1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/bpf.h>
95 #include <linux/bpf_trace.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <net/busy_poll.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/pkt_cls.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140 #include <linux/crash_dump.h>
141 #include <linux/sctp.h>
142 #include <net/udp_tunnel.h>
143 #include <linux/net_namespace.h>
144 #include <linux/indirect_call_wrapper.h>
145 #include <net/devlink.h>
146 #include <trace/hooks/net.h>
147
148 #include "net-sysfs.h"
149
150 #define MAX_GRO_SKBS 8
151
152 /* This should be increased if a protocol with a bigger head is added. */
153 #define GRO_MAX_HEAD (MAX_HEADER + 128)
154
155 static DEFINE_SPINLOCK(ptype_lock);
156 static DEFINE_SPINLOCK(offload_lock);
157 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
158 struct list_head ptype_all __read_mostly; /* Taps */
159 static struct list_head offload_base __read_mostly;
160
161 static int netif_rx_internal(struct sk_buff *skb);
162 static int call_netdevice_notifiers_info(unsigned long val,
163 struct netdev_notifier_info *info);
164 static int call_netdevice_notifiers_extack(unsigned long val,
165 struct net_device *dev,
166 struct netlink_ext_ack *extack);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
172 *
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174 *
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
179 *
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
183 *
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
187 */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static DECLARE_RWSEM(devnet_rename_sem);
200
dev_base_seq_inc(struct net * net)201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 while (++net->dev_base_seq == 0)
204 ;
205 }
206
dev_name_hash(struct net * net,const char * name)207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
dev_index_hash(struct net * net,int ifindex)214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
rps_lock(struct softnet_data * sd)219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
rps_unlock(struct softnet_data * sd)226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 /* Device list insertion */
list_netdevice(struct net_device * dev)234 static void list_netdevice(struct net_device *dev)
235 {
236 struct net *net = dev_net(dev);
237
238 ASSERT_RTNL();
239
240 write_lock_bh(&dev_base_lock);
241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
245 write_unlock_bh(&dev_base_lock);
246
247 dev_base_seq_inc(net);
248 }
249
250 /* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
252 */
unlist_netdevice(struct net_device * dev)253 static void unlist_netdevice(struct net_device *dev)
254 {
255 ASSERT_RTNL();
256
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
259 list_del_rcu(&dev->dev_list);
260 hlist_del_rcu(&dev->name_hlist);
261 hlist_del_rcu(&dev->index_hlist);
262 write_unlock_bh(&dev_base_lock);
263
264 dev_base_seq_inc(dev_net(dev));
265 }
266
267 /*
268 * Our notifier list
269 */
270
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272
273 /*
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
276 */
277
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281 /*******************************************************************************
282 *
283 * Protocol management and registration routines
284 *
285 *******************************************************************************/
286
287
288 /*
289 * Add a protocol ID to the list. Now that the input handler is
290 * smarter we can dispense with all the messy stuff that used to be
291 * here.
292 *
293 * BEWARE!!! Protocol handlers, mangling input packets,
294 * MUST BE last in hash buckets and checking protocol handlers
295 * MUST start from promiscuous ptype_all chain in net_bh.
296 * It is true now, do not change it.
297 * Explanation follows: if protocol handler, mangling packet, will
298 * be the first on list, it is not able to sense, that packet
299 * is cloned and should be copied-on-write, so that it will
300 * change it and subsequent readers will get broken packet.
301 * --ANK (980803)
302 */
303
ptype_head(const struct packet_type * pt)304 static inline struct list_head *ptype_head(const struct packet_type *pt)
305 {
306 struct list_head vendor_pt = { .next = NULL, };
307
308 trace_android_vh_ptype_head(pt, &vendor_pt);
309 if (vendor_pt.next)
310 return vendor_pt.next;
311
312 if (pt->type == htons(ETH_P_ALL))
313 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
314 else
315 return pt->dev ? &pt->dev->ptype_specific :
316 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
317 }
318
319 /**
320 * dev_add_pack - add packet handler
321 * @pt: packet type declaration
322 *
323 * Add a protocol handler to the networking stack. The passed &packet_type
324 * is linked into kernel lists and may not be freed until it has been
325 * removed from the kernel lists.
326 *
327 * This call does not sleep therefore it can not
328 * guarantee all CPU's that are in middle of receiving packets
329 * will see the new packet type (until the next received packet).
330 */
331
dev_add_pack(struct packet_type * pt)332 void dev_add_pack(struct packet_type *pt)
333 {
334 struct list_head *head = ptype_head(pt);
335
336 spin_lock(&ptype_lock);
337 list_add_rcu(&pt->list, head);
338 spin_unlock(&ptype_lock);
339 }
340 EXPORT_SYMBOL(dev_add_pack);
341
342 /**
343 * __dev_remove_pack - remove packet handler
344 * @pt: packet type declaration
345 *
346 * Remove a protocol handler that was previously added to the kernel
347 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
348 * from the kernel lists and can be freed or reused once this function
349 * returns.
350 *
351 * The packet type might still be in use by receivers
352 * and must not be freed until after all the CPU's have gone
353 * through a quiescent state.
354 */
__dev_remove_pack(struct packet_type * pt)355 void __dev_remove_pack(struct packet_type *pt)
356 {
357 struct list_head *head = ptype_head(pt);
358 struct packet_type *pt1;
359
360 spin_lock(&ptype_lock);
361
362 list_for_each_entry(pt1, head, list) {
363 if (pt == pt1) {
364 list_del_rcu(&pt->list);
365 goto out;
366 }
367 }
368
369 pr_warn("dev_remove_pack: %p not found\n", pt);
370 out:
371 spin_unlock(&ptype_lock);
372 }
373 EXPORT_SYMBOL(__dev_remove_pack);
374
375 /**
376 * dev_remove_pack - remove packet handler
377 * @pt: packet type declaration
378 *
379 * Remove a protocol handler that was previously added to the kernel
380 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
381 * from the kernel lists and can be freed or reused once this function
382 * returns.
383 *
384 * This call sleeps to guarantee that no CPU is looking at the packet
385 * type after return.
386 */
dev_remove_pack(struct packet_type * pt)387 void dev_remove_pack(struct packet_type *pt)
388 {
389 __dev_remove_pack(pt);
390
391 synchronize_net();
392 }
393 EXPORT_SYMBOL(dev_remove_pack);
394
395
396 /**
397 * dev_add_offload - register offload handlers
398 * @po: protocol offload declaration
399 *
400 * Add protocol offload handlers to the networking stack. The passed
401 * &proto_offload is linked into kernel lists and may not be freed until
402 * it has been removed from the kernel lists.
403 *
404 * This call does not sleep therefore it can not
405 * guarantee all CPU's that are in middle of receiving packets
406 * will see the new offload handlers (until the next received packet).
407 */
dev_add_offload(struct packet_offload * po)408 void dev_add_offload(struct packet_offload *po)
409 {
410 struct packet_offload *elem;
411
412 spin_lock(&offload_lock);
413 list_for_each_entry(elem, &offload_base, list) {
414 if (po->priority < elem->priority)
415 break;
416 }
417 list_add_rcu(&po->list, elem->list.prev);
418 spin_unlock(&offload_lock);
419 }
420 EXPORT_SYMBOL(dev_add_offload);
421
422 /**
423 * __dev_remove_offload - remove offload handler
424 * @po: packet offload declaration
425 *
426 * Remove a protocol offload handler that was previously added to the
427 * kernel offload handlers by dev_add_offload(). The passed &offload_type
428 * is removed from the kernel lists and can be freed or reused once this
429 * function returns.
430 *
431 * The packet type might still be in use by receivers
432 * and must not be freed until after all the CPU's have gone
433 * through a quiescent state.
434 */
__dev_remove_offload(struct packet_offload * po)435 static void __dev_remove_offload(struct packet_offload *po)
436 {
437 struct list_head *head = &offload_base;
438 struct packet_offload *po1;
439
440 spin_lock(&offload_lock);
441
442 list_for_each_entry(po1, head, list) {
443 if (po == po1) {
444 list_del_rcu(&po->list);
445 goto out;
446 }
447 }
448
449 pr_warn("dev_remove_offload: %p not found\n", po);
450 out:
451 spin_unlock(&offload_lock);
452 }
453
454 /**
455 * dev_remove_offload - remove packet offload handler
456 * @po: packet offload declaration
457 *
458 * Remove a packet offload handler that was previously added to the kernel
459 * offload handlers by dev_add_offload(). The passed &offload_type is
460 * removed from the kernel lists and can be freed or reused once this
461 * function returns.
462 *
463 * This call sleeps to guarantee that no CPU is looking at the packet
464 * type after return.
465 */
dev_remove_offload(struct packet_offload * po)466 void dev_remove_offload(struct packet_offload *po)
467 {
468 __dev_remove_offload(po);
469
470 synchronize_net();
471 }
472 EXPORT_SYMBOL(dev_remove_offload);
473
474 /******************************************************************************
475 *
476 * Device Boot-time Settings Routines
477 *
478 ******************************************************************************/
479
480 /* Boot time configuration table */
481 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
482
483 /**
484 * netdev_boot_setup_add - add new setup entry
485 * @name: name of the device
486 * @map: configured settings for the device
487 *
488 * Adds new setup entry to the dev_boot_setup list. The function
489 * returns 0 on error and 1 on success. This is a generic routine to
490 * all netdevices.
491 */
netdev_boot_setup_add(char * name,struct ifmap * map)492 static int netdev_boot_setup_add(char *name, struct ifmap *map)
493 {
494 struct netdev_boot_setup *s;
495 int i;
496
497 s = dev_boot_setup;
498 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
499 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
500 memset(s[i].name, 0, sizeof(s[i].name));
501 strlcpy(s[i].name, name, IFNAMSIZ);
502 memcpy(&s[i].map, map, sizeof(s[i].map));
503 break;
504 }
505 }
506
507 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
508 }
509
510 /**
511 * netdev_boot_setup_check - check boot time settings
512 * @dev: the netdevice
513 *
514 * Check boot time settings for the device.
515 * The found settings are set for the device to be used
516 * later in the device probing.
517 * Returns 0 if no settings found, 1 if they are.
518 */
netdev_boot_setup_check(struct net_device * dev)519 int netdev_boot_setup_check(struct net_device *dev)
520 {
521 struct netdev_boot_setup *s = dev_boot_setup;
522 int i;
523
524 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
525 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
526 !strcmp(dev->name, s[i].name)) {
527 dev->irq = s[i].map.irq;
528 dev->base_addr = s[i].map.base_addr;
529 dev->mem_start = s[i].map.mem_start;
530 dev->mem_end = s[i].map.mem_end;
531 return 1;
532 }
533 }
534 return 0;
535 }
536 EXPORT_SYMBOL(netdev_boot_setup_check);
537
538
539 /**
540 * netdev_boot_base - get address from boot time settings
541 * @prefix: prefix for network device
542 * @unit: id for network device
543 *
544 * Check boot time settings for the base address of device.
545 * The found settings are set for the device to be used
546 * later in the device probing.
547 * Returns 0 if no settings found.
548 */
netdev_boot_base(const char * prefix,int unit)549 unsigned long netdev_boot_base(const char *prefix, int unit)
550 {
551 const struct netdev_boot_setup *s = dev_boot_setup;
552 char name[IFNAMSIZ];
553 int i;
554
555 sprintf(name, "%s%d", prefix, unit);
556
557 /*
558 * If device already registered then return base of 1
559 * to indicate not to probe for this interface
560 */
561 if (__dev_get_by_name(&init_net, name))
562 return 1;
563
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
565 if (!strcmp(name, s[i].name))
566 return s[i].map.base_addr;
567 return 0;
568 }
569
570 /*
571 * Saves at boot time configured settings for any netdevice.
572 */
netdev_boot_setup(char * str)573 int __init netdev_boot_setup(char *str)
574 {
575 int ints[5];
576 struct ifmap map;
577
578 str = get_options(str, ARRAY_SIZE(ints), ints);
579 if (!str || !*str)
580 return 0;
581
582 /* Save settings */
583 memset(&map, 0, sizeof(map));
584 if (ints[0] > 0)
585 map.irq = ints[1];
586 if (ints[0] > 1)
587 map.base_addr = ints[2];
588 if (ints[0] > 2)
589 map.mem_start = ints[3];
590 if (ints[0] > 3)
591 map.mem_end = ints[4];
592
593 /* Add new entry to the list */
594 return netdev_boot_setup_add(str, &map);
595 }
596
597 __setup("netdev=", netdev_boot_setup);
598
599 /*******************************************************************************
600 *
601 * Device Interface Subroutines
602 *
603 *******************************************************************************/
604
605 /**
606 * dev_get_iflink - get 'iflink' value of a interface
607 * @dev: targeted interface
608 *
609 * Indicates the ifindex the interface is linked to.
610 * Physical interfaces have the same 'ifindex' and 'iflink' values.
611 */
612
dev_get_iflink(const struct net_device * dev)613 int dev_get_iflink(const struct net_device *dev)
614 {
615 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
616 return dev->netdev_ops->ndo_get_iflink(dev);
617
618 return dev->ifindex;
619 }
620 EXPORT_SYMBOL(dev_get_iflink);
621
622 /**
623 * dev_fill_metadata_dst - Retrieve tunnel egress information.
624 * @dev: targeted interface
625 * @skb: The packet.
626 *
627 * For better visibility of tunnel traffic OVS needs to retrieve
628 * egress tunnel information for a packet. Following API allows
629 * user to get this info.
630 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)631 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
632 {
633 struct ip_tunnel_info *info;
634
635 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
636 return -EINVAL;
637
638 info = skb_tunnel_info_unclone(skb);
639 if (!info)
640 return -ENOMEM;
641 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
642 return -EINVAL;
643
644 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
645 }
646 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
647
648 /**
649 * __dev_get_by_name - find a device by its name
650 * @net: the applicable net namespace
651 * @name: name to find
652 *
653 * Find an interface by name. Must be called under RTNL semaphore
654 * or @dev_base_lock. If the name is found a pointer to the device
655 * is returned. If the name is not found then %NULL is returned. The
656 * reference counters are not incremented so the caller must be
657 * careful with locks.
658 */
659
__dev_get_by_name(struct net * net,const char * name)660 struct net_device *__dev_get_by_name(struct net *net, const char *name)
661 {
662 struct net_device *dev;
663 struct hlist_head *head = dev_name_hash(net, name);
664
665 hlist_for_each_entry(dev, head, name_hlist)
666 if (!strncmp(dev->name, name, IFNAMSIZ))
667 return dev;
668
669 return NULL;
670 }
671 EXPORT_SYMBOL(__dev_get_by_name);
672
673 /**
674 * dev_get_by_name_rcu - find a device by its name
675 * @net: the applicable net namespace
676 * @name: name to find
677 *
678 * Find an interface by name.
679 * If the name is found a pointer to the device is returned.
680 * If the name is not found then %NULL is returned.
681 * The reference counters are not incremented so the caller must be
682 * careful with locks. The caller must hold RCU lock.
683 */
684
dev_get_by_name_rcu(struct net * net,const char * name)685 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
686 {
687 struct net_device *dev;
688 struct hlist_head *head = dev_name_hash(net, name);
689
690 hlist_for_each_entry_rcu(dev, head, name_hlist)
691 if (!strncmp(dev->name, name, IFNAMSIZ))
692 return dev;
693
694 return NULL;
695 }
696 EXPORT_SYMBOL(dev_get_by_name_rcu);
697
698 /**
699 * dev_get_by_name - find a device by its name
700 * @net: the applicable net namespace
701 * @name: name to find
702 *
703 * Find an interface by name. This can be called from any
704 * context and does its own locking. The returned handle has
705 * the usage count incremented and the caller must use dev_put() to
706 * release it when it is no longer needed. %NULL is returned if no
707 * matching device is found.
708 */
709
dev_get_by_name(struct net * net,const char * name)710 struct net_device *dev_get_by_name(struct net *net, const char *name)
711 {
712 struct net_device *dev;
713
714 rcu_read_lock();
715 dev = dev_get_by_name_rcu(net, name);
716 if (dev)
717 dev_hold(dev);
718 rcu_read_unlock();
719 return dev;
720 }
721 EXPORT_SYMBOL(dev_get_by_name);
722
723 /**
724 * __dev_get_by_index - find a device by its ifindex
725 * @net: the applicable net namespace
726 * @ifindex: index of device
727 *
728 * Search for an interface by index. Returns %NULL if the device
729 * is not found or a pointer to the device. The device has not
730 * had its reference counter increased so the caller must be careful
731 * about locking. The caller must hold either the RTNL semaphore
732 * or @dev_base_lock.
733 */
734
__dev_get_by_index(struct net * net,int ifindex)735 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
736 {
737 struct net_device *dev;
738 struct hlist_head *head = dev_index_hash(net, ifindex);
739
740 hlist_for_each_entry(dev, head, index_hlist)
741 if (dev->ifindex == ifindex)
742 return dev;
743
744 return NULL;
745 }
746 EXPORT_SYMBOL(__dev_get_by_index);
747
748 /**
749 * dev_get_by_index_rcu - find a device by its ifindex
750 * @net: the applicable net namespace
751 * @ifindex: index of device
752 *
753 * Search for an interface by index. Returns %NULL if the device
754 * is not found or a pointer to the device. The device has not
755 * had its reference counter increased so the caller must be careful
756 * about locking. The caller must hold RCU lock.
757 */
758
dev_get_by_index_rcu(struct net * net,int ifindex)759 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
760 {
761 struct net_device *dev;
762 struct hlist_head *head = dev_index_hash(net, ifindex);
763
764 hlist_for_each_entry_rcu(dev, head, index_hlist)
765 if (dev->ifindex == ifindex)
766 return dev;
767
768 return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_index_rcu);
771
772
773 /**
774 * dev_get_by_index - find a device by its ifindex
775 * @net: the applicable net namespace
776 * @ifindex: index of device
777 *
778 * Search for an interface by index. Returns NULL if the device
779 * is not found or a pointer to the device. The device returned has
780 * had a reference added and the pointer is safe until the user calls
781 * dev_put to indicate they have finished with it.
782 */
783
dev_get_by_index(struct net * net,int ifindex)784 struct net_device *dev_get_by_index(struct net *net, int ifindex)
785 {
786 struct net_device *dev;
787
788 rcu_read_lock();
789 dev = dev_get_by_index_rcu(net, ifindex);
790 if (dev)
791 dev_hold(dev);
792 rcu_read_unlock();
793 return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_index);
796
797 /**
798 * dev_get_by_napi_id - find a device by napi_id
799 * @napi_id: ID of the NAPI struct
800 *
801 * Search for an interface by NAPI ID. Returns %NULL if the device
802 * is not found or a pointer to the device. The device has not had
803 * its reference counter increased so the caller must be careful
804 * about locking. The caller must hold RCU lock.
805 */
806
dev_get_by_napi_id(unsigned int napi_id)807 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
808 {
809 struct napi_struct *napi;
810
811 WARN_ON_ONCE(!rcu_read_lock_held());
812
813 if (napi_id < MIN_NAPI_ID)
814 return NULL;
815
816 napi = napi_by_id(napi_id);
817
818 return napi ? napi->dev : NULL;
819 }
820 EXPORT_SYMBOL(dev_get_by_napi_id);
821
822 /**
823 * netdev_get_name - get a netdevice name, knowing its ifindex.
824 * @net: network namespace
825 * @name: a pointer to the buffer where the name will be stored.
826 * @ifindex: the ifindex of the interface to get the name from.
827 */
netdev_get_name(struct net * net,char * name,int ifindex)828 int netdev_get_name(struct net *net, char *name, int ifindex)
829 {
830 struct net_device *dev;
831 int ret;
832
833 down_read(&devnet_rename_sem);
834 rcu_read_lock();
835
836 dev = dev_get_by_index_rcu(net, ifindex);
837 if (!dev) {
838 ret = -ENODEV;
839 goto out;
840 }
841
842 strcpy(name, dev->name);
843
844 ret = 0;
845 out:
846 rcu_read_unlock();
847 up_read(&devnet_rename_sem);
848 return ret;
849 }
850
851 /**
852 * dev_getbyhwaddr_rcu - find a device by its hardware address
853 * @net: the applicable net namespace
854 * @type: media type of device
855 * @ha: hardware address
856 *
857 * Search for an interface by MAC address. Returns NULL if the device
858 * is not found or a pointer to the device.
859 * The caller must hold RCU or RTNL.
860 * The returned device has not had its ref count increased
861 * and the caller must therefore be careful about locking
862 *
863 */
864
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)865 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
866 const char *ha)
867 {
868 struct net_device *dev;
869
870 for_each_netdev_rcu(net, dev)
871 if (dev->type == type &&
872 !memcmp(dev->dev_addr, ha, dev->addr_len))
873 return dev;
874
875 return NULL;
876 }
877 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
878
__dev_getfirstbyhwtype(struct net * net,unsigned short type)879 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
880 {
881 struct net_device *dev;
882
883 ASSERT_RTNL();
884 for_each_netdev(net, dev)
885 if (dev->type == type)
886 return dev;
887
888 return NULL;
889 }
890 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
891
dev_getfirstbyhwtype(struct net * net,unsigned short type)892 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
893 {
894 struct net_device *dev, *ret = NULL;
895
896 rcu_read_lock();
897 for_each_netdev_rcu(net, dev)
898 if (dev->type == type) {
899 dev_hold(dev);
900 ret = dev;
901 break;
902 }
903 rcu_read_unlock();
904 return ret;
905 }
906 EXPORT_SYMBOL(dev_getfirstbyhwtype);
907
908 /**
909 * __dev_get_by_flags - find any device with given flags
910 * @net: the applicable net namespace
911 * @if_flags: IFF_* values
912 * @mask: bitmask of bits in if_flags to check
913 *
914 * Search for any interface with the given flags. Returns NULL if a device
915 * is not found or a pointer to the device. Must be called inside
916 * rtnl_lock(), and result refcount is unchanged.
917 */
918
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)919 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
920 unsigned short mask)
921 {
922 struct net_device *dev, *ret;
923
924 ASSERT_RTNL();
925
926 ret = NULL;
927 for_each_netdev(net, dev) {
928 if (((dev->flags ^ if_flags) & mask) == 0) {
929 ret = dev;
930 break;
931 }
932 }
933 return ret;
934 }
935 EXPORT_SYMBOL(__dev_get_by_flags);
936
937 /**
938 * dev_valid_name - check if name is okay for network device
939 * @name: name string
940 *
941 * Network device names need to be valid file names to
942 * to allow sysfs to work. We also disallow any kind of
943 * whitespace.
944 */
dev_valid_name(const char * name)945 bool dev_valid_name(const char *name)
946 {
947 if (*name == '\0')
948 return false;
949 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
950 return false;
951 if (!strcmp(name, ".") || !strcmp(name, ".."))
952 return false;
953
954 while (*name) {
955 if (*name == '/' || *name == ':' || isspace(*name))
956 return false;
957 name++;
958 }
959 return true;
960 }
961 EXPORT_SYMBOL(dev_valid_name);
962
963 /**
964 * __dev_alloc_name - allocate a name for a device
965 * @net: network namespace to allocate the device name in
966 * @name: name format string
967 * @buf: scratch buffer and result name string
968 *
969 * Passed a format string - eg "lt%d" it will try and find a suitable
970 * id. It scans list of devices to build up a free map, then chooses
971 * the first empty slot. The caller must hold the dev_base or rtnl lock
972 * while allocating the name and adding the device in order to avoid
973 * duplicates.
974 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
975 * Returns the number of the unit assigned or a negative errno code.
976 */
977
__dev_alloc_name(struct net * net,const char * name,char * buf)978 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
979 {
980 int i = 0;
981 const char *p;
982 const int max_netdevices = 8*PAGE_SIZE;
983 unsigned long *inuse;
984 struct net_device *d;
985
986 if (!dev_valid_name(name))
987 return -EINVAL;
988
989 p = strchr(name, '%');
990 if (p) {
991 /*
992 * Verify the string as this thing may have come from
993 * the user. There must be either one "%d" and no other "%"
994 * characters.
995 */
996 if (p[1] != 'd' || strchr(p + 2, '%'))
997 return -EINVAL;
998
999 /* Use one page as a bit array of possible slots */
1000 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1001 if (!inuse)
1002 return -ENOMEM;
1003
1004 for_each_netdev(net, d) {
1005 if (!sscanf(d->name, name, &i))
1006 continue;
1007 if (i < 0 || i >= max_netdevices)
1008 continue;
1009
1010 /* avoid cases where sscanf is not exact inverse of printf */
1011 snprintf(buf, IFNAMSIZ, name, i);
1012 if (!strncmp(buf, d->name, IFNAMSIZ))
1013 set_bit(i, inuse);
1014 }
1015
1016 i = find_first_zero_bit(inuse, max_netdevices);
1017 free_page((unsigned long) inuse);
1018 }
1019
1020 snprintf(buf, IFNAMSIZ, name, i);
1021 if (!__dev_get_by_name(net, buf))
1022 return i;
1023
1024 /* It is possible to run out of possible slots
1025 * when the name is long and there isn't enough space left
1026 * for the digits, or if all bits are used.
1027 */
1028 return -ENFILE;
1029 }
1030
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1031 static int dev_alloc_name_ns(struct net *net,
1032 struct net_device *dev,
1033 const char *name)
1034 {
1035 char buf[IFNAMSIZ];
1036 int ret;
1037
1038 BUG_ON(!net);
1039 ret = __dev_alloc_name(net, name, buf);
1040 if (ret >= 0)
1041 strlcpy(dev->name, buf, IFNAMSIZ);
1042 return ret;
1043 }
1044
1045 /**
1046 * dev_alloc_name - allocate a name for a device
1047 * @dev: device
1048 * @name: name format string
1049 *
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1057 */
1058
dev_alloc_name(struct net_device * dev,const char * name)1059 int dev_alloc_name(struct net_device *dev, const char *name)
1060 {
1061 return dev_alloc_name_ns(dev_net(dev), dev, name);
1062 }
1063 EXPORT_SYMBOL(dev_alloc_name);
1064
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1065 int dev_get_valid_name(struct net *net, struct net_device *dev,
1066 const char *name)
1067 {
1068 BUG_ON(!net);
1069
1070 if (!dev_valid_name(name))
1071 return -EINVAL;
1072
1073 if (strchr(name, '%'))
1074 return dev_alloc_name_ns(net, dev, name);
1075 else if (__dev_get_by_name(net, name))
1076 return -EEXIST;
1077 else if (dev->name != name)
1078 strlcpy(dev->name, name, IFNAMSIZ);
1079
1080 return 0;
1081 }
1082 EXPORT_SYMBOL(dev_get_valid_name);
1083
1084 /**
1085 * dev_change_name - change name of a device
1086 * @dev: device
1087 * @newname: name (or format string) must be at least IFNAMSIZ
1088 *
1089 * Change name of a device, can pass format strings "eth%d".
1090 * for wildcarding.
1091 */
dev_change_name(struct net_device * dev,const char * newname)1092 int dev_change_name(struct net_device *dev, const char *newname)
1093 {
1094 unsigned char old_assign_type;
1095 char oldname[IFNAMSIZ];
1096 int err = 0;
1097 int ret;
1098 struct net *net;
1099
1100 ASSERT_RTNL();
1101 BUG_ON(!dev_net(dev));
1102
1103 net = dev_net(dev);
1104
1105 /* Some auto-enslaved devices e.g. failover slaves are
1106 * special, as userspace might rename the device after
1107 * the interface had been brought up and running since
1108 * the point kernel initiated auto-enslavement. Allow
1109 * live name change even when these slave devices are
1110 * up and running.
1111 *
1112 * Typically, users of these auto-enslaving devices
1113 * don't actually care about slave name change, as
1114 * they are supposed to operate on master interface
1115 * directly.
1116 */
1117 if (dev->flags & IFF_UP &&
1118 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1119 return -EBUSY;
1120
1121 down_write(&devnet_rename_sem);
1122
1123 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1124 up_write(&devnet_rename_sem);
1125 return 0;
1126 }
1127
1128 memcpy(oldname, dev->name, IFNAMSIZ);
1129
1130 err = dev_get_valid_name(net, dev, newname);
1131 if (err < 0) {
1132 up_write(&devnet_rename_sem);
1133 return err;
1134 }
1135
1136 if (oldname[0] && !strchr(oldname, '%'))
1137 netdev_info(dev, "renamed from %s\n", oldname);
1138
1139 old_assign_type = dev->name_assign_type;
1140 dev->name_assign_type = NET_NAME_RENAMED;
1141
1142 rollback:
1143 ret = device_rename(&dev->dev, dev->name);
1144 if (ret) {
1145 memcpy(dev->name, oldname, IFNAMSIZ);
1146 dev->name_assign_type = old_assign_type;
1147 up_write(&devnet_rename_sem);
1148 return ret;
1149 }
1150
1151 up_write(&devnet_rename_sem);
1152
1153 netdev_adjacent_rename_links(dev, oldname);
1154
1155 write_lock_bh(&dev_base_lock);
1156 hlist_del_rcu(&dev->name_hlist);
1157 write_unlock_bh(&dev_base_lock);
1158
1159 synchronize_rcu();
1160
1161 write_lock_bh(&dev_base_lock);
1162 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1163 write_unlock_bh(&dev_base_lock);
1164
1165 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1166 ret = notifier_to_errno(ret);
1167
1168 if (ret) {
1169 /* err >= 0 after dev_alloc_name() or stores the first errno */
1170 if (err >= 0) {
1171 err = ret;
1172 down_write(&devnet_rename_sem);
1173 memcpy(dev->name, oldname, IFNAMSIZ);
1174 memcpy(oldname, newname, IFNAMSIZ);
1175 dev->name_assign_type = old_assign_type;
1176 old_assign_type = NET_NAME_RENAMED;
1177 goto rollback;
1178 } else {
1179 pr_err("%s: name change rollback failed: %d\n",
1180 dev->name, ret);
1181 }
1182 }
1183
1184 return err;
1185 }
1186
1187 /**
1188 * dev_set_alias - change ifalias of a device
1189 * @dev: device
1190 * @alias: name up to IFALIASZ
1191 * @len: limit of bytes to copy from info
1192 *
1193 * Set ifalias for a device,
1194 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1195 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1196 {
1197 struct dev_ifalias *new_alias = NULL;
1198
1199 if (len >= IFALIASZ)
1200 return -EINVAL;
1201
1202 if (len) {
1203 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1204 if (!new_alias)
1205 return -ENOMEM;
1206
1207 memcpy(new_alias->ifalias, alias, len);
1208 new_alias->ifalias[len] = 0;
1209 }
1210
1211 mutex_lock(&ifalias_mutex);
1212 rcu_swap_protected(dev->ifalias, new_alias,
1213 mutex_is_locked(&ifalias_mutex));
1214 mutex_unlock(&ifalias_mutex);
1215
1216 if (new_alias)
1217 kfree_rcu(new_alias, rcuhead);
1218
1219 return len;
1220 }
1221 EXPORT_SYMBOL(dev_set_alias);
1222
1223 /**
1224 * dev_get_alias - get ifalias of a device
1225 * @dev: device
1226 * @name: buffer to store name of ifalias
1227 * @len: size of buffer
1228 *
1229 * get ifalias for a device. Caller must make sure dev cannot go
1230 * away, e.g. rcu read lock or own a reference count to device.
1231 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1232 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1233 {
1234 const struct dev_ifalias *alias;
1235 int ret = 0;
1236
1237 rcu_read_lock();
1238 alias = rcu_dereference(dev->ifalias);
1239 if (alias)
1240 ret = snprintf(name, len, "%s", alias->ifalias);
1241 rcu_read_unlock();
1242
1243 return ret;
1244 }
1245
1246 /**
1247 * netdev_features_change - device changes features
1248 * @dev: device to cause notification
1249 *
1250 * Called to indicate a device has changed features.
1251 */
netdev_features_change(struct net_device * dev)1252 void netdev_features_change(struct net_device *dev)
1253 {
1254 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1255 }
1256 EXPORT_SYMBOL(netdev_features_change);
1257
1258 /**
1259 * netdev_state_change - device changes state
1260 * @dev: device to cause notification
1261 *
1262 * Called to indicate a device has changed state. This function calls
1263 * the notifier chains for netdev_chain and sends a NEWLINK message
1264 * to the routing socket.
1265 */
netdev_state_change(struct net_device * dev)1266 void netdev_state_change(struct net_device *dev)
1267 {
1268 if (dev->flags & IFF_UP) {
1269 struct netdev_notifier_change_info change_info = {
1270 .info.dev = dev,
1271 };
1272
1273 call_netdevice_notifiers_info(NETDEV_CHANGE,
1274 &change_info.info);
1275 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1276 }
1277 }
1278 EXPORT_SYMBOL(netdev_state_change);
1279
1280 /**
1281 * netdev_notify_peers - notify network peers about existence of @dev
1282 * @dev: network device
1283 *
1284 * Generate traffic such that interested network peers are aware of
1285 * @dev, such as by generating a gratuitous ARP. This may be used when
1286 * a device wants to inform the rest of the network about some sort of
1287 * reconfiguration such as a failover event or virtual machine
1288 * migration.
1289 */
netdev_notify_peers(struct net_device * dev)1290 void netdev_notify_peers(struct net_device *dev)
1291 {
1292 rtnl_lock();
1293 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1294 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1295 rtnl_unlock();
1296 }
1297 EXPORT_SYMBOL(netdev_notify_peers);
1298
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1299 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1300 {
1301 const struct net_device_ops *ops = dev->netdev_ops;
1302 int ret;
1303
1304 ASSERT_RTNL();
1305
1306 if (!netif_device_present(dev))
1307 return -ENODEV;
1308
1309 /* Block netpoll from trying to do any rx path servicing.
1310 * If we don't do this there is a chance ndo_poll_controller
1311 * or ndo_poll may be running while we open the device
1312 */
1313 netpoll_poll_disable(dev);
1314
1315 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1316 ret = notifier_to_errno(ret);
1317 if (ret)
1318 return ret;
1319
1320 set_bit(__LINK_STATE_START, &dev->state);
1321
1322 if (ops->ndo_validate_addr)
1323 ret = ops->ndo_validate_addr(dev);
1324
1325 if (!ret && ops->ndo_open)
1326 ret = ops->ndo_open(dev);
1327
1328 netpoll_poll_enable(dev);
1329
1330 if (ret)
1331 clear_bit(__LINK_STATE_START, &dev->state);
1332 else {
1333 dev->flags |= IFF_UP;
1334 dev_set_rx_mode(dev);
1335 dev_activate(dev);
1336 add_device_randomness(dev->dev_addr, dev->addr_len);
1337 }
1338
1339 return ret;
1340 }
1341
1342 /**
1343 * dev_open - prepare an interface for use.
1344 * @dev: device to open
1345 * @extack: netlink extended ack
1346 *
1347 * Takes a device from down to up state. The device's private open
1348 * function is invoked and then the multicast lists are loaded. Finally
1349 * the device is moved into the up state and a %NETDEV_UP message is
1350 * sent to the netdev notifier chain.
1351 *
1352 * Calling this function on an active interface is a nop. On a failure
1353 * a negative errno code is returned.
1354 */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1355 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1356 {
1357 int ret;
1358
1359 if (dev->flags & IFF_UP)
1360 return 0;
1361
1362 ret = __dev_open(dev, extack);
1363 if (ret < 0)
1364 return ret;
1365
1366 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1367 call_netdevice_notifiers(NETDEV_UP, dev);
1368
1369 return ret;
1370 }
1371 EXPORT_SYMBOL(dev_open);
1372
__dev_close_many(struct list_head * head)1373 static void __dev_close_many(struct list_head *head)
1374 {
1375 struct net_device *dev;
1376
1377 ASSERT_RTNL();
1378 might_sleep();
1379
1380 list_for_each_entry(dev, head, close_list) {
1381 /* Temporarily disable netpoll until the interface is down */
1382 netpoll_poll_disable(dev);
1383
1384 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1385
1386 clear_bit(__LINK_STATE_START, &dev->state);
1387
1388 /* Synchronize to scheduled poll. We cannot touch poll list, it
1389 * can be even on different cpu. So just clear netif_running().
1390 *
1391 * dev->stop() will invoke napi_disable() on all of it's
1392 * napi_struct instances on this device.
1393 */
1394 smp_mb__after_atomic(); /* Commit netif_running(). */
1395 }
1396
1397 dev_deactivate_many(head);
1398
1399 list_for_each_entry(dev, head, close_list) {
1400 const struct net_device_ops *ops = dev->netdev_ops;
1401
1402 /*
1403 * Call the device specific close. This cannot fail.
1404 * Only if device is UP
1405 *
1406 * We allow it to be called even after a DETACH hot-plug
1407 * event.
1408 */
1409 if (ops->ndo_stop)
1410 ops->ndo_stop(dev);
1411
1412 dev->flags &= ~IFF_UP;
1413 netpoll_poll_enable(dev);
1414 }
1415 }
1416
__dev_close(struct net_device * dev)1417 static void __dev_close(struct net_device *dev)
1418 {
1419 LIST_HEAD(single);
1420
1421 list_add(&dev->close_list, &single);
1422 __dev_close_many(&single);
1423 list_del(&single);
1424 }
1425
dev_close_many(struct list_head * head,bool unlink)1426 void dev_close_many(struct list_head *head, bool unlink)
1427 {
1428 struct net_device *dev, *tmp;
1429
1430 /* Remove the devices that don't need to be closed */
1431 list_for_each_entry_safe(dev, tmp, head, close_list)
1432 if (!(dev->flags & IFF_UP))
1433 list_del_init(&dev->close_list);
1434
1435 __dev_close_many(head);
1436
1437 list_for_each_entry_safe(dev, tmp, head, close_list) {
1438 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1439 call_netdevice_notifiers(NETDEV_DOWN, dev);
1440 if (unlink)
1441 list_del_init(&dev->close_list);
1442 }
1443 }
1444 EXPORT_SYMBOL(dev_close_many);
1445
1446 /**
1447 * dev_close - shutdown an interface.
1448 * @dev: device to shutdown
1449 *
1450 * This function moves an active device into down state. A
1451 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1452 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1453 * chain.
1454 */
dev_close(struct net_device * dev)1455 void dev_close(struct net_device *dev)
1456 {
1457 if (dev->flags & IFF_UP) {
1458 LIST_HEAD(single);
1459
1460 list_add(&dev->close_list, &single);
1461 dev_close_many(&single, true);
1462 list_del(&single);
1463 }
1464 }
1465 EXPORT_SYMBOL(dev_close);
1466
1467
1468 /**
1469 * dev_disable_lro - disable Large Receive Offload on a device
1470 * @dev: device
1471 *
1472 * Disable Large Receive Offload (LRO) on a net device. Must be
1473 * called under RTNL. This is needed if received packets may be
1474 * forwarded to another interface.
1475 */
dev_disable_lro(struct net_device * dev)1476 void dev_disable_lro(struct net_device *dev)
1477 {
1478 struct net_device *lower_dev;
1479 struct list_head *iter;
1480
1481 dev->wanted_features &= ~NETIF_F_LRO;
1482 netdev_update_features(dev);
1483
1484 if (unlikely(dev->features & NETIF_F_LRO))
1485 netdev_WARN(dev, "failed to disable LRO!\n");
1486
1487 netdev_for_each_lower_dev(dev, lower_dev, iter)
1488 dev_disable_lro(lower_dev);
1489 }
1490 EXPORT_SYMBOL(dev_disable_lro);
1491
1492 /**
1493 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1494 * @dev: device
1495 *
1496 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1497 * called under RTNL. This is needed if Generic XDP is installed on
1498 * the device.
1499 */
dev_disable_gro_hw(struct net_device * dev)1500 static void dev_disable_gro_hw(struct net_device *dev)
1501 {
1502 dev->wanted_features &= ~NETIF_F_GRO_HW;
1503 netdev_update_features(dev);
1504
1505 if (unlikely(dev->features & NETIF_F_GRO_HW))
1506 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1507 }
1508
netdev_cmd_to_name(enum netdev_cmd cmd)1509 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1510 {
1511 #define N(val) \
1512 case NETDEV_##val: \
1513 return "NETDEV_" __stringify(val);
1514 switch (cmd) {
1515 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1516 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1517 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1518 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1519 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1520 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1521 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1522 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1523 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1524 N(PRE_CHANGEADDR)
1525 }
1526 #undef N
1527 return "UNKNOWN_NETDEV_EVENT";
1528 }
1529 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1530
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1531 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1532 struct net_device *dev)
1533 {
1534 struct netdev_notifier_info info = {
1535 .dev = dev,
1536 };
1537
1538 return nb->notifier_call(nb, val, &info);
1539 }
1540
1541 static int dev_boot_phase = 1;
1542
1543 /**
1544 * register_netdevice_notifier - register a network notifier block
1545 * @nb: notifier
1546 *
1547 * Register a notifier to be called when network device events occur.
1548 * The notifier passed is linked into the kernel structures and must
1549 * not be reused until it has been unregistered. A negative errno code
1550 * is returned on a failure.
1551 *
1552 * When registered all registration and up events are replayed
1553 * to the new notifier to allow device to have a race free
1554 * view of the network device list.
1555 */
1556
register_netdevice_notifier(struct notifier_block * nb)1557 int register_netdevice_notifier(struct notifier_block *nb)
1558 {
1559 struct net_device *dev;
1560 struct net_device *last;
1561 struct net *net;
1562 int err;
1563
1564 /* Close race with setup_net() and cleanup_net() */
1565 down_write(&pernet_ops_rwsem);
1566 rtnl_lock();
1567 err = raw_notifier_chain_register(&netdev_chain, nb);
1568 if (err)
1569 goto unlock;
1570 if (dev_boot_phase)
1571 goto unlock;
1572 for_each_net(net) {
1573 for_each_netdev(net, dev) {
1574 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1575 err = notifier_to_errno(err);
1576 if (err)
1577 goto rollback;
1578
1579 if (!(dev->flags & IFF_UP))
1580 continue;
1581
1582 call_netdevice_notifier(nb, NETDEV_UP, dev);
1583 }
1584 }
1585
1586 unlock:
1587 rtnl_unlock();
1588 up_write(&pernet_ops_rwsem);
1589 return err;
1590
1591 rollback:
1592 last = dev;
1593 for_each_net(net) {
1594 for_each_netdev(net, dev) {
1595 if (dev == last)
1596 goto outroll;
1597
1598 if (dev->flags & IFF_UP) {
1599 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1600 dev);
1601 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1602 }
1603 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1604 }
1605 }
1606
1607 outroll:
1608 raw_notifier_chain_unregister(&netdev_chain, nb);
1609 goto unlock;
1610 }
1611 EXPORT_SYMBOL(register_netdevice_notifier);
1612
1613 /**
1614 * unregister_netdevice_notifier - unregister a network notifier block
1615 * @nb: notifier
1616 *
1617 * Unregister a notifier previously registered by
1618 * register_netdevice_notifier(). The notifier is unlinked into the
1619 * kernel structures and may then be reused. A negative errno code
1620 * is returned on a failure.
1621 *
1622 * After unregistering unregister and down device events are synthesized
1623 * for all devices on the device list to the removed notifier to remove
1624 * the need for special case cleanup code.
1625 */
1626
unregister_netdevice_notifier(struct notifier_block * nb)1627 int unregister_netdevice_notifier(struct notifier_block *nb)
1628 {
1629 struct net_device *dev;
1630 struct net *net;
1631 int err;
1632
1633 /* Close race with setup_net() and cleanup_net() */
1634 down_write(&pernet_ops_rwsem);
1635 rtnl_lock();
1636 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1637 if (err)
1638 goto unlock;
1639
1640 for_each_net(net) {
1641 for_each_netdev(net, dev) {
1642 if (dev->flags & IFF_UP) {
1643 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1644 dev);
1645 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1646 }
1647 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1648 }
1649 }
1650 unlock:
1651 rtnl_unlock();
1652 up_write(&pernet_ops_rwsem);
1653 return err;
1654 }
1655 EXPORT_SYMBOL(unregister_netdevice_notifier);
1656
1657 /**
1658 * call_netdevice_notifiers_info - call all network notifier blocks
1659 * @val: value passed unmodified to notifier function
1660 * @info: notifier information data
1661 *
1662 * Call all network notifier blocks. Parameters and return value
1663 * are as for raw_notifier_call_chain().
1664 */
1665
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)1666 static int call_netdevice_notifiers_info(unsigned long val,
1667 struct netdev_notifier_info *info)
1668 {
1669 ASSERT_RTNL();
1670 return raw_notifier_call_chain(&netdev_chain, val, info);
1671 }
1672
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)1673 static int call_netdevice_notifiers_extack(unsigned long val,
1674 struct net_device *dev,
1675 struct netlink_ext_ack *extack)
1676 {
1677 struct netdev_notifier_info info = {
1678 .dev = dev,
1679 .extack = extack,
1680 };
1681
1682 return call_netdevice_notifiers_info(val, &info);
1683 }
1684
1685 /**
1686 * call_netdevice_notifiers - call all network notifier blocks
1687 * @val: value passed unmodified to notifier function
1688 * @dev: net_device pointer passed unmodified to notifier function
1689 *
1690 * Call all network notifier blocks. Parameters and return value
1691 * are as for raw_notifier_call_chain().
1692 */
1693
call_netdevice_notifiers(unsigned long val,struct net_device * dev)1694 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1695 {
1696 return call_netdevice_notifiers_extack(val, dev, NULL);
1697 }
1698 EXPORT_SYMBOL(call_netdevice_notifiers);
1699
1700 /**
1701 * call_netdevice_notifiers_mtu - call all network notifier blocks
1702 * @val: value passed unmodified to notifier function
1703 * @dev: net_device pointer passed unmodified to notifier function
1704 * @arg: additional u32 argument passed to the notifier function
1705 *
1706 * Call all network notifier blocks. Parameters and return value
1707 * are as for raw_notifier_call_chain().
1708 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)1709 static int call_netdevice_notifiers_mtu(unsigned long val,
1710 struct net_device *dev, u32 arg)
1711 {
1712 struct netdev_notifier_info_ext info = {
1713 .info.dev = dev,
1714 .ext.mtu = arg,
1715 };
1716
1717 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1718
1719 return call_netdevice_notifiers_info(val, &info.info);
1720 }
1721
1722 #ifdef CONFIG_NET_INGRESS
1723 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1724
net_inc_ingress_queue(void)1725 void net_inc_ingress_queue(void)
1726 {
1727 static_branch_inc(&ingress_needed_key);
1728 }
1729 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1730
net_dec_ingress_queue(void)1731 void net_dec_ingress_queue(void)
1732 {
1733 static_branch_dec(&ingress_needed_key);
1734 }
1735 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1736 #endif
1737
1738 #ifdef CONFIG_NET_EGRESS
1739 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1740
net_inc_egress_queue(void)1741 void net_inc_egress_queue(void)
1742 {
1743 static_branch_inc(&egress_needed_key);
1744 }
1745 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1746
net_dec_egress_queue(void)1747 void net_dec_egress_queue(void)
1748 {
1749 static_branch_dec(&egress_needed_key);
1750 }
1751 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1752 #endif
1753
1754 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1755 #ifdef CONFIG_JUMP_LABEL
1756 static atomic_t netstamp_needed_deferred;
1757 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)1758 static void netstamp_clear(struct work_struct *work)
1759 {
1760 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1761 int wanted;
1762
1763 wanted = atomic_add_return(deferred, &netstamp_wanted);
1764 if (wanted > 0)
1765 static_branch_enable(&netstamp_needed_key);
1766 else
1767 static_branch_disable(&netstamp_needed_key);
1768 }
1769 static DECLARE_WORK(netstamp_work, netstamp_clear);
1770 #endif
1771
net_enable_timestamp(void)1772 void net_enable_timestamp(void)
1773 {
1774 #ifdef CONFIG_JUMP_LABEL
1775 int wanted;
1776
1777 while (1) {
1778 wanted = atomic_read(&netstamp_wanted);
1779 if (wanted <= 0)
1780 break;
1781 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1782 return;
1783 }
1784 atomic_inc(&netstamp_needed_deferred);
1785 schedule_work(&netstamp_work);
1786 #else
1787 static_branch_inc(&netstamp_needed_key);
1788 #endif
1789 }
1790 EXPORT_SYMBOL(net_enable_timestamp);
1791
net_disable_timestamp(void)1792 void net_disable_timestamp(void)
1793 {
1794 #ifdef CONFIG_JUMP_LABEL
1795 int wanted;
1796
1797 while (1) {
1798 wanted = atomic_read(&netstamp_wanted);
1799 if (wanted <= 1)
1800 break;
1801 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1802 return;
1803 }
1804 atomic_dec(&netstamp_needed_deferred);
1805 schedule_work(&netstamp_work);
1806 #else
1807 static_branch_dec(&netstamp_needed_key);
1808 #endif
1809 }
1810 EXPORT_SYMBOL(net_disable_timestamp);
1811
net_timestamp_set(struct sk_buff * skb)1812 static inline void net_timestamp_set(struct sk_buff *skb)
1813 {
1814 skb->tstamp = 0;
1815 if (static_branch_unlikely(&netstamp_needed_key))
1816 __net_timestamp(skb);
1817 }
1818
1819 #define net_timestamp_check(COND, SKB) \
1820 if (static_branch_unlikely(&netstamp_needed_key)) { \
1821 if ((COND) && !(SKB)->tstamp) \
1822 __net_timestamp(SKB); \
1823 } \
1824
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)1825 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1826 {
1827 unsigned int len;
1828
1829 if (!(dev->flags & IFF_UP))
1830 return false;
1831
1832 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1833 if (skb->len <= len)
1834 return true;
1835
1836 /* if TSO is enabled, we don't care about the length as the packet
1837 * could be forwarded without being segmented before
1838 */
1839 if (skb_is_gso(skb))
1840 return true;
1841
1842 return false;
1843 }
1844 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1845
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1846 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1847 {
1848 int ret = ____dev_forward_skb(dev, skb);
1849
1850 if (likely(!ret)) {
1851 skb->protocol = eth_type_trans(skb, dev);
1852 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1853 }
1854
1855 return ret;
1856 }
1857 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1858
1859 /**
1860 * dev_forward_skb - loopback an skb to another netif
1861 *
1862 * @dev: destination network device
1863 * @skb: buffer to forward
1864 *
1865 * return values:
1866 * NET_RX_SUCCESS (no congestion)
1867 * NET_RX_DROP (packet was dropped, but freed)
1868 *
1869 * dev_forward_skb can be used for injecting an skb from the
1870 * start_xmit function of one device into the receive queue
1871 * of another device.
1872 *
1873 * The receiving device may be in another namespace, so
1874 * we have to clear all information in the skb that could
1875 * impact namespace isolation.
1876 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1877 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1878 {
1879 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1880 }
1881 EXPORT_SYMBOL_GPL(dev_forward_skb);
1882
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)1883 static inline int deliver_skb(struct sk_buff *skb,
1884 struct packet_type *pt_prev,
1885 struct net_device *orig_dev)
1886 {
1887 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1888 return -ENOMEM;
1889 refcount_inc(&skb->users);
1890 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1891 }
1892
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)1893 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1894 struct packet_type **pt,
1895 struct net_device *orig_dev,
1896 __be16 type,
1897 struct list_head *ptype_list)
1898 {
1899 struct packet_type *ptype, *pt_prev = *pt;
1900
1901 list_for_each_entry_rcu(ptype, ptype_list, list) {
1902 if (ptype->type != type)
1903 continue;
1904 if (pt_prev)
1905 deliver_skb(skb, pt_prev, orig_dev);
1906 pt_prev = ptype;
1907 }
1908 *pt = pt_prev;
1909 }
1910
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)1911 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1912 {
1913 if (!ptype->af_packet_priv || !skb->sk)
1914 return false;
1915
1916 if (ptype->id_match)
1917 return ptype->id_match(ptype, skb->sk);
1918 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1919 return true;
1920
1921 return false;
1922 }
1923
1924 /**
1925 * dev_nit_active - return true if any network interface taps are in use
1926 *
1927 * @dev: network device to check for the presence of taps
1928 */
dev_nit_active(struct net_device * dev)1929 bool dev_nit_active(struct net_device *dev)
1930 {
1931 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
1932 }
1933 EXPORT_SYMBOL_GPL(dev_nit_active);
1934
1935 /*
1936 * Support routine. Sends outgoing frames to any network
1937 * taps currently in use.
1938 */
1939
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)1940 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1941 {
1942 struct packet_type *ptype;
1943 struct sk_buff *skb2 = NULL;
1944 struct packet_type *pt_prev = NULL;
1945 struct list_head *ptype_list = &ptype_all;
1946
1947 rcu_read_lock();
1948 again:
1949 list_for_each_entry_rcu(ptype, ptype_list, list) {
1950 if (READ_ONCE(ptype->ignore_outgoing))
1951 continue;
1952
1953 /* Never send packets back to the socket
1954 * they originated from - MvS (miquels@drinkel.ow.org)
1955 */
1956 if (skb_loop_sk(ptype, skb))
1957 continue;
1958
1959 if (pt_prev) {
1960 deliver_skb(skb2, pt_prev, skb->dev);
1961 pt_prev = ptype;
1962 continue;
1963 }
1964
1965 /* need to clone skb, done only once */
1966 skb2 = skb_clone(skb, GFP_ATOMIC);
1967 if (!skb2)
1968 goto out_unlock;
1969
1970 net_timestamp_set(skb2);
1971
1972 /* skb->nh should be correctly
1973 * set by sender, so that the second statement is
1974 * just protection against buggy protocols.
1975 */
1976 skb_reset_mac_header(skb2);
1977
1978 if (skb_network_header(skb2) < skb2->data ||
1979 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1980 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1981 ntohs(skb2->protocol),
1982 dev->name);
1983 skb_reset_network_header(skb2);
1984 }
1985
1986 skb2->transport_header = skb2->network_header;
1987 skb2->pkt_type = PACKET_OUTGOING;
1988 pt_prev = ptype;
1989 }
1990
1991 if (ptype_list == &ptype_all) {
1992 ptype_list = &dev->ptype_all;
1993 goto again;
1994 }
1995 out_unlock:
1996 if (pt_prev) {
1997 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1998 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1999 else
2000 kfree_skb(skb2);
2001 }
2002 rcu_read_unlock();
2003 }
2004 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2005
2006 /**
2007 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2008 * @dev: Network device
2009 * @txq: number of queues available
2010 *
2011 * If real_num_tx_queues is changed the tc mappings may no longer be
2012 * valid. To resolve this verify the tc mapping remains valid and if
2013 * not NULL the mapping. With no priorities mapping to this
2014 * offset/count pair it will no longer be used. In the worst case TC0
2015 * is invalid nothing can be done so disable priority mappings. If is
2016 * expected that drivers will fix this mapping if they can before
2017 * calling netif_set_real_num_tx_queues.
2018 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2019 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2020 {
2021 int i;
2022 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2023
2024 /* If TC0 is invalidated disable TC mapping */
2025 if (tc->offset + tc->count > txq) {
2026 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2027 dev->num_tc = 0;
2028 return;
2029 }
2030
2031 /* Invalidated prio to tc mappings set to TC0 */
2032 for (i = 1; i < TC_BITMASK + 1; i++) {
2033 int q = netdev_get_prio_tc_map(dev, i);
2034
2035 tc = &dev->tc_to_txq[q];
2036 if (tc->offset + tc->count > txq) {
2037 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2038 i, q);
2039 netdev_set_prio_tc_map(dev, i, 0);
2040 }
2041 }
2042 }
2043
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2044 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2045 {
2046 if (dev->num_tc) {
2047 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2048 int i;
2049
2050 /* walk through the TCs and see if it falls into any of them */
2051 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2052 if ((txq - tc->offset) < tc->count)
2053 return i;
2054 }
2055
2056 /* didn't find it, just return -1 to indicate no match */
2057 return -1;
2058 }
2059
2060 return 0;
2061 }
2062 EXPORT_SYMBOL(netdev_txq_to_tc);
2063
2064 #ifdef CONFIG_XPS
2065 struct static_key xps_needed __read_mostly;
2066 EXPORT_SYMBOL(xps_needed);
2067 struct static_key xps_rxqs_needed __read_mostly;
2068 EXPORT_SYMBOL(xps_rxqs_needed);
2069 static DEFINE_MUTEX(xps_map_mutex);
2070 #define xmap_dereference(P) \
2071 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2072
remove_xps_queue(struct xps_dev_maps * dev_maps,int tci,u16 index)2073 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2074 int tci, u16 index)
2075 {
2076 struct xps_map *map = NULL;
2077 int pos;
2078
2079 if (dev_maps)
2080 map = xmap_dereference(dev_maps->attr_map[tci]);
2081 if (!map)
2082 return false;
2083
2084 for (pos = map->len; pos--;) {
2085 if (map->queues[pos] != index)
2086 continue;
2087
2088 if (map->len > 1) {
2089 map->queues[pos] = map->queues[--map->len];
2090 break;
2091 }
2092
2093 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2094 kfree_rcu(map, rcu);
2095 return false;
2096 }
2097
2098 return true;
2099 }
2100
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2101 static bool remove_xps_queue_cpu(struct net_device *dev,
2102 struct xps_dev_maps *dev_maps,
2103 int cpu, u16 offset, u16 count)
2104 {
2105 int num_tc = dev->num_tc ? : 1;
2106 bool active = false;
2107 int tci;
2108
2109 for (tci = cpu * num_tc; num_tc--; tci++) {
2110 int i, j;
2111
2112 for (i = count, j = offset; i--; j++) {
2113 if (!remove_xps_queue(dev_maps, tci, j))
2114 break;
2115 }
2116
2117 active |= i < 0;
2118 }
2119
2120 return active;
2121 }
2122
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,bool is_rxqs_map)2123 static void reset_xps_maps(struct net_device *dev,
2124 struct xps_dev_maps *dev_maps,
2125 bool is_rxqs_map)
2126 {
2127 if (is_rxqs_map) {
2128 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2129 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2130 } else {
2131 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2132 }
2133 static_key_slow_dec_cpuslocked(&xps_needed);
2134 kfree_rcu(dev_maps, rcu);
2135 }
2136
clean_xps_maps(struct net_device * dev,const unsigned long * mask,struct xps_dev_maps * dev_maps,unsigned int nr_ids,u16 offset,u16 count,bool is_rxqs_map)2137 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2138 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2139 u16 offset, u16 count, bool is_rxqs_map)
2140 {
2141 bool active = false;
2142 int i, j;
2143
2144 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2145 j < nr_ids;)
2146 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2147 count);
2148 if (!active)
2149 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2150
2151 if (!is_rxqs_map) {
2152 for (i = offset + (count - 1); count--; i--) {
2153 netdev_queue_numa_node_write(
2154 netdev_get_tx_queue(dev, i),
2155 NUMA_NO_NODE);
2156 }
2157 }
2158 }
2159
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2160 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2161 u16 count)
2162 {
2163 const unsigned long *possible_mask = NULL;
2164 struct xps_dev_maps *dev_maps;
2165 unsigned int nr_ids;
2166
2167 if (!static_key_false(&xps_needed))
2168 return;
2169
2170 cpus_read_lock();
2171 mutex_lock(&xps_map_mutex);
2172
2173 if (static_key_false(&xps_rxqs_needed)) {
2174 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2175 if (dev_maps) {
2176 nr_ids = dev->num_rx_queues;
2177 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2178 offset, count, true);
2179 }
2180 }
2181
2182 dev_maps = xmap_dereference(dev->xps_cpus_map);
2183 if (!dev_maps)
2184 goto out_no_maps;
2185
2186 if (num_possible_cpus() > 1)
2187 possible_mask = cpumask_bits(cpu_possible_mask);
2188 nr_ids = nr_cpu_ids;
2189 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2190 false);
2191
2192 out_no_maps:
2193 mutex_unlock(&xps_map_mutex);
2194 cpus_read_unlock();
2195 }
2196
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2197 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2198 {
2199 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2200 }
2201
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2202 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2203 u16 index, bool is_rxqs_map)
2204 {
2205 struct xps_map *new_map;
2206 int alloc_len = XPS_MIN_MAP_ALLOC;
2207 int i, pos;
2208
2209 for (pos = 0; map && pos < map->len; pos++) {
2210 if (map->queues[pos] != index)
2211 continue;
2212 return map;
2213 }
2214
2215 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2216 if (map) {
2217 if (pos < map->alloc_len)
2218 return map;
2219
2220 alloc_len = map->alloc_len * 2;
2221 }
2222
2223 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2224 * map
2225 */
2226 if (is_rxqs_map)
2227 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2228 else
2229 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2230 cpu_to_node(attr_index));
2231 if (!new_map)
2232 return NULL;
2233
2234 for (i = 0; i < pos; i++)
2235 new_map->queues[i] = map->queues[i];
2236 new_map->alloc_len = alloc_len;
2237 new_map->len = pos;
2238
2239 return new_map;
2240 }
2241
2242 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)2243 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2244 u16 index, bool is_rxqs_map)
2245 {
2246 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2247 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2248 int i, j, tci, numa_node_id = -2;
2249 int maps_sz, num_tc = 1, tc = 0;
2250 struct xps_map *map, *new_map;
2251 bool active = false;
2252 unsigned int nr_ids;
2253
2254 WARN_ON_ONCE(index >= dev->num_tx_queues);
2255
2256 if (dev->num_tc) {
2257 /* Do not allow XPS on subordinate device directly */
2258 num_tc = dev->num_tc;
2259 if (num_tc < 0)
2260 return -EINVAL;
2261
2262 /* If queue belongs to subordinate dev use its map */
2263 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2264
2265 tc = netdev_txq_to_tc(dev, index);
2266 if (tc < 0)
2267 return -EINVAL;
2268 }
2269
2270 mutex_lock(&xps_map_mutex);
2271 if (is_rxqs_map) {
2272 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2273 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2274 nr_ids = dev->num_rx_queues;
2275 } else {
2276 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2277 if (num_possible_cpus() > 1) {
2278 online_mask = cpumask_bits(cpu_online_mask);
2279 possible_mask = cpumask_bits(cpu_possible_mask);
2280 }
2281 dev_maps = xmap_dereference(dev->xps_cpus_map);
2282 nr_ids = nr_cpu_ids;
2283 }
2284
2285 if (maps_sz < L1_CACHE_BYTES)
2286 maps_sz = L1_CACHE_BYTES;
2287
2288 /* allocate memory for queue storage */
2289 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2290 j < nr_ids;) {
2291 if (!new_dev_maps)
2292 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2293 if (!new_dev_maps) {
2294 mutex_unlock(&xps_map_mutex);
2295 return -ENOMEM;
2296 }
2297
2298 tci = j * num_tc + tc;
2299 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2300 NULL;
2301
2302 map = expand_xps_map(map, j, index, is_rxqs_map);
2303 if (!map)
2304 goto error;
2305
2306 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2307 }
2308
2309 if (!new_dev_maps)
2310 goto out_no_new_maps;
2311
2312 if (!dev_maps) {
2313 /* Increment static keys at most once per type */
2314 static_key_slow_inc_cpuslocked(&xps_needed);
2315 if (is_rxqs_map)
2316 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2317 }
2318
2319 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2320 j < nr_ids;) {
2321 /* copy maps belonging to foreign traffic classes */
2322 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2323 /* fill in the new device map from the old device map */
2324 map = xmap_dereference(dev_maps->attr_map[tci]);
2325 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2326 }
2327
2328 /* We need to explicitly update tci as prevous loop
2329 * could break out early if dev_maps is NULL.
2330 */
2331 tci = j * num_tc + tc;
2332
2333 if (netif_attr_test_mask(j, mask, nr_ids) &&
2334 netif_attr_test_online(j, online_mask, nr_ids)) {
2335 /* add tx-queue to CPU/rx-queue maps */
2336 int pos = 0;
2337
2338 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2339 while ((pos < map->len) && (map->queues[pos] != index))
2340 pos++;
2341
2342 if (pos == map->len)
2343 map->queues[map->len++] = index;
2344 #ifdef CONFIG_NUMA
2345 if (!is_rxqs_map) {
2346 if (numa_node_id == -2)
2347 numa_node_id = cpu_to_node(j);
2348 else if (numa_node_id != cpu_to_node(j))
2349 numa_node_id = -1;
2350 }
2351 #endif
2352 } else if (dev_maps) {
2353 /* fill in the new device map from the old device map */
2354 map = xmap_dereference(dev_maps->attr_map[tci]);
2355 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2356 }
2357
2358 /* copy maps belonging to foreign traffic classes */
2359 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2360 /* fill in the new device map from the old device map */
2361 map = xmap_dereference(dev_maps->attr_map[tci]);
2362 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2363 }
2364 }
2365
2366 if (is_rxqs_map)
2367 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2368 else
2369 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2370
2371 /* Cleanup old maps */
2372 if (!dev_maps)
2373 goto out_no_old_maps;
2374
2375 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2376 j < nr_ids;) {
2377 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2378 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2379 map = xmap_dereference(dev_maps->attr_map[tci]);
2380 if (map && map != new_map)
2381 kfree_rcu(map, rcu);
2382 }
2383 }
2384
2385 kfree_rcu(dev_maps, rcu);
2386
2387 out_no_old_maps:
2388 dev_maps = new_dev_maps;
2389 active = true;
2390
2391 out_no_new_maps:
2392 if (!is_rxqs_map) {
2393 /* update Tx queue numa node */
2394 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2395 (numa_node_id >= 0) ?
2396 numa_node_id : NUMA_NO_NODE);
2397 }
2398
2399 if (!dev_maps)
2400 goto out_no_maps;
2401
2402 /* removes tx-queue from unused CPUs/rx-queues */
2403 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2404 j < nr_ids;) {
2405 for (i = tc, tci = j * num_tc; i--; tci++)
2406 active |= remove_xps_queue(dev_maps, tci, index);
2407 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2408 !netif_attr_test_online(j, online_mask, nr_ids))
2409 active |= remove_xps_queue(dev_maps, tci, index);
2410 for (i = num_tc - tc, tci++; --i; tci++)
2411 active |= remove_xps_queue(dev_maps, tci, index);
2412 }
2413
2414 /* free map if not active */
2415 if (!active)
2416 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2417
2418 out_no_maps:
2419 mutex_unlock(&xps_map_mutex);
2420
2421 return 0;
2422 error:
2423 /* remove any maps that we added */
2424 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2425 j < nr_ids;) {
2426 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2427 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2428 map = dev_maps ?
2429 xmap_dereference(dev_maps->attr_map[tci]) :
2430 NULL;
2431 if (new_map && new_map != map)
2432 kfree(new_map);
2433 }
2434 }
2435
2436 mutex_unlock(&xps_map_mutex);
2437
2438 kfree(new_dev_maps);
2439 return -ENOMEM;
2440 }
2441 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2442
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2443 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2444 u16 index)
2445 {
2446 int ret;
2447
2448 cpus_read_lock();
2449 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2450 cpus_read_unlock();
2451
2452 return ret;
2453 }
2454 EXPORT_SYMBOL(netif_set_xps_queue);
2455
2456 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2457 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2458 {
2459 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2460
2461 /* Unbind any subordinate channels */
2462 while (txq-- != &dev->_tx[0]) {
2463 if (txq->sb_dev)
2464 netdev_unbind_sb_channel(dev, txq->sb_dev);
2465 }
2466 }
2467
netdev_reset_tc(struct net_device * dev)2468 void netdev_reset_tc(struct net_device *dev)
2469 {
2470 #ifdef CONFIG_XPS
2471 netif_reset_xps_queues_gt(dev, 0);
2472 #endif
2473 netdev_unbind_all_sb_channels(dev);
2474
2475 /* Reset TC configuration of device */
2476 dev->num_tc = 0;
2477 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2478 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2479 }
2480 EXPORT_SYMBOL(netdev_reset_tc);
2481
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2482 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2483 {
2484 if (tc >= dev->num_tc)
2485 return -EINVAL;
2486
2487 #ifdef CONFIG_XPS
2488 netif_reset_xps_queues(dev, offset, count);
2489 #endif
2490 dev->tc_to_txq[tc].count = count;
2491 dev->tc_to_txq[tc].offset = offset;
2492 return 0;
2493 }
2494 EXPORT_SYMBOL(netdev_set_tc_queue);
2495
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2496 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2497 {
2498 if (num_tc > TC_MAX_QUEUE)
2499 return -EINVAL;
2500
2501 #ifdef CONFIG_XPS
2502 netif_reset_xps_queues_gt(dev, 0);
2503 #endif
2504 netdev_unbind_all_sb_channels(dev);
2505
2506 dev->num_tc = num_tc;
2507 return 0;
2508 }
2509 EXPORT_SYMBOL(netdev_set_num_tc);
2510
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2511 void netdev_unbind_sb_channel(struct net_device *dev,
2512 struct net_device *sb_dev)
2513 {
2514 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2515
2516 #ifdef CONFIG_XPS
2517 netif_reset_xps_queues_gt(sb_dev, 0);
2518 #endif
2519 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2520 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2521
2522 while (txq-- != &dev->_tx[0]) {
2523 if (txq->sb_dev == sb_dev)
2524 txq->sb_dev = NULL;
2525 }
2526 }
2527 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2528
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2529 int netdev_bind_sb_channel_queue(struct net_device *dev,
2530 struct net_device *sb_dev,
2531 u8 tc, u16 count, u16 offset)
2532 {
2533 /* Make certain the sb_dev and dev are already configured */
2534 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2535 return -EINVAL;
2536
2537 /* We cannot hand out queues we don't have */
2538 if ((offset + count) > dev->real_num_tx_queues)
2539 return -EINVAL;
2540
2541 /* Record the mapping */
2542 sb_dev->tc_to_txq[tc].count = count;
2543 sb_dev->tc_to_txq[tc].offset = offset;
2544
2545 /* Provide a way for Tx queue to find the tc_to_txq map or
2546 * XPS map for itself.
2547 */
2548 while (count--)
2549 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2550
2551 return 0;
2552 }
2553 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2554
netdev_set_sb_channel(struct net_device * dev,u16 channel)2555 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2556 {
2557 /* Do not use a multiqueue device to represent a subordinate channel */
2558 if (netif_is_multiqueue(dev))
2559 return -ENODEV;
2560
2561 /* We allow channels 1 - 32767 to be used for subordinate channels.
2562 * Channel 0 is meant to be "native" mode and used only to represent
2563 * the main root device. We allow writing 0 to reset the device back
2564 * to normal mode after being used as a subordinate channel.
2565 */
2566 if (channel > S16_MAX)
2567 return -EINVAL;
2568
2569 dev->num_tc = -channel;
2570
2571 return 0;
2572 }
2573 EXPORT_SYMBOL(netdev_set_sb_channel);
2574
2575 /*
2576 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2577 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2578 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2579 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2580 {
2581 bool disabling;
2582 int rc;
2583
2584 disabling = txq < dev->real_num_tx_queues;
2585
2586 if (txq < 1 || txq > dev->num_tx_queues)
2587 return -EINVAL;
2588
2589 if (dev->reg_state == NETREG_REGISTERED ||
2590 dev->reg_state == NETREG_UNREGISTERING) {
2591 ASSERT_RTNL();
2592
2593 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2594 txq);
2595 if (rc)
2596 return rc;
2597
2598 if (dev->num_tc)
2599 netif_setup_tc(dev, txq);
2600
2601 dev->real_num_tx_queues = txq;
2602
2603 if (disabling) {
2604 synchronize_net();
2605 qdisc_reset_all_tx_gt(dev, txq);
2606 #ifdef CONFIG_XPS
2607 netif_reset_xps_queues_gt(dev, txq);
2608 #endif
2609 }
2610 } else {
2611 dev->real_num_tx_queues = txq;
2612 }
2613
2614 return 0;
2615 }
2616 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2617
2618 #ifdef CONFIG_SYSFS
2619 /**
2620 * netif_set_real_num_rx_queues - set actual number of RX queues used
2621 * @dev: Network device
2622 * @rxq: Actual number of RX queues
2623 *
2624 * This must be called either with the rtnl_lock held or before
2625 * registration of the net device. Returns 0 on success, or a
2626 * negative error code. If called before registration, it always
2627 * succeeds.
2628 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2629 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2630 {
2631 int rc;
2632
2633 if (rxq < 1 || rxq > dev->num_rx_queues)
2634 return -EINVAL;
2635
2636 if (dev->reg_state == NETREG_REGISTERED) {
2637 ASSERT_RTNL();
2638
2639 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2640 rxq);
2641 if (rc)
2642 return rc;
2643 }
2644
2645 dev->real_num_rx_queues = rxq;
2646 return 0;
2647 }
2648 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2649 #endif
2650
2651 /**
2652 * netif_get_num_default_rss_queues - default number of RSS queues
2653 *
2654 * This routine should set an upper limit on the number of RSS queues
2655 * used by default by multiqueue devices.
2656 */
netif_get_num_default_rss_queues(void)2657 int netif_get_num_default_rss_queues(void)
2658 {
2659 return is_kdump_kernel() ?
2660 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2661 }
2662 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2663
__netif_reschedule(struct Qdisc * q)2664 static void __netif_reschedule(struct Qdisc *q)
2665 {
2666 struct softnet_data *sd;
2667 unsigned long flags;
2668
2669 local_irq_save(flags);
2670 sd = this_cpu_ptr(&softnet_data);
2671 q->next_sched = NULL;
2672 *sd->output_queue_tailp = q;
2673 sd->output_queue_tailp = &q->next_sched;
2674 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2675 local_irq_restore(flags);
2676 }
2677
__netif_schedule(struct Qdisc * q)2678 void __netif_schedule(struct Qdisc *q)
2679 {
2680 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2681 __netif_reschedule(q);
2682 }
2683 EXPORT_SYMBOL(__netif_schedule);
2684
2685 struct dev_kfree_skb_cb {
2686 enum skb_free_reason reason;
2687 };
2688
get_kfree_skb_cb(const struct sk_buff * skb)2689 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2690 {
2691 return (struct dev_kfree_skb_cb *)skb->cb;
2692 }
2693
netif_schedule_queue(struct netdev_queue * txq)2694 void netif_schedule_queue(struct netdev_queue *txq)
2695 {
2696 rcu_read_lock();
2697 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2698 struct Qdisc *q = rcu_dereference(txq->qdisc);
2699
2700 __netif_schedule(q);
2701 }
2702 rcu_read_unlock();
2703 }
2704 EXPORT_SYMBOL(netif_schedule_queue);
2705
netif_tx_wake_queue(struct netdev_queue * dev_queue)2706 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2707 {
2708 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2709 struct Qdisc *q;
2710
2711 rcu_read_lock();
2712 q = rcu_dereference(dev_queue->qdisc);
2713 __netif_schedule(q);
2714 rcu_read_unlock();
2715 }
2716 }
2717 EXPORT_SYMBOL(netif_tx_wake_queue);
2718
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)2719 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2720 {
2721 unsigned long flags;
2722
2723 if (unlikely(!skb))
2724 return;
2725
2726 if (likely(refcount_read(&skb->users) == 1)) {
2727 smp_rmb();
2728 refcount_set(&skb->users, 0);
2729 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2730 return;
2731 }
2732 get_kfree_skb_cb(skb)->reason = reason;
2733 local_irq_save(flags);
2734 skb->next = __this_cpu_read(softnet_data.completion_queue);
2735 __this_cpu_write(softnet_data.completion_queue, skb);
2736 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2737 local_irq_restore(flags);
2738 }
2739 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2740
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)2741 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2742 {
2743 if (in_irq() || irqs_disabled())
2744 __dev_kfree_skb_irq(skb, reason);
2745 else if (unlikely(reason == SKB_REASON_DROPPED))
2746 kfree_skb(skb);
2747 else
2748 consume_skb(skb);
2749 }
2750 EXPORT_SYMBOL(__dev_kfree_skb_any);
2751
2752
2753 /**
2754 * netif_device_detach - mark device as removed
2755 * @dev: network device
2756 *
2757 * Mark device as removed from system and therefore no longer available.
2758 */
netif_device_detach(struct net_device * dev)2759 void netif_device_detach(struct net_device *dev)
2760 {
2761 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2762 netif_running(dev)) {
2763 netif_tx_stop_all_queues(dev);
2764 }
2765 }
2766 EXPORT_SYMBOL(netif_device_detach);
2767
2768 /**
2769 * netif_device_attach - mark device as attached
2770 * @dev: network device
2771 *
2772 * Mark device as attached from system and restart if needed.
2773 */
netif_device_attach(struct net_device * dev)2774 void netif_device_attach(struct net_device *dev)
2775 {
2776 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2777 netif_running(dev)) {
2778 netif_tx_wake_all_queues(dev);
2779 __netdev_watchdog_up(dev);
2780 }
2781 }
2782 EXPORT_SYMBOL(netif_device_attach);
2783
2784 /*
2785 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2786 * to be used as a distribution range.
2787 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)2788 static u16 skb_tx_hash(const struct net_device *dev,
2789 const struct net_device *sb_dev,
2790 struct sk_buff *skb)
2791 {
2792 u32 hash;
2793 u16 qoffset = 0;
2794 u16 qcount = dev->real_num_tx_queues;
2795
2796 if (dev->num_tc) {
2797 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2798
2799 qoffset = sb_dev->tc_to_txq[tc].offset;
2800 qcount = sb_dev->tc_to_txq[tc].count;
2801 if (unlikely(!qcount)) {
2802 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
2803 sb_dev->name, qoffset, tc);
2804 qoffset = 0;
2805 qcount = dev->real_num_tx_queues;
2806 }
2807 }
2808
2809 if (skb_rx_queue_recorded(skb)) {
2810 hash = skb_get_rx_queue(skb);
2811 if (hash >= qoffset)
2812 hash -= qoffset;
2813 while (unlikely(hash >= qcount))
2814 hash -= qcount;
2815 return hash + qoffset;
2816 }
2817
2818 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2819 }
2820
skb_warn_bad_offload(const struct sk_buff * skb)2821 static void skb_warn_bad_offload(const struct sk_buff *skb)
2822 {
2823 static const netdev_features_t null_features;
2824 struct net_device *dev = skb->dev;
2825 const char *name = "";
2826
2827 if (!net_ratelimit())
2828 return;
2829
2830 if (dev) {
2831 if (dev->dev.parent)
2832 name = dev_driver_string(dev->dev.parent);
2833 else
2834 name = netdev_name(dev);
2835 }
2836 skb_dump(KERN_WARNING, skb, false);
2837 WARN(1, "%s: caps=(%pNF, %pNF)\n",
2838 name, dev ? &dev->features : &null_features,
2839 skb->sk ? &skb->sk->sk_route_caps : &null_features);
2840 }
2841
2842 /*
2843 * Invalidate hardware checksum when packet is to be mangled, and
2844 * complete checksum manually on outgoing path.
2845 */
skb_checksum_help(struct sk_buff * skb)2846 int skb_checksum_help(struct sk_buff *skb)
2847 {
2848 __wsum csum;
2849 int ret = 0, offset;
2850
2851 if (skb->ip_summed == CHECKSUM_COMPLETE)
2852 goto out_set_summed;
2853
2854 if (unlikely(skb_shinfo(skb)->gso_size)) {
2855 skb_warn_bad_offload(skb);
2856 return -EINVAL;
2857 }
2858
2859 /* Before computing a checksum, we should make sure no frag could
2860 * be modified by an external entity : checksum could be wrong.
2861 */
2862 if (skb_has_shared_frag(skb)) {
2863 ret = __skb_linearize(skb);
2864 if (ret)
2865 goto out;
2866 }
2867
2868 offset = skb_checksum_start_offset(skb);
2869 BUG_ON(offset >= skb_headlen(skb));
2870 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2871
2872 offset += skb->csum_offset;
2873 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2874
2875 if (skb_cloned(skb) &&
2876 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2877 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2878 if (ret)
2879 goto out;
2880 }
2881
2882 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2883 out_set_summed:
2884 skb->ip_summed = CHECKSUM_NONE;
2885 out:
2886 return ret;
2887 }
2888 EXPORT_SYMBOL(skb_checksum_help);
2889
skb_crc32c_csum_help(struct sk_buff * skb)2890 int skb_crc32c_csum_help(struct sk_buff *skb)
2891 {
2892 __le32 crc32c_csum;
2893 int ret = 0, offset, start;
2894
2895 if (skb->ip_summed != CHECKSUM_PARTIAL)
2896 goto out;
2897
2898 if (unlikely(skb_is_gso(skb)))
2899 goto out;
2900
2901 /* Before computing a checksum, we should make sure no frag could
2902 * be modified by an external entity : checksum could be wrong.
2903 */
2904 if (unlikely(skb_has_shared_frag(skb))) {
2905 ret = __skb_linearize(skb);
2906 if (ret)
2907 goto out;
2908 }
2909 start = skb_checksum_start_offset(skb);
2910 offset = start + offsetof(struct sctphdr, checksum);
2911 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2912 ret = -EINVAL;
2913 goto out;
2914 }
2915 if (skb_cloned(skb) &&
2916 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2917 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2918 if (ret)
2919 goto out;
2920 }
2921 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2922 skb->len - start, ~(__u32)0,
2923 crc32c_csum_stub));
2924 *(__le32 *)(skb->data + offset) = crc32c_csum;
2925 skb->ip_summed = CHECKSUM_NONE;
2926 skb->csum_not_inet = 0;
2927 out:
2928 return ret;
2929 }
2930
skb_network_protocol(struct sk_buff * skb,int * depth)2931 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2932 {
2933 __be16 type = skb->protocol;
2934
2935 /* Tunnel gso handlers can set protocol to ethernet. */
2936 if (type == htons(ETH_P_TEB)) {
2937 struct ethhdr *eth;
2938
2939 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2940 return 0;
2941
2942 eth = (struct ethhdr *)skb->data;
2943 type = eth->h_proto;
2944 }
2945
2946 return vlan_get_protocol_and_depth(skb, type, depth);
2947 }
2948
2949 /**
2950 * skb_mac_gso_segment - mac layer segmentation handler.
2951 * @skb: buffer to segment
2952 * @features: features for the output path (see dev->features)
2953 */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)2954 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2955 netdev_features_t features)
2956 {
2957 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2958 struct packet_offload *ptype;
2959 int vlan_depth = skb->mac_len;
2960 __be16 type = skb_network_protocol(skb, &vlan_depth);
2961
2962 if (unlikely(!type))
2963 return ERR_PTR(-EINVAL);
2964
2965 __skb_pull(skb, vlan_depth);
2966
2967 rcu_read_lock();
2968 list_for_each_entry_rcu(ptype, &offload_base, list) {
2969 if (ptype->type == type && ptype->callbacks.gso_segment) {
2970 segs = ptype->callbacks.gso_segment(skb, features);
2971 break;
2972 }
2973 }
2974 rcu_read_unlock();
2975
2976 __skb_push(skb, skb->data - skb_mac_header(skb));
2977
2978 return segs;
2979 }
2980 EXPORT_SYMBOL(skb_mac_gso_segment);
2981
2982
2983 /* openvswitch calls this on rx path, so we need a different check.
2984 */
skb_needs_check(struct sk_buff * skb,bool tx_path)2985 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2986 {
2987 if (tx_path)
2988 return skb->ip_summed != CHECKSUM_PARTIAL &&
2989 skb->ip_summed != CHECKSUM_UNNECESSARY;
2990
2991 return skb->ip_summed == CHECKSUM_NONE;
2992 }
2993
2994 /**
2995 * __skb_gso_segment - Perform segmentation on skb.
2996 * @skb: buffer to segment
2997 * @features: features for the output path (see dev->features)
2998 * @tx_path: whether it is called in TX path
2999 *
3000 * This function segments the given skb and returns a list of segments.
3001 *
3002 * It may return NULL if the skb requires no segmentation. This is
3003 * only possible when GSO is used for verifying header integrity.
3004 *
3005 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3006 */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)3007 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3008 netdev_features_t features, bool tx_path)
3009 {
3010 struct sk_buff *segs;
3011
3012 if (unlikely(skb_needs_check(skb, tx_path))) {
3013 int err;
3014
3015 /* We're going to init ->check field in TCP or UDP header */
3016 err = skb_cow_head(skb, 0);
3017 if (err < 0)
3018 return ERR_PTR(err);
3019 }
3020
3021 /* Only report GSO partial support if it will enable us to
3022 * support segmentation on this frame without needing additional
3023 * work.
3024 */
3025 if (features & NETIF_F_GSO_PARTIAL) {
3026 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3027 struct net_device *dev = skb->dev;
3028
3029 partial_features |= dev->features & dev->gso_partial_features;
3030 if (!skb_gso_ok(skb, features | partial_features))
3031 features &= ~NETIF_F_GSO_PARTIAL;
3032 }
3033
3034 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3035 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3036
3037 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3038 SKB_GSO_CB(skb)->encap_level = 0;
3039
3040 skb_reset_mac_header(skb);
3041 skb_reset_mac_len(skb);
3042
3043 segs = skb_mac_gso_segment(skb, features);
3044
3045 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3046 skb_warn_bad_offload(skb);
3047
3048 return segs;
3049 }
3050 EXPORT_SYMBOL(__skb_gso_segment);
3051
3052 /* Take action when hardware reception checksum errors are detected. */
3053 #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3054 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3055 {
3056 if (net_ratelimit()) {
3057 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3058 skb_dump(KERN_ERR, skb, true);
3059 dump_stack();
3060 }
3061 }
3062 EXPORT_SYMBOL(netdev_rx_csum_fault);
3063 #endif
3064
3065 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3066 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3067 {
3068 #ifdef CONFIG_HIGHMEM
3069 int i;
3070
3071 if (!(dev->features & NETIF_F_HIGHDMA)) {
3072 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3073 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3074
3075 if (PageHighMem(skb_frag_page(frag)))
3076 return 1;
3077 }
3078 }
3079 #endif
3080 return 0;
3081 }
3082
3083 /* If MPLS offload request, verify we are testing hardware MPLS features
3084 * instead of standard features for the netdev.
3085 */
3086 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3087 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3088 netdev_features_t features,
3089 __be16 type)
3090 {
3091 if (eth_p_mpls(type))
3092 features &= skb->dev->mpls_features;
3093
3094 return features;
3095 }
3096 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3097 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3098 netdev_features_t features,
3099 __be16 type)
3100 {
3101 return features;
3102 }
3103 #endif
3104
harmonize_features(struct sk_buff * skb,netdev_features_t features)3105 static netdev_features_t harmonize_features(struct sk_buff *skb,
3106 netdev_features_t features)
3107 {
3108 int tmp;
3109 __be16 type;
3110
3111 type = skb_network_protocol(skb, &tmp);
3112 features = net_mpls_features(skb, features, type);
3113
3114 if (skb->ip_summed != CHECKSUM_NONE &&
3115 !can_checksum_protocol(features, type)) {
3116 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3117 }
3118 if (illegal_highdma(skb->dev, skb))
3119 features &= ~NETIF_F_SG;
3120
3121 return features;
3122 }
3123
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3124 netdev_features_t passthru_features_check(struct sk_buff *skb,
3125 struct net_device *dev,
3126 netdev_features_t features)
3127 {
3128 return features;
3129 }
3130 EXPORT_SYMBOL(passthru_features_check);
3131
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3132 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3133 struct net_device *dev,
3134 netdev_features_t features)
3135 {
3136 return vlan_features_check(skb, features);
3137 }
3138
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3139 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3140 struct net_device *dev,
3141 netdev_features_t features)
3142 {
3143 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3144
3145 if (gso_segs > dev->gso_max_segs)
3146 return features & ~NETIF_F_GSO_MASK;
3147
3148 if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3149 return features & ~NETIF_F_GSO_MASK;
3150
3151 if (!skb_shinfo(skb)->gso_type) {
3152 skb_warn_bad_offload(skb);
3153 return features & ~NETIF_F_GSO_MASK;
3154 }
3155
3156 /* Support for GSO partial features requires software
3157 * intervention before we can actually process the packets
3158 * so we need to strip support for any partial features now
3159 * and we can pull them back in after we have partially
3160 * segmented the frame.
3161 */
3162 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3163 features &= ~dev->gso_partial_features;
3164
3165 /* Make sure to clear the IPv4 ID mangling feature if the
3166 * IPv4 header has the potential to be fragmented.
3167 */
3168 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3169 struct iphdr *iph = skb->encapsulation ?
3170 inner_ip_hdr(skb) : ip_hdr(skb);
3171
3172 if (!(iph->frag_off & htons(IP_DF)))
3173 features &= ~NETIF_F_TSO_MANGLEID;
3174 }
3175
3176 return features;
3177 }
3178
netif_skb_features(struct sk_buff * skb)3179 netdev_features_t netif_skb_features(struct sk_buff *skb)
3180 {
3181 struct net_device *dev = skb->dev;
3182 netdev_features_t features = dev->features;
3183
3184 if (skb_is_gso(skb))
3185 features = gso_features_check(skb, dev, features);
3186
3187 /* If encapsulation offload request, verify we are testing
3188 * hardware encapsulation features instead of standard
3189 * features for the netdev
3190 */
3191 if (skb->encapsulation)
3192 features &= dev->hw_enc_features;
3193
3194 if (skb_vlan_tagged(skb))
3195 features = netdev_intersect_features(features,
3196 dev->vlan_features |
3197 NETIF_F_HW_VLAN_CTAG_TX |
3198 NETIF_F_HW_VLAN_STAG_TX);
3199
3200 if (dev->netdev_ops->ndo_features_check)
3201 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3202 features);
3203 else
3204 features &= dflt_features_check(skb, dev, features);
3205
3206 return harmonize_features(skb, features);
3207 }
3208 EXPORT_SYMBOL(netif_skb_features);
3209
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3210 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3211 struct netdev_queue *txq, bool more)
3212 {
3213 unsigned int len;
3214 int rc;
3215
3216 if (dev_nit_active(dev))
3217 dev_queue_xmit_nit(skb, dev);
3218
3219 len = skb->len;
3220 trace_net_dev_start_xmit(skb, dev);
3221 rc = netdev_start_xmit(skb, dev, txq, more);
3222 trace_net_dev_xmit(skb, rc, dev, len);
3223
3224 return rc;
3225 }
3226
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3227 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3228 struct netdev_queue *txq, int *ret)
3229 {
3230 struct sk_buff *skb = first;
3231 int rc = NETDEV_TX_OK;
3232
3233 while (skb) {
3234 struct sk_buff *next = skb->next;
3235
3236 skb_mark_not_on_list(skb);
3237 rc = xmit_one(skb, dev, txq, next != NULL);
3238 if (unlikely(!dev_xmit_complete(rc))) {
3239 skb->next = next;
3240 goto out;
3241 }
3242
3243 skb = next;
3244 if (netif_tx_queue_stopped(txq) && skb) {
3245 rc = NETDEV_TX_BUSY;
3246 break;
3247 }
3248 }
3249
3250 out:
3251 *ret = rc;
3252 return skb;
3253 }
3254
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3255 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3256 netdev_features_t features)
3257 {
3258 if (skb_vlan_tag_present(skb) &&
3259 !vlan_hw_offload_capable(features, skb->vlan_proto))
3260 skb = __vlan_hwaccel_push_inside(skb);
3261 return skb;
3262 }
3263
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3264 int skb_csum_hwoffload_help(struct sk_buff *skb,
3265 const netdev_features_t features)
3266 {
3267 if (unlikely(skb->csum_not_inet))
3268 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3269 skb_crc32c_csum_help(skb);
3270
3271 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3272 }
3273 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3274
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3275 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3276 {
3277 netdev_features_t features;
3278
3279 features = netif_skb_features(skb);
3280 skb = validate_xmit_vlan(skb, features);
3281 if (unlikely(!skb))
3282 goto out_null;
3283
3284 skb = sk_validate_xmit_skb(skb, dev);
3285 if (unlikely(!skb))
3286 goto out_null;
3287
3288 if (netif_needs_gso(skb, features)) {
3289 struct sk_buff *segs;
3290
3291 segs = skb_gso_segment(skb, features);
3292 if (IS_ERR(segs)) {
3293 goto out_kfree_skb;
3294 } else if (segs) {
3295 consume_skb(skb);
3296 skb = segs;
3297 }
3298 } else {
3299 if (skb_needs_linearize(skb, features) &&
3300 __skb_linearize(skb))
3301 goto out_kfree_skb;
3302
3303 /* If packet is not checksummed and device does not
3304 * support checksumming for this protocol, complete
3305 * checksumming here.
3306 */
3307 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3308 if (skb->encapsulation)
3309 skb_set_inner_transport_header(skb,
3310 skb_checksum_start_offset(skb));
3311 else
3312 skb_set_transport_header(skb,
3313 skb_checksum_start_offset(skb));
3314 if (skb_csum_hwoffload_help(skb, features))
3315 goto out_kfree_skb;
3316 }
3317 }
3318
3319 skb = validate_xmit_xfrm(skb, features, again);
3320
3321 return skb;
3322
3323 out_kfree_skb:
3324 kfree_skb(skb);
3325 out_null:
3326 atomic_long_inc(&dev->tx_dropped);
3327 return NULL;
3328 }
3329
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3330 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3331 {
3332 struct sk_buff *next, *head = NULL, *tail;
3333
3334 for (; skb != NULL; skb = next) {
3335 next = skb->next;
3336 skb_mark_not_on_list(skb);
3337
3338 /* in case skb wont be segmented, point to itself */
3339 skb->prev = skb;
3340
3341 skb = validate_xmit_skb(skb, dev, again);
3342 if (!skb)
3343 continue;
3344
3345 if (!head)
3346 head = skb;
3347 else
3348 tail->next = skb;
3349 /* If skb was segmented, skb->prev points to
3350 * the last segment. If not, it still contains skb.
3351 */
3352 tail = skb->prev;
3353 }
3354 return head;
3355 }
3356 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3357
qdisc_pkt_len_init(struct sk_buff * skb)3358 static void qdisc_pkt_len_init(struct sk_buff *skb)
3359 {
3360 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3361
3362 qdisc_skb_cb(skb)->pkt_len = skb->len;
3363
3364 /* To get more precise estimation of bytes sent on wire,
3365 * we add to pkt_len the headers size of all segments
3366 */
3367 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3368 unsigned int hdr_len;
3369 u16 gso_segs = shinfo->gso_segs;
3370
3371 /* mac layer + network layer */
3372 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3373
3374 /* + transport layer */
3375 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3376 const struct tcphdr *th;
3377 struct tcphdr _tcphdr;
3378
3379 th = skb_header_pointer(skb, skb_transport_offset(skb),
3380 sizeof(_tcphdr), &_tcphdr);
3381 if (likely(th))
3382 hdr_len += __tcp_hdrlen(th);
3383 } else {
3384 struct udphdr _udphdr;
3385
3386 if (skb_header_pointer(skb, skb_transport_offset(skb),
3387 sizeof(_udphdr), &_udphdr))
3388 hdr_len += sizeof(struct udphdr);
3389 }
3390
3391 if (shinfo->gso_type & SKB_GSO_DODGY)
3392 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3393 shinfo->gso_size);
3394
3395 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3396 }
3397 }
3398
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3399 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3400 struct net_device *dev,
3401 struct netdev_queue *txq)
3402 {
3403 spinlock_t *root_lock = qdisc_lock(q);
3404 struct sk_buff *to_free = NULL;
3405 bool contended;
3406 int rc;
3407
3408 qdisc_calculate_pkt_len(skb, q);
3409
3410 if (q->flags & TCQ_F_NOLOCK) {
3411 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3412 if (likely(!netif_xmit_frozen_or_stopped(txq)))
3413 qdisc_run(q);
3414
3415 if (unlikely(to_free))
3416 kfree_skb_list(to_free);
3417 return rc;
3418 }
3419
3420 /*
3421 * Heuristic to force contended enqueues to serialize on a
3422 * separate lock before trying to get qdisc main lock.
3423 * This permits qdisc->running owner to get the lock more
3424 * often and dequeue packets faster.
3425 */
3426 contended = qdisc_is_running(q);
3427 if (unlikely(contended))
3428 spin_lock(&q->busylock);
3429
3430 spin_lock(root_lock);
3431 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3432 __qdisc_drop(skb, &to_free);
3433 rc = NET_XMIT_DROP;
3434 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3435 qdisc_run_begin(q)) {
3436 /*
3437 * This is a work-conserving queue; there are no old skbs
3438 * waiting to be sent out; and the qdisc is not running -
3439 * xmit the skb directly.
3440 */
3441
3442 qdisc_bstats_update(q, skb);
3443
3444 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3445 if (unlikely(contended)) {
3446 spin_unlock(&q->busylock);
3447 contended = false;
3448 }
3449 __qdisc_run(q);
3450 }
3451
3452 qdisc_run_end(q);
3453 rc = NET_XMIT_SUCCESS;
3454 } else {
3455 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3456 if (qdisc_run_begin(q)) {
3457 if (unlikely(contended)) {
3458 spin_unlock(&q->busylock);
3459 contended = false;
3460 }
3461 __qdisc_run(q);
3462 qdisc_run_end(q);
3463 }
3464 }
3465 spin_unlock(root_lock);
3466 if (unlikely(to_free))
3467 kfree_skb_list(to_free);
3468 if (unlikely(contended))
3469 spin_unlock(&q->busylock);
3470 return rc;
3471 }
3472
3473 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3474 static void skb_update_prio(struct sk_buff *skb)
3475 {
3476 const struct netprio_map *map;
3477 const struct sock *sk;
3478 unsigned int prioidx;
3479
3480 if (skb->priority)
3481 return;
3482 map = rcu_dereference_bh(skb->dev->priomap);
3483 if (!map)
3484 return;
3485 sk = skb_to_full_sk(skb);
3486 if (!sk)
3487 return;
3488
3489 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3490
3491 if (prioidx < map->priomap_len)
3492 skb->priority = map->priomap[prioidx];
3493 }
3494 #else
3495 #define skb_update_prio(skb)
3496 #endif
3497
3498 /**
3499 * dev_loopback_xmit - loop back @skb
3500 * @net: network namespace this loopback is happening in
3501 * @sk: sk needed to be a netfilter okfn
3502 * @skb: buffer to transmit
3503 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3504 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3505 {
3506 skb_reset_mac_header(skb);
3507 __skb_pull(skb, skb_network_offset(skb));
3508 skb->pkt_type = PACKET_LOOPBACK;
3509 if (skb->ip_summed == CHECKSUM_NONE)
3510 skb->ip_summed = CHECKSUM_UNNECESSARY;
3511 WARN_ON(!skb_dst(skb));
3512 skb_dst_force(skb);
3513 netif_rx_ni(skb);
3514 return 0;
3515 }
3516 EXPORT_SYMBOL(dev_loopback_xmit);
3517
3518 #ifdef CONFIG_NET_EGRESS
3519 static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3520 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3521 {
3522 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3523 struct tcf_result cl_res;
3524
3525 if (!miniq)
3526 return skb;
3527
3528 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3529 mini_qdisc_bstats_cpu_update(miniq, skb);
3530
3531 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3532 case TC_ACT_OK:
3533 case TC_ACT_RECLASSIFY:
3534 skb->tc_index = TC_H_MIN(cl_res.classid);
3535 break;
3536 case TC_ACT_SHOT:
3537 mini_qdisc_qstats_cpu_drop(miniq);
3538 *ret = NET_XMIT_DROP;
3539 kfree_skb(skb);
3540 return NULL;
3541 case TC_ACT_STOLEN:
3542 case TC_ACT_QUEUED:
3543 case TC_ACT_TRAP:
3544 *ret = NET_XMIT_SUCCESS;
3545 consume_skb(skb);
3546 return NULL;
3547 case TC_ACT_REDIRECT:
3548 /* No need to push/pop skb's mac_header here on egress! */
3549 skb_do_redirect(skb);
3550 *ret = NET_XMIT_SUCCESS;
3551 return NULL;
3552 default:
3553 break;
3554 }
3555
3556 return skb;
3557 }
3558 #endif /* CONFIG_NET_EGRESS */
3559
3560 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)3561 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3562 struct xps_dev_maps *dev_maps, unsigned int tci)
3563 {
3564 struct xps_map *map;
3565 int queue_index = -1;
3566
3567 if (dev->num_tc) {
3568 tci *= dev->num_tc;
3569 tci += netdev_get_prio_tc_map(dev, skb->priority);
3570 }
3571
3572 map = rcu_dereference(dev_maps->attr_map[tci]);
3573 if (map) {
3574 if (map->len == 1)
3575 queue_index = map->queues[0];
3576 else
3577 queue_index = map->queues[reciprocal_scale(
3578 skb_get_hash(skb), map->len)];
3579 if (unlikely(queue_index >= dev->real_num_tx_queues))
3580 queue_index = -1;
3581 }
3582 return queue_index;
3583 }
3584 #endif
3585
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)3586 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3587 struct sk_buff *skb)
3588 {
3589 #ifdef CONFIG_XPS
3590 struct xps_dev_maps *dev_maps;
3591 struct sock *sk = skb->sk;
3592 int queue_index = -1;
3593
3594 if (!static_key_false(&xps_needed))
3595 return -1;
3596
3597 rcu_read_lock();
3598 if (!static_key_false(&xps_rxqs_needed))
3599 goto get_cpus_map;
3600
3601 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3602 if (dev_maps) {
3603 int tci = sk_rx_queue_get(sk);
3604
3605 if (tci >= 0 && tci < dev->num_rx_queues)
3606 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3607 tci);
3608 }
3609
3610 get_cpus_map:
3611 if (queue_index < 0) {
3612 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3613 if (dev_maps) {
3614 unsigned int tci = skb->sender_cpu - 1;
3615
3616 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3617 tci);
3618 }
3619 }
3620 rcu_read_unlock();
3621
3622 return queue_index;
3623 #else
3624 return -1;
3625 #endif
3626 }
3627
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3628 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3629 struct net_device *sb_dev)
3630 {
3631 return 0;
3632 }
3633 EXPORT_SYMBOL(dev_pick_tx_zero);
3634
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3635 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3636 struct net_device *sb_dev)
3637 {
3638 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3639 }
3640 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3641
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3642 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3643 struct net_device *sb_dev)
3644 {
3645 struct sock *sk = skb->sk;
3646 int queue_index = sk_tx_queue_get(sk);
3647
3648 sb_dev = sb_dev ? : dev;
3649
3650 if (queue_index < 0 || skb->ooo_okay ||
3651 queue_index >= dev->real_num_tx_queues) {
3652 int new_index = get_xps_queue(dev, sb_dev, skb);
3653
3654 if (new_index < 0)
3655 new_index = skb_tx_hash(dev, sb_dev, skb);
3656
3657 if (queue_index != new_index && sk &&
3658 sk_fullsock(sk) &&
3659 rcu_access_pointer(sk->sk_dst_cache))
3660 sk_tx_queue_set(sk, new_index);
3661
3662 queue_index = new_index;
3663 }
3664
3665 return queue_index;
3666 }
3667 EXPORT_SYMBOL(netdev_pick_tx);
3668
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3669 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3670 struct sk_buff *skb,
3671 struct net_device *sb_dev)
3672 {
3673 int queue_index = 0;
3674
3675 #ifdef CONFIG_XPS
3676 u32 sender_cpu = skb->sender_cpu - 1;
3677
3678 if (sender_cpu >= (u32)NR_CPUS)
3679 skb->sender_cpu = raw_smp_processor_id() + 1;
3680 #endif
3681
3682 if (dev->real_num_tx_queues != 1) {
3683 const struct net_device_ops *ops = dev->netdev_ops;
3684
3685 if (ops->ndo_select_queue)
3686 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3687 else
3688 queue_index = netdev_pick_tx(dev, skb, sb_dev);
3689
3690 queue_index = netdev_cap_txqueue(dev, queue_index);
3691 }
3692
3693 skb_set_queue_mapping(skb, queue_index);
3694 return netdev_get_tx_queue(dev, queue_index);
3695 }
3696
3697 /**
3698 * __dev_queue_xmit - transmit a buffer
3699 * @skb: buffer to transmit
3700 * @sb_dev: suboordinate device used for L2 forwarding offload
3701 *
3702 * Queue a buffer for transmission to a network device. The caller must
3703 * have set the device and priority and built the buffer before calling
3704 * this function. The function can be called from an interrupt.
3705 *
3706 * A negative errno code is returned on a failure. A success does not
3707 * guarantee the frame will be transmitted as it may be dropped due
3708 * to congestion or traffic shaping.
3709 *
3710 * -----------------------------------------------------------------------------------
3711 * I notice this method can also return errors from the queue disciplines,
3712 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3713 * be positive.
3714 *
3715 * Regardless of the return value, the skb is consumed, so it is currently
3716 * difficult to retry a send to this method. (You can bump the ref count
3717 * before sending to hold a reference for retry if you are careful.)
3718 *
3719 * When calling this method, interrupts MUST be enabled. This is because
3720 * the BH enable code must have IRQs enabled so that it will not deadlock.
3721 * --BLG
3722 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)3723 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3724 {
3725 struct net_device *dev = skb->dev;
3726 struct netdev_queue *txq;
3727 struct Qdisc *q;
3728 int rc = -ENOMEM;
3729 bool again = false;
3730
3731 skb_reset_mac_header(skb);
3732 skb_assert_len(skb);
3733
3734 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3735 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3736
3737 /* Disable soft irqs for various locks below. Also
3738 * stops preemption for RCU.
3739 */
3740 rcu_read_lock_bh();
3741
3742 skb_update_prio(skb);
3743
3744 qdisc_pkt_len_init(skb);
3745 #ifdef CONFIG_NET_CLS_ACT
3746 skb->tc_at_ingress = 0;
3747 # ifdef CONFIG_NET_EGRESS
3748 if (static_branch_unlikely(&egress_needed_key)) {
3749 skb = sch_handle_egress(skb, &rc, dev);
3750 if (!skb)
3751 goto out;
3752 }
3753 # endif
3754 #endif
3755 /* If device/qdisc don't need skb->dst, release it right now while
3756 * its hot in this cpu cache.
3757 */
3758 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3759 skb_dst_drop(skb);
3760 else
3761 skb_dst_force(skb);
3762
3763 txq = netdev_core_pick_tx(dev, skb, sb_dev);
3764 q = rcu_dereference_bh(txq->qdisc);
3765
3766 trace_net_dev_queue(skb);
3767 if (q->enqueue) {
3768 rc = __dev_xmit_skb(skb, q, dev, txq);
3769 goto out;
3770 }
3771
3772 /* The device has no queue. Common case for software devices:
3773 * loopback, all the sorts of tunnels...
3774
3775 * Really, it is unlikely that netif_tx_lock protection is necessary
3776 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3777 * counters.)
3778 * However, it is possible, that they rely on protection
3779 * made by us here.
3780
3781 * Check this and shot the lock. It is not prone from deadlocks.
3782 *Either shot noqueue qdisc, it is even simpler 8)
3783 */
3784 if (dev->flags & IFF_UP) {
3785 int cpu = smp_processor_id(); /* ok because BHs are off */
3786
3787 /* Other cpus might concurrently change txq->xmit_lock_owner
3788 * to -1 or to their cpu id, but not to our id.
3789 */
3790 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
3791 if (dev_xmit_recursion())
3792 goto recursion_alert;
3793
3794 skb = validate_xmit_skb(skb, dev, &again);
3795 if (!skb)
3796 goto out;
3797
3798 HARD_TX_LOCK(dev, txq, cpu);
3799
3800 if (!netif_xmit_stopped(txq)) {
3801 dev_xmit_recursion_inc();
3802 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3803 dev_xmit_recursion_dec();
3804 if (dev_xmit_complete(rc)) {
3805 HARD_TX_UNLOCK(dev, txq);
3806 goto out;
3807 }
3808 }
3809 HARD_TX_UNLOCK(dev, txq);
3810 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3811 dev->name);
3812 } else {
3813 /* Recursion is detected! It is possible,
3814 * unfortunately
3815 */
3816 recursion_alert:
3817 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3818 dev->name);
3819 }
3820 }
3821
3822 rc = -ENETDOWN;
3823 rcu_read_unlock_bh();
3824
3825 atomic_long_inc(&dev->tx_dropped);
3826 kfree_skb_list(skb);
3827 return rc;
3828 out:
3829 rcu_read_unlock_bh();
3830 return rc;
3831 }
3832
dev_queue_xmit(struct sk_buff * skb)3833 int dev_queue_xmit(struct sk_buff *skb)
3834 {
3835 return __dev_queue_xmit(skb, NULL);
3836 }
3837 EXPORT_SYMBOL(dev_queue_xmit);
3838
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)3839 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3840 {
3841 return __dev_queue_xmit(skb, sb_dev);
3842 }
3843 EXPORT_SYMBOL(dev_queue_xmit_accel);
3844
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)3845 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3846 {
3847 struct net_device *dev = skb->dev;
3848 struct sk_buff *orig_skb = skb;
3849 struct netdev_queue *txq;
3850 int ret = NETDEV_TX_BUSY;
3851 bool again = false;
3852
3853 if (unlikely(!netif_running(dev) ||
3854 !netif_carrier_ok(dev)))
3855 goto drop;
3856
3857 skb = validate_xmit_skb_list(skb, dev, &again);
3858 if (skb != orig_skb)
3859 goto drop;
3860
3861 skb_set_queue_mapping(skb, queue_id);
3862 txq = skb_get_tx_queue(dev, skb);
3863
3864 local_bh_disable();
3865
3866 dev_xmit_recursion_inc();
3867 HARD_TX_LOCK(dev, txq, smp_processor_id());
3868 if (!netif_xmit_frozen_or_drv_stopped(txq))
3869 ret = netdev_start_xmit(skb, dev, txq, false);
3870 HARD_TX_UNLOCK(dev, txq);
3871 dev_xmit_recursion_dec();
3872
3873 local_bh_enable();
3874
3875 if (!dev_xmit_complete(ret))
3876 kfree_skb(skb);
3877
3878 return ret;
3879 drop:
3880 atomic_long_inc(&dev->tx_dropped);
3881 kfree_skb_list(skb);
3882 return NET_XMIT_DROP;
3883 }
3884 EXPORT_SYMBOL(dev_direct_xmit);
3885
3886 /*************************************************************************
3887 * Receiver routines
3888 *************************************************************************/
3889
3890 int netdev_max_backlog __read_mostly = 1000;
3891 EXPORT_SYMBOL(netdev_max_backlog);
3892
3893 int netdev_tstamp_prequeue __read_mostly = 1;
3894 int netdev_budget __read_mostly = 300;
3895 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
3896 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
3897 int weight_p __read_mostly = 64; /* old backlog weight */
3898 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3899 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3900 int dev_rx_weight __read_mostly = 64;
3901 int dev_tx_weight __read_mostly = 64;
3902 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
3903 int gro_normal_batch __read_mostly = 8;
3904
3905 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)3906 static inline void ____napi_schedule(struct softnet_data *sd,
3907 struct napi_struct *napi)
3908 {
3909 list_add_tail(&napi->poll_list, &sd->poll_list);
3910 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3911 }
3912
3913 #ifdef CONFIG_RPS
3914
3915 /* One global table that all flow-based protocols share. */
3916 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3917 EXPORT_SYMBOL(rps_sock_flow_table);
3918 u32 rps_cpu_mask __read_mostly;
3919 EXPORT_SYMBOL(rps_cpu_mask);
3920
3921 struct static_key_false rps_needed __read_mostly;
3922 EXPORT_SYMBOL(rps_needed);
3923 struct static_key_false rfs_needed __read_mostly;
3924 EXPORT_SYMBOL(rfs_needed);
3925
3926 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)3927 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3928 struct rps_dev_flow *rflow, u16 next_cpu)
3929 {
3930 if (next_cpu < nr_cpu_ids) {
3931 #ifdef CONFIG_RFS_ACCEL
3932 struct netdev_rx_queue *rxqueue;
3933 struct rps_dev_flow_table *flow_table;
3934 struct rps_dev_flow *old_rflow;
3935 u32 flow_id;
3936 u16 rxq_index;
3937 int rc;
3938
3939 /* Should we steer this flow to a different hardware queue? */
3940 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3941 !(dev->features & NETIF_F_NTUPLE))
3942 goto out;
3943 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3944 if (rxq_index == skb_get_rx_queue(skb))
3945 goto out;
3946
3947 rxqueue = dev->_rx + rxq_index;
3948 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3949 if (!flow_table)
3950 goto out;
3951 flow_id = skb_get_hash(skb) & flow_table->mask;
3952 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3953 rxq_index, flow_id);
3954 if (rc < 0)
3955 goto out;
3956 old_rflow = rflow;
3957 rflow = &flow_table->flows[flow_id];
3958 rflow->filter = rc;
3959 if (old_rflow->filter == rflow->filter)
3960 old_rflow->filter = RPS_NO_FILTER;
3961 out:
3962 #endif
3963 rflow->last_qtail =
3964 per_cpu(softnet_data, next_cpu).input_queue_head;
3965 }
3966
3967 rflow->cpu = next_cpu;
3968 return rflow;
3969 }
3970
3971 /*
3972 * get_rps_cpu is called from netif_receive_skb and returns the target
3973 * CPU from the RPS map of the receiving queue for a given skb.
3974 * rcu_read_lock must be held on entry.
3975 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)3976 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3977 struct rps_dev_flow **rflowp)
3978 {
3979 const struct rps_sock_flow_table *sock_flow_table;
3980 struct netdev_rx_queue *rxqueue = dev->_rx;
3981 struct rps_dev_flow_table *flow_table;
3982 struct rps_map *map;
3983 int cpu = -1;
3984 u32 tcpu;
3985 u32 hash;
3986
3987 if (skb_rx_queue_recorded(skb)) {
3988 u16 index = skb_get_rx_queue(skb);
3989
3990 if (unlikely(index >= dev->real_num_rx_queues)) {
3991 WARN_ONCE(dev->real_num_rx_queues > 1,
3992 "%s received packet on queue %u, but number "
3993 "of RX queues is %u\n",
3994 dev->name, index, dev->real_num_rx_queues);
3995 goto done;
3996 }
3997 rxqueue += index;
3998 }
3999
4000 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4001
4002 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4003 map = rcu_dereference(rxqueue->rps_map);
4004 if (!flow_table && !map)
4005 goto done;
4006
4007 skb_reset_network_header(skb);
4008 hash = skb_get_hash(skb);
4009 if (!hash)
4010 goto done;
4011
4012 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4013 if (flow_table && sock_flow_table) {
4014 struct rps_dev_flow *rflow;
4015 u32 next_cpu;
4016 u32 ident;
4017
4018 /* First check into global flow table if there is a match.
4019 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4020 */
4021 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4022 if ((ident ^ hash) & ~rps_cpu_mask)
4023 goto try_rps;
4024
4025 next_cpu = ident & rps_cpu_mask;
4026
4027 /* OK, now we know there is a match,
4028 * we can look at the local (per receive queue) flow table
4029 */
4030 rflow = &flow_table->flows[hash & flow_table->mask];
4031 tcpu = rflow->cpu;
4032
4033 /*
4034 * If the desired CPU (where last recvmsg was done) is
4035 * different from current CPU (one in the rx-queue flow
4036 * table entry), switch if one of the following holds:
4037 * - Current CPU is unset (>= nr_cpu_ids).
4038 * - Current CPU is offline.
4039 * - The current CPU's queue tail has advanced beyond the
4040 * last packet that was enqueued using this table entry.
4041 * This guarantees that all previous packets for the flow
4042 * have been dequeued, thus preserving in order delivery.
4043 */
4044 if (unlikely(tcpu != next_cpu) &&
4045 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4046 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4047 rflow->last_qtail)) >= 0)) {
4048 tcpu = next_cpu;
4049 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4050 }
4051
4052 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4053 *rflowp = rflow;
4054 cpu = tcpu;
4055 goto done;
4056 }
4057 }
4058
4059 try_rps:
4060
4061 if (map) {
4062 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4063 if (cpu_online(tcpu)) {
4064 cpu = tcpu;
4065 goto done;
4066 }
4067 }
4068
4069 done:
4070 return cpu;
4071 }
4072
4073 #ifdef CONFIG_RFS_ACCEL
4074
4075 /**
4076 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4077 * @dev: Device on which the filter was set
4078 * @rxq_index: RX queue index
4079 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4080 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4081 *
4082 * Drivers that implement ndo_rx_flow_steer() should periodically call
4083 * this function for each installed filter and remove the filters for
4084 * which it returns %true.
4085 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4086 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4087 u32 flow_id, u16 filter_id)
4088 {
4089 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4090 struct rps_dev_flow_table *flow_table;
4091 struct rps_dev_flow *rflow;
4092 bool expire = true;
4093 unsigned int cpu;
4094
4095 rcu_read_lock();
4096 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4097 if (flow_table && flow_id <= flow_table->mask) {
4098 rflow = &flow_table->flows[flow_id];
4099 cpu = READ_ONCE(rflow->cpu);
4100 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4101 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4102 rflow->last_qtail) <
4103 (int)(10 * flow_table->mask)))
4104 expire = false;
4105 }
4106 rcu_read_unlock();
4107 return expire;
4108 }
4109 EXPORT_SYMBOL(rps_may_expire_flow);
4110
4111 #endif /* CONFIG_RFS_ACCEL */
4112
4113 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4114 static void rps_trigger_softirq(void *data)
4115 {
4116 struct softnet_data *sd = data;
4117
4118 ____napi_schedule(sd, &sd->backlog);
4119 sd->received_rps++;
4120 }
4121
4122 #endif /* CONFIG_RPS */
4123
4124 /*
4125 * Check if this softnet_data structure is another cpu one
4126 * If yes, queue it to our IPI list and return 1
4127 * If no, return 0
4128 */
rps_ipi_queued(struct softnet_data * sd)4129 static int rps_ipi_queued(struct softnet_data *sd)
4130 {
4131 #ifdef CONFIG_RPS
4132 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4133
4134 if (sd != mysd) {
4135 sd->rps_ipi_next = mysd->rps_ipi_list;
4136 mysd->rps_ipi_list = sd;
4137
4138 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4139 return 1;
4140 }
4141 #endif /* CONFIG_RPS */
4142 return 0;
4143 }
4144
4145 #ifdef CONFIG_NET_FLOW_LIMIT
4146 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4147 #endif
4148
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4149 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4150 {
4151 #ifdef CONFIG_NET_FLOW_LIMIT
4152 struct sd_flow_limit *fl;
4153 struct softnet_data *sd;
4154 unsigned int old_flow, new_flow;
4155
4156 if (qlen < (netdev_max_backlog >> 1))
4157 return false;
4158
4159 sd = this_cpu_ptr(&softnet_data);
4160
4161 rcu_read_lock();
4162 fl = rcu_dereference(sd->flow_limit);
4163 if (fl) {
4164 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4165 old_flow = fl->history[fl->history_head];
4166 fl->history[fl->history_head] = new_flow;
4167
4168 fl->history_head++;
4169 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4170
4171 if (likely(fl->buckets[old_flow]))
4172 fl->buckets[old_flow]--;
4173
4174 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4175 fl->count++;
4176 rcu_read_unlock();
4177 return true;
4178 }
4179 }
4180 rcu_read_unlock();
4181 #endif
4182 return false;
4183 }
4184
4185 /*
4186 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4187 * queue (may be a remote CPU queue).
4188 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4189 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4190 unsigned int *qtail)
4191 {
4192 struct softnet_data *sd;
4193 unsigned long flags;
4194 unsigned int qlen;
4195
4196 sd = &per_cpu(softnet_data, cpu);
4197
4198 local_irq_save(flags);
4199
4200 rps_lock(sd);
4201 if (!netif_running(skb->dev))
4202 goto drop;
4203 qlen = skb_queue_len(&sd->input_pkt_queue);
4204 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4205 if (qlen) {
4206 enqueue:
4207 __skb_queue_tail(&sd->input_pkt_queue, skb);
4208 input_queue_tail_incr_save(sd, qtail);
4209 rps_unlock(sd);
4210 local_irq_restore(flags);
4211 return NET_RX_SUCCESS;
4212 }
4213
4214 /* Schedule NAPI for backlog device
4215 * We can use non atomic operation since we own the queue lock
4216 */
4217 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4218 if (!rps_ipi_queued(sd))
4219 ____napi_schedule(sd, &sd->backlog);
4220 }
4221 goto enqueue;
4222 }
4223
4224 drop:
4225 sd->dropped++;
4226 rps_unlock(sd);
4227
4228 local_irq_restore(flags);
4229
4230 atomic_long_inc(&skb->dev->rx_dropped);
4231 kfree_skb(skb);
4232 return NET_RX_DROP;
4233 }
4234
netif_get_rxqueue(struct sk_buff * skb)4235 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4236 {
4237 struct net_device *dev = skb->dev;
4238 struct netdev_rx_queue *rxqueue;
4239
4240 rxqueue = dev->_rx;
4241
4242 if (skb_rx_queue_recorded(skb)) {
4243 u16 index = skb_get_rx_queue(skb);
4244
4245 if (unlikely(index >= dev->real_num_rx_queues)) {
4246 WARN_ONCE(dev->real_num_rx_queues > 1,
4247 "%s received packet on queue %u, but number "
4248 "of RX queues is %u\n",
4249 dev->name, index, dev->real_num_rx_queues);
4250
4251 return rxqueue; /* Return first rxqueue */
4252 }
4253 rxqueue += index;
4254 }
4255 return rxqueue;
4256 }
4257
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4258 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4259 struct xdp_buff *xdp,
4260 struct bpf_prog *xdp_prog)
4261 {
4262 struct netdev_rx_queue *rxqueue;
4263 void *orig_data, *orig_data_end;
4264 u32 metalen, act = XDP_DROP;
4265 __be16 orig_eth_type;
4266 struct ethhdr *eth;
4267 bool orig_bcast;
4268 int hlen, off;
4269 u32 mac_len;
4270
4271 /* Reinjected packets coming from act_mirred or similar should
4272 * not get XDP generic processing.
4273 */
4274 if (skb_is_redirected(skb))
4275 return XDP_PASS;
4276
4277 /* XDP packets must be linear and must have sufficient headroom
4278 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4279 * native XDP provides, thus we need to do it here as well.
4280 */
4281 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4282 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4283 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4284 int troom = skb->tail + skb->data_len - skb->end;
4285
4286 /* In case we have to go down the path and also linearize,
4287 * then lets do the pskb_expand_head() work just once here.
4288 */
4289 if (pskb_expand_head(skb,
4290 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4291 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4292 goto do_drop;
4293 if (skb_linearize(skb))
4294 goto do_drop;
4295 }
4296
4297 /* The XDP program wants to see the packet starting at the MAC
4298 * header.
4299 */
4300 mac_len = skb->data - skb_mac_header(skb);
4301 hlen = skb_headlen(skb) + mac_len;
4302 xdp->data = skb->data - mac_len;
4303 xdp->data_meta = xdp->data;
4304 xdp->data_end = xdp->data + hlen;
4305 xdp->data_hard_start = skb->data - skb_headroom(skb);
4306 orig_data_end = xdp->data_end;
4307 orig_data = xdp->data;
4308 eth = (struct ethhdr *)xdp->data;
4309 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4310 orig_eth_type = eth->h_proto;
4311
4312 rxqueue = netif_get_rxqueue(skb);
4313 xdp->rxq = &rxqueue->xdp_rxq;
4314
4315 act = bpf_prog_run_xdp(xdp_prog, xdp);
4316
4317 /* check if bpf_xdp_adjust_head was used */
4318 off = xdp->data - orig_data;
4319 if (off) {
4320 if (off > 0)
4321 __skb_pull(skb, off);
4322 else if (off < 0)
4323 __skb_push(skb, -off);
4324
4325 skb->mac_header += off;
4326 skb_reset_network_header(skb);
4327 }
4328
4329 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4330 * pckt.
4331 */
4332 off = orig_data_end - xdp->data_end;
4333 if (off != 0) {
4334 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4335 skb->len -= off;
4336
4337 }
4338
4339 /* check if XDP changed eth hdr such SKB needs update */
4340 eth = (struct ethhdr *)xdp->data;
4341 if ((orig_eth_type != eth->h_proto) ||
4342 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4343 __skb_push(skb, ETH_HLEN);
4344 skb->protocol = eth_type_trans(skb, skb->dev);
4345 }
4346
4347 switch (act) {
4348 case XDP_REDIRECT:
4349 case XDP_TX:
4350 __skb_push(skb, mac_len);
4351 break;
4352 case XDP_PASS:
4353 metalen = xdp->data - xdp->data_meta;
4354 if (metalen)
4355 skb_metadata_set(skb, metalen);
4356 break;
4357 default:
4358 bpf_warn_invalid_xdp_action(act);
4359 /* fall through */
4360 case XDP_ABORTED:
4361 trace_xdp_exception(skb->dev, xdp_prog, act);
4362 /* fall through */
4363 case XDP_DROP:
4364 do_drop:
4365 kfree_skb(skb);
4366 break;
4367 }
4368
4369 return act;
4370 }
4371
4372 /* When doing generic XDP we have to bypass the qdisc layer and the
4373 * network taps in order to match in-driver-XDP behavior.
4374 */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)4375 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4376 {
4377 struct net_device *dev = skb->dev;
4378 struct netdev_queue *txq;
4379 bool free_skb = true;
4380 int cpu, rc;
4381
4382 txq = netdev_core_pick_tx(dev, skb, NULL);
4383 cpu = smp_processor_id();
4384 HARD_TX_LOCK(dev, txq, cpu);
4385 if (!netif_xmit_stopped(txq)) {
4386 rc = netdev_start_xmit(skb, dev, txq, 0);
4387 if (dev_xmit_complete(rc))
4388 free_skb = false;
4389 }
4390 HARD_TX_UNLOCK(dev, txq);
4391 if (free_skb) {
4392 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4393 kfree_skb(skb);
4394 }
4395 }
4396 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4397
4398 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4399
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4400 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4401 {
4402 if (xdp_prog) {
4403 struct xdp_buff xdp;
4404 u32 act;
4405 int err;
4406
4407 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4408 if (act != XDP_PASS) {
4409 switch (act) {
4410 case XDP_REDIRECT:
4411 err = xdp_do_generic_redirect(skb->dev, skb,
4412 &xdp, xdp_prog);
4413 if (err)
4414 goto out_redir;
4415 break;
4416 case XDP_TX:
4417 generic_xdp_tx(skb, xdp_prog);
4418 break;
4419 }
4420 return XDP_DROP;
4421 }
4422 }
4423 return XDP_PASS;
4424 out_redir:
4425 kfree_skb(skb);
4426 return XDP_DROP;
4427 }
4428 EXPORT_SYMBOL_GPL(do_xdp_generic);
4429
netif_rx_internal(struct sk_buff * skb)4430 static int netif_rx_internal(struct sk_buff *skb)
4431 {
4432 int ret;
4433
4434 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4435
4436 trace_netif_rx(skb);
4437
4438 #ifdef CONFIG_RPS
4439 if (static_branch_unlikely(&rps_needed)) {
4440 struct rps_dev_flow voidflow, *rflow = &voidflow;
4441 int cpu;
4442
4443 preempt_disable();
4444 rcu_read_lock();
4445
4446 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4447 if (cpu < 0)
4448 cpu = smp_processor_id();
4449
4450 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4451
4452 rcu_read_unlock();
4453 preempt_enable();
4454 } else
4455 #endif
4456 {
4457 unsigned int qtail;
4458
4459 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4460 put_cpu();
4461 }
4462 return ret;
4463 }
4464
4465 /**
4466 * netif_rx - post buffer to the network code
4467 * @skb: buffer to post
4468 *
4469 * This function receives a packet from a device driver and queues it for
4470 * the upper (protocol) levels to process. It always succeeds. The buffer
4471 * may be dropped during processing for congestion control or by the
4472 * protocol layers.
4473 *
4474 * return values:
4475 * NET_RX_SUCCESS (no congestion)
4476 * NET_RX_DROP (packet was dropped)
4477 *
4478 */
4479
netif_rx(struct sk_buff * skb)4480 int netif_rx(struct sk_buff *skb)
4481 {
4482 int ret;
4483
4484 trace_netif_rx_entry(skb);
4485
4486 ret = netif_rx_internal(skb);
4487 trace_netif_rx_exit(ret);
4488
4489 return ret;
4490 }
4491 EXPORT_SYMBOL(netif_rx);
4492
netif_rx_ni(struct sk_buff * skb)4493 int netif_rx_ni(struct sk_buff *skb)
4494 {
4495 int err;
4496
4497 trace_netif_rx_ni_entry(skb);
4498
4499 preempt_disable();
4500 err = netif_rx_internal(skb);
4501 if (local_softirq_pending())
4502 do_softirq();
4503 preempt_enable();
4504 trace_netif_rx_ni_exit(err);
4505
4506 return err;
4507 }
4508 EXPORT_SYMBOL(netif_rx_ni);
4509
net_tx_action(struct softirq_action * h)4510 static __latent_entropy void net_tx_action(struct softirq_action *h)
4511 {
4512 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4513
4514 if (sd->completion_queue) {
4515 struct sk_buff *clist;
4516
4517 local_irq_disable();
4518 clist = sd->completion_queue;
4519 sd->completion_queue = NULL;
4520 local_irq_enable();
4521
4522 while (clist) {
4523 struct sk_buff *skb = clist;
4524
4525 clist = clist->next;
4526
4527 WARN_ON(refcount_read(&skb->users));
4528 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4529 trace_consume_skb(skb);
4530 else
4531 trace_kfree_skb(skb, net_tx_action);
4532
4533 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4534 __kfree_skb(skb);
4535 else
4536 __kfree_skb_defer(skb);
4537 }
4538
4539 __kfree_skb_flush();
4540 }
4541
4542 if (sd->output_queue) {
4543 struct Qdisc *head;
4544
4545 local_irq_disable();
4546 head = sd->output_queue;
4547 sd->output_queue = NULL;
4548 sd->output_queue_tailp = &sd->output_queue;
4549 local_irq_enable();
4550
4551 rcu_read_lock();
4552
4553 while (head) {
4554 struct Qdisc *q = head;
4555 spinlock_t *root_lock = NULL;
4556
4557 head = head->next_sched;
4558
4559 /* We need to make sure head->next_sched is read
4560 * before clearing __QDISC_STATE_SCHED
4561 */
4562 smp_mb__before_atomic();
4563
4564 if (!(q->flags & TCQ_F_NOLOCK)) {
4565 root_lock = qdisc_lock(q);
4566 spin_lock(root_lock);
4567 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4568 &q->state))) {
4569 /* There is a synchronize_net() between
4570 * STATE_DEACTIVATED flag being set and
4571 * qdisc_reset()/some_qdisc_is_busy() in
4572 * dev_deactivate(), so we can safely bail out
4573 * early here to avoid data race between
4574 * qdisc_deactivate() and some_qdisc_is_busy()
4575 * for lockless qdisc.
4576 */
4577 clear_bit(__QDISC_STATE_SCHED, &q->state);
4578 continue;
4579 }
4580
4581 clear_bit(__QDISC_STATE_SCHED, &q->state);
4582 qdisc_run(q);
4583 if (root_lock)
4584 spin_unlock(root_lock);
4585 }
4586
4587 rcu_read_unlock();
4588 }
4589
4590 xfrm_dev_backlog(sd);
4591 }
4592
4593 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4594 /* This hook is defined here for ATM LANE */
4595 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4596 unsigned char *addr) __read_mostly;
4597 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4598 #endif
4599
4600 static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)4601 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4602 struct net_device *orig_dev)
4603 {
4604 #ifdef CONFIG_NET_CLS_ACT
4605 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4606 struct tcf_result cl_res;
4607
4608 /* If there's at least one ingress present somewhere (so
4609 * we get here via enabled static key), remaining devices
4610 * that are not configured with an ingress qdisc will bail
4611 * out here.
4612 */
4613 if (!miniq)
4614 return skb;
4615
4616 if (*pt_prev) {
4617 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4618 *pt_prev = NULL;
4619 }
4620
4621 qdisc_skb_cb(skb)->pkt_len = skb->len;
4622 skb->tc_at_ingress = 1;
4623 mini_qdisc_bstats_cpu_update(miniq, skb);
4624
4625 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4626 case TC_ACT_OK:
4627 case TC_ACT_RECLASSIFY:
4628 skb->tc_index = TC_H_MIN(cl_res.classid);
4629 break;
4630 case TC_ACT_SHOT:
4631 mini_qdisc_qstats_cpu_drop(miniq);
4632 kfree_skb(skb);
4633 return NULL;
4634 case TC_ACT_STOLEN:
4635 case TC_ACT_QUEUED:
4636 case TC_ACT_TRAP:
4637 consume_skb(skb);
4638 return NULL;
4639 case TC_ACT_REDIRECT:
4640 /* skb_mac_header check was done by cls/act_bpf, so
4641 * we can safely push the L2 header back before
4642 * redirecting to another netdev
4643 */
4644 __skb_push(skb, skb->mac_len);
4645 skb_do_redirect(skb);
4646 return NULL;
4647 case TC_ACT_CONSUMED:
4648 return NULL;
4649 default:
4650 break;
4651 }
4652 #endif /* CONFIG_NET_CLS_ACT */
4653 return skb;
4654 }
4655
4656 /**
4657 * netdev_is_rx_handler_busy - check if receive handler is registered
4658 * @dev: device to check
4659 *
4660 * Check if a receive handler is already registered for a given device.
4661 * Return true if there one.
4662 *
4663 * The caller must hold the rtnl_mutex.
4664 */
netdev_is_rx_handler_busy(struct net_device * dev)4665 bool netdev_is_rx_handler_busy(struct net_device *dev)
4666 {
4667 ASSERT_RTNL();
4668 return dev && rtnl_dereference(dev->rx_handler);
4669 }
4670 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4671
4672 /**
4673 * netdev_rx_handler_register - register receive handler
4674 * @dev: device to register a handler for
4675 * @rx_handler: receive handler to register
4676 * @rx_handler_data: data pointer that is used by rx handler
4677 *
4678 * Register a receive handler for a device. This handler will then be
4679 * called from __netif_receive_skb. A negative errno code is returned
4680 * on a failure.
4681 *
4682 * The caller must hold the rtnl_mutex.
4683 *
4684 * For a general description of rx_handler, see enum rx_handler_result.
4685 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)4686 int netdev_rx_handler_register(struct net_device *dev,
4687 rx_handler_func_t *rx_handler,
4688 void *rx_handler_data)
4689 {
4690 if (netdev_is_rx_handler_busy(dev))
4691 return -EBUSY;
4692
4693 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4694 return -EINVAL;
4695
4696 /* Note: rx_handler_data must be set before rx_handler */
4697 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4698 rcu_assign_pointer(dev->rx_handler, rx_handler);
4699
4700 return 0;
4701 }
4702 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4703
4704 /**
4705 * netdev_rx_handler_unregister - unregister receive handler
4706 * @dev: device to unregister a handler from
4707 *
4708 * Unregister a receive handler from a device.
4709 *
4710 * The caller must hold the rtnl_mutex.
4711 */
netdev_rx_handler_unregister(struct net_device * dev)4712 void netdev_rx_handler_unregister(struct net_device *dev)
4713 {
4714
4715 ASSERT_RTNL();
4716 RCU_INIT_POINTER(dev->rx_handler, NULL);
4717 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4718 * section has a guarantee to see a non NULL rx_handler_data
4719 * as well.
4720 */
4721 synchronize_net();
4722 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4723 }
4724 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4725
4726 /*
4727 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4728 * the special handling of PFMEMALLOC skbs.
4729 */
skb_pfmemalloc_protocol(struct sk_buff * skb)4730 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4731 {
4732 switch (skb->protocol) {
4733 case htons(ETH_P_ARP):
4734 case htons(ETH_P_IP):
4735 case htons(ETH_P_IPV6):
4736 case htons(ETH_P_8021Q):
4737 case htons(ETH_P_8021AD):
4738 return true;
4739 default:
4740 return false;
4741 }
4742 }
4743
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)4744 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4745 int *ret, struct net_device *orig_dev)
4746 {
4747 #ifdef CONFIG_NETFILTER_INGRESS
4748 if (nf_hook_ingress_active(skb)) {
4749 int ingress_retval;
4750
4751 if (*pt_prev) {
4752 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4753 *pt_prev = NULL;
4754 }
4755
4756 rcu_read_lock();
4757 ingress_retval = nf_hook_ingress(skb);
4758 rcu_read_unlock();
4759 return ingress_retval;
4760 }
4761 #endif /* CONFIG_NETFILTER_INGRESS */
4762 return 0;
4763 }
4764
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)4765 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
4766 struct packet_type **ppt_prev)
4767 {
4768 struct packet_type *ptype, *pt_prev;
4769 rx_handler_func_t *rx_handler;
4770 struct sk_buff *skb = *pskb;
4771 struct net_device *orig_dev;
4772 bool deliver_exact = false;
4773 int ret = NET_RX_DROP;
4774 __be16 type;
4775
4776 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
4777
4778 trace_netif_receive_skb(skb);
4779
4780 orig_dev = skb->dev;
4781
4782 skb_reset_network_header(skb);
4783 if (!skb_transport_header_was_set(skb))
4784 skb_reset_transport_header(skb);
4785 skb_reset_mac_len(skb);
4786
4787 pt_prev = NULL;
4788
4789 another_round:
4790 skb->skb_iif = skb->dev->ifindex;
4791
4792 __this_cpu_inc(softnet_data.processed);
4793
4794 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4795 int ret2;
4796
4797 preempt_disable();
4798 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4799 preempt_enable();
4800
4801 if (ret2 != XDP_PASS) {
4802 ret = NET_RX_DROP;
4803 goto out;
4804 }
4805 skb_reset_mac_len(skb);
4806 }
4807
4808 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4809 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4810 skb = skb_vlan_untag(skb);
4811 if (unlikely(!skb))
4812 goto out;
4813 }
4814
4815 if (skb_skip_tc_classify(skb))
4816 goto skip_classify;
4817
4818 if (pfmemalloc)
4819 goto skip_taps;
4820
4821 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4822 if (pt_prev)
4823 ret = deliver_skb(skb, pt_prev, orig_dev);
4824 pt_prev = ptype;
4825 }
4826
4827 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4828 if (pt_prev)
4829 ret = deliver_skb(skb, pt_prev, orig_dev);
4830 pt_prev = ptype;
4831 }
4832
4833 skip_taps:
4834 #ifdef CONFIG_NET_INGRESS
4835 if (static_branch_unlikely(&ingress_needed_key)) {
4836 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4837 if (!skb)
4838 goto out;
4839
4840 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4841 goto out;
4842 }
4843 #endif
4844 skb_reset_redirect(skb);
4845 skip_classify:
4846 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4847 goto drop;
4848
4849 if (skb_vlan_tag_present(skb)) {
4850 if (pt_prev) {
4851 ret = deliver_skb(skb, pt_prev, orig_dev);
4852 pt_prev = NULL;
4853 }
4854 if (vlan_do_receive(&skb))
4855 goto another_round;
4856 else if (unlikely(!skb))
4857 goto out;
4858 }
4859
4860 rx_handler = rcu_dereference(skb->dev->rx_handler);
4861 if (rx_handler) {
4862 if (pt_prev) {
4863 ret = deliver_skb(skb, pt_prev, orig_dev);
4864 pt_prev = NULL;
4865 }
4866 switch (rx_handler(&skb)) {
4867 case RX_HANDLER_CONSUMED:
4868 ret = NET_RX_SUCCESS;
4869 goto out;
4870 case RX_HANDLER_ANOTHER:
4871 goto another_round;
4872 case RX_HANDLER_EXACT:
4873 deliver_exact = true;
4874 case RX_HANDLER_PASS:
4875 break;
4876 default:
4877 BUG();
4878 }
4879 }
4880
4881 if (unlikely(skb_vlan_tag_present(skb))) {
4882 check_vlan_id:
4883 if (skb_vlan_tag_get_id(skb)) {
4884 /* Vlan id is non 0 and vlan_do_receive() above couldn't
4885 * find vlan device.
4886 */
4887 skb->pkt_type = PACKET_OTHERHOST;
4888 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4889 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4890 /* Outer header is 802.1P with vlan 0, inner header is
4891 * 802.1Q or 802.1AD and vlan_do_receive() above could
4892 * not find vlan dev for vlan id 0.
4893 */
4894 __vlan_hwaccel_clear_tag(skb);
4895 skb = skb_vlan_untag(skb);
4896 if (unlikely(!skb))
4897 goto out;
4898 if (vlan_do_receive(&skb))
4899 /* After stripping off 802.1P header with vlan 0
4900 * vlan dev is found for inner header.
4901 */
4902 goto another_round;
4903 else if (unlikely(!skb))
4904 goto out;
4905 else
4906 /* We have stripped outer 802.1P vlan 0 header.
4907 * But could not find vlan dev.
4908 * check again for vlan id to set OTHERHOST.
4909 */
4910 goto check_vlan_id;
4911 }
4912 /* Note: we might in the future use prio bits
4913 * and set skb->priority like in vlan_do_receive()
4914 * For the time being, just ignore Priority Code Point
4915 */
4916 __vlan_hwaccel_clear_tag(skb);
4917 }
4918
4919 type = skb->protocol;
4920
4921 /* deliver only exact match when indicated */
4922 if (likely(!deliver_exact)) {
4923 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4924 &ptype_base[ntohs(type) &
4925 PTYPE_HASH_MASK]);
4926 }
4927
4928 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4929 &orig_dev->ptype_specific);
4930
4931 if (unlikely(skb->dev != orig_dev)) {
4932 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4933 &skb->dev->ptype_specific);
4934 }
4935
4936 if (pt_prev) {
4937 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4938 goto drop;
4939 *ppt_prev = pt_prev;
4940 } else {
4941 drop:
4942 if (!deliver_exact)
4943 atomic_long_inc(&skb->dev->rx_dropped);
4944 else
4945 atomic_long_inc(&skb->dev->rx_nohandler);
4946 kfree_skb(skb);
4947 /* Jamal, now you will not able to escape explaining
4948 * me how you were going to use this. :-)
4949 */
4950 ret = NET_RX_DROP;
4951 }
4952
4953 out:
4954 /* The invariant here is that if *ppt_prev is not NULL
4955 * then skb should also be non-NULL.
4956 *
4957 * Apparently *ppt_prev assignment above holds this invariant due to
4958 * skb dereferencing near it.
4959 */
4960 *pskb = skb;
4961 return ret;
4962 }
4963
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)4964 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4965 {
4966 struct net_device *orig_dev = skb->dev;
4967 struct packet_type *pt_prev = NULL;
4968 int ret;
4969
4970 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
4971 if (pt_prev)
4972 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
4973 skb->dev, pt_prev, orig_dev);
4974 return ret;
4975 }
4976
4977 /**
4978 * netif_receive_skb_core - special purpose version of netif_receive_skb
4979 * @skb: buffer to process
4980 *
4981 * More direct receive version of netif_receive_skb(). It should
4982 * only be used by callers that have a need to skip RPS and Generic XDP.
4983 * Caller must also take care of handling if (page_is_)pfmemalloc.
4984 *
4985 * This function may only be called from softirq context and interrupts
4986 * should be enabled.
4987 *
4988 * Return values (usually ignored):
4989 * NET_RX_SUCCESS: no congestion
4990 * NET_RX_DROP: packet was dropped
4991 */
netif_receive_skb_core(struct sk_buff * skb)4992 int netif_receive_skb_core(struct sk_buff *skb)
4993 {
4994 int ret;
4995
4996 rcu_read_lock();
4997 ret = __netif_receive_skb_one_core(skb, false);
4998 rcu_read_unlock();
4999
5000 return ret;
5001 }
5002 EXPORT_SYMBOL(netif_receive_skb_core);
5003
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5004 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5005 struct packet_type *pt_prev,
5006 struct net_device *orig_dev)
5007 {
5008 struct sk_buff *skb, *next;
5009
5010 if (!pt_prev)
5011 return;
5012 if (list_empty(head))
5013 return;
5014 if (pt_prev->list_func != NULL)
5015 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5016 ip_list_rcv, head, pt_prev, orig_dev);
5017 else
5018 list_for_each_entry_safe(skb, next, head, list) {
5019 skb_list_del_init(skb);
5020 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5021 }
5022 }
5023
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5024 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5025 {
5026 /* Fast-path assumptions:
5027 * - There is no RX handler.
5028 * - Only one packet_type matches.
5029 * If either of these fails, we will end up doing some per-packet
5030 * processing in-line, then handling the 'last ptype' for the whole
5031 * sublist. This can't cause out-of-order delivery to any single ptype,
5032 * because the 'last ptype' must be constant across the sublist, and all
5033 * other ptypes are handled per-packet.
5034 */
5035 /* Current (common) ptype of sublist */
5036 struct packet_type *pt_curr = NULL;
5037 /* Current (common) orig_dev of sublist */
5038 struct net_device *od_curr = NULL;
5039 struct list_head sublist;
5040 struct sk_buff *skb, *next;
5041
5042 INIT_LIST_HEAD(&sublist);
5043 list_for_each_entry_safe(skb, next, head, list) {
5044 struct net_device *orig_dev = skb->dev;
5045 struct packet_type *pt_prev = NULL;
5046
5047 skb_list_del_init(skb);
5048 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5049 if (!pt_prev)
5050 continue;
5051 if (pt_curr != pt_prev || od_curr != orig_dev) {
5052 /* dispatch old sublist */
5053 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5054 /* start new sublist */
5055 INIT_LIST_HEAD(&sublist);
5056 pt_curr = pt_prev;
5057 od_curr = orig_dev;
5058 }
5059 list_add_tail(&skb->list, &sublist);
5060 }
5061
5062 /* dispatch final sublist */
5063 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5064 }
5065
__netif_receive_skb(struct sk_buff * skb)5066 static int __netif_receive_skb(struct sk_buff *skb)
5067 {
5068 int ret;
5069
5070 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5071 unsigned int noreclaim_flag;
5072
5073 /*
5074 * PFMEMALLOC skbs are special, they should
5075 * - be delivered to SOCK_MEMALLOC sockets only
5076 * - stay away from userspace
5077 * - have bounded memory usage
5078 *
5079 * Use PF_MEMALLOC as this saves us from propagating the allocation
5080 * context down to all allocation sites.
5081 */
5082 noreclaim_flag = memalloc_noreclaim_save();
5083 ret = __netif_receive_skb_one_core(skb, true);
5084 memalloc_noreclaim_restore(noreclaim_flag);
5085 } else
5086 ret = __netif_receive_skb_one_core(skb, false);
5087
5088 return ret;
5089 }
5090
__netif_receive_skb_list(struct list_head * head)5091 static void __netif_receive_skb_list(struct list_head *head)
5092 {
5093 unsigned long noreclaim_flag = 0;
5094 struct sk_buff *skb, *next;
5095 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5096
5097 list_for_each_entry_safe(skb, next, head, list) {
5098 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5099 struct list_head sublist;
5100
5101 /* Handle the previous sublist */
5102 list_cut_before(&sublist, head, &skb->list);
5103 if (!list_empty(&sublist))
5104 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5105 pfmemalloc = !pfmemalloc;
5106 /* See comments in __netif_receive_skb */
5107 if (pfmemalloc)
5108 noreclaim_flag = memalloc_noreclaim_save();
5109 else
5110 memalloc_noreclaim_restore(noreclaim_flag);
5111 }
5112 }
5113 /* Handle the remaining sublist */
5114 if (!list_empty(head))
5115 __netif_receive_skb_list_core(head, pfmemalloc);
5116 /* Restore pflags */
5117 if (pfmemalloc)
5118 memalloc_noreclaim_restore(noreclaim_flag);
5119 }
5120
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5121 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5122 {
5123 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5124 struct bpf_prog *new = xdp->prog;
5125 int ret = 0;
5126
5127 switch (xdp->command) {
5128 case XDP_SETUP_PROG:
5129 rcu_assign_pointer(dev->xdp_prog, new);
5130 if (old)
5131 bpf_prog_put(old);
5132
5133 if (old && !new) {
5134 static_branch_dec(&generic_xdp_needed_key);
5135 } else if (new && !old) {
5136 static_branch_inc(&generic_xdp_needed_key);
5137 dev_disable_lro(dev);
5138 dev_disable_gro_hw(dev);
5139 }
5140 break;
5141
5142 case XDP_QUERY_PROG:
5143 xdp->prog_id = old ? old->aux->id : 0;
5144 break;
5145
5146 default:
5147 ret = -EINVAL;
5148 break;
5149 }
5150
5151 return ret;
5152 }
5153
netif_receive_skb_internal(struct sk_buff * skb)5154 static int netif_receive_skb_internal(struct sk_buff *skb)
5155 {
5156 int ret;
5157
5158 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5159
5160 if (skb_defer_rx_timestamp(skb))
5161 return NET_RX_SUCCESS;
5162
5163 rcu_read_lock();
5164 #ifdef CONFIG_RPS
5165 if (static_branch_unlikely(&rps_needed)) {
5166 struct rps_dev_flow voidflow, *rflow = &voidflow;
5167 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5168
5169 if (cpu >= 0) {
5170 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5171 rcu_read_unlock();
5172 return ret;
5173 }
5174 }
5175 #endif
5176 ret = __netif_receive_skb(skb);
5177 rcu_read_unlock();
5178 return ret;
5179 }
5180
netif_receive_skb_list_internal(struct list_head * head)5181 static void netif_receive_skb_list_internal(struct list_head *head)
5182 {
5183 struct sk_buff *skb, *next;
5184 struct list_head sublist;
5185
5186 INIT_LIST_HEAD(&sublist);
5187 list_for_each_entry_safe(skb, next, head, list) {
5188 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5189 skb_list_del_init(skb);
5190 if (!skb_defer_rx_timestamp(skb))
5191 list_add_tail(&skb->list, &sublist);
5192 }
5193 list_splice_init(&sublist, head);
5194
5195 rcu_read_lock();
5196 #ifdef CONFIG_RPS
5197 if (static_branch_unlikely(&rps_needed)) {
5198 list_for_each_entry_safe(skb, next, head, list) {
5199 struct rps_dev_flow voidflow, *rflow = &voidflow;
5200 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5201
5202 if (cpu >= 0) {
5203 /* Will be handled, remove from list */
5204 skb_list_del_init(skb);
5205 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5206 }
5207 }
5208 }
5209 #endif
5210 __netif_receive_skb_list(head);
5211 rcu_read_unlock();
5212 }
5213
5214 /**
5215 * netif_receive_skb - process receive buffer from network
5216 * @skb: buffer to process
5217 *
5218 * netif_receive_skb() is the main receive data processing function.
5219 * It always succeeds. The buffer may be dropped during processing
5220 * for congestion control or by the protocol layers.
5221 *
5222 * This function may only be called from softirq context and interrupts
5223 * should be enabled.
5224 *
5225 * Return values (usually ignored):
5226 * NET_RX_SUCCESS: no congestion
5227 * NET_RX_DROP: packet was dropped
5228 */
netif_receive_skb(struct sk_buff * skb)5229 int netif_receive_skb(struct sk_buff *skb)
5230 {
5231 int ret;
5232
5233 trace_netif_receive_skb_entry(skb);
5234
5235 ret = netif_receive_skb_internal(skb);
5236 trace_netif_receive_skb_exit(ret);
5237
5238 return ret;
5239 }
5240 EXPORT_SYMBOL(netif_receive_skb);
5241
5242 /**
5243 * netif_receive_skb_list - process many receive buffers from network
5244 * @head: list of skbs to process.
5245 *
5246 * Since return value of netif_receive_skb() is normally ignored, and
5247 * wouldn't be meaningful for a list, this function returns void.
5248 *
5249 * This function may only be called from softirq context and interrupts
5250 * should be enabled.
5251 */
netif_receive_skb_list(struct list_head * head)5252 void netif_receive_skb_list(struct list_head *head)
5253 {
5254 struct sk_buff *skb;
5255
5256 if (list_empty(head))
5257 return;
5258 if (trace_netif_receive_skb_list_entry_enabled()) {
5259 list_for_each_entry(skb, head, list)
5260 trace_netif_receive_skb_list_entry(skb);
5261 }
5262 netif_receive_skb_list_internal(head);
5263 trace_netif_receive_skb_list_exit(0);
5264 }
5265 EXPORT_SYMBOL(netif_receive_skb_list);
5266
5267 DEFINE_PER_CPU(struct work_struct, flush_works);
5268
5269 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5270 static void flush_backlog(struct work_struct *work)
5271 {
5272 struct sk_buff *skb, *tmp;
5273 struct softnet_data *sd;
5274
5275 local_bh_disable();
5276 sd = this_cpu_ptr(&softnet_data);
5277
5278 local_irq_disable();
5279 rps_lock(sd);
5280 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5281 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5282 __skb_unlink(skb, &sd->input_pkt_queue);
5283 dev_kfree_skb_irq(skb);
5284 input_queue_head_incr(sd);
5285 }
5286 }
5287 rps_unlock(sd);
5288 local_irq_enable();
5289
5290 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5291 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5292 __skb_unlink(skb, &sd->process_queue);
5293 kfree_skb(skb);
5294 input_queue_head_incr(sd);
5295 }
5296 }
5297 local_bh_enable();
5298 }
5299
flush_all_backlogs(void)5300 static void flush_all_backlogs(void)
5301 {
5302 unsigned int cpu;
5303
5304 get_online_cpus();
5305
5306 for_each_online_cpu(cpu)
5307 queue_work_on(cpu, system_highpri_wq,
5308 per_cpu_ptr(&flush_works, cpu));
5309
5310 for_each_online_cpu(cpu)
5311 flush_work(per_cpu_ptr(&flush_works, cpu));
5312
5313 put_online_cpus();
5314 }
5315
5316 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
gro_normal_list(struct napi_struct * napi)5317 static void gro_normal_list(struct napi_struct *napi)
5318 {
5319 if (!napi->rx_count)
5320 return;
5321 netif_receive_skb_list_internal(&napi->rx_list);
5322 INIT_LIST_HEAD(&napi->rx_list);
5323 napi->rx_count = 0;
5324 }
5325
5326 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5327 * pass the whole batch up to the stack.
5328 */
gro_normal_one(struct napi_struct * napi,struct sk_buff * skb,int segs)5329 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5330 {
5331 list_add_tail(&skb->list, &napi->rx_list);
5332 napi->rx_count += segs;
5333 if (napi->rx_count >= gro_normal_batch)
5334 gro_normal_list(napi);
5335 }
5336
5337 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5338 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
napi_gro_complete(struct napi_struct * napi,struct sk_buff * skb)5339 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5340 {
5341 struct packet_offload *ptype;
5342 __be16 type = skb->protocol;
5343 struct list_head *head = &offload_base;
5344 int err = -ENOENT;
5345
5346 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5347
5348 if (NAPI_GRO_CB(skb)->count == 1) {
5349 skb_shinfo(skb)->gso_size = 0;
5350 goto out;
5351 }
5352
5353 rcu_read_lock();
5354 list_for_each_entry_rcu(ptype, head, list) {
5355 if (ptype->type != type || !ptype->callbacks.gro_complete)
5356 continue;
5357
5358 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5359 ipv6_gro_complete, inet_gro_complete,
5360 skb, 0);
5361 break;
5362 }
5363 rcu_read_unlock();
5364
5365 if (err) {
5366 WARN_ON(&ptype->list == head);
5367 kfree_skb(skb);
5368 return NET_RX_SUCCESS;
5369 }
5370
5371 out:
5372 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5373 return NET_RX_SUCCESS;
5374 }
5375
__napi_gro_flush_chain(struct napi_struct * napi,u32 index,bool flush_old)5376 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5377 bool flush_old)
5378 {
5379 struct list_head *head = &napi->gro_hash[index].list;
5380 struct sk_buff *skb, *p;
5381
5382 list_for_each_entry_safe_reverse(skb, p, head, list) {
5383 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5384 return;
5385 skb_list_del_init(skb);
5386 napi_gro_complete(napi, skb);
5387 napi->gro_hash[index].count--;
5388 }
5389
5390 if (!napi->gro_hash[index].count)
5391 __clear_bit(index, &napi->gro_bitmask);
5392 }
5393
5394 /* napi->gro_hash[].list contains packets ordered by age.
5395 * youngest packets at the head of it.
5396 * Complete skbs in reverse order to reduce latencies.
5397 */
napi_gro_flush(struct napi_struct * napi,bool flush_old)5398 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5399 {
5400 unsigned long bitmask = napi->gro_bitmask;
5401 unsigned int i, base = ~0U;
5402
5403 while ((i = ffs(bitmask)) != 0) {
5404 bitmask >>= i;
5405 base += i;
5406 __napi_gro_flush_chain(napi, base, flush_old);
5407 }
5408 }
5409 EXPORT_SYMBOL(napi_gro_flush);
5410
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)5411 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5412 struct sk_buff *skb)
5413 {
5414 unsigned int maclen = skb->dev->hard_header_len;
5415 u32 hash = skb_get_hash_raw(skb);
5416 struct list_head *head;
5417 struct sk_buff *p;
5418
5419 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5420 list_for_each_entry(p, head, list) {
5421 unsigned long diffs;
5422
5423 NAPI_GRO_CB(p)->flush = 0;
5424
5425 if (hash != skb_get_hash_raw(p)) {
5426 NAPI_GRO_CB(p)->same_flow = 0;
5427 continue;
5428 }
5429
5430 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5431 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5432 if (skb_vlan_tag_present(p))
5433 diffs |= p->vlan_tci ^ skb->vlan_tci;
5434 diffs |= skb_metadata_dst_cmp(p, skb);
5435 diffs |= skb_metadata_differs(p, skb);
5436 if (maclen == ETH_HLEN)
5437 diffs |= compare_ether_header(skb_mac_header(p),
5438 skb_mac_header(skb));
5439 else if (!diffs)
5440 diffs = memcmp(skb_mac_header(p),
5441 skb_mac_header(skb),
5442 maclen);
5443 NAPI_GRO_CB(p)->same_flow = !diffs;
5444 }
5445
5446 return head;
5447 }
5448
skb_gro_reset_offset(struct sk_buff * skb,u32 nhoff)5449 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5450 {
5451 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5452 const skb_frag_t *frag0 = &pinfo->frags[0];
5453
5454 NAPI_GRO_CB(skb)->data_offset = 0;
5455 NAPI_GRO_CB(skb)->frag0 = NULL;
5456 NAPI_GRO_CB(skb)->frag0_len = 0;
5457
5458 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5459 pinfo->nr_frags &&
5460 !PageHighMem(skb_frag_page(frag0)) &&
5461 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5462 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5463 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5464 skb_frag_size(frag0),
5465 skb->end - skb->tail);
5466 }
5467 }
5468
gro_pull_from_frag0(struct sk_buff * skb,int grow)5469 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5470 {
5471 struct skb_shared_info *pinfo = skb_shinfo(skb);
5472
5473 BUG_ON(skb->end - skb->tail < grow);
5474
5475 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5476
5477 skb->data_len -= grow;
5478 skb->tail += grow;
5479
5480 skb_frag_off_add(&pinfo->frags[0], grow);
5481 skb_frag_size_sub(&pinfo->frags[0], grow);
5482
5483 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5484 skb_frag_unref(skb, 0);
5485 memmove(pinfo->frags, pinfo->frags + 1,
5486 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5487 }
5488 }
5489
gro_flush_oldest(struct napi_struct * napi,struct list_head * head)5490 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5491 {
5492 struct sk_buff *oldest;
5493
5494 oldest = list_last_entry(head, struct sk_buff, list);
5495
5496 /* We are called with head length >= MAX_GRO_SKBS, so this is
5497 * impossible.
5498 */
5499 if (WARN_ON_ONCE(!oldest))
5500 return;
5501
5502 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5503 * SKB to the chain.
5504 */
5505 skb_list_del_init(oldest);
5506 napi_gro_complete(napi, oldest);
5507 }
5508
5509 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5510 struct sk_buff *));
5511 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5512 struct sk_buff *));
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5513 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5514 {
5515 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5516 struct list_head *head = &offload_base;
5517 struct packet_offload *ptype;
5518 __be16 type = skb->protocol;
5519 struct list_head *gro_head;
5520 struct sk_buff *pp = NULL;
5521 enum gro_result ret;
5522 int same_flow;
5523 int grow;
5524
5525 if (netif_elide_gro(skb->dev))
5526 goto normal;
5527
5528 gro_head = gro_list_prepare(napi, skb);
5529
5530 rcu_read_lock();
5531 list_for_each_entry_rcu(ptype, head, list) {
5532 if (ptype->type != type || !ptype->callbacks.gro_receive)
5533 continue;
5534
5535 skb_set_network_header(skb, skb_gro_offset(skb));
5536 skb_reset_mac_len(skb);
5537 NAPI_GRO_CB(skb)->same_flow = 0;
5538 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5539 NAPI_GRO_CB(skb)->free = 0;
5540 NAPI_GRO_CB(skb)->encap_mark = 0;
5541 NAPI_GRO_CB(skb)->recursion_counter = 0;
5542 NAPI_GRO_CB(skb)->is_fou = 0;
5543 NAPI_GRO_CB(skb)->is_atomic = 1;
5544 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5545
5546 /* Setup for GRO checksum validation */
5547 switch (skb->ip_summed) {
5548 case CHECKSUM_COMPLETE:
5549 NAPI_GRO_CB(skb)->csum = skb->csum;
5550 NAPI_GRO_CB(skb)->csum_valid = 1;
5551 NAPI_GRO_CB(skb)->csum_cnt = 0;
5552 break;
5553 case CHECKSUM_UNNECESSARY:
5554 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5555 NAPI_GRO_CB(skb)->csum_valid = 0;
5556 break;
5557 default:
5558 NAPI_GRO_CB(skb)->csum_cnt = 0;
5559 NAPI_GRO_CB(skb)->csum_valid = 0;
5560 }
5561
5562 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5563 ipv6_gro_receive, inet_gro_receive,
5564 gro_head, skb);
5565 break;
5566 }
5567 rcu_read_unlock();
5568
5569 if (&ptype->list == head)
5570 goto normal;
5571
5572 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5573 ret = GRO_CONSUMED;
5574 goto ok;
5575 }
5576
5577 same_flow = NAPI_GRO_CB(skb)->same_flow;
5578 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5579
5580 if (pp) {
5581 skb_list_del_init(pp);
5582 napi_gro_complete(napi, pp);
5583 napi->gro_hash[hash].count--;
5584 }
5585
5586 if (same_flow)
5587 goto ok;
5588
5589 if (NAPI_GRO_CB(skb)->flush)
5590 goto normal;
5591
5592 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5593 gro_flush_oldest(napi, gro_head);
5594 } else {
5595 napi->gro_hash[hash].count++;
5596 }
5597 NAPI_GRO_CB(skb)->count = 1;
5598 NAPI_GRO_CB(skb)->age = jiffies;
5599 NAPI_GRO_CB(skb)->last = skb;
5600 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5601 list_add(&skb->list, gro_head);
5602 ret = GRO_HELD;
5603
5604 pull:
5605 grow = skb_gro_offset(skb) - skb_headlen(skb);
5606 if (grow > 0)
5607 gro_pull_from_frag0(skb, grow);
5608 ok:
5609 if (napi->gro_hash[hash].count) {
5610 if (!test_bit(hash, &napi->gro_bitmask))
5611 __set_bit(hash, &napi->gro_bitmask);
5612 } else if (test_bit(hash, &napi->gro_bitmask)) {
5613 __clear_bit(hash, &napi->gro_bitmask);
5614 }
5615
5616 return ret;
5617
5618 normal:
5619 ret = GRO_NORMAL;
5620 goto pull;
5621 }
5622
gro_find_receive_by_type(__be16 type)5623 struct packet_offload *gro_find_receive_by_type(__be16 type)
5624 {
5625 struct list_head *offload_head = &offload_base;
5626 struct packet_offload *ptype;
5627
5628 list_for_each_entry_rcu(ptype, offload_head, list) {
5629 if (ptype->type != type || !ptype->callbacks.gro_receive)
5630 continue;
5631 return ptype;
5632 }
5633 return NULL;
5634 }
5635 EXPORT_SYMBOL(gro_find_receive_by_type);
5636
gro_find_complete_by_type(__be16 type)5637 struct packet_offload *gro_find_complete_by_type(__be16 type)
5638 {
5639 struct list_head *offload_head = &offload_base;
5640 struct packet_offload *ptype;
5641
5642 list_for_each_entry_rcu(ptype, offload_head, list) {
5643 if (ptype->type != type || !ptype->callbacks.gro_complete)
5644 continue;
5645 return ptype;
5646 }
5647 return NULL;
5648 }
5649 EXPORT_SYMBOL(gro_find_complete_by_type);
5650
napi_skb_free_stolen_head(struct sk_buff * skb)5651 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5652 {
5653 skb_dst_drop(skb);
5654 skb_ext_put(skb);
5655 kmem_cache_free(skbuff_head_cache, skb);
5656 }
5657
napi_skb_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)5658 static gro_result_t napi_skb_finish(struct napi_struct *napi,
5659 struct sk_buff *skb,
5660 gro_result_t ret)
5661 {
5662 switch (ret) {
5663 case GRO_NORMAL:
5664 gro_normal_one(napi, skb, 1);
5665 break;
5666
5667 case GRO_DROP:
5668 kfree_skb(skb);
5669 break;
5670
5671 case GRO_MERGED_FREE:
5672 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5673 napi_skb_free_stolen_head(skb);
5674 else
5675 __kfree_skb(skb);
5676 break;
5677
5678 case GRO_HELD:
5679 case GRO_MERGED:
5680 case GRO_CONSUMED:
5681 break;
5682 }
5683
5684 return ret;
5685 }
5686
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)5687 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5688 {
5689 gro_result_t ret;
5690
5691 skb_mark_napi_id(skb, napi);
5692 trace_napi_gro_receive_entry(skb);
5693
5694 skb_gro_reset_offset(skb, 0);
5695
5696 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5697 trace_napi_gro_receive_exit(ret);
5698
5699 return ret;
5700 }
5701 EXPORT_SYMBOL(napi_gro_receive);
5702
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)5703 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5704 {
5705 if (unlikely(skb->pfmemalloc)) {
5706 consume_skb(skb);
5707 return;
5708 }
5709 __skb_pull(skb, skb_headlen(skb));
5710 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5711 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5712 __vlan_hwaccel_clear_tag(skb);
5713 skb->dev = napi->dev;
5714 skb->skb_iif = 0;
5715
5716 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5717 skb->pkt_type = PACKET_HOST;
5718
5719 skb->encapsulation = 0;
5720 skb_shinfo(skb)->gso_type = 0;
5721 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5722 skb_ext_reset(skb);
5723
5724 napi->skb = skb;
5725 }
5726
napi_get_frags(struct napi_struct * napi)5727 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5728 {
5729 struct sk_buff *skb = napi->skb;
5730
5731 if (!skb) {
5732 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5733 if (skb) {
5734 napi->skb = skb;
5735 skb_mark_napi_id(skb, napi);
5736 }
5737 }
5738 return skb;
5739 }
5740 EXPORT_SYMBOL(napi_get_frags);
5741
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)5742 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5743 struct sk_buff *skb,
5744 gro_result_t ret)
5745 {
5746 switch (ret) {
5747 case GRO_NORMAL:
5748 case GRO_HELD:
5749 __skb_push(skb, ETH_HLEN);
5750 skb->protocol = eth_type_trans(skb, skb->dev);
5751 if (ret == GRO_NORMAL)
5752 gro_normal_one(napi, skb, 1);
5753 break;
5754
5755 case GRO_DROP:
5756 napi_reuse_skb(napi, skb);
5757 break;
5758
5759 case GRO_MERGED_FREE:
5760 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5761 napi_skb_free_stolen_head(skb);
5762 else
5763 napi_reuse_skb(napi, skb);
5764 break;
5765
5766 case GRO_MERGED:
5767 case GRO_CONSUMED:
5768 break;
5769 }
5770
5771 return ret;
5772 }
5773
5774 /* Upper GRO stack assumes network header starts at gro_offset=0
5775 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5776 * We copy ethernet header into skb->data to have a common layout.
5777 */
napi_frags_skb(struct napi_struct * napi)5778 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5779 {
5780 struct sk_buff *skb = napi->skb;
5781 const struct ethhdr *eth;
5782 unsigned int hlen = sizeof(*eth);
5783
5784 napi->skb = NULL;
5785
5786 skb_reset_mac_header(skb);
5787 skb_gro_reset_offset(skb, hlen);
5788
5789 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5790 eth = skb_gro_header_slow(skb, hlen, 0);
5791 if (unlikely(!eth)) {
5792 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5793 __func__, napi->dev->name);
5794 napi_reuse_skb(napi, skb);
5795 return NULL;
5796 }
5797 } else {
5798 eth = (const struct ethhdr *)skb->data;
5799 gro_pull_from_frag0(skb, hlen);
5800 NAPI_GRO_CB(skb)->frag0 += hlen;
5801 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5802 }
5803 __skb_pull(skb, hlen);
5804
5805 /*
5806 * This works because the only protocols we care about don't require
5807 * special handling.
5808 * We'll fix it up properly in napi_frags_finish()
5809 */
5810 skb->protocol = eth->h_proto;
5811
5812 return skb;
5813 }
5814
napi_gro_frags(struct napi_struct * napi)5815 gro_result_t napi_gro_frags(struct napi_struct *napi)
5816 {
5817 gro_result_t ret;
5818 struct sk_buff *skb = napi_frags_skb(napi);
5819
5820 if (!skb)
5821 return GRO_DROP;
5822
5823 trace_napi_gro_frags_entry(skb);
5824
5825 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5826 trace_napi_gro_frags_exit(ret);
5827
5828 return ret;
5829 }
5830 EXPORT_SYMBOL(napi_gro_frags);
5831
5832 /* Compute the checksum from gro_offset and return the folded value
5833 * after adding in any pseudo checksum.
5834 */
__skb_gro_checksum_complete(struct sk_buff * skb)5835 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5836 {
5837 __wsum wsum;
5838 __sum16 sum;
5839
5840 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5841
5842 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5843 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5844 /* See comments in __skb_checksum_complete(). */
5845 if (likely(!sum)) {
5846 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5847 !skb->csum_complete_sw)
5848 netdev_rx_csum_fault(skb->dev, skb);
5849 }
5850
5851 NAPI_GRO_CB(skb)->csum = wsum;
5852 NAPI_GRO_CB(skb)->csum_valid = 1;
5853
5854 return sum;
5855 }
5856 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5857
net_rps_send_ipi(struct softnet_data * remsd)5858 static void net_rps_send_ipi(struct softnet_data *remsd)
5859 {
5860 #ifdef CONFIG_RPS
5861 while (remsd) {
5862 struct softnet_data *next = remsd->rps_ipi_next;
5863
5864 if (cpu_online(remsd->cpu))
5865 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5866 remsd = next;
5867 }
5868 #endif
5869 }
5870
5871 /*
5872 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5873 * Note: called with local irq disabled, but exits with local irq enabled.
5874 */
net_rps_action_and_irq_enable(struct softnet_data * sd)5875 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5876 {
5877 #ifdef CONFIG_RPS
5878 struct softnet_data *remsd = sd->rps_ipi_list;
5879
5880 if (remsd) {
5881 sd->rps_ipi_list = NULL;
5882
5883 local_irq_enable();
5884
5885 /* Send pending IPI's to kick RPS processing on remote cpus. */
5886 net_rps_send_ipi(remsd);
5887 } else
5888 #endif
5889 local_irq_enable();
5890 }
5891
sd_has_rps_ipi_waiting(struct softnet_data * sd)5892 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5893 {
5894 #ifdef CONFIG_RPS
5895 return sd->rps_ipi_list != NULL;
5896 #else
5897 return false;
5898 #endif
5899 }
5900
process_backlog(struct napi_struct * napi,int quota)5901 static int process_backlog(struct napi_struct *napi, int quota)
5902 {
5903 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5904 bool again = true;
5905 int work = 0;
5906
5907 /* Check if we have pending ipi, its better to send them now,
5908 * not waiting net_rx_action() end.
5909 */
5910 if (sd_has_rps_ipi_waiting(sd)) {
5911 local_irq_disable();
5912 net_rps_action_and_irq_enable(sd);
5913 }
5914
5915 napi->weight = READ_ONCE(dev_rx_weight);
5916 while (again) {
5917 struct sk_buff *skb;
5918
5919 while ((skb = __skb_dequeue(&sd->process_queue))) {
5920 rcu_read_lock();
5921 __netif_receive_skb(skb);
5922 rcu_read_unlock();
5923 input_queue_head_incr(sd);
5924 if (++work >= quota)
5925 return work;
5926
5927 }
5928
5929 local_irq_disable();
5930 rps_lock(sd);
5931 if (skb_queue_empty(&sd->input_pkt_queue)) {
5932 /*
5933 * Inline a custom version of __napi_complete().
5934 * only current cpu owns and manipulates this napi,
5935 * and NAPI_STATE_SCHED is the only possible flag set
5936 * on backlog.
5937 * We can use a plain write instead of clear_bit(),
5938 * and we dont need an smp_mb() memory barrier.
5939 */
5940 napi->state = 0;
5941 again = false;
5942 } else {
5943 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5944 &sd->process_queue);
5945 }
5946 rps_unlock(sd);
5947 local_irq_enable();
5948 }
5949
5950 return work;
5951 }
5952
5953 /**
5954 * __napi_schedule - schedule for receive
5955 * @n: entry to schedule
5956 *
5957 * The entry's receive function will be scheduled to run.
5958 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5959 */
__napi_schedule(struct napi_struct * n)5960 void __napi_schedule(struct napi_struct *n)
5961 {
5962 unsigned long flags;
5963
5964 local_irq_save(flags);
5965 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5966 local_irq_restore(flags);
5967 }
5968 EXPORT_SYMBOL(__napi_schedule);
5969
5970 /**
5971 * napi_schedule_prep - check if napi can be scheduled
5972 * @n: napi context
5973 *
5974 * Test if NAPI routine is already running, and if not mark
5975 * it as running. This is used as a condition variable
5976 * insure only one NAPI poll instance runs. We also make
5977 * sure there is no pending NAPI disable.
5978 */
napi_schedule_prep(struct napi_struct * n)5979 bool napi_schedule_prep(struct napi_struct *n)
5980 {
5981 unsigned long val, new;
5982
5983 do {
5984 val = READ_ONCE(n->state);
5985 if (unlikely(val & NAPIF_STATE_DISABLE))
5986 return false;
5987 new = val | NAPIF_STATE_SCHED;
5988
5989 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5990 * This was suggested by Alexander Duyck, as compiler
5991 * emits better code than :
5992 * if (val & NAPIF_STATE_SCHED)
5993 * new |= NAPIF_STATE_MISSED;
5994 */
5995 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5996 NAPIF_STATE_MISSED;
5997 } while (cmpxchg(&n->state, val, new) != val);
5998
5999 return !(val & NAPIF_STATE_SCHED);
6000 }
6001 EXPORT_SYMBOL(napi_schedule_prep);
6002
6003 /**
6004 * __napi_schedule_irqoff - schedule for receive
6005 * @n: entry to schedule
6006 *
6007 * Variant of __napi_schedule() assuming hard irqs are masked.
6008 *
6009 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6010 * because the interrupt disabled assumption might not be true
6011 * due to force-threaded interrupts and spinlock substitution.
6012 */
__napi_schedule_irqoff(struct napi_struct * n)6013 void __napi_schedule_irqoff(struct napi_struct *n)
6014 {
6015 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6016 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6017 else
6018 __napi_schedule(n);
6019 }
6020 EXPORT_SYMBOL(__napi_schedule_irqoff);
6021
napi_complete_done(struct napi_struct * n,int work_done)6022 bool napi_complete_done(struct napi_struct *n, int work_done)
6023 {
6024 unsigned long flags, val, new;
6025
6026 /*
6027 * 1) Don't let napi dequeue from the cpu poll list
6028 * just in case its running on a different cpu.
6029 * 2) If we are busy polling, do nothing here, we have
6030 * the guarantee we will be called later.
6031 */
6032 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6033 NAPIF_STATE_IN_BUSY_POLL)))
6034 return false;
6035
6036 if (n->gro_bitmask) {
6037 unsigned long timeout = 0;
6038
6039 if (work_done)
6040 timeout = n->dev->gro_flush_timeout;
6041
6042 /* When the NAPI instance uses a timeout and keeps postponing
6043 * it, we need to bound somehow the time packets are kept in
6044 * the GRO layer
6045 */
6046 napi_gro_flush(n, !!timeout);
6047 if (timeout)
6048 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6049 HRTIMER_MODE_REL_PINNED);
6050 }
6051
6052 gro_normal_list(n);
6053
6054 if (unlikely(!list_empty(&n->poll_list))) {
6055 /* If n->poll_list is not empty, we need to mask irqs */
6056 local_irq_save(flags);
6057 list_del_init(&n->poll_list);
6058 local_irq_restore(flags);
6059 }
6060
6061 do {
6062 val = READ_ONCE(n->state);
6063
6064 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6065
6066 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6067
6068 /* If STATE_MISSED was set, leave STATE_SCHED set,
6069 * because we will call napi->poll() one more time.
6070 * This C code was suggested by Alexander Duyck to help gcc.
6071 */
6072 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6073 NAPIF_STATE_SCHED;
6074 } while (cmpxchg(&n->state, val, new) != val);
6075
6076 if (unlikely(val & NAPIF_STATE_MISSED)) {
6077 __napi_schedule(n);
6078 return false;
6079 }
6080
6081 return true;
6082 }
6083 EXPORT_SYMBOL(napi_complete_done);
6084
6085 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6086 static struct napi_struct *napi_by_id(unsigned int napi_id)
6087 {
6088 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6089 struct napi_struct *napi;
6090
6091 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6092 if (napi->napi_id == napi_id)
6093 return napi;
6094
6095 return NULL;
6096 }
6097
6098 #if defined(CONFIG_NET_RX_BUSY_POLL)
6099
6100 #define BUSY_POLL_BUDGET 8
6101
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock)6102 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6103 {
6104 int rc;
6105
6106 /* Busy polling means there is a high chance device driver hard irq
6107 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6108 * set in napi_schedule_prep().
6109 * Since we are about to call napi->poll() once more, we can safely
6110 * clear NAPI_STATE_MISSED.
6111 *
6112 * Note: x86 could use a single "lock and ..." instruction
6113 * to perform these two clear_bit()
6114 */
6115 clear_bit(NAPI_STATE_MISSED, &napi->state);
6116 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6117
6118 local_bh_disable();
6119
6120 /* All we really want here is to re-enable device interrupts.
6121 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6122 */
6123 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6124 /* We can't gro_normal_list() here, because napi->poll() might have
6125 * rearmed the napi (napi_complete_done()) in which case it could
6126 * already be running on another CPU.
6127 */
6128 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6129 netpoll_poll_unlock(have_poll_lock);
6130 if (rc == BUSY_POLL_BUDGET) {
6131 /* As the whole budget was spent, we still own the napi so can
6132 * safely handle the rx_list.
6133 */
6134 gro_normal_list(napi);
6135 __napi_schedule(napi);
6136 }
6137 local_bh_enable();
6138 }
6139
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg)6140 void napi_busy_loop(unsigned int napi_id,
6141 bool (*loop_end)(void *, unsigned long),
6142 void *loop_end_arg)
6143 {
6144 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6145 int (*napi_poll)(struct napi_struct *napi, int budget);
6146 void *have_poll_lock = NULL;
6147 struct napi_struct *napi;
6148
6149 restart:
6150 napi_poll = NULL;
6151
6152 rcu_read_lock();
6153
6154 napi = napi_by_id(napi_id);
6155 if (!napi)
6156 goto out;
6157
6158 preempt_disable();
6159 for (;;) {
6160 int work = 0;
6161
6162 local_bh_disable();
6163 if (!napi_poll) {
6164 unsigned long val = READ_ONCE(napi->state);
6165
6166 /* If multiple threads are competing for this napi,
6167 * we avoid dirtying napi->state as much as we can.
6168 */
6169 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6170 NAPIF_STATE_IN_BUSY_POLL))
6171 goto count;
6172 if (cmpxchg(&napi->state, val,
6173 val | NAPIF_STATE_IN_BUSY_POLL |
6174 NAPIF_STATE_SCHED) != val)
6175 goto count;
6176 have_poll_lock = netpoll_poll_lock(napi);
6177 napi_poll = napi->poll;
6178 }
6179 work = napi_poll(napi, BUSY_POLL_BUDGET);
6180 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6181 gro_normal_list(napi);
6182 count:
6183 if (work > 0)
6184 __NET_ADD_STATS(dev_net(napi->dev),
6185 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6186 local_bh_enable();
6187
6188 if (!loop_end || loop_end(loop_end_arg, start_time))
6189 break;
6190
6191 if (unlikely(need_resched())) {
6192 if (napi_poll)
6193 busy_poll_stop(napi, have_poll_lock);
6194 preempt_enable();
6195 rcu_read_unlock();
6196 cond_resched();
6197 if (loop_end(loop_end_arg, start_time))
6198 return;
6199 goto restart;
6200 }
6201 cpu_relax();
6202 }
6203 if (napi_poll)
6204 busy_poll_stop(napi, have_poll_lock);
6205 preempt_enable();
6206 out:
6207 rcu_read_unlock();
6208 }
6209 EXPORT_SYMBOL(napi_busy_loop);
6210
6211 #endif /* CONFIG_NET_RX_BUSY_POLL */
6212
napi_hash_add(struct napi_struct * napi)6213 static void napi_hash_add(struct napi_struct *napi)
6214 {
6215 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6216 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6217 return;
6218
6219 spin_lock(&napi_hash_lock);
6220
6221 /* 0..NR_CPUS range is reserved for sender_cpu use */
6222 do {
6223 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6224 napi_gen_id = MIN_NAPI_ID;
6225 } while (napi_by_id(napi_gen_id));
6226 napi->napi_id = napi_gen_id;
6227
6228 hlist_add_head_rcu(&napi->napi_hash_node,
6229 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6230
6231 spin_unlock(&napi_hash_lock);
6232 }
6233
6234 /* Warning : caller is responsible to make sure rcu grace period
6235 * is respected before freeing memory containing @napi
6236 */
napi_hash_del(struct napi_struct * napi)6237 bool napi_hash_del(struct napi_struct *napi)
6238 {
6239 bool rcu_sync_needed = false;
6240
6241 spin_lock(&napi_hash_lock);
6242
6243 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6244 rcu_sync_needed = true;
6245 hlist_del_rcu(&napi->napi_hash_node);
6246 }
6247 spin_unlock(&napi_hash_lock);
6248 return rcu_sync_needed;
6249 }
6250 EXPORT_SYMBOL_GPL(napi_hash_del);
6251
napi_watchdog(struct hrtimer * timer)6252 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6253 {
6254 struct napi_struct *napi;
6255
6256 napi = container_of(timer, struct napi_struct, timer);
6257
6258 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6259 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6260 */
6261 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6262 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6263 __napi_schedule_irqoff(napi);
6264
6265 return HRTIMER_NORESTART;
6266 }
6267
init_gro_hash(struct napi_struct * napi)6268 static void init_gro_hash(struct napi_struct *napi)
6269 {
6270 int i;
6271
6272 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6273 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6274 napi->gro_hash[i].count = 0;
6275 }
6276 napi->gro_bitmask = 0;
6277 }
6278
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6279 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6280 int (*poll)(struct napi_struct *, int), int weight)
6281 {
6282 INIT_LIST_HEAD(&napi->poll_list);
6283 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6284 napi->timer.function = napi_watchdog;
6285 init_gro_hash(napi);
6286 napi->skb = NULL;
6287 INIT_LIST_HEAD(&napi->rx_list);
6288 napi->rx_count = 0;
6289 napi->poll = poll;
6290 if (weight > NAPI_POLL_WEIGHT)
6291 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6292 weight);
6293 napi->weight = weight;
6294 napi->dev = dev;
6295 #ifdef CONFIG_NETPOLL
6296 napi->poll_owner = -1;
6297 #endif
6298 set_bit(NAPI_STATE_SCHED, &napi->state);
6299 set_bit(NAPI_STATE_NPSVC, &napi->state);
6300 list_add_rcu(&napi->dev_list, &dev->napi_list);
6301 napi_hash_add(napi);
6302 }
6303 EXPORT_SYMBOL(netif_napi_add);
6304
napi_disable(struct napi_struct * n)6305 void napi_disable(struct napi_struct *n)
6306 {
6307 might_sleep();
6308 set_bit(NAPI_STATE_DISABLE, &n->state);
6309
6310 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6311 msleep(1);
6312 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6313 msleep(1);
6314
6315 hrtimer_cancel(&n->timer);
6316
6317 clear_bit(NAPI_STATE_DISABLE, &n->state);
6318 }
6319 EXPORT_SYMBOL(napi_disable);
6320
flush_gro_hash(struct napi_struct * napi)6321 static void flush_gro_hash(struct napi_struct *napi)
6322 {
6323 int i;
6324
6325 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6326 struct sk_buff *skb, *n;
6327
6328 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6329 kfree_skb(skb);
6330 napi->gro_hash[i].count = 0;
6331 }
6332 }
6333
6334 /* Must be called in process context */
netif_napi_del(struct napi_struct * napi)6335 void netif_napi_del(struct napi_struct *napi)
6336 {
6337 might_sleep();
6338 if (napi_hash_del(napi))
6339 synchronize_net();
6340 list_del_init(&napi->dev_list);
6341 napi_free_frags(napi);
6342
6343 flush_gro_hash(napi);
6344 napi->gro_bitmask = 0;
6345 }
6346 EXPORT_SYMBOL(netif_napi_del);
6347
napi_poll(struct napi_struct * n,struct list_head * repoll)6348 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6349 {
6350 void *have;
6351 int work, weight;
6352
6353 list_del_init(&n->poll_list);
6354
6355 have = netpoll_poll_lock(n);
6356
6357 weight = n->weight;
6358
6359 /* This NAPI_STATE_SCHED test is for avoiding a race
6360 * with netpoll's poll_napi(). Only the entity which
6361 * obtains the lock and sees NAPI_STATE_SCHED set will
6362 * actually make the ->poll() call. Therefore we avoid
6363 * accidentally calling ->poll() when NAPI is not scheduled.
6364 */
6365 work = 0;
6366 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6367 work = n->poll(n, weight);
6368 trace_napi_poll(n, work, weight);
6369 }
6370
6371 WARN_ON_ONCE(work > weight);
6372
6373 if (likely(work < weight))
6374 goto out_unlock;
6375
6376 /* Drivers must not modify the NAPI state if they
6377 * consume the entire weight. In such cases this code
6378 * still "owns" the NAPI instance and therefore can
6379 * move the instance around on the list at-will.
6380 */
6381 if (unlikely(napi_disable_pending(n))) {
6382 napi_complete(n);
6383 goto out_unlock;
6384 }
6385
6386 if (n->gro_bitmask) {
6387 /* flush too old packets
6388 * If HZ < 1000, flush all packets.
6389 */
6390 napi_gro_flush(n, HZ >= 1000);
6391 }
6392
6393 gro_normal_list(n);
6394
6395 /* Some drivers may have called napi_schedule
6396 * prior to exhausting their budget.
6397 */
6398 if (unlikely(!list_empty(&n->poll_list))) {
6399 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6400 n->dev ? n->dev->name : "backlog");
6401 goto out_unlock;
6402 }
6403
6404 list_add_tail(&n->poll_list, repoll);
6405
6406 out_unlock:
6407 netpoll_poll_unlock(have);
6408
6409 return work;
6410 }
6411
net_rx_action(struct softirq_action * h)6412 static __latent_entropy void net_rx_action(struct softirq_action *h)
6413 {
6414 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6415 unsigned long time_limit = jiffies +
6416 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6417 int budget = READ_ONCE(netdev_budget);
6418 LIST_HEAD(list);
6419 LIST_HEAD(repoll);
6420
6421 local_irq_disable();
6422 list_splice_init(&sd->poll_list, &list);
6423 local_irq_enable();
6424
6425 for (;;) {
6426 struct napi_struct *n;
6427
6428 if (list_empty(&list)) {
6429 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6430 goto out;
6431 break;
6432 }
6433
6434 n = list_first_entry(&list, struct napi_struct, poll_list);
6435 budget -= napi_poll(n, &repoll);
6436
6437 /* If softirq window is exhausted then punt.
6438 * Allow this to run for 2 jiffies since which will allow
6439 * an average latency of 1.5/HZ.
6440 */
6441 if (unlikely(budget <= 0 ||
6442 time_after_eq(jiffies, time_limit))) {
6443 sd->time_squeeze++;
6444 break;
6445 }
6446 }
6447
6448 local_irq_disable();
6449
6450 list_splice_tail_init(&sd->poll_list, &list);
6451 list_splice_tail(&repoll, &list);
6452 list_splice(&list, &sd->poll_list);
6453 if (!list_empty(&sd->poll_list))
6454 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6455
6456 net_rps_action_and_irq_enable(sd);
6457 out:
6458 __kfree_skb_flush();
6459 }
6460
6461 struct netdev_adjacent {
6462 struct net_device *dev;
6463
6464 /* upper master flag, there can only be one master device per list */
6465 bool master;
6466
6467 /* lookup ignore flag */
6468 bool ignore;
6469
6470 /* counter for the number of times this device was added to us */
6471 u16 ref_nr;
6472
6473 /* private field for the users */
6474 void *private;
6475
6476 struct list_head list;
6477 struct rcu_head rcu;
6478 };
6479
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6480 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6481 struct list_head *adj_list)
6482 {
6483 struct netdev_adjacent *adj;
6484
6485 list_for_each_entry(adj, adj_list, list) {
6486 if (adj->dev == adj_dev)
6487 return adj;
6488 }
6489 return NULL;
6490 }
6491
____netdev_has_upper_dev(struct net_device * upper_dev,void * data)6492 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6493 {
6494 struct net_device *dev = data;
6495
6496 return upper_dev == dev;
6497 }
6498
6499 /**
6500 * netdev_has_upper_dev - Check if device is linked to an upper device
6501 * @dev: device
6502 * @upper_dev: upper device to check
6503 *
6504 * Find out if a device is linked to specified upper device and return true
6505 * in case it is. Note that this checks only immediate upper device,
6506 * not through a complete stack of devices. The caller must hold the RTNL lock.
6507 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6508 bool netdev_has_upper_dev(struct net_device *dev,
6509 struct net_device *upper_dev)
6510 {
6511 ASSERT_RTNL();
6512
6513 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6514 upper_dev);
6515 }
6516 EXPORT_SYMBOL(netdev_has_upper_dev);
6517
6518 /**
6519 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6520 * @dev: device
6521 * @upper_dev: upper device to check
6522 *
6523 * Find out if a device is linked to specified upper device and return true
6524 * in case it is. Note that this checks the entire upper device chain.
6525 * The caller must hold rcu lock.
6526 */
6527
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)6528 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6529 struct net_device *upper_dev)
6530 {
6531 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6532 upper_dev);
6533 }
6534 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6535
6536 /**
6537 * netdev_has_any_upper_dev - Check if device is linked to some device
6538 * @dev: device
6539 *
6540 * Find out if a device is linked to an upper device and return true in case
6541 * it is. The caller must hold the RTNL lock.
6542 */
netdev_has_any_upper_dev(struct net_device * dev)6543 bool netdev_has_any_upper_dev(struct net_device *dev)
6544 {
6545 ASSERT_RTNL();
6546
6547 return !list_empty(&dev->adj_list.upper);
6548 }
6549 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6550
6551 /**
6552 * netdev_master_upper_dev_get - Get master upper device
6553 * @dev: device
6554 *
6555 * Find a master upper device and return pointer to it or NULL in case
6556 * it's not there. The caller must hold the RTNL lock.
6557 */
netdev_master_upper_dev_get(struct net_device * dev)6558 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6559 {
6560 struct netdev_adjacent *upper;
6561
6562 ASSERT_RTNL();
6563
6564 if (list_empty(&dev->adj_list.upper))
6565 return NULL;
6566
6567 upper = list_first_entry(&dev->adj_list.upper,
6568 struct netdev_adjacent, list);
6569 if (likely(upper->master))
6570 return upper->dev;
6571 return NULL;
6572 }
6573 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6574
__netdev_master_upper_dev_get(struct net_device * dev)6575 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6576 {
6577 struct netdev_adjacent *upper;
6578
6579 ASSERT_RTNL();
6580
6581 if (list_empty(&dev->adj_list.upper))
6582 return NULL;
6583
6584 upper = list_first_entry(&dev->adj_list.upper,
6585 struct netdev_adjacent, list);
6586 if (likely(upper->master) && !upper->ignore)
6587 return upper->dev;
6588 return NULL;
6589 }
6590
6591 /**
6592 * netdev_has_any_lower_dev - Check if device is linked to some device
6593 * @dev: device
6594 *
6595 * Find out if a device is linked to a lower device and return true in case
6596 * it is. The caller must hold the RTNL lock.
6597 */
netdev_has_any_lower_dev(struct net_device * dev)6598 static bool netdev_has_any_lower_dev(struct net_device *dev)
6599 {
6600 ASSERT_RTNL();
6601
6602 return !list_empty(&dev->adj_list.lower);
6603 }
6604
netdev_adjacent_get_private(struct list_head * adj_list)6605 void *netdev_adjacent_get_private(struct list_head *adj_list)
6606 {
6607 struct netdev_adjacent *adj;
6608
6609 adj = list_entry(adj_list, struct netdev_adjacent, list);
6610
6611 return adj->private;
6612 }
6613 EXPORT_SYMBOL(netdev_adjacent_get_private);
6614
6615 /**
6616 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6617 * @dev: device
6618 * @iter: list_head ** of the current position
6619 *
6620 * Gets the next device from the dev's upper list, starting from iter
6621 * position. The caller must hold RCU read lock.
6622 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)6623 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6624 struct list_head **iter)
6625 {
6626 struct netdev_adjacent *upper;
6627
6628 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6629
6630 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6631
6632 if (&upper->list == &dev->adj_list.upper)
6633 return NULL;
6634
6635 *iter = &upper->list;
6636
6637 return upper->dev;
6638 }
6639 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6640
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)6641 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6642 struct list_head **iter,
6643 bool *ignore)
6644 {
6645 struct netdev_adjacent *upper;
6646
6647 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6648
6649 if (&upper->list == &dev->adj_list.upper)
6650 return NULL;
6651
6652 *iter = &upper->list;
6653 *ignore = upper->ignore;
6654
6655 return upper->dev;
6656 }
6657
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)6658 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6659 struct list_head **iter)
6660 {
6661 struct netdev_adjacent *upper;
6662
6663 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6664
6665 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6666
6667 if (&upper->list == &dev->adj_list.upper)
6668 return NULL;
6669
6670 *iter = &upper->list;
6671
6672 return upper->dev;
6673 }
6674
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6675 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6676 int (*fn)(struct net_device *dev,
6677 void *data),
6678 void *data)
6679 {
6680 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6681 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6682 int ret, cur = 0;
6683 bool ignore;
6684
6685 now = dev;
6686 iter = &dev->adj_list.upper;
6687
6688 while (1) {
6689 if (now != dev) {
6690 ret = fn(now, data);
6691 if (ret)
6692 return ret;
6693 }
6694
6695 next = NULL;
6696 while (1) {
6697 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6698 if (!udev)
6699 break;
6700 if (ignore)
6701 continue;
6702
6703 next = udev;
6704 niter = &udev->adj_list.upper;
6705 dev_stack[cur] = now;
6706 iter_stack[cur++] = iter;
6707 break;
6708 }
6709
6710 if (!next) {
6711 if (!cur)
6712 return 0;
6713 next = dev_stack[--cur];
6714 niter = iter_stack[cur];
6715 }
6716
6717 now = next;
6718 iter = niter;
6719 }
6720
6721 return 0;
6722 }
6723
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6724 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6725 int (*fn)(struct net_device *dev,
6726 void *data),
6727 void *data)
6728 {
6729 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6730 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6731 int ret, cur = 0;
6732
6733 now = dev;
6734 iter = &dev->adj_list.upper;
6735
6736 while (1) {
6737 if (now != dev) {
6738 ret = fn(now, data);
6739 if (ret)
6740 return ret;
6741 }
6742
6743 next = NULL;
6744 while (1) {
6745 udev = netdev_next_upper_dev_rcu(now, &iter);
6746 if (!udev)
6747 break;
6748
6749 next = udev;
6750 niter = &udev->adj_list.upper;
6751 dev_stack[cur] = now;
6752 iter_stack[cur++] = iter;
6753 break;
6754 }
6755
6756 if (!next) {
6757 if (!cur)
6758 return 0;
6759 next = dev_stack[--cur];
6760 niter = iter_stack[cur];
6761 }
6762
6763 now = next;
6764 iter = niter;
6765 }
6766
6767 return 0;
6768 }
6769 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6770
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6771 static bool __netdev_has_upper_dev(struct net_device *dev,
6772 struct net_device *upper_dev)
6773 {
6774 ASSERT_RTNL();
6775
6776 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6777 upper_dev);
6778 }
6779
6780 /**
6781 * netdev_lower_get_next_private - Get the next ->private from the
6782 * lower neighbour list
6783 * @dev: device
6784 * @iter: list_head ** of the current position
6785 *
6786 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6787 * list, starting from iter position. The caller must hold either hold the
6788 * RTNL lock or its own locking that guarantees that the neighbour lower
6789 * list will remain unchanged.
6790 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)6791 void *netdev_lower_get_next_private(struct net_device *dev,
6792 struct list_head **iter)
6793 {
6794 struct netdev_adjacent *lower;
6795
6796 lower = list_entry(*iter, struct netdev_adjacent, list);
6797
6798 if (&lower->list == &dev->adj_list.lower)
6799 return NULL;
6800
6801 *iter = lower->list.next;
6802
6803 return lower->private;
6804 }
6805 EXPORT_SYMBOL(netdev_lower_get_next_private);
6806
6807 /**
6808 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6809 * lower neighbour list, RCU
6810 * variant
6811 * @dev: device
6812 * @iter: list_head ** of the current position
6813 *
6814 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6815 * list, starting from iter position. The caller must hold RCU read lock.
6816 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)6817 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6818 struct list_head **iter)
6819 {
6820 struct netdev_adjacent *lower;
6821
6822 WARN_ON_ONCE(!rcu_read_lock_held());
6823
6824 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6825
6826 if (&lower->list == &dev->adj_list.lower)
6827 return NULL;
6828
6829 *iter = &lower->list;
6830
6831 return lower->private;
6832 }
6833 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6834
6835 /**
6836 * netdev_lower_get_next - Get the next device from the lower neighbour
6837 * list
6838 * @dev: device
6839 * @iter: list_head ** of the current position
6840 *
6841 * Gets the next netdev_adjacent from the dev's lower neighbour
6842 * list, starting from iter position. The caller must hold RTNL lock or
6843 * its own locking that guarantees that the neighbour lower
6844 * list will remain unchanged.
6845 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)6846 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6847 {
6848 struct netdev_adjacent *lower;
6849
6850 lower = list_entry(*iter, struct netdev_adjacent, list);
6851
6852 if (&lower->list == &dev->adj_list.lower)
6853 return NULL;
6854
6855 *iter = lower->list.next;
6856
6857 return lower->dev;
6858 }
6859 EXPORT_SYMBOL(netdev_lower_get_next);
6860
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)6861 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6862 struct list_head **iter)
6863 {
6864 struct netdev_adjacent *lower;
6865
6866 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6867
6868 if (&lower->list == &dev->adj_list.lower)
6869 return NULL;
6870
6871 *iter = &lower->list;
6872
6873 return lower->dev;
6874 }
6875
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)6876 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
6877 struct list_head **iter,
6878 bool *ignore)
6879 {
6880 struct netdev_adjacent *lower;
6881
6882 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6883
6884 if (&lower->list == &dev->adj_list.lower)
6885 return NULL;
6886
6887 *iter = &lower->list;
6888 *ignore = lower->ignore;
6889
6890 return lower->dev;
6891 }
6892
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6893 int netdev_walk_all_lower_dev(struct net_device *dev,
6894 int (*fn)(struct net_device *dev,
6895 void *data),
6896 void *data)
6897 {
6898 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6899 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6900 int ret, cur = 0;
6901
6902 now = dev;
6903 iter = &dev->adj_list.lower;
6904
6905 while (1) {
6906 if (now != dev) {
6907 ret = fn(now, data);
6908 if (ret)
6909 return ret;
6910 }
6911
6912 next = NULL;
6913 while (1) {
6914 ldev = netdev_next_lower_dev(now, &iter);
6915 if (!ldev)
6916 break;
6917
6918 next = ldev;
6919 niter = &ldev->adj_list.lower;
6920 dev_stack[cur] = now;
6921 iter_stack[cur++] = iter;
6922 break;
6923 }
6924
6925 if (!next) {
6926 if (!cur)
6927 return 0;
6928 next = dev_stack[--cur];
6929 niter = iter_stack[cur];
6930 }
6931
6932 now = next;
6933 iter = niter;
6934 }
6935
6936 return 0;
6937 }
6938 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6939
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6940 static int __netdev_walk_all_lower_dev(struct net_device *dev,
6941 int (*fn)(struct net_device *dev,
6942 void *data),
6943 void *data)
6944 {
6945 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6946 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6947 int ret, cur = 0;
6948 bool ignore;
6949
6950 now = dev;
6951 iter = &dev->adj_list.lower;
6952
6953 while (1) {
6954 if (now != dev) {
6955 ret = fn(now, data);
6956 if (ret)
6957 return ret;
6958 }
6959
6960 next = NULL;
6961 while (1) {
6962 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
6963 if (!ldev)
6964 break;
6965 if (ignore)
6966 continue;
6967
6968 next = ldev;
6969 niter = &ldev->adj_list.lower;
6970 dev_stack[cur] = now;
6971 iter_stack[cur++] = iter;
6972 break;
6973 }
6974
6975 if (!next) {
6976 if (!cur)
6977 return 0;
6978 next = dev_stack[--cur];
6979 niter = iter_stack[cur];
6980 }
6981
6982 now = next;
6983 iter = niter;
6984 }
6985
6986 return 0;
6987 }
6988
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)6989 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6990 struct list_head **iter)
6991 {
6992 struct netdev_adjacent *lower;
6993
6994 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6995 if (&lower->list == &dev->adj_list.lower)
6996 return NULL;
6997
6998 *iter = &lower->list;
6999
7000 return lower->dev;
7001 }
7002 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7003
__netdev_upper_depth(struct net_device * dev)7004 static u8 __netdev_upper_depth(struct net_device *dev)
7005 {
7006 struct net_device *udev;
7007 struct list_head *iter;
7008 u8 max_depth = 0;
7009 bool ignore;
7010
7011 for (iter = &dev->adj_list.upper,
7012 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7013 udev;
7014 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7015 if (ignore)
7016 continue;
7017 if (max_depth < udev->upper_level)
7018 max_depth = udev->upper_level;
7019 }
7020
7021 return max_depth;
7022 }
7023
__netdev_lower_depth(struct net_device * dev)7024 static u8 __netdev_lower_depth(struct net_device *dev)
7025 {
7026 struct net_device *ldev;
7027 struct list_head *iter;
7028 u8 max_depth = 0;
7029 bool ignore;
7030
7031 for (iter = &dev->adj_list.lower,
7032 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7033 ldev;
7034 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7035 if (ignore)
7036 continue;
7037 if (max_depth < ldev->lower_level)
7038 max_depth = ldev->lower_level;
7039 }
7040
7041 return max_depth;
7042 }
7043
__netdev_update_upper_level(struct net_device * dev,void * data)7044 static int __netdev_update_upper_level(struct net_device *dev, void *data)
7045 {
7046 dev->upper_level = __netdev_upper_depth(dev) + 1;
7047 return 0;
7048 }
7049
__netdev_update_lower_level(struct net_device * dev,void * data)7050 static int __netdev_update_lower_level(struct net_device *dev, void *data)
7051 {
7052 dev->lower_level = __netdev_lower_depth(dev) + 1;
7053 return 0;
7054 }
7055
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)7056 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7057 int (*fn)(struct net_device *dev,
7058 void *data),
7059 void *data)
7060 {
7061 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7062 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7063 int ret, cur = 0;
7064
7065 now = dev;
7066 iter = &dev->adj_list.lower;
7067
7068 while (1) {
7069 if (now != dev) {
7070 ret = fn(now, data);
7071 if (ret)
7072 return ret;
7073 }
7074
7075 next = NULL;
7076 while (1) {
7077 ldev = netdev_next_lower_dev_rcu(now, &iter);
7078 if (!ldev)
7079 break;
7080
7081 next = ldev;
7082 niter = &ldev->adj_list.lower;
7083 dev_stack[cur] = now;
7084 iter_stack[cur++] = iter;
7085 break;
7086 }
7087
7088 if (!next) {
7089 if (!cur)
7090 return 0;
7091 next = dev_stack[--cur];
7092 niter = iter_stack[cur];
7093 }
7094
7095 now = next;
7096 iter = niter;
7097 }
7098
7099 return 0;
7100 }
7101 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7102
7103 /**
7104 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7105 * lower neighbour list, RCU
7106 * variant
7107 * @dev: device
7108 *
7109 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7110 * list. The caller must hold RCU read lock.
7111 */
netdev_lower_get_first_private_rcu(struct net_device * dev)7112 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7113 {
7114 struct netdev_adjacent *lower;
7115
7116 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7117 struct netdev_adjacent, list);
7118 if (lower)
7119 return lower->private;
7120 return NULL;
7121 }
7122 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7123
7124 /**
7125 * netdev_master_upper_dev_get_rcu - Get master upper device
7126 * @dev: device
7127 *
7128 * Find a master upper device and return pointer to it or NULL in case
7129 * it's not there. The caller must hold the RCU read lock.
7130 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7131 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7132 {
7133 struct netdev_adjacent *upper;
7134
7135 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7136 struct netdev_adjacent, list);
7137 if (upper && likely(upper->master))
7138 return upper->dev;
7139 return NULL;
7140 }
7141 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7142
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7143 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7144 struct net_device *adj_dev,
7145 struct list_head *dev_list)
7146 {
7147 char linkname[IFNAMSIZ+7];
7148
7149 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7150 "upper_%s" : "lower_%s", adj_dev->name);
7151 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7152 linkname);
7153 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7154 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7155 char *name,
7156 struct list_head *dev_list)
7157 {
7158 char linkname[IFNAMSIZ+7];
7159
7160 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7161 "upper_%s" : "lower_%s", name);
7162 sysfs_remove_link(&(dev->dev.kobj), linkname);
7163 }
7164
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7165 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7166 struct net_device *adj_dev,
7167 struct list_head *dev_list)
7168 {
7169 return (dev_list == &dev->adj_list.upper ||
7170 dev_list == &dev->adj_list.lower) &&
7171 net_eq(dev_net(dev), dev_net(adj_dev));
7172 }
7173
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7174 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7175 struct net_device *adj_dev,
7176 struct list_head *dev_list,
7177 void *private, bool master)
7178 {
7179 struct netdev_adjacent *adj;
7180 int ret;
7181
7182 adj = __netdev_find_adj(adj_dev, dev_list);
7183
7184 if (adj) {
7185 adj->ref_nr += 1;
7186 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7187 dev->name, adj_dev->name, adj->ref_nr);
7188
7189 return 0;
7190 }
7191
7192 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7193 if (!adj)
7194 return -ENOMEM;
7195
7196 adj->dev = adj_dev;
7197 adj->master = master;
7198 adj->ref_nr = 1;
7199 adj->private = private;
7200 adj->ignore = false;
7201 dev_hold(adj_dev);
7202
7203 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7204 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7205
7206 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7207 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7208 if (ret)
7209 goto free_adj;
7210 }
7211
7212 /* Ensure that master link is always the first item in list. */
7213 if (master) {
7214 ret = sysfs_create_link(&(dev->dev.kobj),
7215 &(adj_dev->dev.kobj), "master");
7216 if (ret)
7217 goto remove_symlinks;
7218
7219 list_add_rcu(&adj->list, dev_list);
7220 } else {
7221 list_add_tail_rcu(&adj->list, dev_list);
7222 }
7223
7224 return 0;
7225
7226 remove_symlinks:
7227 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7228 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7229 free_adj:
7230 kfree(adj);
7231 dev_put(adj_dev);
7232
7233 return ret;
7234 }
7235
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7236 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7237 struct net_device *adj_dev,
7238 u16 ref_nr,
7239 struct list_head *dev_list)
7240 {
7241 struct netdev_adjacent *adj;
7242
7243 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7244 dev->name, adj_dev->name, ref_nr);
7245
7246 adj = __netdev_find_adj(adj_dev, dev_list);
7247
7248 if (!adj) {
7249 pr_err("Adjacency does not exist for device %s from %s\n",
7250 dev->name, adj_dev->name);
7251 WARN_ON(1);
7252 return;
7253 }
7254
7255 if (adj->ref_nr > ref_nr) {
7256 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7257 dev->name, adj_dev->name, ref_nr,
7258 adj->ref_nr - ref_nr);
7259 adj->ref_nr -= ref_nr;
7260 return;
7261 }
7262
7263 if (adj->master)
7264 sysfs_remove_link(&(dev->dev.kobj), "master");
7265
7266 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7267 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7268
7269 list_del_rcu(&adj->list);
7270 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7271 adj_dev->name, dev->name, adj_dev->name);
7272 dev_put(adj_dev);
7273 kfree_rcu(adj, rcu);
7274 }
7275
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7276 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7277 struct net_device *upper_dev,
7278 struct list_head *up_list,
7279 struct list_head *down_list,
7280 void *private, bool master)
7281 {
7282 int ret;
7283
7284 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7285 private, master);
7286 if (ret)
7287 return ret;
7288
7289 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7290 private, false);
7291 if (ret) {
7292 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7293 return ret;
7294 }
7295
7296 return 0;
7297 }
7298
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7299 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7300 struct net_device *upper_dev,
7301 u16 ref_nr,
7302 struct list_head *up_list,
7303 struct list_head *down_list)
7304 {
7305 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7306 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7307 }
7308
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7309 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7310 struct net_device *upper_dev,
7311 void *private, bool master)
7312 {
7313 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7314 &dev->adj_list.upper,
7315 &upper_dev->adj_list.lower,
7316 private, master);
7317 }
7318
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7319 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7320 struct net_device *upper_dev)
7321 {
7322 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7323 &dev->adj_list.upper,
7324 &upper_dev->adj_list.lower);
7325 }
7326
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7327 static int __netdev_upper_dev_link(struct net_device *dev,
7328 struct net_device *upper_dev, bool master,
7329 void *upper_priv, void *upper_info,
7330 struct netlink_ext_ack *extack)
7331 {
7332 struct netdev_notifier_changeupper_info changeupper_info = {
7333 .info = {
7334 .dev = dev,
7335 .extack = extack,
7336 },
7337 .upper_dev = upper_dev,
7338 .master = master,
7339 .linking = true,
7340 .upper_info = upper_info,
7341 };
7342 struct net_device *master_dev;
7343 int ret = 0;
7344
7345 ASSERT_RTNL();
7346
7347 if (dev == upper_dev)
7348 return -EBUSY;
7349
7350 /* To prevent loops, check if dev is not upper device to upper_dev. */
7351 if (__netdev_has_upper_dev(upper_dev, dev))
7352 return -EBUSY;
7353
7354 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7355 return -EMLINK;
7356
7357 if (!master) {
7358 if (__netdev_has_upper_dev(dev, upper_dev))
7359 return -EEXIST;
7360 } else {
7361 master_dev = __netdev_master_upper_dev_get(dev);
7362 if (master_dev)
7363 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7364 }
7365
7366 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7367 &changeupper_info.info);
7368 ret = notifier_to_errno(ret);
7369 if (ret)
7370 return ret;
7371
7372 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7373 master);
7374 if (ret)
7375 return ret;
7376
7377 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7378 &changeupper_info.info);
7379 ret = notifier_to_errno(ret);
7380 if (ret)
7381 goto rollback;
7382
7383 __netdev_update_upper_level(dev, NULL);
7384 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7385
7386 __netdev_update_lower_level(upper_dev, NULL);
7387 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7388 NULL);
7389
7390 return 0;
7391
7392 rollback:
7393 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7394
7395 return ret;
7396 }
7397
7398 /**
7399 * netdev_upper_dev_link - Add a link to the upper device
7400 * @dev: device
7401 * @upper_dev: new upper device
7402 * @extack: netlink extended ack
7403 *
7404 * Adds a link to device which is upper to this one. The caller must hold
7405 * the RTNL lock. On a failure a negative errno code is returned.
7406 * On success the reference counts are adjusted and the function
7407 * returns zero.
7408 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7409 int netdev_upper_dev_link(struct net_device *dev,
7410 struct net_device *upper_dev,
7411 struct netlink_ext_ack *extack)
7412 {
7413 return __netdev_upper_dev_link(dev, upper_dev, false,
7414 NULL, NULL, extack);
7415 }
7416 EXPORT_SYMBOL(netdev_upper_dev_link);
7417
7418 /**
7419 * netdev_master_upper_dev_link - Add a master link to the upper device
7420 * @dev: device
7421 * @upper_dev: new upper device
7422 * @upper_priv: upper device private
7423 * @upper_info: upper info to be passed down via notifier
7424 * @extack: netlink extended ack
7425 *
7426 * Adds a link to device which is upper to this one. In this case, only
7427 * one master upper device can be linked, although other non-master devices
7428 * might be linked as well. The caller must hold the RTNL lock.
7429 * On a failure a negative errno code is returned. On success the reference
7430 * counts are adjusted and the function returns zero.
7431 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7432 int netdev_master_upper_dev_link(struct net_device *dev,
7433 struct net_device *upper_dev,
7434 void *upper_priv, void *upper_info,
7435 struct netlink_ext_ack *extack)
7436 {
7437 return __netdev_upper_dev_link(dev, upper_dev, true,
7438 upper_priv, upper_info, extack);
7439 }
7440 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7441
7442 /**
7443 * netdev_upper_dev_unlink - Removes a link to upper device
7444 * @dev: device
7445 * @upper_dev: new upper device
7446 *
7447 * Removes a link to device which is upper to this one. The caller must hold
7448 * the RTNL lock.
7449 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7450 void netdev_upper_dev_unlink(struct net_device *dev,
7451 struct net_device *upper_dev)
7452 {
7453 struct netdev_notifier_changeupper_info changeupper_info = {
7454 .info = {
7455 .dev = dev,
7456 },
7457 .upper_dev = upper_dev,
7458 .linking = false,
7459 };
7460
7461 ASSERT_RTNL();
7462
7463 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7464
7465 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7466 &changeupper_info.info);
7467
7468 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7469
7470 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7471 &changeupper_info.info);
7472
7473 __netdev_update_upper_level(dev, NULL);
7474 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7475
7476 __netdev_update_lower_level(upper_dev, NULL);
7477 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7478 NULL);
7479 }
7480 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7481
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)7482 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7483 struct net_device *lower_dev,
7484 bool val)
7485 {
7486 struct netdev_adjacent *adj;
7487
7488 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7489 if (adj)
7490 adj->ignore = val;
7491
7492 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7493 if (adj)
7494 adj->ignore = val;
7495 }
7496
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)7497 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7498 struct net_device *lower_dev)
7499 {
7500 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7501 }
7502
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)7503 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7504 struct net_device *lower_dev)
7505 {
7506 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7507 }
7508
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)7509 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7510 struct net_device *new_dev,
7511 struct net_device *dev,
7512 struct netlink_ext_ack *extack)
7513 {
7514 int err;
7515
7516 if (!new_dev)
7517 return 0;
7518
7519 if (old_dev && new_dev != old_dev)
7520 netdev_adjacent_dev_disable(dev, old_dev);
7521
7522 err = netdev_upper_dev_link(new_dev, dev, extack);
7523 if (err) {
7524 if (old_dev && new_dev != old_dev)
7525 netdev_adjacent_dev_enable(dev, old_dev);
7526 return err;
7527 }
7528
7529 return 0;
7530 }
7531 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7532
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7533 void netdev_adjacent_change_commit(struct net_device *old_dev,
7534 struct net_device *new_dev,
7535 struct net_device *dev)
7536 {
7537 if (!new_dev || !old_dev)
7538 return;
7539
7540 if (new_dev == old_dev)
7541 return;
7542
7543 netdev_adjacent_dev_enable(dev, old_dev);
7544 netdev_upper_dev_unlink(old_dev, dev);
7545 }
7546 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7547
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7548 void netdev_adjacent_change_abort(struct net_device *old_dev,
7549 struct net_device *new_dev,
7550 struct net_device *dev)
7551 {
7552 if (!new_dev)
7553 return;
7554
7555 if (old_dev && new_dev != old_dev)
7556 netdev_adjacent_dev_enable(dev, old_dev);
7557
7558 netdev_upper_dev_unlink(new_dev, dev);
7559 }
7560 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7561
7562 /**
7563 * netdev_bonding_info_change - Dispatch event about slave change
7564 * @dev: device
7565 * @bonding_info: info to dispatch
7566 *
7567 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7568 * The caller must hold the RTNL lock.
7569 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)7570 void netdev_bonding_info_change(struct net_device *dev,
7571 struct netdev_bonding_info *bonding_info)
7572 {
7573 struct netdev_notifier_bonding_info info = {
7574 .info.dev = dev,
7575 };
7576
7577 memcpy(&info.bonding_info, bonding_info,
7578 sizeof(struct netdev_bonding_info));
7579 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7580 &info.info);
7581 }
7582 EXPORT_SYMBOL(netdev_bonding_info_change);
7583
netdev_adjacent_add_links(struct net_device * dev)7584 static void netdev_adjacent_add_links(struct net_device *dev)
7585 {
7586 struct netdev_adjacent *iter;
7587
7588 struct net *net = dev_net(dev);
7589
7590 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7591 if (!net_eq(net, dev_net(iter->dev)))
7592 continue;
7593 netdev_adjacent_sysfs_add(iter->dev, dev,
7594 &iter->dev->adj_list.lower);
7595 netdev_adjacent_sysfs_add(dev, iter->dev,
7596 &dev->adj_list.upper);
7597 }
7598
7599 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7600 if (!net_eq(net, dev_net(iter->dev)))
7601 continue;
7602 netdev_adjacent_sysfs_add(iter->dev, dev,
7603 &iter->dev->adj_list.upper);
7604 netdev_adjacent_sysfs_add(dev, iter->dev,
7605 &dev->adj_list.lower);
7606 }
7607 }
7608
netdev_adjacent_del_links(struct net_device * dev)7609 static void netdev_adjacent_del_links(struct net_device *dev)
7610 {
7611 struct netdev_adjacent *iter;
7612
7613 struct net *net = dev_net(dev);
7614
7615 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7616 if (!net_eq(net, dev_net(iter->dev)))
7617 continue;
7618 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7619 &iter->dev->adj_list.lower);
7620 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7621 &dev->adj_list.upper);
7622 }
7623
7624 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7625 if (!net_eq(net, dev_net(iter->dev)))
7626 continue;
7627 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7628 &iter->dev->adj_list.upper);
7629 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7630 &dev->adj_list.lower);
7631 }
7632 }
7633
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)7634 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7635 {
7636 struct netdev_adjacent *iter;
7637
7638 struct net *net = dev_net(dev);
7639
7640 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7641 if (!net_eq(net, dev_net(iter->dev)))
7642 continue;
7643 netdev_adjacent_sysfs_del(iter->dev, oldname,
7644 &iter->dev->adj_list.lower);
7645 netdev_adjacent_sysfs_add(iter->dev, dev,
7646 &iter->dev->adj_list.lower);
7647 }
7648
7649 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7650 if (!net_eq(net, dev_net(iter->dev)))
7651 continue;
7652 netdev_adjacent_sysfs_del(iter->dev, oldname,
7653 &iter->dev->adj_list.upper);
7654 netdev_adjacent_sysfs_add(iter->dev, dev,
7655 &iter->dev->adj_list.upper);
7656 }
7657 }
7658
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)7659 void *netdev_lower_dev_get_private(struct net_device *dev,
7660 struct net_device *lower_dev)
7661 {
7662 struct netdev_adjacent *lower;
7663
7664 if (!lower_dev)
7665 return NULL;
7666 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7667 if (!lower)
7668 return NULL;
7669
7670 return lower->private;
7671 }
7672 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7673
7674
7675 /**
7676 * netdev_lower_change - Dispatch event about lower device state change
7677 * @lower_dev: device
7678 * @lower_state_info: state to dispatch
7679 *
7680 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7681 * The caller must hold the RTNL lock.
7682 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)7683 void netdev_lower_state_changed(struct net_device *lower_dev,
7684 void *lower_state_info)
7685 {
7686 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7687 .info.dev = lower_dev,
7688 };
7689
7690 ASSERT_RTNL();
7691 changelowerstate_info.lower_state_info = lower_state_info;
7692 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7693 &changelowerstate_info.info);
7694 }
7695 EXPORT_SYMBOL(netdev_lower_state_changed);
7696
dev_change_rx_flags(struct net_device * dev,int flags)7697 static void dev_change_rx_flags(struct net_device *dev, int flags)
7698 {
7699 const struct net_device_ops *ops = dev->netdev_ops;
7700
7701 if (ops->ndo_change_rx_flags)
7702 ops->ndo_change_rx_flags(dev, flags);
7703 }
7704
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)7705 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7706 {
7707 unsigned int old_flags = dev->flags;
7708 kuid_t uid;
7709 kgid_t gid;
7710
7711 ASSERT_RTNL();
7712
7713 dev->flags |= IFF_PROMISC;
7714 dev->promiscuity += inc;
7715 if (dev->promiscuity == 0) {
7716 /*
7717 * Avoid overflow.
7718 * If inc causes overflow, untouch promisc and return error.
7719 */
7720 if (inc < 0)
7721 dev->flags &= ~IFF_PROMISC;
7722 else {
7723 dev->promiscuity -= inc;
7724 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7725 dev->name);
7726 return -EOVERFLOW;
7727 }
7728 }
7729 if (dev->flags != old_flags) {
7730 pr_info("device %s %s promiscuous mode\n",
7731 dev->name,
7732 dev->flags & IFF_PROMISC ? "entered" : "left");
7733 if (audit_enabled) {
7734 current_uid_gid(&uid, &gid);
7735 audit_log(audit_context(), GFP_ATOMIC,
7736 AUDIT_ANOM_PROMISCUOUS,
7737 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7738 dev->name, (dev->flags & IFF_PROMISC),
7739 (old_flags & IFF_PROMISC),
7740 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7741 from_kuid(&init_user_ns, uid),
7742 from_kgid(&init_user_ns, gid),
7743 audit_get_sessionid(current));
7744 }
7745
7746 dev_change_rx_flags(dev, IFF_PROMISC);
7747 }
7748 if (notify)
7749 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7750 return 0;
7751 }
7752
7753 /**
7754 * dev_set_promiscuity - update promiscuity count on a device
7755 * @dev: device
7756 * @inc: modifier
7757 *
7758 * Add or remove promiscuity from a device. While the count in the device
7759 * remains above zero the interface remains promiscuous. Once it hits zero
7760 * the device reverts back to normal filtering operation. A negative inc
7761 * value is used to drop promiscuity on the device.
7762 * Return 0 if successful or a negative errno code on error.
7763 */
dev_set_promiscuity(struct net_device * dev,int inc)7764 int dev_set_promiscuity(struct net_device *dev, int inc)
7765 {
7766 unsigned int old_flags = dev->flags;
7767 int err;
7768
7769 err = __dev_set_promiscuity(dev, inc, true);
7770 if (err < 0)
7771 return err;
7772 if (dev->flags != old_flags)
7773 dev_set_rx_mode(dev);
7774 return err;
7775 }
7776 EXPORT_SYMBOL(dev_set_promiscuity);
7777
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)7778 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7779 {
7780 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7781
7782 ASSERT_RTNL();
7783
7784 dev->flags |= IFF_ALLMULTI;
7785 dev->allmulti += inc;
7786 if (dev->allmulti == 0) {
7787 /*
7788 * Avoid overflow.
7789 * If inc causes overflow, untouch allmulti and return error.
7790 */
7791 if (inc < 0)
7792 dev->flags &= ~IFF_ALLMULTI;
7793 else {
7794 dev->allmulti -= inc;
7795 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7796 dev->name);
7797 return -EOVERFLOW;
7798 }
7799 }
7800 if (dev->flags ^ old_flags) {
7801 dev_change_rx_flags(dev, IFF_ALLMULTI);
7802 dev_set_rx_mode(dev);
7803 if (notify)
7804 __dev_notify_flags(dev, old_flags,
7805 dev->gflags ^ old_gflags);
7806 }
7807 return 0;
7808 }
7809
7810 /**
7811 * dev_set_allmulti - update allmulti count on a device
7812 * @dev: device
7813 * @inc: modifier
7814 *
7815 * Add or remove reception of all multicast frames to a device. While the
7816 * count in the device remains above zero the interface remains listening
7817 * to all interfaces. Once it hits zero the device reverts back to normal
7818 * filtering operation. A negative @inc value is used to drop the counter
7819 * when releasing a resource needing all multicasts.
7820 * Return 0 if successful or a negative errno code on error.
7821 */
7822
dev_set_allmulti(struct net_device * dev,int inc)7823 int dev_set_allmulti(struct net_device *dev, int inc)
7824 {
7825 return __dev_set_allmulti(dev, inc, true);
7826 }
7827 EXPORT_SYMBOL(dev_set_allmulti);
7828
7829 /*
7830 * Upload unicast and multicast address lists to device and
7831 * configure RX filtering. When the device doesn't support unicast
7832 * filtering it is put in promiscuous mode while unicast addresses
7833 * are present.
7834 */
__dev_set_rx_mode(struct net_device * dev)7835 void __dev_set_rx_mode(struct net_device *dev)
7836 {
7837 const struct net_device_ops *ops = dev->netdev_ops;
7838
7839 /* dev_open will call this function so the list will stay sane. */
7840 if (!(dev->flags&IFF_UP))
7841 return;
7842
7843 if (!netif_device_present(dev))
7844 return;
7845
7846 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7847 /* Unicast addresses changes may only happen under the rtnl,
7848 * therefore calling __dev_set_promiscuity here is safe.
7849 */
7850 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7851 __dev_set_promiscuity(dev, 1, false);
7852 dev->uc_promisc = true;
7853 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7854 __dev_set_promiscuity(dev, -1, false);
7855 dev->uc_promisc = false;
7856 }
7857 }
7858
7859 if (ops->ndo_set_rx_mode)
7860 ops->ndo_set_rx_mode(dev);
7861 }
7862
dev_set_rx_mode(struct net_device * dev)7863 void dev_set_rx_mode(struct net_device *dev)
7864 {
7865 netif_addr_lock_bh(dev);
7866 __dev_set_rx_mode(dev);
7867 netif_addr_unlock_bh(dev);
7868 }
7869
7870 /**
7871 * dev_get_flags - get flags reported to userspace
7872 * @dev: device
7873 *
7874 * Get the combination of flag bits exported through APIs to userspace.
7875 */
dev_get_flags(const struct net_device * dev)7876 unsigned int dev_get_flags(const struct net_device *dev)
7877 {
7878 unsigned int flags;
7879
7880 flags = (dev->flags & ~(IFF_PROMISC |
7881 IFF_ALLMULTI |
7882 IFF_RUNNING |
7883 IFF_LOWER_UP |
7884 IFF_DORMANT)) |
7885 (dev->gflags & (IFF_PROMISC |
7886 IFF_ALLMULTI));
7887
7888 if (netif_running(dev)) {
7889 if (netif_oper_up(dev))
7890 flags |= IFF_RUNNING;
7891 if (netif_carrier_ok(dev))
7892 flags |= IFF_LOWER_UP;
7893 if (netif_dormant(dev))
7894 flags |= IFF_DORMANT;
7895 }
7896
7897 return flags;
7898 }
7899 EXPORT_SYMBOL(dev_get_flags);
7900
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)7901 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7902 struct netlink_ext_ack *extack)
7903 {
7904 unsigned int old_flags = dev->flags;
7905 int ret;
7906
7907 ASSERT_RTNL();
7908
7909 /*
7910 * Set the flags on our device.
7911 */
7912
7913 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7914 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7915 IFF_AUTOMEDIA)) |
7916 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7917 IFF_ALLMULTI));
7918
7919 /*
7920 * Load in the correct multicast list now the flags have changed.
7921 */
7922
7923 if ((old_flags ^ flags) & IFF_MULTICAST)
7924 dev_change_rx_flags(dev, IFF_MULTICAST);
7925
7926 dev_set_rx_mode(dev);
7927
7928 /*
7929 * Have we downed the interface. We handle IFF_UP ourselves
7930 * according to user attempts to set it, rather than blindly
7931 * setting it.
7932 */
7933
7934 ret = 0;
7935 if ((old_flags ^ flags) & IFF_UP) {
7936 if (old_flags & IFF_UP)
7937 __dev_close(dev);
7938 else
7939 ret = __dev_open(dev, extack);
7940 }
7941
7942 if ((flags ^ dev->gflags) & IFF_PROMISC) {
7943 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7944 unsigned int old_flags = dev->flags;
7945
7946 dev->gflags ^= IFF_PROMISC;
7947
7948 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7949 if (dev->flags != old_flags)
7950 dev_set_rx_mode(dev);
7951 }
7952
7953 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7954 * is important. Some (broken) drivers set IFF_PROMISC, when
7955 * IFF_ALLMULTI is requested not asking us and not reporting.
7956 */
7957 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7958 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7959
7960 dev->gflags ^= IFF_ALLMULTI;
7961 __dev_set_allmulti(dev, inc, false);
7962 }
7963
7964 return ret;
7965 }
7966
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)7967 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7968 unsigned int gchanges)
7969 {
7970 unsigned int changes = dev->flags ^ old_flags;
7971
7972 if (gchanges)
7973 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7974
7975 if (changes & IFF_UP) {
7976 if (dev->flags & IFF_UP)
7977 call_netdevice_notifiers(NETDEV_UP, dev);
7978 else
7979 call_netdevice_notifiers(NETDEV_DOWN, dev);
7980 }
7981
7982 if (dev->flags & IFF_UP &&
7983 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7984 struct netdev_notifier_change_info change_info = {
7985 .info = {
7986 .dev = dev,
7987 },
7988 .flags_changed = changes,
7989 };
7990
7991 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7992 }
7993 }
7994
7995 /**
7996 * dev_change_flags - change device settings
7997 * @dev: device
7998 * @flags: device state flags
7999 * @extack: netlink extended ack
8000 *
8001 * Change settings on device based state flags. The flags are
8002 * in the userspace exported format.
8003 */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8004 int dev_change_flags(struct net_device *dev, unsigned int flags,
8005 struct netlink_ext_ack *extack)
8006 {
8007 int ret;
8008 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8009
8010 ret = __dev_change_flags(dev, flags, extack);
8011 if (ret < 0)
8012 return ret;
8013
8014 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8015 __dev_notify_flags(dev, old_flags, changes);
8016 return ret;
8017 }
8018 EXPORT_SYMBOL(dev_change_flags);
8019
__dev_set_mtu(struct net_device * dev,int new_mtu)8020 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8021 {
8022 const struct net_device_ops *ops = dev->netdev_ops;
8023
8024 if (ops->ndo_change_mtu)
8025 return ops->ndo_change_mtu(dev, new_mtu);
8026
8027 /* Pairs with all the lockless reads of dev->mtu in the stack */
8028 WRITE_ONCE(dev->mtu, new_mtu);
8029 return 0;
8030 }
8031 EXPORT_SYMBOL(__dev_set_mtu);
8032
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8033 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8034 struct netlink_ext_ack *extack)
8035 {
8036 /* MTU must be positive, and in range */
8037 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8038 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8039 return -EINVAL;
8040 }
8041
8042 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8043 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8044 return -EINVAL;
8045 }
8046 return 0;
8047 }
8048
8049 /**
8050 * dev_set_mtu_ext - Change maximum transfer unit
8051 * @dev: device
8052 * @new_mtu: new transfer unit
8053 * @extack: netlink extended ack
8054 *
8055 * Change the maximum transfer size of the network device.
8056 */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8057 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8058 struct netlink_ext_ack *extack)
8059 {
8060 int err, orig_mtu;
8061
8062 if (new_mtu == dev->mtu)
8063 return 0;
8064
8065 err = dev_validate_mtu(dev, new_mtu, extack);
8066 if (err)
8067 return err;
8068
8069 if (!netif_device_present(dev))
8070 return -ENODEV;
8071
8072 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8073 err = notifier_to_errno(err);
8074 if (err)
8075 return err;
8076
8077 orig_mtu = dev->mtu;
8078 err = __dev_set_mtu(dev, new_mtu);
8079
8080 if (!err) {
8081 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8082 orig_mtu);
8083 err = notifier_to_errno(err);
8084 if (err) {
8085 /* setting mtu back and notifying everyone again,
8086 * so that they have a chance to revert changes.
8087 */
8088 __dev_set_mtu(dev, orig_mtu);
8089 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8090 new_mtu);
8091 }
8092 }
8093 return err;
8094 }
8095
dev_set_mtu(struct net_device * dev,int new_mtu)8096 int dev_set_mtu(struct net_device *dev, int new_mtu)
8097 {
8098 struct netlink_ext_ack extack;
8099 int err;
8100
8101 memset(&extack, 0, sizeof(extack));
8102 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8103 if (err && extack._msg)
8104 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8105 return err;
8106 }
8107 EXPORT_SYMBOL(dev_set_mtu);
8108
8109 /**
8110 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8111 * @dev: device
8112 * @new_len: new tx queue length
8113 */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8114 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8115 {
8116 unsigned int orig_len = dev->tx_queue_len;
8117 int res;
8118
8119 if (new_len != (unsigned int)new_len)
8120 return -ERANGE;
8121
8122 if (new_len != orig_len) {
8123 dev->tx_queue_len = new_len;
8124 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8125 res = notifier_to_errno(res);
8126 if (res)
8127 goto err_rollback;
8128 res = dev_qdisc_change_tx_queue_len(dev);
8129 if (res)
8130 goto err_rollback;
8131 }
8132
8133 return 0;
8134
8135 err_rollback:
8136 netdev_err(dev, "refused to change device tx_queue_len\n");
8137 dev->tx_queue_len = orig_len;
8138 return res;
8139 }
8140
8141 /**
8142 * dev_set_group - Change group this device belongs to
8143 * @dev: device
8144 * @new_group: group this device should belong to
8145 */
dev_set_group(struct net_device * dev,int new_group)8146 void dev_set_group(struct net_device *dev, int new_group)
8147 {
8148 dev->group = new_group;
8149 }
8150 EXPORT_SYMBOL(dev_set_group);
8151
8152 /**
8153 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8154 * @dev: device
8155 * @addr: new address
8156 * @extack: netlink extended ack
8157 */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8158 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8159 struct netlink_ext_ack *extack)
8160 {
8161 struct netdev_notifier_pre_changeaddr_info info = {
8162 .info.dev = dev,
8163 .info.extack = extack,
8164 .dev_addr = addr,
8165 };
8166 int rc;
8167
8168 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8169 return notifier_to_errno(rc);
8170 }
8171 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8172
8173 /**
8174 * dev_set_mac_address - Change Media Access Control Address
8175 * @dev: device
8176 * @sa: new address
8177 * @extack: netlink extended ack
8178 *
8179 * Change the hardware (MAC) address of the device
8180 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8181 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8182 struct netlink_ext_ack *extack)
8183 {
8184 const struct net_device_ops *ops = dev->netdev_ops;
8185 int err;
8186
8187 if (!ops->ndo_set_mac_address)
8188 return -EOPNOTSUPP;
8189 if (sa->sa_family != dev->type)
8190 return -EINVAL;
8191 if (!netif_device_present(dev))
8192 return -ENODEV;
8193 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8194 if (err)
8195 return err;
8196 err = ops->ndo_set_mac_address(dev, sa);
8197 if (err)
8198 return err;
8199 dev->addr_assign_type = NET_ADDR_SET;
8200 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8201 add_device_randomness(dev->dev_addr, dev->addr_len);
8202 return 0;
8203 }
8204 EXPORT_SYMBOL(dev_set_mac_address);
8205
8206 static DECLARE_RWSEM(dev_addr_sem);
8207
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8208 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8209 struct netlink_ext_ack *extack)
8210 {
8211 int ret;
8212
8213 down_write(&dev_addr_sem);
8214 ret = dev_set_mac_address(dev, sa, extack);
8215 up_write(&dev_addr_sem);
8216 return ret;
8217 }
8218 EXPORT_SYMBOL(dev_set_mac_address_user);
8219
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)8220 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8221 {
8222 size_t size = sizeof(sa->sa_data);
8223 struct net_device *dev;
8224 int ret = 0;
8225
8226 down_read(&dev_addr_sem);
8227 rcu_read_lock();
8228
8229 dev = dev_get_by_name_rcu(net, dev_name);
8230 if (!dev) {
8231 ret = -ENODEV;
8232 goto unlock;
8233 }
8234 if (!dev->addr_len)
8235 memset(sa->sa_data, 0, size);
8236 else
8237 memcpy(sa->sa_data, dev->dev_addr,
8238 min_t(size_t, size, dev->addr_len));
8239 sa->sa_family = dev->type;
8240
8241 unlock:
8242 rcu_read_unlock();
8243 up_read(&dev_addr_sem);
8244 return ret;
8245 }
8246 EXPORT_SYMBOL(dev_get_mac_address);
8247
8248 /**
8249 * dev_change_carrier - Change device carrier
8250 * @dev: device
8251 * @new_carrier: new value
8252 *
8253 * Change device carrier
8254 */
dev_change_carrier(struct net_device * dev,bool new_carrier)8255 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8256 {
8257 const struct net_device_ops *ops = dev->netdev_ops;
8258
8259 if (!ops->ndo_change_carrier)
8260 return -EOPNOTSUPP;
8261 if (!netif_device_present(dev))
8262 return -ENODEV;
8263 return ops->ndo_change_carrier(dev, new_carrier);
8264 }
8265 EXPORT_SYMBOL(dev_change_carrier);
8266
8267 /**
8268 * dev_get_phys_port_id - Get device physical port ID
8269 * @dev: device
8270 * @ppid: port ID
8271 *
8272 * Get device physical port ID
8273 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)8274 int dev_get_phys_port_id(struct net_device *dev,
8275 struct netdev_phys_item_id *ppid)
8276 {
8277 const struct net_device_ops *ops = dev->netdev_ops;
8278
8279 if (!ops->ndo_get_phys_port_id)
8280 return -EOPNOTSUPP;
8281 return ops->ndo_get_phys_port_id(dev, ppid);
8282 }
8283 EXPORT_SYMBOL(dev_get_phys_port_id);
8284
8285 /**
8286 * dev_get_phys_port_name - Get device physical port name
8287 * @dev: device
8288 * @name: port name
8289 * @len: limit of bytes to copy to name
8290 *
8291 * Get device physical port name
8292 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)8293 int dev_get_phys_port_name(struct net_device *dev,
8294 char *name, size_t len)
8295 {
8296 const struct net_device_ops *ops = dev->netdev_ops;
8297 int err;
8298
8299 if (ops->ndo_get_phys_port_name) {
8300 err = ops->ndo_get_phys_port_name(dev, name, len);
8301 if (err != -EOPNOTSUPP)
8302 return err;
8303 }
8304 return devlink_compat_phys_port_name_get(dev, name, len);
8305 }
8306 EXPORT_SYMBOL(dev_get_phys_port_name);
8307
8308 /**
8309 * dev_get_port_parent_id - Get the device's port parent identifier
8310 * @dev: network device
8311 * @ppid: pointer to a storage for the port's parent identifier
8312 * @recurse: allow/disallow recursion to lower devices
8313 *
8314 * Get the devices's port parent identifier
8315 */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)8316 int dev_get_port_parent_id(struct net_device *dev,
8317 struct netdev_phys_item_id *ppid,
8318 bool recurse)
8319 {
8320 const struct net_device_ops *ops = dev->netdev_ops;
8321 struct netdev_phys_item_id first = { };
8322 struct net_device *lower_dev;
8323 struct list_head *iter;
8324 int err;
8325
8326 if (ops->ndo_get_port_parent_id) {
8327 err = ops->ndo_get_port_parent_id(dev, ppid);
8328 if (err != -EOPNOTSUPP)
8329 return err;
8330 }
8331
8332 err = devlink_compat_switch_id_get(dev, ppid);
8333 if (!err || err != -EOPNOTSUPP)
8334 return err;
8335
8336 if (!recurse)
8337 return -EOPNOTSUPP;
8338
8339 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8340 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8341 if (err)
8342 break;
8343 if (!first.id_len)
8344 first = *ppid;
8345 else if (memcmp(&first, ppid, sizeof(*ppid)))
8346 return -EOPNOTSUPP;
8347 }
8348
8349 return err;
8350 }
8351 EXPORT_SYMBOL(dev_get_port_parent_id);
8352
8353 /**
8354 * netdev_port_same_parent_id - Indicate if two network devices have
8355 * the same port parent identifier
8356 * @a: first network device
8357 * @b: second network device
8358 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)8359 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8360 {
8361 struct netdev_phys_item_id a_id = { };
8362 struct netdev_phys_item_id b_id = { };
8363
8364 if (dev_get_port_parent_id(a, &a_id, true) ||
8365 dev_get_port_parent_id(b, &b_id, true))
8366 return false;
8367
8368 return netdev_phys_item_id_same(&a_id, &b_id);
8369 }
8370 EXPORT_SYMBOL(netdev_port_same_parent_id);
8371
8372 /**
8373 * dev_change_proto_down - update protocol port state information
8374 * @dev: device
8375 * @proto_down: new value
8376 *
8377 * This info can be used by switch drivers to set the phys state of the
8378 * port.
8379 */
dev_change_proto_down(struct net_device * dev,bool proto_down)8380 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8381 {
8382 const struct net_device_ops *ops = dev->netdev_ops;
8383
8384 if (!ops->ndo_change_proto_down)
8385 return -EOPNOTSUPP;
8386 if (!netif_device_present(dev))
8387 return -ENODEV;
8388 return ops->ndo_change_proto_down(dev, proto_down);
8389 }
8390 EXPORT_SYMBOL(dev_change_proto_down);
8391
8392 /**
8393 * dev_change_proto_down_generic - generic implementation for
8394 * ndo_change_proto_down that sets carrier according to
8395 * proto_down.
8396 *
8397 * @dev: device
8398 * @proto_down: new value
8399 */
dev_change_proto_down_generic(struct net_device * dev,bool proto_down)8400 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8401 {
8402 if (proto_down)
8403 netif_carrier_off(dev);
8404 else
8405 netif_carrier_on(dev);
8406 dev->proto_down = proto_down;
8407 return 0;
8408 }
8409 EXPORT_SYMBOL(dev_change_proto_down_generic);
8410
__dev_xdp_query(struct net_device * dev,bpf_op_t bpf_op,enum bpf_netdev_command cmd)8411 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8412 enum bpf_netdev_command cmd)
8413 {
8414 struct netdev_bpf xdp;
8415
8416 if (!bpf_op)
8417 return 0;
8418
8419 memset(&xdp, 0, sizeof(xdp));
8420 xdp.command = cmd;
8421
8422 /* Query must always succeed. */
8423 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8424
8425 return xdp.prog_id;
8426 }
8427
dev_xdp_install(struct net_device * dev,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)8428 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8429 struct netlink_ext_ack *extack, u32 flags,
8430 struct bpf_prog *prog)
8431 {
8432 struct netdev_bpf xdp;
8433
8434 memset(&xdp, 0, sizeof(xdp));
8435 if (flags & XDP_FLAGS_HW_MODE)
8436 xdp.command = XDP_SETUP_PROG_HW;
8437 else
8438 xdp.command = XDP_SETUP_PROG;
8439 xdp.extack = extack;
8440 xdp.flags = flags;
8441 xdp.prog = prog;
8442
8443 return bpf_op(dev, &xdp);
8444 }
8445
dev_xdp_uninstall(struct net_device * dev)8446 static void dev_xdp_uninstall(struct net_device *dev)
8447 {
8448 struct netdev_bpf xdp;
8449 bpf_op_t ndo_bpf;
8450
8451 /* Remove generic XDP */
8452 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8453
8454 /* Remove from the driver */
8455 ndo_bpf = dev->netdev_ops->ndo_bpf;
8456 if (!ndo_bpf)
8457 return;
8458
8459 memset(&xdp, 0, sizeof(xdp));
8460 xdp.command = XDP_QUERY_PROG;
8461 WARN_ON(ndo_bpf(dev, &xdp));
8462 if (xdp.prog_id)
8463 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8464 NULL));
8465
8466 /* Remove HW offload */
8467 memset(&xdp, 0, sizeof(xdp));
8468 xdp.command = XDP_QUERY_PROG_HW;
8469 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8470 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8471 NULL));
8472 }
8473
8474 /**
8475 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8476 * @dev: device
8477 * @extack: netlink extended ack
8478 * @fd: new program fd or negative value to clear
8479 * @flags: xdp-related flags
8480 *
8481 * Set or clear a bpf program for a device
8482 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,u32 flags)8483 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8484 int fd, u32 flags)
8485 {
8486 const struct net_device_ops *ops = dev->netdev_ops;
8487 enum bpf_netdev_command query;
8488 struct bpf_prog *prog = NULL;
8489 bpf_op_t bpf_op, bpf_chk;
8490 bool offload;
8491 int err;
8492
8493 ASSERT_RTNL();
8494
8495 offload = flags & XDP_FLAGS_HW_MODE;
8496 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8497
8498 bpf_op = bpf_chk = ops->ndo_bpf;
8499 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8500 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8501 return -EOPNOTSUPP;
8502 }
8503 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8504 bpf_op = generic_xdp_install;
8505 if (bpf_op == bpf_chk)
8506 bpf_chk = generic_xdp_install;
8507
8508 if (fd >= 0) {
8509 u32 prog_id;
8510
8511 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8512 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8513 return -EEXIST;
8514 }
8515
8516 prog_id = __dev_xdp_query(dev, bpf_op, query);
8517 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8518 NL_SET_ERR_MSG(extack, "XDP program already attached");
8519 return -EBUSY;
8520 }
8521
8522 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8523 bpf_op == ops->ndo_bpf);
8524 if (IS_ERR(prog))
8525 return PTR_ERR(prog);
8526
8527 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8528 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8529 bpf_prog_put(prog);
8530 return -EINVAL;
8531 }
8532
8533 /* prog->aux->id may be 0 for orphaned device-bound progs */
8534 if (prog->aux->id && prog->aux->id == prog_id) {
8535 bpf_prog_put(prog);
8536 return 0;
8537 }
8538 } else {
8539 if (!__dev_xdp_query(dev, bpf_op, query))
8540 return 0;
8541 }
8542
8543 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8544 if (err < 0 && prog)
8545 bpf_prog_put(prog);
8546
8547 return err;
8548 }
8549
8550 /**
8551 * dev_new_index - allocate an ifindex
8552 * @net: the applicable net namespace
8553 *
8554 * Returns a suitable unique value for a new device interface
8555 * number. The caller must hold the rtnl semaphore or the
8556 * dev_base_lock to be sure it remains unique.
8557 */
dev_new_index(struct net * net)8558 static int dev_new_index(struct net *net)
8559 {
8560 int ifindex = net->ifindex;
8561
8562 for (;;) {
8563 if (++ifindex <= 0)
8564 ifindex = 1;
8565 if (!__dev_get_by_index(net, ifindex))
8566 return net->ifindex = ifindex;
8567 }
8568 }
8569
8570 /* Delayed registration/unregisteration */
8571 static LIST_HEAD(net_todo_list);
8572 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8573
net_set_todo(struct net_device * dev)8574 static void net_set_todo(struct net_device *dev)
8575 {
8576 list_add_tail(&dev->todo_list, &net_todo_list);
8577 dev_net(dev)->dev_unreg_count++;
8578 }
8579
rollback_registered_many(struct list_head * head)8580 static void rollback_registered_many(struct list_head *head)
8581 {
8582 struct net_device *dev, *tmp;
8583 LIST_HEAD(close_head);
8584
8585 BUG_ON(dev_boot_phase);
8586 ASSERT_RTNL();
8587
8588 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8589 /* Some devices call without registering
8590 * for initialization unwind. Remove those
8591 * devices and proceed with the remaining.
8592 */
8593 if (dev->reg_state == NETREG_UNINITIALIZED) {
8594 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8595 dev->name, dev);
8596
8597 WARN_ON(1);
8598 list_del(&dev->unreg_list);
8599 continue;
8600 }
8601 dev->dismantle = true;
8602 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8603 }
8604
8605 /* If device is running, close it first. */
8606 list_for_each_entry(dev, head, unreg_list)
8607 list_add_tail(&dev->close_list, &close_head);
8608 dev_close_many(&close_head, true);
8609
8610 list_for_each_entry(dev, head, unreg_list) {
8611 /* And unlink it from device chain. */
8612 unlist_netdevice(dev);
8613
8614 dev->reg_state = NETREG_UNREGISTERING;
8615 }
8616 flush_all_backlogs();
8617
8618 synchronize_net();
8619
8620 list_for_each_entry(dev, head, unreg_list) {
8621 struct sk_buff *skb = NULL;
8622
8623 /* Shutdown queueing discipline. */
8624 dev_shutdown(dev);
8625
8626 dev_xdp_uninstall(dev);
8627
8628 /* Notify protocols, that we are about to destroy
8629 * this device. They should clean all the things.
8630 */
8631 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8632
8633 if (!dev->rtnl_link_ops ||
8634 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8635 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8636 GFP_KERNEL, NULL, 0);
8637
8638 /*
8639 * Flush the unicast and multicast chains
8640 */
8641 dev_uc_flush(dev);
8642 dev_mc_flush(dev);
8643
8644 if (dev->netdev_ops->ndo_uninit)
8645 dev->netdev_ops->ndo_uninit(dev);
8646
8647 if (skb)
8648 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8649
8650 /* Notifier chain MUST detach us all upper devices. */
8651 WARN_ON(netdev_has_any_upper_dev(dev));
8652 WARN_ON(netdev_has_any_lower_dev(dev));
8653
8654 /* Remove entries from kobject tree */
8655 netdev_unregister_kobject(dev);
8656 #ifdef CONFIG_XPS
8657 /* Remove XPS queueing entries */
8658 netif_reset_xps_queues_gt(dev, 0);
8659 #endif
8660 }
8661
8662 synchronize_net();
8663
8664 list_for_each_entry(dev, head, unreg_list)
8665 dev_put(dev);
8666 }
8667
rollback_registered(struct net_device * dev)8668 static void rollback_registered(struct net_device *dev)
8669 {
8670 LIST_HEAD(single);
8671
8672 list_add(&dev->unreg_list, &single);
8673 rollback_registered_many(&single);
8674 list_del(&single);
8675 }
8676
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)8677 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8678 struct net_device *upper, netdev_features_t features)
8679 {
8680 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8681 netdev_features_t feature;
8682 int feature_bit;
8683
8684 for_each_netdev_feature(upper_disables, feature_bit) {
8685 feature = __NETIF_F_BIT(feature_bit);
8686 if (!(upper->wanted_features & feature)
8687 && (features & feature)) {
8688 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8689 &feature, upper->name);
8690 features &= ~feature;
8691 }
8692 }
8693
8694 return features;
8695 }
8696
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)8697 static void netdev_sync_lower_features(struct net_device *upper,
8698 struct net_device *lower, netdev_features_t features)
8699 {
8700 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8701 netdev_features_t feature;
8702 int feature_bit;
8703
8704 for_each_netdev_feature(upper_disables, feature_bit) {
8705 feature = __NETIF_F_BIT(feature_bit);
8706 if (!(features & feature) && (lower->features & feature)) {
8707 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8708 &feature, lower->name);
8709 lower->wanted_features &= ~feature;
8710 __netdev_update_features(lower);
8711
8712 if (unlikely(lower->features & feature))
8713 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8714 &feature, lower->name);
8715 else
8716 netdev_features_change(lower);
8717 }
8718 }
8719 }
8720
netdev_fix_features(struct net_device * dev,netdev_features_t features)8721 static netdev_features_t netdev_fix_features(struct net_device *dev,
8722 netdev_features_t features)
8723 {
8724 /* Fix illegal checksum combinations */
8725 if ((features & NETIF_F_HW_CSUM) &&
8726 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8727 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8728 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8729 }
8730
8731 /* TSO requires that SG is present as well. */
8732 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8733 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8734 features &= ~NETIF_F_ALL_TSO;
8735 }
8736
8737 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8738 !(features & NETIF_F_IP_CSUM)) {
8739 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8740 features &= ~NETIF_F_TSO;
8741 features &= ~NETIF_F_TSO_ECN;
8742 }
8743
8744 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8745 !(features & NETIF_F_IPV6_CSUM)) {
8746 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8747 features &= ~NETIF_F_TSO6;
8748 }
8749
8750 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8751 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8752 features &= ~NETIF_F_TSO_MANGLEID;
8753
8754 /* TSO ECN requires that TSO is present as well. */
8755 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8756 features &= ~NETIF_F_TSO_ECN;
8757
8758 /* Software GSO depends on SG. */
8759 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8760 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8761 features &= ~NETIF_F_GSO;
8762 }
8763
8764 /* GSO partial features require GSO partial be set */
8765 if ((features & dev->gso_partial_features) &&
8766 !(features & NETIF_F_GSO_PARTIAL)) {
8767 netdev_dbg(dev,
8768 "Dropping partially supported GSO features since no GSO partial.\n");
8769 features &= ~dev->gso_partial_features;
8770 }
8771
8772 if (!(features & NETIF_F_RXCSUM)) {
8773 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8774 * successfully merged by hardware must also have the
8775 * checksum verified by hardware. If the user does not
8776 * want to enable RXCSUM, logically, we should disable GRO_HW.
8777 */
8778 if (features & NETIF_F_GRO_HW) {
8779 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8780 features &= ~NETIF_F_GRO_HW;
8781 }
8782 }
8783
8784 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8785 if (features & NETIF_F_RXFCS) {
8786 if (features & NETIF_F_LRO) {
8787 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8788 features &= ~NETIF_F_LRO;
8789 }
8790
8791 if (features & NETIF_F_GRO_HW) {
8792 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8793 features &= ~NETIF_F_GRO_HW;
8794 }
8795 }
8796
8797 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
8798 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
8799 features &= ~NETIF_F_HW_TLS_RX;
8800 }
8801
8802 return features;
8803 }
8804
__netdev_update_features(struct net_device * dev)8805 int __netdev_update_features(struct net_device *dev)
8806 {
8807 struct net_device *upper, *lower;
8808 netdev_features_t features;
8809 struct list_head *iter;
8810 int err = -1;
8811
8812 ASSERT_RTNL();
8813
8814 features = netdev_get_wanted_features(dev);
8815
8816 if (dev->netdev_ops->ndo_fix_features)
8817 features = dev->netdev_ops->ndo_fix_features(dev, features);
8818
8819 /* driver might be less strict about feature dependencies */
8820 features = netdev_fix_features(dev, features);
8821
8822 /* some features can't be enabled if they're off an an upper device */
8823 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8824 features = netdev_sync_upper_features(dev, upper, features);
8825
8826 if (dev->features == features)
8827 goto sync_lower;
8828
8829 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8830 &dev->features, &features);
8831
8832 if (dev->netdev_ops->ndo_set_features)
8833 err = dev->netdev_ops->ndo_set_features(dev, features);
8834 else
8835 err = 0;
8836
8837 if (unlikely(err < 0)) {
8838 netdev_err(dev,
8839 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8840 err, &features, &dev->features);
8841 /* return non-0 since some features might have changed and
8842 * it's better to fire a spurious notification than miss it
8843 */
8844 return -1;
8845 }
8846
8847 sync_lower:
8848 /* some features must be disabled on lower devices when disabled
8849 * on an upper device (think: bonding master or bridge)
8850 */
8851 netdev_for_each_lower_dev(dev, lower, iter)
8852 netdev_sync_lower_features(dev, lower, features);
8853
8854 if (!err) {
8855 netdev_features_t diff = features ^ dev->features;
8856
8857 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8858 /* udp_tunnel_{get,drop}_rx_info both need
8859 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8860 * device, or they won't do anything.
8861 * Thus we need to update dev->features
8862 * *before* calling udp_tunnel_get_rx_info,
8863 * but *after* calling udp_tunnel_drop_rx_info.
8864 */
8865 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8866 dev->features = features;
8867 udp_tunnel_get_rx_info(dev);
8868 } else {
8869 udp_tunnel_drop_rx_info(dev);
8870 }
8871 }
8872
8873 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8874 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8875 dev->features = features;
8876 err |= vlan_get_rx_ctag_filter_info(dev);
8877 } else {
8878 vlan_drop_rx_ctag_filter_info(dev);
8879 }
8880 }
8881
8882 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8883 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8884 dev->features = features;
8885 err |= vlan_get_rx_stag_filter_info(dev);
8886 } else {
8887 vlan_drop_rx_stag_filter_info(dev);
8888 }
8889 }
8890
8891 dev->features = features;
8892 }
8893
8894 return err < 0 ? 0 : 1;
8895 }
8896
8897 /**
8898 * netdev_update_features - recalculate device features
8899 * @dev: the device to check
8900 *
8901 * Recalculate dev->features set and send notifications if it
8902 * has changed. Should be called after driver or hardware dependent
8903 * conditions might have changed that influence the features.
8904 */
netdev_update_features(struct net_device * dev)8905 void netdev_update_features(struct net_device *dev)
8906 {
8907 if (__netdev_update_features(dev))
8908 netdev_features_change(dev);
8909 }
8910 EXPORT_SYMBOL(netdev_update_features);
8911
8912 /**
8913 * netdev_change_features - recalculate device features
8914 * @dev: the device to check
8915 *
8916 * Recalculate dev->features set and send notifications even
8917 * if they have not changed. Should be called instead of
8918 * netdev_update_features() if also dev->vlan_features might
8919 * have changed to allow the changes to be propagated to stacked
8920 * VLAN devices.
8921 */
netdev_change_features(struct net_device * dev)8922 void netdev_change_features(struct net_device *dev)
8923 {
8924 __netdev_update_features(dev);
8925 netdev_features_change(dev);
8926 }
8927 EXPORT_SYMBOL(netdev_change_features);
8928
8929 /**
8930 * netif_stacked_transfer_operstate - transfer operstate
8931 * @rootdev: the root or lower level device to transfer state from
8932 * @dev: the device to transfer operstate to
8933 *
8934 * Transfer operational state from root to device. This is normally
8935 * called when a stacking relationship exists between the root
8936 * device and the device(a leaf device).
8937 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)8938 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8939 struct net_device *dev)
8940 {
8941 if (rootdev->operstate == IF_OPER_DORMANT)
8942 netif_dormant_on(dev);
8943 else
8944 netif_dormant_off(dev);
8945
8946 if (netif_carrier_ok(rootdev))
8947 netif_carrier_on(dev);
8948 else
8949 netif_carrier_off(dev);
8950 }
8951 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8952
netif_alloc_rx_queues(struct net_device * dev)8953 static int netif_alloc_rx_queues(struct net_device *dev)
8954 {
8955 unsigned int i, count = dev->num_rx_queues;
8956 struct netdev_rx_queue *rx;
8957 size_t sz = count * sizeof(*rx);
8958 int err = 0;
8959
8960 BUG_ON(count < 1);
8961
8962 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8963 if (!rx)
8964 return -ENOMEM;
8965
8966 dev->_rx = rx;
8967
8968 for (i = 0; i < count; i++) {
8969 rx[i].dev = dev;
8970
8971 /* XDP RX-queue setup */
8972 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8973 if (err < 0)
8974 goto err_rxq_info;
8975 }
8976 return 0;
8977
8978 err_rxq_info:
8979 /* Rollback successful reg's and free other resources */
8980 while (i--)
8981 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8982 kvfree(dev->_rx);
8983 dev->_rx = NULL;
8984 return err;
8985 }
8986
netif_free_rx_queues(struct net_device * dev)8987 static void netif_free_rx_queues(struct net_device *dev)
8988 {
8989 unsigned int i, count = dev->num_rx_queues;
8990
8991 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8992 if (!dev->_rx)
8993 return;
8994
8995 for (i = 0; i < count; i++)
8996 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8997
8998 kvfree(dev->_rx);
8999 }
9000
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)9001 static void netdev_init_one_queue(struct net_device *dev,
9002 struct netdev_queue *queue, void *_unused)
9003 {
9004 /* Initialize queue lock */
9005 spin_lock_init(&queue->_xmit_lock);
9006 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9007 queue->xmit_lock_owner = -1;
9008 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9009 queue->dev = dev;
9010 #ifdef CONFIG_BQL
9011 dql_init(&queue->dql, HZ);
9012 #endif
9013 }
9014
netif_free_tx_queues(struct net_device * dev)9015 static void netif_free_tx_queues(struct net_device *dev)
9016 {
9017 kvfree(dev->_tx);
9018 }
9019
netif_alloc_netdev_queues(struct net_device * dev)9020 static int netif_alloc_netdev_queues(struct net_device *dev)
9021 {
9022 unsigned int count = dev->num_tx_queues;
9023 struct netdev_queue *tx;
9024 size_t sz = count * sizeof(*tx);
9025
9026 if (count < 1 || count > 0xffff)
9027 return -EINVAL;
9028
9029 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9030 if (!tx)
9031 return -ENOMEM;
9032
9033 dev->_tx = tx;
9034
9035 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9036 spin_lock_init(&dev->tx_global_lock);
9037
9038 return 0;
9039 }
9040
netif_tx_stop_all_queues(struct net_device * dev)9041 void netif_tx_stop_all_queues(struct net_device *dev)
9042 {
9043 unsigned int i;
9044
9045 for (i = 0; i < dev->num_tx_queues; i++) {
9046 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9047
9048 netif_tx_stop_queue(txq);
9049 }
9050 }
9051 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9052
netdev_register_lockdep_key(struct net_device * dev)9053 static void netdev_register_lockdep_key(struct net_device *dev)
9054 {
9055 lockdep_register_key(&dev->qdisc_tx_busylock_key);
9056 lockdep_register_key(&dev->qdisc_running_key);
9057 lockdep_register_key(&dev->qdisc_xmit_lock_key);
9058 lockdep_register_key(&dev->addr_list_lock_key);
9059 }
9060
netdev_unregister_lockdep_key(struct net_device * dev)9061 static void netdev_unregister_lockdep_key(struct net_device *dev)
9062 {
9063 lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9064 lockdep_unregister_key(&dev->qdisc_running_key);
9065 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9066 lockdep_unregister_key(&dev->addr_list_lock_key);
9067 }
9068
netdev_update_lockdep_key(struct net_device * dev)9069 void netdev_update_lockdep_key(struct net_device *dev)
9070 {
9071 lockdep_unregister_key(&dev->addr_list_lock_key);
9072 lockdep_register_key(&dev->addr_list_lock_key);
9073
9074 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9075 }
9076 EXPORT_SYMBOL(netdev_update_lockdep_key);
9077
9078 /**
9079 * register_netdevice - register a network device
9080 * @dev: device to register
9081 *
9082 * Take a completed network device structure and add it to the kernel
9083 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9084 * chain. 0 is returned on success. A negative errno code is returned
9085 * on a failure to set up the device, or if the name is a duplicate.
9086 *
9087 * Callers must hold the rtnl semaphore. You may want
9088 * register_netdev() instead of this.
9089 *
9090 * BUGS:
9091 * The locking appears insufficient to guarantee two parallel registers
9092 * will not get the same name.
9093 */
9094
register_netdevice(struct net_device * dev)9095 int register_netdevice(struct net_device *dev)
9096 {
9097 int ret;
9098 struct net *net = dev_net(dev);
9099
9100 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9101 NETDEV_FEATURE_COUNT);
9102 BUG_ON(dev_boot_phase);
9103 ASSERT_RTNL();
9104
9105 might_sleep();
9106
9107 /* When net_device's are persistent, this will be fatal. */
9108 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9109 BUG_ON(!net);
9110
9111 spin_lock_init(&dev->addr_list_lock);
9112 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9113
9114 ret = dev_get_valid_name(net, dev, dev->name);
9115 if (ret < 0)
9116 goto out;
9117
9118 /* Init, if this function is available */
9119 if (dev->netdev_ops->ndo_init) {
9120 ret = dev->netdev_ops->ndo_init(dev);
9121 if (ret) {
9122 if (ret > 0)
9123 ret = -EIO;
9124 goto out;
9125 }
9126 }
9127
9128 if (((dev->hw_features | dev->features) &
9129 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9130 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9131 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9132 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9133 ret = -EINVAL;
9134 goto err_uninit;
9135 }
9136
9137 ret = -EBUSY;
9138 if (!dev->ifindex)
9139 dev->ifindex = dev_new_index(net);
9140 else if (__dev_get_by_index(net, dev->ifindex))
9141 goto err_uninit;
9142
9143 /* Transfer changeable features to wanted_features and enable
9144 * software offloads (GSO and GRO).
9145 */
9146 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9147 dev->features |= NETIF_F_SOFT_FEATURES;
9148
9149 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9150 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9151 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9152 }
9153
9154 dev->wanted_features = dev->features & dev->hw_features;
9155
9156 if (!(dev->flags & IFF_LOOPBACK))
9157 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9158
9159 /* If IPv4 TCP segmentation offload is supported we should also
9160 * allow the device to enable segmenting the frame with the option
9161 * of ignoring a static IP ID value. This doesn't enable the
9162 * feature itself but allows the user to enable it later.
9163 */
9164 if (dev->hw_features & NETIF_F_TSO)
9165 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9166 if (dev->vlan_features & NETIF_F_TSO)
9167 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9168 if (dev->mpls_features & NETIF_F_TSO)
9169 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9170 if (dev->hw_enc_features & NETIF_F_TSO)
9171 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9172
9173 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9174 */
9175 dev->vlan_features |= NETIF_F_HIGHDMA;
9176
9177 /* Make NETIF_F_SG inheritable to tunnel devices.
9178 */
9179 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9180
9181 /* Make NETIF_F_SG inheritable to MPLS.
9182 */
9183 dev->mpls_features |= NETIF_F_SG;
9184
9185 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9186 ret = notifier_to_errno(ret);
9187 if (ret)
9188 goto err_uninit;
9189
9190 ret = netdev_register_kobject(dev);
9191 if (ret) {
9192 dev->reg_state = NETREG_UNREGISTERED;
9193 goto err_uninit;
9194 }
9195 dev->reg_state = NETREG_REGISTERED;
9196
9197 __netdev_update_features(dev);
9198
9199 /*
9200 * Default initial state at registry is that the
9201 * device is present.
9202 */
9203
9204 set_bit(__LINK_STATE_PRESENT, &dev->state);
9205
9206 linkwatch_init_dev(dev);
9207
9208 dev_init_scheduler(dev);
9209 dev_hold(dev);
9210 list_netdevice(dev);
9211 add_device_randomness(dev->dev_addr, dev->addr_len);
9212
9213 /* If the device has permanent device address, driver should
9214 * set dev_addr and also addr_assign_type should be set to
9215 * NET_ADDR_PERM (default value).
9216 */
9217 if (dev->addr_assign_type == NET_ADDR_PERM)
9218 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9219
9220 /* Notify protocols, that a new device appeared. */
9221 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9222 ret = notifier_to_errno(ret);
9223 if (ret) {
9224 rollback_registered(dev);
9225 rcu_barrier();
9226
9227 dev->reg_state = NETREG_UNREGISTERED;
9228 /* We should put the kobject that hold in
9229 * netdev_unregister_kobject(), otherwise
9230 * the net device cannot be freed when
9231 * driver calls free_netdev(), because the
9232 * kobject is being hold.
9233 */
9234 kobject_put(&dev->dev.kobj);
9235 }
9236 /*
9237 * Prevent userspace races by waiting until the network
9238 * device is fully setup before sending notifications.
9239 */
9240 if (!dev->rtnl_link_ops ||
9241 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9242 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9243
9244 out:
9245 return ret;
9246
9247 err_uninit:
9248 if (dev->netdev_ops->ndo_uninit)
9249 dev->netdev_ops->ndo_uninit(dev);
9250 if (dev->priv_destructor)
9251 dev->priv_destructor(dev);
9252 goto out;
9253 }
9254 EXPORT_SYMBOL(register_netdevice);
9255
9256 /**
9257 * init_dummy_netdev - init a dummy network device for NAPI
9258 * @dev: device to init
9259 *
9260 * This takes a network device structure and initialize the minimum
9261 * amount of fields so it can be used to schedule NAPI polls without
9262 * registering a full blown interface. This is to be used by drivers
9263 * that need to tie several hardware interfaces to a single NAPI
9264 * poll scheduler due to HW limitations.
9265 */
init_dummy_netdev(struct net_device * dev)9266 int init_dummy_netdev(struct net_device *dev)
9267 {
9268 /* Clear everything. Note we don't initialize spinlocks
9269 * are they aren't supposed to be taken by any of the
9270 * NAPI code and this dummy netdev is supposed to be
9271 * only ever used for NAPI polls
9272 */
9273 memset(dev, 0, sizeof(struct net_device));
9274
9275 /* make sure we BUG if trying to hit standard
9276 * register/unregister code path
9277 */
9278 dev->reg_state = NETREG_DUMMY;
9279
9280 /* NAPI wants this */
9281 INIT_LIST_HEAD(&dev->napi_list);
9282
9283 /* a dummy interface is started by default */
9284 set_bit(__LINK_STATE_PRESENT, &dev->state);
9285 set_bit(__LINK_STATE_START, &dev->state);
9286
9287 /* napi_busy_loop stats accounting wants this */
9288 dev_net_set(dev, &init_net);
9289
9290 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9291 * because users of this 'device' dont need to change
9292 * its refcount.
9293 */
9294
9295 return 0;
9296 }
9297 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9298
9299
9300 /**
9301 * register_netdev - register a network device
9302 * @dev: device to register
9303 *
9304 * Take a completed network device structure and add it to the kernel
9305 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9306 * chain. 0 is returned on success. A negative errno code is returned
9307 * on a failure to set up the device, or if the name is a duplicate.
9308 *
9309 * This is a wrapper around register_netdevice that takes the rtnl semaphore
9310 * and expands the device name if you passed a format string to
9311 * alloc_netdev.
9312 */
register_netdev(struct net_device * dev)9313 int register_netdev(struct net_device *dev)
9314 {
9315 int err;
9316
9317 if (rtnl_lock_killable())
9318 return -EINTR;
9319 err = register_netdevice(dev);
9320 rtnl_unlock();
9321 return err;
9322 }
9323 EXPORT_SYMBOL(register_netdev);
9324
netdev_refcnt_read(const struct net_device * dev)9325 int netdev_refcnt_read(const struct net_device *dev)
9326 {
9327 int i, refcnt = 0;
9328
9329 for_each_possible_cpu(i)
9330 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9331 return refcnt;
9332 }
9333 EXPORT_SYMBOL(netdev_refcnt_read);
9334
9335 /**
9336 * netdev_wait_allrefs - wait until all references are gone.
9337 * @dev: target net_device
9338 *
9339 * This is called when unregistering network devices.
9340 *
9341 * Any protocol or device that holds a reference should register
9342 * for netdevice notification, and cleanup and put back the
9343 * reference if they receive an UNREGISTER event.
9344 * We can get stuck here if buggy protocols don't correctly
9345 * call dev_put.
9346 */
netdev_wait_allrefs(struct net_device * dev)9347 static void netdev_wait_allrefs(struct net_device *dev)
9348 {
9349 unsigned long rebroadcast_time, warning_time;
9350 int refcnt;
9351
9352 linkwatch_forget_dev(dev);
9353
9354 rebroadcast_time = warning_time = jiffies;
9355 refcnt = netdev_refcnt_read(dev);
9356
9357 while (refcnt != 0) {
9358 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9359 rtnl_lock();
9360
9361 /* Rebroadcast unregister notification */
9362 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9363
9364 __rtnl_unlock();
9365 rcu_barrier();
9366 rtnl_lock();
9367
9368 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9369 &dev->state)) {
9370 /* We must not have linkwatch events
9371 * pending on unregister. If this
9372 * happens, we simply run the queue
9373 * unscheduled, resulting in a noop
9374 * for this device.
9375 */
9376 linkwatch_run_queue();
9377 }
9378
9379 __rtnl_unlock();
9380
9381 rebroadcast_time = jiffies;
9382 }
9383
9384 msleep(250);
9385
9386 refcnt = netdev_refcnt_read(dev);
9387
9388 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9389 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9390 dev->name, refcnt);
9391 warning_time = jiffies;
9392 }
9393 }
9394 }
9395
9396 /* The sequence is:
9397 *
9398 * rtnl_lock();
9399 * ...
9400 * register_netdevice(x1);
9401 * register_netdevice(x2);
9402 * ...
9403 * unregister_netdevice(y1);
9404 * unregister_netdevice(y2);
9405 * ...
9406 * rtnl_unlock();
9407 * free_netdev(y1);
9408 * free_netdev(y2);
9409 *
9410 * We are invoked by rtnl_unlock().
9411 * This allows us to deal with problems:
9412 * 1) We can delete sysfs objects which invoke hotplug
9413 * without deadlocking with linkwatch via keventd.
9414 * 2) Since we run with the RTNL semaphore not held, we can sleep
9415 * safely in order to wait for the netdev refcnt to drop to zero.
9416 *
9417 * We must not return until all unregister events added during
9418 * the interval the lock was held have been completed.
9419 */
netdev_run_todo(void)9420 void netdev_run_todo(void)
9421 {
9422 struct list_head list;
9423
9424 /* Snapshot list, allow later requests */
9425 list_replace_init(&net_todo_list, &list);
9426
9427 __rtnl_unlock();
9428
9429
9430 /* Wait for rcu callbacks to finish before next phase */
9431 if (!list_empty(&list))
9432 rcu_barrier();
9433
9434 while (!list_empty(&list)) {
9435 struct net_device *dev
9436 = list_first_entry(&list, struct net_device, todo_list);
9437 list_del(&dev->todo_list);
9438
9439 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9440 pr_err("network todo '%s' but state %d\n",
9441 dev->name, dev->reg_state);
9442 dump_stack();
9443 continue;
9444 }
9445
9446 dev->reg_state = NETREG_UNREGISTERED;
9447
9448 netdev_wait_allrefs(dev);
9449
9450 /* paranoia */
9451 BUG_ON(netdev_refcnt_read(dev));
9452 BUG_ON(!list_empty(&dev->ptype_all));
9453 BUG_ON(!list_empty(&dev->ptype_specific));
9454 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9455 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9456
9457 if (dev->priv_destructor)
9458 dev->priv_destructor(dev);
9459 if (dev->needs_free_netdev)
9460 free_netdev(dev);
9461
9462 /* Report a network device has been unregistered */
9463 rtnl_lock();
9464 dev_net(dev)->dev_unreg_count--;
9465 __rtnl_unlock();
9466 wake_up(&netdev_unregistering_wq);
9467
9468 /* Free network device */
9469 kobject_put(&dev->dev.kobj);
9470 }
9471 }
9472
9473 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9474 * all the same fields in the same order as net_device_stats, with only
9475 * the type differing, but rtnl_link_stats64 may have additional fields
9476 * at the end for newer counters.
9477 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)9478 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9479 const struct net_device_stats *netdev_stats)
9480 {
9481 #if BITS_PER_LONG == 64
9482 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9483 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9484 /* zero out counters that only exist in rtnl_link_stats64 */
9485 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9486 sizeof(*stats64) - sizeof(*netdev_stats));
9487 #else
9488 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9489 const unsigned long *src = (const unsigned long *)netdev_stats;
9490 u64 *dst = (u64 *)stats64;
9491
9492 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9493 for (i = 0; i < n; i++)
9494 dst[i] = src[i];
9495 /* zero out counters that only exist in rtnl_link_stats64 */
9496 memset((char *)stats64 + n * sizeof(u64), 0,
9497 sizeof(*stats64) - n * sizeof(u64));
9498 #endif
9499 }
9500 EXPORT_SYMBOL(netdev_stats_to_stats64);
9501
9502 /**
9503 * dev_get_stats - get network device statistics
9504 * @dev: device to get statistics from
9505 * @storage: place to store stats
9506 *
9507 * Get network statistics from device. Return @storage.
9508 * The device driver may provide its own method by setting
9509 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9510 * otherwise the internal statistics structure is used.
9511 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)9512 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9513 struct rtnl_link_stats64 *storage)
9514 {
9515 const struct net_device_ops *ops = dev->netdev_ops;
9516
9517 if (ops->ndo_get_stats64) {
9518 memset(storage, 0, sizeof(*storage));
9519 ops->ndo_get_stats64(dev, storage);
9520 } else if (ops->ndo_get_stats) {
9521 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9522 } else {
9523 netdev_stats_to_stats64(storage, &dev->stats);
9524 }
9525 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9526 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9527 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9528 return storage;
9529 }
9530 EXPORT_SYMBOL(dev_get_stats);
9531
dev_ingress_queue_create(struct net_device * dev)9532 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9533 {
9534 struct netdev_queue *queue = dev_ingress_queue(dev);
9535
9536 #ifdef CONFIG_NET_CLS_ACT
9537 if (queue)
9538 return queue;
9539 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9540 if (!queue)
9541 return NULL;
9542 netdev_init_one_queue(dev, queue, NULL);
9543 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9544 queue->qdisc_sleeping = &noop_qdisc;
9545 rcu_assign_pointer(dev->ingress_queue, queue);
9546 #endif
9547 return queue;
9548 }
9549
9550 static const struct ethtool_ops default_ethtool_ops;
9551
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)9552 void netdev_set_default_ethtool_ops(struct net_device *dev,
9553 const struct ethtool_ops *ops)
9554 {
9555 if (dev->ethtool_ops == &default_ethtool_ops)
9556 dev->ethtool_ops = ops;
9557 }
9558 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9559
netdev_freemem(struct net_device * dev)9560 void netdev_freemem(struct net_device *dev)
9561 {
9562 char *addr = (char *)dev - dev->padded;
9563
9564 kvfree(addr);
9565 }
9566
9567 /**
9568 * alloc_netdev_mqs - allocate network device
9569 * @sizeof_priv: size of private data to allocate space for
9570 * @name: device name format string
9571 * @name_assign_type: origin of device name
9572 * @setup: callback to initialize device
9573 * @txqs: the number of TX subqueues to allocate
9574 * @rxqs: the number of RX subqueues to allocate
9575 *
9576 * Allocates a struct net_device with private data area for driver use
9577 * and performs basic initialization. Also allocates subqueue structs
9578 * for each queue on the device.
9579 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)9580 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9581 unsigned char name_assign_type,
9582 void (*setup)(struct net_device *),
9583 unsigned int txqs, unsigned int rxqs)
9584 {
9585 struct net_device *dev;
9586 unsigned int alloc_size;
9587 struct net_device *p;
9588
9589 BUG_ON(strlen(name) >= sizeof(dev->name));
9590
9591 if (txqs < 1) {
9592 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9593 return NULL;
9594 }
9595
9596 if (rxqs < 1) {
9597 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9598 return NULL;
9599 }
9600
9601 alloc_size = sizeof(struct net_device);
9602 if (sizeof_priv) {
9603 /* ensure 32-byte alignment of private area */
9604 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9605 alloc_size += sizeof_priv;
9606 }
9607 /* ensure 32-byte alignment of whole construct */
9608 alloc_size += NETDEV_ALIGN - 1;
9609
9610 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9611 if (!p)
9612 return NULL;
9613
9614 dev = PTR_ALIGN(p, NETDEV_ALIGN);
9615 dev->padded = (char *)dev - (char *)p;
9616
9617 dev->pcpu_refcnt = alloc_percpu(int);
9618 if (!dev->pcpu_refcnt)
9619 goto free_dev;
9620
9621 if (dev_addr_init(dev))
9622 goto free_pcpu;
9623
9624 dev_mc_init(dev);
9625 dev_uc_init(dev);
9626
9627 dev_net_set(dev, &init_net);
9628
9629 netdev_register_lockdep_key(dev);
9630
9631 dev->gso_max_size = GSO_MAX_SIZE;
9632 dev->gso_max_segs = GSO_MAX_SEGS;
9633 dev->upper_level = 1;
9634 dev->lower_level = 1;
9635
9636 INIT_LIST_HEAD(&dev->napi_list);
9637 INIT_LIST_HEAD(&dev->unreg_list);
9638 INIT_LIST_HEAD(&dev->close_list);
9639 INIT_LIST_HEAD(&dev->link_watch_list);
9640 INIT_LIST_HEAD(&dev->adj_list.upper);
9641 INIT_LIST_HEAD(&dev->adj_list.lower);
9642 INIT_LIST_HEAD(&dev->ptype_all);
9643 INIT_LIST_HEAD(&dev->ptype_specific);
9644 #ifdef CONFIG_NET_SCHED
9645 hash_init(dev->qdisc_hash);
9646 #endif
9647 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9648 setup(dev);
9649
9650 if (!dev->tx_queue_len) {
9651 dev->priv_flags |= IFF_NO_QUEUE;
9652 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9653 }
9654
9655 dev->num_tx_queues = txqs;
9656 dev->real_num_tx_queues = txqs;
9657 if (netif_alloc_netdev_queues(dev))
9658 goto free_all;
9659
9660 dev->num_rx_queues = rxqs;
9661 dev->real_num_rx_queues = rxqs;
9662 if (netif_alloc_rx_queues(dev))
9663 goto free_all;
9664
9665 strcpy(dev->name, name);
9666 dev->name_assign_type = name_assign_type;
9667 dev->group = INIT_NETDEV_GROUP;
9668 if (!dev->ethtool_ops)
9669 dev->ethtool_ops = &default_ethtool_ops;
9670
9671 nf_hook_ingress_init(dev);
9672
9673 return dev;
9674
9675 free_all:
9676 free_netdev(dev);
9677 return NULL;
9678
9679 free_pcpu:
9680 free_percpu(dev->pcpu_refcnt);
9681 free_dev:
9682 netdev_freemem(dev);
9683 return NULL;
9684 }
9685 EXPORT_SYMBOL(alloc_netdev_mqs);
9686
9687 /**
9688 * free_netdev - free network device
9689 * @dev: device
9690 *
9691 * This function does the last stage of destroying an allocated device
9692 * interface. The reference to the device object is released. If this
9693 * is the last reference then it will be freed.Must be called in process
9694 * context.
9695 */
free_netdev(struct net_device * dev)9696 void free_netdev(struct net_device *dev)
9697 {
9698 struct napi_struct *p, *n;
9699
9700 might_sleep();
9701 netif_free_tx_queues(dev);
9702 netif_free_rx_queues(dev);
9703
9704 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9705
9706 /* Flush device addresses */
9707 dev_addr_flush(dev);
9708
9709 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9710 netif_napi_del(p);
9711
9712 free_percpu(dev->pcpu_refcnt);
9713 dev->pcpu_refcnt = NULL;
9714
9715 netdev_unregister_lockdep_key(dev);
9716
9717 /* Compatibility with error handling in drivers */
9718 if (dev->reg_state == NETREG_UNINITIALIZED) {
9719 netdev_freemem(dev);
9720 return;
9721 }
9722
9723 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9724 dev->reg_state = NETREG_RELEASED;
9725
9726 /* will free via device release */
9727 put_device(&dev->dev);
9728 }
9729 EXPORT_SYMBOL(free_netdev);
9730
9731 /**
9732 * synchronize_net - Synchronize with packet receive processing
9733 *
9734 * Wait for packets currently being received to be done.
9735 * Does not block later packets from starting.
9736 */
synchronize_net(void)9737 void synchronize_net(void)
9738 {
9739 might_sleep();
9740 if (rtnl_is_locked())
9741 synchronize_rcu_expedited();
9742 else
9743 synchronize_rcu();
9744 }
9745 EXPORT_SYMBOL(synchronize_net);
9746
9747 /**
9748 * unregister_netdevice_queue - remove device from the kernel
9749 * @dev: device
9750 * @head: list
9751 *
9752 * This function shuts down a device interface and removes it
9753 * from the kernel tables.
9754 * If head not NULL, device is queued to be unregistered later.
9755 *
9756 * Callers must hold the rtnl semaphore. You may want
9757 * unregister_netdev() instead of this.
9758 */
9759
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)9760 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9761 {
9762 ASSERT_RTNL();
9763
9764 if (head) {
9765 list_move_tail(&dev->unreg_list, head);
9766 } else {
9767 rollback_registered(dev);
9768 /* Finish processing unregister after unlock */
9769 net_set_todo(dev);
9770 }
9771 }
9772 EXPORT_SYMBOL(unregister_netdevice_queue);
9773
9774 /**
9775 * unregister_netdevice_many - unregister many devices
9776 * @head: list of devices
9777 *
9778 * Note: As most callers use a stack allocated list_head,
9779 * we force a list_del() to make sure stack wont be corrupted later.
9780 */
unregister_netdevice_many(struct list_head * head)9781 void unregister_netdevice_many(struct list_head *head)
9782 {
9783 struct net_device *dev;
9784
9785 if (!list_empty(head)) {
9786 rollback_registered_many(head);
9787 list_for_each_entry(dev, head, unreg_list)
9788 net_set_todo(dev);
9789 list_del(head);
9790 }
9791 }
9792 EXPORT_SYMBOL(unregister_netdevice_many);
9793
9794 /**
9795 * unregister_netdev - remove device from the kernel
9796 * @dev: device
9797 *
9798 * This function shuts down a device interface and removes it
9799 * from the kernel tables.
9800 *
9801 * This is just a wrapper for unregister_netdevice that takes
9802 * the rtnl semaphore. In general you want to use this and not
9803 * unregister_netdevice.
9804 */
unregister_netdev(struct net_device * dev)9805 void unregister_netdev(struct net_device *dev)
9806 {
9807 rtnl_lock();
9808 unregister_netdevice(dev);
9809 rtnl_unlock();
9810 }
9811 EXPORT_SYMBOL(unregister_netdev);
9812
9813 /**
9814 * dev_change_net_namespace - move device to different nethost namespace
9815 * @dev: device
9816 * @net: network namespace
9817 * @pat: If not NULL name pattern to try if the current device name
9818 * is already taken in the destination network namespace.
9819 *
9820 * This function shuts down a device interface and moves it
9821 * to a new network namespace. On success 0 is returned, on
9822 * a failure a netagive errno code is returned.
9823 *
9824 * Callers must hold the rtnl semaphore.
9825 */
9826
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)9827 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9828 {
9829 int err, new_nsid, new_ifindex;
9830
9831 ASSERT_RTNL();
9832
9833 /* Don't allow namespace local devices to be moved. */
9834 err = -EINVAL;
9835 if (dev->features & NETIF_F_NETNS_LOCAL)
9836 goto out;
9837
9838 /* Ensure the device has been registrered */
9839 if (dev->reg_state != NETREG_REGISTERED)
9840 goto out;
9841
9842 /* Get out if there is nothing todo */
9843 err = 0;
9844 if (net_eq(dev_net(dev), net))
9845 goto out;
9846
9847 /* Pick the destination device name, and ensure
9848 * we can use it in the destination network namespace.
9849 */
9850 err = -EEXIST;
9851 if (__dev_get_by_name(net, dev->name)) {
9852 /* We get here if we can't use the current device name */
9853 if (!pat)
9854 goto out;
9855 err = dev_get_valid_name(net, dev, pat);
9856 if (err < 0)
9857 goto out;
9858 }
9859
9860 /*
9861 * And now a mini version of register_netdevice unregister_netdevice.
9862 */
9863
9864 /* If device is running close it first. */
9865 dev_close(dev);
9866
9867 /* And unlink it from device chain */
9868 unlist_netdevice(dev);
9869
9870 synchronize_net();
9871
9872 /* Shutdown queueing discipline. */
9873 dev_shutdown(dev);
9874
9875 /* Notify protocols, that we are about to destroy
9876 * this device. They should clean all the things.
9877 *
9878 * Note that dev->reg_state stays at NETREG_REGISTERED.
9879 * This is wanted because this way 8021q and macvlan know
9880 * the device is just moving and can keep their slaves up.
9881 */
9882 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9883 rcu_barrier();
9884
9885 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
9886 /* If there is an ifindex conflict assign a new one */
9887 if (__dev_get_by_index(net, dev->ifindex))
9888 new_ifindex = dev_new_index(net);
9889 else
9890 new_ifindex = dev->ifindex;
9891
9892 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9893 new_ifindex);
9894
9895 /*
9896 * Flush the unicast and multicast chains
9897 */
9898 dev_uc_flush(dev);
9899 dev_mc_flush(dev);
9900
9901 /* Send a netdev-removed uevent to the old namespace */
9902 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9903 netdev_adjacent_del_links(dev);
9904
9905 /* Actually switch the network namespace */
9906 dev_net_set(dev, net);
9907 dev->ifindex = new_ifindex;
9908
9909 /* Send a netdev-add uevent to the new namespace */
9910 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9911 netdev_adjacent_add_links(dev);
9912
9913 /* Fixup kobjects */
9914 err = device_rename(&dev->dev, dev->name);
9915 WARN_ON(err);
9916
9917 /* Add the device back in the hashes */
9918 list_netdevice(dev);
9919
9920 /* Notify protocols, that a new device appeared. */
9921 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9922
9923 /*
9924 * Prevent userspace races by waiting until the network
9925 * device is fully setup before sending notifications.
9926 */
9927 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9928
9929 synchronize_net();
9930 err = 0;
9931 out:
9932 return err;
9933 }
9934 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9935
dev_cpu_dead(unsigned int oldcpu)9936 static int dev_cpu_dead(unsigned int oldcpu)
9937 {
9938 struct sk_buff **list_skb;
9939 struct sk_buff *skb;
9940 unsigned int cpu;
9941 struct softnet_data *sd, *oldsd, *remsd = NULL;
9942
9943 local_irq_disable();
9944 cpu = smp_processor_id();
9945 sd = &per_cpu(softnet_data, cpu);
9946 oldsd = &per_cpu(softnet_data, oldcpu);
9947
9948 /* Find end of our completion_queue. */
9949 list_skb = &sd->completion_queue;
9950 while (*list_skb)
9951 list_skb = &(*list_skb)->next;
9952 /* Append completion queue from offline CPU. */
9953 *list_skb = oldsd->completion_queue;
9954 oldsd->completion_queue = NULL;
9955
9956 /* Append output queue from offline CPU. */
9957 if (oldsd->output_queue) {
9958 *sd->output_queue_tailp = oldsd->output_queue;
9959 sd->output_queue_tailp = oldsd->output_queue_tailp;
9960 oldsd->output_queue = NULL;
9961 oldsd->output_queue_tailp = &oldsd->output_queue;
9962 }
9963 /* Append NAPI poll list from offline CPU, with one exception :
9964 * process_backlog() must be called by cpu owning percpu backlog.
9965 * We properly handle process_queue & input_pkt_queue later.
9966 */
9967 while (!list_empty(&oldsd->poll_list)) {
9968 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9969 struct napi_struct,
9970 poll_list);
9971
9972 list_del_init(&napi->poll_list);
9973 if (napi->poll == process_backlog)
9974 napi->state = 0;
9975 else
9976 ____napi_schedule(sd, napi);
9977 }
9978
9979 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9980 local_irq_enable();
9981
9982 #ifdef CONFIG_RPS
9983 remsd = oldsd->rps_ipi_list;
9984 oldsd->rps_ipi_list = NULL;
9985 #endif
9986 /* send out pending IPI's on offline CPU */
9987 net_rps_send_ipi(remsd);
9988
9989 /* Process offline CPU's input_pkt_queue */
9990 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9991 netif_rx_ni(skb);
9992 input_queue_head_incr(oldsd);
9993 }
9994 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9995 netif_rx_ni(skb);
9996 input_queue_head_incr(oldsd);
9997 }
9998
9999 return 0;
10000 }
10001
10002 /**
10003 * netdev_increment_features - increment feature set by one
10004 * @all: current feature set
10005 * @one: new feature set
10006 * @mask: mask feature set
10007 *
10008 * Computes a new feature set after adding a device with feature set
10009 * @one to the master device with current feature set @all. Will not
10010 * enable anything that is off in @mask. Returns the new feature set.
10011 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)10012 netdev_features_t netdev_increment_features(netdev_features_t all,
10013 netdev_features_t one, netdev_features_t mask)
10014 {
10015 if (mask & NETIF_F_HW_CSUM)
10016 mask |= NETIF_F_CSUM_MASK;
10017 mask |= NETIF_F_VLAN_CHALLENGED;
10018
10019 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10020 all &= one | ~NETIF_F_ALL_FOR_ALL;
10021
10022 /* If one device supports hw checksumming, set for all. */
10023 if (all & NETIF_F_HW_CSUM)
10024 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10025
10026 return all;
10027 }
10028 EXPORT_SYMBOL(netdev_increment_features);
10029
netdev_create_hash(void)10030 static struct hlist_head * __net_init netdev_create_hash(void)
10031 {
10032 int i;
10033 struct hlist_head *hash;
10034
10035 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10036 if (hash != NULL)
10037 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10038 INIT_HLIST_HEAD(&hash[i]);
10039
10040 return hash;
10041 }
10042
10043 /* Initialize per network namespace state */
netdev_init(struct net * net)10044 static int __net_init netdev_init(struct net *net)
10045 {
10046 BUILD_BUG_ON(GRO_HASH_BUCKETS >
10047 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
10048
10049 if (net != &init_net)
10050 INIT_LIST_HEAD(&net->dev_base_head);
10051
10052 net->dev_name_head = netdev_create_hash();
10053 if (net->dev_name_head == NULL)
10054 goto err_name;
10055
10056 net->dev_index_head = netdev_create_hash();
10057 if (net->dev_index_head == NULL)
10058 goto err_idx;
10059
10060 return 0;
10061
10062 err_idx:
10063 kfree(net->dev_name_head);
10064 err_name:
10065 return -ENOMEM;
10066 }
10067
10068 /**
10069 * netdev_drivername - network driver for the device
10070 * @dev: network device
10071 *
10072 * Determine network driver for device.
10073 */
netdev_drivername(const struct net_device * dev)10074 const char *netdev_drivername(const struct net_device *dev)
10075 {
10076 const struct device_driver *driver;
10077 const struct device *parent;
10078 const char *empty = "";
10079
10080 parent = dev->dev.parent;
10081 if (!parent)
10082 return empty;
10083
10084 driver = parent->driver;
10085 if (driver && driver->name)
10086 return driver->name;
10087 return empty;
10088 }
10089
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)10090 static void __netdev_printk(const char *level, const struct net_device *dev,
10091 struct va_format *vaf)
10092 {
10093 if (dev && dev->dev.parent) {
10094 dev_printk_emit(level[1] - '0',
10095 dev->dev.parent,
10096 "%s %s %s%s: %pV",
10097 dev_driver_string(dev->dev.parent),
10098 dev_name(dev->dev.parent),
10099 netdev_name(dev), netdev_reg_state(dev),
10100 vaf);
10101 } else if (dev) {
10102 printk("%s%s%s: %pV",
10103 level, netdev_name(dev), netdev_reg_state(dev), vaf);
10104 } else {
10105 printk("%s(NULL net_device): %pV", level, vaf);
10106 }
10107 }
10108
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)10109 void netdev_printk(const char *level, const struct net_device *dev,
10110 const char *format, ...)
10111 {
10112 struct va_format vaf;
10113 va_list args;
10114
10115 va_start(args, format);
10116
10117 vaf.fmt = format;
10118 vaf.va = &args;
10119
10120 __netdev_printk(level, dev, &vaf);
10121
10122 va_end(args);
10123 }
10124 EXPORT_SYMBOL(netdev_printk);
10125
10126 #define define_netdev_printk_level(func, level) \
10127 void func(const struct net_device *dev, const char *fmt, ...) \
10128 { \
10129 struct va_format vaf; \
10130 va_list args; \
10131 \
10132 va_start(args, fmt); \
10133 \
10134 vaf.fmt = fmt; \
10135 vaf.va = &args; \
10136 \
10137 __netdev_printk(level, dev, &vaf); \
10138 \
10139 va_end(args); \
10140 } \
10141 EXPORT_SYMBOL(func);
10142
10143 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10144 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10145 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10146 define_netdev_printk_level(netdev_err, KERN_ERR);
10147 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10148 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10149 define_netdev_printk_level(netdev_info, KERN_INFO);
10150
netdev_exit(struct net * net)10151 static void __net_exit netdev_exit(struct net *net)
10152 {
10153 kfree(net->dev_name_head);
10154 kfree(net->dev_index_head);
10155 if (net != &init_net)
10156 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10157 }
10158
10159 static struct pernet_operations __net_initdata netdev_net_ops = {
10160 .init = netdev_init,
10161 .exit = netdev_exit,
10162 };
10163
default_device_exit(struct net * net)10164 static void __net_exit default_device_exit(struct net *net)
10165 {
10166 struct net_device *dev, *aux;
10167 /*
10168 * Push all migratable network devices back to the
10169 * initial network namespace
10170 */
10171 rtnl_lock();
10172 for_each_netdev_safe(net, dev, aux) {
10173 int err;
10174 char fb_name[IFNAMSIZ];
10175
10176 /* Ignore unmoveable devices (i.e. loopback) */
10177 if (dev->features & NETIF_F_NETNS_LOCAL)
10178 continue;
10179
10180 /* Leave virtual devices for the generic cleanup */
10181 if (dev->rtnl_link_ops)
10182 continue;
10183
10184 /* Push remaining network devices to init_net */
10185 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10186 if (__dev_get_by_name(&init_net, fb_name))
10187 snprintf(fb_name, IFNAMSIZ, "dev%%d");
10188 err = dev_change_net_namespace(dev, &init_net, fb_name);
10189 if (err) {
10190 pr_emerg("%s: failed to move %s to init_net: %d\n",
10191 __func__, dev->name, err);
10192 BUG();
10193 }
10194 }
10195 rtnl_unlock();
10196 }
10197
rtnl_lock_unregistering(struct list_head * net_list)10198 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10199 {
10200 /* Return with the rtnl_lock held when there are no network
10201 * devices unregistering in any network namespace in net_list.
10202 */
10203 struct net *net;
10204 bool unregistering;
10205 DEFINE_WAIT_FUNC(wait, woken_wake_function);
10206
10207 add_wait_queue(&netdev_unregistering_wq, &wait);
10208 for (;;) {
10209 unregistering = false;
10210 rtnl_lock();
10211 list_for_each_entry(net, net_list, exit_list) {
10212 if (net->dev_unreg_count > 0) {
10213 unregistering = true;
10214 break;
10215 }
10216 }
10217 if (!unregistering)
10218 break;
10219 __rtnl_unlock();
10220
10221 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10222 }
10223 remove_wait_queue(&netdev_unregistering_wq, &wait);
10224 }
10225
default_device_exit_batch(struct list_head * net_list)10226 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10227 {
10228 /* At exit all network devices most be removed from a network
10229 * namespace. Do this in the reverse order of registration.
10230 * Do this across as many network namespaces as possible to
10231 * improve batching efficiency.
10232 */
10233 struct net_device *dev;
10234 struct net *net;
10235 LIST_HEAD(dev_kill_list);
10236
10237 /* To prevent network device cleanup code from dereferencing
10238 * loopback devices or network devices that have been freed
10239 * wait here for all pending unregistrations to complete,
10240 * before unregistring the loopback device and allowing the
10241 * network namespace be freed.
10242 *
10243 * The netdev todo list containing all network devices
10244 * unregistrations that happen in default_device_exit_batch
10245 * will run in the rtnl_unlock() at the end of
10246 * default_device_exit_batch.
10247 */
10248 rtnl_lock_unregistering(net_list);
10249 list_for_each_entry(net, net_list, exit_list) {
10250 for_each_netdev_reverse(net, dev) {
10251 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10252 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10253 else
10254 unregister_netdevice_queue(dev, &dev_kill_list);
10255 }
10256 }
10257 unregister_netdevice_many(&dev_kill_list);
10258 rtnl_unlock();
10259 }
10260
10261 static struct pernet_operations __net_initdata default_device_ops = {
10262 .exit = default_device_exit,
10263 .exit_batch = default_device_exit_batch,
10264 };
10265
10266 /*
10267 * Initialize the DEV module. At boot time this walks the device list and
10268 * unhooks any devices that fail to initialise (normally hardware not
10269 * present) and leaves us with a valid list of present and active devices.
10270 *
10271 */
10272
10273 /*
10274 * This is called single threaded during boot, so no need
10275 * to take the rtnl semaphore.
10276 */
net_dev_init(void)10277 static int __init net_dev_init(void)
10278 {
10279 int i, rc = -ENOMEM;
10280
10281 BUG_ON(!dev_boot_phase);
10282
10283 if (dev_proc_init())
10284 goto out;
10285
10286 if (netdev_kobject_init())
10287 goto out;
10288
10289 INIT_LIST_HEAD(&ptype_all);
10290 for (i = 0; i < PTYPE_HASH_SIZE; i++)
10291 INIT_LIST_HEAD(&ptype_base[i]);
10292
10293 INIT_LIST_HEAD(&offload_base);
10294
10295 if (register_pernet_subsys(&netdev_net_ops))
10296 goto out;
10297
10298 /*
10299 * Initialise the packet receive queues.
10300 */
10301
10302 for_each_possible_cpu(i) {
10303 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10304 struct softnet_data *sd = &per_cpu(softnet_data, i);
10305
10306 INIT_WORK(flush, flush_backlog);
10307
10308 skb_queue_head_init(&sd->input_pkt_queue);
10309 skb_queue_head_init(&sd->process_queue);
10310 #ifdef CONFIG_XFRM_OFFLOAD
10311 skb_queue_head_init(&sd->xfrm_backlog);
10312 #endif
10313 INIT_LIST_HEAD(&sd->poll_list);
10314 sd->output_queue_tailp = &sd->output_queue;
10315 #ifdef CONFIG_RPS
10316 sd->csd.func = rps_trigger_softirq;
10317 sd->csd.info = sd;
10318 sd->cpu = i;
10319 #endif
10320
10321 init_gro_hash(&sd->backlog);
10322 sd->backlog.poll = process_backlog;
10323 sd->backlog.weight = weight_p;
10324 }
10325
10326 dev_boot_phase = 0;
10327
10328 /* The loopback device is special if any other network devices
10329 * is present in a network namespace the loopback device must
10330 * be present. Since we now dynamically allocate and free the
10331 * loopback device ensure this invariant is maintained by
10332 * keeping the loopback device as the first device on the
10333 * list of network devices. Ensuring the loopback devices
10334 * is the first device that appears and the last network device
10335 * that disappears.
10336 */
10337 if (register_pernet_device(&loopback_net_ops))
10338 goto out;
10339
10340 if (register_pernet_device(&default_device_ops))
10341 goto out;
10342
10343 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10344 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10345
10346 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10347 NULL, dev_cpu_dead);
10348 WARN_ON(rc < 0);
10349 rc = 0;
10350 out:
10351 return rc;
10352 }
10353
10354 subsys_initcall(net_dev_init);
10355