• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_COMPILER_H
3 #define __LINUX_COMPILER_H
4 
5 #include <linux/compiler_types.h>
6 
7 #ifndef __ASSEMBLY__
8 
9 #ifdef __KERNEL__
10 
11 /*
12  * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code
13  * to disable branch tracing on a per file basis.
14  */
15 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \
16     && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__)
17 void ftrace_likely_update(struct ftrace_likely_data *f, int val,
18 			  int expect, int is_constant);
19 
20 #define likely_notrace(x)	__builtin_expect(!!(x), 1)
21 #define unlikely_notrace(x)	__builtin_expect(!!(x), 0)
22 
23 #define __branch_check__(x, expect, is_constant) ({			\
24 			long ______r;					\
25 			static struct ftrace_likely_data		\
26 				__aligned(4)				\
27 				__section(_ftrace_annotated_branch)	\
28 				______f = {				\
29 				.data.func = __func__,			\
30 				.data.file = __FILE__,			\
31 				.data.line = __LINE__,			\
32 			};						\
33 			______r = __builtin_expect(!!(x), expect);	\
34 			ftrace_likely_update(&______f, ______r,		\
35 					     expect, is_constant);	\
36 			______r;					\
37 		})
38 
39 /*
40  * Using __builtin_constant_p(x) to ignore cases where the return
41  * value is always the same.  This idea is taken from a similar patch
42  * written by Daniel Walker.
43  */
44 # ifndef likely
45 #  define likely(x)	(__branch_check__(x, 1, __builtin_constant_p(x)))
46 # endif
47 # ifndef unlikely
48 #  define unlikely(x)	(__branch_check__(x, 0, __builtin_constant_p(x)))
49 # endif
50 
51 #ifdef CONFIG_PROFILE_ALL_BRANCHES
52 /*
53  * "Define 'is'", Bill Clinton
54  * "Define 'if'", Steven Rostedt
55  */
56 #define if(cond, ...) if ( __trace_if_var( !!(cond , ## __VA_ARGS__) ) )
57 
58 #define __trace_if_var(cond) (__builtin_constant_p(cond) ? (cond) : __trace_if_value(cond))
59 
60 #define __trace_if_value(cond) ({			\
61 	static struct ftrace_branch_data		\
62 		__aligned(4)				\
63 		__section(_ftrace_branch)		\
64 		__if_trace = {				\
65 			.func = __func__,		\
66 			.file = __FILE__,		\
67 			.line = __LINE__,		\
68 		};					\
69 	(cond) ?					\
70 		(__if_trace.miss_hit[1]++,1) :		\
71 		(__if_trace.miss_hit[0]++,0);		\
72 })
73 
74 #endif /* CONFIG_PROFILE_ALL_BRANCHES */
75 
76 #else
77 # define likely(x)	__builtin_expect(!!(x), 1)
78 # define unlikely(x)	__builtin_expect(!!(x), 0)
79 #endif
80 
81 /* Optimization barrier */
82 #ifndef barrier
83 /* The "volatile" is due to gcc bugs */
84 # define barrier() __asm__ __volatile__("": : :"memory")
85 #endif
86 
87 #ifndef barrier_data
88 /*
89  * This version is i.e. to prevent dead stores elimination on @ptr
90  * where gcc and llvm may behave differently when otherwise using
91  * normal barrier(): while gcc behavior gets along with a normal
92  * barrier(), llvm needs an explicit input variable to be assumed
93  * clobbered. The issue is as follows: while the inline asm might
94  * access any memory it wants, the compiler could have fit all of
95  * @ptr into memory registers instead, and since @ptr never escaped
96  * from that, it proved that the inline asm wasn't touching any of
97  * it. This version works well with both compilers, i.e. we're telling
98  * the compiler that the inline asm absolutely may see the contents
99  * of @ptr. See also: https://llvm.org/bugs/show_bug.cgi?id=15495
100  */
101 # define barrier_data(ptr) __asm__ __volatile__("": :"r"(ptr) :"memory")
102 #endif
103 
104 /* workaround for GCC PR82365 if needed */
105 #ifndef barrier_before_unreachable
106 # define barrier_before_unreachable() do { } while (0)
107 #endif
108 
109 /* Unreachable code */
110 #ifdef CONFIG_STACK_VALIDATION
111 /*
112  * These macros help objtool understand GCC code flow for unreachable code.
113  * The __COUNTER__ based labels are a hack to make each instance of the macros
114  * unique, to convince GCC not to merge duplicate inline asm statements.
115  */
116 #define annotate_reachable() ({						\
117 	asm volatile("%c0:\n\t"						\
118 		     ".pushsection .discard.reachable\n\t"		\
119 		     ".long %c0b - .\n\t"				\
120 		     ".popsection\n\t" : : "i" (__COUNTER__));		\
121 })
122 #define annotate_unreachable() ({					\
123 	asm volatile("%c0:\n\t"						\
124 		     ".pushsection .discard.unreachable\n\t"		\
125 		     ".long %c0b - .\n\t"				\
126 		     ".popsection\n\t" : : "i" (__COUNTER__));		\
127 })
128 #define ASM_UNREACHABLE							\
129 	"999:\n\t"							\
130 	".pushsection .discard.unreachable\n\t"				\
131 	".long 999b - .\n\t"						\
132 	".popsection\n\t"
133 
134 /* Annotate a C jump table to allow objtool to follow the code flow */
135 #define __annotate_jump_table __section(.rodata..c_jump_table)
136 
137 #ifdef CONFIG_DEBUG_ENTRY
138 /* Begin/end of an instrumentation safe region */
139 #define instrumentation_begin() ({					\
140 	asm volatile("%c0:\n\t"						\
141 		     ".pushsection .discard.instr_begin\n\t"		\
142 		     ".long %c0b - .\n\t"				\
143 		     ".popsection\n\t" : : "i" (__COUNTER__));		\
144 })
145 
146 /*
147  * Because instrumentation_{begin,end}() can nest, objtool validation considers
148  * _begin() a +1 and _end() a -1 and computes a sum over the instructions.
149  * When the value is greater than 0, we consider instrumentation allowed.
150  *
151  * There is a problem with code like:
152  *
153  * noinstr void foo()
154  * {
155  *	instrumentation_begin();
156  *	...
157  *	if (cond) {
158  *		instrumentation_begin();
159  *		...
160  *		instrumentation_end();
161  *	}
162  *	bar();
163  *	instrumentation_end();
164  * }
165  *
166  * If instrumentation_end() would be an empty label, like all the other
167  * annotations, the inner _end(), which is at the end of a conditional block,
168  * would land on the instruction after the block.
169  *
170  * If we then consider the sum of the !cond path, we'll see that the call to
171  * bar() is with a 0-value, even though, we meant it to happen with a positive
172  * value.
173  *
174  * To avoid this, have _end() be a NOP instruction, this ensures it will be
175  * part of the condition block and does not escape.
176  */
177 #define instrumentation_end() ({					\
178 	asm volatile("%c0: nop\n\t"					\
179 		     ".pushsection .discard.instr_end\n\t"		\
180 		     ".long %c0b - .\n\t"				\
181 		     ".popsection\n\t" : : "i" (__COUNTER__));		\
182 })
183 #endif /* CONFIG_DEBUG_ENTRY */
184 
185 #else
186 #define annotate_reachable()
187 #define annotate_unreachable()
188 #define __annotate_jump_table
189 #endif
190 
191 #ifndef instrumentation_begin
192 #define instrumentation_begin()		do { } while(0)
193 #define instrumentation_end()		do { } while(0)
194 #endif
195 
196 #ifndef ASM_UNREACHABLE
197 # define ASM_UNREACHABLE
198 #endif
199 #ifndef unreachable
200 # define unreachable() do {		\
201 	annotate_unreachable();		\
202 	__builtin_unreachable();	\
203 } while (0)
204 #endif
205 
206 /*
207  * KENTRY - kernel entry point
208  * This can be used to annotate symbols (functions or data) that are used
209  * without their linker symbol being referenced explicitly. For example,
210  * interrupt vector handlers, or functions in the kernel image that are found
211  * programatically.
212  *
213  * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those
214  * are handled in their own way (with KEEP() in linker scripts).
215  *
216  * KENTRY can be avoided if the symbols in question are marked as KEEP() in the
217  * linker script. For example an architecture could KEEP() its entire
218  * boot/exception vector code rather than annotate each function and data.
219  */
220 #ifndef KENTRY
221 # define KENTRY(sym)						\
222 	extern typeof(sym) sym;					\
223 	static const unsigned long __kentry_##sym		\
224 	__used							\
225 	__section("___kentry" "+" #sym )			\
226 	= (unsigned long)&sym;
227 #endif
228 
229 #ifndef RELOC_HIDE
230 # define RELOC_HIDE(ptr, off)					\
231   ({ unsigned long __ptr;					\
232      __ptr = (unsigned long) (ptr);				\
233     (typeof(ptr)) (__ptr + (off)); })
234 #endif
235 
236 #define absolute_pointer(val)	RELOC_HIDE((void *)(val), 0)
237 
238 #ifndef OPTIMIZER_HIDE_VAR
239 /* Make the optimizer believe the variable can be manipulated arbitrarily. */
240 #define OPTIMIZER_HIDE_VAR(var)						\
241 	__asm__ ("" : "=r" (var) : "0" (var))
242 #endif
243 
244 /* Not-quite-unique ID. */
245 #ifndef __UNIQUE_ID
246 # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__)
247 #endif
248 
249 #include <uapi/linux/types.h>
250 
251 #define __READ_ONCE_SIZE						\
252 ({									\
253 	switch (size) {							\
254 	case 1: *(__u8 *)res = *(volatile __u8 *)p; break;		\
255 	case 2: *(__u16 *)res = *(volatile __u16 *)p; break;		\
256 	case 4: *(__u32 *)res = *(volatile __u32 *)p; break;		\
257 	case 8: *(__u64 *)res = *(volatile __u64 *)p; break;		\
258 	default:							\
259 		barrier();						\
260 		__builtin_memcpy((void *)res, (const void *)p, size);	\
261 		barrier();						\
262 	}								\
263 })
264 
265 static __always_inline
__read_once_size(const volatile void * p,void * res,int size)266 void __read_once_size(const volatile void *p, void *res, int size)
267 {
268 	__READ_ONCE_SIZE;
269 }
270 
271 #ifdef CONFIG_KASAN
272 /*
273  * We can't declare function 'inline' because __no_sanitize_address confilcts
274  * with inlining. Attempt to inline it may cause a build failure.
275  * 	https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368
276  * '__maybe_unused' allows us to avoid defined-but-not-used warnings.
277  */
278 # define __no_kasan_or_inline __no_sanitize_address notrace __maybe_unused
279 #else
280 # define __no_kasan_or_inline __always_inline
281 #endif
282 
283 static __no_kasan_or_inline
__read_once_size_nocheck(const volatile void * p,void * res,int size)284 void __read_once_size_nocheck(const volatile void *p, void *res, int size)
285 {
286 	__READ_ONCE_SIZE;
287 }
288 
__write_once_size(volatile void * p,void * res,int size)289 static __always_inline void __write_once_size(volatile void *p, void *res, int size)
290 {
291 	switch (size) {
292 	case 1: *(volatile __u8 *)p = *(__u8 *)res; break;
293 	case 2: *(volatile __u16 *)p = *(__u16 *)res; break;
294 	case 4: *(volatile __u32 *)p = *(__u32 *)res; break;
295 	case 8: *(volatile __u64 *)p = *(__u64 *)res; break;
296 	default:
297 		barrier();
298 		__builtin_memcpy((void *)p, (const void *)res, size);
299 		barrier();
300 	}
301 }
302 
303 /*
304  * Prevent the compiler from merging or refetching reads or writes. The
305  * compiler is also forbidden from reordering successive instances of
306  * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some
307  * particular ordering. One way to make the compiler aware of ordering is to
308  * put the two invocations of READ_ONCE or WRITE_ONCE in different C
309  * statements.
310  *
311  * These two macros will also work on aggregate data types like structs or
312  * unions. If the size of the accessed data type exceeds the word size of
313  * the machine (e.g., 32 bits or 64 bits) READ_ONCE() and WRITE_ONCE() will
314  * fall back to memcpy(). There's at least two memcpy()s: one for the
315  * __builtin_memcpy() and then one for the macro doing the copy of variable
316  * - '__u' allocated on the stack.
317  *
318  * Their two major use cases are: (1) Mediating communication between
319  * process-level code and irq/NMI handlers, all running on the same CPU,
320  * and (2) Ensuring that the compiler does not fold, spindle, or otherwise
321  * mutilate accesses that either do not require ordering or that interact
322  * with an explicit memory barrier or atomic instruction that provides the
323  * required ordering.
324  */
325 #include <asm/barrier.h>
326 #include <linux/kasan-checks.h>
327 
328 #define __READ_ONCE(x, check)						\
329 ({									\
330 	union { typeof(x) __val; char __c[1]; } __u;			\
331 	if (check)							\
332 		__read_once_size(&(x), __u.__c, sizeof(x));		\
333 	else								\
334 		__read_once_size_nocheck(&(x), __u.__c, sizeof(x));	\
335 	smp_read_barrier_depends(); /* Enforce dependency ordering from x */ \
336 	__u.__val;							\
337 })
338 #define READ_ONCE(x) __READ_ONCE(x, 1)
339 
340 /*
341  * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need
342  * to hide memory access from KASAN.
343  */
344 #define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0)
345 
346 static __no_kasan_or_inline
read_word_at_a_time(const void * addr)347 unsigned long read_word_at_a_time(const void *addr)
348 {
349 	kasan_check_read(addr, 1);
350 	return *(unsigned long *)addr;
351 }
352 
353 #define WRITE_ONCE(x, val) \
354 ({							\
355 	union { typeof(x) __val; char __c[1]; } __u =	\
356 		{ .__val = (__force typeof(x)) (val) }; \
357 	__write_once_size(&(x), __u.__c, sizeof(x));	\
358 	__u.__val;					\
359 })
360 
361 #endif /* __KERNEL__ */
362 
363 /*
364  * Force the compiler to emit 'sym' as a symbol, so that we can reference
365  * it from inline assembler. Necessary in case 'sym' could be inlined
366  * otherwise, or eliminated entirely due to lack of references that are
367  * visible to the compiler.
368  */
369 #define __ADDRESSABLE(sym) \
370 	static void * __section(.discard.addressable) __used \
371 		__PASTE(__addressable_##sym, __LINE__) = (void *)&sym;
372 
373 /**
374  * offset_to_ptr - convert a relative memory offset to an absolute pointer
375  * @off:	the address of the 32-bit offset value
376  */
offset_to_ptr(const int * off)377 static inline void *offset_to_ptr(const int *off)
378 {
379 	return (void *)((unsigned long)off + *off);
380 }
381 
382 #endif /* __ASSEMBLY__ */
383 
384 /* Compile time object size, -1 for unknown */
385 #ifndef __compiletime_object_size
386 # define __compiletime_object_size(obj) -1
387 #endif
388 #ifndef __compiletime_warning
389 # define __compiletime_warning(message)
390 #endif
391 #ifndef __compiletime_error
392 # define __compiletime_error(message)
393 #endif
394 
395 #ifdef __OPTIMIZE__
396 # define __compiletime_assert(condition, msg, prefix, suffix)		\
397 	do {								\
398 		extern void prefix ## suffix(void) __compiletime_error(msg); \
399 		if (!(condition))					\
400 			prefix ## suffix();				\
401 	} while (0)
402 #else
403 # define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0)
404 #endif
405 
406 #define _compiletime_assert(condition, msg, prefix, suffix) \
407 	__compiletime_assert(condition, msg, prefix, suffix)
408 
409 /**
410  * compiletime_assert - break build and emit msg if condition is false
411  * @condition: a compile-time constant condition to check
412  * @msg:       a message to emit if condition is false
413  *
414  * In tradition of POSIX assert, this macro will break the build if the
415  * supplied condition is *false*, emitting the supplied error message if the
416  * compiler has support to do so.
417  */
418 #define compiletime_assert(condition, msg) \
419 	_compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__)
420 
421 #define compiletime_assert_atomic_type(t)				\
422 	compiletime_assert(__native_word(t),				\
423 		"Need native word sized stores/loads for atomicity.")
424 
425 /* &a[0] degrades to a pointer: a different type from an array */
426 #define __must_be_array(a)	BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0]))
427 
428 /*
429  * This is needed in functions which generate the stack canary, see
430  * arch/x86/kernel/smpboot.c::start_secondary() for an example.
431  */
432 #define prevent_tail_call_optimization()	mb()
433 
434 #endif /* __LINUX_COMPILER_H */
435