• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
4  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
5  *
6  *  Modified by Cort Dougan (cort@cs.nmt.edu)
7  *  and Paul Mackerras (paulus@samba.org)
8  */
9 
10 /*
11  * This file handles the architecture-dependent parts of hardware exceptions
12  */
13 
14 #include <linux/errno.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/pkeys.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/ptrace.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/extable.h>
27 #include <linux/module.h>	/* print_modules */
28 #include <linux/prctl.h>
29 #include <linux/delay.h>
30 #include <linux/kprobes.h>
31 #include <linux/kexec.h>
32 #include <linux/backlight.h>
33 #include <linux/bug.h>
34 #include <linux/kdebug.h>
35 #include <linux/ratelimit.h>
36 #include <linux/context_tracking.h>
37 #include <linux/smp.h>
38 #include <linux/console.h>
39 #include <linux/kmsg_dump.h>
40 
41 #include <asm/emulated_ops.h>
42 #include <asm/pgtable.h>
43 #include <linux/uaccess.h>
44 #include <asm/debugfs.h>
45 #include <asm/io.h>
46 #include <asm/machdep.h>
47 #include <asm/rtas.h>
48 #include <asm/pmc.h>
49 #include <asm/reg.h>
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #include <asm/tm.h>
57 #endif
58 #include <asm/kexec.h>
59 #include <asm/ppc-opcode.h>
60 #include <asm/rio.h>
61 #include <asm/fadump.h>
62 #include <asm/switch_to.h>
63 #include <asm/tm.h>
64 #include <asm/debug.h>
65 #include <asm/asm-prototypes.h>
66 #include <asm/hmi.h>
67 #include <sysdev/fsl_pci.h>
68 #include <asm/kprobes.h>
69 #include <asm/stacktrace.h>
70 #include <asm/nmi.h>
71 
72 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
73 int (*__debugger)(struct pt_regs *regs) __read_mostly;
74 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
75 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
78 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
79 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
80 
81 EXPORT_SYMBOL(__debugger);
82 EXPORT_SYMBOL(__debugger_ipi);
83 EXPORT_SYMBOL(__debugger_bpt);
84 EXPORT_SYMBOL(__debugger_sstep);
85 EXPORT_SYMBOL(__debugger_iabr_match);
86 EXPORT_SYMBOL(__debugger_break_match);
87 EXPORT_SYMBOL(__debugger_fault_handler);
88 #endif
89 
90 /* Transactional Memory trap debug */
91 #ifdef TM_DEBUG_SW
92 #define TM_DEBUG(x...) printk(KERN_INFO x)
93 #else
94 #define TM_DEBUG(x...) do { } while(0)
95 #endif
96 
signame(int signr)97 static const char *signame(int signr)
98 {
99 	switch (signr) {
100 	case SIGBUS:	return "bus error";
101 	case SIGFPE:	return "floating point exception";
102 	case SIGILL:	return "illegal instruction";
103 	case SIGSEGV:	return "segfault";
104 	case SIGTRAP:	return "unhandled trap";
105 	}
106 
107 	return "unknown signal";
108 }
109 
110 /*
111  * Trap & Exception support
112  */
113 
114 #ifdef CONFIG_PMAC_BACKLIGHT
pmac_backlight_unblank(void)115 static void pmac_backlight_unblank(void)
116 {
117 	mutex_lock(&pmac_backlight_mutex);
118 	if (pmac_backlight) {
119 		struct backlight_properties *props;
120 
121 		props = &pmac_backlight->props;
122 		props->brightness = props->max_brightness;
123 		props->power = FB_BLANK_UNBLANK;
124 		backlight_update_status(pmac_backlight);
125 	}
126 	mutex_unlock(&pmac_backlight_mutex);
127 }
128 #else
pmac_backlight_unblank(void)129 static inline void pmac_backlight_unblank(void) { }
130 #endif
131 
132 /*
133  * If oops/die is expected to crash the machine, return true here.
134  *
135  * This should not be expected to be 100% accurate, there may be
136  * notifiers registered or other unexpected conditions that may bring
137  * down the kernel. Or if the current process in the kernel is holding
138  * locks or has other critical state, the kernel may become effectively
139  * unusable anyway.
140  */
die_will_crash(void)141 bool die_will_crash(void)
142 {
143 	if (should_fadump_crash())
144 		return true;
145 	if (kexec_should_crash(current))
146 		return true;
147 	if (in_interrupt() || panic_on_oops ||
148 			!current->pid || is_global_init(current))
149 		return true;
150 
151 	return false;
152 }
153 
154 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
155 static int die_owner = -1;
156 static unsigned int die_nest_count;
157 static int die_counter;
158 
panic_flush_kmsg_start(void)159 extern void panic_flush_kmsg_start(void)
160 {
161 	/*
162 	 * These are mostly taken from kernel/panic.c, but tries to do
163 	 * relatively minimal work. Don't use delay functions (TB may
164 	 * be broken), don't crash dump (need to set a firmware log),
165 	 * don't run notifiers. We do want to get some information to
166 	 * Linux console.
167 	 */
168 	console_verbose();
169 	bust_spinlocks(1);
170 }
171 
panic_flush_kmsg_end(void)172 extern void panic_flush_kmsg_end(void)
173 {
174 	printk_safe_flush_on_panic();
175 	kmsg_dump(KMSG_DUMP_PANIC);
176 	bust_spinlocks(0);
177 	debug_locks_off();
178 	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
179 }
180 
oops_begin(struct pt_regs * regs)181 static unsigned long oops_begin(struct pt_regs *regs)
182 {
183 	int cpu;
184 	unsigned long flags;
185 
186 	oops_enter();
187 
188 	/* racy, but better than risking deadlock. */
189 	raw_local_irq_save(flags);
190 	cpu = smp_processor_id();
191 	if (!arch_spin_trylock(&die_lock)) {
192 		if (cpu == die_owner)
193 			/* nested oops. should stop eventually */;
194 		else
195 			arch_spin_lock(&die_lock);
196 	}
197 	die_nest_count++;
198 	die_owner = cpu;
199 	console_verbose();
200 	bust_spinlocks(1);
201 	if (machine_is(powermac))
202 		pmac_backlight_unblank();
203 	return flags;
204 }
205 NOKPROBE_SYMBOL(oops_begin);
206 
oops_end(unsigned long flags,struct pt_regs * regs,int signr)207 static void oops_end(unsigned long flags, struct pt_regs *regs,
208 			       int signr)
209 {
210 	bust_spinlocks(0);
211 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
212 	die_nest_count--;
213 	oops_exit();
214 	printk("\n");
215 	if (!die_nest_count) {
216 		/* Nest count reaches zero, release the lock. */
217 		die_owner = -1;
218 		arch_spin_unlock(&die_lock);
219 	}
220 	raw_local_irq_restore(flags);
221 
222 	/*
223 	 * system_reset_excption handles debugger, crash dump, panic, for 0x100
224 	 */
225 	if (TRAP(regs) == 0x100)
226 		return;
227 
228 	crash_fadump(regs, "die oops");
229 
230 	if (kexec_should_crash(current))
231 		crash_kexec(regs);
232 
233 	if (!signr)
234 		return;
235 
236 	/*
237 	 * While our oops output is serialised by a spinlock, output
238 	 * from panic() called below can race and corrupt it. If we
239 	 * know we are going to panic, delay for 1 second so we have a
240 	 * chance to get clean backtraces from all CPUs that are oopsing.
241 	 */
242 	if (in_interrupt() || panic_on_oops || !current->pid ||
243 	    is_global_init(current)) {
244 		mdelay(MSEC_PER_SEC);
245 	}
246 
247 	if (panic_on_oops)
248 		panic("Fatal exception");
249 	make_task_dead(signr);
250 }
251 NOKPROBE_SYMBOL(oops_end);
252 
get_mmu_str(void)253 static char *get_mmu_str(void)
254 {
255 	if (early_radix_enabled())
256 		return " MMU=Radix";
257 	if (early_mmu_has_feature(MMU_FTR_HPTE_TABLE))
258 		return " MMU=Hash";
259 	return "";
260 }
261 
__die(const char * str,struct pt_regs * regs,long err)262 static int __die(const char *str, struct pt_regs *regs, long err)
263 {
264 	printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
265 
266 	printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s %s\n",
267 	       IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE",
268 	       PAGE_SIZE / 1024, get_mmu_str(),
269 	       IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "",
270 	       IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
271 	       IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "",
272 	       debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
273 	       IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "",
274 	       ppc_md.name ? ppc_md.name : "");
275 
276 	if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
277 		return 1;
278 
279 	print_modules();
280 	show_regs(regs);
281 
282 	return 0;
283 }
284 NOKPROBE_SYMBOL(__die);
285 
die(const char * str,struct pt_regs * regs,long err)286 void die(const char *str, struct pt_regs *regs, long err)
287 {
288 	unsigned long flags;
289 
290 	/*
291 	 * system_reset_excption handles debugger, crash dump, panic, for 0x100
292 	 */
293 	if (TRAP(regs) != 0x100) {
294 		if (debugger(regs))
295 			return;
296 	}
297 
298 	flags = oops_begin(regs);
299 	if (__die(str, regs, err))
300 		err = 0;
301 	oops_end(flags, regs, err);
302 }
303 NOKPROBE_SYMBOL(die);
304 
user_single_step_report(struct pt_regs * regs)305 void user_single_step_report(struct pt_regs *regs)
306 {
307 	force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip);
308 }
309 
show_signal_msg(int signr,struct pt_regs * regs,int code,unsigned long addr)310 static void show_signal_msg(int signr, struct pt_regs *regs, int code,
311 			    unsigned long addr)
312 {
313 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
314 				      DEFAULT_RATELIMIT_BURST);
315 
316 	if (!show_unhandled_signals)
317 		return;
318 
319 	if (!unhandled_signal(current, signr))
320 		return;
321 
322 	if (!__ratelimit(&rs))
323 		return;
324 
325 	pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
326 		current->comm, current->pid, signame(signr), signr,
327 		addr, regs->nip, regs->link, code);
328 
329 	print_vma_addr(KERN_CONT " in ", regs->nip);
330 
331 	pr_cont("\n");
332 
333 	show_user_instructions(regs);
334 }
335 
exception_common(int signr,struct pt_regs * regs,int code,unsigned long addr)336 static bool exception_common(int signr, struct pt_regs *regs, int code,
337 			      unsigned long addr)
338 {
339 	if (!user_mode(regs)) {
340 		die("Exception in kernel mode", regs, signr);
341 		return false;
342 	}
343 
344 	show_signal_msg(signr, regs, code, addr);
345 
346 	if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
347 		local_irq_enable();
348 
349 	current->thread.trap_nr = code;
350 
351 	/*
352 	 * Save all the pkey registers AMR/IAMR/UAMOR. Eg: Core dumps need
353 	 * to capture the content, if the task gets killed.
354 	 */
355 	thread_pkey_regs_save(&current->thread);
356 
357 	return true;
358 }
359 
_exception_pkey(struct pt_regs * regs,unsigned long addr,int key)360 void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key)
361 {
362 	if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr))
363 		return;
364 
365 	force_sig_pkuerr((void __user *) addr, key);
366 }
367 
_exception(int signr,struct pt_regs * regs,int code,unsigned long addr)368 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
369 {
370 	if (!exception_common(signr, regs, code, addr))
371 		return;
372 
373 	force_sig_fault(signr, code, (void __user *)addr);
374 }
375 
376 /*
377  * The interrupt architecture has a quirk in that the HV interrupts excluding
378  * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
379  * that an interrupt handler must do is save off a GPR into a scratch register,
380  * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
381  * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
382  * that it is non-reentrant, which leads to random data corruption.
383  *
384  * The solution is for NMI interrupts in HV mode to check if they originated
385  * from these critical HV interrupt regions. If so, then mark them not
386  * recoverable.
387  *
388  * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
389  * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
390  * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
391  * that would work. However any other guest OS that may have the SPRG live
392  * and MSR[RI]=1 could encounter silent corruption.
393  *
394  * Builds that do not support KVM could take this second option to increase
395  * the recoverability of NMIs.
396  */
hv_nmi_check_nonrecoverable(struct pt_regs * regs)397 void hv_nmi_check_nonrecoverable(struct pt_regs *regs)
398 {
399 #ifdef CONFIG_PPC_POWERNV
400 	unsigned long kbase = (unsigned long)_stext;
401 	unsigned long nip = regs->nip;
402 
403 	if (!(regs->msr & MSR_RI))
404 		return;
405 	if (!(regs->msr & MSR_HV))
406 		return;
407 	if (regs->msr & MSR_PR)
408 		return;
409 
410 	/*
411 	 * Now test if the interrupt has hit a range that may be using
412 	 * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
413 	 * problem ranges all run un-relocated. Test real and virt modes
414 	 * at the same time by droping the high bit of the nip (virt mode
415 	 * entry points still have the +0x4000 offset).
416 	 */
417 	nip &= ~0xc000000000000000ULL;
418 	if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600))
419 		goto nonrecoverable;
420 	if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00))
421 		goto nonrecoverable;
422 	if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0))
423 		goto nonrecoverable;
424 	if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0))
425 		goto nonrecoverable;
426 
427 	/* Trampoline code runs un-relocated so subtract kbase. */
428 	if (nip >= (unsigned long)(start_real_trampolines - kbase) &&
429 			nip < (unsigned long)(end_real_trampolines - kbase))
430 		goto nonrecoverable;
431 	if (nip >= (unsigned long)(start_virt_trampolines - kbase) &&
432 			nip < (unsigned long)(end_virt_trampolines - kbase))
433 		goto nonrecoverable;
434 	return;
435 
436 nonrecoverable:
437 	regs->msr &= ~MSR_RI;
438 #endif
439 }
440 
system_reset_exception(struct pt_regs * regs)441 void system_reset_exception(struct pt_regs *regs)
442 {
443 	unsigned long hsrr0, hsrr1;
444 	bool nested = in_nmi();
445 	bool saved_hsrrs = false;
446 
447 	/*
448 	 * Avoid crashes in case of nested NMI exceptions. Recoverability
449 	 * is determined by RI and in_nmi
450 	 */
451 	if (!nested)
452 		nmi_enter();
453 
454 	/*
455 	 * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
456 	 * The system reset interrupt itself may clobber HSRRs (e.g., to call
457 	 * OPAL), so save them here and restore them before returning.
458 	 *
459 	 * Machine checks don't need to save HSRRs, as the real mode handler
460 	 * is careful to avoid them, and the regular handler is not delivered
461 	 * as an NMI.
462 	 */
463 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
464 		hsrr0 = mfspr(SPRN_HSRR0);
465 		hsrr1 = mfspr(SPRN_HSRR1);
466 		saved_hsrrs = true;
467 	}
468 
469 	hv_nmi_check_nonrecoverable(regs);
470 
471 	__this_cpu_inc(irq_stat.sreset_irqs);
472 
473 	/* See if any machine dependent calls */
474 	if (ppc_md.system_reset_exception) {
475 		if (ppc_md.system_reset_exception(regs))
476 			goto out;
477 	}
478 
479 	if (debugger(regs))
480 		goto out;
481 
482 	kmsg_dump(KMSG_DUMP_OOPS);
483 	/*
484 	 * A system reset is a request to dump, so we always send
485 	 * it through the crashdump code (if fadump or kdump are
486 	 * registered).
487 	 */
488 	crash_fadump(regs, "System Reset");
489 
490 	crash_kexec(regs);
491 
492 	/*
493 	 * We aren't the primary crash CPU. We need to send it
494 	 * to a holding pattern to avoid it ending up in the panic
495 	 * code.
496 	 */
497 	crash_kexec_secondary(regs);
498 
499 	/*
500 	 * No debugger or crash dump registered, print logs then
501 	 * panic.
502 	 */
503 	die("System Reset", regs, SIGABRT);
504 
505 	mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
506 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
507 	nmi_panic(regs, "System Reset");
508 
509 out:
510 #ifdef CONFIG_PPC_BOOK3S_64
511 	BUG_ON(get_paca()->in_nmi == 0);
512 	if (get_paca()->in_nmi > 1)
513 		die("Unrecoverable nested System Reset", regs, SIGABRT);
514 #endif
515 	/* Must die if the interrupt is not recoverable */
516 	if (!(regs->msr & MSR_RI)) {
517 		/* For the reason explained in die_mce, nmi_exit before die */
518 		nmi_exit();
519 		die("Unrecoverable System Reset", regs, SIGABRT);
520 	}
521 
522 	if (saved_hsrrs) {
523 		mtspr(SPRN_HSRR0, hsrr0);
524 		mtspr(SPRN_HSRR1, hsrr1);
525 	}
526 
527 	if (!nested)
528 		nmi_exit();
529 
530 	/* What should we do here? We could issue a shutdown or hard reset. */
531 }
532 
533 /*
534  * I/O accesses can cause machine checks on powermacs.
535  * Check if the NIP corresponds to the address of a sync
536  * instruction for which there is an entry in the exception
537  * table.
538  * Note that the 601 only takes a machine check on TEA
539  * (transfer error ack) signal assertion, and does not
540  * set any of the top 16 bits of SRR1.
541  *  -- paulus.
542  */
check_io_access(struct pt_regs * regs)543 static inline int check_io_access(struct pt_regs *regs)
544 {
545 #ifdef CONFIG_PPC32
546 	unsigned long msr = regs->msr;
547 	const struct exception_table_entry *entry;
548 	unsigned int *nip = (unsigned int *)regs->nip;
549 
550 	if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
551 	    && (entry = search_exception_tables(regs->nip)) != NULL) {
552 		/*
553 		 * Check that it's a sync instruction, or somewhere
554 		 * in the twi; isync; nop sequence that inb/inw/inl uses.
555 		 * As the address is in the exception table
556 		 * we should be able to read the instr there.
557 		 * For the debug message, we look at the preceding
558 		 * load or store.
559 		 */
560 		if (*nip == PPC_INST_NOP)
561 			nip -= 2;
562 		else if (*nip == PPC_INST_ISYNC)
563 			--nip;
564 		if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
565 			unsigned int rb;
566 
567 			--nip;
568 			rb = (*nip >> 11) & 0x1f;
569 			printk(KERN_DEBUG "%s bad port %lx at %p\n",
570 			       (*nip & 0x100)? "OUT to": "IN from",
571 			       regs->gpr[rb] - _IO_BASE, nip);
572 			regs->msr |= MSR_RI;
573 			regs->nip = extable_fixup(entry);
574 			return 1;
575 		}
576 	}
577 #endif /* CONFIG_PPC32 */
578 	return 0;
579 }
580 
581 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
582 /* On 4xx, the reason for the machine check or program exception
583    is in the ESR. */
584 #define get_reason(regs)	((regs)->dsisr)
585 #define REASON_FP		ESR_FP
586 #define REASON_ILLEGAL		(ESR_PIL | ESR_PUO)
587 #define REASON_PRIVILEGED	ESR_PPR
588 #define REASON_TRAP		ESR_PTR
589 
590 /* single-step stuff */
591 #define single_stepping(regs)	(current->thread.debug.dbcr0 & DBCR0_IC)
592 #define clear_single_step(regs)	(current->thread.debug.dbcr0 &= ~DBCR0_IC)
593 #define clear_br_trace(regs)	do {} while(0)
594 #else
595 /* On non-4xx, the reason for the machine check or program
596    exception is in the MSR. */
597 #define get_reason(regs)	((regs)->msr)
598 #define REASON_TM		SRR1_PROGTM
599 #define REASON_FP		SRR1_PROGFPE
600 #define REASON_ILLEGAL		SRR1_PROGILL
601 #define REASON_PRIVILEGED	SRR1_PROGPRIV
602 #define REASON_TRAP		SRR1_PROGTRAP
603 
604 #define single_stepping(regs)	((regs)->msr & MSR_SE)
605 #define clear_single_step(regs)	((regs)->msr &= ~MSR_SE)
606 #define clear_br_trace(regs)	((regs)->msr &= ~MSR_BE)
607 #endif
608 
609 #if defined(CONFIG_E500)
machine_check_e500mc(struct pt_regs * regs)610 int machine_check_e500mc(struct pt_regs *regs)
611 {
612 	unsigned long mcsr = mfspr(SPRN_MCSR);
613 	unsigned long pvr = mfspr(SPRN_PVR);
614 	unsigned long reason = mcsr;
615 	int recoverable = 1;
616 
617 	if (reason & MCSR_LD) {
618 		recoverable = fsl_rio_mcheck_exception(regs);
619 		if (recoverable == 1)
620 			goto silent_out;
621 	}
622 
623 	printk("Machine check in kernel mode.\n");
624 	printk("Caused by (from MCSR=%lx): ", reason);
625 
626 	if (reason & MCSR_MCP)
627 		pr_cont("Machine Check Signal\n");
628 
629 	if (reason & MCSR_ICPERR) {
630 		pr_cont("Instruction Cache Parity Error\n");
631 
632 		/*
633 		 * This is recoverable by invalidating the i-cache.
634 		 */
635 		mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
636 		while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
637 			;
638 
639 		/*
640 		 * This will generally be accompanied by an instruction
641 		 * fetch error report -- only treat MCSR_IF as fatal
642 		 * if it wasn't due to an L1 parity error.
643 		 */
644 		reason &= ~MCSR_IF;
645 	}
646 
647 	if (reason & MCSR_DCPERR_MC) {
648 		pr_cont("Data Cache Parity Error\n");
649 
650 		/*
651 		 * In write shadow mode we auto-recover from the error, but it
652 		 * may still get logged and cause a machine check.  We should
653 		 * only treat the non-write shadow case as non-recoverable.
654 		 */
655 		/* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
656 		 * is not implemented but L1 data cache always runs in write
657 		 * shadow mode. Hence on data cache parity errors HW will
658 		 * automatically invalidate the L1 Data Cache.
659 		 */
660 		if (PVR_VER(pvr) != PVR_VER_E6500) {
661 			if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
662 				recoverable = 0;
663 		}
664 	}
665 
666 	if (reason & MCSR_L2MMU_MHIT) {
667 		pr_cont("Hit on multiple TLB entries\n");
668 		recoverable = 0;
669 	}
670 
671 	if (reason & MCSR_NMI)
672 		pr_cont("Non-maskable interrupt\n");
673 
674 	if (reason & MCSR_IF) {
675 		pr_cont("Instruction Fetch Error Report\n");
676 		recoverable = 0;
677 	}
678 
679 	if (reason & MCSR_LD) {
680 		pr_cont("Load Error Report\n");
681 		recoverable = 0;
682 	}
683 
684 	if (reason & MCSR_ST) {
685 		pr_cont("Store Error Report\n");
686 		recoverable = 0;
687 	}
688 
689 	if (reason & MCSR_LDG) {
690 		pr_cont("Guarded Load Error Report\n");
691 		recoverable = 0;
692 	}
693 
694 	if (reason & MCSR_TLBSYNC)
695 		pr_cont("Simultaneous tlbsync operations\n");
696 
697 	if (reason & MCSR_BSL2_ERR) {
698 		pr_cont("Level 2 Cache Error\n");
699 		recoverable = 0;
700 	}
701 
702 	if (reason & MCSR_MAV) {
703 		u64 addr;
704 
705 		addr = mfspr(SPRN_MCAR);
706 		addr |= (u64)mfspr(SPRN_MCARU) << 32;
707 
708 		pr_cont("Machine Check %s Address: %#llx\n",
709 		       reason & MCSR_MEA ? "Effective" : "Physical", addr);
710 	}
711 
712 silent_out:
713 	mtspr(SPRN_MCSR, mcsr);
714 	return mfspr(SPRN_MCSR) == 0 && recoverable;
715 }
716 
machine_check_e500(struct pt_regs * regs)717 int machine_check_e500(struct pt_regs *regs)
718 {
719 	unsigned long reason = mfspr(SPRN_MCSR);
720 
721 	if (reason & MCSR_BUS_RBERR) {
722 		if (fsl_rio_mcheck_exception(regs))
723 			return 1;
724 		if (fsl_pci_mcheck_exception(regs))
725 			return 1;
726 	}
727 
728 	printk("Machine check in kernel mode.\n");
729 	printk("Caused by (from MCSR=%lx): ", reason);
730 
731 	if (reason & MCSR_MCP)
732 		pr_cont("Machine Check Signal\n");
733 	if (reason & MCSR_ICPERR)
734 		pr_cont("Instruction Cache Parity Error\n");
735 	if (reason & MCSR_DCP_PERR)
736 		pr_cont("Data Cache Push Parity Error\n");
737 	if (reason & MCSR_DCPERR)
738 		pr_cont("Data Cache Parity Error\n");
739 	if (reason & MCSR_BUS_IAERR)
740 		pr_cont("Bus - Instruction Address Error\n");
741 	if (reason & MCSR_BUS_RAERR)
742 		pr_cont("Bus - Read Address Error\n");
743 	if (reason & MCSR_BUS_WAERR)
744 		pr_cont("Bus - Write Address Error\n");
745 	if (reason & MCSR_BUS_IBERR)
746 		pr_cont("Bus - Instruction Data Error\n");
747 	if (reason & MCSR_BUS_RBERR)
748 		pr_cont("Bus - Read Data Bus Error\n");
749 	if (reason & MCSR_BUS_WBERR)
750 		pr_cont("Bus - Write Data Bus Error\n");
751 	if (reason & MCSR_BUS_IPERR)
752 		pr_cont("Bus - Instruction Parity Error\n");
753 	if (reason & MCSR_BUS_RPERR)
754 		pr_cont("Bus - Read Parity Error\n");
755 
756 	return 0;
757 }
758 
machine_check_generic(struct pt_regs * regs)759 int machine_check_generic(struct pt_regs *regs)
760 {
761 	return 0;
762 }
763 #elif defined(CONFIG_E200)
machine_check_e200(struct pt_regs * regs)764 int machine_check_e200(struct pt_regs *regs)
765 {
766 	unsigned long reason = mfspr(SPRN_MCSR);
767 
768 	printk("Machine check in kernel mode.\n");
769 	printk("Caused by (from MCSR=%lx): ", reason);
770 
771 	if (reason & MCSR_MCP)
772 		pr_cont("Machine Check Signal\n");
773 	if (reason & MCSR_CP_PERR)
774 		pr_cont("Cache Push Parity Error\n");
775 	if (reason & MCSR_CPERR)
776 		pr_cont("Cache Parity Error\n");
777 	if (reason & MCSR_EXCP_ERR)
778 		pr_cont("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
779 	if (reason & MCSR_BUS_IRERR)
780 		pr_cont("Bus - Read Bus Error on instruction fetch\n");
781 	if (reason & MCSR_BUS_DRERR)
782 		pr_cont("Bus - Read Bus Error on data load\n");
783 	if (reason & MCSR_BUS_WRERR)
784 		pr_cont("Bus - Write Bus Error on buffered store or cache line push\n");
785 
786 	return 0;
787 }
788 #elif defined(CONFIG_PPC32)
machine_check_generic(struct pt_regs * regs)789 int machine_check_generic(struct pt_regs *regs)
790 {
791 	unsigned long reason = regs->msr;
792 
793 	printk("Machine check in kernel mode.\n");
794 	printk("Caused by (from SRR1=%lx): ", reason);
795 	switch (reason & 0x601F0000) {
796 	case 0x80000:
797 		pr_cont("Machine check signal\n");
798 		break;
799 	case 0:		/* for 601 */
800 	case 0x40000:
801 	case 0x140000:	/* 7450 MSS error and TEA */
802 		pr_cont("Transfer error ack signal\n");
803 		break;
804 	case 0x20000:
805 		pr_cont("Data parity error signal\n");
806 		break;
807 	case 0x10000:
808 		pr_cont("Address parity error signal\n");
809 		break;
810 	case 0x20000000:
811 		pr_cont("L1 Data Cache error\n");
812 		break;
813 	case 0x40000000:
814 		pr_cont("L1 Instruction Cache error\n");
815 		break;
816 	case 0x00100000:
817 		pr_cont("L2 data cache parity error\n");
818 		break;
819 	default:
820 		pr_cont("Unknown values in msr\n");
821 	}
822 	return 0;
823 }
824 #endif /* everything else */
825 
machine_check_exception(struct pt_regs * regs)826 void machine_check_exception(struct pt_regs *regs)
827 {
828 	int recover = 0;
829 	bool nested = in_nmi();
830 	if (!nested)
831 		nmi_enter();
832 
833 	__this_cpu_inc(irq_stat.mce_exceptions);
834 
835 	add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
836 
837 	/* See if any machine dependent calls. In theory, we would want
838 	 * to call the CPU first, and call the ppc_md. one if the CPU
839 	 * one returns a positive number. However there is existing code
840 	 * that assumes the board gets a first chance, so let's keep it
841 	 * that way for now and fix things later. --BenH.
842 	 */
843 	if (ppc_md.machine_check_exception)
844 		recover = ppc_md.machine_check_exception(regs);
845 	else if (cur_cpu_spec->machine_check)
846 		recover = cur_cpu_spec->machine_check(regs);
847 
848 	if (recover > 0)
849 		goto bail;
850 
851 	if (debugger_fault_handler(regs))
852 		goto bail;
853 
854 	if (check_io_access(regs))
855 		goto bail;
856 
857 	if (!nested)
858 		nmi_exit();
859 
860 	die("Machine check", regs, SIGBUS);
861 
862 	/* Must die if the interrupt is not recoverable */
863 	if (!(regs->msr & MSR_RI))
864 		die("Unrecoverable Machine check", regs, SIGBUS);
865 
866 	return;
867 
868 bail:
869 	if (!nested)
870 		nmi_exit();
871 }
872 
SMIException(struct pt_regs * regs)873 void SMIException(struct pt_regs *regs)
874 {
875 	die("System Management Interrupt", regs, SIGABRT);
876 }
877 
878 #ifdef CONFIG_VSX
p9_hmi_special_emu(struct pt_regs * regs)879 static void p9_hmi_special_emu(struct pt_regs *regs)
880 {
881 	unsigned int ra, rb, t, i, sel, instr, rc;
882 	const void __user *addr;
883 	u8 vbuf[16] __aligned(16), *vdst;
884 	unsigned long ea, msr, msr_mask;
885 	bool swap;
886 
887 	if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip))
888 		return;
889 
890 	/*
891 	 * lxvb16x	opcode: 0x7c0006d8
892 	 * lxvd2x	opcode: 0x7c000698
893 	 * lxvh8x	opcode: 0x7c000658
894 	 * lxvw4x	opcode: 0x7c000618
895 	 */
896 	if ((instr & 0xfc00073e) != 0x7c000618) {
897 		pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
898 			 " instr=%08x\n",
899 			 smp_processor_id(), current->comm, current->pid,
900 			 regs->nip, instr);
901 		return;
902 	}
903 
904 	/* Grab vector registers into the task struct */
905 	msr = regs->msr; /* Grab msr before we flush the bits */
906 	flush_vsx_to_thread(current);
907 	enable_kernel_altivec();
908 
909 	/*
910 	 * Is userspace running with a different endian (this is rare but
911 	 * not impossible)
912 	 */
913 	swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
914 
915 	/* Decode the instruction */
916 	ra = (instr >> 16) & 0x1f;
917 	rb = (instr >> 11) & 0x1f;
918 	t = (instr >> 21) & 0x1f;
919 	if (instr & 1)
920 		vdst = (u8 *)&current->thread.vr_state.vr[t];
921 	else
922 		vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
923 
924 	/* Grab the vector address */
925 	ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
926 	if (is_32bit_task())
927 		ea &= 0xfffffffful;
928 	addr = (__force const void __user *)ea;
929 
930 	/* Check it */
931 	if (!access_ok(addr, 16)) {
932 		pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
933 			 " instr=%08x addr=%016lx\n",
934 			 smp_processor_id(), current->comm, current->pid,
935 			 regs->nip, instr, (unsigned long)addr);
936 		return;
937 	}
938 
939 	/* Read the vector */
940 	rc = 0;
941 	if ((unsigned long)addr & 0xfUL)
942 		/* unaligned case */
943 		rc = __copy_from_user_inatomic(vbuf, addr, 16);
944 	else
945 		__get_user_atomic_128_aligned(vbuf, addr, rc);
946 	if (rc) {
947 		pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
948 			 " instr=%08x addr=%016lx\n",
949 			 smp_processor_id(), current->comm, current->pid,
950 			 regs->nip, instr, (unsigned long)addr);
951 		return;
952 	}
953 
954 	pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
955 		 " instr=%08x addr=%016lx\n",
956 		 smp_processor_id(), current->comm, current->pid, regs->nip,
957 		 instr, (unsigned long) addr);
958 
959 	/* Grab instruction "selector" */
960 	sel = (instr >> 6) & 3;
961 
962 	/*
963 	 * Check to make sure the facility is actually enabled. This
964 	 * could happen if we get a false positive hit.
965 	 *
966 	 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
967 	 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
968 	 */
969 	msr_mask = MSR_VSX;
970 	if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
971 		msr_mask = MSR_VEC;
972 	if (!(msr & msr_mask)) {
973 		pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
974 			 " instr=%08x msr:%016lx\n",
975 			 smp_processor_id(), current->comm, current->pid,
976 			 regs->nip, instr, msr);
977 		return;
978 	}
979 
980 	/* Do logging here before we modify sel based on endian */
981 	switch (sel) {
982 	case 0:	/* lxvw4x */
983 		PPC_WARN_EMULATED(lxvw4x, regs);
984 		break;
985 	case 1: /* lxvh8x */
986 		PPC_WARN_EMULATED(lxvh8x, regs);
987 		break;
988 	case 2: /* lxvd2x */
989 		PPC_WARN_EMULATED(lxvd2x, regs);
990 		break;
991 	case 3: /* lxvb16x */
992 		PPC_WARN_EMULATED(lxvb16x, regs);
993 		break;
994 	}
995 
996 #ifdef __LITTLE_ENDIAN__
997 	/*
998 	 * An LE kernel stores the vector in the task struct as an LE
999 	 * byte array (effectively swapping both the components and
1000 	 * the content of the components). Those instructions expect
1001 	 * the components to remain in ascending address order, so we
1002 	 * swap them back.
1003 	 *
1004 	 * If we are running a BE user space, the expectation is that
1005 	 * of a simple memcpy, so forcing the emulation to look like
1006 	 * a lxvb16x should do the trick.
1007 	 */
1008 	if (swap)
1009 		sel = 3;
1010 
1011 	switch (sel) {
1012 	case 0:	/* lxvw4x */
1013 		for (i = 0; i < 4; i++)
1014 			((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
1015 		break;
1016 	case 1: /* lxvh8x */
1017 		for (i = 0; i < 8; i++)
1018 			((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
1019 		break;
1020 	case 2: /* lxvd2x */
1021 		for (i = 0; i < 2; i++)
1022 			((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
1023 		break;
1024 	case 3: /* lxvb16x */
1025 		for (i = 0; i < 16; i++)
1026 			vdst[i] = vbuf[15-i];
1027 		break;
1028 	}
1029 #else /* __LITTLE_ENDIAN__ */
1030 	/* On a big endian kernel, a BE userspace only needs a memcpy */
1031 	if (!swap)
1032 		sel = 3;
1033 
1034 	/* Otherwise, we need to swap the content of the components */
1035 	switch (sel) {
1036 	case 0:	/* lxvw4x */
1037 		for (i = 0; i < 4; i++)
1038 			((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
1039 		break;
1040 	case 1: /* lxvh8x */
1041 		for (i = 0; i < 8; i++)
1042 			((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
1043 		break;
1044 	case 2: /* lxvd2x */
1045 		for (i = 0; i < 2; i++)
1046 			((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
1047 		break;
1048 	case 3: /* lxvb16x */
1049 		memcpy(vdst, vbuf, 16);
1050 		break;
1051 	}
1052 #endif /* !__LITTLE_ENDIAN__ */
1053 
1054 	/* Go to next instruction */
1055 	regs->nip += 4;
1056 }
1057 #endif /* CONFIG_VSX */
1058 
handle_hmi_exception(struct pt_regs * regs)1059 void handle_hmi_exception(struct pt_regs *regs)
1060 {
1061 	struct pt_regs *old_regs;
1062 
1063 	old_regs = set_irq_regs(regs);
1064 	irq_enter();
1065 
1066 #ifdef CONFIG_VSX
1067 	/* Real mode flagged P9 special emu is needed */
1068 	if (local_paca->hmi_p9_special_emu) {
1069 		local_paca->hmi_p9_special_emu = 0;
1070 
1071 		/*
1072 		 * We don't want to take page faults while doing the
1073 		 * emulation, we just replay the instruction if necessary.
1074 		 */
1075 		pagefault_disable();
1076 		p9_hmi_special_emu(regs);
1077 		pagefault_enable();
1078 	}
1079 #endif /* CONFIG_VSX */
1080 
1081 	if (ppc_md.handle_hmi_exception)
1082 		ppc_md.handle_hmi_exception(regs);
1083 
1084 	irq_exit();
1085 	set_irq_regs(old_regs);
1086 }
1087 
unknown_exception(struct pt_regs * regs)1088 void unknown_exception(struct pt_regs *regs)
1089 {
1090 	enum ctx_state prev_state = exception_enter();
1091 
1092 	printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1093 	       regs->nip, regs->msr, regs->trap);
1094 
1095 	_exception(SIGTRAP, regs, TRAP_UNK, 0);
1096 
1097 	exception_exit(prev_state);
1098 }
1099 
instruction_breakpoint_exception(struct pt_regs * regs)1100 void instruction_breakpoint_exception(struct pt_regs *regs)
1101 {
1102 	enum ctx_state prev_state = exception_enter();
1103 
1104 	if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1105 					5, SIGTRAP) == NOTIFY_STOP)
1106 		goto bail;
1107 	if (debugger_iabr_match(regs))
1108 		goto bail;
1109 	_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1110 
1111 bail:
1112 	exception_exit(prev_state);
1113 }
1114 
RunModeException(struct pt_regs * regs)1115 void RunModeException(struct pt_regs *regs)
1116 {
1117 	_exception(SIGTRAP, regs, TRAP_UNK, 0);
1118 }
1119 
single_step_exception(struct pt_regs * regs)1120 void single_step_exception(struct pt_regs *regs)
1121 {
1122 	enum ctx_state prev_state = exception_enter();
1123 
1124 	clear_single_step(regs);
1125 	clear_br_trace(regs);
1126 
1127 	if (kprobe_post_handler(regs))
1128 		return;
1129 
1130 	if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1131 					5, SIGTRAP) == NOTIFY_STOP)
1132 		goto bail;
1133 	if (debugger_sstep(regs))
1134 		goto bail;
1135 
1136 	_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1137 
1138 bail:
1139 	exception_exit(prev_state);
1140 }
1141 NOKPROBE_SYMBOL(single_step_exception);
1142 
1143 /*
1144  * After we have successfully emulated an instruction, we have to
1145  * check if the instruction was being single-stepped, and if so,
1146  * pretend we got a single-step exception.  This was pointed out
1147  * by Kumar Gala.  -- paulus
1148  */
emulate_single_step(struct pt_regs * regs)1149 static void emulate_single_step(struct pt_regs *regs)
1150 {
1151 	if (single_stepping(regs))
1152 		single_step_exception(regs);
1153 }
1154 
__parse_fpscr(unsigned long fpscr)1155 static inline int __parse_fpscr(unsigned long fpscr)
1156 {
1157 	int ret = FPE_FLTUNK;
1158 
1159 	/* Invalid operation */
1160 	if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1161 		ret = FPE_FLTINV;
1162 
1163 	/* Overflow */
1164 	else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1165 		ret = FPE_FLTOVF;
1166 
1167 	/* Underflow */
1168 	else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1169 		ret = FPE_FLTUND;
1170 
1171 	/* Divide by zero */
1172 	else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1173 		ret = FPE_FLTDIV;
1174 
1175 	/* Inexact result */
1176 	else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1177 		ret = FPE_FLTRES;
1178 
1179 	return ret;
1180 }
1181 
parse_fpe(struct pt_regs * regs)1182 static void parse_fpe(struct pt_regs *regs)
1183 {
1184 	int code = 0;
1185 
1186 	flush_fp_to_thread(current);
1187 
1188 	code = __parse_fpscr(current->thread.fp_state.fpscr);
1189 
1190 	_exception(SIGFPE, regs, code, regs->nip);
1191 }
1192 
1193 /*
1194  * Illegal instruction emulation support.  Originally written to
1195  * provide the PVR to user applications using the mfspr rd, PVR.
1196  * Return non-zero if we can't emulate, or -EFAULT if the associated
1197  * memory access caused an access fault.  Return zero on success.
1198  *
1199  * There are a couple of ways to do this, either "decode" the instruction
1200  * or directly match lots of bits.  In this case, matching lots of
1201  * bits is faster and easier.
1202  *
1203  */
emulate_string_inst(struct pt_regs * regs,u32 instword)1204 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1205 {
1206 	u8 rT = (instword >> 21) & 0x1f;
1207 	u8 rA = (instword >> 16) & 0x1f;
1208 	u8 NB_RB = (instword >> 11) & 0x1f;
1209 	u32 num_bytes;
1210 	unsigned long EA;
1211 	int pos = 0;
1212 
1213 	/* Early out if we are an invalid form of lswx */
1214 	if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1215 		if ((rT == rA) || (rT == NB_RB))
1216 			return -EINVAL;
1217 
1218 	EA = (rA == 0) ? 0 : regs->gpr[rA];
1219 
1220 	switch (instword & PPC_INST_STRING_MASK) {
1221 		case PPC_INST_LSWX:
1222 		case PPC_INST_STSWX:
1223 			EA += NB_RB;
1224 			num_bytes = regs->xer & 0x7f;
1225 			break;
1226 		case PPC_INST_LSWI:
1227 		case PPC_INST_STSWI:
1228 			num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1229 			break;
1230 		default:
1231 			return -EINVAL;
1232 	}
1233 
1234 	while (num_bytes != 0)
1235 	{
1236 		u8 val;
1237 		u32 shift = 8 * (3 - (pos & 0x3));
1238 
1239 		/* if process is 32-bit, clear upper 32 bits of EA */
1240 		if ((regs->msr & MSR_64BIT) == 0)
1241 			EA &= 0xFFFFFFFF;
1242 
1243 		switch ((instword & PPC_INST_STRING_MASK)) {
1244 			case PPC_INST_LSWX:
1245 			case PPC_INST_LSWI:
1246 				if (get_user(val, (u8 __user *)EA))
1247 					return -EFAULT;
1248 				/* first time updating this reg,
1249 				 * zero it out */
1250 				if (pos == 0)
1251 					regs->gpr[rT] = 0;
1252 				regs->gpr[rT] |= val << shift;
1253 				break;
1254 			case PPC_INST_STSWI:
1255 			case PPC_INST_STSWX:
1256 				val = regs->gpr[rT] >> shift;
1257 				if (put_user(val, (u8 __user *)EA))
1258 					return -EFAULT;
1259 				break;
1260 		}
1261 		/* move EA to next address */
1262 		EA += 1;
1263 		num_bytes--;
1264 
1265 		/* manage our position within the register */
1266 		if (++pos == 4) {
1267 			pos = 0;
1268 			if (++rT == 32)
1269 				rT = 0;
1270 		}
1271 	}
1272 
1273 	return 0;
1274 }
1275 
emulate_popcntb_inst(struct pt_regs * regs,u32 instword)1276 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1277 {
1278 	u32 ra,rs;
1279 	unsigned long tmp;
1280 
1281 	ra = (instword >> 16) & 0x1f;
1282 	rs = (instword >> 21) & 0x1f;
1283 
1284 	tmp = regs->gpr[rs];
1285 	tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1286 	tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1287 	tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1288 	regs->gpr[ra] = tmp;
1289 
1290 	return 0;
1291 }
1292 
emulate_isel(struct pt_regs * regs,u32 instword)1293 static int emulate_isel(struct pt_regs *regs, u32 instword)
1294 {
1295 	u8 rT = (instword >> 21) & 0x1f;
1296 	u8 rA = (instword >> 16) & 0x1f;
1297 	u8 rB = (instword >> 11) & 0x1f;
1298 	u8 BC = (instword >> 6) & 0x1f;
1299 	u8 bit;
1300 	unsigned long tmp;
1301 
1302 	tmp = (rA == 0) ? 0 : regs->gpr[rA];
1303 	bit = (regs->ccr >> (31 - BC)) & 0x1;
1304 
1305 	regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1306 
1307 	return 0;
1308 }
1309 
1310 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_abort_check(struct pt_regs * regs,int cause)1311 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1312 {
1313         /* If we're emulating a load/store in an active transaction, we cannot
1314          * emulate it as the kernel operates in transaction suspended context.
1315          * We need to abort the transaction.  This creates a persistent TM
1316          * abort so tell the user what caused it with a new code.
1317 	 */
1318 	if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1319 		tm_enable();
1320 		tm_abort(cause);
1321 		return true;
1322 	}
1323 	return false;
1324 }
1325 #else
tm_abort_check(struct pt_regs * regs,int reason)1326 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1327 {
1328 	return false;
1329 }
1330 #endif
1331 
emulate_instruction(struct pt_regs * regs)1332 static int emulate_instruction(struct pt_regs *regs)
1333 {
1334 	u32 instword;
1335 	u32 rd;
1336 
1337 	if (!user_mode(regs))
1338 		return -EINVAL;
1339 	CHECK_FULL_REGS(regs);
1340 
1341 	if (get_user(instword, (u32 __user *)(regs->nip)))
1342 		return -EFAULT;
1343 
1344 	/* Emulate the mfspr rD, PVR. */
1345 	if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1346 		PPC_WARN_EMULATED(mfpvr, regs);
1347 		rd = (instword >> 21) & 0x1f;
1348 		regs->gpr[rd] = mfspr(SPRN_PVR);
1349 		return 0;
1350 	}
1351 
1352 	/* Emulating the dcba insn is just a no-op.  */
1353 	if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1354 		PPC_WARN_EMULATED(dcba, regs);
1355 		return 0;
1356 	}
1357 
1358 	/* Emulate the mcrxr insn.  */
1359 	if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1360 		int shift = (instword >> 21) & 0x1c;
1361 		unsigned long msk = 0xf0000000UL >> shift;
1362 
1363 		PPC_WARN_EMULATED(mcrxr, regs);
1364 		regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1365 		regs->xer &= ~0xf0000000UL;
1366 		return 0;
1367 	}
1368 
1369 	/* Emulate load/store string insn. */
1370 	if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1371 		if (tm_abort_check(regs,
1372 				   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1373 			return -EINVAL;
1374 		PPC_WARN_EMULATED(string, regs);
1375 		return emulate_string_inst(regs, instword);
1376 	}
1377 
1378 	/* Emulate the popcntb (Population Count Bytes) instruction. */
1379 	if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1380 		PPC_WARN_EMULATED(popcntb, regs);
1381 		return emulate_popcntb_inst(regs, instword);
1382 	}
1383 
1384 	/* Emulate isel (Integer Select) instruction */
1385 	if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1386 		PPC_WARN_EMULATED(isel, regs);
1387 		return emulate_isel(regs, instword);
1388 	}
1389 
1390 	/* Emulate sync instruction variants */
1391 	if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1392 		PPC_WARN_EMULATED(sync, regs);
1393 		asm volatile("sync");
1394 		return 0;
1395 	}
1396 
1397 #ifdef CONFIG_PPC64
1398 	/* Emulate the mfspr rD, DSCR. */
1399 	if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1400 		PPC_INST_MFSPR_DSCR_USER) ||
1401 	     ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1402 		PPC_INST_MFSPR_DSCR)) &&
1403 			cpu_has_feature(CPU_FTR_DSCR)) {
1404 		PPC_WARN_EMULATED(mfdscr, regs);
1405 		rd = (instword >> 21) & 0x1f;
1406 		regs->gpr[rd] = mfspr(SPRN_DSCR);
1407 		return 0;
1408 	}
1409 	/* Emulate the mtspr DSCR, rD. */
1410 	if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1411 		PPC_INST_MTSPR_DSCR_USER) ||
1412 	     ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1413 		PPC_INST_MTSPR_DSCR)) &&
1414 			cpu_has_feature(CPU_FTR_DSCR)) {
1415 		PPC_WARN_EMULATED(mtdscr, regs);
1416 		rd = (instword >> 21) & 0x1f;
1417 		current->thread.dscr = regs->gpr[rd];
1418 		current->thread.dscr_inherit = 1;
1419 		mtspr(SPRN_DSCR, current->thread.dscr);
1420 		return 0;
1421 	}
1422 #endif
1423 
1424 	return -EINVAL;
1425 }
1426 
1427 #ifdef CONFIG_GENERIC_BUG
is_valid_bugaddr(unsigned long addr)1428 int is_valid_bugaddr(unsigned long addr)
1429 {
1430 	return is_kernel_addr(addr);
1431 }
1432 #endif
1433 
1434 #ifdef CONFIG_MATH_EMULATION
emulate_math(struct pt_regs * regs)1435 static int emulate_math(struct pt_regs *regs)
1436 {
1437 	int ret;
1438 	extern int do_mathemu(struct pt_regs *regs);
1439 
1440 	ret = do_mathemu(regs);
1441 	if (ret >= 0)
1442 		PPC_WARN_EMULATED(math, regs);
1443 
1444 	switch (ret) {
1445 	case 0:
1446 		emulate_single_step(regs);
1447 		return 0;
1448 	case 1: {
1449 			int code = 0;
1450 			code = __parse_fpscr(current->thread.fp_state.fpscr);
1451 			_exception(SIGFPE, regs, code, regs->nip);
1452 			return 0;
1453 		}
1454 	case -EFAULT:
1455 		_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1456 		return 0;
1457 	}
1458 
1459 	return -1;
1460 }
1461 #else
emulate_math(struct pt_regs * regs)1462 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1463 #endif
1464 
program_check_exception(struct pt_regs * regs)1465 void program_check_exception(struct pt_regs *regs)
1466 {
1467 	enum ctx_state prev_state = exception_enter();
1468 	unsigned int reason = get_reason(regs);
1469 
1470 	/* We can now get here via a FP Unavailable exception if the core
1471 	 * has no FPU, in that case the reason flags will be 0 */
1472 
1473 	if (reason & REASON_FP) {
1474 		/* IEEE FP exception */
1475 		parse_fpe(regs);
1476 		goto bail;
1477 	}
1478 	if (reason & REASON_TRAP) {
1479 		unsigned long bugaddr;
1480 		/* Debugger is first in line to stop recursive faults in
1481 		 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1482 		if (debugger_bpt(regs))
1483 			goto bail;
1484 
1485 		if (kprobe_handler(regs))
1486 			goto bail;
1487 
1488 		/* trap exception */
1489 		if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1490 				== NOTIFY_STOP)
1491 			goto bail;
1492 
1493 		bugaddr = regs->nip;
1494 		/*
1495 		 * Fixup bugaddr for BUG_ON() in real mode
1496 		 */
1497 		if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1498 			bugaddr += PAGE_OFFSET;
1499 
1500 		if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1501 		    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1502 			regs->nip += 4;
1503 			goto bail;
1504 		}
1505 		_exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1506 		goto bail;
1507 	}
1508 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1509 	if (reason & REASON_TM) {
1510 		/* This is a TM "Bad Thing Exception" program check.
1511 		 * This occurs when:
1512 		 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1513 		 *    transition in TM states.
1514 		 * -  A trechkpt is attempted when transactional.
1515 		 * -  A treclaim is attempted when non transactional.
1516 		 * -  A tend is illegally attempted.
1517 		 * -  writing a TM SPR when transactional.
1518 		 *
1519 		 * If usermode caused this, it's done something illegal and
1520 		 * gets a SIGILL slap on the wrist.  We call it an illegal
1521 		 * operand to distinguish from the instruction just being bad
1522 		 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1523 		 * illegal /placement/ of a valid instruction.
1524 		 */
1525 		if (user_mode(regs)) {
1526 			_exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1527 			goto bail;
1528 		} else {
1529 			printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1530 			       "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1531 			       regs->nip, regs->msr, get_paca()->tm_scratch);
1532 			die("Unrecoverable exception", regs, SIGABRT);
1533 		}
1534 	}
1535 #endif
1536 
1537 	/*
1538 	 * If we took the program check in the kernel skip down to sending a
1539 	 * SIGILL. The subsequent cases all relate to emulating instructions
1540 	 * which we should only do for userspace. We also do not want to enable
1541 	 * interrupts for kernel faults because that might lead to further
1542 	 * faults, and loose the context of the original exception.
1543 	 */
1544 	if (!user_mode(regs))
1545 		goto sigill;
1546 
1547 	/* We restore the interrupt state now */
1548 	if (!arch_irq_disabled_regs(regs))
1549 		local_irq_enable();
1550 
1551 	/* (reason & REASON_ILLEGAL) would be the obvious thing here,
1552 	 * but there seems to be a hardware bug on the 405GP (RevD)
1553 	 * that means ESR is sometimes set incorrectly - either to
1554 	 * ESR_DST (!?) or 0.  In the process of chasing this with the
1555 	 * hardware people - not sure if it can happen on any illegal
1556 	 * instruction or only on FP instructions, whether there is a
1557 	 * pattern to occurrences etc. -dgibson 31/Mar/2003
1558 	 */
1559 	if (!emulate_math(regs))
1560 		goto bail;
1561 
1562 	/* Try to emulate it if we should. */
1563 	if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1564 		switch (emulate_instruction(regs)) {
1565 		case 0:
1566 			regs->nip += 4;
1567 			emulate_single_step(regs);
1568 			goto bail;
1569 		case -EFAULT:
1570 			_exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1571 			goto bail;
1572 		}
1573 	}
1574 
1575 sigill:
1576 	if (reason & REASON_PRIVILEGED)
1577 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1578 	else
1579 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1580 
1581 bail:
1582 	exception_exit(prev_state);
1583 }
1584 NOKPROBE_SYMBOL(program_check_exception);
1585 
1586 /*
1587  * This occurs when running in hypervisor mode on POWER6 or later
1588  * and an illegal instruction is encountered.
1589  */
emulation_assist_interrupt(struct pt_regs * regs)1590 void emulation_assist_interrupt(struct pt_regs *regs)
1591 {
1592 	regs->msr |= REASON_ILLEGAL;
1593 	program_check_exception(regs);
1594 }
1595 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1596 
alignment_exception(struct pt_regs * regs)1597 void alignment_exception(struct pt_regs *regs)
1598 {
1599 	enum ctx_state prev_state = exception_enter();
1600 	int sig, code, fixed = 0;
1601 
1602 	/* We restore the interrupt state now */
1603 	if (!arch_irq_disabled_regs(regs))
1604 		local_irq_enable();
1605 
1606 	if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1607 		goto bail;
1608 
1609 	/* we don't implement logging of alignment exceptions */
1610 	if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1611 		fixed = fix_alignment(regs);
1612 
1613 	if (fixed == 1) {
1614 		regs->nip += 4;	/* skip over emulated instruction */
1615 		emulate_single_step(regs);
1616 		goto bail;
1617 	}
1618 
1619 	/* Operand address was bad */
1620 	if (fixed == -EFAULT) {
1621 		sig = SIGSEGV;
1622 		code = SEGV_ACCERR;
1623 	} else {
1624 		sig = SIGBUS;
1625 		code = BUS_ADRALN;
1626 	}
1627 	if (user_mode(regs))
1628 		_exception(sig, regs, code, regs->dar);
1629 	else
1630 		bad_page_fault(regs, regs->dar, sig);
1631 
1632 bail:
1633 	exception_exit(prev_state);
1634 }
1635 
StackOverflow(struct pt_regs * regs)1636 void StackOverflow(struct pt_regs *regs)
1637 {
1638 	pr_crit("Kernel stack overflow in process %s[%d], r1=%lx\n",
1639 		current->comm, task_pid_nr(current), regs->gpr[1]);
1640 	debugger(regs);
1641 	show_regs(regs);
1642 	panic("kernel stack overflow");
1643 }
1644 
kernel_fp_unavailable_exception(struct pt_regs * regs)1645 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1646 {
1647 	enum ctx_state prev_state = exception_enter();
1648 
1649 	printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1650 			  "%lx at %lx\n", regs->trap, regs->nip);
1651 	die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1652 
1653 	exception_exit(prev_state);
1654 }
1655 
altivec_unavailable_exception(struct pt_regs * regs)1656 void altivec_unavailable_exception(struct pt_regs *regs)
1657 {
1658 	enum ctx_state prev_state = exception_enter();
1659 
1660 	if (user_mode(regs)) {
1661 		/* A user program has executed an altivec instruction,
1662 		   but this kernel doesn't support altivec. */
1663 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1664 		goto bail;
1665 	}
1666 
1667 	printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1668 			"%lx at %lx\n", regs->trap, regs->nip);
1669 	die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1670 
1671 bail:
1672 	exception_exit(prev_state);
1673 }
1674 
vsx_unavailable_exception(struct pt_regs * regs)1675 void vsx_unavailable_exception(struct pt_regs *regs)
1676 {
1677 	if (user_mode(regs)) {
1678 		/* A user program has executed an vsx instruction,
1679 		   but this kernel doesn't support vsx. */
1680 		_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1681 		return;
1682 	}
1683 
1684 	printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1685 			"%lx at %lx\n", regs->trap, regs->nip);
1686 	die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1687 }
1688 
1689 #ifdef CONFIG_PPC64
tm_unavailable(struct pt_regs * regs)1690 static void tm_unavailable(struct pt_regs *regs)
1691 {
1692 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1693 	if (user_mode(regs)) {
1694 		current->thread.load_tm++;
1695 		regs->msr |= MSR_TM;
1696 		tm_enable();
1697 		tm_restore_sprs(&current->thread);
1698 		return;
1699 	}
1700 #endif
1701 	pr_emerg("Unrecoverable TM Unavailable Exception "
1702 			"%lx at %lx\n", regs->trap, regs->nip);
1703 	die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1704 }
1705 
facility_unavailable_exception(struct pt_regs * regs)1706 void facility_unavailable_exception(struct pt_regs *regs)
1707 {
1708 	static char *facility_strings[] = {
1709 		[FSCR_FP_LG] = "FPU",
1710 		[FSCR_VECVSX_LG] = "VMX/VSX",
1711 		[FSCR_DSCR_LG] = "DSCR",
1712 		[FSCR_PM_LG] = "PMU SPRs",
1713 		[FSCR_BHRB_LG] = "BHRB",
1714 		[FSCR_TM_LG] = "TM",
1715 		[FSCR_EBB_LG] = "EBB",
1716 		[FSCR_TAR_LG] = "TAR",
1717 		[FSCR_MSGP_LG] = "MSGP",
1718 		[FSCR_SCV_LG] = "SCV",
1719 	};
1720 	char *facility = "unknown";
1721 	u64 value;
1722 	u32 instword, rd;
1723 	u8 status;
1724 	bool hv;
1725 
1726 	hv = (TRAP(regs) == 0xf80);
1727 	if (hv)
1728 		value = mfspr(SPRN_HFSCR);
1729 	else
1730 		value = mfspr(SPRN_FSCR);
1731 
1732 	status = value >> 56;
1733 	if ((hv || status >= 2) &&
1734 	    (status < ARRAY_SIZE(facility_strings)) &&
1735 	    facility_strings[status])
1736 		facility = facility_strings[status];
1737 
1738 	/* We should not have taken this interrupt in kernel */
1739 	if (!user_mode(regs)) {
1740 		pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1741 			 facility, status, regs->nip);
1742 		die("Unexpected facility unavailable exception", regs, SIGABRT);
1743 	}
1744 
1745 	/* We restore the interrupt state now */
1746 	if (!arch_irq_disabled_regs(regs))
1747 		local_irq_enable();
1748 
1749 	if (status == FSCR_DSCR_LG) {
1750 		/*
1751 		 * User is accessing the DSCR register using the problem
1752 		 * state only SPR number (0x03) either through a mfspr or
1753 		 * a mtspr instruction. If it is a write attempt through
1754 		 * a mtspr, then we set the inherit bit. This also allows
1755 		 * the user to write or read the register directly in the
1756 		 * future by setting via the FSCR DSCR bit. But in case it
1757 		 * is a read DSCR attempt through a mfspr instruction, we
1758 		 * just emulate the instruction instead. This code path will
1759 		 * always emulate all the mfspr instructions till the user
1760 		 * has attempted at least one mtspr instruction. This way it
1761 		 * preserves the same behaviour when the user is accessing
1762 		 * the DSCR through privilege level only SPR number (0x11)
1763 		 * which is emulated through illegal instruction exception.
1764 		 * We always leave HFSCR DSCR set.
1765 		 */
1766 		if (get_user(instword, (u32 __user *)(regs->nip))) {
1767 			pr_err("Failed to fetch the user instruction\n");
1768 			return;
1769 		}
1770 
1771 		/* Write into DSCR (mtspr 0x03, RS) */
1772 		if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1773 				== PPC_INST_MTSPR_DSCR_USER) {
1774 			rd = (instword >> 21) & 0x1f;
1775 			current->thread.dscr = regs->gpr[rd];
1776 			current->thread.dscr_inherit = 1;
1777 			current->thread.fscr |= FSCR_DSCR;
1778 			mtspr(SPRN_FSCR, current->thread.fscr);
1779 		}
1780 
1781 		/* Read from DSCR (mfspr RT, 0x03) */
1782 		if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1783 				== PPC_INST_MFSPR_DSCR_USER) {
1784 			if (emulate_instruction(regs)) {
1785 				pr_err("DSCR based mfspr emulation failed\n");
1786 				return;
1787 			}
1788 			regs->nip += 4;
1789 			emulate_single_step(regs);
1790 		}
1791 		return;
1792 	}
1793 
1794 	if (status == FSCR_TM_LG) {
1795 		/*
1796 		 * If we're here then the hardware is TM aware because it
1797 		 * generated an exception with FSRM_TM set.
1798 		 *
1799 		 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1800 		 * told us not to do TM, or the kernel is not built with TM
1801 		 * support.
1802 		 *
1803 		 * If both of those things are true, then userspace can spam the
1804 		 * console by triggering the printk() below just by continually
1805 		 * doing tbegin (or any TM instruction). So in that case just
1806 		 * send the process a SIGILL immediately.
1807 		 */
1808 		if (!cpu_has_feature(CPU_FTR_TM))
1809 			goto out;
1810 
1811 		tm_unavailable(regs);
1812 		return;
1813 	}
1814 
1815 	pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1816 		hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1817 
1818 out:
1819 	_exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1820 }
1821 #endif
1822 
1823 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1824 
fp_unavailable_tm(struct pt_regs * regs)1825 void fp_unavailable_tm(struct pt_regs *regs)
1826 {
1827 	/* Note:  This does not handle any kind of FP laziness. */
1828 
1829 	TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1830 		 regs->nip, regs->msr);
1831 
1832         /* We can only have got here if the task started using FP after
1833          * beginning the transaction.  So, the transactional regs are just a
1834          * copy of the checkpointed ones.  But, we still need to recheckpoint
1835          * as we're enabling FP for the process; it will return, abort the
1836          * transaction, and probably retry but now with FP enabled.  So the
1837          * checkpointed FP registers need to be loaded.
1838 	 */
1839 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1840 
1841 	/*
1842 	 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1843 	 * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1844 	 *
1845 	 * At this point, ck{fp,vr}_state contains the exact values we want to
1846 	 * recheckpoint.
1847 	 */
1848 
1849 	/* Enable FP for the task: */
1850 	current->thread.load_fp = 1;
1851 
1852 	/*
1853 	 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
1854 	 */
1855 	tm_recheckpoint(&current->thread);
1856 }
1857 
altivec_unavailable_tm(struct pt_regs * regs)1858 void altivec_unavailable_tm(struct pt_regs *regs)
1859 {
1860 	/* See the comments in fp_unavailable_tm().  This function operates
1861 	 * the same way.
1862 	 */
1863 
1864 	TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1865 		 "MSR=%lx\n",
1866 		 regs->nip, regs->msr);
1867 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1868 	current->thread.load_vec = 1;
1869 	tm_recheckpoint(&current->thread);
1870 	current->thread.used_vr = 1;
1871 }
1872 
vsx_unavailable_tm(struct pt_regs * regs)1873 void vsx_unavailable_tm(struct pt_regs *regs)
1874 {
1875 	/* See the comments in fp_unavailable_tm().  This works similarly,
1876 	 * though we're loading both FP and VEC registers in here.
1877 	 *
1878 	 * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1879 	 * regs.  Either way, set MSR_VSX.
1880 	 */
1881 
1882 	TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1883 		 "MSR=%lx\n",
1884 		 regs->nip, regs->msr);
1885 
1886 	current->thread.used_vsr = 1;
1887 
1888 	/* This reclaims FP and/or VR regs if they're already enabled */
1889 	tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1890 
1891 	current->thread.load_vec = 1;
1892 	current->thread.load_fp = 1;
1893 
1894 	tm_recheckpoint(&current->thread);
1895 }
1896 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1897 
performance_monitor_exception(struct pt_regs * regs)1898 void performance_monitor_exception(struct pt_regs *regs)
1899 {
1900 	__this_cpu_inc(irq_stat.pmu_irqs);
1901 
1902 	perf_irq(regs);
1903 }
1904 
1905 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
handle_debug(struct pt_regs * regs,unsigned long debug_status)1906 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1907 {
1908 	int changed = 0;
1909 	/*
1910 	 * Determine the cause of the debug event, clear the
1911 	 * event flags and send a trap to the handler. Torez
1912 	 */
1913 	if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1914 		dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1915 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1916 		current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1917 #endif
1918 		do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1919 			     5);
1920 		changed |= 0x01;
1921 	}  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1922 		dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1923 		do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1924 			     6);
1925 		changed |= 0x01;
1926 	}  else if (debug_status & DBSR_IAC1) {
1927 		current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1928 		dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1929 		do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1930 			     1);
1931 		changed |= 0x01;
1932 	}  else if (debug_status & DBSR_IAC2) {
1933 		current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1934 		do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1935 			     2);
1936 		changed |= 0x01;
1937 	}  else if (debug_status & DBSR_IAC3) {
1938 		current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1939 		dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1940 		do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
1941 			     3);
1942 		changed |= 0x01;
1943 	}  else if (debug_status & DBSR_IAC4) {
1944 		current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1945 		do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
1946 			     4);
1947 		changed |= 0x01;
1948 	}
1949 	/*
1950 	 * At the point this routine was called, the MSR(DE) was turned off.
1951 	 * Check all other debug flags and see if that bit needs to be turned
1952 	 * back on or not.
1953 	 */
1954 	if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1955 			       current->thread.debug.dbcr1))
1956 		regs->msr |= MSR_DE;
1957 	else
1958 		/* Make sure the IDM flag is off */
1959 		current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1960 
1961 	if (changed & 0x01)
1962 		mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1963 }
1964 
DebugException(struct pt_regs * regs,unsigned long debug_status)1965 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1966 {
1967 	current->thread.debug.dbsr = debug_status;
1968 
1969 	/* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1970 	 * on server, it stops on the target of the branch. In order to simulate
1971 	 * the server behaviour, we thus restart right away with a single step
1972 	 * instead of stopping here when hitting a BT
1973 	 */
1974 	if (debug_status & DBSR_BT) {
1975 		regs->msr &= ~MSR_DE;
1976 
1977 		/* Disable BT */
1978 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1979 		/* Clear the BT event */
1980 		mtspr(SPRN_DBSR, DBSR_BT);
1981 
1982 		/* Do the single step trick only when coming from userspace */
1983 		if (user_mode(regs)) {
1984 			current->thread.debug.dbcr0 &= ~DBCR0_BT;
1985 			current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1986 			regs->msr |= MSR_DE;
1987 			return;
1988 		}
1989 
1990 		if (kprobe_post_handler(regs))
1991 			return;
1992 
1993 		if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1994 			       5, SIGTRAP) == NOTIFY_STOP) {
1995 			return;
1996 		}
1997 		if (debugger_sstep(regs))
1998 			return;
1999 	} else if (debug_status & DBSR_IC) { 	/* Instruction complete */
2000 		regs->msr &= ~MSR_DE;
2001 
2002 		/* Disable instruction completion */
2003 		mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
2004 		/* Clear the instruction completion event */
2005 		mtspr(SPRN_DBSR, DBSR_IC);
2006 
2007 		if (kprobe_post_handler(regs))
2008 			return;
2009 
2010 		if (notify_die(DIE_SSTEP, "single_step", regs, 5,
2011 			       5, SIGTRAP) == NOTIFY_STOP) {
2012 			return;
2013 		}
2014 
2015 		if (debugger_sstep(regs))
2016 			return;
2017 
2018 		if (user_mode(regs)) {
2019 			current->thread.debug.dbcr0 &= ~DBCR0_IC;
2020 			if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
2021 					       current->thread.debug.dbcr1))
2022 				regs->msr |= MSR_DE;
2023 			else
2024 				/* Make sure the IDM bit is off */
2025 				current->thread.debug.dbcr0 &= ~DBCR0_IDM;
2026 		}
2027 
2028 		_exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
2029 	} else
2030 		handle_debug(regs, debug_status);
2031 }
2032 NOKPROBE_SYMBOL(DebugException);
2033 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2034 
2035 #if !defined(CONFIG_TAU_INT)
TAUException(struct pt_regs * regs)2036 void TAUException(struct pt_regs *regs)
2037 {
2038 	printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
2039 	       regs->nip, regs->msr, regs->trap, print_tainted());
2040 }
2041 #endif /* CONFIG_INT_TAU */
2042 
2043 #ifdef CONFIG_ALTIVEC
altivec_assist_exception(struct pt_regs * regs)2044 void altivec_assist_exception(struct pt_regs *regs)
2045 {
2046 	int err;
2047 
2048 	if (!user_mode(regs)) {
2049 		printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
2050 		       " at %lx\n", regs->nip);
2051 		die("Kernel VMX/Altivec assist exception", regs, SIGILL);
2052 	}
2053 
2054 	flush_altivec_to_thread(current);
2055 
2056 	PPC_WARN_EMULATED(altivec, regs);
2057 	err = emulate_altivec(regs);
2058 	if (err == 0) {
2059 		regs->nip += 4;		/* skip emulated instruction */
2060 		emulate_single_step(regs);
2061 		return;
2062 	}
2063 
2064 	if (err == -EFAULT) {
2065 		/* got an error reading the instruction */
2066 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2067 	} else {
2068 		/* didn't recognize the instruction */
2069 		/* XXX quick hack for now: set the non-Java bit in the VSCR */
2070 		printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
2071 				   "in %s at %lx\n", current->comm, regs->nip);
2072 		current->thread.vr_state.vscr.u[3] |= 0x10000;
2073 	}
2074 }
2075 #endif /* CONFIG_ALTIVEC */
2076 
2077 #ifdef CONFIG_FSL_BOOKE
CacheLockingException(struct pt_regs * regs,unsigned long address,unsigned long error_code)2078 void CacheLockingException(struct pt_regs *regs, unsigned long address,
2079 			   unsigned long error_code)
2080 {
2081 	/* We treat cache locking instructions from the user
2082 	 * as priv ops, in the future we could try to do
2083 	 * something smarter
2084 	 */
2085 	if (error_code & (ESR_DLK|ESR_ILK))
2086 		_exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
2087 	return;
2088 }
2089 #endif /* CONFIG_FSL_BOOKE */
2090 
2091 #ifdef CONFIG_SPE
SPEFloatingPointException(struct pt_regs * regs)2092 void SPEFloatingPointException(struct pt_regs *regs)
2093 {
2094 	extern int do_spe_mathemu(struct pt_regs *regs);
2095 	unsigned long spefscr;
2096 	int fpexc_mode;
2097 	int code = FPE_FLTUNK;
2098 	int err;
2099 
2100 	/* We restore the interrupt state now */
2101 	if (!arch_irq_disabled_regs(regs))
2102 		local_irq_enable();
2103 
2104 	flush_spe_to_thread(current);
2105 
2106 	spefscr = current->thread.spefscr;
2107 	fpexc_mode = current->thread.fpexc_mode;
2108 
2109 	if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2110 		code = FPE_FLTOVF;
2111 	}
2112 	else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2113 		code = FPE_FLTUND;
2114 	}
2115 	else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2116 		code = FPE_FLTDIV;
2117 	else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2118 		code = FPE_FLTINV;
2119 	}
2120 	else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2121 		code = FPE_FLTRES;
2122 
2123 	err = do_spe_mathemu(regs);
2124 	if (err == 0) {
2125 		regs->nip += 4;		/* skip emulated instruction */
2126 		emulate_single_step(regs);
2127 		return;
2128 	}
2129 
2130 	if (err == -EFAULT) {
2131 		/* got an error reading the instruction */
2132 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2133 	} else if (err == -EINVAL) {
2134 		/* didn't recognize the instruction */
2135 		printk(KERN_ERR "unrecognized spe instruction "
2136 		       "in %s at %lx\n", current->comm, regs->nip);
2137 	} else {
2138 		_exception(SIGFPE, regs, code, regs->nip);
2139 	}
2140 
2141 	return;
2142 }
2143 
SPEFloatingPointRoundException(struct pt_regs * regs)2144 void SPEFloatingPointRoundException(struct pt_regs *regs)
2145 {
2146 	extern int speround_handler(struct pt_regs *regs);
2147 	int err;
2148 
2149 	/* We restore the interrupt state now */
2150 	if (!arch_irq_disabled_regs(regs))
2151 		local_irq_enable();
2152 
2153 	preempt_disable();
2154 	if (regs->msr & MSR_SPE)
2155 		giveup_spe(current);
2156 	preempt_enable();
2157 
2158 	regs->nip -= 4;
2159 	err = speround_handler(regs);
2160 	if (err == 0) {
2161 		regs->nip += 4;		/* skip emulated instruction */
2162 		emulate_single_step(regs);
2163 		return;
2164 	}
2165 
2166 	if (err == -EFAULT) {
2167 		/* got an error reading the instruction */
2168 		_exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2169 	} else if (err == -EINVAL) {
2170 		/* didn't recognize the instruction */
2171 		printk(KERN_ERR "unrecognized spe instruction "
2172 		       "in %s at %lx\n", current->comm, regs->nip);
2173 	} else {
2174 		_exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
2175 		return;
2176 	}
2177 }
2178 #endif
2179 
2180 /*
2181  * We enter here if we get an unrecoverable exception, that is, one
2182  * that happened at a point where the RI (recoverable interrupt) bit
2183  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
2184  * we therefore lost state by taking this exception.
2185  */
unrecoverable_exception(struct pt_regs * regs)2186 void unrecoverable_exception(struct pt_regs *regs)
2187 {
2188 	pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2189 		 regs->trap, regs->nip, regs->msr);
2190 	die("Unrecoverable exception", regs, SIGABRT);
2191 }
2192 NOKPROBE_SYMBOL(unrecoverable_exception);
2193 
2194 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2195 /*
2196  * Default handler for a Watchdog exception,
2197  * spins until a reboot occurs
2198  */
WatchdogHandler(struct pt_regs * regs)2199 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2200 {
2201 	/* Generic WatchdogHandler, implement your own */
2202 	mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2203 	return;
2204 }
2205 
WatchdogException(struct pt_regs * regs)2206 void WatchdogException(struct pt_regs *regs)
2207 {
2208 	printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2209 	WatchdogHandler(regs);
2210 }
2211 #endif
2212 
2213 /*
2214  * We enter here if we discover during exception entry that we are
2215  * running in supervisor mode with a userspace value in the stack pointer.
2216  */
kernel_bad_stack(struct pt_regs * regs)2217 void kernel_bad_stack(struct pt_regs *regs)
2218 {
2219 	printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2220 	       regs->gpr[1], regs->nip);
2221 	die("Bad kernel stack pointer", regs, SIGABRT);
2222 }
2223 NOKPROBE_SYMBOL(kernel_bad_stack);
2224 
trap_init(void)2225 void __init trap_init(void)
2226 {
2227 }
2228 
2229 
2230 #ifdef CONFIG_PPC_EMULATED_STATS
2231 
2232 #define WARN_EMULATED_SETUP(type)	.type = { .name = #type }
2233 
2234 struct ppc_emulated ppc_emulated = {
2235 #ifdef CONFIG_ALTIVEC
2236 	WARN_EMULATED_SETUP(altivec),
2237 #endif
2238 	WARN_EMULATED_SETUP(dcba),
2239 	WARN_EMULATED_SETUP(dcbz),
2240 	WARN_EMULATED_SETUP(fp_pair),
2241 	WARN_EMULATED_SETUP(isel),
2242 	WARN_EMULATED_SETUP(mcrxr),
2243 	WARN_EMULATED_SETUP(mfpvr),
2244 	WARN_EMULATED_SETUP(multiple),
2245 	WARN_EMULATED_SETUP(popcntb),
2246 	WARN_EMULATED_SETUP(spe),
2247 	WARN_EMULATED_SETUP(string),
2248 	WARN_EMULATED_SETUP(sync),
2249 	WARN_EMULATED_SETUP(unaligned),
2250 #ifdef CONFIG_MATH_EMULATION
2251 	WARN_EMULATED_SETUP(math),
2252 #endif
2253 #ifdef CONFIG_VSX
2254 	WARN_EMULATED_SETUP(vsx),
2255 #endif
2256 #ifdef CONFIG_PPC64
2257 	WARN_EMULATED_SETUP(mfdscr),
2258 	WARN_EMULATED_SETUP(mtdscr),
2259 	WARN_EMULATED_SETUP(lq_stq),
2260 	WARN_EMULATED_SETUP(lxvw4x),
2261 	WARN_EMULATED_SETUP(lxvh8x),
2262 	WARN_EMULATED_SETUP(lxvd2x),
2263 	WARN_EMULATED_SETUP(lxvb16x),
2264 #endif
2265 };
2266 
2267 u32 ppc_warn_emulated;
2268 
ppc_warn_emulated_print(const char * type)2269 void ppc_warn_emulated_print(const char *type)
2270 {
2271 	pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2272 			    type);
2273 }
2274 
ppc_warn_emulated_init(void)2275 static int __init ppc_warn_emulated_init(void)
2276 {
2277 	struct dentry *dir, *d;
2278 	unsigned int i;
2279 	struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2280 
2281 	if (!powerpc_debugfs_root)
2282 		return -ENODEV;
2283 
2284 	dir = debugfs_create_dir("emulated_instructions",
2285 				 powerpc_debugfs_root);
2286 	if (!dir)
2287 		return -ENOMEM;
2288 
2289 	d = debugfs_create_u32("do_warn", 0644, dir,
2290 			       &ppc_warn_emulated);
2291 	if (!d)
2292 		goto fail;
2293 
2294 	for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2295 		d = debugfs_create_u32(entries[i].name, 0644, dir,
2296 				       (u32 *)&entries[i].val.counter);
2297 		if (!d)
2298 			goto fail;
2299 	}
2300 
2301 	return 0;
2302 
2303 fail:
2304 	debugfs_remove_recursive(dir);
2305 	return -ENOMEM;
2306 }
2307 
2308 device_initcall(ppc_warn_emulated_init);
2309 
2310 #endif /* CONFIG_PPC_EMULATED_STATS */
2311