• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 #include <trace/events/android_fs.h>
51 
52 #define MPAGE_DA_EXTENT_TAIL 0x01
53 
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)54 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
55 			      struct ext4_inode_info *ei)
56 {
57 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
58 	__u32 csum;
59 	__u16 dummy_csum = 0;
60 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
61 	unsigned int csum_size = sizeof(dummy_csum);
62 
63 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
64 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
65 	offset += csum_size;
66 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
67 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
68 
69 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
70 		offset = offsetof(struct ext4_inode, i_checksum_hi);
71 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
72 				   EXT4_GOOD_OLD_INODE_SIZE,
73 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
74 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
75 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
76 					   csum_size);
77 			offset += csum_size;
78 		}
79 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
80 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
81 	}
82 
83 	return csum;
84 }
85 
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)86 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
87 				  struct ext4_inode_info *ei)
88 {
89 	__u32 provided, calculated;
90 
91 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
92 	    cpu_to_le32(EXT4_OS_LINUX) ||
93 	    !ext4_has_metadata_csum(inode->i_sb))
94 		return 1;
95 
96 	provided = le16_to_cpu(raw->i_checksum_lo);
97 	calculated = ext4_inode_csum(inode, raw, ei);
98 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
99 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
100 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
101 	else
102 		calculated &= 0xFFFF;
103 
104 	return provided == calculated;
105 }
106 
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)107 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
108 				struct ext4_inode_info *ei)
109 {
110 	__u32 csum;
111 
112 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
113 	    cpu_to_le32(EXT4_OS_LINUX) ||
114 	    !ext4_has_metadata_csum(inode->i_sb))
115 		return;
116 
117 	csum = ext4_inode_csum(inode, raw, ei);
118 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
119 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
120 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
121 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
122 }
123 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)124 static inline int ext4_begin_ordered_truncate(struct inode *inode,
125 					      loff_t new_size)
126 {
127 	trace_ext4_begin_ordered_truncate(inode, new_size);
128 	/*
129 	 * If jinode is zero, then we never opened the file for
130 	 * writing, so there's no need to call
131 	 * jbd2_journal_begin_ordered_truncate() since there's no
132 	 * outstanding writes we need to flush.
133 	 */
134 	if (!EXT4_I(inode)->jinode)
135 		return 0;
136 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
137 						   EXT4_I(inode)->jinode,
138 						   new_size);
139 }
140 
141 static void ext4_invalidatepage(struct page *page, unsigned int offset,
142 				unsigned int length);
143 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
144 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
145 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
146 				  int pextents);
147 
148 /*
149  * Test whether an inode is a fast symlink.
150  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
151  */
ext4_inode_is_fast_symlink(struct inode * inode)152 int ext4_inode_is_fast_symlink(struct inode *inode)
153 {
154 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
155 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
156 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
157 
158 		if (ext4_has_inline_data(inode))
159 			return 0;
160 
161 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
162 	}
163 	return S_ISLNK(inode->i_mode) && inode->i_size &&
164 	       (inode->i_size < EXT4_N_BLOCKS * 4);
165 }
166 
167 /*
168  * Restart the transaction associated with *handle.  This does a commit,
169  * so before we call here everything must be consistently dirtied against
170  * this transaction.
171  */
ext4_truncate_restart_trans(handle_t * handle,struct inode * inode,int nblocks)172 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
173 				 int nblocks)
174 {
175 	int ret;
176 
177 	/*
178 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
179 	 * moment, get_block can be called only for blocks inside i_size since
180 	 * page cache has been already dropped and writes are blocked by
181 	 * i_mutex. So we can safely drop the i_data_sem here.
182 	 */
183 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
184 	jbd_debug(2, "restarting handle %p\n", handle);
185 	up_write(&EXT4_I(inode)->i_data_sem);
186 	ret = ext4_journal_restart(handle, nblocks);
187 	down_write(&EXT4_I(inode)->i_data_sem);
188 	ext4_discard_preallocations(inode);
189 
190 	return ret;
191 }
192 
193 /*
194  * Called at the last iput() if i_nlink is zero.
195  */
ext4_evict_inode(struct inode * inode)196 void ext4_evict_inode(struct inode *inode)
197 {
198 	handle_t *handle;
199 	int err;
200 	/*
201 	 * Credits for final inode cleanup and freeing:
202 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
203 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
204 	 */
205 	int extra_credits = 6;
206 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
207 	bool freeze_protected = false;
208 
209 	trace_ext4_evict_inode(inode);
210 
211 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
212 		ext4_evict_ea_inode(inode);
213 	if (inode->i_nlink) {
214 		/*
215 		 * When journalling data dirty buffers are tracked only in the
216 		 * journal. So although mm thinks everything is clean and
217 		 * ready for reaping the inode might still have some pages to
218 		 * write in the running transaction or waiting to be
219 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
220 		 * (via truncate_inode_pages()) to discard these buffers can
221 		 * cause data loss. Also even if we did not discard these
222 		 * buffers, we would have no way to find them after the inode
223 		 * is reaped and thus user could see stale data if he tries to
224 		 * read them before the transaction is checkpointed. So be
225 		 * careful and force everything to disk here... We use
226 		 * ei->i_datasync_tid to store the newest transaction
227 		 * containing inode's data.
228 		 *
229 		 * Note that directories do not have this problem because they
230 		 * don't use page cache.
231 		 */
232 		if (inode->i_ino != EXT4_JOURNAL_INO &&
233 		    ext4_should_journal_data(inode) &&
234 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
235 		    inode->i_data.nrpages) {
236 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
237 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
238 
239 			jbd2_complete_transaction(journal, commit_tid);
240 			filemap_write_and_wait(&inode->i_data);
241 		}
242 		truncate_inode_pages_final(&inode->i_data);
243 
244 		goto no_delete;
245 	}
246 
247 	if (is_bad_inode(inode))
248 		goto no_delete;
249 	dquot_initialize(inode);
250 
251 	if (ext4_should_order_data(inode))
252 		ext4_begin_ordered_truncate(inode, 0);
253 	truncate_inode_pages_final(&inode->i_data);
254 
255 	/*
256 	 * Protect us against freezing - iput() caller didn't have to have any
257 	 * protection against it. When we are in a running transaction though,
258 	 * we are already protected against freezing and we cannot grab further
259 	 * protection due to lock ordering constraints.
260 	 */
261 	if (!ext4_journal_current_handle()) {
262 		sb_start_intwrite(inode->i_sb);
263 		freeze_protected = true;
264 	}
265 
266 	if (!IS_NOQUOTA(inode))
267 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
268 
269 	/*
270 	 * Block bitmap, group descriptor, and inode are accounted in both
271 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
272 	 */
273 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
274 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
275 	if (IS_ERR(handle)) {
276 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
277 		/*
278 		 * If we're going to skip the normal cleanup, we still need to
279 		 * make sure that the in-core orphan linked list is properly
280 		 * cleaned up.
281 		 */
282 		ext4_orphan_del(NULL, inode);
283 		if (freeze_protected)
284 			sb_end_intwrite(inode->i_sb);
285 		goto no_delete;
286 	}
287 
288 	if (IS_SYNC(inode))
289 		ext4_handle_sync(handle);
290 
291 	/*
292 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
293 	 * special handling of symlinks here because i_size is used to
294 	 * determine whether ext4_inode_info->i_data contains symlink data or
295 	 * block mappings. Setting i_size to 0 will remove its fast symlink
296 	 * status. Erase i_data so that it becomes a valid empty block map.
297 	 */
298 	if (ext4_inode_is_fast_symlink(inode))
299 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
300 	inode->i_size = 0;
301 	err = ext4_mark_inode_dirty(handle, inode);
302 	if (err) {
303 		ext4_warning(inode->i_sb,
304 			     "couldn't mark inode dirty (err %d)", err);
305 		goto stop_handle;
306 	}
307 	if (inode->i_blocks) {
308 		err = ext4_truncate(inode);
309 		if (err) {
310 			ext4_error(inode->i_sb,
311 				   "couldn't truncate inode %lu (err %d)",
312 				   inode->i_ino, err);
313 			goto stop_handle;
314 		}
315 	}
316 
317 	/* Remove xattr references. */
318 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
319 				      extra_credits);
320 	if (err) {
321 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
322 stop_handle:
323 		ext4_journal_stop(handle);
324 		ext4_orphan_del(NULL, inode);
325 		if (freeze_protected)
326 			sb_end_intwrite(inode->i_sb);
327 		ext4_xattr_inode_array_free(ea_inode_array);
328 		goto no_delete;
329 	}
330 
331 	/*
332 	 * Kill off the orphan record which ext4_truncate created.
333 	 * AKPM: I think this can be inside the above `if'.
334 	 * Note that ext4_orphan_del() has to be able to cope with the
335 	 * deletion of a non-existent orphan - this is because we don't
336 	 * know if ext4_truncate() actually created an orphan record.
337 	 * (Well, we could do this if we need to, but heck - it works)
338 	 */
339 	ext4_orphan_del(handle, inode);
340 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
341 
342 	/*
343 	 * One subtle ordering requirement: if anything has gone wrong
344 	 * (transaction abort, IO errors, whatever), then we can still
345 	 * do these next steps (the fs will already have been marked as
346 	 * having errors), but we can't free the inode if the mark_dirty
347 	 * fails.
348 	 */
349 	if (ext4_mark_inode_dirty(handle, inode))
350 		/* If that failed, just do the required in-core inode clear. */
351 		ext4_clear_inode(inode);
352 	else
353 		ext4_free_inode(handle, inode);
354 	ext4_journal_stop(handle);
355 	if (freeze_protected)
356 		sb_end_intwrite(inode->i_sb);
357 	ext4_xattr_inode_array_free(ea_inode_array);
358 	return;
359 no_delete:
360 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
361 }
362 
363 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)364 qsize_t *ext4_get_reserved_space(struct inode *inode)
365 {
366 	return &EXT4_I(inode)->i_reserved_quota;
367 }
368 #endif
369 
370 /*
371  * Called with i_data_sem down, which is important since we can call
372  * ext4_discard_preallocations() from here.
373  */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)374 void ext4_da_update_reserve_space(struct inode *inode,
375 					int used, int quota_claim)
376 {
377 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
378 	struct ext4_inode_info *ei = EXT4_I(inode);
379 
380 	spin_lock(&ei->i_block_reservation_lock);
381 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
382 	if (unlikely(used > ei->i_reserved_data_blocks)) {
383 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
384 			 "with only %d reserved data blocks",
385 			 __func__, inode->i_ino, used,
386 			 ei->i_reserved_data_blocks);
387 		WARN_ON(1);
388 		used = ei->i_reserved_data_blocks;
389 	}
390 
391 	/* Update per-inode reservations */
392 	ei->i_reserved_data_blocks -= used;
393 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
394 
395 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
396 
397 	/* Update quota subsystem for data blocks */
398 	if (quota_claim)
399 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
400 	else {
401 		/*
402 		 * We did fallocate with an offset that is already delayed
403 		 * allocated. So on delayed allocated writeback we should
404 		 * not re-claim the quota for fallocated blocks.
405 		 */
406 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
407 	}
408 
409 	/*
410 	 * If we have done all the pending block allocations and if
411 	 * there aren't any writers on the inode, we can discard the
412 	 * inode's preallocations.
413 	 */
414 	if ((ei->i_reserved_data_blocks == 0) &&
415 	    !inode_is_open_for_write(inode))
416 		ext4_discard_preallocations(inode);
417 }
418 
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)419 static int __check_block_validity(struct inode *inode, const char *func,
420 				unsigned int line,
421 				struct ext4_map_blocks *map)
422 {
423 	if (ext4_has_feature_journal(inode->i_sb) &&
424 	    (inode->i_ino ==
425 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
426 		return 0;
427 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
428 				   map->m_len)) {
429 		ext4_error_inode(inode, func, line, map->m_pblk,
430 				 "lblock %lu mapped to illegal pblock %llu "
431 				 "(length %d)", (unsigned long) map->m_lblk,
432 				 map->m_pblk, map->m_len);
433 		return -EFSCORRUPTED;
434 	}
435 	return 0;
436 }
437 
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)438 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
439 		       ext4_lblk_t len)
440 {
441 	int ret;
442 
443 	if (IS_ENCRYPTED(inode))
444 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
445 
446 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
447 	if (ret > 0)
448 		ret = 0;
449 
450 	return ret;
451 }
452 
453 #define check_block_validity(inode, map)	\
454 	__check_block_validity((inode), __func__, __LINE__, (map))
455 
456 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)457 static void ext4_map_blocks_es_recheck(handle_t *handle,
458 				       struct inode *inode,
459 				       struct ext4_map_blocks *es_map,
460 				       struct ext4_map_blocks *map,
461 				       int flags)
462 {
463 	int retval;
464 
465 	map->m_flags = 0;
466 	/*
467 	 * There is a race window that the result is not the same.
468 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
469 	 * is that we lookup a block mapping in extent status tree with
470 	 * out taking i_data_sem.  So at the time the unwritten extent
471 	 * could be converted.
472 	 */
473 	down_read(&EXT4_I(inode)->i_data_sem);
474 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
475 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
476 					     EXT4_GET_BLOCKS_KEEP_SIZE);
477 	} else {
478 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
479 					     EXT4_GET_BLOCKS_KEEP_SIZE);
480 	}
481 	up_read((&EXT4_I(inode)->i_data_sem));
482 
483 	/*
484 	 * We don't check m_len because extent will be collpased in status
485 	 * tree.  So the m_len might not equal.
486 	 */
487 	if (es_map->m_lblk != map->m_lblk ||
488 	    es_map->m_flags != map->m_flags ||
489 	    es_map->m_pblk != map->m_pblk) {
490 		printk("ES cache assertion failed for inode: %lu "
491 		       "es_cached ex [%d/%d/%llu/%x] != "
492 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
493 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
494 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
495 		       map->m_len, map->m_pblk, map->m_flags,
496 		       retval, flags);
497 	}
498 }
499 #endif /* ES_AGGRESSIVE_TEST */
500 
501 /*
502  * The ext4_map_blocks() function tries to look up the requested blocks,
503  * and returns if the blocks are already mapped.
504  *
505  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
506  * and store the allocated blocks in the result buffer head and mark it
507  * mapped.
508  *
509  * If file type is extents based, it will call ext4_ext_map_blocks(),
510  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
511  * based files
512  *
513  * On success, it returns the number of blocks being mapped or allocated.  if
514  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
515  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
516  *
517  * It returns 0 if plain look up failed (blocks have not been allocated), in
518  * that case, @map is returned as unmapped but we still do fill map->m_len to
519  * indicate the length of a hole starting at map->m_lblk.
520  *
521  * It returns the error in case of allocation failure.
522  */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)523 int ext4_map_blocks(handle_t *handle, struct inode *inode,
524 		    struct ext4_map_blocks *map, int flags)
525 {
526 	struct extent_status es;
527 	int retval;
528 	int ret = 0;
529 #ifdef ES_AGGRESSIVE_TEST
530 	struct ext4_map_blocks orig_map;
531 
532 	memcpy(&orig_map, map, sizeof(*map));
533 #endif
534 
535 	map->m_flags = 0;
536 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
537 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
538 		  (unsigned long) map->m_lblk);
539 
540 	/*
541 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
542 	 */
543 	if (unlikely(map->m_len > INT_MAX))
544 		map->m_len = INT_MAX;
545 
546 	/* We can handle the block number less than EXT_MAX_BLOCKS */
547 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
548 		return -EFSCORRUPTED;
549 
550 	/* Lookup extent status tree firstly */
551 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
552 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
553 			map->m_pblk = ext4_es_pblock(&es) +
554 					map->m_lblk - es.es_lblk;
555 			map->m_flags |= ext4_es_is_written(&es) ?
556 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
557 			retval = es.es_len - (map->m_lblk - es.es_lblk);
558 			if (retval > map->m_len)
559 				retval = map->m_len;
560 			map->m_len = retval;
561 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
562 			map->m_pblk = 0;
563 			retval = es.es_len - (map->m_lblk - es.es_lblk);
564 			if (retval > map->m_len)
565 				retval = map->m_len;
566 			map->m_len = retval;
567 			retval = 0;
568 		} else {
569 			BUG();
570 		}
571 #ifdef ES_AGGRESSIVE_TEST
572 		ext4_map_blocks_es_recheck(handle, inode, map,
573 					   &orig_map, flags);
574 #endif
575 		goto found;
576 	}
577 
578 	/*
579 	 * Try to see if we can get the block without requesting a new
580 	 * file system block.
581 	 */
582 	down_read(&EXT4_I(inode)->i_data_sem);
583 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
584 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
585 					     EXT4_GET_BLOCKS_KEEP_SIZE);
586 	} else {
587 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
588 					     EXT4_GET_BLOCKS_KEEP_SIZE);
589 	}
590 	if (retval > 0) {
591 		unsigned int status;
592 
593 		if (unlikely(retval != map->m_len)) {
594 			ext4_warning(inode->i_sb,
595 				     "ES len assertion failed for inode "
596 				     "%lu: retval %d != map->m_len %d",
597 				     inode->i_ino, retval, map->m_len);
598 			WARN_ON(1);
599 		}
600 
601 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
602 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
603 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
604 		    !(status & EXTENT_STATUS_WRITTEN) &&
605 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
606 				       map->m_lblk + map->m_len - 1))
607 			status |= EXTENT_STATUS_DELAYED;
608 		ret = ext4_es_insert_extent(inode, map->m_lblk,
609 					    map->m_len, map->m_pblk, status);
610 		if (ret < 0)
611 			retval = ret;
612 	}
613 	up_read((&EXT4_I(inode)->i_data_sem));
614 
615 found:
616 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
617 		ret = check_block_validity(inode, map);
618 		if (ret != 0)
619 			return ret;
620 	}
621 
622 	/* If it is only a block(s) look up */
623 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
624 		return retval;
625 
626 	/*
627 	 * Returns if the blocks have already allocated
628 	 *
629 	 * Note that if blocks have been preallocated
630 	 * ext4_ext_get_block() returns the create = 0
631 	 * with buffer head unmapped.
632 	 */
633 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
634 		/*
635 		 * If we need to convert extent to unwritten
636 		 * we continue and do the actual work in
637 		 * ext4_ext_map_blocks()
638 		 */
639 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
640 			return retval;
641 
642 	/*
643 	 * Here we clear m_flags because after allocating an new extent,
644 	 * it will be set again.
645 	 */
646 	map->m_flags &= ~EXT4_MAP_FLAGS;
647 
648 	/*
649 	 * New blocks allocate and/or writing to unwritten extent
650 	 * will possibly result in updating i_data, so we take
651 	 * the write lock of i_data_sem, and call get_block()
652 	 * with create == 1 flag.
653 	 */
654 	down_write(&EXT4_I(inode)->i_data_sem);
655 
656 	/*
657 	 * We need to check for EXT4 here because migrate
658 	 * could have changed the inode type in between
659 	 */
660 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
661 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
662 	} else {
663 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
664 
665 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
666 			/*
667 			 * We allocated new blocks which will result in
668 			 * i_data's format changing.  Force the migrate
669 			 * to fail by clearing migrate flags
670 			 */
671 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
672 		}
673 	}
674 
675 	if (retval > 0) {
676 		unsigned int status;
677 
678 		if (unlikely(retval != map->m_len)) {
679 			ext4_warning(inode->i_sb,
680 				     "ES len assertion failed for inode "
681 				     "%lu: retval %d != map->m_len %d",
682 				     inode->i_ino, retval, map->m_len);
683 			WARN_ON(1);
684 		}
685 
686 		/*
687 		 * We have to zeroout blocks before inserting them into extent
688 		 * status tree. Otherwise someone could look them up there and
689 		 * use them before they are really zeroed. We also have to
690 		 * unmap metadata before zeroing as otherwise writeback can
691 		 * overwrite zeros with stale data from block device.
692 		 */
693 		if (flags & EXT4_GET_BLOCKS_ZERO &&
694 		    map->m_flags & EXT4_MAP_MAPPED &&
695 		    map->m_flags & EXT4_MAP_NEW) {
696 			ret = ext4_issue_zeroout(inode, map->m_lblk,
697 						 map->m_pblk, map->m_len);
698 			if (ret) {
699 				retval = ret;
700 				goto out_sem;
701 			}
702 		}
703 
704 		/*
705 		 * If the extent has been zeroed out, we don't need to update
706 		 * extent status tree.
707 		 */
708 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
709 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
710 			if (ext4_es_is_written(&es))
711 				goto out_sem;
712 		}
713 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
714 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
715 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
716 		    !(status & EXTENT_STATUS_WRITTEN) &&
717 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
718 				       map->m_lblk + map->m_len - 1))
719 			status |= EXTENT_STATUS_DELAYED;
720 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
721 					    map->m_pblk, status);
722 		if (ret < 0) {
723 			retval = ret;
724 			goto out_sem;
725 		}
726 	}
727 
728 out_sem:
729 	up_write((&EXT4_I(inode)->i_data_sem));
730 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
731 		ret = check_block_validity(inode, map);
732 		if (ret != 0)
733 			return ret;
734 
735 		/*
736 		 * Inodes with freshly allocated blocks where contents will be
737 		 * visible after transaction commit must be on transaction's
738 		 * ordered data list.
739 		 */
740 		if (map->m_flags & EXT4_MAP_NEW &&
741 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
742 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
743 		    !ext4_is_quota_file(inode) &&
744 		    ext4_should_order_data(inode)) {
745 			loff_t start_byte =
746 				(loff_t)map->m_lblk << inode->i_blkbits;
747 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
748 
749 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
750 				ret = ext4_jbd2_inode_add_wait(handle, inode,
751 						start_byte, length);
752 			else
753 				ret = ext4_jbd2_inode_add_write(handle, inode,
754 						start_byte, length);
755 			if (ret)
756 				return ret;
757 		}
758 	}
759 	return retval;
760 }
761 
762 /*
763  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
764  * we have to be careful as someone else may be manipulating b_state as well.
765  */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)766 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
767 {
768 	unsigned long old_state;
769 	unsigned long new_state;
770 
771 	flags &= EXT4_MAP_FLAGS;
772 
773 	/* Dummy buffer_head? Set non-atomically. */
774 	if (!bh->b_page) {
775 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
776 		return;
777 	}
778 	/*
779 	 * Someone else may be modifying b_state. Be careful! This is ugly but
780 	 * once we get rid of using bh as a container for mapping information
781 	 * to pass to / from get_block functions, this can go away.
782 	 */
783 	do {
784 		old_state = READ_ONCE(bh->b_state);
785 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
786 	} while (unlikely(
787 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
788 }
789 
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)790 static int _ext4_get_block(struct inode *inode, sector_t iblock,
791 			   struct buffer_head *bh, int flags)
792 {
793 	struct ext4_map_blocks map;
794 	int ret = 0;
795 
796 	if (ext4_has_inline_data(inode))
797 		return -ERANGE;
798 
799 	map.m_lblk = iblock;
800 	map.m_len = bh->b_size >> inode->i_blkbits;
801 
802 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
803 			      flags);
804 	if (ret > 0) {
805 		map_bh(bh, inode->i_sb, map.m_pblk);
806 		ext4_update_bh_state(bh, map.m_flags);
807 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
808 		ret = 0;
809 	} else if (ret == 0) {
810 		/* hole case, need to fill in bh->b_size */
811 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
812 	}
813 	return ret;
814 }
815 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)816 int ext4_get_block(struct inode *inode, sector_t iblock,
817 		   struct buffer_head *bh, int create)
818 {
819 	return _ext4_get_block(inode, iblock, bh,
820 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
821 }
822 
823 /*
824  * Get block function used when preparing for buffered write if we require
825  * creating an unwritten extent if blocks haven't been allocated.  The extent
826  * will be converted to written after the IO is complete.
827  */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)828 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
829 			     struct buffer_head *bh_result, int create)
830 {
831 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
832 		   inode->i_ino, create);
833 	return _ext4_get_block(inode, iblock, bh_result,
834 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
835 }
836 
837 /* Maximum number of blocks we map for direct IO at once. */
838 #define DIO_MAX_BLOCKS 4096
839 
840 /*
841  * Get blocks function for the cases that need to start a transaction -
842  * generally difference cases of direct IO and DAX IO. It also handles retries
843  * in case of ENOSPC.
844  */
ext4_get_block_trans(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int flags)845 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
846 				struct buffer_head *bh_result, int flags)
847 {
848 	int dio_credits;
849 	handle_t *handle;
850 	int retries = 0;
851 	int ret;
852 
853 	/* Trim mapping request to maximum we can map at once for DIO */
854 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
855 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
856 	dio_credits = ext4_chunk_trans_blocks(inode,
857 				      bh_result->b_size >> inode->i_blkbits);
858 retry:
859 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
860 	if (IS_ERR(handle))
861 		return PTR_ERR(handle);
862 
863 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
864 	ext4_journal_stop(handle);
865 
866 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
867 		goto retry;
868 	return ret;
869 }
870 
871 /* Get block function for DIO reads and writes to inodes without extents */
ext4_dio_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)872 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
873 		       struct buffer_head *bh, int create)
874 {
875 	/* We don't expect handle for direct IO */
876 	WARN_ON_ONCE(ext4_journal_current_handle());
877 
878 	if (!create)
879 		return _ext4_get_block(inode, iblock, bh, 0);
880 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
881 }
882 
883 /*
884  * Get block function for AIO DIO writes when we create unwritten extent if
885  * blocks are not allocated yet. The extent will be converted to written
886  * after IO is complete.
887  */
ext4_dio_get_block_unwritten_async(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)888 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
889 		sector_t iblock, struct buffer_head *bh_result,	int create)
890 {
891 	int ret;
892 
893 	/* We don't expect handle for direct IO */
894 	WARN_ON_ONCE(ext4_journal_current_handle());
895 
896 	ret = ext4_get_block_trans(inode, iblock, bh_result,
897 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
898 
899 	/*
900 	 * When doing DIO using unwritten extents, we need io_end to convert
901 	 * unwritten extents to written on IO completion. We allocate io_end
902 	 * once we spot unwritten extent and store it in b_private. Generic
903 	 * DIO code keeps b_private set and furthermore passes the value to
904 	 * our completion callback in 'private' argument.
905 	 */
906 	if (!ret && buffer_unwritten(bh_result)) {
907 		if (!bh_result->b_private) {
908 			ext4_io_end_t *io_end;
909 
910 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
911 			if (!io_end)
912 				return -ENOMEM;
913 			bh_result->b_private = io_end;
914 			ext4_set_io_unwritten_flag(inode, io_end);
915 		}
916 		set_buffer_defer_completion(bh_result);
917 	}
918 
919 	return ret;
920 }
921 
922 /*
923  * Get block function for non-AIO DIO writes when we create unwritten extent if
924  * blocks are not allocated yet. The extent will be converted to written
925  * after IO is complete by ext4_direct_IO_write().
926  */
ext4_dio_get_block_unwritten_sync(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)927 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
928 		sector_t iblock, struct buffer_head *bh_result,	int create)
929 {
930 	int ret;
931 
932 	/* We don't expect handle for direct IO */
933 	WARN_ON_ONCE(ext4_journal_current_handle());
934 
935 	ret = ext4_get_block_trans(inode, iblock, bh_result,
936 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
937 
938 	/*
939 	 * Mark inode as having pending DIO writes to unwritten extents.
940 	 * ext4_direct_IO_write() checks this flag and converts extents to
941 	 * written.
942 	 */
943 	if (!ret && buffer_unwritten(bh_result))
944 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
945 
946 	return ret;
947 }
948 
ext4_dio_get_block_overwrite(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)949 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
950 		   struct buffer_head *bh_result, int create)
951 {
952 	int ret;
953 
954 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
955 		   inode->i_ino, create);
956 	/* We don't expect handle for direct IO */
957 	WARN_ON_ONCE(ext4_journal_current_handle());
958 
959 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
960 	/*
961 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
962 	 * that.
963 	 */
964 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
965 
966 	return ret;
967 }
968 
969 
970 /*
971  * `handle' can be NULL if create is zero
972  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)973 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
974 				ext4_lblk_t block, int map_flags)
975 {
976 	struct ext4_map_blocks map;
977 	struct buffer_head *bh;
978 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
979 	int err;
980 
981 	J_ASSERT(handle != NULL || create == 0);
982 
983 	map.m_lblk = block;
984 	map.m_len = 1;
985 	err = ext4_map_blocks(handle, inode, &map, map_flags);
986 
987 	if (err == 0)
988 		return create ? ERR_PTR(-ENOSPC) : NULL;
989 	if (err < 0)
990 		return ERR_PTR(err);
991 
992 	bh = sb_getblk(inode->i_sb, map.m_pblk);
993 	if (unlikely(!bh))
994 		return ERR_PTR(-ENOMEM);
995 	if (map.m_flags & EXT4_MAP_NEW) {
996 		J_ASSERT(create != 0);
997 		J_ASSERT(handle != NULL);
998 
999 		/*
1000 		 * Now that we do not always journal data, we should
1001 		 * keep in mind whether this should always journal the
1002 		 * new buffer as metadata.  For now, regular file
1003 		 * writes use ext4_get_block instead, so it's not a
1004 		 * problem.
1005 		 */
1006 		lock_buffer(bh);
1007 		BUFFER_TRACE(bh, "call get_create_access");
1008 		err = ext4_journal_get_create_access(handle, bh);
1009 		if (unlikely(err)) {
1010 			unlock_buffer(bh);
1011 			goto errout;
1012 		}
1013 		if (!buffer_uptodate(bh)) {
1014 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1015 			set_buffer_uptodate(bh);
1016 		}
1017 		unlock_buffer(bh);
1018 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1019 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1020 		if (unlikely(err))
1021 			goto errout;
1022 	} else
1023 		BUFFER_TRACE(bh, "not a new buffer");
1024 	return bh;
1025 errout:
1026 	brelse(bh);
1027 	return ERR_PTR(err);
1028 }
1029 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)1030 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1031 			       ext4_lblk_t block, int map_flags)
1032 {
1033 	struct buffer_head *bh;
1034 
1035 	bh = ext4_getblk(handle, inode, block, map_flags);
1036 	if (IS_ERR(bh))
1037 		return bh;
1038 	if (!bh || ext4_buffer_uptodate(bh))
1039 		return bh;
1040 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1041 	wait_on_buffer(bh);
1042 	if (buffer_uptodate(bh))
1043 		return bh;
1044 	put_bh(bh);
1045 	return ERR_PTR(-EIO);
1046 }
1047 
1048 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)1049 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1050 		     bool wait, struct buffer_head **bhs)
1051 {
1052 	int i, err;
1053 
1054 	for (i = 0; i < bh_count; i++) {
1055 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1056 		if (IS_ERR(bhs[i])) {
1057 			err = PTR_ERR(bhs[i]);
1058 			bh_count = i;
1059 			goto out_brelse;
1060 		}
1061 	}
1062 
1063 	for (i = 0; i < bh_count; i++)
1064 		/* Note that NULL bhs[i] is valid because of holes. */
1065 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
1066 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1067 				    &bhs[i]);
1068 
1069 	if (!wait)
1070 		return 0;
1071 
1072 	for (i = 0; i < bh_count; i++)
1073 		if (bhs[i])
1074 			wait_on_buffer(bhs[i]);
1075 
1076 	for (i = 0; i < bh_count; i++) {
1077 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1078 			err = -EIO;
1079 			goto out_brelse;
1080 		}
1081 	}
1082 	return 0;
1083 
1084 out_brelse:
1085 	for (i = 0; i < bh_count; i++) {
1086 		brelse(bhs[i]);
1087 		bhs[i] = NULL;
1088 	}
1089 	return err;
1090 }
1091 
ext4_walk_page_buffers(handle_t * handle,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct buffer_head * bh))1092 int ext4_walk_page_buffers(handle_t *handle,
1093 			   struct buffer_head *head,
1094 			   unsigned from,
1095 			   unsigned to,
1096 			   int *partial,
1097 			   int (*fn)(handle_t *handle,
1098 				     struct buffer_head *bh))
1099 {
1100 	struct buffer_head *bh;
1101 	unsigned block_start, block_end;
1102 	unsigned blocksize = head->b_size;
1103 	int err, ret = 0;
1104 	struct buffer_head *next;
1105 
1106 	for (bh = head, block_start = 0;
1107 	     ret == 0 && (bh != head || !block_start);
1108 	     block_start = block_end, bh = next) {
1109 		next = bh->b_this_page;
1110 		block_end = block_start + blocksize;
1111 		if (block_end <= from || block_start >= to) {
1112 			if (partial && !buffer_uptodate(bh))
1113 				*partial = 1;
1114 			continue;
1115 		}
1116 		err = (*fn)(handle, bh);
1117 		if (!ret)
1118 			ret = err;
1119 	}
1120 	return ret;
1121 }
1122 
1123 /*
1124  * To preserve ordering, it is essential that the hole instantiation and
1125  * the data write be encapsulated in a single transaction.  We cannot
1126  * close off a transaction and start a new one between the ext4_get_block()
1127  * and the commit_write().  So doing the jbd2_journal_start at the start of
1128  * prepare_write() is the right place.
1129  *
1130  * Also, this function can nest inside ext4_writepage().  In that case, we
1131  * *know* that ext4_writepage() has generated enough buffer credits to do the
1132  * whole page.  So we won't block on the journal in that case, which is good,
1133  * because the caller may be PF_MEMALLOC.
1134  *
1135  * By accident, ext4 can be reentered when a transaction is open via
1136  * quota file writes.  If we were to commit the transaction while thus
1137  * reentered, there can be a deadlock - we would be holding a quota
1138  * lock, and the commit would never complete if another thread had a
1139  * transaction open and was blocking on the quota lock - a ranking
1140  * violation.
1141  *
1142  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1143  * will _not_ run commit under these circumstances because handle->h_ref
1144  * is elevated.  We'll still have enough credits for the tiny quotafile
1145  * write.
1146  */
do_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1147 int do_journal_get_write_access(handle_t *handle,
1148 				struct buffer_head *bh)
1149 {
1150 	int dirty = buffer_dirty(bh);
1151 	int ret;
1152 
1153 	if (!buffer_mapped(bh) || buffer_freed(bh))
1154 		return 0;
1155 	/*
1156 	 * __block_write_begin() could have dirtied some buffers. Clean
1157 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1158 	 * otherwise about fs integrity issues. Setting of the dirty bit
1159 	 * by __block_write_begin() isn't a real problem here as we clear
1160 	 * the bit before releasing a page lock and thus writeback cannot
1161 	 * ever write the buffer.
1162 	 */
1163 	if (dirty)
1164 		clear_buffer_dirty(bh);
1165 	BUFFER_TRACE(bh, "get write access");
1166 	ret = ext4_journal_get_write_access(handle, bh);
1167 	if (!ret && dirty)
1168 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1169 	return ret;
1170 }
1171 
1172 #ifdef CONFIG_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1173 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1174 				  get_block_t *get_block)
1175 {
1176 	unsigned from = pos & (PAGE_SIZE - 1);
1177 	unsigned to = from + len;
1178 	struct inode *inode = page->mapping->host;
1179 	unsigned block_start, block_end;
1180 	sector_t block;
1181 	int err = 0;
1182 	unsigned blocksize = inode->i_sb->s_blocksize;
1183 	unsigned bbits;
1184 	struct buffer_head *bh, *head, *wait[2];
1185 	int nr_wait = 0;
1186 	int i;
1187 
1188 	BUG_ON(!PageLocked(page));
1189 	BUG_ON(from > PAGE_SIZE);
1190 	BUG_ON(to > PAGE_SIZE);
1191 	BUG_ON(from > to);
1192 
1193 	if (!page_has_buffers(page))
1194 		create_empty_buffers(page, blocksize, 0);
1195 	head = page_buffers(page);
1196 	bbits = ilog2(blocksize);
1197 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1198 
1199 	for (bh = head, block_start = 0; bh != head || !block_start;
1200 	    block++, block_start = block_end, bh = bh->b_this_page) {
1201 		block_end = block_start + blocksize;
1202 		if (block_end <= from || block_start >= to) {
1203 			if (PageUptodate(page)) {
1204 				if (!buffer_uptodate(bh))
1205 					set_buffer_uptodate(bh);
1206 			}
1207 			continue;
1208 		}
1209 		if (buffer_new(bh))
1210 			clear_buffer_new(bh);
1211 		if (!buffer_mapped(bh)) {
1212 			WARN_ON(bh->b_size != blocksize);
1213 			err = get_block(inode, block, bh, 1);
1214 			if (err)
1215 				break;
1216 			if (buffer_new(bh)) {
1217 				if (PageUptodate(page)) {
1218 					clear_buffer_new(bh);
1219 					set_buffer_uptodate(bh);
1220 					mark_buffer_dirty(bh);
1221 					continue;
1222 				}
1223 				if (block_end > to || block_start < from)
1224 					zero_user_segments(page, to, block_end,
1225 							   block_start, from);
1226 				continue;
1227 			}
1228 		}
1229 		if (PageUptodate(page)) {
1230 			if (!buffer_uptodate(bh))
1231 				set_buffer_uptodate(bh);
1232 			continue;
1233 		}
1234 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1235 		    !buffer_unwritten(bh) &&
1236 		    (block_start < from || block_end > to)) {
1237 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1238 			wait[nr_wait++] = bh;
1239 		}
1240 	}
1241 	/*
1242 	 * If we issued read requests, let them complete.
1243 	 */
1244 	for (i = 0; i < nr_wait; i++) {
1245 		wait_on_buffer(wait[i]);
1246 		if (!buffer_uptodate(wait[i]))
1247 			err = -EIO;
1248 	}
1249 	if (unlikely(err)) {
1250 		page_zero_new_buffers(page, from, to);
1251 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1252 		for (i = 0; i < nr_wait; i++) {
1253 			int err2;
1254 
1255 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1256 								bh_offset(wait[i]));
1257 			if (err2) {
1258 				clear_buffer_uptodate(wait[i]);
1259 				err = err2;
1260 			}
1261 		}
1262 	}
1263 
1264 	return err;
1265 }
1266 #endif
1267 
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1268 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1269 			    loff_t pos, unsigned len, unsigned flags,
1270 			    struct page **pagep, void **fsdata)
1271 {
1272 	struct inode *inode = mapping->host;
1273 	int ret, needed_blocks;
1274 	handle_t *handle;
1275 	int retries = 0;
1276 	struct page *page;
1277 	pgoff_t index;
1278 	unsigned from, to;
1279 
1280 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1281 		return -EIO;
1282 
1283 	if (trace_android_fs_datawrite_start_enabled()) {
1284 		char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
1285 
1286 		path = android_fstrace_get_pathname(pathbuf,
1287 						    MAX_TRACE_PATHBUF_LEN,
1288 						    inode);
1289 		trace_android_fs_datawrite_start(inode, pos, len,
1290 						 current->pid, path,
1291 						 current->comm);
1292 	}
1293 	trace_ext4_write_begin(inode, pos, len, flags);
1294 	/*
1295 	 * Reserve one block more for addition to orphan list in case
1296 	 * we allocate blocks but write fails for some reason
1297 	 */
1298 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1299 	index = pos >> PAGE_SHIFT;
1300 	from = pos & (PAGE_SIZE - 1);
1301 	to = from + len;
1302 
1303 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1304 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1305 						    flags, pagep);
1306 		if (ret < 0)
1307 			return ret;
1308 		if (ret == 1)
1309 			return 0;
1310 	}
1311 
1312 	/*
1313 	 * grab_cache_page_write_begin() can take a long time if the
1314 	 * system is thrashing due to memory pressure, or if the page
1315 	 * is being written back.  So grab it first before we start
1316 	 * the transaction handle.  This also allows us to allocate
1317 	 * the page (if needed) without using GFP_NOFS.
1318 	 */
1319 retry_grab:
1320 	page = grab_cache_page_write_begin(mapping, index, flags);
1321 	if (!page)
1322 		return -ENOMEM;
1323 	/*
1324 	 * The same as page allocation, we prealloc buffer heads before
1325 	 * starting the handle.
1326 	 */
1327 	if (!page_has_buffers(page))
1328 		create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1329 
1330 	unlock_page(page);
1331 
1332 retry_journal:
1333 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1334 	if (IS_ERR(handle)) {
1335 		put_page(page);
1336 		return PTR_ERR(handle);
1337 	}
1338 
1339 	lock_page(page);
1340 	if (page->mapping != mapping) {
1341 		/* The page got truncated from under us */
1342 		unlock_page(page);
1343 		put_page(page);
1344 		ext4_journal_stop(handle);
1345 		goto retry_grab;
1346 	}
1347 	/* In case writeback began while the page was unlocked */
1348 	wait_for_stable_page(page);
1349 
1350 #ifdef CONFIG_FS_ENCRYPTION
1351 	if (ext4_should_dioread_nolock(inode))
1352 		ret = ext4_block_write_begin(page, pos, len,
1353 					     ext4_get_block_unwritten);
1354 	else
1355 		ret = ext4_block_write_begin(page, pos, len,
1356 					     ext4_get_block);
1357 #else
1358 	if (ext4_should_dioread_nolock(inode))
1359 		ret = __block_write_begin(page, pos, len,
1360 					  ext4_get_block_unwritten);
1361 	else
1362 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1363 #endif
1364 	if (!ret && ext4_should_journal_data(inode)) {
1365 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1366 					     from, to, NULL,
1367 					     do_journal_get_write_access);
1368 	}
1369 
1370 	if (ret) {
1371 		bool extended = (pos + len > inode->i_size) &&
1372 				!ext4_verity_in_progress(inode);
1373 
1374 		unlock_page(page);
1375 		/*
1376 		 * __block_write_begin may have instantiated a few blocks
1377 		 * outside i_size.  Trim these off again. Don't need
1378 		 * i_size_read because we hold i_mutex.
1379 		 *
1380 		 * Add inode to orphan list in case we crash before
1381 		 * truncate finishes
1382 		 */
1383 		if (extended && ext4_can_truncate(inode))
1384 			ext4_orphan_add(handle, inode);
1385 
1386 		ext4_journal_stop(handle);
1387 		if (extended) {
1388 			ext4_truncate_failed_write(inode);
1389 			/*
1390 			 * If truncate failed early the inode might
1391 			 * still be on the orphan list; we need to
1392 			 * make sure the inode is removed from the
1393 			 * orphan list in that case.
1394 			 */
1395 			if (inode->i_nlink)
1396 				ext4_orphan_del(NULL, inode);
1397 		}
1398 
1399 		if (ret == -ENOSPC &&
1400 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1401 			goto retry_journal;
1402 		put_page(page);
1403 		return ret;
1404 	}
1405 	*pagep = page;
1406 	return ret;
1407 }
1408 
1409 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct buffer_head * bh)1410 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1411 {
1412 	int ret;
1413 	if (!buffer_mapped(bh) || buffer_freed(bh))
1414 		return 0;
1415 	set_buffer_uptodate(bh);
1416 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1417 	clear_buffer_meta(bh);
1418 	clear_buffer_prio(bh);
1419 	return ret;
1420 }
1421 
1422 /*
1423  * We need to pick up the new inode size which generic_commit_write gave us
1424  * `file' can be NULL - eg, when called from page_symlink().
1425  *
1426  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1427  * buffers are managed internally.
1428  */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1429 static int ext4_write_end(struct file *file,
1430 			  struct address_space *mapping,
1431 			  loff_t pos, unsigned len, unsigned copied,
1432 			  struct page *page, void *fsdata)
1433 {
1434 	handle_t *handle = ext4_journal_current_handle();
1435 	struct inode *inode = mapping->host;
1436 	loff_t old_size = inode->i_size;
1437 	int ret = 0, ret2;
1438 	int i_size_changed = 0;
1439 	int inline_data = ext4_has_inline_data(inode);
1440 	bool verity = ext4_verity_in_progress(inode);
1441 
1442 	trace_android_fs_datawrite_end(inode, pos, len);
1443 	trace_ext4_write_end(inode, pos, len, copied);
1444 	if (inline_data &&
1445 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1446 		ret = ext4_write_inline_data_end(inode, pos, len,
1447 						 copied, page);
1448 		if (ret < 0) {
1449 			unlock_page(page);
1450 			put_page(page);
1451 			goto errout;
1452 		}
1453 		copied = ret;
1454 		ret = 0;
1455 	} else
1456 		copied = block_write_end(file, mapping, pos,
1457 					 len, copied, page, fsdata);
1458 	/*
1459 	 * it's important to update i_size while still holding page lock:
1460 	 * page writeout could otherwise come in and zero beyond i_size.
1461 	 *
1462 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1463 	 * blocks are being written past EOF, so skip the i_size update.
1464 	 */
1465 	if (!verity)
1466 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1467 	unlock_page(page);
1468 	put_page(page);
1469 
1470 	if (old_size < pos && !verity)
1471 		pagecache_isize_extended(inode, old_size, pos);
1472 	/*
1473 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1474 	 * makes the holding time of page lock longer. Second, it forces lock
1475 	 * ordering of page lock and transaction start for journaling
1476 	 * filesystems.
1477 	 */
1478 	if (i_size_changed || inline_data)
1479 		ext4_mark_inode_dirty(handle, inode);
1480 
1481 errout:
1482 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1483 		/* if we have allocated more blocks and copied
1484 		 * less. We will have blocks allocated outside
1485 		 * inode->i_size. So truncate them
1486 		 */
1487 		ext4_orphan_add(handle, inode);
1488 
1489 	ret2 = ext4_journal_stop(handle);
1490 	if (!ret)
1491 		ret = ret2;
1492 
1493 	if (pos + len > inode->i_size && !verity) {
1494 		ext4_truncate_failed_write(inode);
1495 		/*
1496 		 * If truncate failed early the inode might still be
1497 		 * on the orphan list; we need to make sure the inode
1498 		 * is removed from the orphan list in that case.
1499 		 */
1500 		if (inode->i_nlink)
1501 			ext4_orphan_del(NULL, inode);
1502 	}
1503 
1504 	return ret ? ret : copied;
1505 }
1506 
1507 /*
1508  * This is a private version of page_zero_new_buffers() which doesn't
1509  * set the buffer to be dirty, since in data=journalled mode we need
1510  * to call ext4_handle_dirty_metadata() instead.
1511  */
ext4_journalled_zero_new_buffers(handle_t * handle,struct page * page,unsigned from,unsigned to)1512 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1513 					    struct page *page,
1514 					    unsigned from, unsigned to)
1515 {
1516 	unsigned int block_start = 0, block_end;
1517 	struct buffer_head *head, *bh;
1518 
1519 	bh = head = page_buffers(page);
1520 	do {
1521 		block_end = block_start + bh->b_size;
1522 		if (buffer_new(bh)) {
1523 			if (block_end > from && block_start < to) {
1524 				if (!PageUptodate(page)) {
1525 					unsigned start, size;
1526 
1527 					start = max(from, block_start);
1528 					size = min(to, block_end) - start;
1529 
1530 					zero_user(page, start, size);
1531 					write_end_fn(handle, bh);
1532 				}
1533 				clear_buffer_new(bh);
1534 			}
1535 		}
1536 		block_start = block_end;
1537 		bh = bh->b_this_page;
1538 	} while (bh != head);
1539 }
1540 
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1541 static int ext4_journalled_write_end(struct file *file,
1542 				     struct address_space *mapping,
1543 				     loff_t pos, unsigned len, unsigned copied,
1544 				     struct page *page, void *fsdata)
1545 {
1546 	handle_t *handle = ext4_journal_current_handle();
1547 	struct inode *inode = mapping->host;
1548 	loff_t old_size = inode->i_size;
1549 	int ret = 0, ret2;
1550 	int partial = 0;
1551 	unsigned from, to;
1552 	int size_changed = 0;
1553 	int inline_data = ext4_has_inline_data(inode);
1554 	bool verity = ext4_verity_in_progress(inode);
1555 
1556 	trace_android_fs_datawrite_end(inode, pos, len);
1557 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1558 	from = pos & (PAGE_SIZE - 1);
1559 	to = from + len;
1560 
1561 	BUG_ON(!ext4_handle_valid(handle));
1562 
1563 	if (inline_data) {
1564 		ret = ext4_write_inline_data_end(inode, pos, len,
1565 						 copied, page);
1566 		if (ret < 0) {
1567 			unlock_page(page);
1568 			put_page(page);
1569 			goto errout;
1570 		}
1571 		copied = ret;
1572 		ret = 0;
1573 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1574 		copied = 0;
1575 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1576 	} else {
1577 		if (unlikely(copied < len))
1578 			ext4_journalled_zero_new_buffers(handle, page,
1579 							 from + copied, to);
1580 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1581 					     from + copied, &partial,
1582 					     write_end_fn);
1583 		if (!partial)
1584 			SetPageUptodate(page);
1585 	}
1586 	if (!verity)
1587 		size_changed = ext4_update_inode_size(inode, pos + copied);
1588 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1589 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1590 	unlock_page(page);
1591 	put_page(page);
1592 
1593 	if (old_size < pos && !verity)
1594 		pagecache_isize_extended(inode, old_size, pos);
1595 
1596 	if (size_changed || inline_data) {
1597 		ret2 = ext4_mark_inode_dirty(handle, inode);
1598 		if (!ret)
1599 			ret = ret2;
1600 	}
1601 
1602 errout:
1603 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1604 		/* if we have allocated more blocks and copied
1605 		 * less. We will have blocks allocated outside
1606 		 * inode->i_size. So truncate them
1607 		 */
1608 		ext4_orphan_add(handle, inode);
1609 
1610 	ret2 = ext4_journal_stop(handle);
1611 	if (!ret)
1612 		ret = ret2;
1613 	if (pos + len > inode->i_size && !verity) {
1614 		ext4_truncate_failed_write(inode);
1615 		/*
1616 		 * If truncate failed early the inode might still be
1617 		 * on the orphan list; we need to make sure the inode
1618 		 * is removed from the orphan list in that case.
1619 		 */
1620 		if (inode->i_nlink)
1621 			ext4_orphan_del(NULL, inode);
1622 	}
1623 
1624 	return ret ? ret : copied;
1625 }
1626 
1627 /*
1628  * Reserve space for a single cluster
1629  */
ext4_da_reserve_space(struct inode * inode)1630 static int ext4_da_reserve_space(struct inode *inode)
1631 {
1632 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1633 	struct ext4_inode_info *ei = EXT4_I(inode);
1634 	int ret;
1635 
1636 	/*
1637 	 * We will charge metadata quota at writeout time; this saves
1638 	 * us from metadata over-estimation, though we may go over by
1639 	 * a small amount in the end.  Here we just reserve for data.
1640 	 */
1641 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1642 	if (ret)
1643 		return ret;
1644 
1645 	spin_lock(&ei->i_block_reservation_lock);
1646 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1647 		spin_unlock(&ei->i_block_reservation_lock);
1648 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1649 		return -ENOSPC;
1650 	}
1651 	ei->i_reserved_data_blocks++;
1652 	trace_ext4_da_reserve_space(inode);
1653 	spin_unlock(&ei->i_block_reservation_lock);
1654 
1655 	return 0;       /* success */
1656 }
1657 
ext4_da_release_space(struct inode * inode,int to_free)1658 void ext4_da_release_space(struct inode *inode, int to_free)
1659 {
1660 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1661 	struct ext4_inode_info *ei = EXT4_I(inode);
1662 
1663 	if (!to_free)
1664 		return;		/* Nothing to release, exit */
1665 
1666 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1667 
1668 	trace_ext4_da_release_space(inode, to_free);
1669 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1670 		/*
1671 		 * if there aren't enough reserved blocks, then the
1672 		 * counter is messed up somewhere.  Since this
1673 		 * function is called from invalidate page, it's
1674 		 * harmless to return without any action.
1675 		 */
1676 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1677 			 "ino %lu, to_free %d with only %d reserved "
1678 			 "data blocks", inode->i_ino, to_free,
1679 			 ei->i_reserved_data_blocks);
1680 		WARN_ON(1);
1681 		to_free = ei->i_reserved_data_blocks;
1682 	}
1683 	ei->i_reserved_data_blocks -= to_free;
1684 
1685 	/* update fs dirty data blocks counter */
1686 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1687 
1688 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1689 
1690 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1691 }
1692 
1693 /*
1694  * Delayed allocation stuff
1695  */
1696 
1697 struct mpage_da_data {
1698 	struct inode *inode;
1699 	struct writeback_control *wbc;
1700 
1701 	pgoff_t first_page;	/* The first page to write */
1702 	pgoff_t next_page;	/* Current page to examine */
1703 	pgoff_t last_page;	/* Last page to examine */
1704 	/*
1705 	 * Extent to map - this can be after first_page because that can be
1706 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1707 	 * is delalloc or unwritten.
1708 	 */
1709 	struct ext4_map_blocks map;
1710 	struct ext4_io_submit io_submit;	/* IO submission data */
1711 	unsigned int do_map:1;
1712 };
1713 
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1714 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1715 				       bool invalidate)
1716 {
1717 	int nr_pages, i;
1718 	pgoff_t index, end;
1719 	struct pagevec pvec;
1720 	struct inode *inode = mpd->inode;
1721 	struct address_space *mapping = inode->i_mapping;
1722 
1723 	/* This is necessary when next_page == 0. */
1724 	if (mpd->first_page >= mpd->next_page)
1725 		return;
1726 
1727 	index = mpd->first_page;
1728 	end   = mpd->next_page - 1;
1729 	if (invalidate) {
1730 		ext4_lblk_t start, last;
1731 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1732 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1733 
1734 		/*
1735 		 * avoid racing with extent status tree scans made by
1736 		 * ext4_insert_delayed_block()
1737 		 */
1738 		down_write(&EXT4_I(inode)->i_data_sem);
1739 		ext4_es_remove_extent(inode, start, last - start + 1);
1740 		up_write(&EXT4_I(inode)->i_data_sem);
1741 	}
1742 
1743 	pagevec_init(&pvec);
1744 	while (index <= end) {
1745 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1746 		if (nr_pages == 0)
1747 			break;
1748 		for (i = 0; i < nr_pages; i++) {
1749 			struct page *page = pvec.pages[i];
1750 
1751 			BUG_ON(!PageLocked(page));
1752 			BUG_ON(PageWriteback(page));
1753 			if (invalidate) {
1754 				if (page_mapped(page))
1755 					clear_page_dirty_for_io(page);
1756 				block_invalidatepage(page, 0, PAGE_SIZE);
1757 				ClearPageUptodate(page);
1758 			}
1759 			unlock_page(page);
1760 		}
1761 		pagevec_release(&pvec);
1762 	}
1763 }
1764 
ext4_print_free_blocks(struct inode * inode)1765 static void ext4_print_free_blocks(struct inode *inode)
1766 {
1767 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1768 	struct super_block *sb = inode->i_sb;
1769 	struct ext4_inode_info *ei = EXT4_I(inode);
1770 
1771 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1772 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1773 			ext4_count_free_clusters(sb)));
1774 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1775 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1776 	       (long long) EXT4_C2B(EXT4_SB(sb),
1777 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1778 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1779 	       (long long) EXT4_C2B(EXT4_SB(sb),
1780 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1781 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1782 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1783 		 ei->i_reserved_data_blocks);
1784 	return;
1785 }
1786 
ext4_bh_delay_or_unwritten(handle_t * handle,struct buffer_head * bh)1787 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1788 {
1789 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1790 }
1791 
1792 /*
1793  * ext4_insert_delayed_block - adds a delayed block to the extents status
1794  *                             tree, incrementing the reserved cluster/block
1795  *                             count or making a pending reservation
1796  *                             where needed
1797  *
1798  * @inode - file containing the newly added block
1799  * @lblk - logical block to be added
1800  *
1801  * Returns 0 on success, negative error code on failure.
1802  */
ext4_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk)1803 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1804 {
1805 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1806 	int ret;
1807 	bool allocated = false;
1808 	bool reserved = false;
1809 
1810 	/*
1811 	 * If the cluster containing lblk is shared with a delayed,
1812 	 * written, or unwritten extent in a bigalloc file system, it's
1813 	 * already been accounted for and does not need to be reserved.
1814 	 * A pending reservation must be made for the cluster if it's
1815 	 * shared with a written or unwritten extent and doesn't already
1816 	 * have one.  Written and unwritten extents can be purged from the
1817 	 * extents status tree if the system is under memory pressure, so
1818 	 * it's necessary to examine the extent tree if a search of the
1819 	 * extents status tree doesn't get a match.
1820 	 */
1821 	if (sbi->s_cluster_ratio == 1) {
1822 		ret = ext4_da_reserve_space(inode);
1823 		if (ret != 0)   /* ENOSPC */
1824 			goto errout;
1825 		reserved = true;
1826 	} else {   /* bigalloc */
1827 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1828 			if (!ext4_es_scan_clu(inode,
1829 					      &ext4_es_is_mapped, lblk)) {
1830 				ret = ext4_clu_mapped(inode,
1831 						      EXT4_B2C(sbi, lblk));
1832 				if (ret < 0)
1833 					goto errout;
1834 				if (ret == 0) {
1835 					ret = ext4_da_reserve_space(inode);
1836 					if (ret != 0)   /* ENOSPC */
1837 						goto errout;
1838 					reserved = true;
1839 				} else {
1840 					allocated = true;
1841 				}
1842 			} else {
1843 				allocated = true;
1844 			}
1845 		}
1846 	}
1847 
1848 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1849 	if (ret && reserved)
1850 		ext4_da_release_space(inode, 1);
1851 
1852 errout:
1853 	return ret;
1854 }
1855 
1856 /*
1857  * This function is grabs code from the very beginning of
1858  * ext4_map_blocks, but assumes that the caller is from delayed write
1859  * time. This function looks up the requested blocks and sets the
1860  * buffer delay bit under the protection of i_data_sem.
1861  */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1862 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1863 			      struct ext4_map_blocks *map,
1864 			      struct buffer_head *bh)
1865 {
1866 	struct extent_status es;
1867 	int retval;
1868 	sector_t invalid_block = ~((sector_t) 0xffff);
1869 #ifdef ES_AGGRESSIVE_TEST
1870 	struct ext4_map_blocks orig_map;
1871 
1872 	memcpy(&orig_map, map, sizeof(*map));
1873 #endif
1874 
1875 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1876 		invalid_block = ~0;
1877 
1878 	map->m_flags = 0;
1879 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1880 		  "logical block %lu\n", inode->i_ino, map->m_len,
1881 		  (unsigned long) map->m_lblk);
1882 
1883 	/* Lookup extent status tree firstly */
1884 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1885 		if (ext4_es_is_hole(&es)) {
1886 			retval = 0;
1887 			down_read(&EXT4_I(inode)->i_data_sem);
1888 			goto add_delayed;
1889 		}
1890 
1891 		/*
1892 		 * Delayed extent could be allocated by fallocate.
1893 		 * So we need to check it.
1894 		 */
1895 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1896 			map_bh(bh, inode->i_sb, invalid_block);
1897 			set_buffer_new(bh);
1898 			set_buffer_delay(bh);
1899 			return 0;
1900 		}
1901 
1902 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1903 		retval = es.es_len - (iblock - es.es_lblk);
1904 		if (retval > map->m_len)
1905 			retval = map->m_len;
1906 		map->m_len = retval;
1907 		if (ext4_es_is_written(&es))
1908 			map->m_flags |= EXT4_MAP_MAPPED;
1909 		else if (ext4_es_is_unwritten(&es))
1910 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1911 		else
1912 			BUG();
1913 
1914 #ifdef ES_AGGRESSIVE_TEST
1915 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1916 #endif
1917 		return retval;
1918 	}
1919 
1920 	/*
1921 	 * Try to see if we can get the block without requesting a new
1922 	 * file system block.
1923 	 */
1924 	down_read(&EXT4_I(inode)->i_data_sem);
1925 	if (ext4_has_inline_data(inode))
1926 		retval = 0;
1927 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1928 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1929 	else
1930 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1931 
1932 add_delayed:
1933 	if (retval == 0) {
1934 		int ret;
1935 
1936 		/*
1937 		 * XXX: __block_prepare_write() unmaps passed block,
1938 		 * is it OK?
1939 		 */
1940 
1941 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1942 		if (ret != 0) {
1943 			retval = ret;
1944 			goto out_unlock;
1945 		}
1946 
1947 		map_bh(bh, inode->i_sb, invalid_block);
1948 		set_buffer_new(bh);
1949 		set_buffer_delay(bh);
1950 	} else if (retval > 0) {
1951 		int ret;
1952 		unsigned int status;
1953 
1954 		if (unlikely(retval != map->m_len)) {
1955 			ext4_warning(inode->i_sb,
1956 				     "ES len assertion failed for inode "
1957 				     "%lu: retval %d != map->m_len %d",
1958 				     inode->i_ino, retval, map->m_len);
1959 			WARN_ON(1);
1960 		}
1961 
1962 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1963 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1964 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1965 					    map->m_pblk, status);
1966 		if (ret != 0)
1967 			retval = ret;
1968 	}
1969 
1970 out_unlock:
1971 	up_read((&EXT4_I(inode)->i_data_sem));
1972 
1973 	return retval;
1974 }
1975 
1976 /*
1977  * This is a special get_block_t callback which is used by
1978  * ext4_da_write_begin().  It will either return mapped block or
1979  * reserve space for a single block.
1980  *
1981  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1982  * We also have b_blocknr = -1 and b_bdev initialized properly
1983  *
1984  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1985  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1986  * initialized properly.
1987  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1988 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1989 			   struct buffer_head *bh, int create)
1990 {
1991 	struct ext4_map_blocks map;
1992 	int ret = 0;
1993 
1994 	BUG_ON(create == 0);
1995 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1996 
1997 	map.m_lblk = iblock;
1998 	map.m_len = 1;
1999 
2000 	/*
2001 	 * first, we need to know whether the block is allocated already
2002 	 * preallocated blocks are unmapped but should treated
2003 	 * the same as allocated blocks.
2004 	 */
2005 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2006 	if (ret <= 0)
2007 		return ret;
2008 
2009 	map_bh(bh, inode->i_sb, map.m_pblk);
2010 	ext4_update_bh_state(bh, map.m_flags);
2011 
2012 	if (buffer_unwritten(bh)) {
2013 		/* A delayed write to unwritten bh should be marked
2014 		 * new and mapped.  Mapped ensures that we don't do
2015 		 * get_block multiple times when we write to the same
2016 		 * offset and new ensures that we do proper zero out
2017 		 * for partial write.
2018 		 */
2019 		set_buffer_new(bh);
2020 		set_buffer_mapped(bh);
2021 	}
2022 	return 0;
2023 }
2024 
bget_one(handle_t * handle,struct buffer_head * bh)2025 static int bget_one(handle_t *handle, struct buffer_head *bh)
2026 {
2027 	get_bh(bh);
2028 	return 0;
2029 }
2030 
bput_one(handle_t * handle,struct buffer_head * bh)2031 static int bput_one(handle_t *handle, struct buffer_head *bh)
2032 {
2033 	put_bh(bh);
2034 	return 0;
2035 }
2036 
__ext4_journalled_writepage(struct page * page,unsigned int len)2037 static int __ext4_journalled_writepage(struct page *page,
2038 				       unsigned int len)
2039 {
2040 	struct address_space *mapping = page->mapping;
2041 	struct inode *inode = mapping->host;
2042 	struct buffer_head *page_bufs = NULL;
2043 	handle_t *handle = NULL;
2044 	int ret = 0, err = 0;
2045 	int inline_data = ext4_has_inline_data(inode);
2046 	struct buffer_head *inode_bh = NULL;
2047 
2048 	ClearPageChecked(page);
2049 
2050 	if (inline_data) {
2051 		BUG_ON(page->index != 0);
2052 		BUG_ON(len > ext4_get_max_inline_size(inode));
2053 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2054 		if (inode_bh == NULL)
2055 			goto out;
2056 	} else {
2057 		page_bufs = page_buffers(page);
2058 		if (!page_bufs) {
2059 			BUG();
2060 			goto out;
2061 		}
2062 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2063 				       NULL, bget_one);
2064 	}
2065 	/*
2066 	 * We need to release the page lock before we start the
2067 	 * journal, so grab a reference so the page won't disappear
2068 	 * out from under us.
2069 	 */
2070 	get_page(page);
2071 	unlock_page(page);
2072 
2073 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2074 				    ext4_writepage_trans_blocks(inode));
2075 	if (IS_ERR(handle)) {
2076 		ret = PTR_ERR(handle);
2077 		put_page(page);
2078 		goto out_no_pagelock;
2079 	}
2080 	BUG_ON(!ext4_handle_valid(handle));
2081 
2082 	lock_page(page);
2083 	put_page(page);
2084 	if (page->mapping != mapping) {
2085 		/* The page got truncated from under us */
2086 		ext4_journal_stop(handle);
2087 		ret = 0;
2088 		goto out;
2089 	}
2090 
2091 	if (inline_data) {
2092 		ret = ext4_mark_inode_dirty(handle, inode);
2093 	} else {
2094 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2095 					     do_journal_get_write_access);
2096 
2097 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2098 					     write_end_fn);
2099 	}
2100 	if (ret == 0)
2101 		ret = err;
2102 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2103 	err = ext4_journal_stop(handle);
2104 	if (!ret)
2105 		ret = err;
2106 
2107 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2108 out:
2109 	unlock_page(page);
2110 out_no_pagelock:
2111 	if (!inline_data && page_bufs)
2112 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2113 				       NULL, bput_one);
2114 	brelse(inode_bh);
2115 	return ret;
2116 }
2117 
2118 /*
2119  * Note that we don't need to start a transaction unless we're journaling data
2120  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2121  * need to file the inode to the transaction's list in ordered mode because if
2122  * we are writing back data added by write(), the inode is already there and if
2123  * we are writing back data modified via mmap(), no one guarantees in which
2124  * transaction the data will hit the disk. In case we are journaling data, we
2125  * cannot start transaction directly because transaction start ranks above page
2126  * lock so we have to do some magic.
2127  *
2128  * This function can get called via...
2129  *   - ext4_writepages after taking page lock (have journal handle)
2130  *   - journal_submit_inode_data_buffers (no journal handle)
2131  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2132  *   - grab_page_cache when doing write_begin (have journal handle)
2133  *
2134  * We don't do any block allocation in this function. If we have page with
2135  * multiple blocks we need to write those buffer_heads that are mapped. This
2136  * is important for mmaped based write. So if we do with blocksize 1K
2137  * truncate(f, 1024);
2138  * a = mmap(f, 0, 4096);
2139  * a[0] = 'a';
2140  * truncate(f, 4096);
2141  * we have in the page first buffer_head mapped via page_mkwrite call back
2142  * but other buffer_heads would be unmapped but dirty (dirty done via the
2143  * do_wp_page). So writepage should write the first block. If we modify
2144  * the mmap area beyond 1024 we will again get a page_fault and the
2145  * page_mkwrite callback will do the block allocation and mark the
2146  * buffer_heads mapped.
2147  *
2148  * We redirty the page if we have any buffer_heads that is either delay or
2149  * unwritten in the page.
2150  *
2151  * We can get recursively called as show below.
2152  *
2153  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2154  *		ext4_writepage()
2155  *
2156  * But since we don't do any block allocation we should not deadlock.
2157  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2158  */
ext4_writepage(struct page * page,struct writeback_control * wbc)2159 static int ext4_writepage(struct page *page,
2160 			  struct writeback_control *wbc)
2161 {
2162 	int ret = 0;
2163 	loff_t size;
2164 	unsigned int len;
2165 	struct buffer_head *page_bufs = NULL;
2166 	struct inode *inode = page->mapping->host;
2167 	struct ext4_io_submit io_submit;
2168 	bool keep_towrite = false;
2169 
2170 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2171 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
2172 		unlock_page(page);
2173 		return -EIO;
2174 	}
2175 
2176 	trace_ext4_writepage(page);
2177 	size = i_size_read(inode);
2178 	if (page->index == size >> PAGE_SHIFT &&
2179 	    !ext4_verity_in_progress(inode))
2180 		len = size & ~PAGE_MASK;
2181 	else
2182 		len = PAGE_SIZE;
2183 
2184 	/* Should never happen but for bugs in other kernel subsystems */
2185 	if (!page_has_buffers(page)) {
2186 		ext4_warning_inode(inode,
2187 		   "page %lu does not have buffers attached", page->index);
2188 		ClearPageDirty(page);
2189 		unlock_page(page);
2190 		return 0;
2191 	}
2192 
2193 	page_bufs = page_buffers(page);
2194 	/*
2195 	 * We cannot do block allocation or other extent handling in this
2196 	 * function. If there are buffers needing that, we have to redirty
2197 	 * the page. But we may reach here when we do a journal commit via
2198 	 * journal_submit_inode_data_buffers() and in that case we must write
2199 	 * allocated buffers to achieve data=ordered mode guarantees.
2200 	 *
2201 	 * Also, if there is only one buffer per page (the fs block
2202 	 * size == the page size), if one buffer needs block
2203 	 * allocation or needs to modify the extent tree to clear the
2204 	 * unwritten flag, we know that the page can't be written at
2205 	 * all, so we might as well refuse the write immediately.
2206 	 * Unfortunately if the block size != page size, we can't as
2207 	 * easily detect this case using ext4_walk_page_buffers(), but
2208 	 * for the extremely common case, this is an optimization that
2209 	 * skips a useless round trip through ext4_bio_write_page().
2210 	 */
2211 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2212 				   ext4_bh_delay_or_unwritten)) {
2213 		redirty_page_for_writepage(wbc, page);
2214 		if ((current->flags & PF_MEMALLOC) ||
2215 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2216 			/*
2217 			 * For memory cleaning there's no point in writing only
2218 			 * some buffers. So just bail out. Warn if we came here
2219 			 * from direct reclaim.
2220 			 */
2221 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2222 							== PF_MEMALLOC);
2223 			unlock_page(page);
2224 			return 0;
2225 		}
2226 		keep_towrite = true;
2227 	}
2228 
2229 	if (PageChecked(page) && ext4_should_journal_data(inode))
2230 		/*
2231 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2232 		 * doesn't seem much point in redirtying the page here.
2233 		 */
2234 		return __ext4_journalled_writepage(page, len);
2235 
2236 	ext4_io_submit_init(&io_submit, wbc);
2237 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2238 	if (!io_submit.io_end) {
2239 		redirty_page_for_writepage(wbc, page);
2240 		unlock_page(page);
2241 		return -ENOMEM;
2242 	}
2243 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2244 	ext4_io_submit(&io_submit);
2245 	/* Drop io_end reference we got from init */
2246 	ext4_put_io_end_defer(io_submit.io_end);
2247 	return ret;
2248 }
2249 
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)2250 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2251 {
2252 	int len;
2253 	loff_t size;
2254 	int err;
2255 
2256 	BUG_ON(page->index != mpd->first_page);
2257 	clear_page_dirty_for_io(page);
2258 	/*
2259 	 * We have to be very careful here!  Nothing protects writeback path
2260 	 * against i_size changes and the page can be writeably mapped into
2261 	 * page tables. So an application can be growing i_size and writing
2262 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2263 	 * write-protects our page in page tables and the page cannot get
2264 	 * written to again until we release page lock. So only after
2265 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2266 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2267 	 * on the barrier provided by TestClearPageDirty in
2268 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2269 	 * after page tables are updated.
2270 	 */
2271 	size = i_size_read(mpd->inode);
2272 	if (page->index == size >> PAGE_SHIFT &&
2273 	    !ext4_verity_in_progress(mpd->inode))
2274 		len = size & ~PAGE_MASK;
2275 	else
2276 		len = PAGE_SIZE;
2277 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2278 	if (!err)
2279 		mpd->wbc->nr_to_write--;
2280 	mpd->first_page++;
2281 
2282 	return err;
2283 }
2284 
2285 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2286 
2287 /*
2288  * mballoc gives us at most this number of blocks...
2289  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2290  * The rest of mballoc seems to handle chunks up to full group size.
2291  */
2292 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2293 
2294 /*
2295  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2296  *
2297  * @mpd - extent of blocks
2298  * @lblk - logical number of the block in the file
2299  * @bh - buffer head we want to add to the extent
2300  *
2301  * The function is used to collect contig. blocks in the same state. If the
2302  * buffer doesn't require mapping for writeback and we haven't started the
2303  * extent of buffers to map yet, the function returns 'true' immediately - the
2304  * caller can write the buffer right away. Otherwise the function returns true
2305  * if the block has been added to the extent, false if the block couldn't be
2306  * added.
2307  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2308 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2309 				   struct buffer_head *bh)
2310 {
2311 	struct ext4_map_blocks *map = &mpd->map;
2312 
2313 	/* Buffer that doesn't need mapping for writeback? */
2314 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2315 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2316 		/* So far no extent to map => we write the buffer right away */
2317 		if (map->m_len == 0)
2318 			return true;
2319 		return false;
2320 	}
2321 
2322 	/* First block in the extent? */
2323 	if (map->m_len == 0) {
2324 		/* We cannot map unless handle is started... */
2325 		if (!mpd->do_map)
2326 			return false;
2327 		map->m_lblk = lblk;
2328 		map->m_len = 1;
2329 		map->m_flags = bh->b_state & BH_FLAGS;
2330 		return true;
2331 	}
2332 
2333 	/* Don't go larger than mballoc is willing to allocate */
2334 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2335 		return false;
2336 
2337 	/* Can we merge the block to our big extent? */
2338 	if (lblk == map->m_lblk + map->m_len &&
2339 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2340 		map->m_len++;
2341 		return true;
2342 	}
2343 	return false;
2344 }
2345 
2346 /*
2347  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2348  *
2349  * @mpd - extent of blocks for mapping
2350  * @head - the first buffer in the page
2351  * @bh - buffer we should start processing from
2352  * @lblk - logical number of the block in the file corresponding to @bh
2353  *
2354  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2355  * the page for IO if all buffers in this page were mapped and there's no
2356  * accumulated extent of buffers to map or add buffers in the page to the
2357  * extent of buffers to map. The function returns 1 if the caller can continue
2358  * by processing the next page, 0 if it should stop adding buffers to the
2359  * extent to map because we cannot extend it anymore. It can also return value
2360  * < 0 in case of error during IO submission.
2361  */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2362 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2363 				   struct buffer_head *head,
2364 				   struct buffer_head *bh,
2365 				   ext4_lblk_t lblk)
2366 {
2367 	struct inode *inode = mpd->inode;
2368 	int err;
2369 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2370 							>> inode->i_blkbits;
2371 
2372 	if (ext4_verity_in_progress(inode))
2373 		blocks = EXT_MAX_BLOCKS;
2374 
2375 	do {
2376 		BUG_ON(buffer_locked(bh));
2377 
2378 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2379 			/* Found extent to map? */
2380 			if (mpd->map.m_len)
2381 				return 0;
2382 			/* Buffer needs mapping and handle is not started? */
2383 			if (!mpd->do_map)
2384 				return 0;
2385 			/* Everything mapped so far and we hit EOF */
2386 			break;
2387 		}
2388 	} while (lblk++, (bh = bh->b_this_page) != head);
2389 	/* So far everything mapped? Submit the page for IO. */
2390 	if (mpd->map.m_len == 0) {
2391 		err = mpage_submit_page(mpd, head->b_page);
2392 		if (err < 0)
2393 			return err;
2394 	}
2395 	return lblk < blocks;
2396 }
2397 
2398 /*
2399  * mpage_map_buffers - update buffers corresponding to changed extent and
2400  *		       submit fully mapped pages for IO
2401  *
2402  * @mpd - description of extent to map, on return next extent to map
2403  *
2404  * Scan buffers corresponding to changed extent (we expect corresponding pages
2405  * to be already locked) and update buffer state according to new extent state.
2406  * We map delalloc buffers to their physical location, clear unwritten bits,
2407  * and mark buffers as uninit when we perform writes to unwritten extents
2408  * and do extent conversion after IO is finished. If the last page is not fully
2409  * mapped, we update @map to the next extent in the last page that needs
2410  * mapping. Otherwise we submit the page for IO.
2411  */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2412 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2413 {
2414 	struct pagevec pvec;
2415 	int nr_pages, i;
2416 	struct inode *inode = mpd->inode;
2417 	struct buffer_head *head, *bh;
2418 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2419 	pgoff_t start, end;
2420 	ext4_lblk_t lblk;
2421 	sector_t pblock;
2422 	int err;
2423 
2424 	start = mpd->map.m_lblk >> bpp_bits;
2425 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2426 	lblk = start << bpp_bits;
2427 	pblock = mpd->map.m_pblk;
2428 
2429 	pagevec_init(&pvec);
2430 	while (start <= end) {
2431 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2432 						&start, end);
2433 		if (nr_pages == 0)
2434 			break;
2435 		for (i = 0; i < nr_pages; i++) {
2436 			struct page *page = pvec.pages[i];
2437 
2438 			bh = head = page_buffers(page);
2439 			do {
2440 				if (lblk < mpd->map.m_lblk)
2441 					continue;
2442 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2443 					/*
2444 					 * Buffer after end of mapped extent.
2445 					 * Find next buffer in the page to map.
2446 					 */
2447 					mpd->map.m_len = 0;
2448 					mpd->map.m_flags = 0;
2449 					/*
2450 					 * FIXME: If dioread_nolock supports
2451 					 * blocksize < pagesize, we need to make
2452 					 * sure we add size mapped so far to
2453 					 * io_end->size as the following call
2454 					 * can submit the page for IO.
2455 					 */
2456 					err = mpage_process_page_bufs(mpd, head,
2457 								      bh, lblk);
2458 					pagevec_release(&pvec);
2459 					if (err > 0)
2460 						err = 0;
2461 					return err;
2462 				}
2463 				if (buffer_delay(bh)) {
2464 					clear_buffer_delay(bh);
2465 					bh->b_blocknr = pblock++;
2466 				}
2467 				clear_buffer_unwritten(bh);
2468 			} while (lblk++, (bh = bh->b_this_page) != head);
2469 
2470 			/*
2471 			 * FIXME: This is going to break if dioread_nolock
2472 			 * supports blocksize < pagesize as we will try to
2473 			 * convert potentially unmapped parts of inode.
2474 			 */
2475 			mpd->io_submit.io_end->size += PAGE_SIZE;
2476 			/* Page fully mapped - let IO run! */
2477 			err = mpage_submit_page(mpd, page);
2478 			if (err < 0) {
2479 				pagevec_release(&pvec);
2480 				return err;
2481 			}
2482 		}
2483 		pagevec_release(&pvec);
2484 	}
2485 	/* Extent fully mapped and matches with page boundary. We are done. */
2486 	mpd->map.m_len = 0;
2487 	mpd->map.m_flags = 0;
2488 	return 0;
2489 }
2490 
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2491 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2492 {
2493 	struct inode *inode = mpd->inode;
2494 	struct ext4_map_blocks *map = &mpd->map;
2495 	int get_blocks_flags;
2496 	int err, dioread_nolock;
2497 
2498 	trace_ext4_da_write_pages_extent(inode, map);
2499 	/*
2500 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2501 	 * to convert an unwritten extent to be initialized (in the case
2502 	 * where we have written into one or more preallocated blocks).  It is
2503 	 * possible that we're going to need more metadata blocks than
2504 	 * previously reserved. However we must not fail because we're in
2505 	 * writeback and there is nothing we can do about it so it might result
2506 	 * in data loss.  So use reserved blocks to allocate metadata if
2507 	 * possible.
2508 	 *
2509 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2510 	 * the blocks in question are delalloc blocks.  This indicates
2511 	 * that the blocks and quotas has already been checked when
2512 	 * the data was copied into the page cache.
2513 	 */
2514 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2515 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2516 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2517 	dioread_nolock = ext4_should_dioread_nolock(inode);
2518 	if (dioread_nolock)
2519 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2520 	if (map->m_flags & (1 << BH_Delay))
2521 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2522 
2523 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2524 	if (err < 0)
2525 		return err;
2526 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2527 		if (!mpd->io_submit.io_end->handle &&
2528 		    ext4_handle_valid(handle)) {
2529 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2530 			handle->h_rsv_handle = NULL;
2531 		}
2532 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2533 	}
2534 
2535 	BUG_ON(map->m_len == 0);
2536 	return 0;
2537 }
2538 
2539 /*
2540  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2541  *				 mpd->len and submit pages underlying it for IO
2542  *
2543  * @handle - handle for journal operations
2544  * @mpd - extent to map
2545  * @give_up_on_write - we set this to true iff there is a fatal error and there
2546  *                     is no hope of writing the data. The caller should discard
2547  *                     dirty pages to avoid infinite loops.
2548  *
2549  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2550  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2551  * them to initialized or split the described range from larger unwritten
2552  * extent. Note that we need not map all the described range since allocation
2553  * can return less blocks or the range is covered by more unwritten extents. We
2554  * cannot map more because we are limited by reserved transaction credits. On
2555  * the other hand we always make sure that the last touched page is fully
2556  * mapped so that it can be written out (and thus forward progress is
2557  * guaranteed). After mapping we submit all mapped pages for IO.
2558  */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2559 static int mpage_map_and_submit_extent(handle_t *handle,
2560 				       struct mpage_da_data *mpd,
2561 				       bool *give_up_on_write)
2562 {
2563 	struct inode *inode = mpd->inode;
2564 	struct ext4_map_blocks *map = &mpd->map;
2565 	int err;
2566 	loff_t disksize;
2567 	int progress = 0;
2568 
2569 	mpd->io_submit.io_end->offset =
2570 				((loff_t)map->m_lblk) << inode->i_blkbits;
2571 	do {
2572 		err = mpage_map_one_extent(handle, mpd);
2573 		if (err < 0) {
2574 			struct super_block *sb = inode->i_sb;
2575 
2576 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2577 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2578 				goto invalidate_dirty_pages;
2579 			/*
2580 			 * Let the uper layers retry transient errors.
2581 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2582 			 * is non-zero, a commit should free up blocks.
2583 			 */
2584 			if ((err == -ENOMEM) ||
2585 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2586 				if (progress)
2587 					goto update_disksize;
2588 				return err;
2589 			}
2590 			ext4_msg(sb, KERN_CRIT,
2591 				 "Delayed block allocation failed for "
2592 				 "inode %lu at logical offset %llu with"
2593 				 " max blocks %u with error %d",
2594 				 inode->i_ino,
2595 				 (unsigned long long)map->m_lblk,
2596 				 (unsigned)map->m_len, -err);
2597 			ext4_msg(sb, KERN_CRIT,
2598 				 "This should not happen!! Data will "
2599 				 "be lost\n");
2600 			if (err == -ENOSPC)
2601 				ext4_print_free_blocks(inode);
2602 		invalidate_dirty_pages:
2603 			*give_up_on_write = true;
2604 			return err;
2605 		}
2606 		progress = 1;
2607 		/*
2608 		 * Update buffer state, submit mapped pages, and get us new
2609 		 * extent to map
2610 		 */
2611 		err = mpage_map_and_submit_buffers(mpd);
2612 		if (err < 0)
2613 			goto update_disksize;
2614 	} while (map->m_len);
2615 
2616 update_disksize:
2617 	/*
2618 	 * Update on-disk size after IO is submitted.  Races with
2619 	 * truncate are avoided by checking i_size under i_data_sem.
2620 	 */
2621 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2622 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2623 		int err2;
2624 		loff_t i_size;
2625 
2626 		down_write(&EXT4_I(inode)->i_data_sem);
2627 		i_size = i_size_read(inode);
2628 		if (disksize > i_size)
2629 			disksize = i_size;
2630 		if (disksize > EXT4_I(inode)->i_disksize)
2631 			EXT4_I(inode)->i_disksize = disksize;
2632 		up_write(&EXT4_I(inode)->i_data_sem);
2633 		err2 = ext4_mark_inode_dirty(handle, inode);
2634 		if (err2)
2635 			ext4_error(inode->i_sb,
2636 				   "Failed to mark inode %lu dirty",
2637 				   inode->i_ino);
2638 		if (!err)
2639 			err = err2;
2640 	}
2641 	return err;
2642 }
2643 
2644 /*
2645  * Calculate the total number of credits to reserve for one writepages
2646  * iteration. This is called from ext4_writepages(). We map an extent of
2647  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2648  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2649  * bpp - 1 blocks in bpp different extents.
2650  */
ext4_da_writepages_trans_blocks(struct inode * inode)2651 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2652 {
2653 	int bpp = ext4_journal_blocks_per_page(inode);
2654 
2655 	return ext4_meta_trans_blocks(inode,
2656 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2657 }
2658 
2659 /*
2660  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2661  * 				 and underlying extent to map
2662  *
2663  * @mpd - where to look for pages
2664  *
2665  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2666  * IO immediately. When we find a page which isn't mapped we start accumulating
2667  * extent of buffers underlying these pages that needs mapping (formed by
2668  * either delayed or unwritten buffers). We also lock the pages containing
2669  * these buffers. The extent found is returned in @mpd structure (starting at
2670  * mpd->lblk with length mpd->len blocks).
2671  *
2672  * Note that this function can attach bios to one io_end structure which are
2673  * neither logically nor physically contiguous. Although it may seem as an
2674  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2675  * case as we need to track IO to all buffers underlying a page in one io_end.
2676  */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2677 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2678 {
2679 	struct address_space *mapping = mpd->inode->i_mapping;
2680 	struct pagevec pvec;
2681 	unsigned int nr_pages;
2682 	long left = mpd->wbc->nr_to_write;
2683 	pgoff_t index = mpd->first_page;
2684 	pgoff_t end = mpd->last_page;
2685 	xa_mark_t tag;
2686 	int i, err = 0;
2687 	int blkbits = mpd->inode->i_blkbits;
2688 	ext4_lblk_t lblk;
2689 	struct buffer_head *head;
2690 
2691 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2692 		tag = PAGECACHE_TAG_TOWRITE;
2693 	else
2694 		tag = PAGECACHE_TAG_DIRTY;
2695 
2696 	pagevec_init(&pvec);
2697 	mpd->map.m_len = 0;
2698 	mpd->next_page = index;
2699 	while (index <= end) {
2700 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2701 				tag);
2702 		if (nr_pages == 0)
2703 			goto out;
2704 
2705 		for (i = 0; i < nr_pages; i++) {
2706 			struct page *page = pvec.pages[i];
2707 
2708 			/*
2709 			 * Accumulated enough dirty pages? This doesn't apply
2710 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2711 			 * keep going because someone may be concurrently
2712 			 * dirtying pages, and we might have synced a lot of
2713 			 * newly appeared dirty pages, but have not synced all
2714 			 * of the old dirty pages.
2715 			 */
2716 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2717 				goto out;
2718 
2719 			/* If we can't merge this page, we are done. */
2720 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2721 				goto out;
2722 
2723 			lock_page(page);
2724 			/*
2725 			 * If the page is no longer dirty, or its mapping no
2726 			 * longer corresponds to inode we are writing (which
2727 			 * means it has been truncated or invalidated), or the
2728 			 * page is already under writeback and we are not doing
2729 			 * a data integrity writeback, skip the page
2730 			 */
2731 			if (!PageDirty(page) ||
2732 			    (PageWriteback(page) &&
2733 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2734 			    unlikely(page->mapping != mapping)) {
2735 				unlock_page(page);
2736 				continue;
2737 			}
2738 
2739 			wait_on_page_writeback(page);
2740 			BUG_ON(PageWriteback(page));
2741 
2742 			/*
2743 			 * Should never happen but for buggy code in
2744 			 * other subsystems that call
2745 			 * set_page_dirty() without properly warning
2746 			 * the file system first.  See [1] for more
2747 			 * information.
2748 			 *
2749 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2750 			 */
2751 			if (!page_has_buffers(page)) {
2752 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2753 				ClearPageDirty(page);
2754 				unlock_page(page);
2755 				continue;
2756 			}
2757 
2758 			if (mpd->map.m_len == 0)
2759 				mpd->first_page = page->index;
2760 			mpd->next_page = page->index + 1;
2761 			/* Add all dirty buffers to mpd */
2762 			lblk = ((ext4_lblk_t)page->index) <<
2763 				(PAGE_SHIFT - blkbits);
2764 			head = page_buffers(page);
2765 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2766 			if (err <= 0)
2767 				goto out;
2768 			err = 0;
2769 			left--;
2770 		}
2771 		pagevec_release(&pvec);
2772 		cond_resched();
2773 	}
2774 	return 0;
2775 out:
2776 	pagevec_release(&pvec);
2777 	return err;
2778 }
2779 
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2780 static int ext4_writepages(struct address_space *mapping,
2781 			   struct writeback_control *wbc)
2782 {
2783 	pgoff_t	writeback_index = 0;
2784 	long nr_to_write = wbc->nr_to_write;
2785 	int range_whole = 0;
2786 	int cycled = 1;
2787 	handle_t *handle = NULL;
2788 	struct mpage_da_data mpd;
2789 	struct inode *inode = mapping->host;
2790 	int needed_blocks, rsv_blocks = 0, ret = 0;
2791 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2792 	bool done;
2793 	struct blk_plug plug;
2794 	bool give_up_on_write = false;
2795 
2796 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2797 		return -EIO;
2798 
2799 	percpu_down_read(&sbi->s_writepages_rwsem);
2800 	trace_ext4_writepages(inode, wbc);
2801 
2802 	/*
2803 	 * No pages to write? This is mainly a kludge to avoid starting
2804 	 * a transaction for special inodes like journal inode on last iput()
2805 	 * because that could violate lock ordering on umount
2806 	 */
2807 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2808 		goto out_writepages;
2809 
2810 	if (ext4_should_journal_data(inode)) {
2811 		ret = generic_writepages(mapping, wbc);
2812 		goto out_writepages;
2813 	}
2814 
2815 	/*
2816 	 * If the filesystem has aborted, it is read-only, so return
2817 	 * right away instead of dumping stack traces later on that
2818 	 * will obscure the real source of the problem.  We test
2819 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2820 	 * the latter could be true if the filesystem is mounted
2821 	 * read-only, and in that case, ext4_writepages should
2822 	 * *never* be called, so if that ever happens, we would want
2823 	 * the stack trace.
2824 	 */
2825 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2826 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2827 		ret = -EROFS;
2828 		goto out_writepages;
2829 	}
2830 
2831 	/*
2832 	 * If we have inline data and arrive here, it means that
2833 	 * we will soon create the block for the 1st page, so
2834 	 * we'd better clear the inline data here.
2835 	 */
2836 	if (ext4_has_inline_data(inode)) {
2837 		/* Just inode will be modified... */
2838 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2839 		if (IS_ERR(handle)) {
2840 			ret = PTR_ERR(handle);
2841 			goto out_writepages;
2842 		}
2843 		BUG_ON(ext4_test_inode_state(inode,
2844 				EXT4_STATE_MAY_INLINE_DATA));
2845 		ext4_destroy_inline_data(handle, inode);
2846 		ext4_journal_stop(handle);
2847 	}
2848 
2849 	if (ext4_should_dioread_nolock(inode)) {
2850 		/*
2851 		 * We may need to convert up to one extent per block in
2852 		 * the page and we may dirty the inode.
2853 		 */
2854 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2855 						PAGE_SIZE >> inode->i_blkbits);
2856 	}
2857 
2858 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2859 		range_whole = 1;
2860 
2861 	if (wbc->range_cyclic) {
2862 		writeback_index = mapping->writeback_index;
2863 		if (writeback_index)
2864 			cycled = 0;
2865 		mpd.first_page = writeback_index;
2866 		mpd.last_page = -1;
2867 	} else {
2868 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2869 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2870 	}
2871 
2872 	mpd.inode = inode;
2873 	mpd.wbc = wbc;
2874 	ext4_io_submit_init(&mpd.io_submit, wbc);
2875 retry:
2876 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2877 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2878 	done = false;
2879 	blk_start_plug(&plug);
2880 
2881 	/*
2882 	 * First writeback pages that don't need mapping - we can avoid
2883 	 * starting a transaction unnecessarily and also avoid being blocked
2884 	 * in the block layer on device congestion while having transaction
2885 	 * started.
2886 	 */
2887 	mpd.do_map = 0;
2888 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2889 	if (!mpd.io_submit.io_end) {
2890 		ret = -ENOMEM;
2891 		goto unplug;
2892 	}
2893 	ret = mpage_prepare_extent_to_map(&mpd);
2894 	/* Unlock pages we didn't use */
2895 	mpage_release_unused_pages(&mpd, false);
2896 	/* Submit prepared bio */
2897 	ext4_io_submit(&mpd.io_submit);
2898 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2899 	mpd.io_submit.io_end = NULL;
2900 	if (ret < 0)
2901 		goto unplug;
2902 
2903 	while (!done && mpd.first_page <= mpd.last_page) {
2904 		/* For each extent of pages we use new io_end */
2905 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2906 		if (!mpd.io_submit.io_end) {
2907 			ret = -ENOMEM;
2908 			break;
2909 		}
2910 
2911 		/*
2912 		 * We have two constraints: We find one extent to map and we
2913 		 * must always write out whole page (makes a difference when
2914 		 * blocksize < pagesize) so that we don't block on IO when we
2915 		 * try to write out the rest of the page. Journalled mode is
2916 		 * not supported by delalloc.
2917 		 */
2918 		BUG_ON(ext4_should_journal_data(inode));
2919 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2920 
2921 		/* start a new transaction */
2922 		handle = ext4_journal_start_with_reserve(inode,
2923 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2924 		if (IS_ERR(handle)) {
2925 			ret = PTR_ERR(handle);
2926 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2927 			       "%ld pages, ino %lu; err %d", __func__,
2928 				wbc->nr_to_write, inode->i_ino, ret);
2929 			/* Release allocated io_end */
2930 			ext4_put_io_end(mpd.io_submit.io_end);
2931 			mpd.io_submit.io_end = NULL;
2932 			break;
2933 		}
2934 		mpd.do_map = 1;
2935 
2936 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2937 		ret = mpage_prepare_extent_to_map(&mpd);
2938 		if (!ret) {
2939 			if (mpd.map.m_len)
2940 				ret = mpage_map_and_submit_extent(handle, &mpd,
2941 					&give_up_on_write);
2942 			else {
2943 				/*
2944 				 * We scanned the whole range (or exhausted
2945 				 * nr_to_write), submitted what was mapped and
2946 				 * didn't find anything needing mapping. We are
2947 				 * done.
2948 				 */
2949 				done = true;
2950 			}
2951 		}
2952 		/*
2953 		 * Caution: If the handle is synchronous,
2954 		 * ext4_journal_stop() can wait for transaction commit
2955 		 * to finish which may depend on writeback of pages to
2956 		 * complete or on page lock to be released.  In that
2957 		 * case, we have to wait until after after we have
2958 		 * submitted all the IO, released page locks we hold,
2959 		 * and dropped io_end reference (for extent conversion
2960 		 * to be able to complete) before stopping the handle.
2961 		 */
2962 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2963 			ext4_journal_stop(handle);
2964 			handle = NULL;
2965 			mpd.do_map = 0;
2966 		}
2967 		/* Unlock pages we didn't use */
2968 		mpage_release_unused_pages(&mpd, give_up_on_write);
2969 		/* Submit prepared bio */
2970 		ext4_io_submit(&mpd.io_submit);
2971 
2972 		/*
2973 		 * Drop our io_end reference we got from init. We have
2974 		 * to be careful and use deferred io_end finishing if
2975 		 * we are still holding the transaction as we can
2976 		 * release the last reference to io_end which may end
2977 		 * up doing unwritten extent conversion.
2978 		 */
2979 		if (handle) {
2980 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2981 			ext4_journal_stop(handle);
2982 		} else
2983 			ext4_put_io_end(mpd.io_submit.io_end);
2984 		mpd.io_submit.io_end = NULL;
2985 
2986 		if (ret == -ENOSPC && sbi->s_journal) {
2987 			/*
2988 			 * Commit the transaction which would
2989 			 * free blocks released in the transaction
2990 			 * and try again
2991 			 */
2992 			jbd2_journal_force_commit_nested(sbi->s_journal);
2993 			ret = 0;
2994 			continue;
2995 		}
2996 		/* Fatal error - ENOMEM, EIO... */
2997 		if (ret)
2998 			break;
2999 	}
3000 unplug:
3001 	blk_finish_plug(&plug);
3002 	if (!ret && !cycled && wbc->nr_to_write > 0) {
3003 		cycled = 1;
3004 		mpd.last_page = writeback_index - 1;
3005 		mpd.first_page = 0;
3006 		goto retry;
3007 	}
3008 
3009 	/* Update index */
3010 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3011 		/*
3012 		 * Set the writeback_index so that range_cyclic
3013 		 * mode will write it back later
3014 		 */
3015 		mapping->writeback_index = mpd.first_page;
3016 
3017 out_writepages:
3018 	trace_ext4_writepages_result(inode, wbc, ret,
3019 				     nr_to_write - wbc->nr_to_write);
3020 	percpu_up_read(&sbi->s_writepages_rwsem);
3021 	return ret;
3022 }
3023 
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)3024 static int ext4_dax_writepages(struct address_space *mapping,
3025 			       struct writeback_control *wbc)
3026 {
3027 	int ret;
3028 	long nr_to_write = wbc->nr_to_write;
3029 	struct inode *inode = mapping->host;
3030 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
3031 
3032 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3033 		return -EIO;
3034 
3035 	percpu_down_read(&sbi->s_writepages_rwsem);
3036 	trace_ext4_writepages(inode, wbc);
3037 
3038 	ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
3039 	trace_ext4_writepages_result(inode, wbc, ret,
3040 				     nr_to_write - wbc->nr_to_write);
3041 	percpu_up_read(&sbi->s_writepages_rwsem);
3042 	return ret;
3043 }
3044 
ext4_nonda_switch(struct super_block * sb)3045 static int ext4_nonda_switch(struct super_block *sb)
3046 {
3047 	s64 free_clusters, dirty_clusters;
3048 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3049 
3050 	/*
3051 	 * switch to non delalloc mode if we are running low
3052 	 * on free block. The free block accounting via percpu
3053 	 * counters can get slightly wrong with percpu_counter_batch getting
3054 	 * accumulated on each CPU without updating global counters
3055 	 * Delalloc need an accurate free block accounting. So switch
3056 	 * to non delalloc when we are near to error range.
3057 	 */
3058 	free_clusters =
3059 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3060 	dirty_clusters =
3061 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3062 	/*
3063 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
3064 	 */
3065 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3066 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3067 
3068 	if (2 * free_clusters < 3 * dirty_clusters ||
3069 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3070 		/*
3071 		 * free block count is less than 150% of dirty blocks
3072 		 * or free blocks is less than watermark
3073 		 */
3074 		return 1;
3075 	}
3076 	return 0;
3077 }
3078 
3079 /* We always reserve for an inode update; the superblock could be there too */
ext4_da_write_credits(struct inode * inode,loff_t pos,unsigned len)3080 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3081 {
3082 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
3083 		return 1;
3084 
3085 	if (pos + len <= 0x7fffffffULL)
3086 		return 1;
3087 
3088 	/* We might need to update the superblock to set LARGE_FILE */
3089 	return 2;
3090 }
3091 
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3092 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3093 			       loff_t pos, unsigned len, unsigned flags,
3094 			       struct page **pagep, void **fsdata)
3095 {
3096 	int ret, retries = 0;
3097 	struct page *page;
3098 	pgoff_t index;
3099 	struct inode *inode = mapping->host;
3100 	handle_t *handle;
3101 
3102 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3103 		return -EIO;
3104 
3105 	index = pos >> PAGE_SHIFT;
3106 
3107 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
3108 	    ext4_verity_in_progress(inode)) {
3109 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3110 		return ext4_write_begin(file, mapping, pos,
3111 					len, flags, pagep, fsdata);
3112 	}
3113 	*fsdata = (void *)0;
3114 	if (trace_android_fs_datawrite_start_enabled()) {
3115 		char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3116 
3117 		path = android_fstrace_get_pathname(pathbuf,
3118 						    MAX_TRACE_PATHBUF_LEN,
3119 						    inode);
3120 		trace_android_fs_datawrite_start(inode, pos, len,
3121 						 current->pid,
3122 						 path, current->comm);
3123 	}
3124 	trace_ext4_da_write_begin(inode, pos, len, flags);
3125 
3126 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3127 		ret = ext4_da_write_inline_data_begin(mapping, inode,
3128 						      pos, len, flags,
3129 						      pagep, fsdata);
3130 		if (ret < 0)
3131 			return ret;
3132 		if (ret == 1)
3133 			return 0;
3134 	}
3135 
3136 	/*
3137 	 * grab_cache_page_write_begin() can take a long time if the
3138 	 * system is thrashing due to memory pressure, or if the page
3139 	 * is being written back.  So grab it first before we start
3140 	 * the transaction handle.  This also allows us to allocate
3141 	 * the page (if needed) without using GFP_NOFS.
3142 	 */
3143 retry_grab:
3144 	page = grab_cache_page_write_begin(mapping, index, flags);
3145 	if (!page)
3146 		return -ENOMEM;
3147 	unlock_page(page);
3148 
3149 	/*
3150 	 * With delayed allocation, we don't log the i_disksize update
3151 	 * if there is delayed block allocation. But we still need
3152 	 * to journalling the i_disksize update if writes to the end
3153 	 * of file which has an already mapped buffer.
3154 	 */
3155 retry_journal:
3156 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3157 				ext4_da_write_credits(inode, pos, len));
3158 	if (IS_ERR(handle)) {
3159 		put_page(page);
3160 		return PTR_ERR(handle);
3161 	}
3162 
3163 	lock_page(page);
3164 	if (page->mapping != mapping) {
3165 		/* The page got truncated from under us */
3166 		unlock_page(page);
3167 		put_page(page);
3168 		ext4_journal_stop(handle);
3169 		goto retry_grab;
3170 	}
3171 	/* In case writeback began while the page was unlocked */
3172 	wait_for_stable_page(page);
3173 
3174 #ifdef CONFIG_FS_ENCRYPTION
3175 	ret = ext4_block_write_begin(page, pos, len,
3176 				     ext4_da_get_block_prep);
3177 #else
3178 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3179 #endif
3180 	if (ret < 0) {
3181 		unlock_page(page);
3182 		ext4_journal_stop(handle);
3183 		/*
3184 		 * block_write_begin may have instantiated a few blocks
3185 		 * outside i_size.  Trim these off again. Don't need
3186 		 * i_size_read because we hold i_mutex.
3187 		 */
3188 		if (pos + len > inode->i_size)
3189 			ext4_truncate_failed_write(inode);
3190 
3191 		if (ret == -ENOSPC &&
3192 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3193 			goto retry_journal;
3194 
3195 		put_page(page);
3196 		return ret;
3197 	}
3198 
3199 	*pagep = page;
3200 	return ret;
3201 }
3202 
3203 /*
3204  * Check if we should update i_disksize
3205  * when write to the end of file but not require block allocation
3206  */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)3207 static int ext4_da_should_update_i_disksize(struct page *page,
3208 					    unsigned long offset)
3209 {
3210 	struct buffer_head *bh;
3211 	struct inode *inode = page->mapping->host;
3212 	unsigned int idx;
3213 	int i;
3214 
3215 	bh = page_buffers(page);
3216 	idx = offset >> inode->i_blkbits;
3217 
3218 	for (i = 0; i < idx; i++)
3219 		bh = bh->b_this_page;
3220 
3221 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3222 		return 0;
3223 	return 1;
3224 }
3225 
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3226 static int ext4_da_write_end(struct file *file,
3227 			     struct address_space *mapping,
3228 			     loff_t pos, unsigned len, unsigned copied,
3229 			     struct page *page, void *fsdata)
3230 {
3231 	struct inode *inode = mapping->host;
3232 	int ret = 0, ret2;
3233 	handle_t *handle = ext4_journal_current_handle();
3234 	loff_t new_i_size;
3235 	unsigned long start, end;
3236 	int write_mode = (int)(unsigned long)fsdata;
3237 
3238 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3239 		return ext4_write_end(file, mapping, pos,
3240 				      len, copied, page, fsdata);
3241 
3242 	trace_android_fs_datawrite_end(inode, pos, len);
3243 	trace_ext4_da_write_end(inode, pos, len, copied);
3244 	start = pos & (PAGE_SIZE - 1);
3245 	end = start + copied - 1;
3246 
3247 	/*
3248 	 * generic_write_end() will run mark_inode_dirty() if i_size
3249 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3250 	 * into that.
3251 	 */
3252 	new_i_size = pos + copied;
3253 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3254 		if (ext4_has_inline_data(inode) ||
3255 		    ext4_da_should_update_i_disksize(page, end)) {
3256 			ext4_update_i_disksize(inode, new_i_size);
3257 			/* We need to mark inode dirty even if
3258 			 * new_i_size is less that inode->i_size
3259 			 * bu greater than i_disksize.(hint delalloc)
3260 			 */
3261 			ext4_mark_inode_dirty(handle, inode);
3262 		}
3263 	}
3264 
3265 	if (write_mode != CONVERT_INLINE_DATA &&
3266 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3267 	    ext4_has_inline_data(inode))
3268 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3269 						     page);
3270 	else
3271 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3272 							page, fsdata);
3273 
3274 	copied = ret2;
3275 	if (ret2 < 0)
3276 		ret = ret2;
3277 	ret2 = ext4_journal_stop(handle);
3278 	if (!ret)
3279 		ret = ret2;
3280 
3281 	return ret ? ret : copied;
3282 }
3283 
3284 /*
3285  * Force all delayed allocation blocks to be allocated for a given inode.
3286  */
ext4_alloc_da_blocks(struct inode * inode)3287 int ext4_alloc_da_blocks(struct inode *inode)
3288 {
3289 	trace_ext4_alloc_da_blocks(inode);
3290 
3291 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3292 		return 0;
3293 
3294 	/*
3295 	 * We do something simple for now.  The filemap_flush() will
3296 	 * also start triggering a write of the data blocks, which is
3297 	 * not strictly speaking necessary (and for users of
3298 	 * laptop_mode, not even desirable).  However, to do otherwise
3299 	 * would require replicating code paths in:
3300 	 *
3301 	 * ext4_writepages() ->
3302 	 *    write_cache_pages() ---> (via passed in callback function)
3303 	 *        __mpage_da_writepage() -->
3304 	 *           mpage_add_bh_to_extent()
3305 	 *           mpage_da_map_blocks()
3306 	 *
3307 	 * The problem is that write_cache_pages(), located in
3308 	 * mm/page-writeback.c, marks pages clean in preparation for
3309 	 * doing I/O, which is not desirable if we're not planning on
3310 	 * doing I/O at all.
3311 	 *
3312 	 * We could call write_cache_pages(), and then redirty all of
3313 	 * the pages by calling redirty_page_for_writepage() but that
3314 	 * would be ugly in the extreme.  So instead we would need to
3315 	 * replicate parts of the code in the above functions,
3316 	 * simplifying them because we wouldn't actually intend to
3317 	 * write out the pages, but rather only collect contiguous
3318 	 * logical block extents, call the multi-block allocator, and
3319 	 * then update the buffer heads with the block allocations.
3320 	 *
3321 	 * For now, though, we'll cheat by calling filemap_flush(),
3322 	 * which will map the blocks, and start the I/O, but not
3323 	 * actually wait for the I/O to complete.
3324 	 */
3325 	return filemap_flush(inode->i_mapping);
3326 }
3327 
3328 /*
3329  * bmap() is special.  It gets used by applications such as lilo and by
3330  * the swapper to find the on-disk block of a specific piece of data.
3331  *
3332  * Naturally, this is dangerous if the block concerned is still in the
3333  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3334  * filesystem and enables swap, then they may get a nasty shock when the
3335  * data getting swapped to that swapfile suddenly gets overwritten by
3336  * the original zero's written out previously to the journal and
3337  * awaiting writeback in the kernel's buffer cache.
3338  *
3339  * So, if we see any bmap calls here on a modified, data-journaled file,
3340  * take extra steps to flush any blocks which might be in the cache.
3341  */
ext4_bmap(struct address_space * mapping,sector_t block)3342 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3343 {
3344 	struct inode *inode = mapping->host;
3345 	journal_t *journal;
3346 	int err;
3347 
3348 	/*
3349 	 * We can get here for an inline file via the FIBMAP ioctl
3350 	 */
3351 	if (ext4_has_inline_data(inode))
3352 		return 0;
3353 
3354 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3355 			test_opt(inode->i_sb, DELALLOC)) {
3356 		/*
3357 		 * With delalloc we want to sync the file
3358 		 * so that we can make sure we allocate
3359 		 * blocks for file
3360 		 */
3361 		filemap_write_and_wait(mapping);
3362 	}
3363 
3364 	if (EXT4_JOURNAL(inode) &&
3365 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3366 		/*
3367 		 * This is a REALLY heavyweight approach, but the use of
3368 		 * bmap on dirty files is expected to be extremely rare:
3369 		 * only if we run lilo or swapon on a freshly made file
3370 		 * do we expect this to happen.
3371 		 *
3372 		 * (bmap requires CAP_SYS_RAWIO so this does not
3373 		 * represent an unprivileged user DOS attack --- we'd be
3374 		 * in trouble if mortal users could trigger this path at
3375 		 * will.)
3376 		 *
3377 		 * NB. EXT4_STATE_JDATA is not set on files other than
3378 		 * regular files.  If somebody wants to bmap a directory
3379 		 * or symlink and gets confused because the buffer
3380 		 * hasn't yet been flushed to disk, they deserve
3381 		 * everything they get.
3382 		 */
3383 
3384 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3385 		journal = EXT4_JOURNAL(inode);
3386 		jbd2_journal_lock_updates(journal);
3387 		err = jbd2_journal_flush(journal);
3388 		jbd2_journal_unlock_updates(journal);
3389 
3390 		if (err)
3391 			return 0;
3392 	}
3393 
3394 	return generic_block_bmap(mapping, block, ext4_get_block);
3395 }
3396 
ext4_readpage(struct file * file,struct page * page)3397 static int ext4_readpage(struct file *file, struct page *page)
3398 {
3399 	int ret = -EAGAIN;
3400 	struct inode *inode = page->mapping->host;
3401 
3402 	trace_ext4_readpage(page);
3403 
3404 	if (ext4_has_inline_data(inode))
3405 		ret = ext4_readpage_inline(inode, page);
3406 
3407 	if (ret == -EAGAIN)
3408 		return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3409 						false);
3410 
3411 	return ret;
3412 }
3413 
3414 static int
ext4_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)3415 ext4_readpages(struct file *file, struct address_space *mapping,
3416 		struct list_head *pages, unsigned nr_pages)
3417 {
3418 	struct inode *inode = mapping->host;
3419 
3420 	/* If the file has inline data, no need to do readpages. */
3421 	if (ext4_has_inline_data(inode))
3422 		return 0;
3423 
3424 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3425 }
3426 
ext4_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3427 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3428 				unsigned int length)
3429 {
3430 	trace_ext4_invalidatepage(page, offset, length);
3431 
3432 	/* No journalling happens on data buffers when this function is used */
3433 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3434 
3435 	block_invalidatepage(page, offset, length);
3436 }
3437 
__ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3438 static int __ext4_journalled_invalidatepage(struct page *page,
3439 					    unsigned int offset,
3440 					    unsigned int length)
3441 {
3442 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3443 
3444 	trace_ext4_journalled_invalidatepage(page, offset, length);
3445 
3446 	/*
3447 	 * If it's a full truncate we just forget about the pending dirtying
3448 	 */
3449 	if (offset == 0 && length == PAGE_SIZE)
3450 		ClearPageChecked(page);
3451 
3452 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3453 }
3454 
3455 /* Wrapper for aops... */
ext4_journalled_invalidatepage(struct page * page,unsigned int offset,unsigned int length)3456 static void ext4_journalled_invalidatepage(struct page *page,
3457 					   unsigned int offset,
3458 					   unsigned int length)
3459 {
3460 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3461 }
3462 
ext4_releasepage(struct page * page,gfp_t wait)3463 static int ext4_releasepage(struct page *page, gfp_t wait)
3464 {
3465 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3466 
3467 	trace_ext4_releasepage(page);
3468 
3469 	/* Page has dirty journalled data -> cannot release */
3470 	if (PageChecked(page))
3471 		return 0;
3472 	if (journal)
3473 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3474 	else
3475 		return try_to_free_buffers(page);
3476 }
3477 
ext4_inode_datasync_dirty(struct inode * inode)3478 static bool ext4_inode_datasync_dirty(struct inode *inode)
3479 {
3480 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3481 
3482 	if (journal)
3483 		return !jbd2_transaction_committed(journal,
3484 					EXT4_I(inode)->i_datasync_tid);
3485 	/* Any metadata buffers to write? */
3486 	if (!list_empty(&inode->i_mapping->private_list))
3487 		return true;
3488 	return inode->i_state & I_DIRTY_DATASYNC;
3489 }
3490 
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap)3491 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3492 			    unsigned flags, struct iomap *iomap)
3493 {
3494 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3495 	unsigned int blkbits = inode->i_blkbits;
3496 	unsigned long first_block, last_block;
3497 	struct ext4_map_blocks map;
3498 	bool delalloc = false;
3499 	int ret;
3500 
3501 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3502 		return -EINVAL;
3503 	first_block = offset >> blkbits;
3504 	last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3505 			   EXT4_MAX_LOGICAL_BLOCK);
3506 
3507 	if (flags & IOMAP_REPORT) {
3508 		if (ext4_has_inline_data(inode)) {
3509 			ret = ext4_inline_data_iomap(inode, iomap);
3510 			if (ret != -EAGAIN) {
3511 				if (ret == 0 && offset >= iomap->length)
3512 					ret = -ENOENT;
3513 				return ret;
3514 			}
3515 		}
3516 	} else {
3517 		if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3518 			return -ERANGE;
3519 	}
3520 
3521 	map.m_lblk = first_block;
3522 	map.m_len = last_block - first_block + 1;
3523 
3524 	if (flags & IOMAP_REPORT) {
3525 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3526 		if (ret < 0)
3527 			return ret;
3528 
3529 		if (ret == 0) {
3530 			ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3531 			struct extent_status es;
3532 
3533 			ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3534 						  map.m_lblk, end, &es);
3535 
3536 			if (!es.es_len || es.es_lblk > end) {
3537 				/* entire range is a hole */
3538 			} else if (es.es_lblk > map.m_lblk) {
3539 				/* range starts with a hole */
3540 				map.m_len = es.es_lblk - map.m_lblk;
3541 			} else {
3542 				ext4_lblk_t offs = 0;
3543 
3544 				if (es.es_lblk < map.m_lblk)
3545 					offs = map.m_lblk - es.es_lblk;
3546 				map.m_lblk = es.es_lblk + offs;
3547 				map.m_len = es.es_len - offs;
3548 				delalloc = true;
3549 			}
3550 		}
3551 	} else if (flags & IOMAP_WRITE) {
3552 		int dio_credits;
3553 		handle_t *handle;
3554 		int retries = 0;
3555 
3556 		/* Trim mapping request to maximum we can map at once for DIO */
3557 		if (map.m_len > DIO_MAX_BLOCKS)
3558 			map.m_len = DIO_MAX_BLOCKS;
3559 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3560 retry:
3561 		/*
3562 		 * Either we allocate blocks and then we don't get unwritten
3563 		 * extent so we have reserved enough credits, or the blocks
3564 		 * are already allocated and unwritten and in that case
3565 		 * extent conversion fits in the credits as well.
3566 		 */
3567 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3568 					    dio_credits);
3569 		if (IS_ERR(handle))
3570 			return PTR_ERR(handle);
3571 
3572 		ret = ext4_map_blocks(handle, inode, &map,
3573 				      EXT4_GET_BLOCKS_CREATE_ZERO);
3574 		if (ret < 0) {
3575 			ext4_journal_stop(handle);
3576 			if (ret == -ENOSPC &&
3577 			    ext4_should_retry_alloc(inode->i_sb, &retries))
3578 				goto retry;
3579 			return ret;
3580 		}
3581 
3582 		/*
3583 		 * If we added blocks beyond i_size, we need to make sure they
3584 		 * will get truncated if we crash before updating i_size in
3585 		 * ext4_iomap_end(). For faults we don't need to do that (and
3586 		 * even cannot because for orphan list operations inode_lock is
3587 		 * required) - if we happen to instantiate block beyond i_size,
3588 		 * it is because we race with truncate which has already added
3589 		 * the inode to the orphan list.
3590 		 */
3591 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3592 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3593 			int err;
3594 
3595 			err = ext4_orphan_add(handle, inode);
3596 			if (err < 0) {
3597 				ext4_journal_stop(handle);
3598 				return err;
3599 			}
3600 		}
3601 		ext4_journal_stop(handle);
3602 	} else {
3603 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3604 		if (ret < 0)
3605 			return ret;
3606 	}
3607 
3608 	/*
3609 	 * Writes that span EOF might trigger an I/O size update on completion,
3610 	 * so consider them to be dirty for the purposes of O_DSYNC, even if
3611 	 * there is no other metadata changes being made or are pending here.
3612 	 */
3613 	iomap->flags = 0;
3614 	if (ext4_inode_datasync_dirty(inode) ||
3615 	    offset + length > i_size_read(inode))
3616 		iomap->flags |= IOMAP_F_DIRTY;
3617 	iomap->bdev = inode->i_sb->s_bdev;
3618 	iomap->dax_dev = sbi->s_daxdev;
3619 	iomap->offset = (u64)first_block << blkbits;
3620 	iomap->length = (u64)map.m_len << blkbits;
3621 
3622 	if (ret == 0) {
3623 		iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3624 		iomap->addr = IOMAP_NULL_ADDR;
3625 	} else {
3626 		if (map.m_flags & EXT4_MAP_MAPPED) {
3627 			iomap->type = IOMAP_MAPPED;
3628 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3629 			iomap->type = IOMAP_UNWRITTEN;
3630 		} else {
3631 			WARN_ON_ONCE(1);
3632 			return -EIO;
3633 		}
3634 		iomap->addr = (u64)map.m_pblk << blkbits;
3635 	}
3636 
3637 	if (map.m_flags & EXT4_MAP_NEW)
3638 		iomap->flags |= IOMAP_F_NEW;
3639 
3640 	return 0;
3641 }
3642 
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3643 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3644 			  ssize_t written, unsigned flags, struct iomap *iomap)
3645 {
3646 	int ret = 0;
3647 	handle_t *handle;
3648 	int blkbits = inode->i_blkbits;
3649 	bool truncate = false;
3650 
3651 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3652 		return 0;
3653 
3654 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3655 	if (IS_ERR(handle)) {
3656 		ret = PTR_ERR(handle);
3657 		goto orphan_del;
3658 	}
3659 	if (ext4_update_inode_size(inode, offset + written))
3660 		ext4_mark_inode_dirty(handle, inode);
3661 	/*
3662 	 * We may need to truncate allocated but not written blocks beyond EOF.
3663 	 */
3664 	if (iomap->offset + iomap->length >
3665 	    ALIGN(inode->i_size, 1 << blkbits)) {
3666 		ext4_lblk_t written_blk, end_blk;
3667 
3668 		written_blk = (offset + written) >> blkbits;
3669 		end_blk = (offset + length) >> blkbits;
3670 		if (written_blk < end_blk && ext4_can_truncate(inode))
3671 			truncate = true;
3672 	}
3673 	/*
3674 	 * Remove inode from orphan list if we were extending a inode and
3675 	 * everything went fine.
3676 	 */
3677 	if (!truncate && inode->i_nlink &&
3678 	    !list_empty(&EXT4_I(inode)->i_orphan))
3679 		ext4_orphan_del(handle, inode);
3680 	ext4_journal_stop(handle);
3681 	if (truncate) {
3682 		ext4_truncate_failed_write(inode);
3683 orphan_del:
3684 		/*
3685 		 * If truncate failed early the inode might still be on the
3686 		 * orphan list; we need to make sure the inode is removed from
3687 		 * the orphan list in that case.
3688 		 */
3689 		if (inode->i_nlink)
3690 			ext4_orphan_del(NULL, inode);
3691 	}
3692 	return ret;
3693 }
3694 
3695 const struct iomap_ops ext4_iomap_ops = {
3696 	.iomap_begin		= ext4_iomap_begin,
3697 	.iomap_end		= ext4_iomap_end,
3698 };
3699 
ext4_end_io_dio(struct kiocb * iocb,loff_t offset,ssize_t size,void * private)3700 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3701 			    ssize_t size, void *private)
3702 {
3703         ext4_io_end_t *io_end = private;
3704 
3705 	/* if not async direct IO just return */
3706 	if (!io_end)
3707 		return 0;
3708 
3709 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3710 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3711 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3712 
3713 	/*
3714 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3715 	 * data was not written. Just clear the unwritten flag and drop io_end.
3716 	 */
3717 	if (size <= 0) {
3718 		ext4_clear_io_unwritten_flag(io_end);
3719 		size = 0;
3720 	}
3721 	io_end->offset = offset;
3722 	io_end->size = size;
3723 	ext4_put_io_end(io_end);
3724 
3725 	return 0;
3726 }
3727 
3728 /*
3729  * Handling of direct IO writes.
3730  *
3731  * For ext4 extent files, ext4 will do direct-io write even to holes,
3732  * preallocated extents, and those write extend the file, no need to
3733  * fall back to buffered IO.
3734  *
3735  * For holes, we fallocate those blocks, mark them as unwritten
3736  * If those blocks were preallocated, we mark sure they are split, but
3737  * still keep the range to write as unwritten.
3738  *
3739  * The unwritten extents will be converted to written when DIO is completed.
3740  * For async direct IO, since the IO may still pending when return, we
3741  * set up an end_io call back function, which will do the conversion
3742  * when async direct IO completed.
3743  *
3744  * If the O_DIRECT write will extend the file then add this inode to the
3745  * orphan list.  So recovery will truncate it back to the original size
3746  * if the machine crashes during the write.
3747  *
3748  */
ext4_direct_IO_write(struct kiocb * iocb,struct iov_iter * iter)3749 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3750 {
3751 	struct file *file = iocb->ki_filp;
3752 	struct inode *inode = file->f_mapping->host;
3753 	struct ext4_inode_info *ei = EXT4_I(inode);
3754 	ssize_t ret;
3755 	loff_t offset = iocb->ki_pos;
3756 	size_t count = iov_iter_count(iter);
3757 	int overwrite = 0;
3758 	get_block_t *get_block_func = NULL;
3759 	int dio_flags = 0;
3760 	loff_t final_size = offset + count;
3761 	int orphan = 0;
3762 	handle_t *handle;
3763 
3764 	if (final_size > inode->i_size || final_size > ei->i_disksize) {
3765 		/* Credits for sb + inode write */
3766 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3767 		if (IS_ERR(handle)) {
3768 			ret = PTR_ERR(handle);
3769 			goto out;
3770 		}
3771 		ret = ext4_orphan_add(handle, inode);
3772 		if (ret) {
3773 			ext4_journal_stop(handle);
3774 			goto out;
3775 		}
3776 		orphan = 1;
3777 		ext4_update_i_disksize(inode, inode->i_size);
3778 		ext4_journal_stop(handle);
3779 	}
3780 
3781 	BUG_ON(iocb->private == NULL);
3782 
3783 	/*
3784 	 * Make all waiters for direct IO properly wait also for extent
3785 	 * conversion. This also disallows race between truncate() and
3786 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3787 	 */
3788 	inode_dio_begin(inode);
3789 
3790 	/* If we do a overwrite dio, i_mutex locking can be released */
3791 	overwrite = *((int *)iocb->private);
3792 
3793 	if (overwrite)
3794 		inode_unlock(inode);
3795 
3796 	/*
3797 	 * For extent mapped files we could direct write to holes and fallocate.
3798 	 *
3799 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3800 	 * parallel buffered read to expose the stale data before DIO complete
3801 	 * the data IO.
3802 	 *
3803 	 * As to previously fallocated extents, ext4 get_block will just simply
3804 	 * mark the buffer mapped but still keep the extents unwritten.
3805 	 *
3806 	 * For non AIO case, we will convert those unwritten extents to written
3807 	 * after return back from blockdev_direct_IO. That way we save us from
3808 	 * allocating io_end structure and also the overhead of offloading
3809 	 * the extent convertion to a workqueue.
3810 	 *
3811 	 * For async DIO, the conversion needs to be deferred when the
3812 	 * IO is completed. The ext4 end_io callback function will be
3813 	 * called to take care of the conversion work.  Here for async
3814 	 * case, we allocate an io_end structure to hook to the iocb.
3815 	 */
3816 	iocb->private = NULL;
3817 	if (overwrite)
3818 		get_block_func = ext4_dio_get_block_overwrite;
3819 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3820 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3821 		get_block_func = ext4_dio_get_block;
3822 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3823 	} else if (is_sync_kiocb(iocb)) {
3824 		get_block_func = ext4_dio_get_block_unwritten_sync;
3825 		dio_flags = DIO_LOCKING;
3826 	} else {
3827 		get_block_func = ext4_dio_get_block_unwritten_async;
3828 		dio_flags = DIO_LOCKING;
3829 	}
3830 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3831 				   get_block_func, ext4_end_io_dio, NULL,
3832 				   dio_flags);
3833 
3834 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3835 						EXT4_STATE_DIO_UNWRITTEN)) {
3836 		int err;
3837 		/*
3838 		 * for non AIO case, since the IO is already
3839 		 * completed, we could do the conversion right here
3840 		 */
3841 		err = ext4_convert_unwritten_extents(NULL, inode,
3842 						     offset, ret);
3843 		if (err < 0)
3844 			ret = err;
3845 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3846 	}
3847 
3848 	inode_dio_end(inode);
3849 	/* take i_mutex locking again if we do a ovewrite dio */
3850 	if (overwrite)
3851 		inode_lock(inode);
3852 
3853 	if (ret < 0 && final_size > inode->i_size)
3854 		ext4_truncate_failed_write(inode);
3855 
3856 	/* Handle extending of i_size after direct IO write */
3857 	if (orphan) {
3858 		int err;
3859 
3860 		/* Credits for sb + inode write */
3861 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3862 		if (IS_ERR(handle)) {
3863 			/*
3864 			 * We wrote the data but cannot extend
3865 			 * i_size. Bail out. In async io case, we do
3866 			 * not return error here because we have
3867 			 * already submmitted the corresponding
3868 			 * bio. Returning error here makes the caller
3869 			 * think that this IO is done and failed
3870 			 * resulting in race with bio's completion
3871 			 * handler.
3872 			 */
3873 			if (!ret)
3874 				ret = PTR_ERR(handle);
3875 			if (inode->i_nlink)
3876 				ext4_orphan_del(NULL, inode);
3877 
3878 			goto out;
3879 		}
3880 		if (inode->i_nlink)
3881 			ext4_orphan_del(handle, inode);
3882 		if (ret > 0) {
3883 			loff_t end = offset + ret;
3884 			if (end > inode->i_size || end > ei->i_disksize) {
3885 				ext4_update_i_disksize(inode, end);
3886 				if (end > inode->i_size)
3887 					i_size_write(inode, end);
3888 				/*
3889 				 * We're going to return a positive `ret'
3890 				 * here due to non-zero-length I/O, so there's
3891 				 * no way of reporting error returns from
3892 				 * ext4_mark_inode_dirty() to userspace.  So
3893 				 * ignore it.
3894 				 */
3895 				ext4_mark_inode_dirty(handle, inode);
3896 			}
3897 		}
3898 		err = ext4_journal_stop(handle);
3899 		if (ret == 0)
3900 			ret = err;
3901 	}
3902 out:
3903 	return ret;
3904 }
3905 
ext4_direct_IO_read(struct kiocb * iocb,struct iov_iter * iter)3906 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3907 {
3908 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3909 	struct inode *inode = mapping->host;
3910 	size_t count = iov_iter_count(iter);
3911 	ssize_t ret;
3912 	loff_t offset = iocb->ki_pos;
3913 	loff_t size = i_size_read(inode);
3914 
3915 	if (offset >= size)
3916 		return 0;
3917 
3918 	/*
3919 	 * Shared inode_lock is enough for us - it protects against concurrent
3920 	 * writes & truncates and since we take care of writing back page cache,
3921 	 * we are protected against page writeback as well.
3922 	 */
3923 	if (iocb->ki_flags & IOCB_NOWAIT) {
3924 		if (!inode_trylock_shared(inode))
3925 			return -EAGAIN;
3926 	} else {
3927 		inode_lock_shared(inode);
3928 	}
3929 
3930 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3931 					   iocb->ki_pos + count - 1);
3932 	if (ret)
3933 		goto out_unlock;
3934 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3935 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3936 out_unlock:
3937 	inode_unlock_shared(inode);
3938 	return ret;
3939 }
3940 
ext4_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3941 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3942 {
3943 	struct file *file = iocb->ki_filp;
3944 	struct inode *inode = file->f_mapping->host;
3945 	size_t count = iov_iter_count(iter);
3946 	loff_t offset = iocb->ki_pos;
3947 	ssize_t ret;
3948 	int rw = iov_iter_rw(iter);
3949 
3950 	if (!fscrypt_dio_supported(iocb, iter))
3951 		return 0;
3952 
3953 	if (fsverity_active(inode))
3954 		return 0;
3955 
3956 	/*
3957 	 * If we are doing data journalling we don't support O_DIRECT
3958 	 */
3959 	if (ext4_should_journal_data(inode))
3960 		return 0;
3961 
3962 	/* Let buffer I/O handle the inline data case. */
3963 	if (ext4_has_inline_data(inode))
3964 		return 0;
3965 
3966 	if (trace_android_fs_dataread_start_enabled() &&
3967 	    (rw == READ)) {
3968 		char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3969 
3970 		path = android_fstrace_get_pathname(pathbuf,
3971 						    MAX_TRACE_PATHBUF_LEN,
3972 						    inode);
3973 		trace_android_fs_dataread_start(inode, offset, count,
3974 						current->pid, path,
3975 						current->comm);
3976 	}
3977 	if (trace_android_fs_datawrite_start_enabled() &&
3978 	    (rw == WRITE)) {
3979 		char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3980 
3981 		path = android_fstrace_get_pathname(pathbuf,
3982 						    MAX_TRACE_PATHBUF_LEN,
3983 						    inode);
3984 		trace_android_fs_datawrite_start(inode, offset, count,
3985 						 current->pid, path,
3986 						 current->comm);
3987 	}
3988 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3989 	if (iov_iter_rw(iter) == READ)
3990 		ret = ext4_direct_IO_read(iocb, iter);
3991 	else
3992 		ret = ext4_direct_IO_write(iocb, iter);
3993 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3994 
3995 	if (trace_android_fs_dataread_start_enabled() &&
3996 	    (rw == READ))
3997 		trace_android_fs_dataread_end(inode, offset, count);
3998 	if (trace_android_fs_datawrite_start_enabled() &&
3999 	    (rw == WRITE))
4000 		trace_android_fs_datawrite_end(inode, offset, count);
4001 
4002 	return ret;
4003 }
4004 
4005 /*
4006  * Pages can be marked dirty completely asynchronously from ext4's journalling
4007  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
4008  * much here because ->set_page_dirty is called under VFS locks.  The page is
4009  * not necessarily locked.
4010  *
4011  * We cannot just dirty the page and leave attached buffers clean, because the
4012  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
4013  * or jbddirty because all the journalling code will explode.
4014  *
4015  * So what we do is to mark the page "pending dirty" and next time writepage
4016  * is called, propagate that into the buffers appropriately.
4017  */
ext4_journalled_set_page_dirty(struct page * page)4018 static int ext4_journalled_set_page_dirty(struct page *page)
4019 {
4020 	SetPageChecked(page);
4021 	return __set_page_dirty_nobuffers(page);
4022 }
4023 
ext4_set_page_dirty(struct page * page)4024 static int ext4_set_page_dirty(struct page *page)
4025 {
4026 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
4027 	WARN_ON_ONCE(!page_has_buffers(page));
4028 	return __set_page_dirty_buffers(page);
4029 }
4030 
4031 static const struct address_space_operations ext4_aops = {
4032 	.readpage		= ext4_readpage,
4033 	.readpages		= ext4_readpages,
4034 	.writepage		= ext4_writepage,
4035 	.writepages		= ext4_writepages,
4036 	.write_begin		= ext4_write_begin,
4037 	.write_end		= ext4_write_end,
4038 	.set_page_dirty		= ext4_set_page_dirty,
4039 	.bmap			= ext4_bmap,
4040 	.invalidatepage		= ext4_invalidatepage,
4041 	.releasepage		= ext4_releasepage,
4042 	.direct_IO		= ext4_direct_IO,
4043 	.migratepage		= buffer_migrate_page,
4044 	.is_partially_uptodate  = block_is_partially_uptodate,
4045 	.error_remove_page	= generic_error_remove_page,
4046 };
4047 
4048 static const struct address_space_operations ext4_journalled_aops = {
4049 	.readpage		= ext4_readpage,
4050 	.readpages		= ext4_readpages,
4051 	.writepage		= ext4_writepage,
4052 	.writepages		= ext4_writepages,
4053 	.write_begin		= ext4_write_begin,
4054 	.write_end		= ext4_journalled_write_end,
4055 	.set_page_dirty		= ext4_journalled_set_page_dirty,
4056 	.bmap			= ext4_bmap,
4057 	.invalidatepage		= ext4_journalled_invalidatepage,
4058 	.releasepage		= ext4_releasepage,
4059 	.direct_IO		= ext4_direct_IO,
4060 	.is_partially_uptodate  = block_is_partially_uptodate,
4061 	.error_remove_page	= generic_error_remove_page,
4062 };
4063 
4064 static const struct address_space_operations ext4_da_aops = {
4065 	.readpage		= ext4_readpage,
4066 	.readpages		= ext4_readpages,
4067 	.writepage		= ext4_writepage,
4068 	.writepages		= ext4_writepages,
4069 	.write_begin		= ext4_da_write_begin,
4070 	.write_end		= ext4_da_write_end,
4071 	.set_page_dirty		= ext4_set_page_dirty,
4072 	.bmap			= ext4_bmap,
4073 	.invalidatepage		= ext4_invalidatepage,
4074 	.releasepage		= ext4_releasepage,
4075 	.direct_IO		= ext4_direct_IO,
4076 	.migratepage		= buffer_migrate_page,
4077 	.is_partially_uptodate  = block_is_partially_uptodate,
4078 	.error_remove_page	= generic_error_remove_page,
4079 };
4080 
4081 static const struct address_space_operations ext4_dax_aops = {
4082 	.writepages		= ext4_dax_writepages,
4083 	.direct_IO		= noop_direct_IO,
4084 	.set_page_dirty		= noop_set_page_dirty,
4085 	.bmap			= ext4_bmap,
4086 	.invalidatepage		= noop_invalidatepage,
4087 };
4088 
ext4_set_aops(struct inode * inode)4089 void ext4_set_aops(struct inode *inode)
4090 {
4091 	switch (ext4_inode_journal_mode(inode)) {
4092 	case EXT4_INODE_ORDERED_DATA_MODE:
4093 	case EXT4_INODE_WRITEBACK_DATA_MODE:
4094 		break;
4095 	case EXT4_INODE_JOURNAL_DATA_MODE:
4096 		inode->i_mapping->a_ops = &ext4_journalled_aops;
4097 		return;
4098 	default:
4099 		BUG();
4100 	}
4101 	if (IS_DAX(inode))
4102 		inode->i_mapping->a_ops = &ext4_dax_aops;
4103 	else if (test_opt(inode->i_sb, DELALLOC))
4104 		inode->i_mapping->a_ops = &ext4_da_aops;
4105 	else
4106 		inode->i_mapping->a_ops = &ext4_aops;
4107 }
4108 
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)4109 static int __ext4_block_zero_page_range(handle_t *handle,
4110 		struct address_space *mapping, loff_t from, loff_t length)
4111 {
4112 	ext4_fsblk_t index = from >> PAGE_SHIFT;
4113 	unsigned offset = from & (PAGE_SIZE-1);
4114 	unsigned blocksize, pos;
4115 	ext4_lblk_t iblock;
4116 	struct inode *inode = mapping->host;
4117 	struct buffer_head *bh;
4118 	struct page *page;
4119 	int err = 0;
4120 
4121 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4122 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
4123 	if (!page)
4124 		return -ENOMEM;
4125 
4126 	blocksize = inode->i_sb->s_blocksize;
4127 
4128 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4129 
4130 	if (!page_has_buffers(page))
4131 		create_empty_buffers(page, blocksize, 0);
4132 
4133 	/* Find the buffer that contains "offset" */
4134 	bh = page_buffers(page);
4135 	pos = blocksize;
4136 	while (offset >= pos) {
4137 		bh = bh->b_this_page;
4138 		iblock++;
4139 		pos += blocksize;
4140 	}
4141 	if (buffer_freed(bh)) {
4142 		BUFFER_TRACE(bh, "freed: skip");
4143 		goto unlock;
4144 	}
4145 	if (!buffer_mapped(bh)) {
4146 		BUFFER_TRACE(bh, "unmapped");
4147 		ext4_get_block(inode, iblock, bh, 0);
4148 		/* unmapped? It's a hole - nothing to do */
4149 		if (!buffer_mapped(bh)) {
4150 			BUFFER_TRACE(bh, "still unmapped");
4151 			goto unlock;
4152 		}
4153 	}
4154 
4155 	/* Ok, it's mapped. Make sure it's up-to-date */
4156 	if (PageUptodate(page))
4157 		set_buffer_uptodate(bh);
4158 
4159 	if (!buffer_uptodate(bh)) {
4160 		err = -EIO;
4161 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4162 		wait_on_buffer(bh);
4163 		/* Uhhuh. Read error. Complain and punt. */
4164 		if (!buffer_uptodate(bh))
4165 			goto unlock;
4166 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
4167 			/* We expect the key to be set. */
4168 			BUG_ON(!fscrypt_has_encryption_key(inode));
4169 			WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
4170 					page, blocksize, bh_offset(bh)));
4171 		}
4172 	}
4173 	if (ext4_should_journal_data(inode)) {
4174 		BUFFER_TRACE(bh, "get write access");
4175 		err = ext4_journal_get_write_access(handle, bh);
4176 		if (err)
4177 			goto unlock;
4178 	}
4179 	zero_user(page, offset, length);
4180 	BUFFER_TRACE(bh, "zeroed end of block");
4181 
4182 	if (ext4_should_journal_data(inode)) {
4183 		err = ext4_handle_dirty_metadata(handle, inode, bh);
4184 	} else {
4185 		err = 0;
4186 		mark_buffer_dirty(bh);
4187 		if (ext4_should_order_data(inode))
4188 			err = ext4_jbd2_inode_add_write(handle, inode, from,
4189 					length);
4190 	}
4191 
4192 unlock:
4193 	unlock_page(page);
4194 	put_page(page);
4195 	return err;
4196 }
4197 
4198 /*
4199  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4200  * starting from file offset 'from'.  The range to be zero'd must
4201  * be contained with in one block.  If the specified range exceeds
4202  * the end of the block it will be shortened to end of the block
4203  * that cooresponds to 'from'
4204  */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)4205 static int ext4_block_zero_page_range(handle_t *handle,
4206 		struct address_space *mapping, loff_t from, loff_t length)
4207 {
4208 	struct inode *inode = mapping->host;
4209 	unsigned offset = from & (PAGE_SIZE-1);
4210 	unsigned blocksize = inode->i_sb->s_blocksize;
4211 	unsigned max = blocksize - (offset & (blocksize - 1));
4212 
4213 	/*
4214 	 * correct length if it does not fall between
4215 	 * 'from' and the end of the block
4216 	 */
4217 	if (length > max || length < 0)
4218 		length = max;
4219 
4220 	if (IS_DAX(inode)) {
4221 		return iomap_zero_range(inode, from, length, NULL,
4222 					&ext4_iomap_ops);
4223 	}
4224 	return __ext4_block_zero_page_range(handle, mapping, from, length);
4225 }
4226 
4227 /*
4228  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4229  * up to the end of the block which corresponds to `from'.
4230  * This required during truncate. We need to physically zero the tail end
4231  * of that block so it doesn't yield old data if the file is later grown.
4232  */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)4233 static int ext4_block_truncate_page(handle_t *handle,
4234 		struct address_space *mapping, loff_t from)
4235 {
4236 	unsigned offset = from & (PAGE_SIZE-1);
4237 	unsigned length;
4238 	unsigned blocksize;
4239 	struct inode *inode = mapping->host;
4240 
4241 	/* If we are processing an encrypted inode during orphan list handling */
4242 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4243 		return 0;
4244 
4245 	blocksize = inode->i_sb->s_blocksize;
4246 	length = blocksize - (offset & (blocksize - 1));
4247 
4248 	return ext4_block_zero_page_range(handle, mapping, from, length);
4249 }
4250 
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)4251 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4252 			     loff_t lstart, loff_t length)
4253 {
4254 	struct super_block *sb = inode->i_sb;
4255 	struct address_space *mapping = inode->i_mapping;
4256 	unsigned partial_start, partial_end;
4257 	ext4_fsblk_t start, end;
4258 	loff_t byte_end = (lstart + length - 1);
4259 	int err = 0;
4260 
4261 	partial_start = lstart & (sb->s_blocksize - 1);
4262 	partial_end = byte_end & (sb->s_blocksize - 1);
4263 
4264 	start = lstart >> sb->s_blocksize_bits;
4265 	end = byte_end >> sb->s_blocksize_bits;
4266 
4267 	/* Handle partial zero within the single block */
4268 	if (start == end &&
4269 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4270 		err = ext4_block_zero_page_range(handle, mapping,
4271 						 lstart, length);
4272 		return err;
4273 	}
4274 	/* Handle partial zero out on the start of the range */
4275 	if (partial_start) {
4276 		err = ext4_block_zero_page_range(handle, mapping,
4277 						 lstart, sb->s_blocksize);
4278 		if (err)
4279 			return err;
4280 	}
4281 	/* Handle partial zero out on the end of the range */
4282 	if (partial_end != sb->s_blocksize - 1)
4283 		err = ext4_block_zero_page_range(handle, mapping,
4284 						 byte_end - partial_end,
4285 						 partial_end + 1);
4286 	return err;
4287 }
4288 
ext4_can_truncate(struct inode * inode)4289 int ext4_can_truncate(struct inode *inode)
4290 {
4291 	if (S_ISREG(inode->i_mode))
4292 		return 1;
4293 	if (S_ISDIR(inode->i_mode))
4294 		return 1;
4295 	if (S_ISLNK(inode->i_mode))
4296 		return !ext4_inode_is_fast_symlink(inode);
4297 	return 0;
4298 }
4299 
4300 /*
4301  * We have to make sure i_disksize gets properly updated before we truncate
4302  * page cache due to hole punching or zero range. Otherwise i_disksize update
4303  * can get lost as it may have been postponed to submission of writeback but
4304  * that will never happen after we truncate page cache.
4305  */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)4306 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4307 				      loff_t len)
4308 {
4309 	handle_t *handle;
4310 	loff_t size = i_size_read(inode);
4311 
4312 	WARN_ON(!inode_is_locked(inode));
4313 	if (offset > size || offset + len < size)
4314 		return 0;
4315 
4316 	if (EXT4_I(inode)->i_disksize >= size)
4317 		return 0;
4318 
4319 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4320 	if (IS_ERR(handle))
4321 		return PTR_ERR(handle);
4322 	ext4_update_i_disksize(inode, size);
4323 	ext4_mark_inode_dirty(handle, inode);
4324 	ext4_journal_stop(handle);
4325 
4326 	return 0;
4327 }
4328 
ext4_wait_dax_page(struct ext4_inode_info * ei)4329 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4330 {
4331 	up_write(&ei->i_mmap_sem);
4332 	schedule();
4333 	down_write(&ei->i_mmap_sem);
4334 }
4335 
ext4_break_layouts(struct inode * inode)4336 int ext4_break_layouts(struct inode *inode)
4337 {
4338 	struct ext4_inode_info *ei = EXT4_I(inode);
4339 	struct page *page;
4340 	int error;
4341 
4342 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4343 		return -EINVAL;
4344 
4345 	do {
4346 		page = dax_layout_busy_page(inode->i_mapping);
4347 		if (!page)
4348 			return 0;
4349 
4350 		error = ___wait_var_event(&page->_refcount,
4351 				atomic_read(&page->_refcount) == 1,
4352 				TASK_INTERRUPTIBLE, 0, 0,
4353 				ext4_wait_dax_page(ei));
4354 	} while (error == 0);
4355 
4356 	return error;
4357 }
4358 
4359 /*
4360  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4361  * associated with the given offset and length
4362  *
4363  * @inode:  File inode
4364  * @offset: The offset where the hole will begin
4365  * @len:    The length of the hole
4366  *
4367  * Returns: 0 on success or negative on failure
4368  */
4369 
ext4_punch_hole(struct inode * inode,loff_t offset,loff_t length)4370 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4371 {
4372 	struct super_block *sb = inode->i_sb;
4373 	ext4_lblk_t first_block, stop_block;
4374 	struct address_space *mapping = inode->i_mapping;
4375 	loff_t first_block_offset, last_block_offset, max_length;
4376 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4377 	handle_t *handle;
4378 	unsigned int credits;
4379 	int ret = 0;
4380 
4381 	if (!S_ISREG(inode->i_mode))
4382 		return -EOPNOTSUPP;
4383 
4384 	trace_ext4_punch_hole(inode, offset, length, 0);
4385 
4386 	/*
4387 	 * Write out all dirty pages to avoid race conditions
4388 	 * Then release them.
4389 	 */
4390 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4391 		ret = filemap_write_and_wait_range(mapping, offset,
4392 						   offset + length - 1);
4393 		if (ret)
4394 			return ret;
4395 	}
4396 
4397 	inode_lock(inode);
4398 
4399 	/* No need to punch hole beyond i_size */
4400 	if (offset >= inode->i_size)
4401 		goto out_mutex;
4402 
4403 	/*
4404 	 * If the hole extends beyond i_size, set the hole
4405 	 * to end after the page that contains i_size
4406 	 */
4407 	if (offset + length > inode->i_size) {
4408 		length = inode->i_size +
4409 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4410 		   offset;
4411 	}
4412 
4413 	/*
4414 	 * For punch hole the length + offset needs to be within one block
4415 	 * before last range. Adjust the length if it goes beyond that limit.
4416 	 */
4417 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4418 	if (offset + length > max_length)
4419 		length = max_length - offset;
4420 
4421 	if (offset & (sb->s_blocksize - 1) ||
4422 	    (offset + length) & (sb->s_blocksize - 1)) {
4423 		/*
4424 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4425 		 * partial block
4426 		 */
4427 		ret = ext4_inode_attach_jinode(inode);
4428 		if (ret < 0)
4429 			goto out_mutex;
4430 
4431 	}
4432 
4433 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4434 	inode_dio_wait(inode);
4435 
4436 	/*
4437 	 * Prevent page faults from reinstantiating pages we have released from
4438 	 * page cache.
4439 	 */
4440 	down_write(&EXT4_I(inode)->i_mmap_sem);
4441 
4442 	ret = ext4_break_layouts(inode);
4443 	if (ret)
4444 		goto out_dio;
4445 
4446 	first_block_offset = round_up(offset, sb->s_blocksize);
4447 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4448 
4449 	/* Now release the pages and zero block aligned part of pages*/
4450 	if (last_block_offset > first_block_offset) {
4451 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4452 		if (ret)
4453 			goto out_dio;
4454 		truncate_pagecache_range(inode, first_block_offset,
4455 					 last_block_offset);
4456 	}
4457 
4458 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4459 		credits = ext4_writepage_trans_blocks(inode);
4460 	else
4461 		credits = ext4_blocks_for_truncate(inode);
4462 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4463 	if (IS_ERR(handle)) {
4464 		ret = PTR_ERR(handle);
4465 		ext4_std_error(sb, ret);
4466 		goto out_dio;
4467 	}
4468 
4469 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4470 				       length);
4471 	if (ret)
4472 		goto out_stop;
4473 
4474 	first_block = (offset + sb->s_blocksize - 1) >>
4475 		EXT4_BLOCK_SIZE_BITS(sb);
4476 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4477 
4478 	/* If there are blocks to remove, do it */
4479 	if (stop_block > first_block) {
4480 
4481 		down_write(&EXT4_I(inode)->i_data_sem);
4482 		ext4_discard_preallocations(inode);
4483 
4484 		ret = ext4_es_remove_extent(inode, first_block,
4485 					    stop_block - first_block);
4486 		if (ret) {
4487 			up_write(&EXT4_I(inode)->i_data_sem);
4488 			goto out_stop;
4489 		}
4490 
4491 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4492 			ret = ext4_ext_remove_space(inode, first_block,
4493 						    stop_block - 1);
4494 		else
4495 			ret = ext4_ind_remove_space(handle, inode, first_block,
4496 						    stop_block);
4497 
4498 		up_write(&EXT4_I(inode)->i_data_sem);
4499 	}
4500 	if (IS_SYNC(inode))
4501 		ext4_handle_sync(handle);
4502 
4503 	inode->i_mtime = inode->i_ctime = current_time(inode);
4504 	ext4_mark_inode_dirty(handle, inode);
4505 	if (ret >= 0)
4506 		ext4_update_inode_fsync_trans(handle, inode, 1);
4507 out_stop:
4508 	ext4_journal_stop(handle);
4509 out_dio:
4510 	up_write(&EXT4_I(inode)->i_mmap_sem);
4511 out_mutex:
4512 	inode_unlock(inode);
4513 	return ret;
4514 }
4515 
ext4_inode_attach_jinode(struct inode * inode)4516 int ext4_inode_attach_jinode(struct inode *inode)
4517 {
4518 	struct ext4_inode_info *ei = EXT4_I(inode);
4519 	struct jbd2_inode *jinode;
4520 
4521 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4522 		return 0;
4523 
4524 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4525 	spin_lock(&inode->i_lock);
4526 	if (!ei->jinode) {
4527 		if (!jinode) {
4528 			spin_unlock(&inode->i_lock);
4529 			return -ENOMEM;
4530 		}
4531 		ei->jinode = jinode;
4532 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4533 		jinode = NULL;
4534 	}
4535 	spin_unlock(&inode->i_lock);
4536 	if (unlikely(jinode != NULL))
4537 		jbd2_free_inode(jinode);
4538 	return 0;
4539 }
4540 
4541 /*
4542  * ext4_truncate()
4543  *
4544  * We block out ext4_get_block() block instantiations across the entire
4545  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4546  * simultaneously on behalf of the same inode.
4547  *
4548  * As we work through the truncate and commit bits of it to the journal there
4549  * is one core, guiding principle: the file's tree must always be consistent on
4550  * disk.  We must be able to restart the truncate after a crash.
4551  *
4552  * The file's tree may be transiently inconsistent in memory (although it
4553  * probably isn't), but whenever we close off and commit a journal transaction,
4554  * the contents of (the filesystem + the journal) must be consistent and
4555  * restartable.  It's pretty simple, really: bottom up, right to left (although
4556  * left-to-right works OK too).
4557  *
4558  * Note that at recovery time, journal replay occurs *before* the restart of
4559  * truncate against the orphan inode list.
4560  *
4561  * The committed inode has the new, desired i_size (which is the same as
4562  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4563  * that this inode's truncate did not complete and it will again call
4564  * ext4_truncate() to have another go.  So there will be instantiated blocks
4565  * to the right of the truncation point in a crashed ext4 filesystem.  But
4566  * that's fine - as long as they are linked from the inode, the post-crash
4567  * ext4_truncate() run will find them and release them.
4568  */
ext4_truncate(struct inode * inode)4569 int ext4_truncate(struct inode *inode)
4570 {
4571 	struct ext4_inode_info *ei = EXT4_I(inode);
4572 	unsigned int credits;
4573 	int err = 0;
4574 	handle_t *handle;
4575 	struct address_space *mapping = inode->i_mapping;
4576 
4577 	/*
4578 	 * There is a possibility that we're either freeing the inode
4579 	 * or it's a completely new inode. In those cases we might not
4580 	 * have i_mutex locked because it's not necessary.
4581 	 */
4582 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4583 		WARN_ON(!inode_is_locked(inode));
4584 	trace_ext4_truncate_enter(inode);
4585 
4586 	if (!ext4_can_truncate(inode))
4587 		goto out_trace;
4588 
4589 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4590 
4591 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4592 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4593 
4594 	if (ext4_has_inline_data(inode)) {
4595 		int has_inline = 1;
4596 
4597 		err = ext4_inline_data_truncate(inode, &has_inline);
4598 		if (err || has_inline)
4599 			goto out_trace;
4600 	}
4601 
4602 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4603 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4604 		err = ext4_inode_attach_jinode(inode);
4605 		if (err)
4606 			goto out_trace;
4607 	}
4608 
4609 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4610 		credits = ext4_writepage_trans_blocks(inode);
4611 	else
4612 		credits = ext4_blocks_for_truncate(inode);
4613 
4614 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4615 	if (IS_ERR(handle)) {
4616 		err = PTR_ERR(handle);
4617 		goto out_trace;
4618 	}
4619 
4620 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4621 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4622 
4623 	/*
4624 	 * We add the inode to the orphan list, so that if this
4625 	 * truncate spans multiple transactions, and we crash, we will
4626 	 * resume the truncate when the filesystem recovers.  It also
4627 	 * marks the inode dirty, to catch the new size.
4628 	 *
4629 	 * Implication: the file must always be in a sane, consistent
4630 	 * truncatable state while each transaction commits.
4631 	 */
4632 	err = ext4_orphan_add(handle, inode);
4633 	if (err)
4634 		goto out_stop;
4635 
4636 	down_write(&EXT4_I(inode)->i_data_sem);
4637 
4638 	ext4_discard_preallocations(inode);
4639 
4640 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4641 		err = ext4_ext_truncate(handle, inode);
4642 	else
4643 		ext4_ind_truncate(handle, inode);
4644 
4645 	up_write(&ei->i_data_sem);
4646 	if (err)
4647 		goto out_stop;
4648 
4649 	if (IS_SYNC(inode))
4650 		ext4_handle_sync(handle);
4651 
4652 out_stop:
4653 	/*
4654 	 * If this was a simple ftruncate() and the file will remain alive,
4655 	 * then we need to clear up the orphan record which we created above.
4656 	 * However, if this was a real unlink then we were called by
4657 	 * ext4_evict_inode(), and we allow that function to clean up the
4658 	 * orphan info for us.
4659 	 */
4660 	if (inode->i_nlink)
4661 		ext4_orphan_del(handle, inode);
4662 
4663 	inode->i_mtime = inode->i_ctime = current_time(inode);
4664 	ext4_mark_inode_dirty(handle, inode);
4665 	ext4_journal_stop(handle);
4666 
4667 out_trace:
4668 	trace_ext4_truncate_exit(inode);
4669 	return err;
4670 }
4671 
4672 /*
4673  * ext4_get_inode_loc returns with an extra refcount against the inode's
4674  * underlying buffer_head on success. If 'in_mem' is true, we have all
4675  * data in memory that is needed to recreate the on-disk version of this
4676  * inode.
4677  */
__ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc,int in_mem)4678 static int __ext4_get_inode_loc(struct inode *inode,
4679 				struct ext4_iloc *iloc, int in_mem)
4680 {
4681 	struct ext4_group_desc	*gdp;
4682 	struct buffer_head	*bh;
4683 	struct super_block	*sb = inode->i_sb;
4684 	ext4_fsblk_t		block;
4685 	struct blk_plug		plug;
4686 	int			inodes_per_block, inode_offset;
4687 
4688 	iloc->bh = NULL;
4689 	if (inode->i_ino < EXT4_ROOT_INO ||
4690 	    inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4691 		return -EFSCORRUPTED;
4692 
4693 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4694 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4695 	if (!gdp)
4696 		return -EIO;
4697 
4698 	/*
4699 	 * Figure out the offset within the block group inode table
4700 	 */
4701 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4702 	inode_offset = ((inode->i_ino - 1) %
4703 			EXT4_INODES_PER_GROUP(sb));
4704 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4705 
4706 	block = ext4_inode_table(sb, gdp);
4707 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4708 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4709 		ext4_error(sb, "Invalid inode table block %llu in "
4710 			   "block_group %u", block, iloc->block_group);
4711 		return -EFSCORRUPTED;
4712 	}
4713 	block += (inode_offset / inodes_per_block);
4714 
4715 	bh = sb_getblk(sb, block);
4716 	if (unlikely(!bh))
4717 		return -ENOMEM;
4718 	if (!buffer_uptodate(bh)) {
4719 		lock_buffer(bh);
4720 
4721 		/*
4722 		 * If the buffer has the write error flag, we have failed
4723 		 * to write out another inode in the same block.  In this
4724 		 * case, we don't have to read the block because we may
4725 		 * read the old inode data successfully.
4726 		 */
4727 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4728 			set_buffer_uptodate(bh);
4729 
4730 		if (buffer_uptodate(bh)) {
4731 			/* someone brought it uptodate while we waited */
4732 			unlock_buffer(bh);
4733 			goto has_buffer;
4734 		}
4735 
4736 		/*
4737 		 * If we have all information of the inode in memory and this
4738 		 * is the only valid inode in the block, we need not read the
4739 		 * block.
4740 		 */
4741 		if (in_mem) {
4742 			struct buffer_head *bitmap_bh;
4743 			int i, start;
4744 
4745 			start = inode_offset & ~(inodes_per_block - 1);
4746 
4747 			/* Is the inode bitmap in cache? */
4748 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4749 			if (unlikely(!bitmap_bh))
4750 				goto make_io;
4751 
4752 			/*
4753 			 * If the inode bitmap isn't in cache then the
4754 			 * optimisation may end up performing two reads instead
4755 			 * of one, so skip it.
4756 			 */
4757 			if (!buffer_uptodate(bitmap_bh)) {
4758 				brelse(bitmap_bh);
4759 				goto make_io;
4760 			}
4761 			for (i = start; i < start + inodes_per_block; i++) {
4762 				if (i == inode_offset)
4763 					continue;
4764 				if (ext4_test_bit(i, bitmap_bh->b_data))
4765 					break;
4766 			}
4767 			brelse(bitmap_bh);
4768 			if (i == start + inodes_per_block) {
4769 				/* all other inodes are free, so skip I/O */
4770 				memset(bh->b_data, 0, bh->b_size);
4771 				set_buffer_uptodate(bh);
4772 				unlock_buffer(bh);
4773 				goto has_buffer;
4774 			}
4775 		}
4776 
4777 make_io:
4778 		/*
4779 		 * If we need to do any I/O, try to pre-readahead extra
4780 		 * blocks from the inode table.
4781 		 */
4782 		blk_start_plug(&plug);
4783 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4784 			ext4_fsblk_t b, end, table;
4785 			unsigned num;
4786 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4787 
4788 			table = ext4_inode_table(sb, gdp);
4789 			/* s_inode_readahead_blks is always a power of 2 */
4790 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4791 			if (table > b)
4792 				b = table;
4793 			end = b + ra_blks;
4794 			num = EXT4_INODES_PER_GROUP(sb);
4795 			if (ext4_has_group_desc_csum(sb))
4796 				num -= ext4_itable_unused_count(sb, gdp);
4797 			table += num / inodes_per_block;
4798 			if (end > table)
4799 				end = table;
4800 			while (b <= end)
4801 				sb_breadahead_unmovable(sb, b++);
4802 		}
4803 
4804 		/*
4805 		 * There are other valid inodes in the buffer, this inode
4806 		 * has in-inode xattrs, or we don't have this inode in memory.
4807 		 * Read the block from disk.
4808 		 */
4809 		trace_ext4_load_inode(inode);
4810 		get_bh(bh);
4811 		bh->b_end_io = end_buffer_read_sync;
4812 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4813 		blk_finish_plug(&plug);
4814 		wait_on_buffer(bh);
4815 		if (!buffer_uptodate(bh)) {
4816 			EXT4_ERROR_INODE_BLOCK(inode, block,
4817 					       "unable to read itable block");
4818 			brelse(bh);
4819 			return -EIO;
4820 		}
4821 	}
4822 has_buffer:
4823 	iloc->bh = bh;
4824 	return 0;
4825 }
4826 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4827 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4828 {
4829 	/* We have all inode data except xattrs in memory here. */
4830 	return __ext4_get_inode_loc(inode, iloc,
4831 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4832 }
4833 
ext4_should_use_dax(struct inode * inode)4834 static bool ext4_should_use_dax(struct inode *inode)
4835 {
4836 	if (!test_opt(inode->i_sb, DAX))
4837 		return false;
4838 	if (!S_ISREG(inode->i_mode))
4839 		return false;
4840 	if (ext4_should_journal_data(inode))
4841 		return false;
4842 	if (ext4_has_inline_data(inode))
4843 		return false;
4844 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4845 		return false;
4846 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4847 		return false;
4848 	return true;
4849 }
4850 
ext4_set_inode_flags(struct inode * inode)4851 void ext4_set_inode_flags(struct inode *inode)
4852 {
4853 	unsigned int flags = EXT4_I(inode)->i_flags;
4854 	unsigned int new_fl = 0;
4855 
4856 	if (flags & EXT4_SYNC_FL)
4857 		new_fl |= S_SYNC;
4858 	if (flags & EXT4_APPEND_FL)
4859 		new_fl |= S_APPEND;
4860 	if (flags & EXT4_IMMUTABLE_FL)
4861 		new_fl |= S_IMMUTABLE;
4862 	if (flags & EXT4_NOATIME_FL)
4863 		new_fl |= S_NOATIME;
4864 	if (flags & EXT4_DIRSYNC_FL)
4865 		new_fl |= S_DIRSYNC;
4866 	if (ext4_should_use_dax(inode))
4867 		new_fl |= S_DAX;
4868 	if (flags & EXT4_ENCRYPT_FL)
4869 		new_fl |= S_ENCRYPTED;
4870 	if (flags & EXT4_CASEFOLD_FL)
4871 		new_fl |= S_CASEFOLD;
4872 	if (flags & EXT4_VERITY_FL)
4873 		new_fl |= S_VERITY;
4874 	inode_set_flags(inode, new_fl,
4875 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4876 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4877 }
4878 
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4879 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4880 				  struct ext4_inode_info *ei)
4881 {
4882 	blkcnt_t i_blocks ;
4883 	struct inode *inode = &(ei->vfs_inode);
4884 	struct super_block *sb = inode->i_sb;
4885 
4886 	if (ext4_has_feature_huge_file(sb)) {
4887 		/* we are using combined 48 bit field */
4888 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4889 					le32_to_cpu(raw_inode->i_blocks_lo);
4890 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4891 			/* i_blocks represent file system block size */
4892 			return i_blocks  << (inode->i_blkbits - 9);
4893 		} else {
4894 			return i_blocks;
4895 		}
4896 	} else {
4897 		return le32_to_cpu(raw_inode->i_blocks_lo);
4898 	}
4899 }
4900 
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4901 static inline int ext4_iget_extra_inode(struct inode *inode,
4902 					 struct ext4_inode *raw_inode,
4903 					 struct ext4_inode_info *ei)
4904 {
4905 	__le32 *magic = (void *)raw_inode +
4906 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4907 
4908 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4909 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4910 		int err;
4911 
4912 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4913 		err = ext4_find_inline_data_nolock(inode);
4914 		if (!err && ext4_has_inline_data(inode))
4915 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4916 		return err;
4917 	} else
4918 		EXT4_I(inode)->i_inline_off = 0;
4919 	return 0;
4920 }
4921 
ext4_get_projid(struct inode * inode,kprojid_t * projid)4922 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4923 {
4924 	if (!ext4_has_feature_project(inode->i_sb))
4925 		return -EOPNOTSUPP;
4926 	*projid = EXT4_I(inode)->i_projid;
4927 	return 0;
4928 }
4929 
4930 /*
4931  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4932  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4933  * set.
4934  */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4935 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4936 {
4937 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4938 		inode_set_iversion_raw(inode, val);
4939 	else
4940 		inode_set_iversion_queried(inode, val);
4941 }
ext4_inode_peek_iversion(const struct inode * inode)4942 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4943 {
4944 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4945 		return inode_peek_iversion_raw(inode);
4946 	else
4947 		return inode_peek_iversion(inode);
4948 }
4949 
check_igot_inode(struct inode * inode,ext4_iget_flags flags)4950 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4951 
4952 {
4953 	if (flags & EXT4_IGET_EA_INODE) {
4954 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4955 			return "missing EA_INODE flag";
4956 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4957 		    EXT4_I(inode)->i_file_acl)
4958 			return "ea_inode with extended attributes";
4959 	} else {
4960 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4961 			return "unexpected EA_INODE flag";
4962 	}
4963 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4964 		return "unexpected bad inode w/o EXT4_IGET_BAD";
4965 	return NULL;
4966 }
4967 
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4968 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4969 			  ext4_iget_flags flags, const char *function,
4970 			  unsigned int line)
4971 {
4972 	struct ext4_iloc iloc;
4973 	struct ext4_inode *raw_inode;
4974 	struct ext4_inode_info *ei;
4975 	struct inode *inode;
4976 	const char *err_str;
4977 	journal_t *journal = EXT4_SB(sb)->s_journal;
4978 	long ret;
4979 	loff_t size;
4980 	int block;
4981 	uid_t i_uid;
4982 	gid_t i_gid;
4983 	projid_t i_projid;
4984 
4985 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4986 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4987 	    (ino < EXT4_ROOT_INO) ||
4988 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4989 		if (flags & EXT4_IGET_HANDLE)
4990 			return ERR_PTR(-ESTALE);
4991 		__ext4_error(sb, function, line,
4992 			     "inode #%lu: comm %s: iget: illegal inode #",
4993 			     ino, current->comm);
4994 		return ERR_PTR(-EFSCORRUPTED);
4995 	}
4996 
4997 	inode = iget_locked(sb, ino);
4998 	if (!inode)
4999 		return ERR_PTR(-ENOMEM);
5000 	if (!(inode->i_state & I_NEW)) {
5001 		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5002 			ext4_error_inode(inode, function, line, 0, err_str);
5003 			iput(inode);
5004 			return ERR_PTR(-EFSCORRUPTED);
5005 		}
5006 		return inode;
5007 	}
5008 
5009 	ei = EXT4_I(inode);
5010 	iloc.bh = NULL;
5011 
5012 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
5013 	if (ret < 0)
5014 		goto bad_inode;
5015 	raw_inode = ext4_raw_inode(&iloc);
5016 
5017 	if ((flags & EXT4_IGET_HANDLE) &&
5018 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
5019 		ret = -ESTALE;
5020 		goto bad_inode;
5021 	}
5022 
5023 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5024 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5025 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5026 			EXT4_INODE_SIZE(inode->i_sb) ||
5027 		    (ei->i_extra_isize & 3)) {
5028 			ext4_error_inode(inode, function, line, 0,
5029 					 "iget: bad extra_isize %u "
5030 					 "(inode size %u)",
5031 					 ei->i_extra_isize,
5032 					 EXT4_INODE_SIZE(inode->i_sb));
5033 			ret = -EFSCORRUPTED;
5034 			goto bad_inode;
5035 		}
5036 	} else
5037 		ei->i_extra_isize = 0;
5038 
5039 	/* Precompute checksum seed for inode metadata */
5040 	if (ext4_has_metadata_csum(sb)) {
5041 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5042 		__u32 csum;
5043 		__le32 inum = cpu_to_le32(inode->i_ino);
5044 		__le32 gen = raw_inode->i_generation;
5045 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
5046 				   sizeof(inum));
5047 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
5048 					      sizeof(gen));
5049 	}
5050 
5051 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
5052 		ext4_error_inode(inode, function, line, 0,
5053 				 "iget: checksum invalid");
5054 		ret = -EFSBADCRC;
5055 		goto bad_inode;
5056 	}
5057 
5058 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5059 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5060 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5061 	if (ext4_has_feature_project(sb) &&
5062 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5063 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5064 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
5065 	else
5066 		i_projid = EXT4_DEF_PROJID;
5067 
5068 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5069 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5070 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5071 	}
5072 	i_uid_write(inode, i_uid);
5073 	i_gid_write(inode, i_gid);
5074 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
5075 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
5076 
5077 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
5078 	ei->i_inline_off = 0;
5079 	ei->i_dir_start_lookup = 0;
5080 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5081 	/* We now have enough fields to check if the inode was active or not.
5082 	 * This is needed because nfsd might try to access dead inodes
5083 	 * the test is that same one that e2fsck uses
5084 	 * NeilBrown 1999oct15
5085 	 */
5086 	if (inode->i_nlink == 0) {
5087 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
5088 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
5089 		    ino != EXT4_BOOT_LOADER_INO) {
5090 			/* this inode is deleted or unallocated */
5091 			if (flags & EXT4_IGET_SPECIAL) {
5092 				ext4_error_inode(inode, function, line, 0,
5093 						 "iget: special inode unallocated");
5094 				ret = -EFSCORRUPTED;
5095 			} else
5096 				ret = -ESTALE;
5097 			goto bad_inode;
5098 		}
5099 		/* The only unlinked inodes we let through here have
5100 		 * valid i_mode and are being read by the orphan
5101 		 * recovery code: that's fine, we're about to complete
5102 		 * the process of deleting those.
5103 		 * OR it is the EXT4_BOOT_LOADER_INO which is
5104 		 * not initialized on a new filesystem. */
5105 	}
5106 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5107 	ext4_set_inode_flags(inode);
5108 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5109 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5110 	if (ext4_has_feature_64bit(sb))
5111 		ei->i_file_acl |=
5112 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5113 	inode->i_size = ext4_isize(sb, raw_inode);
5114 	if ((size = i_size_read(inode)) < 0) {
5115 		ext4_error_inode(inode, function, line, 0,
5116 				 "iget: bad i_size value: %lld", size);
5117 		ret = -EFSCORRUPTED;
5118 		goto bad_inode;
5119 	}
5120 	/*
5121 	 * If dir_index is not enabled but there's dir with INDEX flag set,
5122 	 * we'd normally treat htree data as empty space. But with metadata
5123 	 * checksumming that corrupts checksums so forbid that.
5124 	 */
5125 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
5126 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
5127 		ext4_error_inode(inode, function, line, 0,
5128 			 "iget: Dir with htree data on filesystem without dir_index feature.");
5129 		ret = -EFSCORRUPTED;
5130 		goto bad_inode;
5131 	}
5132 	ei->i_disksize = inode->i_size;
5133 #ifdef CONFIG_QUOTA
5134 	ei->i_reserved_quota = 0;
5135 #endif
5136 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5137 	ei->i_block_group = iloc.block_group;
5138 	ei->i_last_alloc_group = ~0;
5139 	/*
5140 	 * NOTE! The in-memory inode i_data array is in little-endian order
5141 	 * even on big-endian machines: we do NOT byteswap the block numbers!
5142 	 */
5143 	for (block = 0; block < EXT4_N_BLOCKS; block++)
5144 		ei->i_data[block] = raw_inode->i_block[block];
5145 	INIT_LIST_HEAD(&ei->i_orphan);
5146 
5147 	/*
5148 	 * Set transaction id's of transactions that have to be committed
5149 	 * to finish f[data]sync. We set them to currently running transaction
5150 	 * as we cannot be sure that the inode or some of its metadata isn't
5151 	 * part of the transaction - the inode could have been reclaimed and
5152 	 * now it is reread from disk.
5153 	 */
5154 	if (journal) {
5155 		transaction_t *transaction;
5156 		tid_t tid;
5157 
5158 		read_lock(&journal->j_state_lock);
5159 		if (journal->j_running_transaction)
5160 			transaction = journal->j_running_transaction;
5161 		else
5162 			transaction = journal->j_committing_transaction;
5163 		if (transaction)
5164 			tid = transaction->t_tid;
5165 		else
5166 			tid = journal->j_commit_sequence;
5167 		read_unlock(&journal->j_state_lock);
5168 		ei->i_sync_tid = tid;
5169 		ei->i_datasync_tid = tid;
5170 	}
5171 
5172 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5173 		if (ei->i_extra_isize == 0) {
5174 			/* The extra space is currently unused. Use it. */
5175 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5176 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5177 					    EXT4_GOOD_OLD_INODE_SIZE;
5178 		} else {
5179 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5180 			if (ret)
5181 				goto bad_inode;
5182 		}
5183 	}
5184 
5185 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5186 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5187 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5188 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5189 
5190 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5191 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5192 
5193 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5194 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5195 				ivers |=
5196 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5197 		}
5198 		ext4_inode_set_iversion_queried(inode, ivers);
5199 	}
5200 
5201 	ret = 0;
5202 	if (ei->i_file_acl &&
5203 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5204 		ext4_error_inode(inode, function, line, 0,
5205 				 "iget: bad extended attribute block %llu",
5206 				 ei->i_file_acl);
5207 		ret = -EFSCORRUPTED;
5208 		goto bad_inode;
5209 	} else if (!ext4_has_inline_data(inode)) {
5210 		/* validate the block references in the inode */
5211 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5212 		   (S_ISLNK(inode->i_mode) &&
5213 		    !ext4_inode_is_fast_symlink(inode))) {
5214 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5215 				ret = ext4_ext_check_inode(inode);
5216 			else
5217 				ret = ext4_ind_check_inode(inode);
5218 		}
5219 	}
5220 	if (ret)
5221 		goto bad_inode;
5222 
5223 	if (S_ISREG(inode->i_mode)) {
5224 		inode->i_op = &ext4_file_inode_operations;
5225 		inode->i_fop = &ext4_file_operations;
5226 		ext4_set_aops(inode);
5227 	} else if (S_ISDIR(inode->i_mode)) {
5228 		inode->i_op = &ext4_dir_inode_operations;
5229 		inode->i_fop = &ext4_dir_operations;
5230 	} else if (S_ISLNK(inode->i_mode)) {
5231 		/* VFS does not allow setting these so must be corruption */
5232 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5233 			ext4_error_inode(inode, function, line, 0,
5234 					 "iget: immutable or append flags "
5235 					 "not allowed on symlinks");
5236 			ret = -EFSCORRUPTED;
5237 			goto bad_inode;
5238 		}
5239 		if (IS_ENCRYPTED(inode)) {
5240 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5241 			ext4_set_aops(inode);
5242 		} else if (ext4_inode_is_fast_symlink(inode)) {
5243 			inode->i_link = (char *)ei->i_data;
5244 			inode->i_op = &ext4_fast_symlink_inode_operations;
5245 			nd_terminate_link(ei->i_data, inode->i_size,
5246 				sizeof(ei->i_data) - 1);
5247 		} else {
5248 			inode->i_op = &ext4_symlink_inode_operations;
5249 			ext4_set_aops(inode);
5250 		}
5251 		inode_nohighmem(inode);
5252 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5253 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5254 		inode->i_op = &ext4_special_inode_operations;
5255 		if (raw_inode->i_block[0])
5256 			init_special_inode(inode, inode->i_mode,
5257 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5258 		else
5259 			init_special_inode(inode, inode->i_mode,
5260 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5261 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5262 		make_bad_inode(inode);
5263 	} else {
5264 		ret = -EFSCORRUPTED;
5265 		ext4_error_inode(inode, function, line, 0,
5266 				 "iget: bogus i_mode (%o)", inode->i_mode);
5267 		goto bad_inode;
5268 	}
5269 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5270 		ext4_error_inode(inode, function, line, 0,
5271 				 "casefold flag without casefold feature");
5272 	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5273 		ext4_error_inode(inode, function, line, 0, err_str);
5274 		ret = -EFSCORRUPTED;
5275 		goto bad_inode;
5276 	}
5277 
5278 	brelse(iloc.bh);
5279 	unlock_new_inode(inode);
5280 	return inode;
5281 
5282 bad_inode:
5283 	brelse(iloc.bh);
5284 	iget_failed(inode);
5285 	return ERR_PTR(ret);
5286 }
5287 
ext4_inode_blocks_set(handle_t * handle,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)5288 static int ext4_inode_blocks_set(handle_t *handle,
5289 				struct ext4_inode *raw_inode,
5290 				struct ext4_inode_info *ei)
5291 {
5292 	struct inode *inode = &(ei->vfs_inode);
5293 	u64 i_blocks = READ_ONCE(inode->i_blocks);
5294 	struct super_block *sb = inode->i_sb;
5295 
5296 	if (i_blocks <= ~0U) {
5297 		/*
5298 		 * i_blocks can be represented in a 32 bit variable
5299 		 * as multiple of 512 bytes
5300 		 */
5301 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5302 		raw_inode->i_blocks_high = 0;
5303 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5304 		return 0;
5305 	}
5306 	if (!ext4_has_feature_huge_file(sb))
5307 		return -EFBIG;
5308 
5309 	if (i_blocks <= 0xffffffffffffULL) {
5310 		/*
5311 		 * i_blocks can be represented in a 48 bit variable
5312 		 * as multiple of 512 bytes
5313 		 */
5314 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5315 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5316 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5317 	} else {
5318 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5319 		/* i_block is stored in file system block size */
5320 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5321 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5322 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5323 	}
5324 	return 0;
5325 }
5326 
5327 struct other_inode {
5328 	unsigned long		orig_ino;
5329 	struct ext4_inode	*raw_inode;
5330 };
5331 
other_inode_match(struct inode * inode,unsigned long ino,void * data)5332 static int other_inode_match(struct inode * inode, unsigned long ino,
5333 			     void *data)
5334 {
5335 	struct other_inode *oi = (struct other_inode *) data;
5336 
5337 	if ((inode->i_ino != ino) ||
5338 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5339 			       I_DIRTY_INODE)) ||
5340 	    ((inode->i_state & I_DIRTY_TIME) == 0))
5341 		return 0;
5342 	spin_lock(&inode->i_lock);
5343 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5344 				I_DIRTY_INODE)) == 0) &&
5345 	    (inode->i_state & I_DIRTY_TIME)) {
5346 		struct ext4_inode_info	*ei = EXT4_I(inode);
5347 
5348 		inode->i_state &= ~I_DIRTY_TIME;
5349 		spin_unlock(&inode->i_lock);
5350 
5351 		spin_lock(&ei->i_raw_lock);
5352 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5353 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5354 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5355 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
5356 		spin_unlock(&ei->i_raw_lock);
5357 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5358 		return -1;
5359 	}
5360 	spin_unlock(&inode->i_lock);
5361 	return -1;
5362 }
5363 
5364 /*
5365  * Opportunistically update the other time fields for other inodes in
5366  * the same inode table block.
5367  */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5368 static void ext4_update_other_inodes_time(struct super_block *sb,
5369 					  unsigned long orig_ino, char *buf)
5370 {
5371 	struct other_inode oi;
5372 	unsigned long ino;
5373 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5374 	int inode_size = EXT4_INODE_SIZE(sb);
5375 
5376 	oi.orig_ino = orig_ino;
5377 	/*
5378 	 * Calculate the first inode in the inode table block.  Inode
5379 	 * numbers are one-based.  That is, the first inode in a block
5380 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5381 	 */
5382 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5383 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5384 		if (ino == orig_ino)
5385 			continue;
5386 		oi.raw_inode = (struct ext4_inode *) buf;
5387 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5388 	}
5389 }
5390 
5391 /*
5392  * Post the struct inode info into an on-disk inode location in the
5393  * buffer-cache.  This gobbles the caller's reference to the
5394  * buffer_head in the inode location struct.
5395  *
5396  * The caller must have write access to iloc->bh.
5397  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5398 static int ext4_do_update_inode(handle_t *handle,
5399 				struct inode *inode,
5400 				struct ext4_iloc *iloc)
5401 {
5402 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5403 	struct ext4_inode_info *ei = EXT4_I(inode);
5404 	struct buffer_head *bh = iloc->bh;
5405 	struct super_block *sb = inode->i_sb;
5406 	int err = 0, block;
5407 	int need_datasync = 0, set_large_file = 0;
5408 	uid_t i_uid;
5409 	gid_t i_gid;
5410 	projid_t i_projid;
5411 
5412 	spin_lock(&ei->i_raw_lock);
5413 
5414 	/* For fields not tracked in the in-memory inode,
5415 	 * initialise them to zero for new inodes. */
5416 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5417 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5418 
5419 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5420 	if (err) {
5421 		spin_unlock(&ei->i_raw_lock);
5422 		goto out_brelse;
5423 	}
5424 
5425 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5426 	i_uid = i_uid_read(inode);
5427 	i_gid = i_gid_read(inode);
5428 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5429 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5430 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5431 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5432 /*
5433  * Fix up interoperability with old kernels. Otherwise, old inodes get
5434  * re-used with the upper 16 bits of the uid/gid intact
5435  */
5436 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5437 			raw_inode->i_uid_high = 0;
5438 			raw_inode->i_gid_high = 0;
5439 		} else {
5440 			raw_inode->i_uid_high =
5441 				cpu_to_le16(high_16_bits(i_uid));
5442 			raw_inode->i_gid_high =
5443 				cpu_to_le16(high_16_bits(i_gid));
5444 		}
5445 	} else {
5446 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5447 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5448 		raw_inode->i_uid_high = 0;
5449 		raw_inode->i_gid_high = 0;
5450 	}
5451 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5452 
5453 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5454 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5455 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5456 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5457 
5458 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5459 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5460 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5461 		raw_inode->i_file_acl_high =
5462 			cpu_to_le16(ei->i_file_acl >> 32);
5463 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5464 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5465 		ext4_isize_set(raw_inode, ei->i_disksize);
5466 		need_datasync = 1;
5467 	}
5468 	if (ei->i_disksize > 0x7fffffffULL) {
5469 		if (!ext4_has_feature_large_file(sb) ||
5470 				EXT4_SB(sb)->s_es->s_rev_level ==
5471 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5472 			set_large_file = 1;
5473 	}
5474 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5475 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5476 		if (old_valid_dev(inode->i_rdev)) {
5477 			raw_inode->i_block[0] =
5478 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5479 			raw_inode->i_block[1] = 0;
5480 		} else {
5481 			raw_inode->i_block[0] = 0;
5482 			raw_inode->i_block[1] =
5483 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5484 			raw_inode->i_block[2] = 0;
5485 		}
5486 	} else if (!ext4_has_inline_data(inode)) {
5487 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5488 			raw_inode->i_block[block] = ei->i_data[block];
5489 	}
5490 
5491 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5492 		u64 ivers = ext4_inode_peek_iversion(inode);
5493 
5494 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5495 		if (ei->i_extra_isize) {
5496 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5497 				raw_inode->i_version_hi =
5498 					cpu_to_le32(ivers >> 32);
5499 			raw_inode->i_extra_isize =
5500 				cpu_to_le16(ei->i_extra_isize);
5501 		}
5502 	}
5503 
5504 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5505 	       i_projid != EXT4_DEF_PROJID);
5506 
5507 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5508 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5509 		raw_inode->i_projid = cpu_to_le32(i_projid);
5510 
5511 	ext4_inode_csum_set(inode, raw_inode, ei);
5512 	spin_unlock(&ei->i_raw_lock);
5513 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5514 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5515 					      bh->b_data);
5516 
5517 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5518 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5519 	if (err)
5520 		goto out_brelse;
5521 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5522 	if (set_large_file) {
5523 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5524 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5525 		if (err)
5526 			goto out_brelse;
5527 		ext4_set_feature_large_file(sb);
5528 		ext4_handle_sync(handle);
5529 		err = ext4_handle_dirty_super(handle, sb);
5530 	}
5531 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5532 out_brelse:
5533 	brelse(bh);
5534 	ext4_std_error(inode->i_sb, err);
5535 	return err;
5536 }
5537 
5538 /*
5539  * ext4_write_inode()
5540  *
5541  * We are called from a few places:
5542  *
5543  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5544  *   Here, there will be no transaction running. We wait for any running
5545  *   transaction to commit.
5546  *
5547  * - Within flush work (sys_sync(), kupdate and such).
5548  *   We wait on commit, if told to.
5549  *
5550  * - Within iput_final() -> write_inode_now()
5551  *   We wait on commit, if told to.
5552  *
5553  * In all cases it is actually safe for us to return without doing anything,
5554  * because the inode has been copied into a raw inode buffer in
5555  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5556  * writeback.
5557  *
5558  * Note that we are absolutely dependent upon all inode dirtiers doing the
5559  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5560  * which we are interested.
5561  *
5562  * It would be a bug for them to not do this.  The code:
5563  *
5564  *	mark_inode_dirty(inode)
5565  *	stuff();
5566  *	inode->i_size = expr;
5567  *
5568  * is in error because write_inode() could occur while `stuff()' is running,
5569  * and the new i_size will be lost.  Plus the inode will no longer be on the
5570  * superblock's dirty inode list.
5571  */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5572 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5573 {
5574 	int err;
5575 
5576 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5577 	    sb_rdonly(inode->i_sb))
5578 		return 0;
5579 
5580 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5581 		return -EIO;
5582 
5583 	if (EXT4_SB(inode->i_sb)->s_journal) {
5584 		if (ext4_journal_current_handle()) {
5585 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5586 			dump_stack();
5587 			return -EIO;
5588 		}
5589 
5590 		/*
5591 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5592 		 * ext4_sync_fs() will force the commit after everything is
5593 		 * written.
5594 		 */
5595 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5596 			return 0;
5597 
5598 		err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5599 						EXT4_I(inode)->i_sync_tid);
5600 	} else {
5601 		struct ext4_iloc iloc;
5602 
5603 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5604 		if (err)
5605 			return err;
5606 		/*
5607 		 * sync(2) will flush the whole buffer cache. No need to do
5608 		 * it here separately for each inode.
5609 		 */
5610 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5611 			sync_dirty_buffer(iloc.bh);
5612 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5613 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5614 					 "IO error syncing inode");
5615 			err = -EIO;
5616 		}
5617 		brelse(iloc.bh);
5618 	}
5619 	return err;
5620 }
5621 
5622 /*
5623  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5624  * buffers that are attached to a page stradding i_size and are undergoing
5625  * commit. In that case we have to wait for commit to finish and try again.
5626  */
ext4_wait_for_tail_page_commit(struct inode * inode)5627 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5628 {
5629 	struct page *page;
5630 	unsigned offset;
5631 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5632 	tid_t commit_tid = 0;
5633 	int ret;
5634 
5635 	offset = inode->i_size & (PAGE_SIZE - 1);
5636 	/*
5637 	 * If the page is fully truncated, we don't need to wait for any commit
5638 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5639 	 * strip all buffers from the page but keep the page dirty which can then
5640 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5641 	 * buffers). Also we don't need to wait for any commit if all buffers in
5642 	 * the page remain valid. This is most beneficial for the common case of
5643 	 * blocksize == PAGESIZE.
5644 	 */
5645 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5646 		return;
5647 	while (1) {
5648 		page = find_lock_page(inode->i_mapping,
5649 				      inode->i_size >> PAGE_SHIFT);
5650 		if (!page)
5651 			return;
5652 		ret = __ext4_journalled_invalidatepage(page, offset,
5653 						PAGE_SIZE - offset);
5654 		unlock_page(page);
5655 		put_page(page);
5656 		if (ret != -EBUSY)
5657 			return;
5658 		commit_tid = 0;
5659 		read_lock(&journal->j_state_lock);
5660 		if (journal->j_committing_transaction)
5661 			commit_tid = journal->j_committing_transaction->t_tid;
5662 		read_unlock(&journal->j_state_lock);
5663 		if (commit_tid)
5664 			jbd2_log_wait_commit(journal, commit_tid);
5665 	}
5666 }
5667 
5668 /*
5669  * ext4_setattr()
5670  *
5671  * Called from notify_change.
5672  *
5673  * We want to trap VFS attempts to truncate the file as soon as
5674  * possible.  In particular, we want to make sure that when the VFS
5675  * shrinks i_size, we put the inode on the orphan list and modify
5676  * i_disksize immediately, so that during the subsequent flushing of
5677  * dirty pages and freeing of disk blocks, we can guarantee that any
5678  * commit will leave the blocks being flushed in an unused state on
5679  * disk.  (On recovery, the inode will get truncated and the blocks will
5680  * be freed, so we have a strong guarantee that no future commit will
5681  * leave these blocks visible to the user.)
5682  *
5683  * Another thing we have to assure is that if we are in ordered mode
5684  * and inode is still attached to the committing transaction, we must
5685  * we start writeout of all the dirty pages which are being truncated.
5686  * This way we are sure that all the data written in the previous
5687  * transaction are already on disk (truncate waits for pages under
5688  * writeback).
5689  *
5690  * Called with inode->i_mutex down.
5691  */
ext4_setattr(struct dentry * dentry,struct iattr * attr)5692 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5693 {
5694 	struct inode *inode = d_inode(dentry);
5695 	int error, rc = 0;
5696 	int orphan = 0;
5697 	const unsigned int ia_valid = attr->ia_valid;
5698 
5699 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5700 		return -EIO;
5701 
5702 	if (unlikely(IS_IMMUTABLE(inode)))
5703 		return -EPERM;
5704 
5705 	if (unlikely(IS_APPEND(inode) &&
5706 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5707 				  ATTR_GID | ATTR_TIMES_SET))))
5708 		return -EPERM;
5709 
5710 	error = setattr_prepare(dentry, attr);
5711 	if (error)
5712 		return error;
5713 
5714 	error = fscrypt_prepare_setattr(dentry, attr);
5715 	if (error)
5716 		return error;
5717 
5718 	error = fsverity_prepare_setattr(dentry, attr);
5719 	if (error)
5720 		return error;
5721 
5722 	if (is_quota_modification(inode, attr)) {
5723 		error = dquot_initialize(inode);
5724 		if (error)
5725 			return error;
5726 	}
5727 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5728 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5729 		handle_t *handle;
5730 
5731 		/* (user+group)*(old+new) structure, inode write (sb,
5732 		 * inode block, ? - but truncate inode update has it) */
5733 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5734 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5735 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5736 		if (IS_ERR(handle)) {
5737 			error = PTR_ERR(handle);
5738 			goto err_out;
5739 		}
5740 
5741 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5742 		 * counts xattr inode references.
5743 		 */
5744 		down_read(&EXT4_I(inode)->xattr_sem);
5745 		error = dquot_transfer(inode, attr);
5746 		up_read(&EXT4_I(inode)->xattr_sem);
5747 
5748 		if (error) {
5749 			ext4_journal_stop(handle);
5750 			return error;
5751 		}
5752 		/* Update corresponding info in inode so that everything is in
5753 		 * one transaction */
5754 		if (attr->ia_valid & ATTR_UID)
5755 			inode->i_uid = attr->ia_uid;
5756 		if (attr->ia_valid & ATTR_GID)
5757 			inode->i_gid = attr->ia_gid;
5758 		error = ext4_mark_inode_dirty(handle, inode);
5759 		ext4_journal_stop(handle);
5760 	}
5761 
5762 	if (attr->ia_valid & ATTR_SIZE) {
5763 		handle_t *handle;
5764 		loff_t oldsize = inode->i_size;
5765 		loff_t old_disksize;
5766 		int shrink = (attr->ia_size < inode->i_size);
5767 
5768 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5769 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5770 
5771 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5772 				return -EFBIG;
5773 		}
5774 		if (!S_ISREG(inode->i_mode))
5775 			return -EINVAL;
5776 
5777 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5778 			inode_inc_iversion(inode);
5779 
5780 		if (shrink) {
5781 			if (ext4_should_order_data(inode)) {
5782 				error = ext4_begin_ordered_truncate(inode,
5783 							    attr->ia_size);
5784 				if (error)
5785 					goto err_out;
5786 			}
5787 			/*
5788 			 * Blocks are going to be removed from the inode. Wait
5789 			 * for dio in flight.
5790 			 */
5791 			inode_dio_wait(inode);
5792 		}
5793 
5794 		down_write(&EXT4_I(inode)->i_mmap_sem);
5795 
5796 		rc = ext4_break_layouts(inode);
5797 		if (rc) {
5798 			up_write(&EXT4_I(inode)->i_mmap_sem);
5799 			return rc;
5800 		}
5801 
5802 		if (attr->ia_size != inode->i_size) {
5803 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5804 			if (IS_ERR(handle)) {
5805 				error = PTR_ERR(handle);
5806 				goto out_mmap_sem;
5807 			}
5808 			if (ext4_handle_valid(handle) && shrink) {
5809 				error = ext4_orphan_add(handle, inode);
5810 				orphan = 1;
5811 			}
5812 			/*
5813 			 * Update c/mtime on truncate up, ext4_truncate() will
5814 			 * update c/mtime in shrink case below
5815 			 */
5816 			if (!shrink) {
5817 				inode->i_mtime = current_time(inode);
5818 				inode->i_ctime = inode->i_mtime;
5819 			}
5820 			down_write(&EXT4_I(inode)->i_data_sem);
5821 			old_disksize = EXT4_I(inode)->i_disksize;
5822 			EXT4_I(inode)->i_disksize = attr->ia_size;
5823 			rc = ext4_mark_inode_dirty(handle, inode);
5824 			if (!error)
5825 				error = rc;
5826 			/*
5827 			 * We have to update i_size under i_data_sem together
5828 			 * with i_disksize to avoid races with writeback code
5829 			 * running ext4_wb_update_i_disksize().
5830 			 */
5831 			if (!error)
5832 				i_size_write(inode, attr->ia_size);
5833 			else
5834 				EXT4_I(inode)->i_disksize = old_disksize;
5835 			up_write(&EXT4_I(inode)->i_data_sem);
5836 			ext4_journal_stop(handle);
5837 			if (error)
5838 				goto out_mmap_sem;
5839 			if (!shrink) {
5840 				pagecache_isize_extended(inode, oldsize,
5841 							 inode->i_size);
5842 			} else if (ext4_should_journal_data(inode)) {
5843 				ext4_wait_for_tail_page_commit(inode);
5844 			}
5845 		}
5846 
5847 		/*
5848 		 * Truncate pagecache after we've waited for commit
5849 		 * in data=journal mode to make pages freeable.
5850 		 */
5851 		truncate_pagecache(inode, inode->i_size);
5852 		/*
5853 		 * Call ext4_truncate() even if i_size didn't change to
5854 		 * truncate possible preallocated blocks.
5855 		 */
5856 		if (attr->ia_size <= oldsize) {
5857 			rc = ext4_truncate(inode);
5858 			if (rc)
5859 				error = rc;
5860 		}
5861 out_mmap_sem:
5862 		up_write(&EXT4_I(inode)->i_mmap_sem);
5863 	}
5864 
5865 	if (!error) {
5866 		setattr_copy(inode, attr);
5867 		mark_inode_dirty(inode);
5868 	}
5869 
5870 	/*
5871 	 * If the call to ext4_truncate failed to get a transaction handle at
5872 	 * all, we need to clean up the in-core orphan list manually.
5873 	 */
5874 	if (orphan && inode->i_nlink)
5875 		ext4_orphan_del(NULL, inode);
5876 
5877 	if (!error && (ia_valid & ATTR_MODE))
5878 		rc = posix_acl_chmod(inode, inode->i_mode);
5879 
5880 err_out:
5881 	ext4_std_error(inode->i_sb, error);
5882 	if (!error)
5883 		error = rc;
5884 	return error;
5885 }
5886 
ext4_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5887 int ext4_getattr(const struct path *path, struct kstat *stat,
5888 		 u32 request_mask, unsigned int query_flags)
5889 {
5890 	struct inode *inode = d_inode(path->dentry);
5891 	struct ext4_inode *raw_inode;
5892 	struct ext4_inode_info *ei = EXT4_I(inode);
5893 	unsigned int flags;
5894 
5895 	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5896 		stat->result_mask |= STATX_BTIME;
5897 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5898 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5899 	}
5900 
5901 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5902 	if (flags & EXT4_APPEND_FL)
5903 		stat->attributes |= STATX_ATTR_APPEND;
5904 	if (flags & EXT4_COMPR_FL)
5905 		stat->attributes |= STATX_ATTR_COMPRESSED;
5906 	if (flags & EXT4_ENCRYPT_FL)
5907 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5908 	if (flags & EXT4_IMMUTABLE_FL)
5909 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5910 	if (flags & EXT4_NODUMP_FL)
5911 		stat->attributes |= STATX_ATTR_NODUMP;
5912 	if (flags & EXT4_VERITY_FL)
5913 		stat->attributes |= STATX_ATTR_VERITY;
5914 
5915 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5916 				  STATX_ATTR_COMPRESSED |
5917 				  STATX_ATTR_ENCRYPTED |
5918 				  STATX_ATTR_IMMUTABLE |
5919 				  STATX_ATTR_NODUMP |
5920 				  STATX_ATTR_VERITY);
5921 
5922 	generic_fillattr(inode, stat);
5923 	return 0;
5924 }
5925 
ext4_file_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5926 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5927 		      u32 request_mask, unsigned int query_flags)
5928 {
5929 	struct inode *inode = d_inode(path->dentry);
5930 	u64 delalloc_blocks;
5931 
5932 	ext4_getattr(path, stat, request_mask, query_flags);
5933 
5934 	/*
5935 	 * If there is inline data in the inode, the inode will normally not
5936 	 * have data blocks allocated (it may have an external xattr block).
5937 	 * Report at least one sector for such files, so tools like tar, rsync,
5938 	 * others don't incorrectly think the file is completely sparse.
5939 	 */
5940 	if (unlikely(ext4_has_inline_data(inode)))
5941 		stat->blocks += (stat->size + 511) >> 9;
5942 
5943 	/*
5944 	 * We can't update i_blocks if the block allocation is delayed
5945 	 * otherwise in the case of system crash before the real block
5946 	 * allocation is done, we will have i_blocks inconsistent with
5947 	 * on-disk file blocks.
5948 	 * We always keep i_blocks updated together with real
5949 	 * allocation. But to not confuse with user, stat
5950 	 * will return the blocks that include the delayed allocation
5951 	 * blocks for this file.
5952 	 */
5953 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5954 				   EXT4_I(inode)->i_reserved_data_blocks);
5955 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5956 	return 0;
5957 }
5958 
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5959 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5960 				   int pextents)
5961 {
5962 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5963 		return ext4_ind_trans_blocks(inode, lblocks);
5964 	return ext4_ext_index_trans_blocks(inode, pextents);
5965 }
5966 
5967 /*
5968  * Account for index blocks, block groups bitmaps and block group
5969  * descriptor blocks if modify datablocks and index blocks
5970  * worse case, the indexs blocks spread over different block groups
5971  *
5972  * If datablocks are discontiguous, they are possible to spread over
5973  * different block groups too. If they are contiguous, with flexbg,
5974  * they could still across block group boundary.
5975  *
5976  * Also account for superblock, inode, quota and xattr blocks
5977  */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5978 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5979 				  int pextents)
5980 {
5981 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5982 	int gdpblocks;
5983 	int idxblocks;
5984 	int ret = 0;
5985 
5986 	/*
5987 	 * How many index blocks need to touch to map @lblocks logical blocks
5988 	 * to @pextents physical extents?
5989 	 */
5990 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5991 
5992 	ret = idxblocks;
5993 
5994 	/*
5995 	 * Now let's see how many group bitmaps and group descriptors need
5996 	 * to account
5997 	 */
5998 	groups = idxblocks + pextents;
5999 	gdpblocks = groups;
6000 	if (groups > ngroups)
6001 		groups = ngroups;
6002 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
6003 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
6004 
6005 	/* bitmaps and block group descriptor blocks */
6006 	ret += groups + gdpblocks;
6007 
6008 	/* Blocks for super block, inode, quota and xattr blocks */
6009 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
6010 
6011 	return ret;
6012 }
6013 
6014 /*
6015  * Calculate the total number of credits to reserve to fit
6016  * the modification of a single pages into a single transaction,
6017  * which may include multiple chunks of block allocations.
6018  *
6019  * This could be called via ext4_write_begin()
6020  *
6021  * We need to consider the worse case, when
6022  * one new block per extent.
6023  */
ext4_writepage_trans_blocks(struct inode * inode)6024 int ext4_writepage_trans_blocks(struct inode *inode)
6025 {
6026 	int bpp = ext4_journal_blocks_per_page(inode);
6027 	int ret;
6028 
6029 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
6030 
6031 	/* Account for data blocks for journalled mode */
6032 	if (ext4_should_journal_data(inode))
6033 		ret += bpp;
6034 	return ret;
6035 }
6036 
6037 /*
6038  * Calculate the journal credits for a chunk of data modification.
6039  *
6040  * This is called from DIO, fallocate or whoever calling
6041  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
6042  *
6043  * journal buffers for data blocks are not included here, as DIO
6044  * and fallocate do no need to journal data buffers.
6045  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)6046 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
6047 {
6048 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
6049 }
6050 
6051 /*
6052  * The caller must have previously called ext4_reserve_inode_write().
6053  * Give this, we know that the caller already has write access to iloc->bh.
6054  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)6055 int ext4_mark_iloc_dirty(handle_t *handle,
6056 			 struct inode *inode, struct ext4_iloc *iloc)
6057 {
6058 	int err = 0;
6059 
6060 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
6061 		put_bh(iloc->bh);
6062 		return -EIO;
6063 	}
6064 	if (IS_I_VERSION(inode))
6065 		inode_inc_iversion(inode);
6066 
6067 	/* the do_update_inode consumes one bh->b_count */
6068 	get_bh(iloc->bh);
6069 
6070 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
6071 	err = ext4_do_update_inode(handle, inode, iloc);
6072 	put_bh(iloc->bh);
6073 	return err;
6074 }
6075 
6076 /*
6077  * On success, We end up with an outstanding reference count against
6078  * iloc->bh.  This _must_ be cleaned up later.
6079  */
6080 
6081 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)6082 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
6083 			 struct ext4_iloc *iloc)
6084 {
6085 	int err;
6086 
6087 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
6088 		return -EIO;
6089 
6090 	err = ext4_get_inode_loc(inode, iloc);
6091 	if (!err) {
6092 		BUFFER_TRACE(iloc->bh, "get_write_access");
6093 		err = ext4_journal_get_write_access(handle, iloc->bh);
6094 		if (err) {
6095 			brelse(iloc->bh);
6096 			iloc->bh = NULL;
6097 		}
6098 	}
6099 	ext4_std_error(inode->i_sb, err);
6100 	return err;
6101 }
6102 
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)6103 static int __ext4_expand_extra_isize(struct inode *inode,
6104 				     unsigned int new_extra_isize,
6105 				     struct ext4_iloc *iloc,
6106 				     handle_t *handle, int *no_expand)
6107 {
6108 	struct ext4_inode *raw_inode;
6109 	struct ext4_xattr_ibody_header *header;
6110 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
6111 	struct ext4_inode_info *ei = EXT4_I(inode);
6112 	int error;
6113 
6114 	/* this was checked at iget time, but double check for good measure */
6115 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
6116 	    (ei->i_extra_isize & 3)) {
6117 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
6118 				 ei->i_extra_isize,
6119 				 EXT4_INODE_SIZE(inode->i_sb));
6120 		return -EFSCORRUPTED;
6121 	}
6122 	if ((new_extra_isize < ei->i_extra_isize) ||
6123 	    (new_extra_isize < 4) ||
6124 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
6125 		return -EINVAL;	/* Should never happen */
6126 
6127 	raw_inode = ext4_raw_inode(iloc);
6128 
6129 	header = IHDR(inode, raw_inode);
6130 
6131 	/* No extended attributes present */
6132 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
6133 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6134 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
6135 		       EXT4_I(inode)->i_extra_isize, 0,
6136 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
6137 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
6138 		return 0;
6139 	}
6140 
6141 	/*
6142 	 * We may need to allocate external xattr block so we need quotas
6143 	 * initialized. Here we can be called with various locks held so we
6144 	 * cannot affort to initialize quotas ourselves. So just bail.
6145 	 */
6146 	if (dquot_initialize_needed(inode))
6147 		return -EAGAIN;
6148 
6149 	/* try to expand with EAs present */
6150 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
6151 					   raw_inode, handle);
6152 	if (error) {
6153 		/*
6154 		 * Inode size expansion failed; don't try again
6155 		 */
6156 		*no_expand = 1;
6157 	}
6158 
6159 	return error;
6160 }
6161 
6162 /*
6163  * Expand an inode by new_extra_isize bytes.
6164  * Returns 0 on success or negative error number on failure.
6165  */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)6166 static int ext4_try_to_expand_extra_isize(struct inode *inode,
6167 					  unsigned int new_extra_isize,
6168 					  struct ext4_iloc iloc,
6169 					  handle_t *handle)
6170 {
6171 	int no_expand;
6172 	int error;
6173 
6174 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
6175 		return -EOVERFLOW;
6176 
6177 	/*
6178 	 * In nojournal mode, we can immediately attempt to expand
6179 	 * the inode.  When journaled, we first need to obtain extra
6180 	 * buffer credits since we may write into the EA block
6181 	 * with this same handle. If journal_extend fails, then it will
6182 	 * only result in a minor loss of functionality for that inode.
6183 	 * If this is felt to be critical, then e2fsck should be run to
6184 	 * force a large enough s_min_extra_isize.
6185 	 */
6186 	if (ext4_handle_valid(handle) &&
6187 	    jbd2_journal_extend(handle,
6188 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
6189 		return -ENOSPC;
6190 
6191 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6192 		return -EBUSY;
6193 
6194 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6195 					  handle, &no_expand);
6196 	ext4_write_unlock_xattr(inode, &no_expand);
6197 
6198 	return error;
6199 }
6200 
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)6201 int ext4_expand_extra_isize(struct inode *inode,
6202 			    unsigned int new_extra_isize,
6203 			    struct ext4_iloc *iloc)
6204 {
6205 	handle_t *handle;
6206 	int no_expand;
6207 	int error, rc;
6208 
6209 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6210 		brelse(iloc->bh);
6211 		return -EOVERFLOW;
6212 	}
6213 
6214 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
6215 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6216 	if (IS_ERR(handle)) {
6217 		error = PTR_ERR(handle);
6218 		brelse(iloc->bh);
6219 		return error;
6220 	}
6221 
6222 	ext4_write_lock_xattr(inode, &no_expand);
6223 
6224 	BUFFER_TRACE(iloc->bh, "get_write_access");
6225 	error = ext4_journal_get_write_access(handle, iloc->bh);
6226 	if (error) {
6227 		brelse(iloc->bh);
6228 		goto out_unlock;
6229 	}
6230 
6231 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6232 					  handle, &no_expand);
6233 
6234 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6235 	if (!error)
6236 		error = rc;
6237 
6238 out_unlock:
6239 	ext4_write_unlock_xattr(inode, &no_expand);
6240 	ext4_journal_stop(handle);
6241 	return error;
6242 }
6243 
6244 /*
6245  * What we do here is to mark the in-core inode as clean with respect to inode
6246  * dirtiness (it may still be data-dirty).
6247  * This means that the in-core inode may be reaped by prune_icache
6248  * without having to perform any I/O.  This is a very good thing,
6249  * because *any* task may call prune_icache - even ones which
6250  * have a transaction open against a different journal.
6251  *
6252  * Is this cheating?  Not really.  Sure, we haven't written the
6253  * inode out, but prune_icache isn't a user-visible syncing function.
6254  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6255  * we start and wait on commits.
6256  */
ext4_mark_inode_dirty(handle_t * handle,struct inode * inode)6257 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6258 {
6259 	struct ext4_iloc iloc;
6260 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6261 	int err;
6262 
6263 	might_sleep();
6264 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6265 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6266 	if (err)
6267 		return err;
6268 
6269 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6270 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6271 					       iloc, handle);
6272 
6273 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
6274 }
6275 
6276 /*
6277  * ext4_dirty_inode() is called from __mark_inode_dirty()
6278  *
6279  * We're really interested in the case where a file is being extended.
6280  * i_size has been changed by generic_commit_write() and we thus need
6281  * to include the updated inode in the current transaction.
6282  *
6283  * Also, dquot_alloc_block() will always dirty the inode when blocks
6284  * are allocated to the file.
6285  *
6286  * If the inode is marked synchronous, we don't honour that here - doing
6287  * so would cause a commit on atime updates, which we don't bother doing.
6288  * We handle synchronous inodes at the highest possible level.
6289  *
6290  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6291  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6292  * to copy into the on-disk inode structure are the timestamp files.
6293  */
ext4_dirty_inode(struct inode * inode,int flags)6294 void ext4_dirty_inode(struct inode *inode, int flags)
6295 {
6296 	handle_t *handle;
6297 
6298 	if (flags == I_DIRTY_TIME)
6299 		return;
6300 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6301 	if (IS_ERR(handle))
6302 		goto out;
6303 
6304 	ext4_mark_inode_dirty(handle, inode);
6305 
6306 	ext4_journal_stop(handle);
6307 out:
6308 	return;
6309 }
6310 
ext4_change_inode_journal_flag(struct inode * inode,int val)6311 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6312 {
6313 	journal_t *journal;
6314 	handle_t *handle;
6315 	int err;
6316 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6317 
6318 	/*
6319 	 * We have to be very careful here: changing a data block's
6320 	 * journaling status dynamically is dangerous.  If we write a
6321 	 * data block to the journal, change the status and then delete
6322 	 * that block, we risk forgetting to revoke the old log record
6323 	 * from the journal and so a subsequent replay can corrupt data.
6324 	 * So, first we make sure that the journal is empty and that
6325 	 * nobody is changing anything.
6326 	 */
6327 
6328 	journal = EXT4_JOURNAL(inode);
6329 	if (!journal)
6330 		return 0;
6331 	if (is_journal_aborted(journal))
6332 		return -EROFS;
6333 
6334 	/* Wait for all existing dio workers */
6335 	inode_dio_wait(inode);
6336 
6337 	/*
6338 	 * Before flushing the journal and switching inode's aops, we have
6339 	 * to flush all dirty data the inode has. There can be outstanding
6340 	 * delayed allocations, there can be unwritten extents created by
6341 	 * fallocate or buffered writes in dioread_nolock mode covered by
6342 	 * dirty data which can be converted only after flushing the dirty
6343 	 * data (and journalled aops don't know how to handle these cases).
6344 	 */
6345 	if (val) {
6346 		down_write(&EXT4_I(inode)->i_mmap_sem);
6347 		err = filemap_write_and_wait(inode->i_mapping);
6348 		if (err < 0) {
6349 			up_write(&EXT4_I(inode)->i_mmap_sem);
6350 			return err;
6351 		}
6352 	}
6353 
6354 	percpu_down_write(&sbi->s_writepages_rwsem);
6355 	jbd2_journal_lock_updates(journal);
6356 
6357 	/*
6358 	 * OK, there are no updates running now, and all cached data is
6359 	 * synced to disk.  We are now in a completely consistent state
6360 	 * which doesn't have anything in the journal, and we know that
6361 	 * no filesystem updates are running, so it is safe to modify
6362 	 * the inode's in-core data-journaling state flag now.
6363 	 */
6364 
6365 	if (val)
6366 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6367 	else {
6368 		err = jbd2_journal_flush(journal);
6369 		if (err < 0) {
6370 			jbd2_journal_unlock_updates(journal);
6371 			percpu_up_write(&sbi->s_writepages_rwsem);
6372 			return err;
6373 		}
6374 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6375 	}
6376 	ext4_set_aops(inode);
6377 
6378 	jbd2_journal_unlock_updates(journal);
6379 	percpu_up_write(&sbi->s_writepages_rwsem);
6380 
6381 	if (val)
6382 		up_write(&EXT4_I(inode)->i_mmap_sem);
6383 
6384 	/* Finally we can mark the inode as dirty. */
6385 
6386 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6387 	if (IS_ERR(handle))
6388 		return PTR_ERR(handle);
6389 
6390 	err = ext4_mark_inode_dirty(handle, inode);
6391 	ext4_handle_sync(handle);
6392 	ext4_journal_stop(handle);
6393 	ext4_std_error(inode->i_sb, err);
6394 
6395 	return err;
6396 }
6397 
ext4_bh_unmapped(handle_t * handle,struct buffer_head * bh)6398 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6399 {
6400 	return !buffer_mapped(bh);
6401 }
6402 
ext4_page_mkwrite(struct vm_fault * vmf)6403 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6404 {
6405 	struct vm_area_struct *vma = vmf->vma;
6406 	struct page *page = vmf->page;
6407 	loff_t size;
6408 	unsigned long len;
6409 	int err;
6410 	vm_fault_t ret;
6411 	struct file *file = vma->vm_file;
6412 	struct inode *inode = file_inode(file);
6413 	struct address_space *mapping = inode->i_mapping;
6414 	handle_t *handle;
6415 	get_block_t *get_block;
6416 	int retries = 0;
6417 
6418 	if (unlikely(IS_IMMUTABLE(inode)))
6419 		return VM_FAULT_SIGBUS;
6420 
6421 	sb_start_pagefault(inode->i_sb);
6422 	file_update_time(vma->vm_file);
6423 
6424 	down_read(&EXT4_I(inode)->i_mmap_sem);
6425 
6426 	err = ext4_convert_inline_data(inode);
6427 	if (err)
6428 		goto out_ret;
6429 
6430 	/* Delalloc case is easy... */
6431 	if (test_opt(inode->i_sb, DELALLOC) &&
6432 	    !ext4_should_journal_data(inode) &&
6433 	    !ext4_nonda_switch(inode->i_sb)) {
6434 		do {
6435 			err = block_page_mkwrite(vma, vmf,
6436 						   ext4_da_get_block_prep);
6437 		} while (err == -ENOSPC &&
6438 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6439 		goto out_ret;
6440 	}
6441 
6442 	lock_page(page);
6443 	size = i_size_read(inode);
6444 	/* Page got truncated from under us? */
6445 	if (page->mapping != mapping || page_offset(page) > size) {
6446 		unlock_page(page);
6447 		ret = VM_FAULT_NOPAGE;
6448 		goto out;
6449 	}
6450 
6451 	if (page->index == size >> PAGE_SHIFT)
6452 		len = size & ~PAGE_MASK;
6453 	else
6454 		len = PAGE_SIZE;
6455 	/*
6456 	 * Return if we have all the buffers mapped. This avoids the need to do
6457 	 * journal_start/journal_stop which can block and take a long time
6458 	 */
6459 	if (page_has_buffers(page)) {
6460 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6461 					    0, len, NULL,
6462 					    ext4_bh_unmapped)) {
6463 			/* Wait so that we don't change page under IO */
6464 			wait_for_stable_page(page);
6465 			ret = VM_FAULT_LOCKED;
6466 			goto out;
6467 		}
6468 	}
6469 	unlock_page(page);
6470 	/* OK, we need to fill the hole... */
6471 	if (ext4_should_dioread_nolock(inode))
6472 		get_block = ext4_get_block_unwritten;
6473 	else
6474 		get_block = ext4_get_block;
6475 retry_alloc:
6476 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6477 				    ext4_writepage_trans_blocks(inode));
6478 	if (IS_ERR(handle)) {
6479 		ret = VM_FAULT_SIGBUS;
6480 		goto out;
6481 	}
6482 	err = block_page_mkwrite(vma, vmf, get_block);
6483 	if (!err && ext4_should_journal_data(inode)) {
6484 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6485 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6486 			unlock_page(page);
6487 			ret = VM_FAULT_SIGBUS;
6488 			ext4_journal_stop(handle);
6489 			goto out;
6490 		}
6491 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6492 	}
6493 	ext4_journal_stop(handle);
6494 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6495 		goto retry_alloc;
6496 out_ret:
6497 	ret = block_page_mkwrite_return(err);
6498 out:
6499 	up_read(&EXT4_I(inode)->i_mmap_sem);
6500 	sb_end_pagefault(inode->i_sb);
6501 	return ret;
6502 }
6503 
ext4_filemap_fault(struct vm_fault * vmf)6504 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6505 {
6506 	struct inode *inode = file_inode(vmf->vma->vm_file);
6507 	vm_fault_t ret;
6508 
6509 	down_read(&EXT4_I(inode)->i_mmap_sem);
6510 	ret = filemap_fault(vmf);
6511 	up_read(&EXT4_I(inode)->i_mmap_sem);
6512 
6513 	return ret;
6514 }
6515