1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 #ifndef _ASM_POWERPC_IO_H
3 #define _ASM_POWERPC_IO_H
4 #ifdef __KERNEL__
5
6 #define ARCH_HAS_IOREMAP_WC
7 #ifdef CONFIG_PPC32
8 #define ARCH_HAS_IOREMAP_WT
9 #endif
10
11 /*
12 */
13
14 /* Check of existence of legacy devices */
15 extern int check_legacy_ioport(unsigned long base_port);
16 #define I8042_DATA_REG 0x60
17 #define FDC_BASE 0x3f0
18
19 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20 extern struct pci_dev *isa_bridge_pcidev;
21 /*
22 * has legacy ISA devices ?
23 */
24 #define arch_has_dev_port() (isa_bridge_pcidev != NULL || isa_io_special)
25 #endif
26
27 #include <linux/device.h>
28 #include <linux/compiler.h>
29 #include <linux/mm.h>
30 #include <asm/page.h>
31 #include <asm/byteorder.h>
32 #include <asm/synch.h>
33 #include <asm/delay.h>
34 #include <asm/mmiowb.h>
35 #include <asm/mmu.h>
36 #include <asm/ppc_asm.h>
37 #include <asm/pgtable.h>
38
39 #define SIO_CONFIG_RA 0x398
40 #define SIO_CONFIG_RD 0x399
41
42 #define SLOW_DOWN_IO
43
44 /* 32 bits uses slightly different variables for the various IO
45 * bases. Most of this file only uses _IO_BASE though which we
46 * define properly based on the platform
47 */
48 #ifndef CONFIG_PCI
49 #define _IO_BASE 0
50 #define _ISA_MEM_BASE 0
51 #define PCI_DRAM_OFFSET 0
52 #elif defined(CONFIG_PPC32)
53 #define _IO_BASE isa_io_base
54 #define _ISA_MEM_BASE isa_mem_base
55 #define PCI_DRAM_OFFSET pci_dram_offset
56 #else
57 #define _IO_BASE pci_io_base
58 #define _ISA_MEM_BASE isa_mem_base
59 #define PCI_DRAM_OFFSET 0
60 #endif
61
62 extern unsigned long isa_io_base;
63 extern unsigned long pci_io_base;
64 extern unsigned long pci_dram_offset;
65
66 extern resource_size_t isa_mem_base;
67
68 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE
69 * is not set or addresses cannot be translated to MMIO. This is typically
70 * set when the platform supports "special" PIO accesses via a non memory
71 * mapped mechanism, and allows things like the early udbg UART code to
72 * function.
73 */
74 extern bool isa_io_special;
75
76 #ifdef CONFIG_PPC32
77 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
78 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
79 #endif
80 #endif
81
82 /*
83 *
84 * Low level MMIO accessors
85 *
86 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
87 * specific and thus shouldn't be used in generic code. The accessors
88 * provided here are:
89 *
90 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
91 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
92 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
93 *
94 * Those operate directly on a kernel virtual address. Note that the prototype
95 * for the out_* accessors has the arguments in opposite order from the usual
96 * linux PCI accessors. Unlike those, they take the address first and the value
97 * next.
98 *
99 * Note: I might drop the _ns suffix on the stream operations soon as it is
100 * simply normal for stream operations to not swap in the first place.
101 *
102 */
103
104 #define DEF_MMIO_IN_X(name, size, insn) \
105 static inline u##size name(const volatile u##size __iomem *addr) \
106 { \
107 u##size ret; \
108 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \
109 : "=r" (ret) : "Z" (*addr) : "memory"); \
110 return ret; \
111 }
112
113 #define DEF_MMIO_OUT_X(name, size, insn) \
114 static inline void name(volatile u##size __iomem *addr, u##size val) \
115 { \
116 __asm__ __volatile__("sync;"#insn" %1,%y0" \
117 : "=Z" (*addr) : "r" (val) : "memory"); \
118 mmiowb_set_pending(); \
119 }
120
121 #define DEF_MMIO_IN_D(name, size, insn) \
122 static inline u##size name(const volatile u##size __iomem *addr) \
123 { \
124 u##size ret; \
125 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
126 : "=r" (ret) : "m" (*addr) : "memory"); \
127 return ret; \
128 }
129
130 #define DEF_MMIO_OUT_D(name, size, insn) \
131 static inline void name(volatile u##size __iomem *addr, u##size val) \
132 { \
133 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \
134 : "=m" (*addr) : "r" (val) : "memory"); \
135 mmiowb_set_pending(); \
136 }
137
138 DEF_MMIO_IN_D(in_8, 8, lbz);
139 DEF_MMIO_OUT_D(out_8, 8, stb);
140
141 #ifdef __BIG_ENDIAN__
142 DEF_MMIO_IN_D(in_be16, 16, lhz);
143 DEF_MMIO_IN_D(in_be32, 32, lwz);
144 DEF_MMIO_IN_X(in_le16, 16, lhbrx);
145 DEF_MMIO_IN_X(in_le32, 32, lwbrx);
146
147 DEF_MMIO_OUT_D(out_be16, 16, sth);
148 DEF_MMIO_OUT_D(out_be32, 32, stw);
149 DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
150 DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
151 #else
152 DEF_MMIO_IN_X(in_be16, 16, lhbrx);
153 DEF_MMIO_IN_X(in_be32, 32, lwbrx);
154 DEF_MMIO_IN_D(in_le16, 16, lhz);
155 DEF_MMIO_IN_D(in_le32, 32, lwz);
156
157 DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
158 DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
159 DEF_MMIO_OUT_D(out_le16, 16, sth);
160 DEF_MMIO_OUT_D(out_le32, 32, stw);
161
162 #endif /* __BIG_ENDIAN */
163
164 #ifdef __powerpc64__
165
166 #ifdef __BIG_ENDIAN__
167 DEF_MMIO_OUT_D(out_be64, 64, std);
168 DEF_MMIO_IN_D(in_be64, 64, ld);
169
170 /* There is no asm instructions for 64 bits reverse loads and stores */
in_le64(const volatile u64 __iomem * addr)171 static inline u64 in_le64(const volatile u64 __iomem *addr)
172 {
173 return swab64(in_be64(addr));
174 }
175
out_le64(volatile u64 __iomem * addr,u64 val)176 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
177 {
178 out_be64(addr, swab64(val));
179 }
180 #else
181 DEF_MMIO_OUT_D(out_le64, 64, std);
182 DEF_MMIO_IN_D(in_le64, 64, ld);
183
184 /* There is no asm instructions for 64 bits reverse loads and stores */
in_be64(const volatile u64 __iomem * addr)185 static inline u64 in_be64(const volatile u64 __iomem *addr)
186 {
187 return swab64(in_le64(addr));
188 }
189
out_be64(volatile u64 __iomem * addr,u64 val)190 static inline void out_be64(volatile u64 __iomem *addr, u64 val)
191 {
192 out_le64(addr, swab64(val));
193 }
194
195 #endif
196 #endif /* __powerpc64__ */
197
198 /*
199 * Low level IO stream instructions are defined out of line for now
200 */
201 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
202 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
203 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
204 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
205 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
206 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
207
208 /* The _ns naming is historical and will be removed. For now, just #define
209 * the non _ns equivalent names
210 */
211 #define _insw _insw_ns
212 #define _insl _insl_ns
213 #define _outsw _outsw_ns
214 #define _outsl _outsl_ns
215
216
217 /*
218 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
219 */
220
221 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
222 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
223 unsigned long n);
224 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
225 unsigned long n);
226
227 /*
228 *
229 * PCI and standard ISA accessors
230 *
231 * Those are globally defined linux accessors for devices on PCI or ISA
232 * busses. They follow the Linux defined semantics. The current implementation
233 * for PowerPC is as close as possible to the x86 version of these, and thus
234 * provides fairly heavy weight barriers for the non-raw versions
235 *
236 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
237 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
238 * own implementation of some or all of the accessors.
239 */
240
241 /*
242 * Include the EEH definitions when EEH is enabled only so they don't get
243 * in the way when building for 32 bits
244 */
245 #ifdef CONFIG_EEH
246 #include <asm/eeh.h>
247 #endif
248
249 /* Shortcut to the MMIO argument pointer */
250 #define PCI_IO_ADDR volatile void __iomem *
251
252 /* Indirect IO address tokens:
253 *
254 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
255 * on all MMIOs. (Note that this is all 64 bits only for now)
256 *
257 * To help platforms who may need to differentiate MMIO addresses in
258 * their hooks, a bitfield is reserved for use by the platform near the
259 * top of MMIO addresses (not PIO, those have to cope the hard way).
260 *
261 * The highest address in the kernel virtual space are:
262 *
263 * d0003fffffffffff # with Hash MMU
264 * c00fffffffffffff # with Radix MMU
265 *
266 * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits
267 * that can be used for the field.
268 *
269 * The direct IO mapping operations will then mask off those bits
270 * before doing the actual access, though that only happen when
271 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
272 * mechanism
273 *
274 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
275 * all PIO functions call through a hook.
276 */
277
278 #ifdef CONFIG_PPC_INDIRECT_MMIO
279 #define PCI_IO_IND_TOKEN_SHIFT 52
280 #define PCI_IO_IND_TOKEN_MASK (0xfful << PCI_IO_IND_TOKEN_SHIFT)
281 #define PCI_FIX_ADDR(addr) \
282 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
283 #define PCI_GET_ADDR_TOKEN(addr) \
284 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \
285 PCI_IO_IND_TOKEN_SHIFT)
286 #define PCI_SET_ADDR_TOKEN(addr, token) \
287 do { \
288 unsigned long __a = (unsigned long)(addr); \
289 __a &= ~PCI_IO_IND_TOKEN_MASK; \
290 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \
291 (addr) = (void __iomem *)__a; \
292 } while(0)
293 #else
294 #define PCI_FIX_ADDR(addr) (addr)
295 #endif
296
297
298 /*
299 * Non ordered and non-swapping "raw" accessors
300 */
301
__raw_readb(const volatile void __iomem * addr)302 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
303 {
304 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
305 }
__raw_readw(const volatile void __iomem * addr)306 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
307 {
308 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
309 }
__raw_readl(const volatile void __iomem * addr)310 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
311 {
312 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
313 }
__raw_writeb(unsigned char v,volatile void __iomem * addr)314 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
315 {
316 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
317 }
__raw_writew(unsigned short v,volatile void __iomem * addr)318 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
319 {
320 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
321 }
__raw_writel(unsigned int v,volatile void __iomem * addr)322 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
323 {
324 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
325 }
326
327 #ifdef __powerpc64__
__raw_readq(const volatile void __iomem * addr)328 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
329 {
330 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
331 }
__raw_writeq(unsigned long v,volatile void __iomem * addr)332 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
333 {
334 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
335 }
336
__raw_writeq_be(unsigned long v,volatile void __iomem * addr)337 static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr)
338 {
339 __raw_writeq((__force unsigned long)cpu_to_be64(v), addr);
340 }
341
342 /*
343 * Real mode versions of the above. Those instructions are only supposed
344 * to be used in hypervisor real mode as per the architecture spec.
345 */
__raw_rm_writeb(u8 val,volatile void __iomem * paddr)346 static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
347 {
348 __asm__ __volatile__(".machine push; \
349 .machine power6; \
350 stbcix %0,0,%1; \
351 .machine pop;"
352 : : "r" (val), "r" (paddr) : "memory");
353 }
354
__raw_rm_writew(u16 val,volatile void __iomem * paddr)355 static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
356 {
357 __asm__ __volatile__(".machine push; \
358 .machine power6; \
359 sthcix %0,0,%1; \
360 .machine pop;"
361 : : "r" (val), "r" (paddr) : "memory");
362 }
363
__raw_rm_writel(u32 val,volatile void __iomem * paddr)364 static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
365 {
366 __asm__ __volatile__(".machine push; \
367 .machine power6; \
368 stwcix %0,0,%1; \
369 .machine pop;"
370 : : "r" (val), "r" (paddr) : "memory");
371 }
372
__raw_rm_writeq(u64 val,volatile void __iomem * paddr)373 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
374 {
375 __asm__ __volatile__(".machine push; \
376 .machine power6; \
377 stdcix %0,0,%1; \
378 .machine pop;"
379 : : "r" (val), "r" (paddr) : "memory");
380 }
381
__raw_rm_writeq_be(u64 val,volatile void __iomem * paddr)382 static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr)
383 {
384 __raw_rm_writeq((__force u64)cpu_to_be64(val), paddr);
385 }
386
__raw_rm_readb(volatile void __iomem * paddr)387 static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
388 {
389 u8 ret;
390 __asm__ __volatile__(".machine push; \
391 .machine power6; \
392 lbzcix %0,0, %1; \
393 .machine pop;"
394 : "=r" (ret) : "r" (paddr) : "memory");
395 return ret;
396 }
397
__raw_rm_readw(volatile void __iomem * paddr)398 static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
399 {
400 u16 ret;
401 __asm__ __volatile__(".machine push; \
402 .machine power6; \
403 lhzcix %0,0, %1; \
404 .machine pop;"
405 : "=r" (ret) : "r" (paddr) : "memory");
406 return ret;
407 }
408
__raw_rm_readl(volatile void __iomem * paddr)409 static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
410 {
411 u32 ret;
412 __asm__ __volatile__(".machine push; \
413 .machine power6; \
414 lwzcix %0,0, %1; \
415 .machine pop;"
416 : "=r" (ret) : "r" (paddr) : "memory");
417 return ret;
418 }
419
__raw_rm_readq(volatile void __iomem * paddr)420 static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
421 {
422 u64 ret;
423 __asm__ __volatile__(".machine push; \
424 .machine power6; \
425 ldcix %0,0, %1; \
426 .machine pop;"
427 : "=r" (ret) : "r" (paddr) : "memory");
428 return ret;
429 }
430 #endif /* __powerpc64__ */
431
432 /*
433 *
434 * PCI PIO and MMIO accessors.
435 *
436 *
437 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
438 * machine checks (which they occasionally do when probing non existing
439 * IO ports on some platforms, like PowerMac and 8xx).
440 * I always found it to be of dubious reliability and I am tempted to get
441 * rid of it one of these days. So if you think it's important to keep it,
442 * please voice up asap. We never had it for 64 bits and I do not intend
443 * to port it over
444 */
445
446 #ifdef CONFIG_PPC32
447
448 #define __do_in_asm(name, op) \
449 static inline unsigned int name(unsigned int port) \
450 { \
451 unsigned int x; \
452 __asm__ __volatile__( \
453 "sync\n" \
454 "0:" op " %0,0,%1\n" \
455 "1: twi 0,%0,0\n" \
456 "2: isync\n" \
457 "3: nop\n" \
458 "4:\n" \
459 ".section .fixup,\"ax\"\n" \
460 "5: li %0,-1\n" \
461 " b 4b\n" \
462 ".previous\n" \
463 EX_TABLE(0b, 5b) \
464 EX_TABLE(1b, 5b) \
465 EX_TABLE(2b, 5b) \
466 EX_TABLE(3b, 5b) \
467 : "=&r" (x) \
468 : "r" (port + _IO_BASE) \
469 : "memory"); \
470 return x; \
471 }
472
473 #define __do_out_asm(name, op) \
474 static inline void name(unsigned int val, unsigned int port) \
475 { \
476 __asm__ __volatile__( \
477 "sync\n" \
478 "0:" op " %0,0,%1\n" \
479 "1: sync\n" \
480 "2:\n" \
481 EX_TABLE(0b, 2b) \
482 EX_TABLE(1b, 2b) \
483 : : "r" (val), "r" (port + _IO_BASE) \
484 : "memory"); \
485 }
486
487 __do_in_asm(_rec_inb, "lbzx")
488 __do_in_asm(_rec_inw, "lhbrx")
489 __do_in_asm(_rec_inl, "lwbrx")
490 __do_out_asm(_rec_outb, "stbx")
491 __do_out_asm(_rec_outw, "sthbrx")
492 __do_out_asm(_rec_outl, "stwbrx")
493
494 #endif /* CONFIG_PPC32 */
495
496 /* The "__do_*" operations below provide the actual "base" implementation
497 * for each of the defined accessors. Some of them use the out_* functions
498 * directly, some of them still use EEH, though we might change that in the
499 * future. Those macros below provide the necessary argument swapping and
500 * handling of the IO base for PIO.
501 *
502 * They are themselves used by the macros that define the actual accessors
503 * and can be used by the hooks if any.
504 *
505 * Note that PIO operations are always defined in terms of their corresonding
506 * MMIO operations. That allows platforms like iSeries who want to modify the
507 * behaviour of both to only hook on the MMIO version and get both. It's also
508 * possible to hook directly at the toplevel PIO operation if they have to
509 * be handled differently
510 */
511 #define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val)
512 #define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val)
513 #define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val)
514 #define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val)
515 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
516 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
517 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
518
519 #ifdef CONFIG_EEH
520 #define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr))
521 #define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr))
522 #define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr))
523 #define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr))
524 #define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr))
525 #define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr))
526 #define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr))
527 #else /* CONFIG_EEH */
528 #define __do_readb(addr) in_8(PCI_FIX_ADDR(addr))
529 #define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr))
530 #define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr))
531 #define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr))
532 #define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr))
533 #define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr))
534 #define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr))
535 #endif /* !defined(CONFIG_EEH) */
536
537 #ifdef CONFIG_PPC32
538 #define __do_outb(val, port) _rec_outb(val, port)
539 #define __do_outw(val, port) _rec_outw(val, port)
540 #define __do_outl(val, port) _rec_outl(val, port)
541 #define __do_inb(port) _rec_inb(port)
542 #define __do_inw(port) _rec_inw(port)
543 #define __do_inl(port) _rec_inl(port)
544 #else /* CONFIG_PPC32 */
545 #define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
546 #define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port);
547 #define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port);
548 #define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port);
549 #define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port);
550 #define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port);
551 #endif /* !CONFIG_PPC32 */
552
553 #ifdef CONFIG_EEH
554 #define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
555 #define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
556 #define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
557 #else /* CONFIG_EEH */
558 #define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n))
559 #define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n))
560 #define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n))
561 #endif /* !CONFIG_EEH */
562 #define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n))
563 #define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n))
564 #define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n))
565
566 #define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
567 #define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
568 #define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
569 #define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
570 #define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
571 #define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
572
573 #define __do_memset_io(addr, c, n) \
574 _memset_io(PCI_FIX_ADDR(addr), c, n)
575 #define __do_memcpy_toio(dst, src, n) \
576 _memcpy_toio(PCI_FIX_ADDR(dst), src, n)
577
578 #ifdef CONFIG_EEH
579 #define __do_memcpy_fromio(dst, src, n) \
580 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
581 #else /* CONFIG_EEH */
582 #define __do_memcpy_fromio(dst, src, n) \
583 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
584 #endif /* !CONFIG_EEH */
585
586 #ifdef CONFIG_PPC_INDIRECT_PIO
587 #define DEF_PCI_HOOK_pio(x) x
588 #else
589 #define DEF_PCI_HOOK_pio(x) NULL
590 #endif
591
592 #ifdef CONFIG_PPC_INDIRECT_MMIO
593 #define DEF_PCI_HOOK_mem(x) x
594 #else
595 #define DEF_PCI_HOOK_mem(x) NULL
596 #endif
597
598 /* Structure containing all the hooks */
599 extern struct ppc_pci_io {
600
601 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at;
602 #define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at;
603
604 #include <asm/io-defs.h>
605
606 #undef DEF_PCI_AC_RET
607 #undef DEF_PCI_AC_NORET
608
609 } ppc_pci_io;
610
611 /* The inline wrappers */
612 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \
613 static inline ret name at \
614 { \
615 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
616 return ppc_pci_io.name al; \
617 return __do_##name al; \
618 }
619
620 #define DEF_PCI_AC_NORET(name, at, al, space, aa) \
621 static inline void name at \
622 { \
623 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
624 ppc_pci_io.name al; \
625 else \
626 __do_##name al; \
627 }
628
629 #include <asm/io-defs.h>
630
631 #undef DEF_PCI_AC_RET
632 #undef DEF_PCI_AC_NORET
633
634 /* Some drivers check for the presence of readq & writeq with
635 * a #ifdef, so we make them happy here.
636 */
637 #ifdef __powerpc64__
638 #define readq readq
639 #define writeq writeq
640 #endif
641
642 /*
643 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
644 * access
645 */
646 #define xlate_dev_mem_ptr(p) __va(p)
647
648 /*
649 * Convert a virtual cached pointer to an uncached pointer
650 */
651 #define xlate_dev_kmem_ptr(p) p
652
653 /*
654 * We don't do relaxed operations yet, at least not with this semantic
655 */
656 #define readb_relaxed(addr) readb(addr)
657 #define readw_relaxed(addr) readw(addr)
658 #define readl_relaxed(addr) readl(addr)
659 #define readq_relaxed(addr) readq(addr)
660 #define writeb_relaxed(v, addr) writeb(v, addr)
661 #define writew_relaxed(v, addr) writew(v, addr)
662 #define writel_relaxed(v, addr) writel(v, addr)
663 #define writeq_relaxed(v, addr) writeq(v, addr)
664
665 #include <asm-generic/iomap.h>
666
iosync(void)667 static inline void iosync(void)
668 {
669 __asm__ __volatile__ ("sync" : : : "memory");
670 }
671
672 /* Enforce in-order execution of data I/O.
673 * No distinction between read/write on PPC; use eieio for all three.
674 * Those are fairly week though. They don't provide a barrier between
675 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
676 * they only provide barriers between 2 __raw MMIO operations and
677 * possibly break write combining.
678 */
679 #define iobarrier_rw() eieio()
680 #define iobarrier_r() eieio()
681 #define iobarrier_w() eieio()
682
683
684 /*
685 * output pause versions need a delay at least for the
686 * w83c105 ide controller in a p610.
687 */
688 #define inb_p(port) inb(port)
689 #define outb_p(val, port) (udelay(1), outb((val), (port)))
690 #define inw_p(port) inw(port)
691 #define outw_p(val, port) (udelay(1), outw((val), (port)))
692 #define inl_p(port) inl(port)
693 #define outl_p(val, port) (udelay(1), outl((val), (port)))
694
695
696 #define IO_SPACE_LIMIT ~(0UL)
697
698
699 /**
700 * ioremap - map bus memory into CPU space
701 * @address: bus address of the memory
702 * @size: size of the resource to map
703 *
704 * ioremap performs a platform specific sequence of operations to
705 * make bus memory CPU accessible via the readb/readw/readl/writeb/
706 * writew/writel functions and the other mmio helpers. The returned
707 * address is not guaranteed to be usable directly as a virtual
708 * address.
709 *
710 * We provide a few variations of it:
711 *
712 * * ioremap is the standard one and provides non-cacheable guarded mappings
713 * and can be hooked by the platform via ppc_md
714 *
715 * * ioremap_prot allows to specify the page flags as an argument and can
716 * also be hooked by the platform via ppc_md.
717 *
718 * * ioremap_nocache is identical to ioremap
719 *
720 * * ioremap_wc enables write combining
721 *
722 * * ioremap_wt enables write through
723 *
724 * * ioremap_coherent maps coherent cached memory
725 *
726 * * iounmap undoes such a mapping and can be hooked
727 *
728 * * __ioremap_at (and the pending __iounmap_at) are low level functions to
729 * create hand-made mappings for use only by the PCI code and cannot
730 * currently be hooked. Must be page aligned.
731 *
732 * * __ioremap_caller is the same as above but takes an explicit caller
733 * reference rather than using __builtin_return_address(0)
734 *
735 */
736 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
737 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
738 unsigned long flags);
739 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
740 void __iomem *ioremap_wt(phys_addr_t address, unsigned long size);
741 void __iomem *ioremap_coherent(phys_addr_t address, unsigned long size);
742 #define ioremap_nocache(addr, size) ioremap((addr), (size))
743 #define ioremap_uc(addr, size) ioremap((addr), (size))
744 #define ioremap_cache(addr, size) \
745 ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
746
747 extern void iounmap(volatile void __iomem *addr);
748
749 int early_ioremap_range(unsigned long ea, phys_addr_t pa,
750 unsigned long size, pgprot_t prot);
751 void __iomem *do_ioremap(phys_addr_t pa, phys_addr_t offset, unsigned long size,
752 pgprot_t prot, void *caller);
753
754 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
755 pgprot_t prot, void *caller);
756
757 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
758 unsigned long size, pgprot_t prot);
759 extern void __iounmap_at(void *ea, unsigned long size);
760
761 /*
762 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
763 * which needs some additional definitions here. They basically allow PIO
764 * space overall to be 1GB. This will work as long as we never try to use
765 * iomap to map MMIO below 1GB which should be fine on ppc64
766 */
767 #define HAVE_ARCH_PIO_SIZE 1
768 #define PIO_OFFSET 0x00000000UL
769 #define PIO_MASK (FULL_IO_SIZE - 1)
770 #define PIO_RESERVED (FULL_IO_SIZE)
771
772 #define mmio_read16be(addr) readw_be(addr)
773 #define mmio_read32be(addr) readl_be(addr)
774 #define mmio_read64be(addr) readq_be(addr)
775 #define mmio_write16be(val, addr) writew_be(val, addr)
776 #define mmio_write32be(val, addr) writel_be(val, addr)
777 #define mmio_write64be(val, addr) writeq_be(val, addr)
778 #define mmio_insb(addr, dst, count) readsb(addr, dst, count)
779 #define mmio_insw(addr, dst, count) readsw(addr, dst, count)
780 #define mmio_insl(addr, dst, count) readsl(addr, dst, count)
781 #define mmio_outsb(addr, src, count) writesb(addr, src, count)
782 #define mmio_outsw(addr, src, count) writesw(addr, src, count)
783 #define mmio_outsl(addr, src, count) writesl(addr, src, count)
784
785 /**
786 * virt_to_phys - map virtual addresses to physical
787 * @address: address to remap
788 *
789 * The returned physical address is the physical (CPU) mapping for
790 * the memory address given. It is only valid to use this function on
791 * addresses directly mapped or allocated via kmalloc.
792 *
793 * This function does not give bus mappings for DMA transfers. In
794 * almost all conceivable cases a device driver should not be using
795 * this function
796 */
virt_to_phys(volatile void * address)797 static inline unsigned long virt_to_phys(volatile void * address)
798 {
799 WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !virt_addr_valid(address));
800
801 return __pa((unsigned long)address);
802 }
803
804 /**
805 * phys_to_virt - map physical address to virtual
806 * @address: address to remap
807 *
808 * The returned virtual address is a current CPU mapping for
809 * the memory address given. It is only valid to use this function on
810 * addresses that have a kernel mapping
811 *
812 * This function does not handle bus mappings for DMA transfers. In
813 * almost all conceivable cases a device driver should not be using
814 * this function
815 */
phys_to_virt(unsigned long address)816 static inline void * phys_to_virt(unsigned long address)
817 {
818 return (void *)__va(address);
819 }
820
821 /*
822 * Change "struct page" to physical address.
823 */
page_to_phys(struct page * page)824 static inline phys_addr_t page_to_phys(struct page *page)
825 {
826 unsigned long pfn = page_to_pfn(page);
827
828 WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !pfn_valid(pfn));
829
830 return PFN_PHYS(pfn);
831 }
832
833 /*
834 * 32 bits still uses virt_to_bus() for it's implementation of DMA
835 * mappings se we have to keep it defined here. We also have some old
836 * drivers (shame shame shame) that use bus_to_virt() and haven't been
837 * fixed yet so I need to define it here.
838 */
839 #ifdef CONFIG_PPC32
840
virt_to_bus(volatile void * address)841 static inline unsigned long virt_to_bus(volatile void * address)
842 {
843 if (address == NULL)
844 return 0;
845 return __pa(address) + PCI_DRAM_OFFSET;
846 }
847
bus_to_virt(unsigned long address)848 static inline void * bus_to_virt(unsigned long address)
849 {
850 if (address == 0)
851 return NULL;
852 return __va(address - PCI_DRAM_OFFSET);
853 }
854
855 #define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET)
856
857 #endif /* CONFIG_PPC32 */
858
859 /* access ports */
860 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v))
861 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
862
863 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v))
864 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
865
866 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v))
867 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
868
869 /* Clear and set bits in one shot. These macros can be used to clear and
870 * set multiple bits in a register using a single read-modify-write. These
871 * macros can also be used to set a multiple-bit bit pattern using a mask,
872 * by specifying the mask in the 'clear' parameter and the new bit pattern
873 * in the 'set' parameter.
874 */
875
876 #define clrsetbits(type, addr, clear, set) \
877 out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
878
879 #ifdef __powerpc64__
880 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
881 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
882 #endif
883
884 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
885 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
886
887 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
888 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
889
890 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
891
892 #endif /* __KERNEL__ */
893
894 #endif /* _ASM_POWERPC_IO_H */
895