {
2545 vm_end += stack_guard_gap;
2546 if (vm_end < vma->vm_end)
2547 vm_end = -PAGE_SIZE;
2548 }
2549 return vm_end;
2550 }
2551
vma_pages(struct vm_area_struct * vma)2552 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2553 {
2554 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2555 }
2556
2557 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2558 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2559 unsigned long vm_start, unsigned long vm_end)
2560 {
2561 struct vm_area_struct *vma = find_vma(mm, vm_start);
2562
2563 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2564 vma = NULL;
2565
2566 return vma;
2567 }
2568
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)2569 static inline bool range_in_vma(struct vm_area_struct *vma,
2570 unsigned long start, unsigned long end)
2571 {
2572 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2573 }
2574
2575 #ifdef CONFIG_MMU
2576 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2577 void vma_set_page_prot(struct vm_area_struct *vma);
2578 #else
vm_get_page_prot(unsigned long vm_flags)2579 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2580 {
2581 return __pgprot(0);
2582 }
vma_set_page_prot(struct vm_area_struct * vma)2583 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2584 {
2585 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2586 }
2587 #endif
2588
2589 #ifdef CONFIG_NUMA_BALANCING
2590 unsigned long change_prot_numa(struct vm_area_struct *vma,
2591 unsigned long start, unsigned long end);
2592 #endif
2593
2594 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2595 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2596 unsigned long pfn, unsigned long size, pgprot_t);
2597 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2598 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2599 unsigned long num);
2600 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2601 unsigned long num);
2602 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2603 unsigned long pfn);
2604 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2605 unsigned long pfn, pgprot_t pgprot);
2606 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2607 pfn_t pfn);
2608 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2609 unsigned long addr, pfn_t pfn);
2610 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2611
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2612 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2613 unsigned long addr, struct page *page)
2614 {
2615 int err = vm_insert_page(vma, addr, page);
2616
2617 if (err == -ENOMEM)
2618 return VM_FAULT_OOM;
2619 if (err < 0 && err != -EBUSY)
2620 return VM_FAULT_SIGBUS;
2621
2622 return VM_FAULT_NOPAGE;
2623 }
2624
2625 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2626 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2627 unsigned long addr, unsigned long pfn,
2628 unsigned long size, pgprot_t prot)
2629 {
2630 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2631 }
2632 #endif
2633
vmf_error(int err)2634 static inline vm_fault_t vmf_error(int err)
2635 {
2636 if (err == -ENOMEM)
2637 return VM_FAULT_OOM;
2638 return VM_FAULT_SIGBUS;
2639 }
2640
2641 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2642 unsigned int foll_flags);
2643
2644 #define FOLL_WRITE 0x01 /* check pte is writable */
2645 #define FOLL_TOUCH 0x02 /* mark page accessed */
2646 #define FOLL_GET 0x04 /* do get_page on page */
2647 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2648 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2649 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2650 * and return without waiting upon it */
2651 #define FOLL_POPULATE 0x40 /* fault in page */
2652 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2653 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2654 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2655 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2656 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2657 #define FOLL_MLOCK 0x1000 /* lock present pages */
2658 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2659 #define FOLL_COW 0x4000 /* internal GUP flag */
2660 #define FOLL_ANON 0x8000 /* don't do file mappings */
2661 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2662 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2663
2664 /*
2665 * NOTE on FOLL_LONGTERM:
2666 *
2667 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2668 * period _often_ under userspace control. This is contrasted with
2669 * iov_iter_get_pages() where usages which are transient.
2670 *
2671 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2672 * lifetime enforced by the filesystem and we need guarantees that longterm
2673 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2674 * the filesystem. Ideas for this coordination include revoking the longterm
2675 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2676 * added after the problem with filesystems was found FS DAX VMAs are
2677 * specifically failed. Filesystem pages are still subject to bugs and use of
2678 * FOLL_LONGTERM should be avoided on those pages.
2679 *
2680 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2681 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2682 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2683 * is due to an incompatibility with the FS DAX check and
2684 * FAULT_FLAG_ALLOW_RETRY
2685 *
2686 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2687 * that region. And so CMA attempts to migrate the page before pinning when
2688 * FOLL_LONGTERM is specified.
2689 */
2690
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)2691 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2692 {
2693 if (vm_fault & VM_FAULT_OOM)
2694 return -ENOMEM;
2695 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2696 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2697 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2698 return -EFAULT;
2699 return 0;
2700 }
2701
2702 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2703 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2704 unsigned long size, pte_fn_t fn, void *data);
2705
2706
2707 #ifdef CONFIG_PAGE_POISONING
2708 extern bool page_poisoning_enabled(void);
2709 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2710 #else
page_poisoning_enabled(void)2711 static inline bool page_poisoning_enabled(void) { return false; }
kernel_poison_pages(struct page * page,int numpages,int enable)2712 static inline void kernel_poison_pages(struct page *page, int numpages,
2713 int enable) { }
2714 #endif
2715
2716 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2717 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2718 #else
2719 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2720 #endif
want_init_on_alloc(gfp_t flags)2721 static inline bool want_init_on_alloc(gfp_t flags)
2722 {
2723 if (static_branch_unlikely(&init_on_alloc) &&
2724 !page_poisoning_enabled())
2725 return true;
2726 return flags & __GFP_ZERO;
2727 }
2728
2729 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2730 DECLARE_STATIC_KEY_TRUE(init_on_free);
2731 #else
2732 DECLARE_STATIC_KEY_FALSE(init_on_free);
2733 #endif
want_init_on_free(void)2734 static inline bool want_init_on_free(void)
2735 {
2736 return static_branch_unlikely(&init_on_free) &&
2737 !page_poisoning_enabled();
2738 }
2739
2740 #ifdef CONFIG_DEBUG_PAGEALLOC
2741 extern void init_debug_pagealloc(void);
2742 #else
init_debug_pagealloc(void)2743 static inline void init_debug_pagealloc(void) {}
2744 #endif
2745 extern bool _debug_pagealloc_enabled_early;
2746 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2747
debug_pagealloc_enabled(void)2748 static inline bool debug_pagealloc_enabled(void)
2749 {
2750 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2751 _debug_pagealloc_enabled_early;
2752 }
2753
2754 /*
2755 * For use in fast paths after init_debug_pagealloc() has run, or when a
2756 * false negative result is not harmful when called too early.
2757 */
debug_pagealloc_enabled_static(void)2758 static inline bool debug_pagealloc_enabled_static(void)
2759 {
2760 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2761 return false;
2762
2763 return static_branch_unlikely(&_debug_pagealloc_enabled);
2764 }
2765
2766 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2767 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2768
2769 /*
2770 * When called in DEBUG_PAGEALLOC context, the call should most likely be
2771 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2772 */
2773 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2774 kernel_map_pages(struct page *page, int numpages, int enable)
2775 {
2776 __kernel_map_pages(page, numpages, enable);
2777 }
2778 #ifdef CONFIG_HIBERNATION
2779 extern bool kernel_page_present(struct page *page);
2780 #endif /* CONFIG_HIBERNATION */
2781 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2782 static inline void
kernel_map_pages(struct page * page,int numpages,int enable)2783 kernel_map_pages(struct page *page, int numpages, int enable) {}
2784 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)2785 static inline bool kernel_page_present(struct page *page) { return true; }
2786 #endif /* CONFIG_HIBERNATION */
2787 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2788
2789 #ifdef __HAVE_ARCH_GATE_AREA
2790 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2791 extern int in_gate_area_no_mm(unsigned long addr);
2792 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2793 #else
get_gate_vma(struct mm_struct * mm)2794 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2795 {
2796 return NULL;
2797 }
in_gate_area_no_mm(unsigned long addr)2798 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)2799 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2800 {
2801 return 0;
2802 }
2803 #endif /* __HAVE_ARCH_GATE_AREA */
2804
2805 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2806
2807 #ifdef CONFIG_SYSCTL
2808 extern int sysctl_drop_caches;
2809 int drop_caches_sysctl_handler(struct ctl_table *, int,
2810 void __user *, size_t *, loff_t *);
2811 #endif
2812
2813 void drop_slab(void);
2814 void drop_slab_node(int nid);
2815
2816 #ifndef CONFIG_MMU
2817 #define randomize_va_space 0
2818 #else
2819 extern int randomize_va_space;
2820 #endif
2821
2822 const char * arch_vma_name(struct vm_area_struct *vma);
2823 #ifdef CONFIG_MMU
2824 void print_vma_addr(char *prefix, unsigned long rip);
2825 #else
print_vma_addr(char * prefix,unsigned long rip)2826 static inline void print_vma_addr(char *prefix, unsigned long rip)
2827 {
2828 }
2829 #endif
2830
2831 void *sparse_buffer_alloc(unsigned long size);
2832 struct page * __populate_section_memmap(unsigned long pfn,
2833 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2834 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2835 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2836 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2837 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2838 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2839 void *vmemmap_alloc_block(unsigned long size, int node);
2840 struct vmem_altmap;
2841 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2842 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2843 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2844 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2845 int node);
2846 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2847 struct vmem_altmap *altmap);
2848 void vmemmap_populate_print_last(void);
2849 #ifdef CONFIG_MEMORY_HOTPLUG
2850 void vmemmap_free(unsigned long start, unsigned long end,
2851 struct vmem_altmap *altmap);
2852 #endif
2853 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2854 unsigned long nr_pages);
2855
2856 enum mf_flags {
2857 MF_COUNT_INCREASED = 1 << 0,
2858 MF_ACTION_REQUIRED = 1 << 1,
2859 MF_MUST_KILL = 1 << 2,
2860 MF_SOFT_OFFLINE = 1 << 3,
2861 };
2862 extern int memory_failure(unsigned long pfn, int flags);
2863 extern void memory_failure_queue(unsigned long pfn, int flags);
2864 extern int unpoison_memory(unsigned long pfn);
2865 extern int get_hwpoison_page(struct page *page);
2866 #define put_hwpoison_page(page) put_page(page)
2867 extern int sysctl_memory_failure_early_kill;
2868 extern int sysctl_memory_failure_recovery;
2869 extern void shake_page(struct page *p, int access);
2870 extern atomic_long_t num_poisoned_pages __read_mostly;
2871 extern int soft_offline_page(struct page *page, int flags);
2872
2873
2874 /*
2875 * Error handlers for various types of pages.
2876 */
2877 enum mf_result {
2878 MF_IGNORED, /* Error: cannot be handled */
2879 MF_FAILED, /* Error: handling failed */
2880 MF_DELAYED, /* Will be handled later */
2881 MF_RECOVERED, /* Successfully recovered */
2882 };
2883
2884 enum mf_action_page_type {
2885 MF_MSG_KERNEL,
2886 MF_MSG_KERNEL_HIGH_ORDER,
2887 MF_MSG_SLAB,
2888 MF_MSG_DIFFERENT_COMPOUND,
2889 MF_MSG_POISONED_HUGE,
2890 MF_MSG_HUGE,
2891 MF_MSG_FREE_HUGE,
2892 MF_MSG_NON_PMD_HUGE,
2893 MF_MSG_UNMAP_FAILED,
2894 MF_MSG_DIRTY_SWAPCACHE,
2895 MF_MSG_CLEAN_SWAPCACHE,
2896 MF_MSG_DIRTY_MLOCKED_LRU,
2897 MF_MSG_CLEAN_MLOCKED_LRU,
2898 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2899 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2900 MF_MSG_DIRTY_LRU,
2901 MF_MSG_CLEAN_LRU,
2902 MF_MSG_TRUNCATED_LRU,
2903 MF_MSG_BUDDY,
2904 MF_MSG_BUDDY_2ND,
2905 MF_MSG_DAX,
2906 MF_MSG_UNKNOWN,
2907 };
2908
2909 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2910 extern void clear_huge_page(struct page *page,
2911 unsigned long addr_hint,
2912 unsigned int pages_per_huge_page);
2913 extern void copy_user_huge_page(struct page *dst, struct page *src,
2914 unsigned long addr_hint,
2915 struct vm_area_struct *vma,
2916 unsigned int pages_per_huge_page);
2917 extern long copy_huge_page_from_user(struct page *dst_page,
2918 const void __user *usr_src,
2919 unsigned int pages_per_huge_page,
2920 bool allow_pagefault);
2921 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2922
2923 #ifdef CONFIG_DEBUG_PAGEALLOC
2924 extern unsigned int _debug_guardpage_minorder;
2925 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
2926
debug_guardpage_minorder(void)2927 static inline unsigned int debug_guardpage_minorder(void)
2928 {
2929 return _debug_guardpage_minorder;
2930 }
2931
debug_guardpage_enabled(void)2932 static inline bool debug_guardpage_enabled(void)
2933 {
2934 return static_branch_unlikely(&_debug_guardpage_enabled);
2935 }
2936
page_is_guard(struct page * page)2937 static inline bool page_is_guard(struct page *page)
2938 {
2939 if (!debug_guardpage_enabled())
2940 return false;
2941
2942 return PageGuard(page);
2943 }
2944 #else
debug_guardpage_minorder(void)2945 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)2946 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)2947 static inline bool page_is_guard(struct page *page) { return false; }
2948 #endif /* CONFIG_DEBUG_PAGEALLOC */
2949
2950 #if MAX_NUMNODES > 1
2951 void __init setup_nr_node_ids(void);
2952 #else
setup_nr_node_ids(void)2953 static inline void setup_nr_node_ids(void) {}
2954 #endif
2955
2956 extern int memcmp_pages(struct page *page1, struct page *page2);
2957
pages_identical(struct page * page1,struct page * page2)2958 static inline int pages_identical(struct page *page1, struct page *page2)
2959 {
2960 return !memcmp_pages(page1, page2);
2961 }
2962
2963 /**
2964 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
2965 * @seals: the seals to check
2966 * @vma: the vma to operate on
2967 *
2968 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
2969 * the vma flags. Return 0 if check pass, or <0 for errors.
2970 */
seal_check_future_write(int seals,struct vm_area_struct * vma)2971 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
2972 {
2973 if (seals & F_SEAL_FUTURE_WRITE) {
2974 /*
2975 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
2976 * "future write" seal active.
2977 */
2978 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
2979 return -EPERM;
2980
2981 /*
2982 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
2983 * MAP_SHARED and read-only, take care to not allow mprotect to
2984 * revert protections on such mappings. Do this only for shared
2985 * mappings. For private mappings, don't need to mask
2986 * VM_MAYWRITE as we still want them to be COW-writable.
2987 */
2988 if (vma->vm_flags & VM_SHARED)
2989 vma->vm_flags &= ~(VM_MAYWRITE);
2990 }
2991
2992 return 0;
2993 }
2994
2995 #endif /* __KERNEL__ */
2996 #endif /* _LINUX_MM_H */
2997