1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_LIST_H
3 #define _LINUX_LIST_H
4
5 #include <linux/types.h>
6 #include <linux/stddef.h>
7 #include <linux/poison.h>
8 #include <linux/const.h>
9 #include <linux/kernel.h>
10
11 /*
12 * Simple doubly linked list implementation.
13 *
14 * Some of the internal functions ("__xxx") are useful when
15 * manipulating whole lists rather than single entries, as
16 * sometimes we already know the next/prev entries and we can
17 * generate better code by using them directly rather than
18 * using the generic single-entry routines.
19 */
20
21 #define LIST_HEAD_INIT(name) { &(name), &(name) }
22
23 #define LIST_HEAD(name) \
24 struct list_head name = LIST_HEAD_INIT(name)
25
INIT_LIST_HEAD(struct list_head * list)26 static inline void INIT_LIST_HEAD(struct list_head *list)
27 {
28 WRITE_ONCE(list->next, list);
29 list->prev = list;
30 }
31
32 #ifdef CONFIG_DEBUG_LIST
33 extern bool __list_add_valid(struct list_head *new,
34 struct list_head *prev,
35 struct list_head *next);
36 extern bool __list_del_entry_valid(struct list_head *entry);
37 #else
__list_add_valid(struct list_head * new,struct list_head * prev,struct list_head * next)38 static inline bool __list_add_valid(struct list_head *new,
39 struct list_head *prev,
40 struct list_head *next)
41 {
42 return true;
43 }
__list_del_entry_valid(struct list_head * entry)44 static inline bool __list_del_entry_valid(struct list_head *entry)
45 {
46 return true;
47 }
48 #endif
49
50 /*
51 * Insert a new entry between two known consecutive entries.
52 *
53 * This is only for internal list manipulation where we know
54 * the prev/next entries already!
55 */
__list_add(struct list_head * new,struct list_head * prev,struct list_head * next)56 static inline void __list_add(struct list_head *new,
57 struct list_head *prev,
58 struct list_head *next)
59 {
60 if (!__list_add_valid(new, prev, next))
61 return;
62
63 next->prev = new;
64 new->next = next;
65 new->prev = prev;
66 WRITE_ONCE(prev->next, new);
67 }
68
69 /**
70 * list_add - add a new entry
71 * @new: new entry to be added
72 * @head: list head to add it after
73 *
74 * Insert a new entry after the specified head.
75 * This is good for implementing stacks.
76 */
list_add(struct list_head * new,struct list_head * head)77 static inline void list_add(struct list_head *new, struct list_head *head)
78 {
79 __list_add(new, head, head->next);
80 }
81
82
83 /**
84 * list_add_tail - add a new entry
85 * @new: new entry to be added
86 * @head: list head to add it before
87 *
88 * Insert a new entry before the specified head.
89 * This is useful for implementing queues.
90 */
list_add_tail(struct list_head * new,struct list_head * head)91 static inline void list_add_tail(struct list_head *new, struct list_head *head)
92 {
93 __list_add(new, head->prev, head);
94 }
95
96 /*
97 * Delete a list entry by making the prev/next entries
98 * point to each other.
99 *
100 * This is only for internal list manipulation where we know
101 * the prev/next entries already!
102 */
__list_del(struct list_head * prev,struct list_head * next)103 static inline void __list_del(struct list_head * prev, struct list_head * next)
104 {
105 next->prev = prev;
106 WRITE_ONCE(prev->next, next);
107 }
108
109 /*
110 * Delete a list entry and clear the 'prev' pointer.
111 *
112 * This is a special-purpose list clearing method used in the networking code
113 * for lists allocated as per-cpu, where we don't want to incur the extra
114 * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
115 * needs to check the node 'prev' pointer instead of calling list_empty().
116 */
__list_del_clearprev(struct list_head * entry)117 static inline void __list_del_clearprev(struct list_head *entry)
118 {
119 __list_del(entry->prev, entry->next);
120 entry->prev = NULL;
121 }
122
123 /**
124 * list_del - deletes entry from list.
125 * @entry: the element to delete from the list.
126 * Note: list_empty() on entry does not return true after this, the entry is
127 * in an undefined state.
128 */
__list_del_entry(struct list_head * entry)129 static inline void __list_del_entry(struct list_head *entry)
130 {
131 if (!__list_del_entry_valid(entry))
132 return;
133
134 __list_del(entry->prev, entry->next);
135 }
136
list_del(struct list_head * entry)137 static inline void list_del(struct list_head *entry)
138 {
139 __list_del_entry(entry);
140 entry->next = LIST_POISON1;
141 entry->prev = LIST_POISON2;
142 }
143
144 /**
145 * list_replace - replace old entry by new one
146 * @old : the element to be replaced
147 * @new : the new element to insert
148 *
149 * If @old was empty, it will be overwritten.
150 */
list_replace(struct list_head * old,struct list_head * new)151 static inline void list_replace(struct list_head *old,
152 struct list_head *new)
153 {
154 new->next = old->next;
155 new->next->prev = new;
156 new->prev = old->prev;
157 new->prev->next = new;
158 }
159
list_replace_init(struct list_head * old,struct list_head * new)160 static inline void list_replace_init(struct list_head *old,
161 struct list_head *new)
162 {
163 list_replace(old, new);
164 INIT_LIST_HEAD(old);
165 }
166
167 /**
168 * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
169 * @entry1: the location to place entry2
170 * @entry2: the location to place entry1
171 */
list_swap(struct list_head * entry1,struct list_head * entry2)172 static inline void list_swap(struct list_head *entry1,
173 struct list_head *entry2)
174 {
175 struct list_head *pos = entry2->prev;
176
177 list_del(entry2);
178 list_replace(entry1, entry2);
179 if (pos == entry1)
180 pos = entry2;
181 list_add(entry1, pos);
182 }
183
184 /**
185 * list_del_init - deletes entry from list and reinitialize it.
186 * @entry: the element to delete from the list.
187 */
list_del_init(struct list_head * entry)188 static inline void list_del_init(struct list_head *entry)
189 {
190 __list_del_entry(entry);
191 INIT_LIST_HEAD(entry);
192 }
193
194 /**
195 * list_move - delete from one list and add as another's head
196 * @list: the entry to move
197 * @head: the head that will precede our entry
198 */
list_move(struct list_head * list,struct list_head * head)199 static inline void list_move(struct list_head *list, struct list_head *head)
200 {
201 __list_del_entry(list);
202 list_add(list, head);
203 }
204
205 /**
206 * list_move_tail - delete from one list and add as another's tail
207 * @list: the entry to move
208 * @head: the head that will follow our entry
209 */
list_move_tail(struct list_head * list,struct list_head * head)210 static inline void list_move_tail(struct list_head *list,
211 struct list_head *head)
212 {
213 __list_del_entry(list);
214 list_add_tail(list, head);
215 }
216
217 /**
218 * list_bulk_move_tail - move a subsection of a list to its tail
219 * @head: the head that will follow our entry
220 * @first: first entry to move
221 * @last: last entry to move, can be the same as first
222 *
223 * Move all entries between @first and including @last before @head.
224 * All three entries must belong to the same linked list.
225 */
list_bulk_move_tail(struct list_head * head,struct list_head * first,struct list_head * last)226 static inline void list_bulk_move_tail(struct list_head *head,
227 struct list_head *first,
228 struct list_head *last)
229 {
230 first->prev->next = last->next;
231 last->next->prev = first->prev;
232
233 head->prev->next = first;
234 first->prev = head->prev;
235
236 last->next = head;
237 head->prev = last;
238 }
239
240 /**
241 * list_is_first -- tests whether @list is the first entry in list @head
242 * @list: the entry to test
243 * @head: the head of the list
244 */
list_is_first(const struct list_head * list,const struct list_head * head)245 static inline int list_is_first(const struct list_head *list,
246 const struct list_head *head)
247 {
248 return list->prev == head;
249 }
250
251 /**
252 * list_is_last - tests whether @list is the last entry in list @head
253 * @list: the entry to test
254 * @head: the head of the list
255 */
list_is_last(const struct list_head * list,const struct list_head * head)256 static inline int list_is_last(const struct list_head *list,
257 const struct list_head *head)
258 {
259 return list->next == head;
260 }
261
262 /**
263 * list_empty - tests whether a list is empty
264 * @head: the list to test.
265 */
list_empty(const struct list_head * head)266 static inline int list_empty(const struct list_head *head)
267 {
268 return READ_ONCE(head->next) == head;
269 }
270
271 /**
272 * list_del_init_careful - deletes entry from list and reinitialize it.
273 * @entry: the element to delete from the list.
274 *
275 * This is the same as list_del_init(), except designed to be used
276 * together with list_empty_careful() in a way to guarantee ordering
277 * of other memory operations.
278 *
279 * Any memory operations done before a list_del_init_careful() are
280 * guaranteed to be visible after a list_empty_careful() test.
281 */
list_del_init_careful(struct list_head * entry)282 static inline void list_del_init_careful(struct list_head *entry)
283 {
284 __list_del_entry(entry);
285 entry->prev = entry;
286 smp_store_release(&entry->next, entry);
287 }
288
289 /**
290 * list_empty_careful - tests whether a list is empty and not being modified
291 * @head: the list to test
292 *
293 * Description:
294 * tests whether a list is empty _and_ checks that no other CPU might be
295 * in the process of modifying either member (next or prev)
296 *
297 * NOTE: using list_empty_careful() without synchronization
298 * can only be safe if the only activity that can happen
299 * to the list entry is list_del_init(). Eg. it cannot be used
300 * if another CPU could re-list_add() it.
301 */
list_empty_careful(const struct list_head * head)302 static inline int list_empty_careful(const struct list_head *head)
303 {
304 struct list_head *next = smp_load_acquire(&head->next);
305 return (next == head) && (next == head->prev);
306 }
307
308 /**
309 * list_rotate_left - rotate the list to the left
310 * @head: the head of the list
311 */
list_rotate_left(struct list_head * head)312 static inline void list_rotate_left(struct list_head *head)
313 {
314 struct list_head *first;
315
316 if (!list_empty(head)) {
317 first = head->next;
318 list_move_tail(first, head);
319 }
320 }
321
322 /**
323 * list_rotate_to_front() - Rotate list to specific item.
324 * @list: The desired new front of the list.
325 * @head: The head of the list.
326 *
327 * Rotates list so that @list becomes the new front of the list.
328 */
list_rotate_to_front(struct list_head * list,struct list_head * head)329 static inline void list_rotate_to_front(struct list_head *list,
330 struct list_head *head)
331 {
332 /*
333 * Deletes the list head from the list denoted by @head and
334 * places it as the tail of @list, this effectively rotates the
335 * list so that @list is at the front.
336 */
337 list_move_tail(head, list);
338 }
339
340 /**
341 * list_is_singular - tests whether a list has just one entry.
342 * @head: the list to test.
343 */
list_is_singular(const struct list_head * head)344 static inline int list_is_singular(const struct list_head *head)
345 {
346 return !list_empty(head) && (head->next == head->prev);
347 }
348
__list_cut_position(struct list_head * list,struct list_head * head,struct list_head * entry)349 static inline void __list_cut_position(struct list_head *list,
350 struct list_head *head, struct list_head *entry)
351 {
352 struct list_head *new_first = entry->next;
353 list->next = head->next;
354 list->next->prev = list;
355 list->prev = entry;
356 entry->next = list;
357 head->next = new_first;
358 new_first->prev = head;
359 }
360
361 /**
362 * list_cut_position - cut a list into two
363 * @list: a new list to add all removed entries
364 * @head: a list with entries
365 * @entry: an entry within head, could be the head itself
366 * and if so we won't cut the list
367 *
368 * This helper moves the initial part of @head, up to and
369 * including @entry, from @head to @list. You should
370 * pass on @entry an element you know is on @head. @list
371 * should be an empty list or a list you do not care about
372 * losing its data.
373 *
374 */
list_cut_position(struct list_head * list,struct list_head * head,struct list_head * entry)375 static inline void list_cut_position(struct list_head *list,
376 struct list_head *head, struct list_head *entry)
377 {
378 if (list_empty(head))
379 return;
380 if (list_is_singular(head) &&
381 (head->next != entry && head != entry))
382 return;
383 if (entry == head)
384 INIT_LIST_HEAD(list);
385 else
386 __list_cut_position(list, head, entry);
387 }
388
389 /**
390 * list_cut_before - cut a list into two, before given entry
391 * @list: a new list to add all removed entries
392 * @head: a list with entries
393 * @entry: an entry within head, could be the head itself
394 *
395 * This helper moves the initial part of @head, up to but
396 * excluding @entry, from @head to @list. You should pass
397 * in @entry an element you know is on @head. @list should
398 * be an empty list or a list you do not care about losing
399 * its data.
400 * If @entry == @head, all entries on @head are moved to
401 * @list.
402 */
list_cut_before(struct list_head * list,struct list_head * head,struct list_head * entry)403 static inline void list_cut_before(struct list_head *list,
404 struct list_head *head,
405 struct list_head *entry)
406 {
407 if (head->next == entry) {
408 INIT_LIST_HEAD(list);
409 return;
410 }
411 list->next = head->next;
412 list->next->prev = list;
413 list->prev = entry->prev;
414 list->prev->next = list;
415 head->next = entry;
416 entry->prev = head;
417 }
418
__list_splice(const struct list_head * list,struct list_head * prev,struct list_head * next)419 static inline void __list_splice(const struct list_head *list,
420 struct list_head *prev,
421 struct list_head *next)
422 {
423 struct list_head *first = list->next;
424 struct list_head *last = list->prev;
425
426 first->prev = prev;
427 prev->next = first;
428
429 last->next = next;
430 next->prev = last;
431 }
432
433 /**
434 * list_splice - join two lists, this is designed for stacks
435 * @list: the new list to add.
436 * @head: the place to add it in the first list.
437 */
list_splice(const struct list_head * list,struct list_head * head)438 static inline void list_splice(const struct list_head *list,
439 struct list_head *head)
440 {
441 if (!list_empty(list))
442 __list_splice(list, head, head->next);
443 }
444
445 /**
446 * list_splice_tail - join two lists, each list being a queue
447 * @list: the new list to add.
448 * @head: the place to add it in the first list.
449 */
list_splice_tail(struct list_head * list,struct list_head * head)450 static inline void list_splice_tail(struct list_head *list,
451 struct list_head *head)
452 {
453 if (!list_empty(list))
454 __list_splice(list, head->prev, head);
455 }
456
457 /**
458 * list_splice_init - join two lists and reinitialise the emptied list.
459 * @list: the new list to add.
460 * @head: the place to add it in the first list.
461 *
462 * The list at @list is reinitialised
463 */
list_splice_init(struct list_head * list,struct list_head * head)464 static inline void list_splice_init(struct list_head *list,
465 struct list_head *head)
466 {
467 if (!list_empty(list)) {
468 __list_splice(list, head, head->next);
469 INIT_LIST_HEAD(list);
470 }
471 }
472
473 /**
474 * list_splice_tail_init - join two lists and reinitialise the emptied list
475 * @list: the new list to add.
476 * @head: the place to add it in the first list.
477 *
478 * Each of the lists is a queue.
479 * The list at @list is reinitialised
480 */
list_splice_tail_init(struct list_head * list,struct list_head * head)481 static inline void list_splice_tail_init(struct list_head *list,
482 struct list_head *head)
483 {
484 if (!list_empty(list)) {
485 __list_splice(list, head->prev, head);
486 INIT_LIST_HEAD(list);
487 }
488 }
489
490 /**
491 * list_entry - get the struct for this entry
492 * @ptr: the &struct list_head pointer.
493 * @type: the type of the struct this is embedded in.
494 * @member: the name of the list_head within the struct.
495 */
496 #define list_entry(ptr, type, member) \
497 container_of(ptr, type, member)
498
499 /**
500 * list_first_entry - get the first element from a list
501 * @ptr: the list head to take the element from.
502 * @type: the type of the struct this is embedded in.
503 * @member: the name of the list_head within the struct.
504 *
505 * Note, that list is expected to be not empty.
506 */
507 #define list_first_entry(ptr, type, member) \
508 list_entry((ptr)->next, type, member)
509
510 /**
511 * list_last_entry - get the last element from a list
512 * @ptr: the list head to take the element from.
513 * @type: the type of the struct this is embedded in.
514 * @member: the name of the list_head within the struct.
515 *
516 * Note, that list is expected to be not empty.
517 */
518 #define list_last_entry(ptr, type, member) \
519 list_entry((ptr)->prev, type, member)
520
521 /**
522 * list_first_entry_or_null - get the first element from a list
523 * @ptr: the list head to take the element from.
524 * @type: the type of the struct this is embedded in.
525 * @member: the name of the list_head within the struct.
526 *
527 * Note that if the list is empty, it returns NULL.
528 */
529 #define list_first_entry_or_null(ptr, type, member) ({ \
530 struct list_head *head__ = (ptr); \
531 struct list_head *pos__ = READ_ONCE(head__->next); \
532 pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
533 })
534
535 /**
536 * list_next_entry - get the next element in list
537 * @pos: the type * to cursor
538 * @member: the name of the list_head within the struct.
539 */
540 #define list_next_entry(pos, member) \
541 list_entry((pos)->member.next, typeof(*(pos)), member)
542
543 /**
544 * list_prev_entry - get the prev element in list
545 * @pos: the type * to cursor
546 * @member: the name of the list_head within the struct.
547 */
548 #define list_prev_entry(pos, member) \
549 list_entry((pos)->member.prev, typeof(*(pos)), member)
550
551 /**
552 * list_for_each - iterate over a list
553 * @pos: the &struct list_head to use as a loop cursor.
554 * @head: the head for your list.
555 */
556 #define list_for_each(pos, head) \
557 for (pos = (head)->next; pos != (head); pos = pos->next)
558
559 /**
560 * list_for_each_prev - iterate over a list backwards
561 * @pos: the &struct list_head to use as a loop cursor.
562 * @head: the head for your list.
563 */
564 #define list_for_each_prev(pos, head) \
565 for (pos = (head)->prev; pos != (head); pos = pos->prev)
566
567 /**
568 * list_for_each_safe - iterate over a list safe against removal of list entry
569 * @pos: the &struct list_head to use as a loop cursor.
570 * @n: another &struct list_head to use as temporary storage
571 * @head: the head for your list.
572 */
573 #define list_for_each_safe(pos, n, head) \
574 for (pos = (head)->next, n = pos->next; pos != (head); \
575 pos = n, n = pos->next)
576
577 /**
578 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
579 * @pos: the &struct list_head to use as a loop cursor.
580 * @n: another &struct list_head to use as temporary storage
581 * @head: the head for your list.
582 */
583 #define list_for_each_prev_safe(pos, n, head) \
584 for (pos = (head)->prev, n = pos->prev; \
585 pos != (head); \
586 pos = n, n = pos->prev)
587
588 /**
589 * list_entry_is_head - test if the entry points to the head of the list
590 * @pos: the type * to cursor
591 * @head: the head for your list.
592 * @member: the name of the list_head within the struct.
593 */
594 #define list_entry_is_head(pos, head, member) \
595 (&pos->member == (head))
596
597 /**
598 * list_for_each_entry - iterate over list of given type
599 * @pos: the type * to use as a loop cursor.
600 * @head: the head for your list.
601 * @member: the name of the list_head within the struct.
602 */
603 #define list_for_each_entry(pos, head, member) \
604 for (pos = list_first_entry(head, typeof(*pos), member); \
605 !list_entry_is_head(pos, head, member); \
606 pos = list_next_entry(pos, member))
607
608 /**
609 * list_for_each_entry_reverse - iterate backwards over list of given type.
610 * @pos: the type * to use as a loop cursor.
611 * @head: the head for your list.
612 * @member: the name of the list_head within the struct.
613 */
614 #define list_for_each_entry_reverse(pos, head, member) \
615 for (pos = list_last_entry(head, typeof(*pos), member); \
616 !list_entry_is_head(pos, head, member); \
617 pos = list_prev_entry(pos, member))
618
619 /**
620 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
621 * @pos: the type * to use as a start point
622 * @head: the head of the list
623 * @member: the name of the list_head within the struct.
624 *
625 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
626 */
627 #define list_prepare_entry(pos, head, member) \
628 ((pos) ? : list_entry(head, typeof(*pos), member))
629
630 /**
631 * list_for_each_entry_continue - continue iteration over list of given type
632 * @pos: the type * to use as a loop cursor.
633 * @head: the head for your list.
634 * @member: the name of the list_head within the struct.
635 *
636 * Continue to iterate over list of given type, continuing after
637 * the current position.
638 */
639 #define list_for_each_entry_continue(pos, head, member) \
640 for (pos = list_next_entry(pos, member); \
641 !list_entry_is_head(pos, head, member); \
642 pos = list_next_entry(pos, member))
643
644 /**
645 * list_for_each_entry_continue_reverse - iterate backwards from the given point
646 * @pos: the type * to use as a loop cursor.
647 * @head: the head for your list.
648 * @member: the name of the list_head within the struct.
649 *
650 * Start to iterate over list of given type backwards, continuing after
651 * the current position.
652 */
653 #define list_for_each_entry_continue_reverse(pos, head, member) \
654 for (pos = list_prev_entry(pos, member); \
655 !list_entry_is_head(pos, head, member); \
656 pos = list_prev_entry(pos, member))
657
658 /**
659 * list_for_each_entry_from - iterate over list of given type from the current point
660 * @pos: the type * to use as a loop cursor.
661 * @head: the head for your list.
662 * @member: the name of the list_head within the struct.
663 *
664 * Iterate over list of given type, continuing from current position.
665 */
666 #define list_for_each_entry_from(pos, head, member) \
667 for (; !list_entry_is_head(pos, head, member); \
668 pos = list_next_entry(pos, member))
669
670 /**
671 * list_for_each_entry_from_reverse - iterate backwards over list of given type
672 * from the current point
673 * @pos: the type * to use as a loop cursor.
674 * @head: the head for your list.
675 * @member: the name of the list_head within the struct.
676 *
677 * Iterate backwards over list of given type, continuing from current position.
678 */
679 #define list_for_each_entry_from_reverse(pos, head, member) \
680 for (; !list_entry_is_head(pos, head, member); \
681 pos = list_prev_entry(pos, member))
682
683 /**
684 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
685 * @pos: the type * to use as a loop cursor.
686 * @n: another type * to use as temporary storage
687 * @head: the head for your list.
688 * @member: the name of the list_head within the struct.
689 */
690 #define list_for_each_entry_safe(pos, n, head, member) \
691 for (pos = list_first_entry(head, typeof(*pos), member), \
692 n = list_next_entry(pos, member); \
693 !list_entry_is_head(pos, head, member); \
694 pos = n, n = list_next_entry(n, member))
695
696 /**
697 * list_for_each_entry_safe_continue - continue list iteration safe against removal
698 * @pos: the type * to use as a loop cursor.
699 * @n: another type * to use as temporary storage
700 * @head: the head for your list.
701 * @member: the name of the list_head within the struct.
702 *
703 * Iterate over list of given type, continuing after current point,
704 * safe against removal of list entry.
705 */
706 #define list_for_each_entry_safe_continue(pos, n, head, member) \
707 for (pos = list_next_entry(pos, member), \
708 n = list_next_entry(pos, member); \
709 !list_entry_is_head(pos, head, member); \
710 pos = n, n = list_next_entry(n, member))
711
712 /**
713 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
714 * @pos: the type * to use as a loop cursor.
715 * @n: another type * to use as temporary storage
716 * @head: the head for your list.
717 * @member: the name of the list_head within the struct.
718 *
719 * Iterate over list of given type from current point, safe against
720 * removal of list entry.
721 */
722 #define list_for_each_entry_safe_from(pos, n, head, member) \
723 for (n = list_next_entry(pos, member); \
724 !list_entry_is_head(pos, head, member); \
725 pos = n, n = list_next_entry(n, member))
726
727 /**
728 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
729 * @pos: the type * to use as a loop cursor.
730 * @n: another type * to use as temporary storage
731 * @head: the head for your list.
732 * @member: the name of the list_head within the struct.
733 *
734 * Iterate backwards over list of given type, safe against removal
735 * of list entry.
736 */
737 #define list_for_each_entry_safe_reverse(pos, n, head, member) \
738 for (pos = list_last_entry(head, typeof(*pos), member), \
739 n = list_prev_entry(pos, member); \
740 !list_entry_is_head(pos, head, member); \
741 pos = n, n = list_prev_entry(n, member))
742
743 /**
744 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
745 * @pos: the loop cursor used in the list_for_each_entry_safe loop
746 * @n: temporary storage used in list_for_each_entry_safe
747 * @member: the name of the list_head within the struct.
748 *
749 * list_safe_reset_next is not safe to use in general if the list may be
750 * modified concurrently (eg. the lock is dropped in the loop body). An
751 * exception to this is if the cursor element (pos) is pinned in the list,
752 * and list_safe_reset_next is called after re-taking the lock and before
753 * completing the current iteration of the loop body.
754 */
755 #define list_safe_reset_next(pos, n, member) \
756 n = list_next_entry(pos, member)
757
758 /*
759 * Double linked lists with a single pointer list head.
760 * Mostly useful for hash tables where the two pointer list head is
761 * too wasteful.
762 * You lose the ability to access the tail in O(1).
763 */
764
765 #define HLIST_HEAD_INIT { .first = NULL }
766 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
767 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
INIT_HLIST_NODE(struct hlist_node * h)768 static inline void INIT_HLIST_NODE(struct hlist_node *h)
769 {
770 h->next = NULL;
771 h->pprev = NULL;
772 }
773
hlist_unhashed(const struct hlist_node * h)774 static inline int hlist_unhashed(const struct hlist_node *h)
775 {
776 return !h->pprev;
777 }
778
hlist_empty(const struct hlist_head * h)779 static inline int hlist_empty(const struct hlist_head *h)
780 {
781 return !READ_ONCE(h->first);
782 }
783
__hlist_del(struct hlist_node * n)784 static inline void __hlist_del(struct hlist_node *n)
785 {
786 struct hlist_node *next = n->next;
787 struct hlist_node **pprev = n->pprev;
788
789 WRITE_ONCE(*pprev, next);
790 if (next)
791 next->pprev = pprev;
792 }
793
hlist_del(struct hlist_node * n)794 static inline void hlist_del(struct hlist_node *n)
795 {
796 __hlist_del(n);
797 n->next = LIST_POISON1;
798 n->pprev = LIST_POISON2;
799 }
800
hlist_del_init(struct hlist_node * n)801 static inline void hlist_del_init(struct hlist_node *n)
802 {
803 if (!hlist_unhashed(n)) {
804 __hlist_del(n);
805 INIT_HLIST_NODE(n);
806 }
807 }
808
hlist_add_head(struct hlist_node * n,struct hlist_head * h)809 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
810 {
811 struct hlist_node *first = h->first;
812 n->next = first;
813 if (first)
814 first->pprev = &n->next;
815 WRITE_ONCE(h->first, n);
816 n->pprev = &h->first;
817 }
818
819 /* next must be != NULL */
hlist_add_before(struct hlist_node * n,struct hlist_node * next)820 static inline void hlist_add_before(struct hlist_node *n,
821 struct hlist_node *next)
822 {
823 n->pprev = next->pprev;
824 n->next = next;
825 next->pprev = &n->next;
826 WRITE_ONCE(*(n->pprev), n);
827 }
828
hlist_add_behind(struct hlist_node * n,struct hlist_node * prev)829 static inline void hlist_add_behind(struct hlist_node *n,
830 struct hlist_node *prev)
831 {
832 n->next = prev->next;
833 prev->next = n;
834 n->pprev = &prev->next;
835
836 if (n->next)
837 n->next->pprev = &n->next;
838 }
839
840 /* after that we'll appear to be on some hlist and hlist_del will work */
hlist_add_fake(struct hlist_node * n)841 static inline void hlist_add_fake(struct hlist_node *n)
842 {
843 n->pprev = &n->next;
844 }
845
hlist_fake(struct hlist_node * h)846 static inline bool hlist_fake(struct hlist_node *h)
847 {
848 return h->pprev == &h->next;
849 }
850
851 /*
852 * Check whether the node is the only node of the head without
853 * accessing head:
854 */
855 static inline bool
hlist_is_singular_node(struct hlist_node * n,struct hlist_head * h)856 hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
857 {
858 return !n->next && n->pprev == &h->first;
859 }
860
861 /*
862 * Move a list from one list head to another. Fixup the pprev
863 * reference of the first entry if it exists.
864 */
hlist_move_list(struct hlist_head * old,struct hlist_head * new)865 static inline void hlist_move_list(struct hlist_head *old,
866 struct hlist_head *new)
867 {
868 new->first = old->first;
869 if (new->first)
870 new->first->pprev = &new->first;
871 old->first = NULL;
872 }
873
874 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
875
876 #define hlist_for_each(pos, head) \
877 for (pos = (head)->first; pos ; pos = pos->next)
878
879 #define hlist_for_each_safe(pos, n, head) \
880 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
881 pos = n)
882
883 #define hlist_entry_safe(ptr, type, member) \
884 ({ typeof(ptr) ____ptr = (ptr); \
885 ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
886 })
887
888 /**
889 * hlist_for_each_entry - iterate over list of given type
890 * @pos: the type * to use as a loop cursor.
891 * @head: the head for your list.
892 * @member: the name of the hlist_node within the struct.
893 */
894 #define hlist_for_each_entry(pos, head, member) \
895 for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
896 pos; \
897 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
898
899 /**
900 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
901 * @pos: the type * to use as a loop cursor.
902 * @member: the name of the hlist_node within the struct.
903 */
904 #define hlist_for_each_entry_continue(pos, member) \
905 for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
906 pos; \
907 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
908
909 /**
910 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
911 * @pos: the type * to use as a loop cursor.
912 * @member: the name of the hlist_node within the struct.
913 */
914 #define hlist_for_each_entry_from(pos, member) \
915 for (; pos; \
916 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
917
918 /**
919 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
920 * @pos: the type * to use as a loop cursor.
921 * @n: another &struct hlist_node to use as temporary storage
922 * @head: the head for your list.
923 * @member: the name of the hlist_node within the struct.
924 */
925 #define hlist_for_each_entry_safe(pos, n, head, member) \
926 for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
927 pos && ({ n = pos->member.next; 1; }); \
928 pos = hlist_entry_safe(n, typeof(*pos), member))
929
930 #endif
931