1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 #include <linux/khugepaged.h>
72
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/div64.h>
76 #include "internal.h"
77 #include "shuffle.h"
78
79 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80 static DEFINE_MUTEX(pcp_batch_high_lock);
81 #define MIN_PERCPU_PAGELIST_FRACTION (8)
82
83 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84 DEFINE_PER_CPU(int, numa_node);
85 EXPORT_PER_CPU_SYMBOL(numa_node);
86 #endif
87
88 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89
90 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
91 /*
92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95 * defined in <linux/topology.h>.
96 */
97 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
98 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
99 int _node_numa_mem_[MAX_NUMNODES];
100 #endif
101
102 /* work_structs for global per-cpu drains */
103 struct pcpu_drain {
104 struct zone *zone;
105 struct work_struct work;
106 };
107 DEFINE_MUTEX(pcpu_drain_mutex);
108 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
109
110 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
111 volatile unsigned long latent_entropy __latent_entropy;
112 EXPORT_SYMBOL(latent_entropy);
113 #endif
114
115 /*
116 * Array of node states.
117 */
118 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 [N_POSSIBLE] = NODE_MASK_ALL,
120 [N_ONLINE] = { { [0] = 1UL } },
121 #ifndef CONFIG_NUMA
122 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
123 #ifdef CONFIG_HIGHMEM
124 [N_HIGH_MEMORY] = { { [0] = 1UL } },
125 #endif
126 [N_MEMORY] = { { [0] = 1UL } },
127 [N_CPU] = { { [0] = 1UL } },
128 #endif /* NUMA */
129 };
130 EXPORT_SYMBOL(node_states);
131
132 atomic_long_t _totalram_pages __read_mostly;
133 EXPORT_SYMBOL(_totalram_pages);
134 unsigned long totalreserve_pages __read_mostly;
135 unsigned long totalcma_pages __read_mostly;
136
137 int percpu_pagelist_fraction;
138 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
139 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
140 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
141 #else
142 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
143 #endif
144 EXPORT_SYMBOL(init_on_alloc);
145
146 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
147 DEFINE_STATIC_KEY_TRUE(init_on_free);
148 #else
149 DEFINE_STATIC_KEY_FALSE(init_on_free);
150 #endif
151 EXPORT_SYMBOL(init_on_free);
152
early_init_on_alloc(char * buf)153 static int __init early_init_on_alloc(char *buf)
154 {
155 int ret;
156 bool bool_result;
157
158 if (!buf)
159 return -EINVAL;
160 ret = kstrtobool(buf, &bool_result);
161 if (bool_result && page_poisoning_enabled())
162 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
163 if (bool_result)
164 static_branch_enable(&init_on_alloc);
165 else
166 static_branch_disable(&init_on_alloc);
167 return ret;
168 }
169 early_param("init_on_alloc", early_init_on_alloc);
170
early_init_on_free(char * buf)171 static int __init early_init_on_free(char *buf)
172 {
173 int ret;
174 bool bool_result;
175
176 if (!buf)
177 return -EINVAL;
178 ret = kstrtobool(buf, &bool_result);
179 if (bool_result && page_poisoning_enabled())
180 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
181 if (bool_result)
182 static_branch_enable(&init_on_free);
183 else
184 static_branch_disable(&init_on_free);
185 return ret;
186 }
187 early_param("init_on_free", early_init_on_free);
188
189 /*
190 * A cached value of the page's pageblock's migratetype, used when the page is
191 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
192 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
193 * Also the migratetype set in the page does not necessarily match the pcplist
194 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
195 * other index - this ensures that it will be put on the correct CMA freelist.
196 */
get_pcppage_migratetype(struct page * page)197 static inline int get_pcppage_migratetype(struct page *page)
198 {
199 return page->index;
200 }
201
set_pcppage_migratetype(struct page * page,int migratetype)202 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
203 {
204 page->index = migratetype;
205 }
206
207 #ifdef CONFIG_PM_SLEEP
208 /*
209 * The following functions are used by the suspend/hibernate code to temporarily
210 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
211 * while devices are suspended. To avoid races with the suspend/hibernate code,
212 * they should always be called with system_transition_mutex held
213 * (gfp_allowed_mask also should only be modified with system_transition_mutex
214 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
215 * with that modification).
216 */
217
218 static gfp_t saved_gfp_mask;
219
pm_restore_gfp_mask(void)220 void pm_restore_gfp_mask(void)
221 {
222 WARN_ON(!mutex_is_locked(&system_transition_mutex));
223 if (saved_gfp_mask) {
224 gfp_allowed_mask = saved_gfp_mask;
225 saved_gfp_mask = 0;
226 }
227 }
228
pm_restrict_gfp_mask(void)229 void pm_restrict_gfp_mask(void)
230 {
231 WARN_ON(!mutex_is_locked(&system_transition_mutex));
232 WARN_ON(saved_gfp_mask);
233 saved_gfp_mask = gfp_allowed_mask;
234 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
235 }
236
pm_suspended_storage(void)237 bool pm_suspended_storage(void)
238 {
239 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
240 return false;
241 return true;
242 }
243 #endif /* CONFIG_PM_SLEEP */
244
245 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
246 unsigned int pageblock_order __read_mostly;
247 #endif
248
249 static void __free_pages_ok(struct page *page, unsigned int order);
250
251 /*
252 * results with 256, 32 in the lowmem_reserve sysctl:
253 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
254 * 1G machine -> (16M dma, 784M normal, 224M high)
255 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
256 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
257 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
258 *
259 * TBD: should special case ZONE_DMA32 machines here - in those we normally
260 * don't need any ZONE_NORMAL reservation
261 */
262 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
263 #ifdef CONFIG_ZONE_DMA
264 [ZONE_DMA] = 256,
265 #endif
266 #ifdef CONFIG_ZONE_DMA32
267 [ZONE_DMA32] = 256,
268 #endif
269 [ZONE_NORMAL] = 32,
270 #ifdef CONFIG_HIGHMEM
271 [ZONE_HIGHMEM] = 0,
272 #endif
273 [ZONE_MOVABLE] = 0,
274 };
275
276 static char * const zone_names[MAX_NR_ZONES] = {
277 #ifdef CONFIG_ZONE_DMA
278 "DMA",
279 #endif
280 #ifdef CONFIG_ZONE_DMA32
281 "DMA32",
282 #endif
283 "Normal",
284 #ifdef CONFIG_HIGHMEM
285 "HighMem",
286 #endif
287 "Movable",
288 #ifdef CONFIG_ZONE_DEVICE
289 "Device",
290 #endif
291 };
292
293 const char * const migratetype_names[MIGRATE_TYPES] = {
294 "Unmovable",
295 "Movable",
296 "Reclaimable",
297 #ifdef CONFIG_CMA
298 "CMA",
299 #endif
300 "HighAtomic",
301 #ifdef CONFIG_MEMORY_ISOLATION
302 "Isolate",
303 #endif
304 };
305
306 compound_page_dtor * const compound_page_dtors[] = {
307 NULL,
308 free_compound_page,
309 #ifdef CONFIG_HUGETLB_PAGE
310 free_huge_page,
311 #endif
312 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_GKI_OPT_FEATURES)
313 free_transhuge_page,
314 #endif
315 };
316
317 /*
318 * Try to keep at least this much lowmem free. Do not allow normal
319 * allocations below this point, only high priority ones. Automatically
320 * tuned according to the amount of memory in the system.
321 */
322 int min_free_kbytes = 1024;
323 int user_min_free_kbytes = -1;
324 #ifdef CONFIG_DISCONTIGMEM
325 /*
326 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
327 * are not on separate NUMA nodes. Functionally this works but with
328 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
329 * quite small. By default, do not boost watermarks on discontigmem as in
330 * many cases very high-order allocations like THP are likely to be
331 * unsupported and the premature reclaim offsets the advantage of long-term
332 * fragmentation avoidance.
333 */
334 int watermark_boost_factor __read_mostly;
335 #else
336 int watermark_boost_factor __read_mostly = 15000;
337 #endif
338 int watermark_scale_factor = 10;
339
340 /*
341 * Extra memory for the system to try freeing. Used to temporarily
342 * free memory, to make space for new workloads. Anyone can allocate
343 * down to the min watermarks controlled by min_free_kbytes above.
344 */
345 int extra_free_kbytes = 0;
346
347 static unsigned long nr_kernel_pages __initdata;
348 static unsigned long nr_all_pages __initdata;
349 static unsigned long dma_reserve __initdata;
350
351 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
352 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
353 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
354 static unsigned long required_kernelcore __initdata;
355 static unsigned long required_kernelcore_percent __initdata;
356 static unsigned long required_movablecore __initdata;
357 static unsigned long required_movablecore_percent __initdata;
358 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
359 static bool mirrored_kernelcore __meminitdata;
360
361 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
362 int movable_zone;
363 EXPORT_SYMBOL(movable_zone);
364 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
365
366 #if MAX_NUMNODES > 1
367 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
368 unsigned int nr_online_nodes __read_mostly = 1;
369 EXPORT_SYMBOL(nr_node_ids);
370 EXPORT_SYMBOL(nr_online_nodes);
371 #endif
372
373 int page_group_by_mobility_disabled __read_mostly;
374
375 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
376 /*
377 * During boot we initialize deferred pages on-demand, as needed, but once
378 * page_alloc_init_late() has finished, the deferred pages are all initialized,
379 * and we can permanently disable that path.
380 */
381 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
382
383 /*
384 * Calling kasan_free_pages() only after deferred memory initialization
385 * has completed. Poisoning pages during deferred memory init will greatly
386 * lengthen the process and cause problem in large memory systems as the
387 * deferred pages initialization is done with interrupt disabled.
388 *
389 * Assuming that there will be no reference to those newly initialized
390 * pages before they are ever allocated, this should have no effect on
391 * KASAN memory tracking as the poison will be properly inserted at page
392 * allocation time. The only corner case is when pages are allocated by
393 * on-demand allocation and then freed again before the deferred pages
394 * initialization is done, but this is not likely to happen.
395 */
kasan_free_nondeferred_pages(struct page * page,int order)396 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
397 {
398 if (!static_branch_unlikely(&deferred_pages))
399 kasan_free_pages(page, order);
400 }
401
402 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)403 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
404 {
405 int nid = early_pfn_to_nid(pfn);
406
407 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
408 return true;
409
410 return false;
411 }
412
413 /*
414 * Returns true when the remaining initialisation should be deferred until
415 * later in the boot cycle when it can be parallelised.
416 */
417 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)418 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
419 {
420 static unsigned long prev_end_pfn, nr_initialised;
421
422 /*
423 * prev_end_pfn static that contains the end of previous zone
424 * No need to protect because called very early in boot before smp_init.
425 */
426 if (prev_end_pfn != end_pfn) {
427 prev_end_pfn = end_pfn;
428 nr_initialised = 0;
429 }
430
431 /* Always populate low zones for address-constrained allocations */
432 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
433 return false;
434
435 /*
436 * We start only with one section of pages, more pages are added as
437 * needed until the rest of deferred pages are initialized.
438 */
439 nr_initialised++;
440 if ((nr_initialised > PAGES_PER_SECTION) &&
441 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
442 NODE_DATA(nid)->first_deferred_pfn = pfn;
443 return true;
444 }
445 return false;
446 }
447 #else
448 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
449
early_page_uninitialised(unsigned long pfn)450 static inline bool early_page_uninitialised(unsigned long pfn)
451 {
452 return false;
453 }
454
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)455 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
456 {
457 return false;
458 }
459 #endif
460
461 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(struct page * page,unsigned long pfn)462 static inline unsigned long *get_pageblock_bitmap(struct page *page,
463 unsigned long pfn)
464 {
465 #ifdef CONFIG_SPARSEMEM
466 return section_to_usemap(__pfn_to_section(pfn));
467 #else
468 return page_zone(page)->pageblock_flags;
469 #endif /* CONFIG_SPARSEMEM */
470 }
471
pfn_to_bitidx(struct page * page,unsigned long pfn)472 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
473 {
474 #ifdef CONFIG_SPARSEMEM
475 pfn &= (PAGES_PER_SECTION-1);
476 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
477 #else
478 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
479 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
480 #endif /* CONFIG_SPARSEMEM */
481 }
482
483 /**
484 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
485 * @page: The page within the block of interest
486 * @pfn: The target page frame number
487 * @end_bitidx: The last bit of interest to retrieve
488 * @mask: mask of bits that the caller is interested in
489 *
490 * Return: pageblock_bits flags
491 */
__get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)492 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
493 unsigned long pfn,
494 unsigned long end_bitidx,
495 unsigned long mask)
496 {
497 unsigned long *bitmap;
498 unsigned long bitidx, word_bitidx;
499 unsigned long word;
500
501 bitmap = get_pageblock_bitmap(page, pfn);
502 bitidx = pfn_to_bitidx(page, pfn);
503 word_bitidx = bitidx / BITS_PER_LONG;
504 bitidx &= (BITS_PER_LONG-1);
505
506 word = bitmap[word_bitidx];
507 bitidx += end_bitidx;
508 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
509 }
510
get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)511 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
512 unsigned long end_bitidx,
513 unsigned long mask)
514 {
515 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
516 }
517
get_pfnblock_migratetype(struct page * page,unsigned long pfn)518 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
519 {
520 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
521 }
522
523 /**
524 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
525 * @page: The page within the block of interest
526 * @flags: The flags to set
527 * @pfn: The target page frame number
528 * @end_bitidx: The last bit of interest
529 * @mask: mask of bits that the caller is interested in
530 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)531 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
532 unsigned long pfn,
533 unsigned long end_bitidx,
534 unsigned long mask)
535 {
536 unsigned long *bitmap;
537 unsigned long bitidx, word_bitidx;
538 unsigned long old_word, word;
539
540 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
541 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
542
543 bitmap = get_pageblock_bitmap(page, pfn);
544 bitidx = pfn_to_bitidx(page, pfn);
545 word_bitidx = bitidx / BITS_PER_LONG;
546 bitidx &= (BITS_PER_LONG-1);
547
548 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
549
550 bitidx += end_bitidx;
551 mask <<= (BITS_PER_LONG - bitidx - 1);
552 flags <<= (BITS_PER_LONG - bitidx - 1);
553
554 word = READ_ONCE(bitmap[word_bitidx]);
555 for (;;) {
556 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
557 if (word == old_word)
558 break;
559 word = old_word;
560 }
561 }
562
set_pageblock_migratetype(struct page * page,int migratetype)563 void set_pageblock_migratetype(struct page *page, int migratetype)
564 {
565 if (unlikely(page_group_by_mobility_disabled &&
566 migratetype < MIGRATE_PCPTYPES))
567 migratetype = MIGRATE_UNMOVABLE;
568
569 set_pageblock_flags_group(page, (unsigned long)migratetype,
570 PB_migrate, PB_migrate_end);
571 }
572
573 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)574 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
575 {
576 int ret = 0;
577 unsigned seq;
578 unsigned long pfn = page_to_pfn(page);
579 unsigned long sp, start_pfn;
580
581 do {
582 seq = zone_span_seqbegin(zone);
583 start_pfn = zone->zone_start_pfn;
584 sp = zone->spanned_pages;
585 if (!zone_spans_pfn(zone, pfn))
586 ret = 1;
587 } while (zone_span_seqretry(zone, seq));
588
589 if (ret)
590 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
591 pfn, zone_to_nid(zone), zone->name,
592 start_pfn, start_pfn + sp);
593
594 return ret;
595 }
596
page_is_consistent(struct zone * zone,struct page * page)597 static int page_is_consistent(struct zone *zone, struct page *page)
598 {
599 if (!pfn_valid_within(page_to_pfn(page)))
600 return 0;
601 if (zone != page_zone(page))
602 return 0;
603
604 return 1;
605 }
606 /*
607 * Temporary debugging check for pages not lying within a given zone.
608 */
bad_range(struct zone * zone,struct page * page)609 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
610 {
611 if (page_outside_zone_boundaries(zone, page))
612 return 1;
613 if (!page_is_consistent(zone, page))
614 return 1;
615
616 return 0;
617 }
618 #else
bad_range(struct zone * zone,struct page * page)619 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
620 {
621 return 0;
622 }
623 #endif
624
bad_page(struct page * page,const char * reason,unsigned long bad_flags)625 static void bad_page(struct page *page, const char *reason,
626 unsigned long bad_flags)
627 {
628 static unsigned long resume;
629 static unsigned long nr_shown;
630 static unsigned long nr_unshown;
631
632 /*
633 * Allow a burst of 60 reports, then keep quiet for that minute;
634 * or allow a steady drip of one report per second.
635 */
636 if (nr_shown == 60) {
637 if (time_before(jiffies, resume)) {
638 nr_unshown++;
639 goto out;
640 }
641 if (nr_unshown) {
642 pr_alert(
643 "BUG: Bad page state: %lu messages suppressed\n",
644 nr_unshown);
645 nr_unshown = 0;
646 }
647 nr_shown = 0;
648 }
649 if (nr_shown++ == 0)
650 resume = jiffies + 60 * HZ;
651
652 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
653 current->comm, page_to_pfn(page));
654 __dump_page(page, reason);
655 bad_flags &= page->flags;
656 if (bad_flags)
657 pr_alert("bad because of flags: %#lx(%pGp)\n",
658 bad_flags, &bad_flags);
659 dump_page_owner(page);
660
661 print_modules();
662 dump_stack();
663 out:
664 /* Leave bad fields for debug, except PageBuddy could make trouble */
665 page_mapcount_reset(page); /* remove PageBuddy */
666 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
667 }
668
669 /*
670 * Higher-order pages are called "compound pages". They are structured thusly:
671 *
672 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
673 *
674 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
675 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
676 *
677 * The first tail page's ->compound_dtor holds the offset in array of compound
678 * page destructors. See compound_page_dtors.
679 *
680 * The first tail page's ->compound_order holds the order of allocation.
681 * This usage means that zero-order pages may not be compound.
682 */
683
free_compound_page(struct page * page)684 void free_compound_page(struct page *page)
685 {
686 mem_cgroup_uncharge(page);
687 __free_pages_ok(page, compound_order(page));
688 }
689
prep_compound_page(struct page * page,unsigned int order)690 void prep_compound_page(struct page *page, unsigned int order)
691 {
692 int i;
693 int nr_pages = 1 << order;
694
695 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
696 set_compound_order(page, order);
697 __SetPageHead(page);
698 for (i = 1; i < nr_pages; i++) {
699 struct page *p = page + i;
700 set_page_count(p, 0);
701 p->mapping = TAIL_MAPPING;
702 set_compound_head(p, page);
703 }
704 atomic_set(compound_mapcount_ptr(page), -1);
705 }
706
707 #ifdef CONFIG_DEBUG_PAGEALLOC
708 unsigned int _debug_guardpage_minorder;
709
710 bool _debug_pagealloc_enabled_early __read_mostly
711 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
712 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
713 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
714 EXPORT_SYMBOL(_debug_pagealloc_enabled);
715
716 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
717
early_debug_pagealloc(char * buf)718 static int __init early_debug_pagealloc(char *buf)
719 {
720 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
721 }
722 early_param("debug_pagealloc", early_debug_pagealloc);
723
init_debug_pagealloc(void)724 void init_debug_pagealloc(void)
725 {
726 if (!debug_pagealloc_enabled())
727 return;
728
729 static_branch_enable(&_debug_pagealloc_enabled);
730
731 if (!debug_guardpage_minorder())
732 return;
733
734 static_branch_enable(&_debug_guardpage_enabled);
735 }
736
debug_guardpage_minorder_setup(char * buf)737 static int __init debug_guardpage_minorder_setup(char *buf)
738 {
739 unsigned long res;
740
741 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
742 pr_err("Bad debug_guardpage_minorder value\n");
743 return 0;
744 }
745 _debug_guardpage_minorder = res;
746 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
747 return 0;
748 }
749 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
750
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)751 static inline bool set_page_guard(struct zone *zone, struct page *page,
752 unsigned int order, int migratetype)
753 {
754 if (!debug_guardpage_enabled())
755 return false;
756
757 if (order >= debug_guardpage_minorder())
758 return false;
759
760 __SetPageGuard(page);
761 INIT_LIST_HEAD(&page->lru);
762 set_page_private(page, order);
763 /* Guard pages are not available for any usage */
764 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
765
766 return true;
767 }
768
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)769 static inline void clear_page_guard(struct zone *zone, struct page *page,
770 unsigned int order, int migratetype)
771 {
772 if (!debug_guardpage_enabled())
773 return;
774
775 __ClearPageGuard(page);
776
777 set_page_private(page, 0);
778 if (!is_migrate_isolate(migratetype))
779 __mod_zone_freepage_state(zone, (1 << order), migratetype);
780 }
781 #else
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)782 static inline bool set_page_guard(struct zone *zone, struct page *page,
783 unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)784 static inline void clear_page_guard(struct zone *zone, struct page *page,
785 unsigned int order, int migratetype) {}
786 #endif
787
set_page_order(struct page * page,unsigned int order)788 static inline void set_page_order(struct page *page, unsigned int order)
789 {
790 set_page_private(page, order);
791 __SetPageBuddy(page);
792 }
793
794 /*
795 * This function checks whether a page is free && is the buddy
796 * we can coalesce a page and its buddy if
797 * (a) the buddy is not in a hole (check before calling!) &&
798 * (b) the buddy is in the buddy system &&
799 * (c) a page and its buddy have the same order &&
800 * (d) a page and its buddy are in the same zone.
801 *
802 * For recording whether a page is in the buddy system, we set PageBuddy.
803 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
804 *
805 * For recording page's order, we use page_private(page).
806 */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)807 static inline int page_is_buddy(struct page *page, struct page *buddy,
808 unsigned int order)
809 {
810 if (page_is_guard(buddy) && page_order(buddy) == order) {
811 if (page_zone_id(page) != page_zone_id(buddy))
812 return 0;
813
814 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
815
816 return 1;
817 }
818
819 if (PageBuddy(buddy) && page_order(buddy) == order) {
820 /*
821 * zone check is done late to avoid uselessly
822 * calculating zone/node ids for pages that could
823 * never merge.
824 */
825 if (page_zone_id(page) != page_zone_id(buddy))
826 return 0;
827
828 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
829
830 return 1;
831 }
832 return 0;
833 }
834
835 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)836 static inline struct capture_control *task_capc(struct zone *zone)
837 {
838 struct capture_control *capc = current->capture_control;
839
840 return capc &&
841 !(current->flags & PF_KTHREAD) &&
842 !capc->page &&
843 capc->cc->zone == zone &&
844 capc->cc->direct_compaction ? capc : NULL;
845 }
846
847 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)848 compaction_capture(struct capture_control *capc, struct page *page,
849 int order, int migratetype)
850 {
851 if (!capc || order != capc->cc->order)
852 return false;
853
854 /* Do not accidentally pollute CMA or isolated regions*/
855 if (is_migrate_cma(migratetype) ||
856 is_migrate_isolate(migratetype))
857 return false;
858
859 /*
860 * Do not let lower order allocations polluate a movable pageblock.
861 * This might let an unmovable request use a reclaimable pageblock
862 * and vice-versa but no more than normal fallback logic which can
863 * have trouble finding a high-order free page.
864 */
865 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
866 return false;
867
868 capc->page = page;
869 return true;
870 }
871
872 #else
task_capc(struct zone * zone)873 static inline struct capture_control *task_capc(struct zone *zone)
874 {
875 return NULL;
876 }
877
878 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)879 compaction_capture(struct capture_control *capc, struct page *page,
880 int order, int migratetype)
881 {
882 return false;
883 }
884 #endif /* CONFIG_COMPACTION */
885
886 /*
887 * Freeing function for a buddy system allocator.
888 *
889 * The concept of a buddy system is to maintain direct-mapped table
890 * (containing bit values) for memory blocks of various "orders".
891 * The bottom level table contains the map for the smallest allocatable
892 * units of memory (here, pages), and each level above it describes
893 * pairs of units from the levels below, hence, "buddies".
894 * At a high level, all that happens here is marking the table entry
895 * at the bottom level available, and propagating the changes upward
896 * as necessary, plus some accounting needed to play nicely with other
897 * parts of the VM system.
898 * At each level, we keep a list of pages, which are heads of continuous
899 * free pages of length of (1 << order) and marked with PageBuddy.
900 * Page's order is recorded in page_private(page) field.
901 * So when we are allocating or freeing one, we can derive the state of the
902 * other. That is, if we allocate a small block, and both were
903 * free, the remainder of the region must be split into blocks.
904 * If a block is freed, and its buddy is also free, then this
905 * triggers coalescing into a block of larger size.
906 *
907 * -- nyc
908 */
909
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype)910 static inline void __free_one_page(struct page *page,
911 unsigned long pfn,
912 struct zone *zone, unsigned int order,
913 int migratetype)
914 {
915 unsigned long combined_pfn;
916 unsigned long uninitialized_var(buddy_pfn);
917 struct page *buddy;
918 unsigned int max_order;
919 struct capture_control *capc = task_capc(zone);
920
921 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
922
923 VM_BUG_ON(!zone_is_initialized(zone));
924 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
925
926 VM_BUG_ON(migratetype == -1);
927 if (likely(!is_migrate_isolate(migratetype)))
928 __mod_zone_freepage_state(zone, 1 << order, migratetype);
929
930 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
931 VM_BUG_ON_PAGE(bad_range(zone, page), page);
932
933 continue_merging:
934 while (order < max_order) {
935 if (compaction_capture(capc, page, order, migratetype)) {
936 __mod_zone_freepage_state(zone, -(1 << order),
937 migratetype);
938 return;
939 }
940 buddy_pfn = __find_buddy_pfn(pfn, order);
941 buddy = page + (buddy_pfn - pfn);
942
943 if (!pfn_valid_within(buddy_pfn))
944 goto done_merging;
945 if (!page_is_buddy(page, buddy, order))
946 goto done_merging;
947 /*
948 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
949 * merge with it and move up one order.
950 */
951 if (page_is_guard(buddy))
952 clear_page_guard(zone, buddy, order, migratetype);
953 else
954 del_page_from_free_area(buddy, &zone->free_area[order]);
955 combined_pfn = buddy_pfn & pfn;
956 page = page + (combined_pfn - pfn);
957 pfn = combined_pfn;
958 order++;
959 }
960 if (order < MAX_ORDER - 1) {
961 /* If we are here, it means order is >= pageblock_order.
962 * We want to prevent merge between freepages on isolate
963 * pageblock and normal pageblock. Without this, pageblock
964 * isolation could cause incorrect freepage or CMA accounting.
965 *
966 * We don't want to hit this code for the more frequent
967 * low-order merging.
968 */
969 if (unlikely(has_isolate_pageblock(zone))) {
970 int buddy_mt;
971
972 buddy_pfn = __find_buddy_pfn(pfn, order);
973 buddy = page + (buddy_pfn - pfn);
974 buddy_mt = get_pageblock_migratetype(buddy);
975
976 if (migratetype != buddy_mt
977 && (is_migrate_isolate(migratetype) ||
978 is_migrate_isolate(buddy_mt)))
979 goto done_merging;
980 }
981 max_order = order + 1;
982 goto continue_merging;
983 }
984
985 done_merging:
986 set_page_order(page, order);
987
988 /*
989 * If this is not the largest possible page, check if the buddy
990 * of the next-highest order is free. If it is, it's possible
991 * that pages are being freed that will coalesce soon. In case,
992 * that is happening, add the free page to the tail of the list
993 * so it's less likely to be used soon and more likely to be merged
994 * as a higher order page
995 */
996 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
997 && !is_shuffle_order(order)) {
998 struct page *higher_page, *higher_buddy;
999 combined_pfn = buddy_pfn & pfn;
1000 higher_page = page + (combined_pfn - pfn);
1001 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1002 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1003 if (pfn_valid_within(buddy_pfn) &&
1004 page_is_buddy(higher_page, higher_buddy, order + 1)) {
1005 add_to_free_area_tail(page, &zone->free_area[order],
1006 migratetype);
1007 return;
1008 }
1009 }
1010
1011 if (is_shuffle_order(order))
1012 add_to_free_area_random(page, &zone->free_area[order],
1013 migratetype);
1014 else
1015 add_to_free_area(page, &zone->free_area[order], migratetype);
1016
1017 }
1018
1019 /*
1020 * A bad page could be due to a number of fields. Instead of multiple branches,
1021 * try and check multiple fields with one check. The caller must do a detailed
1022 * check if necessary.
1023 */
page_expected_state(struct page * page,unsigned long check_flags)1024 static inline bool page_expected_state(struct page *page,
1025 unsigned long check_flags)
1026 {
1027 if (unlikely(atomic_read(&page->_mapcount) != -1))
1028 return false;
1029
1030 if (unlikely((unsigned long)page->mapping |
1031 page_ref_count(page) |
1032 #ifdef CONFIG_MEMCG
1033 (unsigned long)page->mem_cgroup |
1034 #endif
1035 (page->flags & check_flags)))
1036 return false;
1037
1038 return true;
1039 }
1040
free_pages_check_bad(struct page * page)1041 static void free_pages_check_bad(struct page *page)
1042 {
1043 const char *bad_reason;
1044 unsigned long bad_flags;
1045
1046 bad_reason = NULL;
1047 bad_flags = 0;
1048
1049 if (unlikely(atomic_read(&page->_mapcount) != -1))
1050 bad_reason = "nonzero mapcount";
1051 if (unlikely(page->mapping != NULL))
1052 bad_reason = "non-NULL mapping";
1053 if (unlikely(page_ref_count(page) != 0))
1054 bad_reason = "nonzero _refcount";
1055 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1056 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1057 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1058 }
1059 #ifdef CONFIG_MEMCG
1060 if (unlikely(page->mem_cgroup))
1061 bad_reason = "page still charged to cgroup";
1062 #endif
1063 bad_page(page, bad_reason, bad_flags);
1064 }
1065
free_pages_check(struct page * page)1066 static inline int free_pages_check(struct page *page)
1067 {
1068 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1069 return 0;
1070
1071 /* Something has gone sideways, find it */
1072 free_pages_check_bad(page);
1073 return 1;
1074 }
1075
free_tail_pages_check(struct page * head_page,struct page * page)1076 static int free_tail_pages_check(struct page *head_page, struct page *page)
1077 {
1078 int ret = 1;
1079
1080 /*
1081 * We rely page->lru.next never has bit 0 set, unless the page
1082 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1083 */
1084 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1085
1086 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1087 ret = 0;
1088 goto out;
1089 }
1090 switch (page - head_page) {
1091 case 1:
1092 /* the first tail page: ->mapping may be compound_mapcount() */
1093 if (unlikely(compound_mapcount(page))) {
1094 bad_page(page, "nonzero compound_mapcount", 0);
1095 goto out;
1096 }
1097 break;
1098 case 2:
1099 /*
1100 * the second tail page: ->mapping is
1101 * deferred_list.next -- ignore value.
1102 */
1103 break;
1104 default:
1105 if (page->mapping != TAIL_MAPPING) {
1106 bad_page(page, "corrupted mapping in tail page", 0);
1107 goto out;
1108 }
1109 break;
1110 }
1111 if (unlikely(!PageTail(page))) {
1112 bad_page(page, "PageTail not set", 0);
1113 goto out;
1114 }
1115 if (unlikely(compound_head(page) != head_page)) {
1116 bad_page(page, "compound_head not consistent", 0);
1117 goto out;
1118 }
1119 ret = 0;
1120 out:
1121 page->mapping = NULL;
1122 clear_compound_head(page);
1123 return ret;
1124 }
1125
kernel_init_free_pages(struct page * page,int numpages)1126 static void kernel_init_free_pages(struct page *page, int numpages)
1127 {
1128 int i;
1129
1130 for (i = 0; i < numpages; i++)
1131 clear_highpage(page + i);
1132 }
1133
free_pages_prepare(struct page * page,unsigned int order,bool check_free)1134 static __always_inline bool free_pages_prepare(struct page *page,
1135 unsigned int order, bool check_free)
1136 {
1137 int bad = 0;
1138
1139 VM_BUG_ON_PAGE(PageTail(page), page);
1140
1141 trace_mm_page_free(page, order);
1142
1143 /*
1144 * Check tail pages before head page information is cleared to
1145 * avoid checking PageCompound for order-0 pages.
1146 */
1147 if (unlikely(order)) {
1148 bool compound = PageCompound(page);
1149 int i;
1150
1151 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1152
1153 if (compound)
1154 ClearPageDoubleMap(page);
1155 for (i = 1; i < (1 << order); i++) {
1156 if (compound)
1157 bad += free_tail_pages_check(page, page + i);
1158 if (unlikely(free_pages_check(page + i))) {
1159 bad++;
1160 continue;
1161 }
1162 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1163 }
1164 }
1165 if (PageMappingFlags(page))
1166 page->mapping = NULL;
1167 if (memcg_kmem_enabled() && PageKmemcg(page))
1168 __memcg_kmem_uncharge(page, order);
1169 if (check_free)
1170 bad += free_pages_check(page);
1171 if (bad)
1172 return false;
1173
1174 page_cpupid_reset_last(page);
1175 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1176 reset_page_owner(page, order);
1177
1178 if (!PageHighMem(page)) {
1179 debug_check_no_locks_freed(page_address(page),
1180 PAGE_SIZE << order);
1181 debug_check_no_obj_freed(page_address(page),
1182 PAGE_SIZE << order);
1183 }
1184 if (want_init_on_free())
1185 kernel_init_free_pages(page, 1 << order);
1186
1187 kernel_poison_pages(page, 1 << order, 0);
1188 /*
1189 * arch_free_page() can make the page's contents inaccessible. s390
1190 * does this. So nothing which can access the page's contents should
1191 * happen after this.
1192 */
1193 arch_free_page(page, order);
1194
1195 if (debug_pagealloc_enabled_static())
1196 kernel_map_pages(page, 1 << order, 0);
1197
1198 kasan_free_nondeferred_pages(page, order);
1199
1200 return true;
1201 }
1202
1203 #ifdef CONFIG_DEBUG_VM
1204 /*
1205 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1206 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1207 * moved from pcp lists to free lists.
1208 */
free_pcp_prepare(struct page * page)1209 static bool free_pcp_prepare(struct page *page)
1210 {
1211 return free_pages_prepare(page, 0, true);
1212 }
1213
bulkfree_pcp_prepare(struct page * page)1214 static bool bulkfree_pcp_prepare(struct page *page)
1215 {
1216 if (debug_pagealloc_enabled_static())
1217 return free_pages_check(page);
1218 else
1219 return false;
1220 }
1221 #else
1222 /*
1223 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1224 * moving from pcp lists to free list in order to reduce overhead. With
1225 * debug_pagealloc enabled, they are checked also immediately when being freed
1226 * to the pcp lists.
1227 */
free_pcp_prepare(struct page * page)1228 static bool free_pcp_prepare(struct page *page)
1229 {
1230 if (debug_pagealloc_enabled_static())
1231 return free_pages_prepare(page, 0, true);
1232 else
1233 return free_pages_prepare(page, 0, false);
1234 }
1235
bulkfree_pcp_prepare(struct page * page)1236 static bool bulkfree_pcp_prepare(struct page *page)
1237 {
1238 return free_pages_check(page);
1239 }
1240 #endif /* CONFIG_DEBUG_VM */
1241
prefetch_buddy(struct page * page)1242 static inline void prefetch_buddy(struct page *page)
1243 {
1244 unsigned long pfn = page_to_pfn(page);
1245 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1246 struct page *buddy = page + (buddy_pfn - pfn);
1247
1248 prefetch(buddy);
1249 }
1250
1251 /*
1252 * Frees a number of pages from the PCP lists
1253 * Assumes all pages on list are in same zone, and of same order.
1254 * count is the number of pages to free.
1255 *
1256 * If the zone was previously in an "all pages pinned" state then look to
1257 * see if this freeing clears that state.
1258 *
1259 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1260 * pinned" detection logic.
1261 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)1262 static void free_pcppages_bulk(struct zone *zone, int count,
1263 struct per_cpu_pages *pcp)
1264 {
1265 int migratetype = 0;
1266 int batch_free = 0;
1267 int prefetch_nr = 0;
1268 bool isolated_pageblocks;
1269 struct page *page, *tmp;
1270 LIST_HEAD(head);
1271
1272 /*
1273 * Ensure proper count is passed which otherwise would stuck in the
1274 * below while (list_empty(list)) loop.
1275 */
1276 count = min(pcp->count, count);
1277 while (count) {
1278 struct list_head *list;
1279
1280 /*
1281 * Remove pages from lists in a round-robin fashion. A
1282 * batch_free count is maintained that is incremented when an
1283 * empty list is encountered. This is so more pages are freed
1284 * off fuller lists instead of spinning excessively around empty
1285 * lists
1286 */
1287 do {
1288 batch_free++;
1289 if (++migratetype == MIGRATE_PCPTYPES)
1290 migratetype = 0;
1291 list = &pcp->lists[migratetype];
1292 } while (list_empty(list));
1293
1294 /* This is the only non-empty list. Free them all. */
1295 if (batch_free == MIGRATE_PCPTYPES)
1296 batch_free = count;
1297
1298 do {
1299 page = list_last_entry(list, struct page, lru);
1300 /* must delete to avoid corrupting pcp list */
1301 list_del(&page->lru);
1302 pcp->count--;
1303
1304 if (bulkfree_pcp_prepare(page))
1305 continue;
1306
1307 list_add_tail(&page->lru, &head);
1308
1309 /*
1310 * We are going to put the page back to the global
1311 * pool, prefetch its buddy to speed up later access
1312 * under zone->lock. It is believed the overhead of
1313 * an additional test and calculating buddy_pfn here
1314 * can be offset by reduced memory latency later. To
1315 * avoid excessive prefetching due to large count, only
1316 * prefetch buddy for the first pcp->batch nr of pages.
1317 */
1318 if (prefetch_nr++ < pcp->batch)
1319 prefetch_buddy(page);
1320 } while (--count && --batch_free && !list_empty(list));
1321 }
1322
1323 spin_lock(&zone->lock);
1324 isolated_pageblocks = has_isolate_pageblock(zone);
1325
1326 /*
1327 * Use safe version since after __free_one_page(),
1328 * page->lru.next will not point to original list.
1329 */
1330 list_for_each_entry_safe(page, tmp, &head, lru) {
1331 int mt = get_pcppage_migratetype(page);
1332 /* MIGRATE_ISOLATE page should not go to pcplists */
1333 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1334 /* Pageblock could have been isolated meanwhile */
1335 if (unlikely(isolated_pageblocks))
1336 mt = get_pageblock_migratetype(page);
1337
1338 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1339 trace_mm_page_pcpu_drain(page, 0, mt);
1340 }
1341 spin_unlock(&zone->lock);
1342 }
1343
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype)1344 static void free_one_page(struct zone *zone,
1345 struct page *page, unsigned long pfn,
1346 unsigned int order,
1347 int migratetype)
1348 {
1349 spin_lock(&zone->lock);
1350 if (unlikely(has_isolate_pageblock(zone) ||
1351 is_migrate_isolate(migratetype))) {
1352 migratetype = get_pfnblock_migratetype(page, pfn);
1353 }
1354 __free_one_page(page, pfn, zone, order, migratetype);
1355 spin_unlock(&zone->lock);
1356 }
1357
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)1358 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1359 unsigned long zone, int nid)
1360 {
1361 mm_zero_struct_page(page);
1362 set_page_links(page, zone, nid, pfn);
1363 init_page_count(page);
1364 page_mapcount_reset(page);
1365 page_cpupid_reset_last(page);
1366 page_kasan_tag_reset(page);
1367
1368 INIT_LIST_HEAD(&page->lru);
1369 #ifdef WANT_PAGE_VIRTUAL
1370 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1371 if (!is_highmem_idx(zone))
1372 set_page_address(page, __va(pfn << PAGE_SHIFT));
1373 #endif
1374 }
1375
1376 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)1377 static void __meminit init_reserved_page(unsigned long pfn)
1378 {
1379 pg_data_t *pgdat;
1380 int nid, zid;
1381
1382 if (!early_page_uninitialised(pfn))
1383 return;
1384
1385 nid = early_pfn_to_nid(pfn);
1386 pgdat = NODE_DATA(nid);
1387
1388 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1389 struct zone *zone = &pgdat->node_zones[zid];
1390
1391 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1392 break;
1393 }
1394 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1395 }
1396 #else
init_reserved_page(unsigned long pfn)1397 static inline void init_reserved_page(unsigned long pfn)
1398 {
1399 }
1400 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1401
1402 /*
1403 * Initialised pages do not have PageReserved set. This function is
1404 * called for each range allocated by the bootmem allocator and
1405 * marks the pages PageReserved. The remaining valid pages are later
1406 * sent to the buddy page allocator.
1407 */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)1408 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1409 {
1410 unsigned long start_pfn = PFN_DOWN(start);
1411 unsigned long end_pfn = PFN_UP(end);
1412
1413 for (; start_pfn < end_pfn; start_pfn++) {
1414 if (pfn_valid(start_pfn)) {
1415 struct page *page = pfn_to_page(start_pfn);
1416
1417 init_reserved_page(start_pfn);
1418
1419 /* Avoid false-positive PageTail() */
1420 INIT_LIST_HEAD(&page->lru);
1421
1422 /*
1423 * no need for atomic set_bit because the struct
1424 * page is not visible yet so nobody should
1425 * access it yet.
1426 */
1427 __SetPageReserved(page);
1428 }
1429 }
1430 }
1431
__free_pages_ok(struct page * page,unsigned int order)1432 static void __free_pages_ok(struct page *page, unsigned int order)
1433 {
1434 unsigned long flags;
1435 int migratetype;
1436 unsigned long pfn = page_to_pfn(page);
1437
1438 if (!free_pages_prepare(page, order, true))
1439 return;
1440
1441 migratetype = get_pfnblock_migratetype(page, pfn);
1442 local_irq_save(flags);
1443 __count_vm_events(PGFREE, 1 << order);
1444 free_one_page(page_zone(page), page, pfn, order, migratetype);
1445 local_irq_restore(flags);
1446 }
1447
__free_pages_core(struct page * page,unsigned int order)1448 void __free_pages_core(struct page *page, unsigned int order)
1449 {
1450 unsigned int nr_pages = 1 << order;
1451 struct page *p = page;
1452 unsigned int loop;
1453
1454 prefetchw(p);
1455 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1456 prefetchw(p + 1);
1457 __ClearPageReserved(p);
1458 set_page_count(p, 0);
1459 }
1460 __ClearPageReserved(p);
1461 set_page_count(p, 0);
1462
1463 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1464 set_page_refcounted(page);
1465 __free_pages(page, order);
1466 }
1467
1468 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1469 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1470
1471 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1472
early_pfn_to_nid(unsigned long pfn)1473 int __meminit early_pfn_to_nid(unsigned long pfn)
1474 {
1475 static DEFINE_SPINLOCK(early_pfn_lock);
1476 int nid;
1477
1478 spin_lock(&early_pfn_lock);
1479 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1480 if (nid < 0)
1481 nid = first_online_node;
1482 spin_unlock(&early_pfn_lock);
1483
1484 return nid;
1485 }
1486 #endif
1487
1488 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1489 /* Only safe to use early in boot when initialisation is single-threaded */
early_pfn_in_nid(unsigned long pfn,int node)1490 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1491 {
1492 int nid;
1493
1494 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1495 if (nid >= 0 && nid != node)
1496 return false;
1497 return true;
1498 }
1499
1500 #else
early_pfn_in_nid(unsigned long pfn,int node)1501 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1502 {
1503 return true;
1504 }
1505 #endif
1506
1507
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)1508 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1509 unsigned int order)
1510 {
1511 if (early_page_uninitialised(pfn))
1512 return;
1513 __free_pages_core(page, order);
1514 }
1515
1516 /*
1517 * Check that the whole (or subset of) a pageblock given by the interval of
1518 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1519 * with the migration of free compaction scanner. The scanners then need to
1520 * use only pfn_valid_within() check for arches that allow holes within
1521 * pageblocks.
1522 *
1523 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1524 *
1525 * It's possible on some configurations to have a setup like node0 node1 node0
1526 * i.e. it's possible that all pages within a zones range of pages do not
1527 * belong to a single zone. We assume that a border between node0 and node1
1528 * can occur within a single pageblock, but not a node0 node1 node0
1529 * interleaving within a single pageblock. It is therefore sufficient to check
1530 * the first and last page of a pageblock and avoid checking each individual
1531 * page in a pageblock.
1532 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1533 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1534 unsigned long end_pfn, struct zone *zone)
1535 {
1536 struct page *start_page;
1537 struct page *end_page;
1538
1539 /* end_pfn is one past the range we are checking */
1540 end_pfn--;
1541
1542 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1543 return NULL;
1544
1545 start_page = pfn_to_online_page(start_pfn);
1546 if (!start_page)
1547 return NULL;
1548
1549 if (page_zone(start_page) != zone)
1550 return NULL;
1551
1552 end_page = pfn_to_page(end_pfn);
1553
1554 /* This gives a shorter code than deriving page_zone(end_page) */
1555 if (page_zone_id(start_page) != page_zone_id(end_page))
1556 return NULL;
1557
1558 return start_page;
1559 }
1560
set_zone_contiguous(struct zone * zone)1561 void set_zone_contiguous(struct zone *zone)
1562 {
1563 unsigned long block_start_pfn = zone->zone_start_pfn;
1564 unsigned long block_end_pfn;
1565
1566 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1567 for (; block_start_pfn < zone_end_pfn(zone);
1568 block_start_pfn = block_end_pfn,
1569 block_end_pfn += pageblock_nr_pages) {
1570
1571 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1572
1573 if (!__pageblock_pfn_to_page(block_start_pfn,
1574 block_end_pfn, zone))
1575 return;
1576 cond_resched();
1577 }
1578
1579 /* We confirm that there is no hole */
1580 zone->contiguous = true;
1581 }
1582
clear_zone_contiguous(struct zone * zone)1583 void clear_zone_contiguous(struct zone *zone)
1584 {
1585 zone->contiguous = false;
1586 }
1587
1588 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(unsigned long pfn,unsigned long nr_pages)1589 static void __init deferred_free_range(unsigned long pfn,
1590 unsigned long nr_pages)
1591 {
1592 struct page *page;
1593 unsigned long i;
1594
1595 if (!nr_pages)
1596 return;
1597
1598 page = pfn_to_page(pfn);
1599
1600 /* Free a large naturally-aligned chunk if possible */
1601 if (nr_pages == pageblock_nr_pages &&
1602 (pfn & (pageblock_nr_pages - 1)) == 0) {
1603 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1604 __free_pages_core(page, pageblock_order);
1605 return;
1606 }
1607
1608 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1609 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1610 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1611 __free_pages_core(page, 0);
1612 }
1613 }
1614
1615 /* Completion tracking for deferred_init_memmap() threads */
1616 static atomic_t pgdat_init_n_undone __initdata;
1617 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1618
pgdat_init_report_one_done(void)1619 static inline void __init pgdat_init_report_one_done(void)
1620 {
1621 if (atomic_dec_and_test(&pgdat_init_n_undone))
1622 complete(&pgdat_init_all_done_comp);
1623 }
1624
1625 /*
1626 * Returns true if page needs to be initialized or freed to buddy allocator.
1627 *
1628 * First we check if pfn is valid on architectures where it is possible to have
1629 * holes within pageblock_nr_pages. On systems where it is not possible, this
1630 * function is optimized out.
1631 *
1632 * Then, we check if a current large page is valid by only checking the validity
1633 * of the head pfn.
1634 */
deferred_pfn_valid(unsigned long pfn)1635 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1636 {
1637 if (!pfn_valid_within(pfn))
1638 return false;
1639 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1640 return false;
1641 return true;
1642 }
1643
1644 /*
1645 * Free pages to buddy allocator. Try to free aligned pages in
1646 * pageblock_nr_pages sizes.
1647 */
deferred_free_pages(unsigned long pfn,unsigned long end_pfn)1648 static void __init deferred_free_pages(unsigned long pfn,
1649 unsigned long end_pfn)
1650 {
1651 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1652 unsigned long nr_free = 0;
1653
1654 for (; pfn < end_pfn; pfn++) {
1655 if (!deferred_pfn_valid(pfn)) {
1656 deferred_free_range(pfn - nr_free, nr_free);
1657 nr_free = 0;
1658 } else if (!(pfn & nr_pgmask)) {
1659 deferred_free_range(pfn - nr_free, nr_free);
1660 nr_free = 1;
1661 } else {
1662 nr_free++;
1663 }
1664 }
1665 /* Free the last block of pages to allocator */
1666 deferred_free_range(pfn - nr_free, nr_free);
1667 }
1668
1669 /*
1670 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1671 * by performing it only once every pageblock_nr_pages.
1672 * Return number of pages initialized.
1673 */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)1674 static unsigned long __init deferred_init_pages(struct zone *zone,
1675 unsigned long pfn,
1676 unsigned long end_pfn)
1677 {
1678 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1679 int nid = zone_to_nid(zone);
1680 unsigned long nr_pages = 0;
1681 int zid = zone_idx(zone);
1682 struct page *page = NULL;
1683
1684 for (; pfn < end_pfn; pfn++) {
1685 if (!deferred_pfn_valid(pfn)) {
1686 page = NULL;
1687 continue;
1688 } else if (!page || !(pfn & nr_pgmask)) {
1689 page = pfn_to_page(pfn);
1690 } else {
1691 page++;
1692 }
1693 __init_single_page(page, pfn, zid, nid);
1694 nr_pages++;
1695 }
1696 return (nr_pages);
1697 }
1698
1699 /*
1700 * This function is meant to pre-load the iterator for the zone init.
1701 * Specifically it walks through the ranges until we are caught up to the
1702 * first_init_pfn value and exits there. If we never encounter the value we
1703 * return false indicating there are no valid ranges left.
1704 */
1705 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)1706 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1707 unsigned long *spfn, unsigned long *epfn,
1708 unsigned long first_init_pfn)
1709 {
1710 u64 j;
1711
1712 /*
1713 * Start out by walking through the ranges in this zone that have
1714 * already been initialized. We don't need to do anything with them
1715 * so we just need to flush them out of the system.
1716 */
1717 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1718 if (*epfn <= first_init_pfn)
1719 continue;
1720 if (*spfn < first_init_pfn)
1721 *spfn = first_init_pfn;
1722 *i = j;
1723 return true;
1724 }
1725
1726 return false;
1727 }
1728
1729 /*
1730 * Initialize and free pages. We do it in two loops: first we initialize
1731 * struct page, then free to buddy allocator, because while we are
1732 * freeing pages we can access pages that are ahead (computing buddy
1733 * page in __free_one_page()).
1734 *
1735 * In order to try and keep some memory in the cache we have the loop
1736 * broken along max page order boundaries. This way we will not cause
1737 * any issues with the buddy page computation.
1738 */
1739 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)1740 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1741 unsigned long *end_pfn)
1742 {
1743 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1744 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1745 unsigned long nr_pages = 0;
1746 u64 j = *i;
1747
1748 /* First we loop through and initialize the page values */
1749 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1750 unsigned long t;
1751
1752 if (mo_pfn <= *start_pfn)
1753 break;
1754
1755 t = min(mo_pfn, *end_pfn);
1756 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1757
1758 if (mo_pfn < *end_pfn) {
1759 *start_pfn = mo_pfn;
1760 break;
1761 }
1762 }
1763
1764 /* Reset values and now loop through freeing pages as needed */
1765 swap(j, *i);
1766
1767 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1768 unsigned long t;
1769
1770 if (mo_pfn <= spfn)
1771 break;
1772
1773 t = min(mo_pfn, epfn);
1774 deferred_free_pages(spfn, t);
1775
1776 if (mo_pfn <= epfn)
1777 break;
1778 }
1779
1780 return nr_pages;
1781 }
1782
1783 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)1784 static int __init deferred_init_memmap(void *data)
1785 {
1786 pg_data_t *pgdat = data;
1787 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1788 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1789 unsigned long first_init_pfn, flags;
1790 unsigned long start = jiffies;
1791 struct zone *zone;
1792 int zid;
1793 u64 i;
1794
1795 /* Bind memory initialisation thread to a local node if possible */
1796 if (!cpumask_empty(cpumask))
1797 set_cpus_allowed_ptr(current, cpumask);
1798
1799 pgdat_resize_lock(pgdat, &flags);
1800 first_init_pfn = pgdat->first_deferred_pfn;
1801 if (first_init_pfn == ULONG_MAX) {
1802 pgdat_resize_unlock(pgdat, &flags);
1803 pgdat_init_report_one_done();
1804 return 0;
1805 }
1806
1807 /* Sanity check boundaries */
1808 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1809 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1810 pgdat->first_deferred_pfn = ULONG_MAX;
1811
1812 /*
1813 * Once we unlock here, the zone cannot be grown anymore, thus if an
1814 * interrupt thread must allocate this early in boot, zone must be
1815 * pre-grown prior to start of deferred page initialization.
1816 */
1817 pgdat_resize_unlock(pgdat, &flags);
1818
1819 /* Only the highest zone is deferred so find it */
1820 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1821 zone = pgdat->node_zones + zid;
1822 if (first_init_pfn < zone_end_pfn(zone))
1823 break;
1824 }
1825
1826 /* If the zone is empty somebody else may have cleared out the zone */
1827 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1828 first_init_pfn))
1829 goto zone_empty;
1830
1831 /*
1832 * Initialize and free pages in MAX_ORDER sized increments so
1833 * that we can avoid introducing any issues with the buddy
1834 * allocator.
1835 */
1836 while (spfn < epfn) {
1837 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1838 cond_resched();
1839 }
1840 zone_empty:
1841 /* Sanity check that the next zone really is unpopulated */
1842 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1843
1844 pr_info("node %d initialised, %lu pages in %ums\n",
1845 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1846
1847 pgdat_init_report_one_done();
1848 return 0;
1849 }
1850
1851 /*
1852 * If this zone has deferred pages, try to grow it by initializing enough
1853 * deferred pages to satisfy the allocation specified by order, rounded up to
1854 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1855 * of SECTION_SIZE bytes by initializing struct pages in increments of
1856 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1857 *
1858 * Return true when zone was grown, otherwise return false. We return true even
1859 * when we grow less than requested, to let the caller decide if there are
1860 * enough pages to satisfy the allocation.
1861 *
1862 * Note: We use noinline because this function is needed only during boot, and
1863 * it is called from a __ref function _deferred_grow_zone. This way we are
1864 * making sure that it is not inlined into permanent text section.
1865 */
1866 static noinline bool __init
deferred_grow_zone(struct zone * zone,unsigned int order)1867 deferred_grow_zone(struct zone *zone, unsigned int order)
1868 {
1869 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1870 pg_data_t *pgdat = zone->zone_pgdat;
1871 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1872 unsigned long spfn, epfn, flags;
1873 unsigned long nr_pages = 0;
1874 u64 i;
1875
1876 /* Only the last zone may have deferred pages */
1877 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1878 return false;
1879
1880 pgdat_resize_lock(pgdat, &flags);
1881
1882 /*
1883 * If someone grew this zone while we were waiting for spinlock, return
1884 * true, as there might be enough pages already.
1885 */
1886 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1887 pgdat_resize_unlock(pgdat, &flags);
1888 return true;
1889 }
1890
1891 /* If the zone is empty somebody else may have cleared out the zone */
1892 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1893 first_deferred_pfn)) {
1894 pgdat->first_deferred_pfn = ULONG_MAX;
1895 pgdat_resize_unlock(pgdat, &flags);
1896 /* Retry only once. */
1897 return first_deferred_pfn != ULONG_MAX;
1898 }
1899
1900 /*
1901 * Initialize and free pages in MAX_ORDER sized increments so
1902 * that we can avoid introducing any issues with the buddy
1903 * allocator.
1904 */
1905 while (spfn < epfn) {
1906 /* update our first deferred PFN for this section */
1907 first_deferred_pfn = spfn;
1908
1909 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1910 touch_nmi_watchdog();
1911
1912 /* We should only stop along section boundaries */
1913 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1914 continue;
1915
1916 /* If our quota has been met we can stop here */
1917 if (nr_pages >= nr_pages_needed)
1918 break;
1919 }
1920
1921 pgdat->first_deferred_pfn = spfn;
1922 pgdat_resize_unlock(pgdat, &flags);
1923
1924 return nr_pages > 0;
1925 }
1926
1927 /*
1928 * deferred_grow_zone() is __init, but it is called from
1929 * get_page_from_freelist() during early boot until deferred_pages permanently
1930 * disables this call. This is why we have refdata wrapper to avoid warning,
1931 * and to ensure that the function body gets unloaded.
1932 */
1933 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)1934 _deferred_grow_zone(struct zone *zone, unsigned int order)
1935 {
1936 return deferred_grow_zone(zone, order);
1937 }
1938
1939 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1940
page_alloc_init_late(void)1941 void __init page_alloc_init_late(void)
1942 {
1943 struct zone *zone;
1944 int nid;
1945
1946 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1947
1948 /* There will be num_node_state(N_MEMORY) threads */
1949 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1950 for_each_node_state(nid, N_MEMORY) {
1951 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1952 }
1953
1954 /* Block until all are initialised */
1955 wait_for_completion(&pgdat_init_all_done_comp);
1956
1957 /*
1958 * The number of managed pages has changed due to the initialisation
1959 * so the pcpu batch and high limits needs to be updated or the limits
1960 * will be artificially small.
1961 */
1962 for_each_populated_zone(zone)
1963 zone_pcp_update(zone);
1964
1965 /*
1966 * We initialized the rest of the deferred pages. Permanently disable
1967 * on-demand struct page initialization.
1968 */
1969 static_branch_disable(&deferred_pages);
1970
1971 /* Reinit limits that are based on free pages after the kernel is up */
1972 files_maxfiles_init();
1973 #endif
1974
1975 /* Discard memblock private memory */
1976 memblock_discard();
1977
1978 for_each_node_state(nid, N_MEMORY)
1979 shuffle_free_memory(NODE_DATA(nid));
1980
1981 for_each_populated_zone(zone)
1982 set_zone_contiguous(zone);
1983 }
1984
1985 #ifdef CONFIG_CMA
1986 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)1987 void __init init_cma_reserved_pageblock(struct page *page)
1988 {
1989 unsigned i = pageblock_nr_pages;
1990 struct page *p = page;
1991
1992 do {
1993 __ClearPageReserved(p);
1994 set_page_count(p, 0);
1995 } while (++p, --i);
1996
1997 set_pageblock_migratetype(page, MIGRATE_CMA);
1998
1999 if (pageblock_order >= MAX_ORDER) {
2000 i = pageblock_nr_pages;
2001 p = page;
2002 do {
2003 set_page_refcounted(p);
2004 __free_pages(p, MAX_ORDER - 1);
2005 p += MAX_ORDER_NR_PAGES;
2006 } while (i -= MAX_ORDER_NR_PAGES);
2007 } else {
2008 set_page_refcounted(page);
2009 __free_pages(page, pageblock_order);
2010 }
2011
2012 adjust_managed_page_count(page, pageblock_nr_pages);
2013 }
2014 #endif
2015
2016 /*
2017 * The order of subdivision here is critical for the IO subsystem.
2018 * Please do not alter this order without good reasons and regression
2019 * testing. Specifically, as large blocks of memory are subdivided,
2020 * the order in which smaller blocks are delivered depends on the order
2021 * they're subdivided in this function. This is the primary factor
2022 * influencing the order in which pages are delivered to the IO
2023 * subsystem according to empirical testing, and this is also justified
2024 * by considering the behavior of a buddy system containing a single
2025 * large block of memory acted on by a series of small allocations.
2026 * This behavior is a critical factor in sglist merging's success.
2027 *
2028 * -- nyc
2029 */
expand(struct zone * zone,struct page * page,int low,int high,struct free_area * area,int migratetype)2030 static inline void expand(struct zone *zone, struct page *page,
2031 int low, int high, struct free_area *area,
2032 int migratetype)
2033 {
2034 unsigned long size = 1 << high;
2035
2036 while (high > low) {
2037 area--;
2038 high--;
2039 size >>= 1;
2040 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2041
2042 /*
2043 * Mark as guard pages (or page), that will allow to
2044 * merge back to allocator when buddy will be freed.
2045 * Corresponding page table entries will not be touched,
2046 * pages will stay not present in virtual address space
2047 */
2048 if (set_page_guard(zone, &page[size], high, migratetype))
2049 continue;
2050
2051 add_to_free_area(&page[size], area, migratetype);
2052 set_page_order(&page[size], high);
2053 }
2054 }
2055
check_new_page_bad(struct page * page)2056 static void check_new_page_bad(struct page *page)
2057 {
2058 const char *bad_reason = NULL;
2059 unsigned long bad_flags = 0;
2060
2061 if (unlikely(atomic_read(&page->_mapcount) != -1))
2062 bad_reason = "nonzero mapcount";
2063 if (unlikely(page->mapping != NULL))
2064 bad_reason = "non-NULL mapping";
2065 if (unlikely(page_ref_count(page) != 0))
2066 bad_reason = "nonzero _refcount";
2067 if (unlikely(page->flags & __PG_HWPOISON)) {
2068 bad_reason = "HWPoisoned (hardware-corrupted)";
2069 bad_flags = __PG_HWPOISON;
2070 /* Don't complain about hwpoisoned pages */
2071 page_mapcount_reset(page); /* remove PageBuddy */
2072 return;
2073 }
2074 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2075 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2076 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2077 }
2078 #ifdef CONFIG_MEMCG
2079 if (unlikely(page->mem_cgroup))
2080 bad_reason = "page still charged to cgroup";
2081 #endif
2082 bad_page(page, bad_reason, bad_flags);
2083 }
2084
2085 /*
2086 * This page is about to be returned from the page allocator
2087 */
check_new_page(struct page * page)2088 static inline int check_new_page(struct page *page)
2089 {
2090 if (likely(page_expected_state(page,
2091 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2092 return 0;
2093
2094 check_new_page_bad(page);
2095 return 1;
2096 }
2097
free_pages_prezeroed(void)2098 static inline bool free_pages_prezeroed(void)
2099 {
2100 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2101 page_poisoning_enabled()) || want_init_on_free();
2102 }
2103
2104 #ifdef CONFIG_DEBUG_VM
2105 /*
2106 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2107 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2108 * also checked when pcp lists are refilled from the free lists.
2109 */
check_pcp_refill(struct page * page)2110 static inline bool check_pcp_refill(struct page *page)
2111 {
2112 if (debug_pagealloc_enabled_static())
2113 return check_new_page(page);
2114 else
2115 return false;
2116 }
2117
check_new_pcp(struct page * page)2118 static inline bool check_new_pcp(struct page *page)
2119 {
2120 return check_new_page(page);
2121 }
2122 #else
2123 /*
2124 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2125 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2126 * enabled, they are also checked when being allocated from the pcp lists.
2127 */
check_pcp_refill(struct page * page)2128 static inline bool check_pcp_refill(struct page *page)
2129 {
2130 return check_new_page(page);
2131 }
check_new_pcp(struct page * page)2132 static inline bool check_new_pcp(struct page *page)
2133 {
2134 if (debug_pagealloc_enabled_static())
2135 return check_new_page(page);
2136 else
2137 return false;
2138 }
2139 #endif /* CONFIG_DEBUG_VM */
2140
check_new_pages(struct page * page,unsigned int order)2141 static bool check_new_pages(struct page *page, unsigned int order)
2142 {
2143 int i;
2144 for (i = 0; i < (1 << order); i++) {
2145 struct page *p = page + i;
2146
2147 if (unlikely(check_new_page(p)))
2148 return true;
2149 }
2150
2151 return false;
2152 }
2153
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)2154 inline void post_alloc_hook(struct page *page, unsigned int order,
2155 gfp_t gfp_flags)
2156 {
2157 set_page_private(page, 0);
2158 set_page_refcounted(page);
2159
2160 arch_alloc_page(page, order);
2161 if (debug_pagealloc_enabled_static())
2162 kernel_map_pages(page, 1 << order, 1);
2163 kasan_alloc_pages(page, order);
2164 kernel_poison_pages(page, 1 << order, 1);
2165 set_page_owner(page, order, gfp_flags);
2166 }
2167
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)2168 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2169 unsigned int alloc_flags)
2170 {
2171 post_alloc_hook(page, order, gfp_flags);
2172
2173 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2174 kernel_init_free_pages(page, 1 << order);
2175
2176 if (order && (gfp_flags & __GFP_COMP))
2177 prep_compound_page(page, order);
2178
2179 /*
2180 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2181 * allocate the page. The expectation is that the caller is taking
2182 * steps that will free more memory. The caller should avoid the page
2183 * being used for !PFMEMALLOC purposes.
2184 */
2185 if (alloc_flags & ALLOC_NO_WATERMARKS)
2186 set_page_pfmemalloc(page);
2187 else
2188 clear_page_pfmemalloc(page);
2189 }
2190
2191 /*
2192 * Go through the free lists for the given migratetype and remove
2193 * the smallest available page from the freelists
2194 */
2195 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)2196 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2197 int migratetype)
2198 {
2199 unsigned int current_order;
2200 struct free_area *area;
2201 struct page *page;
2202
2203 /* Find a page of the appropriate size in the preferred list */
2204 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2205 area = &(zone->free_area[current_order]);
2206 page = get_page_from_free_area(area, migratetype);
2207 if (!page)
2208 continue;
2209 del_page_from_free_area(page, area);
2210 expand(zone, page, order, current_order, area, migratetype);
2211 set_pcppage_migratetype(page, migratetype);
2212 return page;
2213 }
2214
2215 return NULL;
2216 }
2217
2218
2219 /*
2220 * This array describes the order lists are fallen back to when
2221 * the free lists for the desirable migrate type are depleted
2222 */
2223 static int fallbacks[MIGRATE_TYPES][4] = {
2224 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2225 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2226 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2227 #ifdef CONFIG_CMA
2228 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2229 #endif
2230 #ifdef CONFIG_MEMORY_ISOLATION
2231 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2232 #endif
2233 };
2234
2235 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2236 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2237 unsigned int order)
2238 {
2239 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2240 }
2241 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2242 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2243 unsigned int order) { return NULL; }
2244 #endif
2245
2246 /*
2247 * Move the free pages in a range to the free lists of the requested type.
2248 * Note that start_page and end_pages are not aligned on a pageblock
2249 * boundary. If alignment is required, use move_freepages_block()
2250 */
move_freepages(struct zone * zone,struct page * start_page,struct page * end_page,int migratetype,int * num_movable)2251 static int move_freepages(struct zone *zone,
2252 struct page *start_page, struct page *end_page,
2253 int migratetype, int *num_movable)
2254 {
2255 struct page *page;
2256 unsigned int order;
2257 int pages_moved = 0;
2258
2259 for (page = start_page; page <= end_page;) {
2260 if (!pfn_valid_within(page_to_pfn(page))) {
2261 page++;
2262 continue;
2263 }
2264
2265 if (!PageBuddy(page)) {
2266 /*
2267 * We assume that pages that could be isolated for
2268 * migration are movable. But we don't actually try
2269 * isolating, as that would be expensive.
2270 */
2271 if (num_movable &&
2272 (PageLRU(page) || __PageMovable(page)))
2273 (*num_movable)++;
2274
2275 page++;
2276 continue;
2277 }
2278
2279 /* Make sure we are not inadvertently changing nodes */
2280 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2281 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2282
2283 order = page_order(page);
2284 move_to_free_area(page, &zone->free_area[order], migratetype);
2285 page += 1 << order;
2286 pages_moved += 1 << order;
2287 }
2288
2289 return pages_moved;
2290 }
2291
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)2292 int move_freepages_block(struct zone *zone, struct page *page,
2293 int migratetype, int *num_movable)
2294 {
2295 unsigned long start_pfn, end_pfn;
2296 struct page *start_page, *end_page;
2297
2298 if (num_movable)
2299 *num_movable = 0;
2300
2301 start_pfn = page_to_pfn(page);
2302 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2303 start_page = pfn_to_page(start_pfn);
2304 end_page = start_page + pageblock_nr_pages - 1;
2305 end_pfn = start_pfn + pageblock_nr_pages - 1;
2306
2307 /* Do not cross zone boundaries */
2308 if (!zone_spans_pfn(zone, start_pfn))
2309 start_page = page;
2310 if (!zone_spans_pfn(zone, end_pfn))
2311 return 0;
2312
2313 return move_freepages(zone, start_page, end_page, migratetype,
2314 num_movable);
2315 }
2316
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)2317 static void change_pageblock_range(struct page *pageblock_page,
2318 int start_order, int migratetype)
2319 {
2320 int nr_pageblocks = 1 << (start_order - pageblock_order);
2321
2322 while (nr_pageblocks--) {
2323 set_pageblock_migratetype(pageblock_page, migratetype);
2324 pageblock_page += pageblock_nr_pages;
2325 }
2326 }
2327
2328 /*
2329 * When we are falling back to another migratetype during allocation, try to
2330 * steal extra free pages from the same pageblocks to satisfy further
2331 * allocations, instead of polluting multiple pageblocks.
2332 *
2333 * If we are stealing a relatively large buddy page, it is likely there will
2334 * be more free pages in the pageblock, so try to steal them all. For
2335 * reclaimable and unmovable allocations, we steal regardless of page size,
2336 * as fragmentation caused by those allocations polluting movable pageblocks
2337 * is worse than movable allocations stealing from unmovable and reclaimable
2338 * pageblocks.
2339 */
can_steal_fallback(unsigned int order,int start_mt)2340 static bool can_steal_fallback(unsigned int order, int start_mt)
2341 {
2342 /*
2343 * Leaving this order check is intended, although there is
2344 * relaxed order check in next check. The reason is that
2345 * we can actually steal whole pageblock if this condition met,
2346 * but, below check doesn't guarantee it and that is just heuristic
2347 * so could be changed anytime.
2348 */
2349 if (order >= pageblock_order)
2350 return true;
2351
2352 if (order >= pageblock_order / 2 ||
2353 start_mt == MIGRATE_RECLAIMABLE ||
2354 start_mt == MIGRATE_UNMOVABLE ||
2355 page_group_by_mobility_disabled)
2356 return true;
2357
2358 return false;
2359 }
2360
boost_watermark(struct zone * zone)2361 static inline bool boost_watermark(struct zone *zone)
2362 {
2363 unsigned long max_boost;
2364
2365 if (!watermark_boost_factor)
2366 return false;
2367 /*
2368 * Don't bother in zones that are unlikely to produce results.
2369 * On small machines, including kdump capture kernels running
2370 * in a small area, boosting the watermark can cause an out of
2371 * memory situation immediately.
2372 */
2373 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2374 return false;
2375
2376 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2377 watermark_boost_factor, 10000);
2378
2379 /*
2380 * high watermark may be uninitialised if fragmentation occurs
2381 * very early in boot so do not boost. We do not fall
2382 * through and boost by pageblock_nr_pages as failing
2383 * allocations that early means that reclaim is not going
2384 * to help and it may even be impossible to reclaim the
2385 * boosted watermark resulting in a hang.
2386 */
2387 if (!max_boost)
2388 return false;
2389
2390 max_boost = max(pageblock_nr_pages, max_boost);
2391
2392 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2393 max_boost);
2394
2395 return true;
2396 }
2397
2398 /*
2399 * This function implements actual steal behaviour. If order is large enough,
2400 * we can steal whole pageblock. If not, we first move freepages in this
2401 * pageblock to our migratetype and determine how many already-allocated pages
2402 * are there in the pageblock with a compatible migratetype. If at least half
2403 * of pages are free or compatible, we can change migratetype of the pageblock
2404 * itself, so pages freed in the future will be put on the correct free list.
2405 */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)2406 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2407 unsigned int alloc_flags, int start_type, bool whole_block)
2408 {
2409 unsigned int current_order = page_order(page);
2410 struct free_area *area;
2411 int free_pages, movable_pages, alike_pages;
2412 int old_block_type;
2413
2414 old_block_type = get_pageblock_migratetype(page);
2415
2416 /*
2417 * This can happen due to races and we want to prevent broken
2418 * highatomic accounting.
2419 */
2420 if (is_migrate_highatomic(old_block_type))
2421 goto single_page;
2422
2423 /* Take ownership for orders >= pageblock_order */
2424 if (current_order >= pageblock_order) {
2425 change_pageblock_range(page, current_order, start_type);
2426 goto single_page;
2427 }
2428
2429 /*
2430 * Boost watermarks to increase reclaim pressure to reduce the
2431 * likelihood of future fallbacks. Wake kswapd now as the node
2432 * may be balanced overall and kswapd will not wake naturally.
2433 */
2434 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2435 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2436
2437 /* We are not allowed to try stealing from the whole block */
2438 if (!whole_block)
2439 goto single_page;
2440
2441 free_pages = move_freepages_block(zone, page, start_type,
2442 &movable_pages);
2443 /*
2444 * Determine how many pages are compatible with our allocation.
2445 * For movable allocation, it's the number of movable pages which
2446 * we just obtained. For other types it's a bit more tricky.
2447 */
2448 if (start_type == MIGRATE_MOVABLE) {
2449 alike_pages = movable_pages;
2450 } else {
2451 /*
2452 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2453 * to MOVABLE pageblock, consider all non-movable pages as
2454 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2455 * vice versa, be conservative since we can't distinguish the
2456 * exact migratetype of non-movable pages.
2457 */
2458 if (old_block_type == MIGRATE_MOVABLE)
2459 alike_pages = pageblock_nr_pages
2460 - (free_pages + movable_pages);
2461 else
2462 alike_pages = 0;
2463 }
2464
2465 /* moving whole block can fail due to zone boundary conditions */
2466 if (!free_pages)
2467 goto single_page;
2468
2469 /*
2470 * If a sufficient number of pages in the block are either free or of
2471 * comparable migratability as our allocation, claim the whole block.
2472 */
2473 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2474 page_group_by_mobility_disabled)
2475 set_pageblock_migratetype(page, start_type);
2476
2477 return;
2478
2479 single_page:
2480 area = &zone->free_area[current_order];
2481 move_to_free_area(page, area, start_type);
2482 }
2483
2484 /*
2485 * Check whether there is a suitable fallback freepage with requested order.
2486 * If only_stealable is true, this function returns fallback_mt only if
2487 * we can steal other freepages all together. This would help to reduce
2488 * fragmentation due to mixed migratetype pages in one pageblock.
2489 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2490 int find_suitable_fallback(struct free_area *area, unsigned int order,
2491 int migratetype, bool only_stealable, bool *can_steal)
2492 {
2493 int i;
2494 int fallback_mt;
2495
2496 if (area->nr_free == 0)
2497 return -1;
2498
2499 *can_steal = false;
2500 for (i = 0;; i++) {
2501 fallback_mt = fallbacks[migratetype][i];
2502 if (fallback_mt == MIGRATE_TYPES)
2503 break;
2504
2505 if (free_area_empty(area, fallback_mt))
2506 continue;
2507
2508 if (can_steal_fallback(order, migratetype))
2509 *can_steal = true;
2510
2511 if (!only_stealable)
2512 return fallback_mt;
2513
2514 if (*can_steal)
2515 return fallback_mt;
2516 }
2517
2518 return -1;
2519 }
2520
2521 /*
2522 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2523 * there are no empty page blocks that contain a page with a suitable order
2524 */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)2525 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2526 unsigned int alloc_order)
2527 {
2528 int mt;
2529 unsigned long max_managed, flags;
2530
2531 /*
2532 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2533 * Check is race-prone but harmless.
2534 */
2535 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2536 if (zone->nr_reserved_highatomic >= max_managed)
2537 return;
2538
2539 spin_lock_irqsave(&zone->lock, flags);
2540
2541 /* Recheck the nr_reserved_highatomic limit under the lock */
2542 if (zone->nr_reserved_highatomic >= max_managed)
2543 goto out_unlock;
2544
2545 /* Yoink! */
2546 mt = get_pageblock_migratetype(page);
2547 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2548 && !is_migrate_cma(mt)) {
2549 zone->nr_reserved_highatomic += pageblock_nr_pages;
2550 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2551 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2552 }
2553
2554 out_unlock:
2555 spin_unlock_irqrestore(&zone->lock, flags);
2556 }
2557
2558 /*
2559 * Used when an allocation is about to fail under memory pressure. This
2560 * potentially hurts the reliability of high-order allocations when under
2561 * intense memory pressure but failed atomic allocations should be easier
2562 * to recover from than an OOM.
2563 *
2564 * If @force is true, try to unreserve a pageblock even though highatomic
2565 * pageblock is exhausted.
2566 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2567 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2568 bool force)
2569 {
2570 struct zonelist *zonelist = ac->zonelist;
2571 unsigned long flags;
2572 struct zoneref *z;
2573 struct zone *zone;
2574 struct page *page;
2575 int order;
2576 bool ret;
2577
2578 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2579 ac->nodemask) {
2580 /*
2581 * Preserve at least one pageblock unless memory pressure
2582 * is really high.
2583 */
2584 if (!force && zone->nr_reserved_highatomic <=
2585 pageblock_nr_pages)
2586 continue;
2587
2588 spin_lock_irqsave(&zone->lock, flags);
2589 for (order = 0; order < MAX_ORDER; order++) {
2590 struct free_area *area = &(zone->free_area[order]);
2591
2592 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2593 if (!page)
2594 continue;
2595
2596 /*
2597 * In page freeing path, migratetype change is racy so
2598 * we can counter several free pages in a pageblock
2599 * in this loop althoug we changed the pageblock type
2600 * from highatomic to ac->migratetype. So we should
2601 * adjust the count once.
2602 */
2603 if (is_migrate_highatomic_page(page)) {
2604 /*
2605 * It should never happen but changes to
2606 * locking could inadvertently allow a per-cpu
2607 * drain to add pages to MIGRATE_HIGHATOMIC
2608 * while unreserving so be safe and watch for
2609 * underflows.
2610 */
2611 zone->nr_reserved_highatomic -= min(
2612 pageblock_nr_pages,
2613 zone->nr_reserved_highatomic);
2614 }
2615
2616 /*
2617 * Convert to ac->migratetype and avoid the normal
2618 * pageblock stealing heuristics. Minimally, the caller
2619 * is doing the work and needs the pages. More
2620 * importantly, if the block was always converted to
2621 * MIGRATE_UNMOVABLE or another type then the number
2622 * of pageblocks that cannot be completely freed
2623 * may increase.
2624 */
2625 set_pageblock_migratetype(page, ac->migratetype);
2626 ret = move_freepages_block(zone, page, ac->migratetype,
2627 NULL);
2628 if (ret) {
2629 spin_unlock_irqrestore(&zone->lock, flags);
2630 return ret;
2631 }
2632 }
2633 spin_unlock_irqrestore(&zone->lock, flags);
2634 }
2635
2636 return false;
2637 }
2638
2639 /*
2640 * Try finding a free buddy page on the fallback list and put it on the free
2641 * list of requested migratetype, possibly along with other pages from the same
2642 * block, depending on fragmentation avoidance heuristics. Returns true if
2643 * fallback was found so that __rmqueue_smallest() can grab it.
2644 *
2645 * The use of signed ints for order and current_order is a deliberate
2646 * deviation from the rest of this file, to make the for loop
2647 * condition simpler.
2648 */
2649 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2650 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2651 unsigned int alloc_flags)
2652 {
2653 struct free_area *area;
2654 int current_order;
2655 int min_order = order;
2656 struct page *page;
2657 int fallback_mt;
2658 bool can_steal;
2659
2660 /*
2661 * Do not steal pages from freelists belonging to other pageblocks
2662 * i.e. orders < pageblock_order. If there are no local zones free,
2663 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2664 */
2665 if (alloc_flags & ALLOC_NOFRAGMENT)
2666 min_order = pageblock_order;
2667
2668 /*
2669 * Find the largest available free page in the other list. This roughly
2670 * approximates finding the pageblock with the most free pages, which
2671 * would be too costly to do exactly.
2672 */
2673 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2674 --current_order) {
2675 area = &(zone->free_area[current_order]);
2676 fallback_mt = find_suitable_fallback(area, current_order,
2677 start_migratetype, false, &can_steal);
2678 if (fallback_mt == -1)
2679 continue;
2680
2681 /*
2682 * We cannot steal all free pages from the pageblock and the
2683 * requested migratetype is movable. In that case it's better to
2684 * steal and split the smallest available page instead of the
2685 * largest available page, because even if the next movable
2686 * allocation falls back into a different pageblock than this
2687 * one, it won't cause permanent fragmentation.
2688 */
2689 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2690 && current_order > order)
2691 goto find_smallest;
2692
2693 goto do_steal;
2694 }
2695
2696 return false;
2697
2698 find_smallest:
2699 for (current_order = order; current_order < MAX_ORDER;
2700 current_order++) {
2701 area = &(zone->free_area[current_order]);
2702 fallback_mt = find_suitable_fallback(area, current_order,
2703 start_migratetype, false, &can_steal);
2704 if (fallback_mt != -1)
2705 break;
2706 }
2707
2708 /*
2709 * This should not happen - we already found a suitable fallback
2710 * when looking for the largest page.
2711 */
2712 VM_BUG_ON(current_order == MAX_ORDER);
2713
2714 do_steal:
2715 page = get_page_from_free_area(area, fallback_mt);
2716
2717 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2718 can_steal);
2719
2720 trace_mm_page_alloc_extfrag(page, order, current_order,
2721 start_migratetype, fallback_mt);
2722
2723 return true;
2724
2725 }
2726
2727 /*
2728 * Do the hard work of removing an element from the buddy allocator.
2729 * Call me with the zone->lock already held.
2730 */
2731 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2732 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2733 unsigned int alloc_flags)
2734 {
2735 struct page *page;
2736
2737 retry:
2738 page = __rmqueue_smallest(zone, order, migratetype);
2739
2740 if (unlikely(!page) && __rmqueue_fallback(zone, order, migratetype,
2741 alloc_flags))
2742 goto retry;
2743
2744 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2745 return page;
2746 }
2747
2748 #ifdef CONFIG_CMA
__rmqueue_cma(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2749 static struct page *__rmqueue_cma(struct zone *zone, unsigned int order,
2750 int migratetype,
2751 unsigned int alloc_flags)
2752 {
2753 struct page *page = 0;
2754
2755 if (IS_ENABLED(CONFIG_CMA))
2756 if (!zone->cma_alloc)
2757 page = __rmqueue_cma_fallback(zone, order);
2758 trace_mm_page_alloc_zone_locked(page, order, MIGRATE_CMA);
2759 return page;
2760 }
2761 #else
__rmqueue_cma(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2762 static inline struct page *__rmqueue_cma(struct zone *zone, unsigned int order,
2763 int migratetype,
2764 unsigned int alloc_flags)
2765 {
2766 return NULL;
2767 }
2768 #endif
2769
2770 /*
2771 * Obtain a specified number of elements from the buddy allocator, all under
2772 * a single hold of the lock, for efficiency. Add them to the supplied list.
2773 * Returns the number of new pages which were placed at *list.
2774 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2775 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2776 unsigned long count, struct list_head *list,
2777 int migratetype, unsigned int alloc_flags)
2778 {
2779 int i, alloced = 0;
2780
2781 spin_lock(&zone->lock);
2782 for (i = 0; i < count; ++i) {
2783 struct page *page;
2784
2785 /*
2786 * If migrate type CMA is being requested only try to
2787 * satisfy the request with CMA pages to try and increase
2788 * CMA utlization.
2789 */
2790 if (is_migrate_cma(migratetype))
2791 page = __rmqueue_cma(zone, order, migratetype,
2792 alloc_flags);
2793 else
2794 page = __rmqueue(zone, order, migratetype, alloc_flags);
2795
2796 if (unlikely(page == NULL))
2797 break;
2798
2799 if (unlikely(check_pcp_refill(page)))
2800 continue;
2801
2802 /*
2803 * Split buddy pages returned by expand() are received here in
2804 * physical page order. The page is added to the tail of
2805 * caller's list. From the callers perspective, the linked list
2806 * is ordered by page number under some conditions. This is
2807 * useful for IO devices that can forward direction from the
2808 * head, thus also in the physical page order. This is useful
2809 * for IO devices that can merge IO requests if the physical
2810 * pages are ordered properly.
2811 */
2812 list_add_tail(&page->lru, list);
2813 alloced++;
2814 if (is_migrate_cma(get_pcppage_migratetype(page)))
2815 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2816 -(1 << order));
2817 }
2818
2819 /*
2820 * i pages were removed from the buddy list even if some leak due
2821 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2822 * on i. Do not confuse with 'alloced' which is the number of
2823 * pages added to the pcp list.
2824 */
2825 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2826 spin_unlock(&zone->lock);
2827 return alloced;
2828 }
2829
2830 /*
2831 * Return the pcp list that corresponds to the migrate type if that list isn't
2832 * empty.
2833 * If the list is empty return NULL.
2834 */
get_populated_pcp_list(struct zone * zone,unsigned int order,struct per_cpu_pages * pcp,int migratetype,unsigned int alloc_flags)2835 static struct list_head *get_populated_pcp_list(struct zone *zone,
2836 unsigned int order, struct per_cpu_pages *pcp,
2837 int migratetype, unsigned int alloc_flags)
2838 {
2839 struct list_head *list = &pcp->lists[migratetype];
2840
2841 if (list_empty(list)) {
2842 pcp->count += rmqueue_bulk(zone, order,
2843 pcp->batch, list,
2844 migratetype, alloc_flags);
2845
2846 if (list_empty(list))
2847 list = NULL;
2848 }
2849 return list;
2850 }
2851
2852 #ifdef CONFIG_NUMA
2853 /*
2854 * Called from the vmstat counter updater to drain pagesets of this
2855 * currently executing processor on remote nodes after they have
2856 * expired.
2857 *
2858 * Note that this function must be called with the thread pinned to
2859 * a single processor.
2860 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2861 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2862 {
2863 unsigned long flags;
2864 int to_drain, batch;
2865
2866 local_irq_save(flags);
2867 batch = READ_ONCE(pcp->batch);
2868 to_drain = min(pcp->count, batch);
2869 if (to_drain > 0)
2870 free_pcppages_bulk(zone, to_drain, pcp);
2871 local_irq_restore(flags);
2872 }
2873 #endif
2874
2875 /*
2876 * Drain pcplists of the indicated processor and zone.
2877 *
2878 * The processor must either be the current processor and the
2879 * thread pinned to the current processor or a processor that
2880 * is not online.
2881 */
drain_pages_zone(unsigned int cpu,struct zone * zone)2882 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2883 {
2884 unsigned long flags;
2885 struct per_cpu_pageset *pset;
2886 struct per_cpu_pages *pcp;
2887
2888 local_irq_save(flags);
2889 pset = per_cpu_ptr(zone->pageset, cpu);
2890
2891 pcp = &pset->pcp;
2892 if (pcp->count)
2893 free_pcppages_bulk(zone, pcp->count, pcp);
2894 local_irq_restore(flags);
2895 }
2896
2897 /*
2898 * Drain pcplists of all zones on the indicated processor.
2899 *
2900 * The processor must either be the current processor and the
2901 * thread pinned to the current processor or a processor that
2902 * is not online.
2903 */
drain_pages(unsigned int cpu)2904 static void drain_pages(unsigned int cpu)
2905 {
2906 struct zone *zone;
2907
2908 for_each_populated_zone(zone) {
2909 drain_pages_zone(cpu, zone);
2910 }
2911 }
2912
2913 /*
2914 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2915 *
2916 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2917 * the single zone's pages.
2918 */
drain_local_pages(struct zone * zone)2919 void drain_local_pages(struct zone *zone)
2920 {
2921 int cpu = smp_processor_id();
2922
2923 if (zone)
2924 drain_pages_zone(cpu, zone);
2925 else
2926 drain_pages(cpu);
2927 }
2928
drain_local_pages_wq(struct work_struct * work)2929 static void drain_local_pages_wq(struct work_struct *work)
2930 {
2931 struct pcpu_drain *drain;
2932
2933 drain = container_of(work, struct pcpu_drain, work);
2934
2935 /*
2936 * drain_all_pages doesn't use proper cpu hotplug protection so
2937 * we can race with cpu offline when the WQ can move this from
2938 * a cpu pinned worker to an unbound one. We can operate on a different
2939 * cpu which is allright but we also have to make sure to not move to
2940 * a different one.
2941 */
2942 preempt_disable();
2943 drain_local_pages(drain->zone);
2944 preempt_enable();
2945 }
2946
2947 /*
2948 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2949 *
2950 * When zone parameter is non-NULL, spill just the single zone's pages.
2951 *
2952 * Note that this can be extremely slow as the draining happens in a workqueue.
2953 */
drain_all_pages(struct zone * zone)2954 void drain_all_pages(struct zone *zone)
2955 {
2956 int cpu;
2957
2958 /*
2959 * Allocate in the BSS so we wont require allocation in
2960 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2961 */
2962 static cpumask_t cpus_with_pcps;
2963
2964 /*
2965 * Make sure nobody triggers this path before mm_percpu_wq is fully
2966 * initialized.
2967 */
2968 if (WARN_ON_ONCE(!mm_percpu_wq))
2969 return;
2970
2971 /*
2972 * Do not drain if one is already in progress unless it's specific to
2973 * a zone. Such callers are primarily CMA and memory hotplug and need
2974 * the drain to be complete when the call returns.
2975 */
2976 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2977 if (!zone)
2978 return;
2979 mutex_lock(&pcpu_drain_mutex);
2980 }
2981
2982 /*
2983 * We don't care about racing with CPU hotplug event
2984 * as offline notification will cause the notified
2985 * cpu to drain that CPU pcps and on_each_cpu_mask
2986 * disables preemption as part of its processing
2987 */
2988 for_each_online_cpu(cpu) {
2989 struct per_cpu_pageset *pcp;
2990 struct zone *z;
2991 bool has_pcps = false;
2992
2993 if (zone) {
2994 pcp = per_cpu_ptr(zone->pageset, cpu);
2995 if (pcp->pcp.count)
2996 has_pcps = true;
2997 } else {
2998 for_each_populated_zone(z) {
2999 pcp = per_cpu_ptr(z->pageset, cpu);
3000 if (pcp->pcp.count) {
3001 has_pcps = true;
3002 break;
3003 }
3004 }
3005 }
3006
3007 if (has_pcps)
3008 cpumask_set_cpu(cpu, &cpus_with_pcps);
3009 else
3010 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3011 }
3012
3013 for_each_cpu(cpu, &cpus_with_pcps) {
3014 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3015
3016 drain->zone = zone;
3017 INIT_WORK(&drain->work, drain_local_pages_wq);
3018 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3019 }
3020 for_each_cpu(cpu, &cpus_with_pcps)
3021 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3022
3023 mutex_unlock(&pcpu_drain_mutex);
3024 }
3025
3026 #ifdef CONFIG_HIBERNATION
3027
3028 /*
3029 * Touch the watchdog for every WD_PAGE_COUNT pages.
3030 */
3031 #define WD_PAGE_COUNT (128*1024)
3032
mark_free_pages(struct zone * zone)3033 void mark_free_pages(struct zone *zone)
3034 {
3035 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3036 unsigned long flags;
3037 unsigned int order, t;
3038 struct page *page;
3039
3040 if (zone_is_empty(zone))
3041 return;
3042
3043 spin_lock_irqsave(&zone->lock, flags);
3044
3045 max_zone_pfn = zone_end_pfn(zone);
3046 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3047 if (pfn_valid(pfn)) {
3048 page = pfn_to_page(pfn);
3049
3050 if (!--page_count) {
3051 touch_nmi_watchdog();
3052 page_count = WD_PAGE_COUNT;
3053 }
3054
3055 if (page_zone(page) != zone)
3056 continue;
3057
3058 if (!swsusp_page_is_forbidden(page))
3059 swsusp_unset_page_free(page);
3060 }
3061
3062 for_each_migratetype_order(order, t) {
3063 list_for_each_entry(page,
3064 &zone->free_area[order].free_list[t], lru) {
3065 unsigned long i;
3066
3067 pfn = page_to_pfn(page);
3068 for (i = 0; i < (1UL << order); i++) {
3069 if (!--page_count) {
3070 touch_nmi_watchdog();
3071 page_count = WD_PAGE_COUNT;
3072 }
3073 swsusp_set_page_free(pfn_to_page(pfn + i));
3074 }
3075 }
3076 }
3077 spin_unlock_irqrestore(&zone->lock, flags);
3078 }
3079 #endif /* CONFIG_PM */
3080
free_unref_page_prepare(struct page * page,unsigned long pfn)3081 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3082 {
3083 int migratetype;
3084
3085 if (!free_pcp_prepare(page))
3086 return false;
3087
3088 migratetype = get_pfnblock_migratetype(page, pfn);
3089 set_pcppage_migratetype(page, migratetype);
3090 return true;
3091 }
3092
free_unref_page_commit(struct page * page,unsigned long pfn)3093 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3094 {
3095 struct zone *zone = page_zone(page);
3096 struct per_cpu_pages *pcp;
3097 int migratetype;
3098
3099 migratetype = get_pcppage_migratetype(page);
3100 __count_vm_event(PGFREE);
3101
3102 /*
3103 * We only track unmovable, reclaimable and movable on pcp lists.
3104 * Free ISOLATE pages back to the allocator because they are being
3105 * offlined but treat HIGHATOMIC as movable pages so we can get those
3106 * areas back if necessary. Otherwise, we may have to free
3107 * excessively into the page allocator
3108 */
3109 if (migratetype >= MIGRATE_PCPTYPES) {
3110 if (unlikely(is_migrate_isolate(migratetype))) {
3111 free_one_page(zone, page, pfn, 0, migratetype);
3112 return;
3113 }
3114 migratetype = MIGRATE_MOVABLE;
3115 }
3116
3117 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3118 list_add(&page->lru, &pcp->lists[migratetype]);
3119 pcp->count++;
3120 if (pcp->count >= pcp->high) {
3121 unsigned long batch = READ_ONCE(pcp->batch);
3122 free_pcppages_bulk(zone, batch, pcp);
3123 }
3124 }
3125
3126 /*
3127 * Free a 0-order page
3128 */
free_unref_page(struct page * page)3129 void free_unref_page(struct page *page)
3130 {
3131 unsigned long flags;
3132 unsigned long pfn = page_to_pfn(page);
3133
3134 if (!free_unref_page_prepare(page, pfn))
3135 return;
3136
3137 local_irq_save(flags);
3138 free_unref_page_commit(page, pfn);
3139 local_irq_restore(flags);
3140 }
3141
3142 /*
3143 * Free a list of 0-order pages
3144 */
free_unref_page_list(struct list_head * list)3145 void free_unref_page_list(struct list_head *list)
3146 {
3147 struct page *page, *next;
3148 unsigned long flags, pfn;
3149 int batch_count = 0;
3150
3151 /* Prepare pages for freeing */
3152 list_for_each_entry_safe(page, next, list, lru) {
3153 pfn = page_to_pfn(page);
3154 if (!free_unref_page_prepare(page, pfn))
3155 list_del(&page->lru);
3156 set_page_private(page, pfn);
3157 }
3158
3159 local_irq_save(flags);
3160 list_for_each_entry_safe(page, next, list, lru) {
3161 unsigned long pfn = page_private(page);
3162
3163 set_page_private(page, 0);
3164 trace_mm_page_free_batched(page);
3165 free_unref_page_commit(page, pfn);
3166
3167 /*
3168 * Guard against excessive IRQ disabled times when we get
3169 * a large list of pages to free.
3170 */
3171 if (++batch_count == SWAP_CLUSTER_MAX) {
3172 local_irq_restore(flags);
3173 batch_count = 0;
3174 local_irq_save(flags);
3175 }
3176 }
3177 local_irq_restore(flags);
3178 }
3179
3180 /*
3181 * split_page takes a non-compound higher-order page, and splits it into
3182 * n (1<<order) sub-pages: page[0..n]
3183 * Each sub-page must be freed individually.
3184 *
3185 * Note: this is probably too low level an operation for use in drivers.
3186 * Please consult with lkml before using this in your driver.
3187 */
split_page(struct page * page,unsigned int order)3188 void split_page(struct page *page, unsigned int order)
3189 {
3190 int i;
3191
3192 VM_BUG_ON_PAGE(PageCompound(page), page);
3193 VM_BUG_ON_PAGE(!page_count(page), page);
3194
3195 for (i = 1; i < (1 << order); i++)
3196 set_page_refcounted(page + i);
3197 split_page_owner(page, 1 << order);
3198 }
3199 EXPORT_SYMBOL_GPL(split_page);
3200
__isolate_free_page(struct page * page,unsigned int order)3201 int __isolate_free_page(struct page *page, unsigned int order)
3202 {
3203 struct free_area *area = &page_zone(page)->free_area[order];
3204 unsigned long watermark;
3205 struct zone *zone;
3206 int mt;
3207
3208 BUG_ON(!PageBuddy(page));
3209
3210 zone = page_zone(page);
3211 mt = get_pageblock_migratetype(page);
3212
3213 if (!is_migrate_isolate(mt)) {
3214 /*
3215 * Obey watermarks as if the page was being allocated. We can
3216 * emulate a high-order watermark check with a raised order-0
3217 * watermark, because we already know our high-order page
3218 * exists.
3219 */
3220 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3221 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3222 return 0;
3223
3224 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3225 }
3226
3227 /* Remove page from free list */
3228
3229 del_page_from_free_area(page, area);
3230
3231 /*
3232 * Set the pageblock if the isolated page is at least half of a
3233 * pageblock
3234 */
3235 if (order >= pageblock_order - 1) {
3236 struct page *endpage = page + (1 << order) - 1;
3237 for (; page < endpage; page += pageblock_nr_pages) {
3238 int mt = get_pageblock_migratetype(page);
3239 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3240 && !is_migrate_highatomic(mt))
3241 set_pageblock_migratetype(page,
3242 MIGRATE_MOVABLE);
3243 }
3244 }
3245
3246
3247 return 1UL << order;
3248 }
3249
3250 /*
3251 * Update NUMA hit/miss statistics
3252 *
3253 * Must be called with interrupts disabled.
3254 */
zone_statistics(struct zone * preferred_zone,struct zone * z)3255 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3256 {
3257 #ifdef CONFIG_NUMA
3258 enum numa_stat_item local_stat = NUMA_LOCAL;
3259
3260 /* skip numa counters update if numa stats is disabled */
3261 if (!static_branch_likely(&vm_numa_stat_key))
3262 return;
3263
3264 if (zone_to_nid(z) != numa_node_id())
3265 local_stat = NUMA_OTHER;
3266
3267 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3268 __inc_numa_state(z, NUMA_HIT);
3269 else {
3270 __inc_numa_state(z, NUMA_MISS);
3271 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3272 }
3273 __inc_numa_state(z, local_stat);
3274 #endif
3275 }
3276
3277 /* Remove page from the per-cpu list, caller must protect the list */
__rmqueue_pcplist(struct zone * zone,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,gfp_t gfp_flags)3278 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3279 unsigned int alloc_flags,
3280 struct per_cpu_pages *pcp,
3281 gfp_t gfp_flags)
3282 {
3283 struct page *page = NULL;
3284 struct list_head *list = NULL;
3285
3286 do {
3287 /* First try to get CMA pages */
3288 if (migratetype == MIGRATE_MOVABLE &&
3289 gfp_flags & __GFP_CMA) {
3290 list = get_populated_pcp_list(zone, 0, pcp,
3291 get_cma_migrate_type(), alloc_flags);
3292 }
3293
3294 if (list == NULL) {
3295 /*
3296 * Either CMA is not suitable or there are no
3297 * free CMA pages.
3298 */
3299 list = get_populated_pcp_list(zone, 0, pcp,
3300 migratetype, alloc_flags);
3301 if (unlikely(list == NULL) ||
3302 unlikely(list_empty(list)))
3303 return NULL;
3304 }
3305
3306 page = list_first_entry(list, struct page, lru);
3307 list_del(&page->lru);
3308 pcp->count--;
3309 } while (check_new_pcp(page));
3310
3311 return page;
3312 }
3313
3314 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,gfp_t gfp_flags,int migratetype,unsigned int alloc_flags)3315 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3316 struct zone *zone, gfp_t gfp_flags,
3317 int migratetype, unsigned int alloc_flags)
3318 {
3319 struct per_cpu_pages *pcp;
3320 struct page *page;
3321 unsigned long flags;
3322
3323 local_irq_save(flags);
3324 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3325 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp,
3326 gfp_flags);
3327 if (page) {
3328 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3329 zone_statistics(preferred_zone, zone);
3330 }
3331 local_irq_restore(flags);
3332 return page;
3333 }
3334
3335 /*
3336 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3337 */
3338 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3339 struct page *rmqueue(struct zone *preferred_zone,
3340 struct zone *zone, unsigned int order,
3341 gfp_t gfp_flags, unsigned int alloc_flags,
3342 int migratetype)
3343 {
3344 unsigned long flags;
3345 struct page *page;
3346
3347 if (likely(order == 0)) {
3348 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3349 migratetype, alloc_flags);
3350 goto out;
3351 }
3352
3353 /*
3354 * We most definitely don't want callers attempting to
3355 * allocate greater than order-1 page units with __GFP_NOFAIL.
3356 */
3357 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3358 spin_lock_irqsave(&zone->lock, flags);
3359
3360 do {
3361 page = NULL;
3362
3363 if (alloc_flags & ALLOC_HARDER) {
3364 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3365 if (page)
3366 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3367 }
3368
3369 if (!page && migratetype == MIGRATE_MOVABLE &&
3370 gfp_flags & __GFP_CMA)
3371 page = __rmqueue_cma(zone, order, migratetype,
3372 alloc_flags);
3373
3374 if (!page)
3375 page = __rmqueue(zone, order, migratetype, alloc_flags);
3376 } while (page && check_new_pages(page, order));
3377
3378 spin_unlock(&zone->lock);
3379 if (!page)
3380 goto failed;
3381 __mod_zone_freepage_state(zone, -(1 << order),
3382 get_pcppage_migratetype(page));
3383
3384 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3385 zone_statistics(preferred_zone, zone);
3386 local_irq_restore(flags);
3387
3388 out:
3389 /* Separate test+clear to avoid unnecessary atomics */
3390 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3391 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3392 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3393 }
3394
3395 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3396 return page;
3397
3398 failed:
3399 local_irq_restore(flags);
3400 return NULL;
3401 }
3402
3403 #ifdef CONFIG_FAIL_PAGE_ALLOC
3404
3405 static struct {
3406 struct fault_attr attr;
3407
3408 bool ignore_gfp_highmem;
3409 bool ignore_gfp_reclaim;
3410 u32 min_order;
3411 } fail_page_alloc = {
3412 .attr = FAULT_ATTR_INITIALIZER,
3413 .ignore_gfp_reclaim = true,
3414 .ignore_gfp_highmem = true,
3415 .min_order = 1,
3416 };
3417
setup_fail_page_alloc(char * str)3418 static int __init setup_fail_page_alloc(char *str)
3419 {
3420 return setup_fault_attr(&fail_page_alloc.attr, str);
3421 }
3422 __setup("fail_page_alloc=", setup_fail_page_alloc);
3423
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3424 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3425 {
3426 if (order < fail_page_alloc.min_order)
3427 return false;
3428 if (gfp_mask & __GFP_NOFAIL)
3429 return false;
3430 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3431 return false;
3432 if (fail_page_alloc.ignore_gfp_reclaim &&
3433 (gfp_mask & __GFP_DIRECT_RECLAIM))
3434 return false;
3435
3436 return should_fail(&fail_page_alloc.attr, 1 << order);
3437 }
3438
3439 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3440
fail_page_alloc_debugfs(void)3441 static int __init fail_page_alloc_debugfs(void)
3442 {
3443 umode_t mode = S_IFREG | 0600;
3444 struct dentry *dir;
3445
3446 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3447 &fail_page_alloc.attr);
3448
3449 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3450 &fail_page_alloc.ignore_gfp_reclaim);
3451 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3452 &fail_page_alloc.ignore_gfp_highmem);
3453 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3454
3455 return 0;
3456 }
3457
3458 late_initcall(fail_page_alloc_debugfs);
3459
3460 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3461
3462 #else /* CONFIG_FAIL_PAGE_ALLOC */
3463
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3464 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3465 {
3466 return false;
3467 }
3468
3469 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3470
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3471 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3472 {
3473 return __should_fail_alloc_page(gfp_mask, order);
3474 }
3475 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3476
3477 /*
3478 * Return true if free base pages are above 'mark'. For high-order checks it
3479 * will return true of the order-0 watermark is reached and there is at least
3480 * one free page of a suitable size. Checking now avoids taking the zone lock
3481 * to check in the allocation paths if no pages are free.
3482 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,unsigned int alloc_flags,long free_pages)3483 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3484 int classzone_idx, unsigned int alloc_flags,
3485 long free_pages)
3486 {
3487 long min = mark;
3488 int o;
3489 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3490
3491 /* free_pages may go negative - that's OK */
3492 free_pages -= (1 << order) - 1;
3493
3494 if (alloc_flags & ALLOC_HIGH)
3495 min -= min / 2;
3496
3497 /*
3498 * If the caller does not have rights to ALLOC_HARDER then subtract
3499 * the high-atomic reserves. This will over-estimate the size of the
3500 * atomic reserve but it avoids a search.
3501 */
3502 if (likely(!alloc_harder)) {
3503 free_pages -= z->nr_reserved_highatomic;
3504 } else {
3505 /*
3506 * OOM victims can try even harder than normal ALLOC_HARDER
3507 * users on the grounds that it's definitely going to be in
3508 * the exit path shortly and free memory. Any allocation it
3509 * makes during the free path will be small and short-lived.
3510 */
3511 if (alloc_flags & ALLOC_OOM)
3512 min -= min / 2;
3513 else
3514 min -= min / 4;
3515 }
3516
3517
3518 #ifdef CONFIG_CMA
3519 /* If allocation can't use CMA areas don't use free CMA pages */
3520 if (!(alloc_flags & ALLOC_CMA))
3521 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3522 #endif
3523
3524 /*
3525 * Check watermarks for an order-0 allocation request. If these
3526 * are not met, then a high-order request also cannot go ahead
3527 * even if a suitable page happened to be free.
3528 */
3529 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3530 return false;
3531
3532 /* If this is an order-0 request then the watermark is fine */
3533 if (!order)
3534 return true;
3535
3536 /* For a high-order request, check at least one suitable page is free */
3537 for (o = order; o < MAX_ORDER; o++) {
3538 struct free_area *area = &z->free_area[o];
3539 int mt;
3540
3541 if (!area->nr_free)
3542 continue;
3543
3544 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3545 if (!free_area_empty(area, mt))
3546 return true;
3547 }
3548
3549 #ifdef CONFIG_CMA
3550 if ((alloc_flags & ALLOC_CMA) &&
3551 !free_area_empty(area, MIGRATE_CMA)) {
3552 return true;
3553 }
3554 #endif
3555 if (alloc_harder &&
3556 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3557 return true;
3558 }
3559 return false;
3560 }
3561
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,unsigned int alloc_flags)3562 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3563 int classzone_idx, unsigned int alloc_flags)
3564 {
3565 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3566 zone_page_state(z, NR_FREE_PAGES));
3567 }
3568
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,unsigned int alloc_flags,gfp_t gfp_mask)3569 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3570 unsigned long mark, int classzone_idx,
3571 unsigned int alloc_flags, gfp_t gfp_mask)
3572 {
3573 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3574 long cma_pages = 0;
3575
3576 #ifdef CONFIG_CMA
3577 /* If allocation can't use CMA areas don't use free CMA pages */
3578 if (!(alloc_flags & ALLOC_CMA))
3579 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3580 #endif
3581
3582 /*
3583 * Fast check for order-0 only. If this fails then the reserves
3584 * need to be calculated. There is a corner case where the check
3585 * passes but only the high-order atomic reserve are free. If
3586 * the caller is !atomic then it'll uselessly search the free
3587 * list. That corner case is then slower but it is harmless.
3588 */
3589 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3590 return true;
3591
3592 if (__zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3593 free_pages))
3594 return true;
3595 /*
3596 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3597 * when checking the min watermark. The min watermark is the
3598 * point where boosting is ignored so that kswapd is woken up
3599 * when below the low watermark.
3600 */
3601 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3602 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3603 mark = z->_watermark[WMARK_MIN];
3604 return __zone_watermark_ok(z, order, mark, classzone_idx,
3605 alloc_flags, free_pages);
3606 }
3607
3608 return false;
3609 }
3610
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx)3611 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3612 unsigned long mark, int classzone_idx)
3613 {
3614 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3615
3616 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3617 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3618
3619 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3620 free_pages);
3621 }
3622
3623 #ifdef CONFIG_NUMA
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3624 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3625 {
3626 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3627 node_reclaim_distance;
3628 }
3629 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3630 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3631 {
3632 return true;
3633 }
3634 #endif /* CONFIG_NUMA */
3635
3636 /*
3637 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3638 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3639 * premature use of a lower zone may cause lowmem pressure problems that
3640 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3641 * probably too small. It only makes sense to spread allocations to avoid
3642 * fragmentation between the Normal and DMA32 zones.
3643 */
3644 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3645 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3646 {
3647 unsigned int alloc_flags = 0;
3648
3649 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3650 alloc_flags |= ALLOC_KSWAPD;
3651
3652 #ifdef CONFIG_ZONE_DMA32
3653 if (!zone)
3654 return alloc_flags;
3655
3656 if (zone_idx(zone) != ZONE_NORMAL)
3657 return alloc_flags;
3658
3659 /*
3660 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3661 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3662 * on UMA that if Normal is populated then so is DMA32.
3663 */
3664 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3665 if (nr_online_nodes > 1 && !populated_zone(--zone))
3666 return alloc_flags;
3667
3668 alloc_flags |= ALLOC_NOFRAGMENT;
3669 #endif /* CONFIG_ZONE_DMA32 */
3670 return alloc_flags;
3671 }
3672
3673 /*
3674 * get_page_from_freelist goes through the zonelist trying to allocate
3675 * a page.
3676 */
3677 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3678 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3679 const struct alloc_context *ac)
3680 {
3681 struct zoneref *z;
3682 struct zone *zone;
3683 struct pglist_data *last_pgdat_dirty_limit = NULL;
3684 bool no_fallback;
3685
3686 retry:
3687 /*
3688 * Scan zonelist, looking for a zone with enough free.
3689 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3690 */
3691 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3692 z = ac->preferred_zoneref;
3693 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3694 ac->nodemask) {
3695 struct page *page;
3696 unsigned long mark;
3697
3698 if (cpusets_enabled() &&
3699 (alloc_flags & ALLOC_CPUSET) &&
3700 !__cpuset_zone_allowed(zone, gfp_mask))
3701 continue;
3702 /*
3703 * When allocating a page cache page for writing, we
3704 * want to get it from a node that is within its dirty
3705 * limit, such that no single node holds more than its
3706 * proportional share of globally allowed dirty pages.
3707 * The dirty limits take into account the node's
3708 * lowmem reserves and high watermark so that kswapd
3709 * should be able to balance it without having to
3710 * write pages from its LRU list.
3711 *
3712 * XXX: For now, allow allocations to potentially
3713 * exceed the per-node dirty limit in the slowpath
3714 * (spread_dirty_pages unset) before going into reclaim,
3715 * which is important when on a NUMA setup the allowed
3716 * nodes are together not big enough to reach the
3717 * global limit. The proper fix for these situations
3718 * will require awareness of nodes in the
3719 * dirty-throttling and the flusher threads.
3720 */
3721 if (ac->spread_dirty_pages) {
3722 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3723 continue;
3724
3725 if (!node_dirty_ok(zone->zone_pgdat)) {
3726 last_pgdat_dirty_limit = zone->zone_pgdat;
3727 continue;
3728 }
3729 }
3730
3731 if (no_fallback && nr_online_nodes > 1 &&
3732 zone != ac->preferred_zoneref->zone) {
3733 int local_nid;
3734
3735 /*
3736 * If moving to a remote node, retry but allow
3737 * fragmenting fallbacks. Locality is more important
3738 * than fragmentation avoidance.
3739 */
3740 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3741 if (zone_to_nid(zone) != local_nid) {
3742 alloc_flags &= ~ALLOC_NOFRAGMENT;
3743 goto retry;
3744 }
3745 }
3746
3747 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3748 if (!zone_watermark_fast(zone, order, mark,
3749 ac_classzone_idx(ac), alloc_flags,
3750 gfp_mask)) {
3751 int ret;
3752
3753 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3754 /*
3755 * Watermark failed for this zone, but see if we can
3756 * grow this zone if it contains deferred pages.
3757 */
3758 if (static_branch_unlikely(&deferred_pages)) {
3759 if (_deferred_grow_zone(zone, order))
3760 goto try_this_zone;
3761 }
3762 #endif
3763 /* Checked here to keep the fast path fast */
3764 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3765 if (alloc_flags & ALLOC_NO_WATERMARKS)
3766 goto try_this_zone;
3767
3768 if (node_reclaim_mode == 0 ||
3769 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3770 continue;
3771
3772 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3773 switch (ret) {
3774 case NODE_RECLAIM_NOSCAN:
3775 /* did not scan */
3776 continue;
3777 case NODE_RECLAIM_FULL:
3778 /* scanned but unreclaimable */
3779 continue;
3780 default:
3781 /* did we reclaim enough */
3782 if (zone_watermark_ok(zone, order, mark,
3783 ac_classzone_idx(ac), alloc_flags))
3784 goto try_this_zone;
3785
3786 continue;
3787 }
3788 }
3789
3790 try_this_zone:
3791 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3792 gfp_mask, alloc_flags, ac->migratetype);
3793 if (page) {
3794 prep_new_page(page, order, gfp_mask, alloc_flags);
3795
3796 /*
3797 * If this is a high-order atomic allocation then check
3798 * if the pageblock should be reserved for the future
3799 */
3800 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3801 reserve_highatomic_pageblock(page, zone, order);
3802
3803 return page;
3804 } else {
3805 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3806 /* Try again if zone has deferred pages */
3807 if (static_branch_unlikely(&deferred_pages)) {
3808 if (_deferred_grow_zone(zone, order))
3809 goto try_this_zone;
3810 }
3811 #endif
3812 }
3813 }
3814
3815 /*
3816 * It's possible on a UMA machine to get through all zones that are
3817 * fragmented. If avoiding fragmentation, reset and try again.
3818 */
3819 if (no_fallback) {
3820 alloc_flags &= ~ALLOC_NOFRAGMENT;
3821 goto retry;
3822 }
3823
3824 return NULL;
3825 }
3826
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3827 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3828 {
3829 unsigned int filter = SHOW_MEM_FILTER_NODES;
3830
3831 /*
3832 * This documents exceptions given to allocations in certain
3833 * contexts that are allowed to allocate outside current's set
3834 * of allowed nodes.
3835 */
3836 if (!(gfp_mask & __GFP_NOMEMALLOC))
3837 if (tsk_is_oom_victim(current) ||
3838 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3839 filter &= ~SHOW_MEM_FILTER_NODES;
3840 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3841 filter &= ~SHOW_MEM_FILTER_NODES;
3842
3843 show_mem(filter, nodemask);
3844 }
3845
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3846 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3847 {
3848 struct va_format vaf;
3849 va_list args;
3850 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3851
3852 if ((gfp_mask & __GFP_NOWARN) ||
3853 !__ratelimit(&nopage_rs) ||
3854 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3855 return;
3856
3857 va_start(args, fmt);
3858 vaf.fmt = fmt;
3859 vaf.va = &args;
3860 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3861 current->comm, &vaf, gfp_mask, &gfp_mask,
3862 nodemask_pr_args(nodemask));
3863 va_end(args);
3864
3865 cpuset_print_current_mems_allowed();
3866 pr_cont("\n");
3867 dump_stack();
3868 warn_alloc_show_mem(gfp_mask, nodemask);
3869 }
3870
3871 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3872 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3873 unsigned int alloc_flags,
3874 const struct alloc_context *ac)
3875 {
3876 struct page *page;
3877
3878 page = get_page_from_freelist(gfp_mask, order,
3879 alloc_flags|ALLOC_CPUSET, ac);
3880 /*
3881 * fallback to ignore cpuset restriction if our nodes
3882 * are depleted
3883 */
3884 if (!page)
3885 page = get_page_from_freelist(gfp_mask, order,
3886 alloc_flags, ac);
3887
3888 return page;
3889 }
3890
3891 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3892 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3893 const struct alloc_context *ac, unsigned long *did_some_progress)
3894 {
3895 struct oom_control oc = {
3896 .zonelist = ac->zonelist,
3897 .nodemask = ac->nodemask,
3898 .memcg = NULL,
3899 .gfp_mask = gfp_mask,
3900 .order = order,
3901 };
3902 struct page *page;
3903
3904 *did_some_progress = 0;
3905
3906 /*
3907 * Acquire the oom lock. If that fails, somebody else is
3908 * making progress for us.
3909 */
3910 if (!mutex_trylock(&oom_lock)) {
3911 *did_some_progress = 1;
3912 schedule_timeout_uninterruptible(1);
3913 return NULL;
3914 }
3915
3916 /*
3917 * Go through the zonelist yet one more time, keep very high watermark
3918 * here, this is only to catch a parallel oom killing, we must fail if
3919 * we're still under heavy pressure. But make sure that this reclaim
3920 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3921 * allocation which will never fail due to oom_lock already held.
3922 */
3923 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3924 ~__GFP_DIRECT_RECLAIM, order,
3925 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3926 if (page)
3927 goto out;
3928
3929 /* Coredumps can quickly deplete all memory reserves */
3930 if (current->flags & PF_DUMPCORE)
3931 goto out;
3932 /* The OOM killer will not help higher order allocs */
3933 if (order > PAGE_ALLOC_COSTLY_ORDER)
3934 goto out;
3935 /*
3936 * We have already exhausted all our reclaim opportunities without any
3937 * success so it is time to admit defeat. We will skip the OOM killer
3938 * because it is very likely that the caller has a more reasonable
3939 * fallback than shooting a random task.
3940 */
3941 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3942 goto out;
3943 /* The OOM killer does not needlessly kill tasks for lowmem */
3944 if (ac->high_zoneidx < ZONE_NORMAL)
3945 goto out;
3946 if (pm_suspended_storage())
3947 goto out;
3948 /*
3949 * XXX: GFP_NOFS allocations should rather fail than rely on
3950 * other request to make a forward progress.
3951 * We are in an unfortunate situation where out_of_memory cannot
3952 * do much for this context but let's try it to at least get
3953 * access to memory reserved if the current task is killed (see
3954 * out_of_memory). Once filesystems are ready to handle allocation
3955 * failures more gracefully we should just bail out here.
3956 */
3957
3958 /* The OOM killer may not free memory on a specific node */
3959 if (gfp_mask & __GFP_THISNODE)
3960 goto out;
3961
3962 /* Exhausted what can be done so it's blame time */
3963 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3964 *did_some_progress = 1;
3965
3966 /*
3967 * Help non-failing allocations by giving them access to memory
3968 * reserves
3969 */
3970 if (gfp_mask & __GFP_NOFAIL)
3971 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3972 ALLOC_NO_WATERMARKS, ac);
3973 }
3974 out:
3975 mutex_unlock(&oom_lock);
3976 return page;
3977 }
3978
3979 /*
3980 * Maximum number of compaction retries wit a progress before OOM
3981 * killer is consider as the only way to move forward.
3982 */
3983 #define MAX_COMPACT_RETRIES 16
3984
3985 #ifdef CONFIG_COMPACTION
3986 /* Try memory compaction for high-order allocations before reclaim */
3987 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3988 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3989 unsigned int alloc_flags, const struct alloc_context *ac,
3990 enum compact_priority prio, enum compact_result *compact_result)
3991 {
3992 struct page *page = NULL;
3993 unsigned long pflags;
3994 unsigned int noreclaim_flag;
3995
3996 if (!order)
3997 return NULL;
3998
3999 psi_memstall_enter(&pflags);
4000 noreclaim_flag = memalloc_noreclaim_save();
4001
4002 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4003 prio, &page);
4004
4005 memalloc_noreclaim_restore(noreclaim_flag);
4006 psi_memstall_leave(&pflags);
4007
4008 /*
4009 * At least in one zone compaction wasn't deferred or skipped, so let's
4010 * count a compaction stall
4011 */
4012 count_vm_event(COMPACTSTALL);
4013
4014 /* Prep a captured page if available */
4015 if (page)
4016 prep_new_page(page, order, gfp_mask, alloc_flags);
4017
4018 /* Try get a page from the freelist if available */
4019 if (!page)
4020 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4021
4022 if (page) {
4023 struct zone *zone = page_zone(page);
4024
4025 zone->compact_blockskip_flush = false;
4026 compaction_defer_reset(zone, order, true);
4027 count_vm_event(COMPACTSUCCESS);
4028 return page;
4029 }
4030
4031 /*
4032 * It's bad if compaction run occurs and fails. The most likely reason
4033 * is that pages exist, but not enough to satisfy watermarks.
4034 */
4035 count_vm_event(COMPACTFAIL);
4036
4037 cond_resched();
4038
4039 return NULL;
4040 }
4041
4042 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4043 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4044 enum compact_result compact_result,
4045 enum compact_priority *compact_priority,
4046 int *compaction_retries)
4047 {
4048 int max_retries = MAX_COMPACT_RETRIES;
4049 int min_priority;
4050 bool ret = false;
4051 int retries = *compaction_retries;
4052 enum compact_priority priority = *compact_priority;
4053
4054 if (!order)
4055 return false;
4056
4057 if (compaction_made_progress(compact_result))
4058 (*compaction_retries)++;
4059
4060 /*
4061 * compaction considers all the zone as desperately out of memory
4062 * so it doesn't really make much sense to retry except when the
4063 * failure could be caused by insufficient priority
4064 */
4065 if (compaction_failed(compact_result))
4066 goto check_priority;
4067
4068 /*
4069 * compaction was skipped because there are not enough order-0 pages
4070 * to work with, so we retry only if it looks like reclaim can help.
4071 */
4072 if (compaction_needs_reclaim(compact_result)) {
4073 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4074 goto out;
4075 }
4076
4077 /*
4078 * make sure the compaction wasn't deferred or didn't bail out early
4079 * due to locks contention before we declare that we should give up.
4080 * But the next retry should use a higher priority if allowed, so
4081 * we don't just keep bailing out endlessly.
4082 */
4083 if (compaction_withdrawn(compact_result)) {
4084 goto check_priority;
4085 }
4086
4087 /*
4088 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4089 * costly ones because they are de facto nofail and invoke OOM
4090 * killer to move on while costly can fail and users are ready
4091 * to cope with that. 1/4 retries is rather arbitrary but we
4092 * would need much more detailed feedback from compaction to
4093 * make a better decision.
4094 */
4095 if (order > PAGE_ALLOC_COSTLY_ORDER)
4096 max_retries /= 4;
4097 if (*compaction_retries <= max_retries) {
4098 ret = true;
4099 goto out;
4100 }
4101
4102 /*
4103 * Make sure there are attempts at the highest priority if we exhausted
4104 * all retries or failed at the lower priorities.
4105 */
4106 check_priority:
4107 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4108 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4109
4110 if (*compact_priority > min_priority) {
4111 (*compact_priority)--;
4112 *compaction_retries = 0;
4113 ret = true;
4114 }
4115 out:
4116 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4117 return ret;
4118 }
4119 #else
4120 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4121 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4122 unsigned int alloc_flags, const struct alloc_context *ac,
4123 enum compact_priority prio, enum compact_result *compact_result)
4124 {
4125 *compact_result = COMPACT_SKIPPED;
4126 return NULL;
4127 }
4128
4129 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4130 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4131 enum compact_result compact_result,
4132 enum compact_priority *compact_priority,
4133 int *compaction_retries)
4134 {
4135 struct zone *zone;
4136 struct zoneref *z;
4137
4138 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4139 return false;
4140
4141 /*
4142 * There are setups with compaction disabled which would prefer to loop
4143 * inside the allocator rather than hit the oom killer prematurely.
4144 * Let's give them a good hope and keep retrying while the order-0
4145 * watermarks are OK.
4146 */
4147 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4148 ac->nodemask) {
4149 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4150 ac_classzone_idx(ac), alloc_flags))
4151 return true;
4152 }
4153 return false;
4154 }
4155 #endif /* CONFIG_COMPACTION */
4156
4157 #ifdef CONFIG_LOCKDEP
4158 static struct lockdep_map __fs_reclaim_map =
4159 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4160
__need_fs_reclaim(gfp_t gfp_mask)4161 static bool __need_fs_reclaim(gfp_t gfp_mask)
4162 {
4163 gfp_mask = current_gfp_context(gfp_mask);
4164
4165 /* no reclaim without waiting on it */
4166 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4167 return false;
4168
4169 /* this guy won't enter reclaim */
4170 if (current->flags & PF_MEMALLOC)
4171 return false;
4172
4173 /* We're only interested __GFP_FS allocations for now */
4174 if (!(gfp_mask & __GFP_FS))
4175 return false;
4176
4177 if (gfp_mask & __GFP_NOLOCKDEP)
4178 return false;
4179
4180 return true;
4181 }
4182
__fs_reclaim_acquire(void)4183 void __fs_reclaim_acquire(void)
4184 {
4185 lock_map_acquire(&__fs_reclaim_map);
4186 }
4187
__fs_reclaim_release(void)4188 void __fs_reclaim_release(void)
4189 {
4190 lock_map_release(&__fs_reclaim_map);
4191 }
4192
fs_reclaim_acquire(gfp_t gfp_mask)4193 void fs_reclaim_acquire(gfp_t gfp_mask)
4194 {
4195 if (__need_fs_reclaim(gfp_mask))
4196 __fs_reclaim_acquire();
4197 }
4198 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4199
fs_reclaim_release(gfp_t gfp_mask)4200 void fs_reclaim_release(gfp_t gfp_mask)
4201 {
4202 if (__need_fs_reclaim(gfp_mask))
4203 __fs_reclaim_release();
4204 }
4205 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4206 #endif
4207
4208 /*
4209 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4210 * have been rebuilt so allocation retries. Reader side does not lock and
4211 * retries the allocation if zonelist changes. Writer side is protected by the
4212 * embedded spin_lock.
4213 */
4214 static DEFINE_SEQLOCK(zonelist_update_seq);
4215
zonelist_iter_begin(void)4216 static unsigned int zonelist_iter_begin(void)
4217 {
4218 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4219 return read_seqbegin(&zonelist_update_seq);
4220
4221 return 0;
4222 }
4223
check_retry_zonelist(unsigned int seq)4224 static unsigned int check_retry_zonelist(unsigned int seq)
4225 {
4226 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4227 return read_seqretry(&zonelist_update_seq, seq);
4228
4229 return seq;
4230 }
4231
4232 /* Perform direct synchronous page reclaim */
4233 static int
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4234 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4235 const struct alloc_context *ac)
4236 {
4237 int progress;
4238 unsigned int noreclaim_flag;
4239 unsigned long pflags;
4240
4241 cond_resched();
4242
4243 /* We now go into synchronous reclaim */
4244 cpuset_memory_pressure_bump();
4245 psi_memstall_enter(&pflags);
4246 fs_reclaim_acquire(gfp_mask);
4247 noreclaim_flag = memalloc_noreclaim_save();
4248
4249 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4250 ac->nodemask);
4251
4252 memalloc_noreclaim_restore(noreclaim_flag);
4253 fs_reclaim_release(gfp_mask);
4254 psi_memstall_leave(&pflags);
4255
4256 cond_resched();
4257
4258 return progress;
4259 }
4260
4261 /* The really slow allocator path where we enter direct reclaim */
4262 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4263 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4264 unsigned int alloc_flags, const struct alloc_context *ac,
4265 unsigned long *did_some_progress)
4266 {
4267 struct page *page = NULL;
4268 bool drained = false;
4269
4270 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4271 if (unlikely(!(*did_some_progress)))
4272 return NULL;
4273
4274 retry:
4275 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4276
4277 /*
4278 * If an allocation failed after direct reclaim, it could be because
4279 * pages are pinned on the per-cpu lists or in high alloc reserves.
4280 * Shrink them them and try again
4281 */
4282 if (!page && !drained) {
4283 unreserve_highatomic_pageblock(ac, false);
4284 drain_all_pages(NULL);
4285 drained = true;
4286 goto retry;
4287 }
4288
4289 return page;
4290 }
4291
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4292 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4293 const struct alloc_context *ac)
4294 {
4295 struct zoneref *z;
4296 struct zone *zone;
4297 pg_data_t *last_pgdat = NULL;
4298 enum zone_type high_zoneidx = ac->high_zoneidx;
4299
4300 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4301 ac->nodemask) {
4302 if (last_pgdat != zone->zone_pgdat)
4303 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4304 last_pgdat = zone->zone_pgdat;
4305 }
4306 }
4307
4308 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask)4309 gfp_to_alloc_flags(gfp_t gfp_mask)
4310 {
4311 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4312
4313 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4314 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4315
4316 /*
4317 * The caller may dip into page reserves a bit more if the caller
4318 * cannot run direct reclaim, or if the caller has realtime scheduling
4319 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4320 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4321 */
4322 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4323
4324 if (gfp_mask & __GFP_ATOMIC) {
4325 /*
4326 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4327 * if it can't schedule.
4328 */
4329 if (!(gfp_mask & __GFP_NOMEMALLOC))
4330 alloc_flags |= ALLOC_HARDER;
4331 /*
4332 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4333 * comment for __cpuset_node_allowed().
4334 */
4335 alloc_flags &= ~ALLOC_CPUSET;
4336 } else if (unlikely(rt_task(current)) && !in_interrupt())
4337 alloc_flags |= ALLOC_HARDER;
4338
4339 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4340 alloc_flags |= ALLOC_KSWAPD;
4341
4342 #ifdef CONFIG_CMA
4343 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4344 alloc_flags |= ALLOC_CMA;
4345 #endif
4346 return alloc_flags;
4347 }
4348
oom_reserves_allowed(struct task_struct * tsk)4349 static bool oom_reserves_allowed(struct task_struct *tsk)
4350 {
4351 if (!tsk_is_oom_victim(tsk))
4352 return false;
4353
4354 /*
4355 * !MMU doesn't have oom reaper so give access to memory reserves
4356 * only to the thread with TIF_MEMDIE set
4357 */
4358 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4359 return false;
4360
4361 return true;
4362 }
4363
4364 /*
4365 * Distinguish requests which really need access to full memory
4366 * reserves from oom victims which can live with a portion of it
4367 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4368 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4369 {
4370 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4371 return 0;
4372 if (gfp_mask & __GFP_MEMALLOC)
4373 return ALLOC_NO_WATERMARKS;
4374 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4375 return ALLOC_NO_WATERMARKS;
4376 if (!in_interrupt()) {
4377 if (current->flags & PF_MEMALLOC)
4378 return ALLOC_NO_WATERMARKS;
4379 else if (oom_reserves_allowed(current))
4380 return ALLOC_OOM;
4381 }
4382
4383 return 0;
4384 }
4385
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4386 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4387 {
4388 return !!__gfp_pfmemalloc_flags(gfp_mask);
4389 }
4390
4391 /*
4392 * Checks whether it makes sense to retry the reclaim to make a forward progress
4393 * for the given allocation request.
4394 *
4395 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4396 * without success, or when we couldn't even meet the watermark if we
4397 * reclaimed all remaining pages on the LRU lists.
4398 *
4399 * Returns true if a retry is viable or false to enter the oom path.
4400 */
4401 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4402 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4403 struct alloc_context *ac, int alloc_flags,
4404 bool did_some_progress, int *no_progress_loops)
4405 {
4406 struct zone *zone;
4407 struct zoneref *z;
4408 bool ret = false;
4409
4410 /*
4411 * Costly allocations might have made a progress but this doesn't mean
4412 * their order will become available due to high fragmentation so
4413 * always increment the no progress counter for them
4414 */
4415 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4416 *no_progress_loops = 0;
4417 else
4418 (*no_progress_loops)++;
4419
4420 /*
4421 * Make sure we converge to OOM if we cannot make any progress
4422 * several times in the row.
4423 */
4424 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4425 /* Before OOM, exhaust highatomic_reserve */
4426 return unreserve_highatomic_pageblock(ac, true);
4427 }
4428
4429 /*
4430 * Keep reclaiming pages while there is a chance this will lead
4431 * somewhere. If none of the target zones can satisfy our allocation
4432 * request even if all reclaimable pages are considered then we are
4433 * screwed and have to go OOM.
4434 */
4435 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4436 ac->nodemask) {
4437 unsigned long available;
4438 unsigned long reclaimable;
4439 unsigned long min_wmark = min_wmark_pages(zone);
4440 bool wmark;
4441
4442 available = reclaimable = zone_reclaimable_pages(zone);
4443 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4444
4445 /*
4446 * Would the allocation succeed if we reclaimed all
4447 * reclaimable pages?
4448 */
4449 wmark = __zone_watermark_ok(zone, order, min_wmark,
4450 ac_classzone_idx(ac), alloc_flags, available);
4451 trace_reclaim_retry_zone(z, order, reclaimable,
4452 available, min_wmark, *no_progress_loops, wmark);
4453 if (wmark) {
4454 /*
4455 * If we didn't make any progress and have a lot of
4456 * dirty + writeback pages then we should wait for
4457 * an IO to complete to slow down the reclaim and
4458 * prevent from pre mature OOM
4459 */
4460 if (!did_some_progress) {
4461 unsigned long write_pending;
4462
4463 write_pending = zone_page_state_snapshot(zone,
4464 NR_ZONE_WRITE_PENDING);
4465
4466 if (2 * write_pending > reclaimable) {
4467 congestion_wait(BLK_RW_ASYNC, HZ/10);
4468 return true;
4469 }
4470 }
4471
4472 ret = true;
4473 goto out;
4474 }
4475 }
4476
4477 out:
4478 /*
4479 * Memory allocation/reclaim might be called from a WQ context and the
4480 * current implementation of the WQ concurrency control doesn't
4481 * recognize that a particular WQ is congested if the worker thread is
4482 * looping without ever sleeping. Therefore we have to do a short sleep
4483 * here rather than calling cond_resched().
4484 */
4485 if (current->flags & PF_WQ_WORKER)
4486 schedule_timeout_uninterruptible(1);
4487 else
4488 cond_resched();
4489 return ret;
4490 }
4491
4492 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4493 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4494 {
4495 /*
4496 * It's possible that cpuset's mems_allowed and the nodemask from
4497 * mempolicy don't intersect. This should be normally dealt with by
4498 * policy_nodemask(), but it's possible to race with cpuset update in
4499 * such a way the check therein was true, and then it became false
4500 * before we got our cpuset_mems_cookie here.
4501 * This assumes that for all allocations, ac->nodemask can come only
4502 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4503 * when it does not intersect with the cpuset restrictions) or the
4504 * caller can deal with a violated nodemask.
4505 */
4506 if (cpusets_enabled() && ac->nodemask &&
4507 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4508 ac->nodemask = NULL;
4509 return true;
4510 }
4511
4512 /*
4513 * When updating a task's mems_allowed or mempolicy nodemask, it is
4514 * possible to race with parallel threads in such a way that our
4515 * allocation can fail while the mask is being updated. If we are about
4516 * to fail, check if the cpuset changed during allocation and if so,
4517 * retry.
4518 */
4519 if (read_mems_allowed_retry(cpuset_mems_cookie))
4520 return true;
4521
4522 return false;
4523 }
4524
4525 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4526 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4527 struct alloc_context *ac)
4528 {
4529 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4530 bool can_compact = gfp_compaction_allowed(gfp_mask);
4531 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4532 struct page *page = NULL;
4533 unsigned int alloc_flags;
4534 unsigned long did_some_progress;
4535 enum compact_priority compact_priority;
4536 enum compact_result compact_result;
4537 int compaction_retries;
4538 int no_progress_loops;
4539 unsigned int cpuset_mems_cookie;
4540 unsigned int zonelist_iter_cookie;
4541 int reserve_flags;
4542
4543 /*
4544 * We also sanity check to catch abuse of atomic reserves being used by
4545 * callers that are not in atomic context.
4546 */
4547 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4548 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4549 gfp_mask &= ~__GFP_ATOMIC;
4550
4551 restart:
4552 compaction_retries = 0;
4553 no_progress_loops = 0;
4554 compact_priority = DEF_COMPACT_PRIORITY;
4555 cpuset_mems_cookie = read_mems_allowed_begin();
4556 zonelist_iter_cookie = zonelist_iter_begin();
4557
4558 /*
4559 * The fast path uses conservative alloc_flags to succeed only until
4560 * kswapd needs to be woken up, and to avoid the cost of setting up
4561 * alloc_flags precisely. So we do that now.
4562 */
4563 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4564
4565 /*
4566 * We need to recalculate the starting point for the zonelist iterator
4567 * because we might have used different nodemask in the fast path, or
4568 * there was a cpuset modification and we are retrying - otherwise we
4569 * could end up iterating over non-eligible zones endlessly.
4570 */
4571 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4572 ac->high_zoneidx, ac->nodemask);
4573 if (!ac->preferred_zoneref->zone)
4574 goto nopage;
4575
4576 if (alloc_flags & ALLOC_KSWAPD)
4577 wake_all_kswapds(order, gfp_mask, ac);
4578
4579 /*
4580 * The adjusted alloc_flags might result in immediate success, so try
4581 * that first
4582 */
4583 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4584 if (page)
4585 goto got_pg;
4586
4587 /*
4588 * For costly allocations, try direct compaction first, as it's likely
4589 * that we have enough base pages and don't need to reclaim. For non-
4590 * movable high-order allocations, do that as well, as compaction will
4591 * try prevent permanent fragmentation by migrating from blocks of the
4592 * same migratetype.
4593 * Don't try this for allocations that are allowed to ignore
4594 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4595 */
4596 if (can_direct_reclaim && can_compact &&
4597 (costly_order ||
4598 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4599 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4600 page = __alloc_pages_direct_compact(gfp_mask, order,
4601 alloc_flags, ac,
4602 INIT_COMPACT_PRIORITY,
4603 &compact_result);
4604 if (page)
4605 goto got_pg;
4606
4607 if (order >= pageblock_order && (gfp_mask & __GFP_IO) &&
4608 !(gfp_mask & __GFP_RETRY_MAYFAIL)) {
4609 /*
4610 * If allocating entire pageblock(s) and compaction
4611 * failed because all zones are below low watermarks
4612 * or is prohibited because it recently failed at this
4613 * order, fail immediately unless the allocator has
4614 * requested compaction and reclaim retry.
4615 *
4616 * Reclaim is
4617 * - potentially very expensive because zones are far
4618 * below their low watermarks or this is part of very
4619 * bursty high order allocations,
4620 * - not guaranteed to help because isolate_freepages()
4621 * may not iterate over freed pages as part of its
4622 * linear scan, and
4623 * - unlikely to make entire pageblocks free on its
4624 * own.
4625 */
4626 if (compact_result == COMPACT_SKIPPED ||
4627 compact_result == COMPACT_DEFERRED)
4628 goto nopage;
4629 }
4630
4631 /*
4632 * Checks for costly allocations with __GFP_NORETRY, which
4633 * includes THP page fault allocations
4634 */
4635 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4636 /*
4637 * If compaction is deferred for high-order allocations,
4638 * it is because sync compaction recently failed. If
4639 * this is the case and the caller requested a THP
4640 * allocation, we do not want to heavily disrupt the
4641 * system, so we fail the allocation instead of entering
4642 * direct reclaim.
4643 */
4644 if (compact_result == COMPACT_DEFERRED)
4645 goto nopage;
4646
4647 /*
4648 * Looks like reclaim/compaction is worth trying, but
4649 * sync compaction could be very expensive, so keep
4650 * using async compaction.
4651 */
4652 compact_priority = INIT_COMPACT_PRIORITY;
4653 }
4654 }
4655
4656 retry:
4657 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4658 if (alloc_flags & ALLOC_KSWAPD)
4659 wake_all_kswapds(order, gfp_mask, ac);
4660
4661 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4662 if (reserve_flags)
4663 alloc_flags = reserve_flags;
4664
4665 /*
4666 * Reset the nodemask and zonelist iterators if memory policies can be
4667 * ignored. These allocations are high priority and system rather than
4668 * user oriented.
4669 */
4670 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4671 ac->nodemask = NULL;
4672 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4673 ac->high_zoneidx, ac->nodemask);
4674 }
4675
4676 /* Attempt with potentially adjusted zonelist and alloc_flags */
4677 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4678 if (page)
4679 goto got_pg;
4680
4681 /* Caller is not willing to reclaim, we can't balance anything */
4682 if (!can_direct_reclaim)
4683 goto nopage;
4684
4685 /* Avoid recursion of direct reclaim */
4686 if (current->flags & PF_MEMALLOC)
4687 goto nopage;
4688
4689 /* Try direct reclaim and then allocating */
4690 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4691 &did_some_progress);
4692 if (page)
4693 goto got_pg;
4694
4695 /* Try direct compaction and then allocating */
4696 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4697 compact_priority, &compact_result);
4698 if (page)
4699 goto got_pg;
4700
4701 /* Do not loop if specifically requested */
4702 if (gfp_mask & __GFP_NORETRY)
4703 goto nopage;
4704
4705 /*
4706 * Do not retry costly high order allocations unless they are
4707 * __GFP_RETRY_MAYFAIL and we can compact
4708 */
4709 if (costly_order && (!can_compact ||
4710 !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4711 goto nopage;
4712
4713 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4714 did_some_progress > 0, &no_progress_loops))
4715 goto retry;
4716
4717 /*
4718 * It doesn't make any sense to retry for the compaction if the order-0
4719 * reclaim is not able to make any progress because the current
4720 * implementation of the compaction depends on the sufficient amount
4721 * of free memory (see __compaction_suitable)
4722 */
4723 if (did_some_progress > 0 && can_compact &&
4724 should_compact_retry(ac, order, alloc_flags,
4725 compact_result, &compact_priority,
4726 &compaction_retries))
4727 goto retry;
4728
4729
4730 /*
4731 * Deal with possible cpuset update races or zonelist updates to avoid
4732 * a unnecessary OOM kill.
4733 */
4734 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4735 check_retry_zonelist(zonelist_iter_cookie))
4736 goto restart;
4737
4738 /* Reclaim has failed us, start killing things */
4739 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4740 if (page)
4741 goto got_pg;
4742
4743 /* Avoid allocations with no watermarks from looping endlessly */
4744 if (tsk_is_oom_victim(current) &&
4745 (alloc_flags == ALLOC_OOM ||
4746 (gfp_mask & __GFP_NOMEMALLOC)))
4747 goto nopage;
4748
4749 /* Retry as long as the OOM killer is making progress */
4750 if (did_some_progress) {
4751 no_progress_loops = 0;
4752 goto retry;
4753 }
4754
4755 nopage:
4756 /*
4757 * Deal with possible cpuset update races or zonelist updates to avoid
4758 * a unnecessary OOM kill.
4759 */
4760 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4761 check_retry_zonelist(zonelist_iter_cookie))
4762 goto restart;
4763
4764 /*
4765 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4766 * we always retry
4767 */
4768 if (gfp_mask & __GFP_NOFAIL) {
4769 /*
4770 * All existing users of the __GFP_NOFAIL are blockable, so warn
4771 * of any new users that actually require GFP_NOWAIT
4772 */
4773 if (WARN_ON_ONCE(!can_direct_reclaim))
4774 goto fail;
4775
4776 /*
4777 * PF_MEMALLOC request from this context is rather bizarre
4778 * because we cannot reclaim anything and only can loop waiting
4779 * for somebody to do a work for us
4780 */
4781 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4782
4783 /*
4784 * non failing costly orders are a hard requirement which we
4785 * are not prepared for much so let's warn about these users
4786 * so that we can identify them and convert them to something
4787 * else.
4788 */
4789 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4790
4791 /*
4792 * Help non-failing allocations by giving them access to memory
4793 * reserves but do not use ALLOC_NO_WATERMARKS because this
4794 * could deplete whole memory reserves which would just make
4795 * the situation worse
4796 */
4797 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4798 if (page)
4799 goto got_pg;
4800
4801 cond_resched();
4802 goto retry;
4803 }
4804 fail:
4805 warn_alloc(gfp_mask, ac->nodemask,
4806 "page allocation failure: order:%u", order);
4807 got_pg:
4808 return page;
4809 }
4810
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_mask,unsigned int * alloc_flags)4811 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4812 int preferred_nid, nodemask_t *nodemask,
4813 struct alloc_context *ac, gfp_t *alloc_mask,
4814 unsigned int *alloc_flags)
4815 {
4816 ac->high_zoneidx = gfp_zone(gfp_mask);
4817 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4818 ac->nodemask = nodemask;
4819 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4820
4821 if (cpusets_enabled()) {
4822 *alloc_mask |= __GFP_HARDWALL;
4823 if (!ac->nodemask)
4824 ac->nodemask = &cpuset_current_mems_allowed;
4825 else
4826 *alloc_flags |= ALLOC_CPUSET;
4827 }
4828
4829 fs_reclaim_acquire(gfp_mask);
4830 fs_reclaim_release(gfp_mask);
4831
4832 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4833
4834 if (should_fail_alloc_page(gfp_mask, order))
4835 return false;
4836
4837 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4838 *alloc_flags |= ALLOC_CMA;
4839
4840 return true;
4841 }
4842
4843 /* Determine whether to spread dirty pages and what the first usable zone */
finalise_ac(gfp_t gfp_mask,struct alloc_context * ac)4844 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4845 {
4846 /* Dirty zone balancing only done in the fast path */
4847 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4848
4849 /*
4850 * The preferred zone is used for statistics but crucially it is
4851 * also used as the starting point for the zonelist iterator. It
4852 * may get reset for allocations that ignore memory policies.
4853 */
4854 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4855 ac->high_zoneidx, ac->nodemask);
4856 }
4857
4858 /*
4859 * This is the 'heart' of the zoned buddy allocator.
4860 */
4861 struct page *
__alloc_pages_nodemask(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask)4862 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4863 nodemask_t *nodemask)
4864 {
4865 struct page *page;
4866 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4867 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4868 struct alloc_context ac = { };
4869
4870 /*
4871 * There are several places where we assume that the order value is sane
4872 * so bail out early if the request is out of bound.
4873 */
4874 if (unlikely(order >= MAX_ORDER)) {
4875 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4876 return NULL;
4877 }
4878
4879 gfp_mask &= gfp_allowed_mask;
4880 alloc_mask = gfp_mask;
4881 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4882 return NULL;
4883
4884 finalise_ac(gfp_mask, &ac);
4885
4886 /*
4887 * Forbid the first pass from falling back to types that fragment
4888 * memory until all local zones are considered.
4889 */
4890 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4891
4892 /* First allocation attempt */
4893 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4894 if (likely(page))
4895 goto out;
4896
4897 /*
4898 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4899 * resp. GFP_NOIO which has to be inherited for all allocation requests
4900 * from a particular context which has been marked by
4901 * memalloc_no{fs,io}_{save,restore}.
4902 */
4903 alloc_mask = current_gfp_context(gfp_mask);
4904 ac.spread_dirty_pages = false;
4905
4906 /*
4907 * Restore the original nodemask if it was potentially replaced with
4908 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4909 */
4910 if (unlikely(ac.nodemask != nodemask))
4911 ac.nodemask = nodemask;
4912
4913 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4914
4915 out:
4916 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4917 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4918 __free_pages(page, order);
4919 page = NULL;
4920 }
4921
4922 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4923
4924 return page;
4925 }
4926 EXPORT_SYMBOL(__alloc_pages_nodemask);
4927
4928 /*
4929 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4930 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4931 * you need to access high mem.
4932 */
__get_free_pages(gfp_t gfp_mask,unsigned int order)4933 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4934 {
4935 struct page *page;
4936
4937 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4938 if (!page)
4939 return 0;
4940 return (unsigned long) page_address(page);
4941 }
4942 EXPORT_SYMBOL(__get_free_pages);
4943
get_zeroed_page(gfp_t gfp_mask)4944 unsigned long get_zeroed_page(gfp_t gfp_mask)
4945 {
4946 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4947 }
4948 EXPORT_SYMBOL(get_zeroed_page);
4949
free_the_page(struct page * page,unsigned int order)4950 static inline void free_the_page(struct page *page, unsigned int order)
4951 {
4952 if (order == 0) /* Via pcp? */
4953 free_unref_page(page);
4954 else
4955 __free_pages_ok(page, order);
4956 }
4957
__free_pages(struct page * page,unsigned int order)4958 void __free_pages(struct page *page, unsigned int order)
4959 {
4960 if (put_page_testzero(page))
4961 free_the_page(page, order);
4962 }
4963 EXPORT_SYMBOL(__free_pages);
4964
free_pages(unsigned long addr,unsigned int order)4965 void free_pages(unsigned long addr, unsigned int order)
4966 {
4967 if (addr != 0) {
4968 VM_BUG_ON(!virt_addr_valid((void *)addr));
4969 __free_pages(virt_to_page((void *)addr), order);
4970 }
4971 }
4972
4973 EXPORT_SYMBOL(free_pages);
4974
4975 /*
4976 * Page Fragment:
4977 * An arbitrary-length arbitrary-offset area of memory which resides
4978 * within a 0 or higher order page. Multiple fragments within that page
4979 * are individually refcounted, in the page's reference counter.
4980 *
4981 * The page_frag functions below provide a simple allocation framework for
4982 * page fragments. This is used by the network stack and network device
4983 * drivers to provide a backing region of memory for use as either an
4984 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4985 */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4986 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4987 gfp_t gfp_mask)
4988 {
4989 struct page *page = NULL;
4990 gfp_t gfp = gfp_mask;
4991
4992 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4993 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4994 __GFP_NOMEMALLOC;
4995 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4996 PAGE_FRAG_CACHE_MAX_ORDER);
4997 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4998 #endif
4999 if (unlikely(!page))
5000 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5001
5002 nc->va = page ? page_address(page) : NULL;
5003
5004 return page;
5005 }
5006
__page_frag_cache_drain(struct page * page,unsigned int count)5007 void __page_frag_cache_drain(struct page *page, unsigned int count)
5008 {
5009 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5010
5011 if (page_ref_sub_and_test(page, count))
5012 free_the_page(page, compound_order(page));
5013 }
5014 EXPORT_SYMBOL(__page_frag_cache_drain);
5015
page_frag_alloc(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask)5016 void *page_frag_alloc(struct page_frag_cache *nc,
5017 unsigned int fragsz, gfp_t gfp_mask)
5018 {
5019 unsigned int size = PAGE_SIZE;
5020 struct page *page;
5021 int offset;
5022
5023 if (unlikely(!nc->va)) {
5024 refill:
5025 page = __page_frag_cache_refill(nc, gfp_mask);
5026 if (!page)
5027 return NULL;
5028
5029 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5030 /* if size can vary use size else just use PAGE_SIZE */
5031 size = nc->size;
5032 #endif
5033 /* Even if we own the page, we do not use atomic_set().
5034 * This would break get_page_unless_zero() users.
5035 */
5036 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5037
5038 /* reset page count bias and offset to start of new frag */
5039 nc->pfmemalloc = page_is_pfmemalloc(page);
5040 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5041 nc->offset = size;
5042 }
5043
5044 offset = nc->offset - fragsz;
5045 if (unlikely(offset < 0)) {
5046 page = virt_to_page(nc->va);
5047
5048 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5049 goto refill;
5050
5051 if (unlikely(nc->pfmemalloc)) {
5052 free_the_page(page, compound_order(page));
5053 goto refill;
5054 }
5055
5056 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5057 /* if size can vary use size else just use PAGE_SIZE */
5058 size = nc->size;
5059 #endif
5060 /* OK, page count is 0, we can safely set it */
5061 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5062
5063 /* reset page count bias and offset to start of new frag */
5064 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5065 offset = size - fragsz;
5066 if (unlikely(offset < 0)) {
5067 /*
5068 * The caller is trying to allocate a fragment
5069 * with fragsz > PAGE_SIZE but the cache isn't big
5070 * enough to satisfy the request, this may
5071 * happen in low memory conditions.
5072 * We don't release the cache page because
5073 * it could make memory pressure worse
5074 * so we simply return NULL here.
5075 */
5076 return NULL;
5077 }
5078 }
5079
5080 nc->pagecnt_bias--;
5081 nc->offset = offset;
5082
5083 return nc->va + offset;
5084 }
5085 EXPORT_SYMBOL(page_frag_alloc);
5086
5087 /*
5088 * Frees a page fragment allocated out of either a compound or order 0 page.
5089 */
page_frag_free(void * addr)5090 void page_frag_free(void *addr)
5091 {
5092 struct page *page = virt_to_head_page(addr);
5093
5094 if (unlikely(put_page_testzero(page)))
5095 free_the_page(page, compound_order(page));
5096 }
5097 EXPORT_SYMBOL(page_frag_free);
5098
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)5099 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5100 size_t size)
5101 {
5102 if (addr) {
5103 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5104 unsigned long used = addr + PAGE_ALIGN(size);
5105
5106 split_page(virt_to_page((void *)addr), order);
5107 while (used < alloc_end) {
5108 free_page(used);
5109 used += PAGE_SIZE;
5110 }
5111 }
5112 return (void *)addr;
5113 }
5114
5115 /**
5116 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5117 * @size: the number of bytes to allocate
5118 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5119 *
5120 * This function is similar to alloc_pages(), except that it allocates the
5121 * minimum number of pages to satisfy the request. alloc_pages() can only
5122 * allocate memory in power-of-two pages.
5123 *
5124 * This function is also limited by MAX_ORDER.
5125 *
5126 * Memory allocated by this function must be released by free_pages_exact().
5127 *
5128 * Return: pointer to the allocated area or %NULL in case of error.
5129 */
alloc_pages_exact(size_t size,gfp_t gfp_mask)5130 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5131 {
5132 unsigned int order = get_order(size);
5133 unsigned long addr;
5134
5135 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5136 gfp_mask &= ~__GFP_COMP;
5137
5138 addr = __get_free_pages(gfp_mask, order);
5139 return make_alloc_exact(addr, order, size);
5140 }
5141 EXPORT_SYMBOL(alloc_pages_exact);
5142
5143 /**
5144 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5145 * pages on a node.
5146 * @nid: the preferred node ID where memory should be allocated
5147 * @size: the number of bytes to allocate
5148 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5149 *
5150 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5151 * back.
5152 *
5153 * Return: pointer to the allocated area or %NULL in case of error.
5154 */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)5155 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5156 {
5157 unsigned int order = get_order(size);
5158 struct page *p;
5159
5160 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5161 gfp_mask &= ~__GFP_COMP;
5162
5163 p = alloc_pages_node(nid, gfp_mask, order);
5164 if (!p)
5165 return NULL;
5166 return make_alloc_exact((unsigned long)page_address(p), order, size);
5167 }
5168
5169 /**
5170 * free_pages_exact - release memory allocated via alloc_pages_exact()
5171 * @virt: the value returned by alloc_pages_exact.
5172 * @size: size of allocation, same value as passed to alloc_pages_exact().
5173 *
5174 * Release the memory allocated by a previous call to alloc_pages_exact.
5175 */
free_pages_exact(void * virt,size_t size)5176 void free_pages_exact(void *virt, size_t size)
5177 {
5178 unsigned long addr = (unsigned long)virt;
5179 unsigned long end = addr + PAGE_ALIGN(size);
5180
5181 while (addr < end) {
5182 free_page(addr);
5183 addr += PAGE_SIZE;
5184 }
5185 }
5186 EXPORT_SYMBOL(free_pages_exact);
5187
5188 /**
5189 * nr_free_zone_pages - count number of pages beyond high watermark
5190 * @offset: The zone index of the highest zone
5191 *
5192 * nr_free_zone_pages() counts the number of pages which are beyond the
5193 * high watermark within all zones at or below a given zone index. For each
5194 * zone, the number of pages is calculated as:
5195 *
5196 * nr_free_zone_pages = managed_pages - high_pages
5197 *
5198 * Return: number of pages beyond high watermark.
5199 */
nr_free_zone_pages(int offset)5200 static unsigned long nr_free_zone_pages(int offset)
5201 {
5202 struct zoneref *z;
5203 struct zone *zone;
5204
5205 /* Just pick one node, since fallback list is circular */
5206 unsigned long sum = 0;
5207
5208 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5209
5210 for_each_zone_zonelist(zone, z, zonelist, offset) {
5211 unsigned long size = zone_managed_pages(zone);
5212 unsigned long high = high_wmark_pages(zone);
5213 if (size > high)
5214 sum += size - high;
5215 }
5216
5217 return sum;
5218 }
5219
5220 /**
5221 * nr_free_buffer_pages - count number of pages beyond high watermark
5222 *
5223 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5224 * watermark within ZONE_DMA and ZONE_NORMAL.
5225 *
5226 * Return: number of pages beyond high watermark within ZONE_DMA and
5227 * ZONE_NORMAL.
5228 */
nr_free_buffer_pages(void)5229 unsigned long nr_free_buffer_pages(void)
5230 {
5231 return nr_free_zone_pages(gfp_zone(GFP_USER));
5232 }
5233 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5234
5235 /**
5236 * nr_free_pagecache_pages - count number of pages beyond high watermark
5237 *
5238 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5239 * high watermark within all zones.
5240 *
5241 * Return: number of pages beyond high watermark within all zones.
5242 */
nr_free_pagecache_pages(void)5243 unsigned long nr_free_pagecache_pages(void)
5244 {
5245 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5246 }
5247
show_node(struct zone * zone)5248 static inline void show_node(struct zone *zone)
5249 {
5250 if (IS_ENABLED(CONFIG_NUMA))
5251 printk("Node %d ", zone_to_nid(zone));
5252 }
5253
si_mem_available(void)5254 long si_mem_available(void)
5255 {
5256 long available;
5257 unsigned long pagecache;
5258 unsigned long wmark_low = 0;
5259 unsigned long pages[NR_LRU_LISTS];
5260 unsigned long reclaimable;
5261 struct zone *zone;
5262 int lru;
5263
5264 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5265 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5266
5267 for_each_zone(zone)
5268 wmark_low += low_wmark_pages(zone);
5269
5270 /*
5271 * Estimate the amount of memory available for userspace allocations,
5272 * without causing swapping.
5273 */
5274 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5275
5276 /*
5277 * Not all the page cache can be freed, otherwise the system will
5278 * start swapping. Assume at least half of the page cache, or the
5279 * low watermark worth of cache, needs to stay.
5280 */
5281 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5282 pagecache -= min(pagecache / 2, wmark_low);
5283 available += pagecache;
5284
5285 /*
5286 * Part of the reclaimable slab and other kernel memory consists of
5287 * items that are in use, and cannot be freed. Cap this estimate at the
5288 * low watermark.
5289 */
5290 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5291 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5292 available += reclaimable - min(reclaimable / 2, wmark_low);
5293
5294 if (available < 0)
5295 available = 0;
5296 return available;
5297 }
5298 EXPORT_SYMBOL_GPL(si_mem_available);
5299
si_meminfo(struct sysinfo * val)5300 void si_meminfo(struct sysinfo *val)
5301 {
5302 val->totalram = totalram_pages();
5303 val->sharedram = global_node_page_state(NR_SHMEM);
5304 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5305 val->bufferram = nr_blockdev_pages();
5306 val->totalhigh = totalhigh_pages();
5307 val->freehigh = nr_free_highpages();
5308 val->mem_unit = PAGE_SIZE;
5309 }
5310
5311 EXPORT_SYMBOL(si_meminfo);
5312
5313 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)5314 void si_meminfo_node(struct sysinfo *val, int nid)
5315 {
5316 int zone_type; /* needs to be signed */
5317 unsigned long managed_pages = 0;
5318 unsigned long managed_highpages = 0;
5319 unsigned long free_highpages = 0;
5320 pg_data_t *pgdat = NODE_DATA(nid);
5321
5322 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5323 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5324 val->totalram = managed_pages;
5325 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5326 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5327 #ifdef CONFIG_HIGHMEM
5328 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5329 struct zone *zone = &pgdat->node_zones[zone_type];
5330
5331 if (is_highmem(zone)) {
5332 managed_highpages += zone_managed_pages(zone);
5333 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5334 }
5335 }
5336 val->totalhigh = managed_highpages;
5337 val->freehigh = free_highpages;
5338 #else
5339 val->totalhigh = managed_highpages;
5340 val->freehigh = free_highpages;
5341 #endif
5342 val->mem_unit = PAGE_SIZE;
5343 }
5344 #endif
5345
5346 /*
5347 * Determine whether the node should be displayed or not, depending on whether
5348 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5349 */
show_mem_node_skip(unsigned int flags,int nid,nodemask_t * nodemask)5350 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5351 {
5352 if (!(flags & SHOW_MEM_FILTER_NODES))
5353 return false;
5354
5355 /*
5356 * no node mask - aka implicit memory numa policy. Do not bother with
5357 * the synchronization - read_mems_allowed_begin - because we do not
5358 * have to be precise here.
5359 */
5360 if (!nodemask)
5361 nodemask = &cpuset_current_mems_allowed;
5362
5363 return !node_isset(nid, *nodemask);
5364 }
5365
5366 #define K(x) ((x) << (PAGE_SHIFT-10))
5367
show_migration_types(unsigned char type)5368 static void show_migration_types(unsigned char type)
5369 {
5370 static const char types[MIGRATE_TYPES] = {
5371 [MIGRATE_UNMOVABLE] = 'U',
5372 [MIGRATE_MOVABLE] = 'M',
5373 [MIGRATE_RECLAIMABLE] = 'E',
5374 [MIGRATE_HIGHATOMIC] = 'H',
5375 #ifdef CONFIG_CMA
5376 [MIGRATE_CMA] = 'C',
5377 #endif
5378 #ifdef CONFIG_MEMORY_ISOLATION
5379 [MIGRATE_ISOLATE] = 'I',
5380 #endif
5381 };
5382 char tmp[MIGRATE_TYPES + 1];
5383 char *p = tmp;
5384 int i;
5385
5386 for (i = 0; i < MIGRATE_TYPES; i++) {
5387 if (type & (1 << i))
5388 *p++ = types[i];
5389 }
5390
5391 *p = '\0';
5392 printk(KERN_CONT "(%s) ", tmp);
5393 }
5394
5395 /*
5396 * Show free area list (used inside shift_scroll-lock stuff)
5397 * We also calculate the percentage fragmentation. We do this by counting the
5398 * memory on each free list with the exception of the first item on the list.
5399 *
5400 * Bits in @filter:
5401 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5402 * cpuset.
5403 */
show_free_areas(unsigned int filter,nodemask_t * nodemask)5404 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5405 {
5406 unsigned long free_pcp = 0;
5407 int cpu;
5408 struct zone *zone;
5409 pg_data_t *pgdat;
5410
5411 for_each_populated_zone(zone) {
5412 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5413 continue;
5414
5415 for_each_online_cpu(cpu)
5416 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5417 }
5418
5419 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5420 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5421 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5422 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5423 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5424 " free:%lu free_pcp:%lu free_cma:%lu\n",
5425 global_node_page_state(NR_ACTIVE_ANON),
5426 global_node_page_state(NR_INACTIVE_ANON),
5427 global_node_page_state(NR_ISOLATED_ANON),
5428 global_node_page_state(NR_ACTIVE_FILE),
5429 global_node_page_state(NR_INACTIVE_FILE),
5430 global_node_page_state(NR_ISOLATED_FILE),
5431 global_node_page_state(NR_UNEVICTABLE),
5432 global_node_page_state(NR_FILE_DIRTY),
5433 global_node_page_state(NR_WRITEBACK),
5434 global_node_page_state(NR_UNSTABLE_NFS),
5435 global_node_page_state(NR_SLAB_RECLAIMABLE),
5436 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5437 global_node_page_state(NR_FILE_MAPPED),
5438 global_node_page_state(NR_SHMEM),
5439 global_zone_page_state(NR_PAGETABLE),
5440 global_zone_page_state(NR_BOUNCE),
5441 global_zone_page_state(NR_FREE_PAGES),
5442 free_pcp,
5443 global_zone_page_state(NR_FREE_CMA_PAGES));
5444
5445 for_each_online_pgdat(pgdat) {
5446 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5447 continue;
5448
5449 printk("Node %d"
5450 " active_anon:%lukB"
5451 " inactive_anon:%lukB"
5452 " active_file:%lukB"
5453 " inactive_file:%lukB"
5454 " unevictable:%lukB"
5455 " isolated(anon):%lukB"
5456 " isolated(file):%lukB"
5457 " mapped:%lukB"
5458 " dirty:%lukB"
5459 " writeback:%lukB"
5460 " shmem:%lukB"
5461 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5462 " shmem_thp: %lukB"
5463 " shmem_pmdmapped: %lukB"
5464 " anon_thp: %lukB"
5465 #endif
5466 " writeback_tmp:%lukB"
5467 " unstable:%lukB"
5468 " all_unreclaimable? %s"
5469 "\n",
5470 pgdat->node_id,
5471 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5472 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5473 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5474 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5475 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5476 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5477 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5478 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5479 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5480 K(node_page_state(pgdat, NR_WRITEBACK)),
5481 K(node_page_state(pgdat, NR_SHMEM)),
5482 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5483 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5484 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5485 * HPAGE_PMD_NR),
5486 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5487 #endif
5488 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5489 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5490 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5491 "yes" : "no");
5492 }
5493
5494 for_each_populated_zone(zone) {
5495 int i;
5496
5497 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5498 continue;
5499
5500 free_pcp = 0;
5501 for_each_online_cpu(cpu)
5502 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5503
5504 show_node(zone);
5505 printk(KERN_CONT
5506 "%s"
5507 " free:%lukB"
5508 " min:%lukB"
5509 " low:%lukB"
5510 " high:%lukB"
5511 " active_anon:%lukB"
5512 " inactive_anon:%lukB"
5513 " active_file:%lukB"
5514 " inactive_file:%lukB"
5515 " unevictable:%lukB"
5516 " writepending:%lukB"
5517 " present:%lukB"
5518 " managed:%lukB"
5519 " mlocked:%lukB"
5520 " kernel_stack:%lukB"
5521 #ifdef CONFIG_SHADOW_CALL_STACK
5522 " shadow_call_stack:%lukB"
5523 #endif
5524 " pagetables:%lukB"
5525 " bounce:%lukB"
5526 " free_pcp:%lukB"
5527 " local_pcp:%ukB"
5528 " free_cma:%lukB"
5529 "\n",
5530 zone->name,
5531 K(zone_page_state(zone, NR_FREE_PAGES)),
5532 K(min_wmark_pages(zone)),
5533 K(low_wmark_pages(zone)),
5534 K(high_wmark_pages(zone)),
5535 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5536 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5537 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5538 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5539 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5540 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5541 K(zone->present_pages),
5542 K(zone_managed_pages(zone)),
5543 K(zone_page_state(zone, NR_MLOCK)),
5544 zone_page_state(zone, NR_KERNEL_STACK_KB),
5545 #ifdef CONFIG_SHADOW_CALL_STACK
5546 zone_page_state(zone, NR_KERNEL_SCS_BYTES) / 1024,
5547 #endif
5548 K(zone_page_state(zone, NR_PAGETABLE)),
5549 K(zone_page_state(zone, NR_BOUNCE)),
5550 K(free_pcp),
5551 K(this_cpu_read(zone->pageset->pcp.count)),
5552 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5553 printk("lowmem_reserve[]:");
5554 for (i = 0; i < MAX_NR_ZONES; i++)
5555 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5556 printk(KERN_CONT "\n");
5557 }
5558
5559 for_each_populated_zone(zone) {
5560 unsigned int order;
5561 unsigned long nr[MAX_ORDER], flags, total = 0;
5562 unsigned char types[MAX_ORDER];
5563
5564 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5565 continue;
5566 show_node(zone);
5567 printk(KERN_CONT "%s: ", zone->name);
5568
5569 spin_lock_irqsave(&zone->lock, flags);
5570 for (order = 0; order < MAX_ORDER; order++) {
5571 struct free_area *area = &zone->free_area[order];
5572 int type;
5573
5574 nr[order] = area->nr_free;
5575 total += nr[order] << order;
5576
5577 types[order] = 0;
5578 for (type = 0; type < MIGRATE_TYPES; type++) {
5579 if (!free_area_empty(area, type))
5580 types[order] |= 1 << type;
5581 }
5582 }
5583 spin_unlock_irqrestore(&zone->lock, flags);
5584 for (order = 0; order < MAX_ORDER; order++) {
5585 printk(KERN_CONT "%lu*%lukB ",
5586 nr[order], K(1UL) << order);
5587 if (nr[order])
5588 show_migration_types(types[order]);
5589 }
5590 printk(KERN_CONT "= %lukB\n", K(total));
5591 }
5592
5593 hugetlb_show_meminfo();
5594
5595 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5596
5597 show_swap_cache_info();
5598 }
5599
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5600 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5601 {
5602 zoneref->zone = zone;
5603 zoneref->zone_idx = zone_idx(zone);
5604 }
5605
5606 /*
5607 * Builds allocation fallback zone lists.
5608 *
5609 * Add all populated zones of a node to the zonelist.
5610 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5611 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5612 {
5613 struct zone *zone;
5614 enum zone_type zone_type = MAX_NR_ZONES;
5615 int nr_zones = 0;
5616
5617 do {
5618 zone_type--;
5619 zone = pgdat->node_zones + zone_type;
5620 if (populated_zone(zone)) {
5621 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5622 check_highest_zone(zone_type);
5623 }
5624 } while (zone_type);
5625
5626 return nr_zones;
5627 }
5628
5629 #ifdef CONFIG_NUMA
5630
__parse_numa_zonelist_order(char * s)5631 static int __parse_numa_zonelist_order(char *s)
5632 {
5633 /*
5634 * We used to support different zonlists modes but they turned
5635 * out to be just not useful. Let's keep the warning in place
5636 * if somebody still use the cmd line parameter so that we do
5637 * not fail it silently
5638 */
5639 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5640 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5641 return -EINVAL;
5642 }
5643 return 0;
5644 }
5645
setup_numa_zonelist_order(char * s)5646 static __init int setup_numa_zonelist_order(char *s)
5647 {
5648 if (!s)
5649 return 0;
5650
5651 return __parse_numa_zonelist_order(s);
5652 }
5653 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5654
5655 char numa_zonelist_order[] = "Node";
5656
5657 /*
5658 * sysctl handler for numa_zonelist_order
5659 */
numa_zonelist_order_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)5660 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5661 void __user *buffer, size_t *length,
5662 loff_t *ppos)
5663 {
5664 char *str;
5665 int ret;
5666
5667 if (!write)
5668 return proc_dostring(table, write, buffer, length, ppos);
5669 str = memdup_user_nul(buffer, 16);
5670 if (IS_ERR(str))
5671 return PTR_ERR(str);
5672
5673 ret = __parse_numa_zonelist_order(str);
5674 kfree(str);
5675 return ret;
5676 }
5677
5678
5679 #define MAX_NODE_LOAD (nr_online_nodes)
5680 static int node_load[MAX_NUMNODES];
5681
5682 /**
5683 * find_next_best_node - find the next node that should appear in a given node's fallback list
5684 * @node: node whose fallback list we're appending
5685 * @used_node_mask: nodemask_t of already used nodes
5686 *
5687 * We use a number of factors to determine which is the next node that should
5688 * appear on a given node's fallback list. The node should not have appeared
5689 * already in @node's fallback list, and it should be the next closest node
5690 * according to the distance array (which contains arbitrary distance values
5691 * from each node to each node in the system), and should also prefer nodes
5692 * with no CPUs, since presumably they'll have very little allocation pressure
5693 * on them otherwise.
5694 *
5695 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5696 */
find_next_best_node(int node,nodemask_t * used_node_mask)5697 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5698 {
5699 int n, val;
5700 int min_val = INT_MAX;
5701 int best_node = NUMA_NO_NODE;
5702 const struct cpumask *tmp = cpumask_of_node(0);
5703
5704 /* Use the local node if we haven't already */
5705 if (!node_isset(node, *used_node_mask)) {
5706 node_set(node, *used_node_mask);
5707 return node;
5708 }
5709
5710 for_each_node_state(n, N_MEMORY) {
5711
5712 /* Don't want a node to appear more than once */
5713 if (node_isset(n, *used_node_mask))
5714 continue;
5715
5716 /* Use the distance array to find the distance */
5717 val = node_distance(node, n);
5718
5719 /* Penalize nodes under us ("prefer the next node") */
5720 val += (n < node);
5721
5722 /* Give preference to headless and unused nodes */
5723 tmp = cpumask_of_node(n);
5724 if (!cpumask_empty(tmp))
5725 val += PENALTY_FOR_NODE_WITH_CPUS;
5726
5727 /* Slight preference for less loaded node */
5728 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5729 val += node_load[n];
5730
5731 if (val < min_val) {
5732 min_val = val;
5733 best_node = n;
5734 }
5735 }
5736
5737 if (best_node >= 0)
5738 node_set(best_node, *used_node_mask);
5739
5740 return best_node;
5741 }
5742
5743
5744 /*
5745 * Build zonelists ordered by node and zones within node.
5746 * This results in maximum locality--normal zone overflows into local
5747 * DMA zone, if any--but risks exhausting DMA zone.
5748 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5749 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5750 unsigned nr_nodes)
5751 {
5752 struct zoneref *zonerefs;
5753 int i;
5754
5755 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5756
5757 for (i = 0; i < nr_nodes; i++) {
5758 int nr_zones;
5759
5760 pg_data_t *node = NODE_DATA(node_order[i]);
5761
5762 nr_zones = build_zonerefs_node(node, zonerefs);
5763 zonerefs += nr_zones;
5764 }
5765 zonerefs->zone = NULL;
5766 zonerefs->zone_idx = 0;
5767 }
5768
5769 /*
5770 * Build gfp_thisnode zonelists
5771 */
build_thisnode_zonelists(pg_data_t * pgdat)5772 static void build_thisnode_zonelists(pg_data_t *pgdat)
5773 {
5774 struct zoneref *zonerefs;
5775 int nr_zones;
5776
5777 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5778 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5779 zonerefs += nr_zones;
5780 zonerefs->zone = NULL;
5781 zonerefs->zone_idx = 0;
5782 }
5783
5784 /*
5785 * Build zonelists ordered by zone and nodes within zones.
5786 * This results in conserving DMA zone[s] until all Normal memory is
5787 * exhausted, but results in overflowing to remote node while memory
5788 * may still exist in local DMA zone.
5789 */
5790
build_zonelists(pg_data_t * pgdat)5791 static void build_zonelists(pg_data_t *pgdat)
5792 {
5793 static int node_order[MAX_NUMNODES];
5794 int node, load, nr_nodes = 0;
5795 nodemask_t used_mask;
5796 int local_node, prev_node;
5797
5798 /* NUMA-aware ordering of nodes */
5799 local_node = pgdat->node_id;
5800 load = nr_online_nodes;
5801 prev_node = local_node;
5802 nodes_clear(used_mask);
5803
5804 memset(node_order, 0, sizeof(node_order));
5805 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5806 /*
5807 * We don't want to pressure a particular node.
5808 * So adding penalty to the first node in same
5809 * distance group to make it round-robin.
5810 */
5811 if (node_distance(local_node, node) !=
5812 node_distance(local_node, prev_node))
5813 node_load[node] = load;
5814
5815 node_order[nr_nodes++] = node;
5816 prev_node = node;
5817 load--;
5818 }
5819
5820 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5821 build_thisnode_zonelists(pgdat);
5822 }
5823
5824 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5825 /*
5826 * Return node id of node used for "local" allocations.
5827 * I.e., first node id of first zone in arg node's generic zonelist.
5828 * Used for initializing percpu 'numa_mem', which is used primarily
5829 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5830 */
local_memory_node(int node)5831 int local_memory_node(int node)
5832 {
5833 struct zoneref *z;
5834
5835 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5836 gfp_zone(GFP_KERNEL),
5837 NULL);
5838 return zone_to_nid(z->zone);
5839 }
5840 #endif
5841
5842 static void setup_min_unmapped_ratio(void);
5843 static void setup_min_slab_ratio(void);
5844 #else /* CONFIG_NUMA */
5845
build_zonelists(pg_data_t * pgdat)5846 static void build_zonelists(pg_data_t *pgdat)
5847 {
5848 int node, local_node;
5849 struct zoneref *zonerefs;
5850 int nr_zones;
5851
5852 local_node = pgdat->node_id;
5853
5854 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5855 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5856 zonerefs += nr_zones;
5857
5858 /*
5859 * Now we build the zonelist so that it contains the zones
5860 * of all the other nodes.
5861 * We don't want to pressure a particular node, so when
5862 * building the zones for node N, we make sure that the
5863 * zones coming right after the local ones are those from
5864 * node N+1 (modulo N)
5865 */
5866 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5867 if (!node_online(node))
5868 continue;
5869 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5870 zonerefs += nr_zones;
5871 }
5872 for (node = 0; node < local_node; node++) {
5873 if (!node_online(node))
5874 continue;
5875 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5876 zonerefs += nr_zones;
5877 }
5878
5879 zonerefs->zone = NULL;
5880 zonerefs->zone_idx = 0;
5881 }
5882
5883 #endif /* CONFIG_NUMA */
5884
5885 /*
5886 * Boot pageset table. One per cpu which is going to be used for all
5887 * zones and all nodes. The parameters will be set in such a way
5888 * that an item put on a list will immediately be handed over to
5889 * the buddy list. This is safe since pageset manipulation is done
5890 * with interrupts disabled.
5891 *
5892 * The boot_pagesets must be kept even after bootup is complete for
5893 * unused processors and/or zones. They do play a role for bootstrapping
5894 * hotplugged processors.
5895 *
5896 * zoneinfo_show() and maybe other functions do
5897 * not check if the processor is online before following the pageset pointer.
5898 * Other parts of the kernel may not check if the zone is available.
5899 */
5900 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5901 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5902 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5903
__build_all_zonelists(void * data)5904 static void __build_all_zonelists(void *data)
5905 {
5906 int nid;
5907 int __maybe_unused cpu;
5908 pg_data_t *self = data;
5909 unsigned long flags;
5910
5911 /*
5912 * Explicitly disable this CPU's interrupts before taking seqlock
5913 * to prevent any IRQ handler from calling into the page allocator
5914 * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock.
5915 */
5916 local_irq_save(flags);
5917 /*
5918 * Explicitly disable this CPU's synchronous printk() before taking
5919 * seqlock to prevent any printk() from trying to hold port->lock, for
5920 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5921 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5922 */
5923 printk_deferred_enter();
5924 write_seqlock(&zonelist_update_seq);
5925
5926 #ifdef CONFIG_NUMA
5927 memset(node_load, 0, sizeof(node_load));
5928 #endif
5929
5930 /*
5931 * This node is hotadded and no memory is yet present. So just
5932 * building zonelists is fine - no need to touch other nodes.
5933 */
5934 if (self && !node_online(self->node_id)) {
5935 build_zonelists(self);
5936 } else {
5937 for_each_online_node(nid) {
5938 pg_data_t *pgdat = NODE_DATA(nid);
5939
5940 build_zonelists(pgdat);
5941 }
5942
5943 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5944 /*
5945 * We now know the "local memory node" for each node--
5946 * i.e., the node of the first zone in the generic zonelist.
5947 * Set up numa_mem percpu variable for on-line cpus. During
5948 * boot, only the boot cpu should be on-line; we'll init the
5949 * secondary cpus' numa_mem as they come on-line. During
5950 * node/memory hotplug, we'll fixup all on-line cpus.
5951 */
5952 for_each_online_cpu(cpu)
5953 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5954 #endif
5955 }
5956
5957 write_sequnlock(&zonelist_update_seq);
5958 printk_deferred_exit();
5959 local_irq_restore(flags);
5960 }
5961
5962 static noinline void __init
build_all_zonelists_init(void)5963 build_all_zonelists_init(void)
5964 {
5965 int cpu;
5966
5967 __build_all_zonelists(NULL);
5968
5969 /*
5970 * Initialize the boot_pagesets that are going to be used
5971 * for bootstrapping processors. The real pagesets for
5972 * each zone will be allocated later when the per cpu
5973 * allocator is available.
5974 *
5975 * boot_pagesets are used also for bootstrapping offline
5976 * cpus if the system is already booted because the pagesets
5977 * are needed to initialize allocators on a specific cpu too.
5978 * F.e. the percpu allocator needs the page allocator which
5979 * needs the percpu allocator in order to allocate its pagesets
5980 * (a chicken-egg dilemma).
5981 */
5982 for_each_possible_cpu(cpu)
5983 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5984
5985 mminit_verify_zonelist();
5986 cpuset_init_current_mems_allowed();
5987 }
5988
5989 /*
5990 * unless system_state == SYSTEM_BOOTING.
5991 *
5992 * __ref due to call of __init annotated helper build_all_zonelists_init
5993 * [protected by SYSTEM_BOOTING].
5994 */
build_all_zonelists(pg_data_t * pgdat)5995 void __ref build_all_zonelists(pg_data_t *pgdat)
5996 {
5997 if (system_state == SYSTEM_BOOTING) {
5998 build_all_zonelists_init();
5999 } else {
6000 __build_all_zonelists(pgdat);
6001 /* cpuset refresh routine should be here */
6002 }
6003 vm_total_pages = nr_free_pagecache_pages();
6004 /*
6005 * Disable grouping by mobility if the number of pages in the
6006 * system is too low to allow the mechanism to work. It would be
6007 * more accurate, but expensive to check per-zone. This check is
6008 * made on memory-hotadd so a system can start with mobility
6009 * disabled and enable it later
6010 */
6011 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6012 page_group_by_mobility_disabled = 1;
6013 else
6014 page_group_by_mobility_disabled = 0;
6015
6016 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6017 nr_online_nodes,
6018 page_group_by_mobility_disabled ? "off" : "on",
6019 vm_total_pages);
6020 #ifdef CONFIG_NUMA
6021 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6022 #endif
6023 }
6024
6025 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6026 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)6027 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6028 {
6029 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6030 static struct memblock_region *r;
6031
6032 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6033 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6034 for_each_memblock(memory, r) {
6035 if (*pfn < memblock_region_memory_end_pfn(r))
6036 break;
6037 }
6038 }
6039 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6040 memblock_is_mirror(r)) {
6041 *pfn = memblock_region_memory_end_pfn(r);
6042 return true;
6043 }
6044 }
6045 #endif
6046 return false;
6047 }
6048
6049 /*
6050 * Initially all pages are reserved - free ones are freed
6051 * up by memblock_free_all() once the early boot process is
6052 * done. Non-atomic initialization, single-pass.
6053 */
memmap_init_zone(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,enum meminit_context context,struct vmem_altmap * altmap)6054 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
6055 unsigned long start_pfn, enum meminit_context context,
6056 struct vmem_altmap *altmap)
6057 {
6058 unsigned long pfn, end_pfn = start_pfn + size;
6059 struct page *page;
6060
6061 if (highest_memmap_pfn < end_pfn - 1)
6062 highest_memmap_pfn = end_pfn - 1;
6063
6064 #ifdef CONFIG_ZONE_DEVICE
6065 /*
6066 * Honor reservation requested by the driver for this ZONE_DEVICE
6067 * memory. We limit the total number of pages to initialize to just
6068 * those that might contain the memory mapping. We will defer the
6069 * ZONE_DEVICE page initialization until after we have released
6070 * the hotplug lock.
6071 */
6072 if (zone == ZONE_DEVICE) {
6073 if (!altmap)
6074 return;
6075
6076 if (start_pfn == altmap->base_pfn)
6077 start_pfn += altmap->reserve;
6078 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6079 }
6080 #endif
6081
6082 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6083 /*
6084 * There can be holes in boot-time mem_map[]s handed to this
6085 * function. They do not exist on hotplugged memory.
6086 */
6087 if (context == MEMINIT_EARLY) {
6088 if (!early_pfn_valid(pfn))
6089 continue;
6090 if (!early_pfn_in_nid(pfn, nid))
6091 continue;
6092 if (overlap_memmap_init(zone, &pfn))
6093 continue;
6094 if (defer_init(nid, pfn, end_pfn))
6095 break;
6096 }
6097
6098 page = pfn_to_page(pfn);
6099 __init_single_page(page, pfn, zone, nid);
6100 if (context == MEMINIT_HOTPLUG)
6101 __SetPageReserved(page);
6102
6103 /*
6104 * Mark the block movable so that blocks are reserved for
6105 * movable at startup. This will force kernel allocations
6106 * to reserve their blocks rather than leaking throughout
6107 * the address space during boot when many long-lived
6108 * kernel allocations are made.
6109 *
6110 * bitmap is created for zone's valid pfn range. but memmap
6111 * can be created for invalid pages (for alignment)
6112 * check here not to call set_pageblock_migratetype() against
6113 * pfn out of zone.
6114 */
6115 if (!(pfn & (pageblock_nr_pages - 1))) {
6116 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6117 cond_resched();
6118 }
6119 }
6120 }
6121
6122 #ifdef CONFIG_ZONE_DEVICE
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long size,struct dev_pagemap * pgmap)6123 void __ref memmap_init_zone_device(struct zone *zone,
6124 unsigned long start_pfn,
6125 unsigned long size,
6126 struct dev_pagemap *pgmap)
6127 {
6128 unsigned long pfn, end_pfn = start_pfn + size;
6129 struct pglist_data *pgdat = zone->zone_pgdat;
6130 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6131 unsigned long zone_idx = zone_idx(zone);
6132 unsigned long start = jiffies;
6133 int nid = pgdat->node_id;
6134
6135 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6136 return;
6137
6138 /*
6139 * The call to memmap_init_zone should have already taken care
6140 * of the pages reserved for the memmap, so we can just jump to
6141 * the end of that region and start processing the device pages.
6142 */
6143 if (altmap) {
6144 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6145 size = end_pfn - start_pfn;
6146 }
6147
6148 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6149 struct page *page = pfn_to_page(pfn);
6150
6151 __init_single_page(page, pfn, zone_idx, nid);
6152
6153 /*
6154 * Mark page reserved as it will need to wait for onlining
6155 * phase for it to be fully associated with a zone.
6156 *
6157 * We can use the non-atomic __set_bit operation for setting
6158 * the flag as we are still initializing the pages.
6159 */
6160 __SetPageReserved(page);
6161
6162 /*
6163 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6164 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6165 * ever freed or placed on a driver-private list.
6166 */
6167 page->pgmap = pgmap;
6168 page->zone_device_data = NULL;
6169
6170 /*
6171 * Mark the block movable so that blocks are reserved for
6172 * movable at startup. This will force kernel allocations
6173 * to reserve their blocks rather than leaking throughout
6174 * the address space during boot when many long-lived
6175 * kernel allocations are made.
6176 *
6177 * bitmap is created for zone's valid pfn range. but memmap
6178 * can be created for invalid pages (for alignment)
6179 * check here not to call set_pageblock_migratetype() against
6180 * pfn out of zone.
6181 *
6182 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6183 * because this is done early in section_activate()
6184 */
6185 if (!(pfn & (pageblock_nr_pages - 1))) {
6186 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6187 cond_resched();
6188 }
6189 }
6190
6191 pr_info("%s initialised %lu pages in %ums\n", __func__,
6192 size, jiffies_to_msecs(jiffies - start));
6193 }
6194
6195 #endif
zone_init_free_lists(struct zone * zone)6196 static void __meminit zone_init_free_lists(struct zone *zone)
6197 {
6198 unsigned int order, t;
6199 for_each_migratetype_order(order, t) {
6200 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6201 zone->free_area[order].nr_free = 0;
6202 }
6203 }
6204
memmap_init(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn)6205 void __meminit __weak memmap_init(unsigned long size, int nid,
6206 unsigned long zone, unsigned long start_pfn)
6207 {
6208 memmap_init_zone(size, nid, zone, start_pfn, MEMINIT_EARLY, NULL);
6209 }
6210
zone_batchsize(struct zone * zone)6211 static int zone_batchsize(struct zone *zone)
6212 {
6213 #ifdef CONFIG_MMU
6214 int batch;
6215
6216 /*
6217 * The per-cpu-pages pools are set to around 1000th of the
6218 * size of the zone.
6219 */
6220 batch = zone_managed_pages(zone) / 1024;
6221 /* But no more than a meg. */
6222 if (batch * PAGE_SIZE > 1024 * 1024)
6223 batch = (1024 * 1024) / PAGE_SIZE;
6224 batch /= 4; /* We effectively *= 4 below */
6225 if (batch < 1)
6226 batch = 1;
6227
6228 /*
6229 * Clamp the batch to a 2^n - 1 value. Having a power
6230 * of 2 value was found to be more likely to have
6231 * suboptimal cache aliasing properties in some cases.
6232 *
6233 * For example if 2 tasks are alternately allocating
6234 * batches of pages, one task can end up with a lot
6235 * of pages of one half of the possible page colors
6236 * and the other with pages of the other colors.
6237 */
6238 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6239
6240 return batch;
6241
6242 #else
6243 /* The deferral and batching of frees should be suppressed under NOMMU
6244 * conditions.
6245 *
6246 * The problem is that NOMMU needs to be able to allocate large chunks
6247 * of contiguous memory as there's no hardware page translation to
6248 * assemble apparent contiguous memory from discontiguous pages.
6249 *
6250 * Queueing large contiguous runs of pages for batching, however,
6251 * causes the pages to actually be freed in smaller chunks. As there
6252 * can be a significant delay between the individual batches being
6253 * recycled, this leads to the once large chunks of space being
6254 * fragmented and becoming unavailable for high-order allocations.
6255 */
6256 return 0;
6257 #endif
6258 }
6259
6260 /*
6261 * pcp->high and pcp->batch values are related and dependent on one another:
6262 * ->batch must never be higher then ->high.
6263 * The following function updates them in a safe manner without read side
6264 * locking.
6265 *
6266 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6267 * those fields changing asynchronously (acording the the above rule).
6268 *
6269 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6270 * outside of boot time (or some other assurance that no concurrent updaters
6271 * exist).
6272 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)6273 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6274 unsigned long batch)
6275 {
6276 /* start with a fail safe value for batch */
6277 pcp->batch = 1;
6278 smp_wmb();
6279
6280 /* Update high, then batch, in order */
6281 pcp->high = high;
6282 smp_wmb();
6283
6284 pcp->batch = batch;
6285 }
6286
6287 /* a companion to pageset_set_high() */
pageset_set_batch(struct per_cpu_pageset * p,unsigned long batch)6288 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6289 {
6290 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6291 }
6292
pageset_init(struct per_cpu_pageset * p)6293 static void pageset_init(struct per_cpu_pageset *p)
6294 {
6295 struct per_cpu_pages *pcp;
6296 int migratetype;
6297
6298 memset(p, 0, sizeof(*p));
6299
6300 pcp = &p->pcp;
6301 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6302 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6303 }
6304
setup_pageset(struct per_cpu_pageset * p,unsigned long batch)6305 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6306 {
6307 pageset_init(p);
6308 pageset_set_batch(p, batch);
6309 }
6310
6311 /*
6312 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6313 * to the value high for the pageset p.
6314 */
pageset_set_high(struct per_cpu_pageset * p,unsigned long high)6315 static void pageset_set_high(struct per_cpu_pageset *p,
6316 unsigned long high)
6317 {
6318 unsigned long batch = max(1UL, high / 4);
6319 if ((high / 4) > (PAGE_SHIFT * 8))
6320 batch = PAGE_SHIFT * 8;
6321
6322 pageset_update(&p->pcp, high, batch);
6323 }
6324
pageset_set_high_and_batch(struct zone * zone,struct per_cpu_pageset * pcp)6325 static void pageset_set_high_and_batch(struct zone *zone,
6326 struct per_cpu_pageset *pcp)
6327 {
6328 if (percpu_pagelist_fraction)
6329 pageset_set_high(pcp,
6330 (zone_managed_pages(zone) /
6331 percpu_pagelist_fraction));
6332 else
6333 pageset_set_batch(pcp, zone_batchsize(zone));
6334 }
6335
zone_pageset_init(struct zone * zone,int cpu)6336 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6337 {
6338 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6339
6340 pageset_init(pcp);
6341 pageset_set_high_and_batch(zone, pcp);
6342 }
6343
setup_zone_pageset(struct zone * zone)6344 void __meminit setup_zone_pageset(struct zone *zone)
6345 {
6346 int cpu;
6347 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6348 for_each_possible_cpu(cpu)
6349 zone_pageset_init(zone, cpu);
6350 }
6351
6352 /*
6353 * Allocate per cpu pagesets and initialize them.
6354 * Before this call only boot pagesets were available.
6355 */
setup_per_cpu_pageset(void)6356 void __init setup_per_cpu_pageset(void)
6357 {
6358 struct pglist_data *pgdat;
6359 struct zone *zone;
6360
6361 for_each_populated_zone(zone)
6362 setup_zone_pageset(zone);
6363
6364 for_each_online_pgdat(pgdat)
6365 pgdat->per_cpu_nodestats =
6366 alloc_percpu(struct per_cpu_nodestat);
6367 }
6368
zone_pcp_init(struct zone * zone)6369 static __meminit void zone_pcp_init(struct zone *zone)
6370 {
6371 /*
6372 * per cpu subsystem is not up at this point. The following code
6373 * relies on the ability of the linker to provide the
6374 * offset of a (static) per cpu variable into the per cpu area.
6375 */
6376 zone->pageset = &boot_pageset;
6377
6378 if (populated_zone(zone))
6379 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6380 zone->name, zone->present_pages,
6381 zone_batchsize(zone));
6382 }
6383
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)6384 void __meminit init_currently_empty_zone(struct zone *zone,
6385 unsigned long zone_start_pfn,
6386 unsigned long size)
6387 {
6388 struct pglist_data *pgdat = zone->zone_pgdat;
6389 int zone_idx = zone_idx(zone) + 1;
6390
6391 if (zone_idx > pgdat->nr_zones)
6392 pgdat->nr_zones = zone_idx;
6393
6394 zone->zone_start_pfn = zone_start_pfn;
6395
6396 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6397 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6398 pgdat->node_id,
6399 (unsigned long)zone_idx(zone),
6400 zone_start_pfn, (zone_start_pfn + size));
6401
6402 zone_init_free_lists(zone);
6403 zone->initialized = 1;
6404 }
6405
6406 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6407 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6408
6409 /*
6410 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6411 */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)6412 int __meminit __early_pfn_to_nid(unsigned long pfn,
6413 struct mminit_pfnnid_cache *state)
6414 {
6415 unsigned long start_pfn, end_pfn;
6416 int nid;
6417
6418 if (state->last_start <= pfn && pfn < state->last_end)
6419 return state->last_nid;
6420
6421 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6422 if (nid != NUMA_NO_NODE) {
6423 state->last_start = start_pfn;
6424 state->last_end = end_pfn;
6425 state->last_nid = nid;
6426 }
6427
6428 return nid;
6429 }
6430 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6431
6432 /**
6433 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6434 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6435 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6436 *
6437 * If an architecture guarantees that all ranges registered contain no holes
6438 * and may be freed, this this function may be used instead of calling
6439 * memblock_free_early_nid() manually.
6440 */
free_bootmem_with_active_regions(int nid,unsigned long max_low_pfn)6441 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6442 {
6443 unsigned long start_pfn, end_pfn;
6444 int i, this_nid;
6445
6446 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6447 start_pfn = min(start_pfn, max_low_pfn);
6448 end_pfn = min(end_pfn, max_low_pfn);
6449
6450 if (start_pfn < end_pfn)
6451 memblock_free_early_nid(PFN_PHYS(start_pfn),
6452 (end_pfn - start_pfn) << PAGE_SHIFT,
6453 this_nid);
6454 }
6455 }
6456
6457 /**
6458 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6459 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6460 *
6461 * If an architecture guarantees that all ranges registered contain no holes and may
6462 * be freed, this function may be used instead of calling memory_present() manually.
6463 */
sparse_memory_present_with_active_regions(int nid)6464 void __init sparse_memory_present_with_active_regions(int nid)
6465 {
6466 unsigned long start_pfn, end_pfn;
6467 int i, this_nid;
6468
6469 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6470 memory_present(this_nid, start_pfn, end_pfn);
6471 }
6472
6473 /**
6474 * get_pfn_range_for_nid - Return the start and end page frames for a node
6475 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6476 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6477 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6478 *
6479 * It returns the start and end page frame of a node based on information
6480 * provided by memblock_set_node(). If called for a node
6481 * with no available memory, a warning is printed and the start and end
6482 * PFNs will be 0.
6483 */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)6484 void __init get_pfn_range_for_nid(unsigned int nid,
6485 unsigned long *start_pfn, unsigned long *end_pfn)
6486 {
6487 unsigned long this_start_pfn, this_end_pfn;
6488 int i;
6489
6490 *start_pfn = -1UL;
6491 *end_pfn = 0;
6492
6493 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6494 *start_pfn = min(*start_pfn, this_start_pfn);
6495 *end_pfn = max(*end_pfn, this_end_pfn);
6496 }
6497
6498 if (*start_pfn == -1UL)
6499 *start_pfn = 0;
6500 }
6501
6502 /*
6503 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6504 * assumption is made that zones within a node are ordered in monotonic
6505 * increasing memory addresses so that the "highest" populated zone is used
6506 */
find_usable_zone_for_movable(void)6507 static void __init find_usable_zone_for_movable(void)
6508 {
6509 int zone_index;
6510 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6511 if (zone_index == ZONE_MOVABLE)
6512 continue;
6513
6514 if (arch_zone_highest_possible_pfn[zone_index] >
6515 arch_zone_lowest_possible_pfn[zone_index])
6516 break;
6517 }
6518
6519 VM_BUG_ON(zone_index == -1);
6520 movable_zone = zone_index;
6521 }
6522
6523 /*
6524 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6525 * because it is sized independent of architecture. Unlike the other zones,
6526 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6527 * in each node depending on the size of each node and how evenly kernelcore
6528 * is distributed. This helper function adjusts the zone ranges
6529 * provided by the architecture for a given node by using the end of the
6530 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6531 * zones within a node are in order of monotonic increases memory addresses
6532 */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)6533 static void __init adjust_zone_range_for_zone_movable(int nid,
6534 unsigned long zone_type,
6535 unsigned long node_start_pfn,
6536 unsigned long node_end_pfn,
6537 unsigned long *zone_start_pfn,
6538 unsigned long *zone_end_pfn)
6539 {
6540 /* Only adjust if ZONE_MOVABLE is on this node */
6541 if (zone_movable_pfn[nid]) {
6542 /* Size ZONE_MOVABLE */
6543 if (zone_type == ZONE_MOVABLE) {
6544 *zone_start_pfn = zone_movable_pfn[nid];
6545 *zone_end_pfn = min(node_end_pfn,
6546 arch_zone_highest_possible_pfn[movable_zone]);
6547
6548 /* Adjust for ZONE_MOVABLE starting within this range */
6549 } else if (!mirrored_kernelcore &&
6550 *zone_start_pfn < zone_movable_pfn[nid] &&
6551 *zone_end_pfn > zone_movable_pfn[nid]) {
6552 *zone_end_pfn = zone_movable_pfn[nid];
6553
6554 /* Check if this whole range is within ZONE_MOVABLE */
6555 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6556 *zone_start_pfn = *zone_end_pfn;
6557 }
6558 }
6559
6560 /*
6561 * Return the number of pages a zone spans in a node, including holes
6562 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6563 */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn,unsigned long * ignored)6564 static unsigned long __init zone_spanned_pages_in_node(int nid,
6565 unsigned long zone_type,
6566 unsigned long node_start_pfn,
6567 unsigned long node_end_pfn,
6568 unsigned long *zone_start_pfn,
6569 unsigned long *zone_end_pfn,
6570 unsigned long *ignored)
6571 {
6572 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6573 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6574 /* When hotadd a new node from cpu_up(), the node should be empty */
6575 if (!node_start_pfn && !node_end_pfn)
6576 return 0;
6577
6578 /* Get the start and end of the zone */
6579 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6580 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6581 adjust_zone_range_for_zone_movable(nid, zone_type,
6582 node_start_pfn, node_end_pfn,
6583 zone_start_pfn, zone_end_pfn);
6584
6585 /* Check that this node has pages within the zone's required range */
6586 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6587 return 0;
6588
6589 /* Move the zone boundaries inside the node if necessary */
6590 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6591 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6592
6593 /* Return the spanned pages */
6594 return *zone_end_pfn - *zone_start_pfn;
6595 }
6596
6597 /*
6598 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6599 * then all holes in the requested range will be accounted for.
6600 */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)6601 unsigned long __init __absent_pages_in_range(int nid,
6602 unsigned long range_start_pfn,
6603 unsigned long range_end_pfn)
6604 {
6605 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6606 unsigned long start_pfn, end_pfn;
6607 int i;
6608
6609 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6610 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6611 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6612 nr_absent -= end_pfn - start_pfn;
6613 }
6614 return nr_absent;
6615 }
6616
6617 /**
6618 * absent_pages_in_range - Return number of page frames in holes within a range
6619 * @start_pfn: The start PFN to start searching for holes
6620 * @end_pfn: The end PFN to stop searching for holes
6621 *
6622 * Return: the number of pages frames in memory holes within a range.
6623 */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)6624 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6625 unsigned long end_pfn)
6626 {
6627 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6628 }
6629
6630 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * ignored)6631 static unsigned long __init zone_absent_pages_in_node(int nid,
6632 unsigned long zone_type,
6633 unsigned long node_start_pfn,
6634 unsigned long node_end_pfn,
6635 unsigned long *ignored)
6636 {
6637 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6638 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6639 unsigned long zone_start_pfn, zone_end_pfn;
6640 unsigned long nr_absent;
6641
6642 /* When hotadd a new node from cpu_up(), the node should be empty */
6643 if (!node_start_pfn && !node_end_pfn)
6644 return 0;
6645
6646 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6647 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6648
6649 adjust_zone_range_for_zone_movable(nid, zone_type,
6650 node_start_pfn, node_end_pfn,
6651 &zone_start_pfn, &zone_end_pfn);
6652 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6653
6654 /*
6655 * ZONE_MOVABLE handling.
6656 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6657 * and vice versa.
6658 */
6659 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6660 unsigned long start_pfn, end_pfn;
6661 struct memblock_region *r;
6662
6663 for_each_memblock(memory, r) {
6664 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6665 zone_start_pfn, zone_end_pfn);
6666 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6667 zone_start_pfn, zone_end_pfn);
6668
6669 if (zone_type == ZONE_MOVABLE &&
6670 memblock_is_mirror(r))
6671 nr_absent += end_pfn - start_pfn;
6672
6673 if (zone_type == ZONE_NORMAL &&
6674 !memblock_is_mirror(r))
6675 nr_absent += end_pfn - start_pfn;
6676 }
6677 }
6678
6679 return nr_absent;
6680 }
6681
6682 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn,unsigned long * zones_size)6683 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6684 unsigned long zone_type,
6685 unsigned long node_start_pfn,
6686 unsigned long node_end_pfn,
6687 unsigned long *zone_start_pfn,
6688 unsigned long *zone_end_pfn,
6689 unsigned long *zones_size)
6690 {
6691 unsigned int zone;
6692
6693 *zone_start_pfn = node_start_pfn;
6694 for (zone = 0; zone < zone_type; zone++)
6695 *zone_start_pfn += zones_size[zone];
6696
6697 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6698
6699 return zones_size[zone_type];
6700 }
6701
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zholes_size)6702 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6703 unsigned long zone_type,
6704 unsigned long node_start_pfn,
6705 unsigned long node_end_pfn,
6706 unsigned long *zholes_size)
6707 {
6708 if (!zholes_size)
6709 return 0;
6710
6711 return zholes_size[zone_type];
6712 }
6713
6714 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6715
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size,unsigned long * zholes_size)6716 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6717 unsigned long node_start_pfn,
6718 unsigned long node_end_pfn,
6719 unsigned long *zones_size,
6720 unsigned long *zholes_size)
6721 {
6722 unsigned long realtotalpages = 0, totalpages = 0;
6723 enum zone_type i;
6724
6725 for (i = 0; i < MAX_NR_ZONES; i++) {
6726 struct zone *zone = pgdat->node_zones + i;
6727 unsigned long zone_start_pfn, zone_end_pfn;
6728 unsigned long size, real_size;
6729
6730 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6731 node_start_pfn,
6732 node_end_pfn,
6733 &zone_start_pfn,
6734 &zone_end_pfn,
6735 zones_size);
6736 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6737 node_start_pfn, node_end_pfn,
6738 zholes_size);
6739 if (size)
6740 zone->zone_start_pfn = zone_start_pfn;
6741 else
6742 zone->zone_start_pfn = 0;
6743 zone->spanned_pages = size;
6744 zone->present_pages = real_size;
6745
6746 totalpages += size;
6747 realtotalpages += real_size;
6748 }
6749
6750 pgdat->node_spanned_pages = totalpages;
6751 pgdat->node_present_pages = realtotalpages;
6752 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6753 realtotalpages);
6754 }
6755
6756 #ifndef CONFIG_SPARSEMEM
6757 /*
6758 * Calculate the size of the zone->blockflags rounded to an unsigned long
6759 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6760 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6761 * round what is now in bits to nearest long in bits, then return it in
6762 * bytes.
6763 */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)6764 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6765 {
6766 unsigned long usemapsize;
6767
6768 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6769 usemapsize = roundup(zonesize, pageblock_nr_pages);
6770 usemapsize = usemapsize >> pageblock_order;
6771 usemapsize *= NR_PAGEBLOCK_BITS;
6772 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6773
6774 return usemapsize / 8;
6775 }
6776
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)6777 static void __ref setup_usemap(struct pglist_data *pgdat,
6778 struct zone *zone,
6779 unsigned long zone_start_pfn,
6780 unsigned long zonesize)
6781 {
6782 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6783 zone->pageblock_flags = NULL;
6784 if (usemapsize) {
6785 zone->pageblock_flags =
6786 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6787 pgdat->node_id);
6788 if (!zone->pageblock_flags)
6789 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6790 usemapsize, zone->name, pgdat->node_id);
6791 }
6792 }
6793 #else
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)6794 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6795 unsigned long zone_start_pfn, unsigned long zonesize) {}
6796 #endif /* CONFIG_SPARSEMEM */
6797
6798 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6799
6800 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)6801 void __init set_pageblock_order(void)
6802 {
6803 unsigned int order;
6804
6805 /* Check that pageblock_nr_pages has not already been setup */
6806 if (pageblock_order)
6807 return;
6808
6809 if (HPAGE_SHIFT > PAGE_SHIFT)
6810 order = HUGETLB_PAGE_ORDER;
6811 else
6812 order = MAX_ORDER - 1;
6813
6814 /*
6815 * Assume the largest contiguous order of interest is a huge page.
6816 * This value may be variable depending on boot parameters on IA64 and
6817 * powerpc.
6818 */
6819 pageblock_order = order;
6820 }
6821 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6822
6823 /*
6824 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6825 * is unused as pageblock_order is set at compile-time. See
6826 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6827 * the kernel config
6828 */
set_pageblock_order(void)6829 void __init set_pageblock_order(void)
6830 {
6831 }
6832
6833 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6834
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)6835 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6836 unsigned long present_pages)
6837 {
6838 unsigned long pages = spanned_pages;
6839
6840 /*
6841 * Provide a more accurate estimation if there are holes within
6842 * the zone and SPARSEMEM is in use. If there are holes within the
6843 * zone, each populated memory region may cost us one or two extra
6844 * memmap pages due to alignment because memmap pages for each
6845 * populated regions may not be naturally aligned on page boundary.
6846 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6847 */
6848 if (spanned_pages > present_pages + (present_pages >> 4) &&
6849 IS_ENABLED(CONFIG_SPARSEMEM))
6850 pages = present_pages;
6851
6852 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6853 }
6854
6855 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)6856 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6857 {
6858 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6859
6860 spin_lock_init(&ds_queue->split_queue_lock);
6861 INIT_LIST_HEAD(&ds_queue->split_queue);
6862 ds_queue->split_queue_len = 0;
6863 }
6864 #else
pgdat_init_split_queue(struct pglist_data * pgdat)6865 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6866 #endif
6867
6868 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)6869 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6870 {
6871 init_waitqueue_head(&pgdat->kcompactd_wait);
6872 }
6873 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)6874 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6875 #endif
6876
pgdat_init_internals(struct pglist_data * pgdat)6877 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6878 {
6879 pgdat_resize_init(pgdat);
6880
6881 pgdat_init_split_queue(pgdat);
6882 pgdat_init_kcompactd(pgdat);
6883
6884 init_waitqueue_head(&pgdat->kswapd_wait);
6885 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6886
6887 pgdat_page_ext_init(pgdat);
6888 spin_lock_init(&pgdat->lru_lock);
6889 lruvec_init(node_lruvec(pgdat));
6890 }
6891
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)6892 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6893 unsigned long remaining_pages)
6894 {
6895 atomic_long_set(&zone->managed_pages, remaining_pages);
6896 zone_set_nid(zone, nid);
6897 zone->name = zone_names[idx];
6898 zone->zone_pgdat = NODE_DATA(nid);
6899 spin_lock_init(&zone->lock);
6900 zone_seqlock_init(zone);
6901 zone_pcp_init(zone);
6902 }
6903
6904 /*
6905 * Set up the zone data structures
6906 * - init pgdat internals
6907 * - init all zones belonging to this node
6908 *
6909 * NOTE: this function is only called during memory hotplug
6910 */
6911 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(int nid)6912 void __ref free_area_init_core_hotplug(int nid)
6913 {
6914 enum zone_type z;
6915 pg_data_t *pgdat = NODE_DATA(nid);
6916
6917 pgdat_init_internals(pgdat);
6918 for (z = 0; z < MAX_NR_ZONES; z++)
6919 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6920 }
6921 #endif
6922
6923 /*
6924 * Set up the zone data structures:
6925 * - mark all pages reserved
6926 * - mark all memory queues empty
6927 * - clear the memory bitmaps
6928 *
6929 * NOTE: pgdat should get zeroed by caller.
6930 * NOTE: this function is only called during early init.
6931 */
free_area_init_core(struct pglist_data * pgdat)6932 static void __init free_area_init_core(struct pglist_data *pgdat)
6933 {
6934 enum zone_type j;
6935 int nid = pgdat->node_id;
6936
6937 pgdat_init_internals(pgdat);
6938 pgdat->per_cpu_nodestats = &boot_nodestats;
6939
6940 for (j = 0; j < MAX_NR_ZONES; j++) {
6941 struct zone *zone = pgdat->node_zones + j;
6942 unsigned long size, freesize, memmap_pages;
6943 unsigned long zone_start_pfn = zone->zone_start_pfn;
6944
6945 size = zone->spanned_pages;
6946 freesize = zone->present_pages;
6947
6948 /*
6949 * Adjust freesize so that it accounts for how much memory
6950 * is used by this zone for memmap. This affects the watermark
6951 * and per-cpu initialisations
6952 */
6953 memmap_pages = calc_memmap_size(size, freesize);
6954 if (!is_highmem_idx(j)) {
6955 if (freesize >= memmap_pages) {
6956 freesize -= memmap_pages;
6957 if (memmap_pages)
6958 printk(KERN_DEBUG
6959 " %s zone: %lu pages used for memmap\n",
6960 zone_names[j], memmap_pages);
6961 } else
6962 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6963 zone_names[j], memmap_pages, freesize);
6964 }
6965
6966 /* Account for reserved pages */
6967 if (j == 0 && freesize > dma_reserve) {
6968 freesize -= dma_reserve;
6969 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6970 zone_names[0], dma_reserve);
6971 }
6972
6973 if (!is_highmem_idx(j))
6974 nr_kernel_pages += freesize;
6975 /* Charge for highmem memmap if there are enough kernel pages */
6976 else if (nr_kernel_pages > memmap_pages * 2)
6977 nr_kernel_pages -= memmap_pages;
6978 nr_all_pages += freesize;
6979
6980 /*
6981 * Set an approximate value for lowmem here, it will be adjusted
6982 * when the bootmem allocator frees pages into the buddy system.
6983 * And all highmem pages will be managed by the buddy system.
6984 */
6985 zone_init_internals(zone, j, nid, freesize);
6986
6987 if (!size)
6988 continue;
6989
6990 set_pageblock_order();
6991 setup_usemap(pgdat, zone, zone_start_pfn, size);
6992 init_currently_empty_zone(zone, zone_start_pfn, size);
6993 memmap_init(size, nid, j, zone_start_pfn);
6994 }
6995 }
6996
6997 #ifdef CONFIG_FLAT_NODE_MEM_MAP
alloc_node_mem_map(struct pglist_data * pgdat)6998 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6999 {
7000 unsigned long __maybe_unused start = 0;
7001 unsigned long __maybe_unused offset = 0;
7002
7003 /* Skip empty nodes */
7004 if (!pgdat->node_spanned_pages)
7005 return;
7006
7007 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7008 offset = pgdat->node_start_pfn - start;
7009 /* ia64 gets its own node_mem_map, before this, without bootmem */
7010 if (!pgdat->node_mem_map) {
7011 unsigned long size, end;
7012 struct page *map;
7013
7014 /*
7015 * The zone's endpoints aren't required to be MAX_ORDER
7016 * aligned but the node_mem_map endpoints must be in order
7017 * for the buddy allocator to function correctly.
7018 */
7019 end = pgdat_end_pfn(pgdat);
7020 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7021 size = (end - start) * sizeof(struct page);
7022 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7023 pgdat->node_id);
7024 if (!map)
7025 panic("Failed to allocate %ld bytes for node %d memory map\n",
7026 size, pgdat->node_id);
7027 pgdat->node_mem_map = map + offset;
7028 }
7029 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7030 __func__, pgdat->node_id, (unsigned long)pgdat,
7031 (unsigned long)pgdat->node_mem_map);
7032 #ifndef CONFIG_NEED_MULTIPLE_NODES
7033 /*
7034 * With no DISCONTIG, the global mem_map is just set as node 0's
7035 */
7036 if (pgdat == NODE_DATA(0)) {
7037 mem_map = NODE_DATA(0)->node_mem_map;
7038 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
7039 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7040 mem_map -= offset;
7041 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7042 }
7043 #endif
7044 }
7045 #else
alloc_node_mem_map(struct pglist_data * pgdat)7046 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7047 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7048
7049 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)7050 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7051 {
7052 pgdat->first_deferred_pfn = ULONG_MAX;
7053 }
7054 #else
pgdat_set_deferred_range(pg_data_t * pgdat)7055 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7056 #endif
7057
free_area_init_node(int nid,unsigned long * zones_size,unsigned long node_start_pfn,unsigned long * zholes_size)7058 void __init free_area_init_node(int nid, unsigned long *zones_size,
7059 unsigned long node_start_pfn,
7060 unsigned long *zholes_size)
7061 {
7062 pg_data_t *pgdat = NODE_DATA(nid);
7063 unsigned long start_pfn = 0;
7064 unsigned long end_pfn = 0;
7065
7066 /* pg_data_t should be reset to zero when it's allocated */
7067 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
7068
7069 pgdat->node_id = nid;
7070 pgdat->node_start_pfn = node_start_pfn;
7071 pgdat->per_cpu_nodestats = NULL;
7072 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
7073 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7074 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7075 (u64)start_pfn << PAGE_SHIFT,
7076 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7077 #else
7078 start_pfn = node_start_pfn;
7079 #endif
7080 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
7081 zones_size, zholes_size);
7082
7083 alloc_node_mem_map(pgdat);
7084 pgdat_set_deferred_range(pgdat);
7085
7086 free_area_init_core(pgdat);
7087 }
7088
7089 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
7090 /*
7091 * Zero all valid struct pages in range [spfn, epfn), return number of struct
7092 * pages zeroed
7093 */
zero_pfn_range(unsigned long spfn,unsigned long epfn)7094 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
7095 {
7096 unsigned long pfn;
7097 u64 pgcnt = 0;
7098
7099 for (pfn = spfn; pfn < epfn; pfn++) {
7100 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7101 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7102 + pageblock_nr_pages - 1;
7103 continue;
7104 }
7105 mm_zero_struct_page(pfn_to_page(pfn));
7106 pgcnt++;
7107 }
7108
7109 return pgcnt;
7110 }
7111
7112 /*
7113 * Only struct pages that are backed by physical memory are zeroed and
7114 * initialized by going through __init_single_page(). But, there are some
7115 * struct pages which are reserved in memblock allocator and their fields
7116 * may be accessed (for example page_to_pfn() on some configuration accesses
7117 * flags). We must explicitly zero those struct pages.
7118 *
7119 * This function also addresses a similar issue where struct pages are left
7120 * uninitialized because the physical address range is not covered by
7121 * memblock.memory or memblock.reserved. That could happen when memblock
7122 * layout is manually configured via memmap=, or when the highest physical
7123 * address (max_pfn) does not end on a section boundary.
7124 */
zero_resv_unavail(void)7125 void __init zero_resv_unavail(void)
7126 {
7127 phys_addr_t start, end;
7128 u64 i, pgcnt;
7129 phys_addr_t next = 0;
7130
7131 /*
7132 * Loop through unavailable ranges not covered by memblock.memory.
7133 */
7134 pgcnt = 0;
7135 for_each_mem_range(i, &memblock.memory, NULL,
7136 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
7137 if (next < start)
7138 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
7139 next = end;
7140 }
7141
7142 /*
7143 * Early sections always have a fully populated memmap for the whole
7144 * section - see pfn_valid(). If the last section has holes at the
7145 * end and that section is marked "online", the memmap will be
7146 * considered initialized. Make sure that memmap has a well defined
7147 * state.
7148 */
7149 pgcnt += zero_pfn_range(PFN_DOWN(next),
7150 round_up(max_pfn, PAGES_PER_SECTION));
7151
7152 /*
7153 * Struct pages that do not have backing memory. This could be because
7154 * firmware is using some of this memory, or for some other reasons.
7155 */
7156 if (pgcnt)
7157 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7158 }
7159 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7160
7161 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
7162
7163 #if MAX_NUMNODES > 1
7164 /*
7165 * Figure out the number of possible node ids.
7166 */
setup_nr_node_ids(void)7167 void __init setup_nr_node_ids(void)
7168 {
7169 unsigned int highest;
7170
7171 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7172 nr_node_ids = highest + 1;
7173 }
7174 #endif
7175
7176 /**
7177 * node_map_pfn_alignment - determine the maximum internode alignment
7178 *
7179 * This function should be called after node map is populated and sorted.
7180 * It calculates the maximum power of two alignment which can distinguish
7181 * all the nodes.
7182 *
7183 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7184 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7185 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7186 * shifted, 1GiB is enough and this function will indicate so.
7187 *
7188 * This is used to test whether pfn -> nid mapping of the chosen memory
7189 * model has fine enough granularity to avoid incorrect mapping for the
7190 * populated node map.
7191 *
7192 * Return: the determined alignment in pfn's. 0 if there is no alignment
7193 * requirement (single node).
7194 */
node_map_pfn_alignment(void)7195 unsigned long __init node_map_pfn_alignment(void)
7196 {
7197 unsigned long accl_mask = 0, last_end = 0;
7198 unsigned long start, end, mask;
7199 int last_nid = NUMA_NO_NODE;
7200 int i, nid;
7201
7202 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7203 if (!start || last_nid < 0 || last_nid == nid) {
7204 last_nid = nid;
7205 last_end = end;
7206 continue;
7207 }
7208
7209 /*
7210 * Start with a mask granular enough to pin-point to the
7211 * start pfn and tick off bits one-by-one until it becomes
7212 * too coarse to separate the current node from the last.
7213 */
7214 mask = ~((1 << __ffs(start)) - 1);
7215 while (mask && last_end <= (start & (mask << 1)))
7216 mask <<= 1;
7217
7218 /* accumulate all internode masks */
7219 accl_mask |= mask;
7220 }
7221
7222 /* convert mask to number of pages */
7223 return ~accl_mask + 1;
7224 }
7225
7226 /* Find the lowest pfn for a node */
find_min_pfn_for_node(int nid)7227 static unsigned long __init find_min_pfn_for_node(int nid)
7228 {
7229 unsigned long min_pfn = ULONG_MAX;
7230 unsigned long start_pfn;
7231 int i;
7232
7233 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7234 min_pfn = min(min_pfn, start_pfn);
7235
7236 if (min_pfn == ULONG_MAX) {
7237 pr_warn("Could not find start_pfn for node %d\n", nid);
7238 return 0;
7239 }
7240
7241 return min_pfn;
7242 }
7243
7244 /**
7245 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7246 *
7247 * Return: the minimum PFN based on information provided via
7248 * memblock_set_node().
7249 */
find_min_pfn_with_active_regions(void)7250 unsigned long __init find_min_pfn_with_active_regions(void)
7251 {
7252 return find_min_pfn_for_node(MAX_NUMNODES);
7253 }
7254
7255 /*
7256 * early_calculate_totalpages()
7257 * Sum pages in active regions for movable zone.
7258 * Populate N_MEMORY for calculating usable_nodes.
7259 */
early_calculate_totalpages(void)7260 static unsigned long __init early_calculate_totalpages(void)
7261 {
7262 unsigned long totalpages = 0;
7263 unsigned long start_pfn, end_pfn;
7264 int i, nid;
7265
7266 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7267 unsigned long pages = end_pfn - start_pfn;
7268
7269 totalpages += pages;
7270 if (pages)
7271 node_set_state(nid, N_MEMORY);
7272 }
7273 return totalpages;
7274 }
7275
7276 /*
7277 * Find the PFN the Movable zone begins in each node. Kernel memory
7278 * is spread evenly between nodes as long as the nodes have enough
7279 * memory. When they don't, some nodes will have more kernelcore than
7280 * others
7281 */
find_zone_movable_pfns_for_nodes(void)7282 static void __init find_zone_movable_pfns_for_nodes(void)
7283 {
7284 int i, nid;
7285 unsigned long usable_startpfn;
7286 unsigned long kernelcore_node, kernelcore_remaining;
7287 /* save the state before borrow the nodemask */
7288 nodemask_t saved_node_state = node_states[N_MEMORY];
7289 unsigned long totalpages = early_calculate_totalpages();
7290 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7291 struct memblock_region *r;
7292
7293 /* Need to find movable_zone earlier when movable_node is specified. */
7294 find_usable_zone_for_movable();
7295
7296 /*
7297 * If movable_node is specified, ignore kernelcore and movablecore
7298 * options.
7299 */
7300 if (movable_node_is_enabled()) {
7301 for_each_memblock(memory, r) {
7302 if (!memblock_is_hotpluggable(r))
7303 continue;
7304
7305 nid = r->nid;
7306
7307 usable_startpfn = PFN_DOWN(r->base);
7308 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7309 min(usable_startpfn, zone_movable_pfn[nid]) :
7310 usable_startpfn;
7311 }
7312
7313 goto out2;
7314 }
7315
7316 /*
7317 * If kernelcore=mirror is specified, ignore movablecore option
7318 */
7319 if (mirrored_kernelcore) {
7320 bool mem_below_4gb_not_mirrored = false;
7321
7322 for_each_memblock(memory, r) {
7323 if (memblock_is_mirror(r))
7324 continue;
7325
7326 nid = r->nid;
7327
7328 usable_startpfn = memblock_region_memory_base_pfn(r);
7329
7330 if (usable_startpfn < 0x100000) {
7331 mem_below_4gb_not_mirrored = true;
7332 continue;
7333 }
7334
7335 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7336 min(usable_startpfn, zone_movable_pfn[nid]) :
7337 usable_startpfn;
7338 }
7339
7340 if (mem_below_4gb_not_mirrored)
7341 pr_warn("This configuration results in unmirrored kernel memory.");
7342
7343 goto out2;
7344 }
7345
7346 /*
7347 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7348 * amount of necessary memory.
7349 */
7350 if (required_kernelcore_percent)
7351 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7352 10000UL;
7353 if (required_movablecore_percent)
7354 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7355 10000UL;
7356
7357 /*
7358 * If movablecore= was specified, calculate what size of
7359 * kernelcore that corresponds so that memory usable for
7360 * any allocation type is evenly spread. If both kernelcore
7361 * and movablecore are specified, then the value of kernelcore
7362 * will be used for required_kernelcore if it's greater than
7363 * what movablecore would have allowed.
7364 */
7365 if (required_movablecore) {
7366 unsigned long corepages;
7367
7368 /*
7369 * Round-up so that ZONE_MOVABLE is at least as large as what
7370 * was requested by the user
7371 */
7372 required_movablecore =
7373 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7374 required_movablecore = min(totalpages, required_movablecore);
7375 corepages = totalpages - required_movablecore;
7376
7377 required_kernelcore = max(required_kernelcore, corepages);
7378 }
7379
7380 /*
7381 * If kernelcore was not specified or kernelcore size is larger
7382 * than totalpages, there is no ZONE_MOVABLE.
7383 */
7384 if (!required_kernelcore || required_kernelcore >= totalpages)
7385 goto out;
7386
7387 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7388 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7389
7390 restart:
7391 /* Spread kernelcore memory as evenly as possible throughout nodes */
7392 kernelcore_node = required_kernelcore / usable_nodes;
7393 for_each_node_state(nid, N_MEMORY) {
7394 unsigned long start_pfn, end_pfn;
7395
7396 /*
7397 * Recalculate kernelcore_node if the division per node
7398 * now exceeds what is necessary to satisfy the requested
7399 * amount of memory for the kernel
7400 */
7401 if (required_kernelcore < kernelcore_node)
7402 kernelcore_node = required_kernelcore / usable_nodes;
7403
7404 /*
7405 * As the map is walked, we track how much memory is usable
7406 * by the kernel using kernelcore_remaining. When it is
7407 * 0, the rest of the node is usable by ZONE_MOVABLE
7408 */
7409 kernelcore_remaining = kernelcore_node;
7410
7411 /* Go through each range of PFNs within this node */
7412 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7413 unsigned long size_pages;
7414
7415 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7416 if (start_pfn >= end_pfn)
7417 continue;
7418
7419 /* Account for what is only usable for kernelcore */
7420 if (start_pfn < usable_startpfn) {
7421 unsigned long kernel_pages;
7422 kernel_pages = min(end_pfn, usable_startpfn)
7423 - start_pfn;
7424
7425 kernelcore_remaining -= min(kernel_pages,
7426 kernelcore_remaining);
7427 required_kernelcore -= min(kernel_pages,
7428 required_kernelcore);
7429
7430 /* Continue if range is now fully accounted */
7431 if (end_pfn <= usable_startpfn) {
7432
7433 /*
7434 * Push zone_movable_pfn to the end so
7435 * that if we have to rebalance
7436 * kernelcore across nodes, we will
7437 * not double account here
7438 */
7439 zone_movable_pfn[nid] = end_pfn;
7440 continue;
7441 }
7442 start_pfn = usable_startpfn;
7443 }
7444
7445 /*
7446 * The usable PFN range for ZONE_MOVABLE is from
7447 * start_pfn->end_pfn. Calculate size_pages as the
7448 * number of pages used as kernelcore
7449 */
7450 size_pages = end_pfn - start_pfn;
7451 if (size_pages > kernelcore_remaining)
7452 size_pages = kernelcore_remaining;
7453 zone_movable_pfn[nid] = start_pfn + size_pages;
7454
7455 /*
7456 * Some kernelcore has been met, update counts and
7457 * break if the kernelcore for this node has been
7458 * satisfied
7459 */
7460 required_kernelcore -= min(required_kernelcore,
7461 size_pages);
7462 kernelcore_remaining -= size_pages;
7463 if (!kernelcore_remaining)
7464 break;
7465 }
7466 }
7467
7468 /*
7469 * If there is still required_kernelcore, we do another pass with one
7470 * less node in the count. This will push zone_movable_pfn[nid] further
7471 * along on the nodes that still have memory until kernelcore is
7472 * satisfied
7473 */
7474 usable_nodes--;
7475 if (usable_nodes && required_kernelcore > usable_nodes)
7476 goto restart;
7477
7478 out2:
7479 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7480 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7481 unsigned long start_pfn, end_pfn;
7482
7483 zone_movable_pfn[nid] =
7484 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7485
7486 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7487 if (zone_movable_pfn[nid] >= end_pfn)
7488 zone_movable_pfn[nid] = 0;
7489 }
7490
7491 out:
7492 /* restore the node_state */
7493 node_states[N_MEMORY] = saved_node_state;
7494 }
7495
7496 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)7497 static void check_for_memory(pg_data_t *pgdat, int nid)
7498 {
7499 enum zone_type zone_type;
7500
7501 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7502 struct zone *zone = &pgdat->node_zones[zone_type];
7503 if (populated_zone(zone)) {
7504 if (IS_ENABLED(CONFIG_HIGHMEM))
7505 node_set_state(nid, N_HIGH_MEMORY);
7506 if (zone_type <= ZONE_NORMAL)
7507 node_set_state(nid, N_NORMAL_MEMORY);
7508 break;
7509 }
7510 }
7511 }
7512
7513 /**
7514 * free_area_init_nodes - Initialise all pg_data_t and zone data
7515 * @max_zone_pfn: an array of max PFNs for each zone
7516 *
7517 * This will call free_area_init_node() for each active node in the system.
7518 * Using the page ranges provided by memblock_set_node(), the size of each
7519 * zone in each node and their holes is calculated. If the maximum PFN
7520 * between two adjacent zones match, it is assumed that the zone is empty.
7521 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7522 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7523 * starts where the previous one ended. For example, ZONE_DMA32 starts
7524 * at arch_max_dma_pfn.
7525 */
free_area_init_nodes(unsigned long * max_zone_pfn)7526 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7527 {
7528 unsigned long start_pfn, end_pfn;
7529 int i, nid;
7530
7531 /* Record where the zone boundaries are */
7532 memset(arch_zone_lowest_possible_pfn, 0,
7533 sizeof(arch_zone_lowest_possible_pfn));
7534 memset(arch_zone_highest_possible_pfn, 0,
7535 sizeof(arch_zone_highest_possible_pfn));
7536
7537 start_pfn = find_min_pfn_with_active_regions();
7538
7539 for (i = 0; i < MAX_NR_ZONES; i++) {
7540 if (i == ZONE_MOVABLE)
7541 continue;
7542
7543 end_pfn = max(max_zone_pfn[i], start_pfn);
7544 arch_zone_lowest_possible_pfn[i] = start_pfn;
7545 arch_zone_highest_possible_pfn[i] = end_pfn;
7546
7547 start_pfn = end_pfn;
7548 }
7549
7550 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7551 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7552 find_zone_movable_pfns_for_nodes();
7553
7554 /* Print out the zone ranges */
7555 pr_info("Zone ranges:\n");
7556 for (i = 0; i < MAX_NR_ZONES; i++) {
7557 if (i == ZONE_MOVABLE)
7558 continue;
7559 pr_info(" %-8s ", zone_names[i]);
7560 if (arch_zone_lowest_possible_pfn[i] ==
7561 arch_zone_highest_possible_pfn[i])
7562 pr_cont("empty\n");
7563 else
7564 pr_cont("[mem %#018Lx-%#018Lx]\n",
7565 (u64)arch_zone_lowest_possible_pfn[i]
7566 << PAGE_SHIFT,
7567 ((u64)arch_zone_highest_possible_pfn[i]
7568 << PAGE_SHIFT) - 1);
7569 }
7570
7571 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7572 pr_info("Movable zone start for each node\n");
7573 for (i = 0; i < MAX_NUMNODES; i++) {
7574 if (zone_movable_pfn[i])
7575 pr_info(" Node %d: %#018Lx\n", i,
7576 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7577 }
7578
7579 /*
7580 * Print out the early node map, and initialize the
7581 * subsection-map relative to active online memory ranges to
7582 * enable future "sub-section" extensions of the memory map.
7583 */
7584 pr_info("Early memory node ranges\n");
7585 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7586 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7587 (u64)start_pfn << PAGE_SHIFT,
7588 ((u64)end_pfn << PAGE_SHIFT) - 1);
7589 subsection_map_init(start_pfn, end_pfn - start_pfn);
7590 }
7591
7592 /* Initialise every node */
7593 mminit_verify_pageflags_layout();
7594 setup_nr_node_ids();
7595 zero_resv_unavail();
7596 for_each_online_node(nid) {
7597 pg_data_t *pgdat = NODE_DATA(nid);
7598 free_area_init_node(nid, NULL,
7599 find_min_pfn_for_node(nid), NULL);
7600
7601 /* Any memory on that node */
7602 if (pgdat->node_present_pages)
7603 node_set_state(nid, N_MEMORY);
7604 check_for_memory(pgdat, nid);
7605 }
7606 }
7607
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)7608 static int __init cmdline_parse_core(char *p, unsigned long *core,
7609 unsigned long *percent)
7610 {
7611 unsigned long long coremem;
7612 char *endptr;
7613
7614 if (!p)
7615 return -EINVAL;
7616
7617 /* Value may be a percentage of total memory, otherwise bytes */
7618 coremem = simple_strtoull(p, &endptr, 0);
7619 if (*endptr == '%') {
7620 /* Paranoid check for percent values greater than 100 */
7621 WARN_ON(coremem > 100);
7622
7623 *percent = coremem;
7624 } else {
7625 coremem = memparse(p, &p);
7626 /* Paranoid check that UL is enough for the coremem value */
7627 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7628
7629 *core = coremem >> PAGE_SHIFT;
7630 *percent = 0UL;
7631 }
7632 return 0;
7633 }
7634
7635 /*
7636 * kernelcore=size sets the amount of memory for use for allocations that
7637 * cannot be reclaimed or migrated.
7638 */
cmdline_parse_kernelcore(char * p)7639 static int __init cmdline_parse_kernelcore(char *p)
7640 {
7641 /* parse kernelcore=mirror */
7642 if (parse_option_str(p, "mirror")) {
7643 mirrored_kernelcore = true;
7644 return 0;
7645 }
7646
7647 return cmdline_parse_core(p, &required_kernelcore,
7648 &required_kernelcore_percent);
7649 }
7650
7651 /*
7652 * movablecore=size sets the amount of memory for use for allocations that
7653 * can be reclaimed or migrated.
7654 */
cmdline_parse_movablecore(char * p)7655 static int __init cmdline_parse_movablecore(char *p)
7656 {
7657 return cmdline_parse_core(p, &required_movablecore,
7658 &required_movablecore_percent);
7659 }
7660
7661 early_param("kernelcore", cmdline_parse_kernelcore);
7662 early_param("movablecore", cmdline_parse_movablecore);
7663
7664 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7665
adjust_managed_page_count(struct page * page,long count)7666 void adjust_managed_page_count(struct page *page, long count)
7667 {
7668 atomic_long_add(count, &page_zone(page)->managed_pages);
7669 totalram_pages_add(count);
7670 #ifdef CONFIG_HIGHMEM
7671 if (PageHighMem(page))
7672 totalhigh_pages_add(count);
7673 #endif
7674 }
7675 EXPORT_SYMBOL(adjust_managed_page_count);
7676
free_reserved_area(void * start,void * end,int poison,const char * s)7677 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7678 {
7679 void *pos;
7680 unsigned long pages = 0;
7681
7682 start = (void *)PAGE_ALIGN((unsigned long)start);
7683 end = (void *)((unsigned long)end & PAGE_MASK);
7684 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7685 struct page *page = virt_to_page(pos);
7686 void *direct_map_addr;
7687
7688 /*
7689 * 'direct_map_addr' might be different from 'pos'
7690 * because some architectures' virt_to_page()
7691 * work with aliases. Getting the direct map
7692 * address ensures that we get a _writeable_
7693 * alias for the memset().
7694 */
7695 direct_map_addr = page_address(page);
7696 if ((unsigned int)poison <= 0xFF)
7697 memset(direct_map_addr, poison, PAGE_SIZE);
7698
7699 free_reserved_page(page);
7700 }
7701
7702 if (pages && s)
7703 pr_info("Freeing %s memory: %ldK\n",
7704 s, pages << (PAGE_SHIFT - 10));
7705
7706 return pages;
7707 }
7708 EXPORT_SYMBOL_GPL(free_reserved_area);
7709
7710 #ifdef CONFIG_HIGHMEM
free_highmem_page(struct page * page)7711 void free_highmem_page(struct page *page)
7712 {
7713 __free_reserved_page(page);
7714 totalram_pages_inc();
7715 atomic_long_inc(&page_zone(page)->managed_pages);
7716 totalhigh_pages_inc();
7717 }
7718 #endif
7719
7720
mem_init_print_info(const char * str)7721 void __init mem_init_print_info(const char *str)
7722 {
7723 unsigned long physpages, codesize, datasize, rosize, bss_size;
7724 unsigned long init_code_size, init_data_size;
7725
7726 physpages = get_num_physpages();
7727 codesize = _etext - _stext;
7728 datasize = _edata - _sdata;
7729 rosize = __end_rodata - __start_rodata;
7730 bss_size = __bss_stop - __bss_start;
7731 init_data_size = __init_end - __init_begin;
7732 init_code_size = _einittext - _sinittext;
7733
7734 /*
7735 * Detect special cases and adjust section sizes accordingly:
7736 * 1) .init.* may be embedded into .data sections
7737 * 2) .init.text.* may be out of [__init_begin, __init_end],
7738 * please refer to arch/tile/kernel/vmlinux.lds.S.
7739 * 3) .rodata.* may be embedded into .text or .data sections.
7740 */
7741 #define adj_init_size(start, end, size, pos, adj) \
7742 do { \
7743 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
7744 size -= adj; \
7745 } while (0)
7746
7747 adj_init_size(__init_begin, __init_end, init_data_size,
7748 _sinittext, init_code_size);
7749 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7750 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7751 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7752 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7753
7754 #undef adj_init_size
7755
7756 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7757 #ifdef CONFIG_HIGHMEM
7758 ", %luK highmem"
7759 #endif
7760 "%s%s)\n",
7761 nr_free_pages() << (PAGE_SHIFT - 10),
7762 physpages << (PAGE_SHIFT - 10),
7763 codesize >> 10, datasize >> 10, rosize >> 10,
7764 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7765 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7766 totalcma_pages << (PAGE_SHIFT - 10),
7767 #ifdef CONFIG_HIGHMEM
7768 totalhigh_pages() << (PAGE_SHIFT - 10),
7769 #endif
7770 str ? ", " : "", str ? str : "");
7771 }
7772
7773 /**
7774 * set_dma_reserve - set the specified number of pages reserved in the first zone
7775 * @new_dma_reserve: The number of pages to mark reserved
7776 *
7777 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7778 * In the DMA zone, a significant percentage may be consumed by kernel image
7779 * and other unfreeable allocations which can skew the watermarks badly. This
7780 * function may optionally be used to account for unfreeable pages in the
7781 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7782 * smaller per-cpu batchsize.
7783 */
set_dma_reserve(unsigned long new_dma_reserve)7784 void __init set_dma_reserve(unsigned long new_dma_reserve)
7785 {
7786 dma_reserve = new_dma_reserve;
7787 }
7788
free_area_init(unsigned long * zones_size)7789 void __init free_area_init(unsigned long *zones_size)
7790 {
7791 zero_resv_unavail();
7792 free_area_init_node(0, zones_size,
7793 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7794 }
7795
page_alloc_cpu_dead(unsigned int cpu)7796 static int page_alloc_cpu_dead(unsigned int cpu)
7797 {
7798
7799 lru_add_drain_cpu(cpu);
7800 drain_pages(cpu);
7801
7802 /*
7803 * Spill the event counters of the dead processor
7804 * into the current processors event counters.
7805 * This artificially elevates the count of the current
7806 * processor.
7807 */
7808 vm_events_fold_cpu(cpu);
7809
7810 /*
7811 * Zero the differential counters of the dead processor
7812 * so that the vm statistics are consistent.
7813 *
7814 * This is only okay since the processor is dead and cannot
7815 * race with what we are doing.
7816 */
7817 cpu_vm_stats_fold(cpu);
7818 return 0;
7819 }
7820
7821 #ifdef CONFIG_NUMA
7822 int hashdist = HASHDIST_DEFAULT;
7823
set_hashdist(char * str)7824 static int __init set_hashdist(char *str)
7825 {
7826 if (!str)
7827 return 0;
7828 hashdist = simple_strtoul(str, &str, 0);
7829 return 1;
7830 }
7831 __setup("hashdist=", set_hashdist);
7832 #endif
7833
page_alloc_init(void)7834 void __init page_alloc_init(void)
7835 {
7836 int ret;
7837
7838 #ifdef CONFIG_NUMA
7839 if (num_node_state(N_MEMORY) == 1)
7840 hashdist = 0;
7841 #endif
7842
7843 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7844 "mm/page_alloc:dead", NULL,
7845 page_alloc_cpu_dead);
7846 WARN_ON(ret < 0);
7847 }
7848
7849 /*
7850 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7851 * or min_free_kbytes changes.
7852 */
calculate_totalreserve_pages(void)7853 static void calculate_totalreserve_pages(void)
7854 {
7855 struct pglist_data *pgdat;
7856 unsigned long reserve_pages = 0;
7857 enum zone_type i, j;
7858
7859 for_each_online_pgdat(pgdat) {
7860
7861 pgdat->totalreserve_pages = 0;
7862
7863 for (i = 0; i < MAX_NR_ZONES; i++) {
7864 struct zone *zone = pgdat->node_zones + i;
7865 long max = 0;
7866 unsigned long managed_pages = zone_managed_pages(zone);
7867
7868 /* Find valid and maximum lowmem_reserve in the zone */
7869 for (j = i; j < MAX_NR_ZONES; j++) {
7870 if (zone->lowmem_reserve[j] > max)
7871 max = zone->lowmem_reserve[j];
7872 }
7873
7874 /* we treat the high watermark as reserved pages. */
7875 max += high_wmark_pages(zone);
7876
7877 if (max > managed_pages)
7878 max = managed_pages;
7879
7880 pgdat->totalreserve_pages += max;
7881
7882 reserve_pages += max;
7883 }
7884 }
7885 totalreserve_pages = reserve_pages;
7886 }
7887
7888 /*
7889 * setup_per_zone_lowmem_reserve - called whenever
7890 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7891 * has a correct pages reserved value, so an adequate number of
7892 * pages are left in the zone after a successful __alloc_pages().
7893 */
setup_per_zone_lowmem_reserve(void)7894 static void setup_per_zone_lowmem_reserve(void)
7895 {
7896 struct pglist_data *pgdat;
7897 enum zone_type j, idx;
7898
7899 for_each_online_pgdat(pgdat) {
7900 for (j = 0; j < MAX_NR_ZONES; j++) {
7901 struct zone *zone = pgdat->node_zones + j;
7902 unsigned long managed_pages = zone_managed_pages(zone);
7903
7904 zone->lowmem_reserve[j] = 0;
7905
7906 idx = j;
7907 while (idx) {
7908 struct zone *lower_zone;
7909
7910 idx--;
7911 lower_zone = pgdat->node_zones + idx;
7912
7913 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7914 sysctl_lowmem_reserve_ratio[idx] = 0;
7915 lower_zone->lowmem_reserve[j] = 0;
7916 } else {
7917 lower_zone->lowmem_reserve[j] =
7918 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7919 }
7920 managed_pages += zone_managed_pages(lower_zone);
7921 }
7922 }
7923 }
7924
7925 /* update totalreserve_pages */
7926 calculate_totalreserve_pages();
7927 }
7928
__setup_per_zone_wmarks(void)7929 static void __setup_per_zone_wmarks(void)
7930 {
7931 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7932 unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10);
7933 unsigned long lowmem_pages = 0;
7934 struct zone *zone;
7935 unsigned long flags;
7936
7937 /* Calculate total number of !ZONE_HIGHMEM pages */
7938 for_each_zone(zone) {
7939 if (!is_highmem(zone))
7940 lowmem_pages += zone_managed_pages(zone);
7941 }
7942
7943 for_each_zone(zone) {
7944 u64 tmp, low;
7945
7946 spin_lock_irqsave(&zone->lock, flags);
7947 tmp = (u64)pages_min * zone_managed_pages(zone);
7948 do_div(tmp, lowmem_pages);
7949 low = (u64)pages_low * zone_managed_pages(zone);
7950 do_div(low, vm_total_pages);
7951 if (is_highmem(zone)) {
7952 /*
7953 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7954 * need highmem pages, so cap pages_min to a small
7955 * value here.
7956 *
7957 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7958 * deltas control async page reclaim, and so should
7959 * not be capped for highmem.
7960 */
7961 unsigned long min_pages;
7962
7963 min_pages = zone_managed_pages(zone) / 1024;
7964 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7965 zone->_watermark[WMARK_MIN] = min_pages;
7966 } else {
7967 /*
7968 * If it's a lowmem zone, reserve a number of pages
7969 * proportionate to the zone's size.
7970 */
7971 zone->_watermark[WMARK_MIN] = tmp;
7972 }
7973
7974 /*
7975 * Set the kswapd watermarks distance according to the
7976 * scale factor in proportion to available memory, but
7977 * ensure a minimum size on small systems.
7978 */
7979 tmp = max_t(u64, tmp >> 2,
7980 mult_frac(zone_managed_pages(zone),
7981 watermark_scale_factor, 10000));
7982
7983 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) +
7984 low + tmp;
7985 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) +
7986 low + tmp * 2;
7987 zone->watermark_boost = 0;
7988
7989 spin_unlock_irqrestore(&zone->lock, flags);
7990 }
7991
7992 /* update totalreserve_pages */
7993 calculate_totalreserve_pages();
7994 }
7995
7996 /**
7997 * setup_per_zone_wmarks - called when min_free_kbytes changes
7998 * or when memory is hot-{added|removed}
7999 *
8000 * Ensures that the watermark[min,low,high] values for each zone are set
8001 * correctly with respect to min_free_kbytes.
8002 */
setup_per_zone_wmarks(void)8003 void setup_per_zone_wmarks(void)
8004 {
8005 static DEFINE_SPINLOCK(lock);
8006
8007 spin_lock(&lock);
8008 __setup_per_zone_wmarks();
8009 spin_unlock(&lock);
8010 }
8011
8012 /*
8013 * Initialise min_free_kbytes.
8014 *
8015 * For small machines we want it small (128k min). For large machines
8016 * we want it large (64MB max). But it is not linear, because network
8017 * bandwidth does not increase linearly with machine size. We use
8018 *
8019 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8020 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8021 *
8022 * which yields
8023 *
8024 * 16MB: 512k
8025 * 32MB: 724k
8026 * 64MB: 1024k
8027 * 128MB: 1448k
8028 * 256MB: 2048k
8029 * 512MB: 2896k
8030 * 1024MB: 4096k
8031 * 2048MB: 5792k
8032 * 4096MB: 8192k
8033 * 8192MB: 11584k
8034 * 16384MB: 16384k
8035 */
init_per_zone_wmark_min(void)8036 int __meminit init_per_zone_wmark_min(void)
8037 {
8038 unsigned long lowmem_kbytes;
8039 int new_min_free_kbytes;
8040
8041 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8042 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8043
8044 if (new_min_free_kbytes > user_min_free_kbytes) {
8045 min_free_kbytes = new_min_free_kbytes;
8046 if (min_free_kbytes < 128)
8047 min_free_kbytes = 128;
8048 if (min_free_kbytes > 65536)
8049 min_free_kbytes = 65536;
8050 } else {
8051 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8052 new_min_free_kbytes, user_min_free_kbytes);
8053 }
8054 setup_per_zone_wmarks();
8055 refresh_zone_stat_thresholds();
8056 setup_per_zone_lowmem_reserve();
8057
8058 #ifdef CONFIG_NUMA
8059 setup_min_unmapped_ratio();
8060 setup_min_slab_ratio();
8061 #endif
8062
8063 khugepaged_min_free_kbytes_update();
8064
8065 return 0;
8066 }
postcore_initcall(init_per_zone_wmark_min)8067 postcore_initcall(init_per_zone_wmark_min)
8068
8069 /*
8070 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8071 * that we can call two helper functions whenever min_free_kbytes
8072 * or extra_free_kbytes changes.
8073 */
8074 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8075 void __user *buffer, size_t *length, loff_t *ppos)
8076 {
8077 int rc;
8078
8079 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8080 if (rc)
8081 return rc;
8082
8083 if (write) {
8084 user_min_free_kbytes = min_free_kbytes;
8085 setup_per_zone_wmarks();
8086 }
8087 return 0;
8088 }
8089
watermark_boost_factor_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)8090 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
8091 void __user *buffer, size_t *length, loff_t *ppos)
8092 {
8093 int rc;
8094
8095 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8096 if (rc)
8097 return rc;
8098
8099 return 0;
8100 }
8101
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)8102 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8103 void __user *buffer, size_t *length, loff_t *ppos)
8104 {
8105 int rc;
8106
8107 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8108 if (rc)
8109 return rc;
8110
8111 if (write)
8112 setup_per_zone_wmarks();
8113
8114 return 0;
8115 }
8116
8117 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)8118 static void setup_min_unmapped_ratio(void)
8119 {
8120 pg_data_t *pgdat;
8121 struct zone *zone;
8122
8123 for_each_online_pgdat(pgdat)
8124 pgdat->min_unmapped_pages = 0;
8125
8126 for_each_zone(zone)
8127 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8128 sysctl_min_unmapped_ratio) / 100;
8129 }
8130
8131
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)8132 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8133 void __user *buffer, size_t *length, loff_t *ppos)
8134 {
8135 int rc;
8136
8137 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8138 if (rc)
8139 return rc;
8140
8141 setup_min_unmapped_ratio();
8142
8143 return 0;
8144 }
8145
setup_min_slab_ratio(void)8146 static void setup_min_slab_ratio(void)
8147 {
8148 pg_data_t *pgdat;
8149 struct zone *zone;
8150
8151 for_each_online_pgdat(pgdat)
8152 pgdat->min_slab_pages = 0;
8153
8154 for_each_zone(zone)
8155 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8156 sysctl_min_slab_ratio) / 100;
8157 }
8158
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)8159 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8160 void __user *buffer, size_t *length, loff_t *ppos)
8161 {
8162 int rc;
8163
8164 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8165 if (rc)
8166 return rc;
8167
8168 setup_min_slab_ratio();
8169
8170 return 0;
8171 }
8172 #endif
8173
8174 /*
8175 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8176 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8177 * whenever sysctl_lowmem_reserve_ratio changes.
8178 *
8179 * The reserve ratio obviously has absolutely no relation with the
8180 * minimum watermarks. The lowmem reserve ratio can only make sense
8181 * if in function of the boot time zone sizes.
8182 */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)8183 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8184 void __user *buffer, size_t *length, loff_t *ppos)
8185 {
8186 proc_dointvec_minmax(table, write, buffer, length, ppos);
8187 setup_per_zone_lowmem_reserve();
8188 return 0;
8189 }
8190
8191 /*
8192 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8193 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8194 * pagelist can have before it gets flushed back to buddy allocator.
8195 */
percpu_pagelist_fraction_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)8196 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8197 void __user *buffer, size_t *length, loff_t *ppos)
8198 {
8199 struct zone *zone;
8200 int old_percpu_pagelist_fraction;
8201 int ret;
8202
8203 mutex_lock(&pcp_batch_high_lock);
8204 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8205
8206 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8207 if (!write || ret < 0)
8208 goto out;
8209
8210 /* Sanity checking to avoid pcp imbalance */
8211 if (percpu_pagelist_fraction &&
8212 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8213 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8214 ret = -EINVAL;
8215 goto out;
8216 }
8217
8218 /* No change? */
8219 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8220 goto out;
8221
8222 for_each_populated_zone(zone) {
8223 unsigned int cpu;
8224
8225 for_each_possible_cpu(cpu)
8226 pageset_set_high_and_batch(zone,
8227 per_cpu_ptr(zone->pageset, cpu));
8228 }
8229 out:
8230 mutex_unlock(&pcp_batch_high_lock);
8231 return ret;
8232 }
8233
8234 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8235 /*
8236 * Returns the number of pages that arch has reserved but
8237 * is not known to alloc_large_system_hash().
8238 */
arch_reserved_kernel_pages(void)8239 static unsigned long __init arch_reserved_kernel_pages(void)
8240 {
8241 return 0;
8242 }
8243 #endif
8244
8245 /*
8246 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8247 * machines. As memory size is increased the scale is also increased but at
8248 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8249 * quadruples the scale is increased by one, which means the size of hash table
8250 * only doubles, instead of quadrupling as well.
8251 * Because 32-bit systems cannot have large physical memory, where this scaling
8252 * makes sense, it is disabled on such platforms.
8253 */
8254 #if __BITS_PER_LONG > 32
8255 #define ADAPT_SCALE_BASE (64ul << 30)
8256 #define ADAPT_SCALE_SHIFT 2
8257 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8258 #endif
8259
8260 /*
8261 * allocate a large system hash table from bootmem
8262 * - it is assumed that the hash table must contain an exact power-of-2
8263 * quantity of entries
8264 * - limit is the number of hash buckets, not the total allocation size
8265 */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)8266 void *__init alloc_large_system_hash(const char *tablename,
8267 unsigned long bucketsize,
8268 unsigned long numentries,
8269 int scale,
8270 int flags,
8271 unsigned int *_hash_shift,
8272 unsigned int *_hash_mask,
8273 unsigned long low_limit,
8274 unsigned long high_limit)
8275 {
8276 unsigned long long max = high_limit;
8277 unsigned long log2qty, size;
8278 void *table = NULL;
8279 gfp_t gfp_flags;
8280 bool virt;
8281
8282 /* allow the kernel cmdline to have a say */
8283 if (!numentries) {
8284 /* round applicable memory size up to nearest megabyte */
8285 numentries = nr_kernel_pages;
8286 numentries -= arch_reserved_kernel_pages();
8287
8288 /* It isn't necessary when PAGE_SIZE >= 1MB */
8289 if (PAGE_SHIFT < 20)
8290 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8291
8292 #if __BITS_PER_LONG > 32
8293 if (!high_limit) {
8294 unsigned long adapt;
8295
8296 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8297 adapt <<= ADAPT_SCALE_SHIFT)
8298 scale++;
8299 }
8300 #endif
8301
8302 /* limit to 1 bucket per 2^scale bytes of low memory */
8303 if (scale > PAGE_SHIFT)
8304 numentries >>= (scale - PAGE_SHIFT);
8305 else
8306 numentries <<= (PAGE_SHIFT - scale);
8307
8308 /* Make sure we've got at least a 0-order allocation.. */
8309 if (unlikely(flags & HASH_SMALL)) {
8310 /* Makes no sense without HASH_EARLY */
8311 WARN_ON(!(flags & HASH_EARLY));
8312 if (!(numentries >> *_hash_shift)) {
8313 numentries = 1UL << *_hash_shift;
8314 BUG_ON(!numentries);
8315 }
8316 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8317 numentries = PAGE_SIZE / bucketsize;
8318 }
8319 numentries = roundup_pow_of_two(numentries);
8320
8321 /* limit allocation size to 1/16 total memory by default */
8322 if (max == 0) {
8323 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8324 do_div(max, bucketsize);
8325 }
8326 max = min(max, 0x80000000ULL);
8327
8328 if (numentries < low_limit)
8329 numentries = low_limit;
8330 if (numentries > max)
8331 numentries = max;
8332
8333 log2qty = ilog2(numentries);
8334
8335 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8336 do {
8337 virt = false;
8338 size = bucketsize << log2qty;
8339 if (flags & HASH_EARLY) {
8340 if (flags & HASH_ZERO)
8341 table = memblock_alloc(size, SMP_CACHE_BYTES);
8342 else
8343 table = memblock_alloc_raw(size,
8344 SMP_CACHE_BYTES);
8345 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8346 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8347 virt = true;
8348 } else {
8349 /*
8350 * If bucketsize is not a power-of-two, we may free
8351 * some pages at the end of hash table which
8352 * alloc_pages_exact() automatically does
8353 */
8354 table = alloc_pages_exact(size, gfp_flags);
8355 kmemleak_alloc(table, size, 1, gfp_flags);
8356 }
8357 } while (!table && size > PAGE_SIZE && --log2qty);
8358
8359 if (!table)
8360 panic("Failed to allocate %s hash table\n", tablename);
8361
8362 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8363 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8364 virt ? "vmalloc" : "linear");
8365
8366 if (_hash_shift)
8367 *_hash_shift = log2qty;
8368 if (_hash_mask)
8369 *_hash_mask = (1 << log2qty) - 1;
8370
8371 return table;
8372 }
8373
8374 /*
8375 * This function checks whether pageblock includes unmovable pages or not.
8376 * If @count is not zero, it is okay to include less @count unmovable pages
8377 *
8378 * PageLRU check without isolation or lru_lock could race so that
8379 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8380 * check without lock_page also may miss some movable non-lru pages at
8381 * race condition. So you can't expect this function should be exact.
8382 */
has_unmovable_pages(struct zone * zone,struct page * page,int count,int migratetype,int flags)8383 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8384 int migratetype, int flags)
8385 {
8386 unsigned long found;
8387 unsigned long iter = 0;
8388 unsigned long pfn = page_to_pfn(page);
8389 const char *reason = "unmovable page";
8390
8391 /*
8392 * TODO we could make this much more efficient by not checking every
8393 * page in the range if we know all of them are in MOVABLE_ZONE and
8394 * that the movable zone guarantees that pages are migratable but
8395 * the later is not the case right now unfortunatelly. E.g. movablecore
8396 * can still lead to having bootmem allocations in zone_movable.
8397 */
8398
8399 if (is_migrate_cma_page(page)) {
8400 /*
8401 * CMA allocations (alloc_contig_range) really need to mark
8402 * isolate CMA pageblocks even when they are not movable in fact
8403 * so consider them movable here.
8404 */
8405 if (is_migrate_cma(migratetype))
8406 return false;
8407
8408 reason = "CMA page";
8409 goto unmovable;
8410 }
8411
8412 for (found = 0; iter < pageblock_nr_pages; iter++) {
8413 unsigned long check = pfn + iter;
8414
8415 if (!pfn_valid_within(check))
8416 continue;
8417
8418 page = pfn_to_page(check);
8419
8420 if (PageReserved(page))
8421 goto unmovable;
8422
8423 /*
8424 * If the zone is movable and we have ruled out all reserved
8425 * pages then it should be reasonably safe to assume the rest
8426 * is movable.
8427 */
8428 if (zone_idx(zone) == ZONE_MOVABLE)
8429 continue;
8430
8431 /*
8432 * Hugepages are not in LRU lists, but they're movable.
8433 * We need not scan over tail pages because we don't
8434 * handle each tail page individually in migration.
8435 */
8436 if (PageHuge(page)) {
8437 struct page *head = compound_head(page);
8438 unsigned int skip_pages;
8439
8440 if (!hugepage_migration_supported(page_hstate(head)))
8441 goto unmovable;
8442
8443 skip_pages = compound_nr(head) - (page - head);
8444 iter += skip_pages - 1;
8445 continue;
8446 }
8447
8448 /*
8449 * We can't use page_count without pin a page
8450 * because another CPU can free compound page.
8451 * This check already skips compound tails of THP
8452 * because their page->_refcount is zero at all time.
8453 */
8454 if (!page_ref_count(page)) {
8455 if (PageBuddy(page))
8456 iter += (1 << page_order(page)) - 1;
8457 continue;
8458 }
8459
8460 /*
8461 * The HWPoisoned page may be not in buddy system, and
8462 * page_count() is not 0.
8463 */
8464 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8465 continue;
8466
8467 if (__PageMovable(page))
8468 continue;
8469
8470 if (!PageLRU(page))
8471 found++;
8472 /*
8473 * If there are RECLAIMABLE pages, we need to check
8474 * it. But now, memory offline itself doesn't call
8475 * shrink_node_slabs() and it still to be fixed.
8476 */
8477 /*
8478 * If the page is not RAM, page_count()should be 0.
8479 * we don't need more check. This is an _used_ not-movable page.
8480 *
8481 * The problematic thing here is PG_reserved pages. PG_reserved
8482 * is set to both of a memory hole page and a _used_ kernel
8483 * page at boot.
8484 */
8485 if (found > count)
8486 goto unmovable;
8487 }
8488 return false;
8489 unmovable:
8490 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8491 if (flags & REPORT_FAILURE)
8492 dump_page(pfn_to_page(pfn + iter), reason);
8493 return true;
8494 }
8495
8496 #ifdef CONFIG_CONTIG_ALLOC
pfn_max_align_down(unsigned long pfn)8497 static unsigned long pfn_max_align_down(unsigned long pfn)
8498 {
8499 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8500 pageblock_nr_pages) - 1);
8501 }
8502
pfn_max_align_up(unsigned long pfn)8503 static unsigned long pfn_max_align_up(unsigned long pfn)
8504 {
8505 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8506 pageblock_nr_pages));
8507 }
8508
8509 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)8510 static int __alloc_contig_migrate_range(struct compact_control *cc,
8511 unsigned long start, unsigned long end)
8512 {
8513 /* This function is based on compact_zone() from compaction.c. */
8514 unsigned long nr_reclaimed;
8515 unsigned long pfn = start;
8516 unsigned int tries = 0;
8517 int ret = 0;
8518
8519 migrate_prep();
8520
8521 while (pfn < end || !list_empty(&cc->migratepages)) {
8522 if (fatal_signal_pending(current)) {
8523 ret = -EINTR;
8524 break;
8525 }
8526
8527 if (list_empty(&cc->migratepages)) {
8528 cc->nr_migratepages = 0;
8529 pfn = isolate_migratepages_range(cc, pfn, end);
8530 if (!pfn) {
8531 ret = -EINTR;
8532 break;
8533 }
8534 tries = 0;
8535 } else if (++tries == 5) {
8536 ret = ret < 0 ? ret : -EBUSY;
8537 break;
8538 }
8539
8540 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8541 &cc->migratepages);
8542 cc->nr_migratepages -= nr_reclaimed;
8543
8544 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8545 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8546 }
8547 if (ret < 0) {
8548 putback_movable_pages(&cc->migratepages);
8549 return ret;
8550 }
8551 return 0;
8552 }
8553
8554 /**
8555 * alloc_contig_range() -- tries to allocate given range of pages
8556 * @start: start PFN to allocate
8557 * @end: one-past-the-last PFN to allocate
8558 * @migratetype: migratetype of the underlaying pageblocks (either
8559 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8560 * in range must have the same migratetype and it must
8561 * be either of the two.
8562 * @gfp_mask: GFP mask to use during compaction
8563 *
8564 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8565 * aligned. The PFN range must belong to a single zone.
8566 *
8567 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8568 * pageblocks in the range. Once isolated, the pageblocks should not
8569 * be modified by others.
8570 *
8571 * Return: zero on success or negative error code. On success all
8572 * pages which PFN is in [start, end) are allocated for the caller and
8573 * need to be freed with free_contig_range().
8574 */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)8575 int alloc_contig_range(unsigned long start, unsigned long end,
8576 unsigned migratetype, gfp_t gfp_mask)
8577 {
8578 unsigned long outer_start, outer_end;
8579 unsigned int order;
8580 int ret = 0;
8581
8582 struct compact_control cc = {
8583 .nr_migratepages = 0,
8584 .order = -1,
8585 .zone = page_zone(pfn_to_page(start)),
8586 .mode = MIGRATE_SYNC,
8587 .ignore_skip_hint = true,
8588 .no_set_skip_hint = true,
8589 .gfp_mask = current_gfp_context(gfp_mask),
8590 };
8591 INIT_LIST_HEAD(&cc.migratepages);
8592
8593 /*
8594 * What we do here is we mark all pageblocks in range as
8595 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8596 * have different sizes, and due to the way page allocator
8597 * work, we align the range to biggest of the two pages so
8598 * that page allocator won't try to merge buddies from
8599 * different pageblocks and change MIGRATE_ISOLATE to some
8600 * other migration type.
8601 *
8602 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8603 * migrate the pages from an unaligned range (ie. pages that
8604 * we are interested in). This will put all the pages in
8605 * range back to page allocator as MIGRATE_ISOLATE.
8606 *
8607 * When this is done, we take the pages in range from page
8608 * allocator removing them from the buddy system. This way
8609 * page allocator will never consider using them.
8610 *
8611 * This lets us mark the pageblocks back as
8612 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8613 * aligned range but not in the unaligned, original range are
8614 * put back to page allocator so that buddy can use them.
8615 */
8616
8617 ret = start_isolate_page_range(pfn_max_align_down(start),
8618 pfn_max_align_up(end), migratetype, 0);
8619 if (ret < 0)
8620 return ret;
8621
8622 #ifdef CONFIG_CMA
8623 cc.zone->cma_alloc = 1;
8624 #endif
8625 /*
8626 * In case of -EBUSY, we'd like to know which page causes problem.
8627 * So, just fall through. test_pages_isolated() has a tracepoint
8628 * which will report the busy page.
8629 *
8630 * It is possible that busy pages could become available before
8631 * the call to test_pages_isolated, and the range will actually be
8632 * allocated. So, if we fall through be sure to clear ret so that
8633 * -EBUSY is not accidentally used or returned to caller.
8634 */
8635 ret = __alloc_contig_migrate_range(&cc, start, end);
8636 if (ret && ret != -EBUSY)
8637 goto done;
8638 ret =0;
8639
8640 /*
8641 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8642 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8643 * more, all pages in [start, end) are free in page allocator.
8644 * What we are going to do is to allocate all pages from
8645 * [start, end) (that is remove them from page allocator).
8646 *
8647 * The only problem is that pages at the beginning and at the
8648 * end of interesting range may be not aligned with pages that
8649 * page allocator holds, ie. they can be part of higher order
8650 * pages. Because of this, we reserve the bigger range and
8651 * once this is done free the pages we are not interested in.
8652 *
8653 * We don't have to hold zone->lock here because the pages are
8654 * isolated thus they won't get removed from buddy.
8655 */
8656
8657 lru_add_drain_all();
8658
8659 order = 0;
8660 outer_start = start;
8661 while (!PageBuddy(pfn_to_page(outer_start))) {
8662 if (++order >= MAX_ORDER) {
8663 outer_start = start;
8664 break;
8665 }
8666 outer_start &= ~0UL << order;
8667 }
8668
8669 if (outer_start != start) {
8670 order = page_order(pfn_to_page(outer_start));
8671
8672 /*
8673 * outer_start page could be small order buddy page and
8674 * it doesn't include start page. Adjust outer_start
8675 * in this case to report failed page properly
8676 * on tracepoint in test_pages_isolated()
8677 */
8678 if (outer_start + (1UL << order) <= start)
8679 outer_start = start;
8680 }
8681
8682 /* Make sure the range is really isolated. */
8683 if (test_pages_isolated(outer_start, end, false)) {
8684 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8685 __func__, outer_start, end);
8686 ret = -EBUSY;
8687 goto done;
8688 }
8689
8690 /* Grab isolated pages from freelists. */
8691 outer_end = isolate_freepages_range(&cc, outer_start, end);
8692 if (!outer_end) {
8693 ret = -EBUSY;
8694 goto done;
8695 }
8696
8697 /* Free head and tail (if any) */
8698 if (start != outer_start)
8699 free_contig_range(outer_start, start - outer_start);
8700 if (end != outer_end)
8701 free_contig_range(end, outer_end - end);
8702
8703 done:
8704 undo_isolate_page_range(pfn_max_align_down(start),
8705 pfn_max_align_up(end), migratetype);
8706 #ifdef CONFIG_CMA
8707 cc.zone->cma_alloc = 0;
8708 #endif
8709 return ret;
8710 }
8711 #endif /* CONFIG_CONTIG_ALLOC */
8712
free_contig_range(unsigned long pfn,unsigned int nr_pages)8713 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8714 {
8715 unsigned int count = 0;
8716
8717 for (; nr_pages--; pfn++) {
8718 struct page *page = pfn_to_page(pfn);
8719
8720 count += page_count(page) != 1;
8721 __free_page(page);
8722 }
8723 WARN(count != 0, "%d pages are still in use!\n", count);
8724 }
8725
8726 /*
8727 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8728 * page high values need to be recalulated.
8729 */
zone_pcp_update(struct zone * zone)8730 void __meminit zone_pcp_update(struct zone *zone)
8731 {
8732 unsigned cpu;
8733 mutex_lock(&pcp_batch_high_lock);
8734 for_each_possible_cpu(cpu)
8735 pageset_set_high_and_batch(zone,
8736 per_cpu_ptr(zone->pageset, cpu));
8737 mutex_unlock(&pcp_batch_high_lock);
8738 }
8739
zone_pcp_reset(struct zone * zone)8740 void zone_pcp_reset(struct zone *zone)
8741 {
8742 unsigned long flags;
8743 int cpu;
8744 struct per_cpu_pageset *pset;
8745
8746 /* avoid races with drain_pages() */
8747 local_irq_save(flags);
8748 if (zone->pageset != &boot_pageset) {
8749 for_each_online_cpu(cpu) {
8750 pset = per_cpu_ptr(zone->pageset, cpu);
8751 drain_zonestat(zone, pset);
8752 }
8753 free_percpu(zone->pageset);
8754 zone->pageset = &boot_pageset;
8755 }
8756 local_irq_restore(flags);
8757 }
8758
8759 #ifdef CONFIG_MEMORY_HOTREMOVE
8760 /*
8761 * All pages in the range must be in a single zone and isolated
8762 * before calling this.
8763 */
8764 unsigned long
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)8765 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8766 {
8767 struct page *page;
8768 struct zone *zone;
8769 unsigned int order, i;
8770 unsigned long pfn;
8771 unsigned long flags;
8772 unsigned long offlined_pages = 0;
8773
8774 /* find the first valid pfn */
8775 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8776 if (pfn_valid(pfn))
8777 break;
8778 if (pfn == end_pfn)
8779 return offlined_pages;
8780
8781 offline_mem_sections(pfn, end_pfn);
8782 zone = page_zone(pfn_to_page(pfn));
8783 spin_lock_irqsave(&zone->lock, flags);
8784 pfn = start_pfn;
8785 while (pfn < end_pfn) {
8786 if (!pfn_valid(pfn)) {
8787 pfn++;
8788 continue;
8789 }
8790 page = pfn_to_page(pfn);
8791 /*
8792 * The HWPoisoned page may be not in buddy system, and
8793 * page_count() is not 0.
8794 */
8795 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8796 pfn++;
8797 SetPageReserved(page);
8798 offlined_pages++;
8799 continue;
8800 }
8801
8802 BUG_ON(page_count(page));
8803 BUG_ON(!PageBuddy(page));
8804 order = page_order(page);
8805 offlined_pages += 1 << order;
8806 #ifdef CONFIG_DEBUG_VM
8807 pr_info("remove from free list %lx %d %lx\n",
8808 pfn, 1 << order, end_pfn);
8809 #endif
8810 del_page_from_free_area(page, &zone->free_area[order]);
8811 for (i = 0; i < (1 << order); i++)
8812 SetPageReserved((page+i));
8813 pfn += (1 << order);
8814 }
8815 spin_unlock_irqrestore(&zone->lock, flags);
8816
8817 return offlined_pages;
8818 }
8819 #endif
8820
is_free_buddy_page(struct page * page)8821 bool is_free_buddy_page(struct page *page)
8822 {
8823 struct zone *zone = page_zone(page);
8824 unsigned long pfn = page_to_pfn(page);
8825 unsigned long flags;
8826 unsigned int order;
8827
8828 spin_lock_irqsave(&zone->lock, flags);
8829 for (order = 0; order < MAX_ORDER; order++) {
8830 struct page *page_head = page - (pfn & ((1 << order) - 1));
8831
8832 if (PageBuddy(page_head) && page_order(page_head) >= order)
8833 break;
8834 }
8835 spin_unlock_irqrestore(&zone->lock, flags);
8836
8837 return order < MAX_ORDER;
8838 }
8839
8840 #ifdef CONFIG_MEMORY_FAILURE
8841 /*
8842 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8843 * test is performed under the zone lock to prevent a race against page
8844 * allocation.
8845 */
set_hwpoison_free_buddy_page(struct page * page)8846 bool set_hwpoison_free_buddy_page(struct page *page)
8847 {
8848 struct zone *zone = page_zone(page);
8849 unsigned long pfn = page_to_pfn(page);
8850 unsigned long flags;
8851 unsigned int order;
8852 bool hwpoisoned = false;
8853
8854 spin_lock_irqsave(&zone->lock, flags);
8855 for (order = 0; order < MAX_ORDER; order++) {
8856 struct page *page_head = page - (pfn & ((1 << order) - 1));
8857
8858 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8859 if (!TestSetPageHWPoison(page))
8860 hwpoisoned = true;
8861 break;
8862 }
8863 }
8864 spin_unlock_irqrestore(&zone->lock, flags);
8865
8866 return hwpoisoned;
8867 }
8868 #endif
8869
8870 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)8871 bool has_managed_dma(void)
8872 {
8873 struct pglist_data *pgdat;
8874
8875 for_each_online_pgdat(pgdat) {
8876 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
8877
8878 if (managed_zone(zone))
8879 return true;
8880 }
8881 return false;
8882 }
8883 #endif /* CONFIG_ZONE_DMA */
8884