• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002 Andi Kleen, SuSE Labs.
4  * Thanks to Ben LaHaise for precious feedback.
5  */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 #include <linux/vmalloc.h>
18 
19 #include <asm/e820/api.h>
20 #include <asm/processor.h>
21 #include <asm/tlbflush.h>
22 #include <asm/sections.h>
23 #include <asm/setup.h>
24 #include <linux/uaccess.h>
25 #include <asm/pgalloc.h>
26 #include <asm/proto.h>
27 #include <asm/pat.h>
28 #include <asm/set_memory.h>
29 
30 #include "mm_internal.h"
31 
32 /*
33  * The current flushing context - we pass it instead of 5 arguments:
34  */
35 struct cpa_data {
36 	unsigned long	*vaddr;
37 	pgd_t		*pgd;
38 	pgprot_t	mask_set;
39 	pgprot_t	mask_clr;
40 	unsigned long	numpages;
41 	unsigned long	curpage;
42 	unsigned long	pfn;
43 	unsigned int	flags;
44 	unsigned int	force_split		: 1,
45 			force_static_prot	: 1,
46 			force_flush_all		: 1;
47 	struct page	**pages;
48 };
49 
50 enum cpa_warn {
51 	CPA_CONFLICT,
52 	CPA_PROTECT,
53 	CPA_DETECT,
54 };
55 
56 static const int cpa_warn_level = CPA_PROTECT;
57 
58 /*
59  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
60  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
61  * entries change the page attribute in parallel to some other cpu
62  * splitting a large page entry along with changing the attribute.
63  */
64 static DEFINE_SPINLOCK(cpa_lock);
65 
66 #define CPA_FLUSHTLB 1
67 #define CPA_ARRAY 2
68 #define CPA_PAGES_ARRAY 4
69 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
70 
71 #ifdef CONFIG_PROC_FS
72 static unsigned long direct_pages_count[PG_LEVEL_NUM];
73 
update_page_count(int level,unsigned long pages)74 void update_page_count(int level, unsigned long pages)
75 {
76 	/* Protect against CPA */
77 	spin_lock(&pgd_lock);
78 	direct_pages_count[level] += pages;
79 	spin_unlock(&pgd_lock);
80 }
81 
split_page_count(int level)82 static void split_page_count(int level)
83 {
84 	if (direct_pages_count[level] == 0)
85 		return;
86 
87 	direct_pages_count[level]--;
88 	direct_pages_count[level - 1] += PTRS_PER_PTE;
89 }
90 
arch_report_meminfo(struct seq_file * m)91 void arch_report_meminfo(struct seq_file *m)
92 {
93 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
94 			direct_pages_count[PG_LEVEL_4K] << 2);
95 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
96 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
97 			direct_pages_count[PG_LEVEL_2M] << 11);
98 #else
99 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
100 			direct_pages_count[PG_LEVEL_2M] << 12);
101 #endif
102 	if (direct_gbpages)
103 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
104 			direct_pages_count[PG_LEVEL_1G] << 20);
105 }
106 #else
split_page_count(int level)107 static inline void split_page_count(int level) { }
108 #endif
109 
110 #ifdef CONFIG_X86_CPA_STATISTICS
111 
112 static unsigned long cpa_1g_checked;
113 static unsigned long cpa_1g_sameprot;
114 static unsigned long cpa_1g_preserved;
115 static unsigned long cpa_2m_checked;
116 static unsigned long cpa_2m_sameprot;
117 static unsigned long cpa_2m_preserved;
118 static unsigned long cpa_4k_install;
119 
cpa_inc_1g_checked(void)120 static inline void cpa_inc_1g_checked(void)
121 {
122 	cpa_1g_checked++;
123 }
124 
cpa_inc_2m_checked(void)125 static inline void cpa_inc_2m_checked(void)
126 {
127 	cpa_2m_checked++;
128 }
129 
cpa_inc_4k_install(void)130 static inline void cpa_inc_4k_install(void)
131 {
132 	cpa_4k_install++;
133 }
134 
cpa_inc_lp_sameprot(int level)135 static inline void cpa_inc_lp_sameprot(int level)
136 {
137 	if (level == PG_LEVEL_1G)
138 		cpa_1g_sameprot++;
139 	else
140 		cpa_2m_sameprot++;
141 }
142 
cpa_inc_lp_preserved(int level)143 static inline void cpa_inc_lp_preserved(int level)
144 {
145 	if (level == PG_LEVEL_1G)
146 		cpa_1g_preserved++;
147 	else
148 		cpa_2m_preserved++;
149 }
150 
cpastats_show(struct seq_file * m,void * p)151 static int cpastats_show(struct seq_file *m, void *p)
152 {
153 	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
154 	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
155 	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
156 	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
157 	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
158 	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
159 	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
160 	return 0;
161 }
162 
cpastats_open(struct inode * inode,struct file * file)163 static int cpastats_open(struct inode *inode, struct file *file)
164 {
165 	return single_open(file, cpastats_show, NULL);
166 }
167 
168 static const struct file_operations cpastats_fops = {
169 	.open		= cpastats_open,
170 	.read		= seq_read,
171 	.llseek		= seq_lseek,
172 	.release	= single_release,
173 };
174 
cpa_stats_init(void)175 static int __init cpa_stats_init(void)
176 {
177 	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
178 			    &cpastats_fops);
179 	return 0;
180 }
181 late_initcall(cpa_stats_init);
182 #else
cpa_inc_1g_checked(void)183 static inline void cpa_inc_1g_checked(void) { }
cpa_inc_2m_checked(void)184 static inline void cpa_inc_2m_checked(void) { }
cpa_inc_4k_install(void)185 static inline void cpa_inc_4k_install(void) { }
cpa_inc_lp_sameprot(int level)186 static inline void cpa_inc_lp_sameprot(int level) { }
cpa_inc_lp_preserved(int level)187 static inline void cpa_inc_lp_preserved(int level) { }
188 #endif
189 
190 
191 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)192 within(unsigned long addr, unsigned long start, unsigned long end)
193 {
194 	return addr >= start && addr < end;
195 }
196 
197 static inline int
within_inclusive(unsigned long addr,unsigned long start,unsigned long end)198 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
199 {
200 	return addr >= start && addr <= end;
201 }
202 
203 #ifdef CONFIG_X86_64
204 
highmap_start_pfn(void)205 static inline unsigned long highmap_start_pfn(void)
206 {
207 	return __pa_symbol(_text) >> PAGE_SHIFT;
208 }
209 
highmap_end_pfn(void)210 static inline unsigned long highmap_end_pfn(void)
211 {
212 	/* Do not reference physical address outside the kernel. */
213 	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
214 }
215 
__cpa_pfn_in_highmap(unsigned long pfn)216 static bool __cpa_pfn_in_highmap(unsigned long pfn)
217 {
218 	/*
219 	 * Kernel text has an alias mapping at a high address, known
220 	 * here as "highmap".
221 	 */
222 	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
223 }
224 
225 #else
226 
__cpa_pfn_in_highmap(unsigned long pfn)227 static bool __cpa_pfn_in_highmap(unsigned long pfn)
228 {
229 	/* There is no highmap on 32-bit */
230 	return false;
231 }
232 
233 #endif
234 
235 /*
236  * See set_mce_nospec().
237  *
238  * Machine check recovery code needs to change cache mode of poisoned pages to
239  * UC to avoid speculative access logging another error. But passing the
240  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
241  * speculative access. So we cheat and flip the top bit of the address. This
242  * works fine for the code that updates the page tables. But at the end of the
243  * process we need to flush the TLB and cache and the non-canonical address
244  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
245  *
246  * But in the common case we already have a canonical address. This code
247  * will fix the top bit if needed and is a no-op otherwise.
248  */
fix_addr(unsigned long addr)249 static inline unsigned long fix_addr(unsigned long addr)
250 {
251 #ifdef CONFIG_X86_64
252 	return (long)(addr << 1) >> 1;
253 #else
254 	return addr;
255 #endif
256 }
257 
__cpa_addr(struct cpa_data * cpa,unsigned long idx)258 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
259 {
260 	if (cpa->flags & CPA_PAGES_ARRAY) {
261 		struct page *page = cpa->pages[idx];
262 
263 		if (unlikely(PageHighMem(page)))
264 			return 0;
265 
266 		return (unsigned long)page_address(page);
267 	}
268 
269 	if (cpa->flags & CPA_ARRAY)
270 		return cpa->vaddr[idx];
271 
272 	return *cpa->vaddr + idx * PAGE_SIZE;
273 }
274 
275 /*
276  * Flushing functions
277  */
278 
clflush_cache_range_opt(void * vaddr,unsigned int size)279 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
280 {
281 	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
282 	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
283 	void *vend = vaddr + size;
284 
285 	if (p >= vend)
286 		return;
287 
288 	for (; p < vend; p += clflush_size)
289 		clflushopt(p);
290 }
291 
292 /**
293  * clflush_cache_range - flush a cache range with clflush
294  * @vaddr:	virtual start address
295  * @size:	number of bytes to flush
296  *
297  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
298  * SFENCE to avoid ordering issues.
299  */
clflush_cache_range(void * vaddr,unsigned int size)300 void clflush_cache_range(void *vaddr, unsigned int size)
301 {
302 	mb();
303 	clflush_cache_range_opt(vaddr, size);
304 	mb();
305 }
306 EXPORT_SYMBOL_GPL(clflush_cache_range);
307 
arch_invalidate_pmem(void * addr,size_t size)308 void arch_invalidate_pmem(void *addr, size_t size)
309 {
310 	clflush_cache_range(addr, size);
311 }
312 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
313 
__cpa_flush_all(void * arg)314 static void __cpa_flush_all(void *arg)
315 {
316 	unsigned long cache = (unsigned long)arg;
317 
318 	/*
319 	 * Flush all to work around Errata in early athlons regarding
320 	 * large page flushing.
321 	 */
322 	__flush_tlb_all();
323 
324 	if (cache && boot_cpu_data.x86 >= 4)
325 		wbinvd();
326 }
327 
cpa_flush_all(unsigned long cache)328 static void cpa_flush_all(unsigned long cache)
329 {
330 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
331 
332 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
333 }
334 
__cpa_flush_tlb(void * data)335 void __cpa_flush_tlb(void *data)
336 {
337 	struct cpa_data *cpa = data;
338 	unsigned int i;
339 
340 	for (i = 0; i < cpa->numpages; i++)
341 		__flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
342 }
343 
cpa_flush(struct cpa_data * data,int cache)344 static void cpa_flush(struct cpa_data *data, int cache)
345 {
346 	struct cpa_data *cpa = data;
347 	unsigned int i;
348 
349 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
350 
351 	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
352 		cpa_flush_all(cache);
353 		return;
354 	}
355 
356 	if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
357 		flush_tlb_all();
358 	else
359 		on_each_cpu(__cpa_flush_tlb, cpa, 1);
360 
361 	if (!cache)
362 		return;
363 
364 	mb();
365 	for (i = 0; i < cpa->numpages; i++) {
366 		unsigned long addr = __cpa_addr(cpa, i);
367 		unsigned int level;
368 
369 		pte_t *pte = lookup_address(addr, &level);
370 
371 		/*
372 		 * Only flush present addresses:
373 		 */
374 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
375 			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
376 	}
377 	mb();
378 }
379 
overlaps(unsigned long r1_start,unsigned long r1_end,unsigned long r2_start,unsigned long r2_end)380 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
381 		     unsigned long r2_start, unsigned long r2_end)
382 {
383 	return (r1_start <= r2_end && r1_end >= r2_start) ||
384 		(r2_start <= r1_end && r2_end >= r1_start);
385 }
386 
387 #ifdef CONFIG_PCI_BIOS
388 /*
389  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
390  * based config access (CONFIG_PCI_GOBIOS) support.
391  */
392 #define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
393 #define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
394 
protect_pci_bios(unsigned long spfn,unsigned long epfn)395 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
396 {
397 	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
398 		return _PAGE_NX;
399 	return 0;
400 }
401 #else
protect_pci_bios(unsigned long spfn,unsigned long epfn)402 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
403 {
404 	return 0;
405 }
406 #endif
407 
408 /*
409  * The .rodata section needs to be read-only. Using the pfn catches all
410  * aliases.  This also includes __ro_after_init, so do not enforce until
411  * kernel_set_to_readonly is true.
412  */
protect_rodata(unsigned long spfn,unsigned long epfn)413 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
414 {
415 	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
416 
417 	/*
418 	 * Note: __end_rodata is at page aligned and not inclusive, so
419 	 * subtract 1 to get the last enforced PFN in the rodata area.
420 	 */
421 	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
422 
423 	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
424 		return _PAGE_RW;
425 	return 0;
426 }
427 
428 /*
429  * Protect kernel text against becoming non executable by forbidding
430  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
431  * out of which the kernel actually executes.  Do not protect the low
432  * mapping.
433  *
434  * This does not cover __inittext since that is gone after boot.
435  */
protect_kernel_text(unsigned long start,unsigned long end)436 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
437 {
438 	unsigned long t_end = (unsigned long)_etext - 1;
439 	unsigned long t_start = (unsigned long)_text;
440 
441 	if (overlaps(start, end, t_start, t_end))
442 		return _PAGE_NX;
443 	return 0;
444 }
445 
446 #if defined(CONFIG_X86_64)
447 /*
448  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
449  * kernel text mappings for the large page aligned text, rodata sections
450  * will be always read-only. For the kernel identity mappings covering the
451  * holes caused by this alignment can be anything that user asks.
452  *
453  * This will preserve the large page mappings for kernel text/data at no
454  * extra cost.
455  */
protect_kernel_text_ro(unsigned long start,unsigned long end)456 static pgprotval_t protect_kernel_text_ro(unsigned long start,
457 					  unsigned long end)
458 {
459 	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
460 	unsigned long t_start = (unsigned long)_text;
461 	unsigned int level;
462 
463 	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
464 		return 0;
465 	/*
466 	 * Don't enforce the !RW mapping for the kernel text mapping, if
467 	 * the current mapping is already using small page mapping.  No
468 	 * need to work hard to preserve large page mappings in this case.
469 	 *
470 	 * This also fixes the Linux Xen paravirt guest boot failure caused
471 	 * by unexpected read-only mappings for kernel identity
472 	 * mappings. In this paravirt guest case, the kernel text mapping
473 	 * and the kernel identity mapping share the same page-table pages,
474 	 * so the protections for kernel text and identity mappings have to
475 	 * be the same.
476 	 */
477 	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
478 		return _PAGE_RW;
479 	return 0;
480 }
481 #else
protect_kernel_text_ro(unsigned long start,unsigned long end)482 static pgprotval_t protect_kernel_text_ro(unsigned long start,
483 					  unsigned long end)
484 {
485 	return 0;
486 }
487 #endif
488 
conflicts(pgprot_t prot,pgprotval_t val)489 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
490 {
491 	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
492 }
493 
check_conflict(int warnlvl,pgprot_t prot,pgprotval_t val,unsigned long start,unsigned long end,unsigned long pfn,const char * txt)494 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
495 				  unsigned long start, unsigned long end,
496 				  unsigned long pfn, const char *txt)
497 {
498 	static const char *lvltxt[] = {
499 		[CPA_CONFLICT]	= "conflict",
500 		[CPA_PROTECT]	= "protect",
501 		[CPA_DETECT]	= "detect",
502 	};
503 
504 	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
505 		return;
506 
507 	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
508 		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
509 		(unsigned long long)val);
510 }
511 
512 /*
513  * Certain areas of memory on x86 require very specific protection flags,
514  * for example the BIOS area or kernel text. Callers don't always get this
515  * right (again, ioremap() on BIOS memory is not uncommon) so this function
516  * checks and fixes these known static required protection bits.
517  */
static_protections(pgprot_t prot,unsigned long start,unsigned long pfn,unsigned long npg,unsigned long lpsize,int warnlvl)518 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
519 					  unsigned long pfn, unsigned long npg,
520 					  unsigned long lpsize, int warnlvl)
521 {
522 	pgprotval_t forbidden, res;
523 	unsigned long end;
524 
525 	/*
526 	 * There is no point in checking RW/NX conflicts when the requested
527 	 * mapping is setting the page !PRESENT.
528 	 */
529 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
530 		return prot;
531 
532 	/* Operate on the virtual address */
533 	end = start + npg * PAGE_SIZE - 1;
534 
535 	res = protect_kernel_text(start, end);
536 	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
537 	forbidden = res;
538 
539 	/*
540 	 * Special case to preserve a large page. If the change spawns the
541 	 * full large page mapping then there is no point to split it
542 	 * up. Happens with ftrace and is going to be removed once ftrace
543 	 * switched to text_poke().
544 	 */
545 	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
546 		res = protect_kernel_text_ro(start, end);
547 		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
548 		forbidden |= res;
549 	}
550 
551 	/* Check the PFN directly */
552 	res = protect_pci_bios(pfn, pfn + npg - 1);
553 	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
554 	forbidden |= res;
555 
556 	res = protect_rodata(pfn, pfn + npg - 1);
557 	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
558 	forbidden |= res;
559 
560 	return __pgprot(pgprot_val(prot) & ~forbidden);
561 }
562 
563 /*
564  * Lookup the page table entry for a virtual address in a specific pgd.
565  * Return a pointer to the entry and the level of the mapping.
566  */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)567 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
568 			     unsigned int *level)
569 {
570 	p4d_t *p4d;
571 	pud_t *pud;
572 	pmd_t *pmd;
573 
574 	*level = PG_LEVEL_NONE;
575 
576 	if (pgd_none(*pgd))
577 		return NULL;
578 
579 	p4d = p4d_offset(pgd, address);
580 	if (p4d_none(*p4d))
581 		return NULL;
582 
583 	*level = PG_LEVEL_512G;
584 	if (p4d_large(*p4d) || !p4d_present(*p4d))
585 		return (pte_t *)p4d;
586 
587 	pud = pud_offset(p4d, address);
588 	if (pud_none(*pud))
589 		return NULL;
590 
591 	*level = PG_LEVEL_1G;
592 	if (pud_large(*pud) || !pud_present(*pud))
593 		return (pte_t *)pud;
594 
595 	pmd = pmd_offset(pud, address);
596 	if (pmd_none(*pmd))
597 		return NULL;
598 
599 	*level = PG_LEVEL_2M;
600 	if (pmd_large(*pmd) || !pmd_present(*pmd))
601 		return (pte_t *)pmd;
602 
603 	*level = PG_LEVEL_4K;
604 
605 	return pte_offset_kernel(pmd, address);
606 }
607 
608 /*
609  * Lookup the page table entry for a virtual address. Return a pointer
610  * to the entry and the level of the mapping.
611  *
612  * Note: We return pud and pmd either when the entry is marked large
613  * or when the present bit is not set. Otherwise we would return a
614  * pointer to a nonexisting mapping.
615  */
lookup_address(unsigned long address,unsigned int * level)616 pte_t *lookup_address(unsigned long address, unsigned int *level)
617 {
618 	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
619 }
620 EXPORT_SYMBOL_GPL(lookup_address);
621 
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level)622 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
623 				  unsigned int *level)
624 {
625 	if (cpa->pgd)
626 		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
627 					       address, level);
628 
629 	return lookup_address(address, level);
630 }
631 
632 /*
633  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
634  * or NULL if not present.
635  */
lookup_pmd_address(unsigned long address)636 pmd_t *lookup_pmd_address(unsigned long address)
637 {
638 	pgd_t *pgd;
639 	p4d_t *p4d;
640 	pud_t *pud;
641 
642 	pgd = pgd_offset_k(address);
643 	if (pgd_none(*pgd))
644 		return NULL;
645 
646 	p4d = p4d_offset(pgd, address);
647 	if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
648 		return NULL;
649 
650 	pud = pud_offset(p4d, address);
651 	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
652 		return NULL;
653 
654 	return pmd_offset(pud, address);
655 }
656 
657 /*
658  * This is necessary because __pa() does not work on some
659  * kinds of memory, like vmalloc() or the alloc_remap()
660  * areas on 32-bit NUMA systems.  The percpu areas can
661  * end up in this kind of memory, for instance.
662  *
663  * This could be optimized, but it is only intended to be
664  * used at inititalization time, and keeping it
665  * unoptimized should increase the testing coverage for
666  * the more obscure platforms.
667  */
slow_virt_to_phys(void * __virt_addr)668 phys_addr_t slow_virt_to_phys(void *__virt_addr)
669 {
670 	unsigned long virt_addr = (unsigned long)__virt_addr;
671 	phys_addr_t phys_addr;
672 	unsigned long offset;
673 	enum pg_level level;
674 	pte_t *pte;
675 
676 	pte = lookup_address(virt_addr, &level);
677 	BUG_ON(!pte);
678 
679 	/*
680 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
681 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
682 	 * make 32-PAE kernel work correctly.
683 	 */
684 	switch (level) {
685 	case PG_LEVEL_1G:
686 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
687 		offset = virt_addr & ~PUD_PAGE_MASK;
688 		break;
689 	case PG_LEVEL_2M:
690 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
691 		offset = virt_addr & ~PMD_PAGE_MASK;
692 		break;
693 	default:
694 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
695 		offset = virt_addr & ~PAGE_MASK;
696 	}
697 
698 	return (phys_addr_t)(phys_addr | offset);
699 }
700 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
701 
702 /*
703  * Set the new pmd in all the pgds we know about:
704  */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)705 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
706 {
707 	/* change init_mm */
708 	set_pte_atomic(kpte, pte);
709 #ifdef CONFIG_X86_32
710 	if (!SHARED_KERNEL_PMD) {
711 		struct page *page;
712 
713 		list_for_each_entry(page, &pgd_list, lru) {
714 			pgd_t *pgd;
715 			p4d_t *p4d;
716 			pud_t *pud;
717 			pmd_t *pmd;
718 
719 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
720 			p4d = p4d_offset(pgd, address);
721 			pud = pud_offset(p4d, address);
722 			pmd = pmd_offset(pud, address);
723 			set_pte_atomic((pte_t *)pmd, pte);
724 		}
725 	}
726 #endif
727 }
728 
pgprot_clear_protnone_bits(pgprot_t prot)729 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
730 {
731 	/*
732 	 * _PAGE_GLOBAL means "global page" for present PTEs.
733 	 * But, it is also used to indicate _PAGE_PROTNONE
734 	 * for non-present PTEs.
735 	 *
736 	 * This ensures that a _PAGE_GLOBAL PTE going from
737 	 * present to non-present is not confused as
738 	 * _PAGE_PROTNONE.
739 	 */
740 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
741 		pgprot_val(prot) &= ~_PAGE_GLOBAL;
742 
743 	return prot;
744 }
745 
__should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)746 static int __should_split_large_page(pte_t *kpte, unsigned long address,
747 				     struct cpa_data *cpa)
748 {
749 	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
750 	pgprot_t old_prot, new_prot, req_prot, chk_prot;
751 	pte_t new_pte, *tmp;
752 	enum pg_level level;
753 
754 	/*
755 	 * Check for races, another CPU might have split this page
756 	 * up already:
757 	 */
758 	tmp = _lookup_address_cpa(cpa, address, &level);
759 	if (tmp != kpte)
760 		return 1;
761 
762 	switch (level) {
763 	case PG_LEVEL_2M:
764 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
765 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
766 		cpa_inc_2m_checked();
767 		break;
768 	case PG_LEVEL_1G:
769 		old_prot = pud_pgprot(*(pud_t *)kpte);
770 		old_pfn = pud_pfn(*(pud_t *)kpte);
771 		cpa_inc_1g_checked();
772 		break;
773 	default:
774 		return -EINVAL;
775 	}
776 
777 	psize = page_level_size(level);
778 	pmask = page_level_mask(level);
779 
780 	/*
781 	 * Calculate the number of pages, which fit into this large
782 	 * page starting at address:
783 	 */
784 	lpaddr = (address + psize) & pmask;
785 	numpages = (lpaddr - address) >> PAGE_SHIFT;
786 	if (numpages < cpa->numpages)
787 		cpa->numpages = numpages;
788 
789 	/*
790 	 * We are safe now. Check whether the new pgprot is the same:
791 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
792 	 * up accordingly.
793 	 */
794 
795 	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
796 	req_prot = pgprot_large_2_4k(old_prot);
797 
798 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
799 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
800 
801 	/*
802 	 * req_prot is in format of 4k pages. It must be converted to large
803 	 * page format: the caching mode includes the PAT bit located at
804 	 * different bit positions in the two formats.
805 	 */
806 	req_prot = pgprot_4k_2_large(req_prot);
807 	req_prot = pgprot_clear_protnone_bits(req_prot);
808 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
809 		pgprot_val(req_prot) |= _PAGE_PSE;
810 
811 	/*
812 	 * old_pfn points to the large page base pfn. So we need to add the
813 	 * offset of the virtual address:
814 	 */
815 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
816 	cpa->pfn = pfn;
817 
818 	/*
819 	 * Calculate the large page base address and the number of 4K pages
820 	 * in the large page
821 	 */
822 	lpaddr = address & pmask;
823 	numpages = psize >> PAGE_SHIFT;
824 
825 	/*
826 	 * Sanity check that the existing mapping is correct versus the static
827 	 * protections. static_protections() guards against !PRESENT, so no
828 	 * extra conditional required here.
829 	 */
830 	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
831 				      psize, CPA_CONFLICT);
832 
833 	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
834 		/*
835 		 * Split the large page and tell the split code to
836 		 * enforce static protections.
837 		 */
838 		cpa->force_static_prot = 1;
839 		return 1;
840 	}
841 
842 	/*
843 	 * Optimization: If the requested pgprot is the same as the current
844 	 * pgprot, then the large page can be preserved and no updates are
845 	 * required independent of alignment and length of the requested
846 	 * range. The above already established that the current pgprot is
847 	 * correct, which in consequence makes the requested pgprot correct
848 	 * as well if it is the same. The static protection scan below will
849 	 * not come to a different conclusion.
850 	 */
851 	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
852 		cpa_inc_lp_sameprot(level);
853 		return 0;
854 	}
855 
856 	/*
857 	 * If the requested range does not cover the full page, split it up
858 	 */
859 	if (address != lpaddr || cpa->numpages != numpages)
860 		return 1;
861 
862 	/*
863 	 * Check whether the requested pgprot is conflicting with a static
864 	 * protection requirement in the large page.
865 	 */
866 	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
867 				      psize, CPA_DETECT);
868 
869 	/*
870 	 * If there is a conflict, split the large page.
871 	 *
872 	 * There used to be a 4k wise evaluation trying really hard to
873 	 * preserve the large pages, but experimentation has shown, that this
874 	 * does not help at all. There might be corner cases which would
875 	 * preserve one large page occasionally, but it's really not worth the
876 	 * extra code and cycles for the common case.
877 	 */
878 	if (pgprot_val(req_prot) != pgprot_val(new_prot))
879 		return 1;
880 
881 	/* All checks passed. Update the large page mapping. */
882 	new_pte = pfn_pte(old_pfn, new_prot);
883 	__set_pmd_pte(kpte, address, new_pte);
884 	cpa->flags |= CPA_FLUSHTLB;
885 	cpa_inc_lp_preserved(level);
886 	return 0;
887 }
888 
should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)889 static int should_split_large_page(pte_t *kpte, unsigned long address,
890 				   struct cpa_data *cpa)
891 {
892 	int do_split;
893 
894 	if (cpa->force_split)
895 		return 1;
896 
897 	spin_lock(&pgd_lock);
898 	do_split = __should_split_large_page(kpte, address, cpa);
899 	spin_unlock(&pgd_lock);
900 
901 	return do_split;
902 }
903 
split_set_pte(struct cpa_data * cpa,pte_t * pte,unsigned long pfn,pgprot_t ref_prot,unsigned long address,unsigned long size)904 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
905 			  pgprot_t ref_prot, unsigned long address,
906 			  unsigned long size)
907 {
908 	unsigned int npg = PFN_DOWN(size);
909 	pgprot_t prot;
910 
911 	/*
912 	 * If should_split_large_page() discovered an inconsistent mapping,
913 	 * remove the invalid protection in the split mapping.
914 	 */
915 	if (!cpa->force_static_prot)
916 		goto set;
917 
918 	/* Hand in lpsize = 0 to enforce the protection mechanism */
919 	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
920 
921 	if (pgprot_val(prot) == pgprot_val(ref_prot))
922 		goto set;
923 
924 	/*
925 	 * If this is splitting a PMD, fix it up. PUD splits cannot be
926 	 * fixed trivially as that would require to rescan the newly
927 	 * installed PMD mappings after returning from split_large_page()
928 	 * so an eventual further split can allocate the necessary PTE
929 	 * pages. Warn for now and revisit it in case this actually
930 	 * happens.
931 	 */
932 	if (size == PAGE_SIZE)
933 		ref_prot = prot;
934 	else
935 		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
936 set:
937 	set_pte(pte, pfn_pte(pfn, ref_prot));
938 }
939 
940 static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)941 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
942 		   struct page *base)
943 {
944 	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
945 	pte_t *pbase = (pte_t *)page_address(base);
946 	unsigned int i, level;
947 	pgprot_t ref_prot;
948 	pte_t *tmp;
949 
950 	spin_lock(&pgd_lock);
951 	/*
952 	 * Check for races, another CPU might have split this page
953 	 * up for us already:
954 	 */
955 	tmp = _lookup_address_cpa(cpa, address, &level);
956 	if (tmp != kpte) {
957 		spin_unlock(&pgd_lock);
958 		return 1;
959 	}
960 
961 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
962 
963 	switch (level) {
964 	case PG_LEVEL_2M:
965 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
966 		/*
967 		 * Clear PSE (aka _PAGE_PAT) and move
968 		 * PAT bit to correct position.
969 		 */
970 		ref_prot = pgprot_large_2_4k(ref_prot);
971 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
972 		lpaddr = address & PMD_MASK;
973 		lpinc = PAGE_SIZE;
974 		break;
975 
976 	case PG_LEVEL_1G:
977 		ref_prot = pud_pgprot(*(pud_t *)kpte);
978 		ref_pfn = pud_pfn(*(pud_t *)kpte);
979 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
980 		lpaddr = address & PUD_MASK;
981 		lpinc = PMD_SIZE;
982 		/*
983 		 * Clear the PSE flags if the PRESENT flag is not set
984 		 * otherwise pmd_present/pmd_huge will return true
985 		 * even on a non present pmd.
986 		 */
987 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
988 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
989 		break;
990 
991 	default:
992 		spin_unlock(&pgd_lock);
993 		return 1;
994 	}
995 
996 	ref_prot = pgprot_clear_protnone_bits(ref_prot);
997 
998 	/*
999 	 * Get the target pfn from the original entry:
1000 	 */
1001 	pfn = ref_pfn;
1002 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1003 		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1004 
1005 	if (virt_addr_valid(address)) {
1006 		unsigned long pfn = PFN_DOWN(__pa(address));
1007 
1008 		if (pfn_range_is_mapped(pfn, pfn + 1))
1009 			split_page_count(level);
1010 	}
1011 
1012 	/*
1013 	 * Install the new, split up pagetable.
1014 	 *
1015 	 * We use the standard kernel pagetable protections for the new
1016 	 * pagetable protections, the actual ptes set above control the
1017 	 * primary protection behavior:
1018 	 */
1019 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1020 
1021 	/*
1022 	 * Do a global flush tlb after splitting the large page
1023 	 * and before we do the actual change page attribute in the PTE.
1024 	 *
1025 	 * Without this, we violate the TLB application note, that says:
1026 	 * "The TLBs may contain both ordinary and large-page
1027 	 *  translations for a 4-KByte range of linear addresses. This
1028 	 *  may occur if software modifies the paging structures so that
1029 	 *  the page size used for the address range changes. If the two
1030 	 *  translations differ with respect to page frame or attributes
1031 	 *  (e.g., permissions), processor behavior is undefined and may
1032 	 *  be implementation-specific."
1033 	 *
1034 	 * We do this global tlb flush inside the cpa_lock, so that we
1035 	 * don't allow any other cpu, with stale tlb entries change the
1036 	 * page attribute in parallel, that also falls into the
1037 	 * just split large page entry.
1038 	 */
1039 	flush_tlb_all();
1040 	spin_unlock(&pgd_lock);
1041 
1042 	return 0;
1043 }
1044 
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)1045 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1046 			    unsigned long address)
1047 {
1048 	struct page *base;
1049 
1050 	if (!debug_pagealloc_enabled())
1051 		spin_unlock(&cpa_lock);
1052 	base = alloc_pages(GFP_KERNEL, 0);
1053 	if (!debug_pagealloc_enabled())
1054 		spin_lock(&cpa_lock);
1055 	if (!base)
1056 		return -ENOMEM;
1057 
1058 	if (__split_large_page(cpa, kpte, address, base))
1059 		__free_page(base);
1060 
1061 	return 0;
1062 }
1063 
try_to_free_pte_page(pte_t * pte)1064 static bool try_to_free_pte_page(pte_t *pte)
1065 {
1066 	int i;
1067 
1068 	for (i = 0; i < PTRS_PER_PTE; i++)
1069 		if (!pte_none(pte[i]))
1070 			return false;
1071 
1072 	free_page((unsigned long)pte);
1073 	return true;
1074 }
1075 
try_to_free_pmd_page(pmd_t * pmd)1076 static bool try_to_free_pmd_page(pmd_t *pmd)
1077 {
1078 	int i;
1079 
1080 	for (i = 0; i < PTRS_PER_PMD; i++)
1081 		if (!pmd_none(pmd[i]))
1082 			return false;
1083 
1084 	free_page((unsigned long)pmd);
1085 	return true;
1086 }
1087 
unmap_pte_range(pmd_t * pmd,unsigned long start,unsigned long end)1088 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1089 {
1090 	pte_t *pte = pte_offset_kernel(pmd, start);
1091 
1092 	while (start < end) {
1093 		set_pte(pte, __pte(0));
1094 
1095 		start += PAGE_SIZE;
1096 		pte++;
1097 	}
1098 
1099 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1100 		pmd_clear(pmd);
1101 		return true;
1102 	}
1103 	return false;
1104 }
1105 
__unmap_pmd_range(pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)1106 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1107 			      unsigned long start, unsigned long end)
1108 {
1109 	if (unmap_pte_range(pmd, start, end))
1110 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1111 			pud_clear(pud);
1112 }
1113 
unmap_pmd_range(pud_t * pud,unsigned long start,unsigned long end)1114 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1115 {
1116 	pmd_t *pmd = pmd_offset(pud, start);
1117 
1118 	/*
1119 	 * Not on a 2MB page boundary?
1120 	 */
1121 	if (start & (PMD_SIZE - 1)) {
1122 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1123 		unsigned long pre_end = min_t(unsigned long, end, next_page);
1124 
1125 		__unmap_pmd_range(pud, pmd, start, pre_end);
1126 
1127 		start = pre_end;
1128 		pmd++;
1129 	}
1130 
1131 	/*
1132 	 * Try to unmap in 2M chunks.
1133 	 */
1134 	while (end - start >= PMD_SIZE) {
1135 		if (pmd_large(*pmd))
1136 			pmd_clear(pmd);
1137 		else
1138 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1139 
1140 		start += PMD_SIZE;
1141 		pmd++;
1142 	}
1143 
1144 	/*
1145 	 * 4K leftovers?
1146 	 */
1147 	if (start < end)
1148 		return __unmap_pmd_range(pud, pmd, start, end);
1149 
1150 	/*
1151 	 * Try again to free the PMD page if haven't succeeded above.
1152 	 */
1153 	if (!pud_none(*pud))
1154 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1155 			pud_clear(pud);
1156 }
1157 
unmap_pud_range(p4d_t * p4d,unsigned long start,unsigned long end)1158 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1159 {
1160 	pud_t *pud = pud_offset(p4d, start);
1161 
1162 	/*
1163 	 * Not on a GB page boundary?
1164 	 */
1165 	if (start & (PUD_SIZE - 1)) {
1166 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1167 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
1168 
1169 		unmap_pmd_range(pud, start, pre_end);
1170 
1171 		start = pre_end;
1172 		pud++;
1173 	}
1174 
1175 	/*
1176 	 * Try to unmap in 1G chunks?
1177 	 */
1178 	while (end - start >= PUD_SIZE) {
1179 
1180 		if (pud_large(*pud))
1181 			pud_clear(pud);
1182 		else
1183 			unmap_pmd_range(pud, start, start + PUD_SIZE);
1184 
1185 		start += PUD_SIZE;
1186 		pud++;
1187 	}
1188 
1189 	/*
1190 	 * 2M leftovers?
1191 	 */
1192 	if (start < end)
1193 		unmap_pmd_range(pud, start, end);
1194 
1195 	/*
1196 	 * No need to try to free the PUD page because we'll free it in
1197 	 * populate_pgd's error path
1198 	 */
1199 }
1200 
alloc_pte_page(pmd_t * pmd)1201 static int alloc_pte_page(pmd_t *pmd)
1202 {
1203 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1204 	if (!pte)
1205 		return -1;
1206 
1207 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1208 	return 0;
1209 }
1210 
alloc_pmd_page(pud_t * pud)1211 static int alloc_pmd_page(pud_t *pud)
1212 {
1213 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1214 	if (!pmd)
1215 		return -1;
1216 
1217 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1218 	return 0;
1219 }
1220 
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)1221 static void populate_pte(struct cpa_data *cpa,
1222 			 unsigned long start, unsigned long end,
1223 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1224 {
1225 	pte_t *pte;
1226 
1227 	pte = pte_offset_kernel(pmd, start);
1228 
1229 	pgprot = pgprot_clear_protnone_bits(pgprot);
1230 
1231 	while (num_pages-- && start < end) {
1232 		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1233 
1234 		start	 += PAGE_SIZE;
1235 		cpa->pfn++;
1236 		pte++;
1237 	}
1238 }
1239 
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)1240 static long populate_pmd(struct cpa_data *cpa,
1241 			 unsigned long start, unsigned long end,
1242 			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1243 {
1244 	long cur_pages = 0;
1245 	pmd_t *pmd;
1246 	pgprot_t pmd_pgprot;
1247 
1248 	/*
1249 	 * Not on a 2M boundary?
1250 	 */
1251 	if (start & (PMD_SIZE - 1)) {
1252 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1253 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1254 
1255 		pre_end   = min_t(unsigned long, pre_end, next_page);
1256 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1257 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
1258 
1259 		/*
1260 		 * Need a PTE page?
1261 		 */
1262 		pmd = pmd_offset(pud, start);
1263 		if (pmd_none(*pmd))
1264 			if (alloc_pte_page(pmd))
1265 				return -1;
1266 
1267 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1268 
1269 		start = pre_end;
1270 	}
1271 
1272 	/*
1273 	 * We mapped them all?
1274 	 */
1275 	if (num_pages == cur_pages)
1276 		return cur_pages;
1277 
1278 	pmd_pgprot = pgprot_4k_2_large(pgprot);
1279 
1280 	while (end - start >= PMD_SIZE) {
1281 
1282 		/*
1283 		 * We cannot use a 1G page so allocate a PMD page if needed.
1284 		 */
1285 		if (pud_none(*pud))
1286 			if (alloc_pmd_page(pud))
1287 				return -1;
1288 
1289 		pmd = pmd_offset(pud, start);
1290 
1291 		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1292 					canon_pgprot(pmd_pgprot))));
1293 
1294 		start	  += PMD_SIZE;
1295 		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1296 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1297 	}
1298 
1299 	/*
1300 	 * Map trailing 4K pages.
1301 	 */
1302 	if (start < end) {
1303 		pmd = pmd_offset(pud, start);
1304 		if (pmd_none(*pmd))
1305 			if (alloc_pte_page(pmd))
1306 				return -1;
1307 
1308 		populate_pte(cpa, start, end, num_pages - cur_pages,
1309 			     pmd, pgprot);
1310 	}
1311 	return num_pages;
1312 }
1313 
populate_pud(struct cpa_data * cpa,unsigned long start,p4d_t * p4d,pgprot_t pgprot)1314 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1315 			pgprot_t pgprot)
1316 {
1317 	pud_t *pud;
1318 	unsigned long end;
1319 	long cur_pages = 0;
1320 	pgprot_t pud_pgprot;
1321 
1322 	end = start + (cpa->numpages << PAGE_SHIFT);
1323 
1324 	/*
1325 	 * Not on a Gb page boundary? => map everything up to it with
1326 	 * smaller pages.
1327 	 */
1328 	if (start & (PUD_SIZE - 1)) {
1329 		unsigned long pre_end;
1330 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1331 
1332 		pre_end   = min_t(unsigned long, end, next_page);
1333 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1334 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1335 
1336 		pud = pud_offset(p4d, start);
1337 
1338 		/*
1339 		 * Need a PMD page?
1340 		 */
1341 		if (pud_none(*pud))
1342 			if (alloc_pmd_page(pud))
1343 				return -1;
1344 
1345 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1346 					 pud, pgprot);
1347 		if (cur_pages < 0)
1348 			return cur_pages;
1349 
1350 		start = pre_end;
1351 	}
1352 
1353 	/* We mapped them all? */
1354 	if (cpa->numpages == cur_pages)
1355 		return cur_pages;
1356 
1357 	pud = pud_offset(p4d, start);
1358 	pud_pgprot = pgprot_4k_2_large(pgprot);
1359 
1360 	/*
1361 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1362 	 */
1363 	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1364 		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1365 				   canon_pgprot(pud_pgprot))));
1366 
1367 		start	  += PUD_SIZE;
1368 		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1369 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1370 		pud++;
1371 	}
1372 
1373 	/* Map trailing leftover */
1374 	if (start < end) {
1375 		long tmp;
1376 
1377 		pud = pud_offset(p4d, start);
1378 		if (pud_none(*pud))
1379 			if (alloc_pmd_page(pud))
1380 				return -1;
1381 
1382 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1383 				   pud, pgprot);
1384 		if (tmp < 0)
1385 			return cur_pages;
1386 
1387 		cur_pages += tmp;
1388 	}
1389 	return cur_pages;
1390 }
1391 
1392 /*
1393  * Restrictions for kernel page table do not necessarily apply when mapping in
1394  * an alternate PGD.
1395  */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1396 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1397 {
1398 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1399 	pud_t *pud = NULL;	/* shut up gcc */
1400 	p4d_t *p4d;
1401 	pgd_t *pgd_entry;
1402 	long ret;
1403 
1404 	pgd_entry = cpa->pgd + pgd_index(addr);
1405 
1406 	if (pgd_none(*pgd_entry)) {
1407 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1408 		if (!p4d)
1409 			return -1;
1410 
1411 		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1412 	}
1413 
1414 	/*
1415 	 * Allocate a PUD page and hand it down for mapping.
1416 	 */
1417 	p4d = p4d_offset(pgd_entry, addr);
1418 	if (p4d_none(*p4d)) {
1419 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1420 		if (!pud)
1421 			return -1;
1422 
1423 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1424 	}
1425 
1426 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1427 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1428 
1429 	ret = populate_pud(cpa, addr, p4d, pgprot);
1430 	if (ret < 0) {
1431 		/*
1432 		 * Leave the PUD page in place in case some other CPU or thread
1433 		 * already found it, but remove any useless entries we just
1434 		 * added to it.
1435 		 */
1436 		unmap_pud_range(p4d, addr,
1437 				addr + (cpa->numpages << PAGE_SHIFT));
1438 		return ret;
1439 	}
1440 
1441 	cpa->numpages = ret;
1442 	return 0;
1443 }
1444 
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1445 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1446 			       int primary)
1447 {
1448 	if (cpa->pgd) {
1449 		/*
1450 		 * Right now, we only execute this code path when mapping
1451 		 * the EFI virtual memory map regions, no other users
1452 		 * provide a ->pgd value. This may change in the future.
1453 		 */
1454 		return populate_pgd(cpa, vaddr);
1455 	}
1456 
1457 	/*
1458 	 * Ignore all non primary paths.
1459 	 */
1460 	if (!primary) {
1461 		cpa->numpages = 1;
1462 		return 0;
1463 	}
1464 
1465 	/*
1466 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1467 	 * to have holes.
1468 	 * Also set numpages to '1' indicating that we processed cpa req for
1469 	 * one virtual address page and its pfn. TBD: numpages can be set based
1470 	 * on the initial value and the level returned by lookup_address().
1471 	 */
1472 	if (within(vaddr, PAGE_OFFSET,
1473 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1474 		cpa->numpages = 1;
1475 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1476 		return 0;
1477 
1478 	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1479 		/* Faults in the highmap are OK, so do not warn: */
1480 		return -EFAULT;
1481 	} else {
1482 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1483 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1484 			*cpa->vaddr);
1485 
1486 		return -EFAULT;
1487 	}
1488 }
1489 
__change_page_attr(struct cpa_data * cpa,int primary)1490 static int __change_page_attr(struct cpa_data *cpa, int primary)
1491 {
1492 	unsigned long address;
1493 	int do_split, err;
1494 	unsigned int level;
1495 	pte_t *kpte, old_pte;
1496 
1497 	address = __cpa_addr(cpa, cpa->curpage);
1498 repeat:
1499 	kpte = _lookup_address_cpa(cpa, address, &level);
1500 	if (!kpte)
1501 		return __cpa_process_fault(cpa, address, primary);
1502 
1503 	old_pte = *kpte;
1504 	if (pte_none(old_pte))
1505 		return __cpa_process_fault(cpa, address, primary);
1506 
1507 	if (level == PG_LEVEL_4K) {
1508 		pte_t new_pte;
1509 		pgprot_t new_prot = pte_pgprot(old_pte);
1510 		unsigned long pfn = pte_pfn(old_pte);
1511 
1512 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1513 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1514 
1515 		cpa_inc_4k_install();
1516 		/* Hand in lpsize = 0 to enforce the protection mechanism */
1517 		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1518 					      CPA_PROTECT);
1519 
1520 		new_prot = pgprot_clear_protnone_bits(new_prot);
1521 
1522 		/*
1523 		 * We need to keep the pfn from the existing PTE,
1524 		 * after all we're only going to change it's attributes
1525 		 * not the memory it points to
1526 		 */
1527 		new_pte = pfn_pte(pfn, new_prot);
1528 		cpa->pfn = pfn;
1529 		/*
1530 		 * Do we really change anything ?
1531 		 */
1532 		if (pte_val(old_pte) != pte_val(new_pte)) {
1533 			set_pte_atomic(kpte, new_pte);
1534 			cpa->flags |= CPA_FLUSHTLB;
1535 		}
1536 		cpa->numpages = 1;
1537 		return 0;
1538 	}
1539 
1540 	/*
1541 	 * Check, whether we can keep the large page intact
1542 	 * and just change the pte:
1543 	 */
1544 	do_split = should_split_large_page(kpte, address, cpa);
1545 	/*
1546 	 * When the range fits into the existing large page,
1547 	 * return. cp->numpages and cpa->tlbflush have been updated in
1548 	 * try_large_page:
1549 	 */
1550 	if (do_split <= 0)
1551 		return do_split;
1552 
1553 	/*
1554 	 * We have to split the large page:
1555 	 */
1556 	err = split_large_page(cpa, kpte, address);
1557 	if (!err)
1558 		goto repeat;
1559 
1560 	return err;
1561 }
1562 
1563 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1564 
cpa_process_alias(struct cpa_data * cpa)1565 static int cpa_process_alias(struct cpa_data *cpa)
1566 {
1567 	struct cpa_data alias_cpa;
1568 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1569 	unsigned long vaddr;
1570 	int ret;
1571 
1572 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1573 		return 0;
1574 
1575 	/*
1576 	 * No need to redo, when the primary call touched the direct
1577 	 * mapping already:
1578 	 */
1579 	vaddr = __cpa_addr(cpa, cpa->curpage);
1580 	if (!(within(vaddr, PAGE_OFFSET,
1581 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1582 
1583 		alias_cpa = *cpa;
1584 		alias_cpa.vaddr = &laddr;
1585 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1586 		alias_cpa.curpage = 0;
1587 
1588 		cpa->force_flush_all = 1;
1589 
1590 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1591 		if (ret)
1592 			return ret;
1593 	}
1594 
1595 #ifdef CONFIG_X86_64
1596 	/*
1597 	 * If the primary call didn't touch the high mapping already
1598 	 * and the physical address is inside the kernel map, we need
1599 	 * to touch the high mapped kernel as well:
1600 	 */
1601 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1602 	    __cpa_pfn_in_highmap(cpa->pfn)) {
1603 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1604 					       __START_KERNEL_map - phys_base;
1605 		alias_cpa = *cpa;
1606 		alias_cpa.vaddr = &temp_cpa_vaddr;
1607 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1608 		alias_cpa.curpage = 0;
1609 
1610 		cpa->force_flush_all = 1;
1611 		/*
1612 		 * The high mapping range is imprecise, so ignore the
1613 		 * return value.
1614 		 */
1615 		__change_page_attr_set_clr(&alias_cpa, 0);
1616 	}
1617 #endif
1618 
1619 	return 0;
1620 }
1621 
__change_page_attr_set_clr(struct cpa_data * cpa,int checkalias)1622 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1623 {
1624 	unsigned long numpages = cpa->numpages;
1625 	unsigned long rempages = numpages;
1626 	int ret = 0;
1627 
1628 	while (rempages) {
1629 		/*
1630 		 * Store the remaining nr of pages for the large page
1631 		 * preservation check.
1632 		 */
1633 		cpa->numpages = rempages;
1634 		/* for array changes, we can't use large page */
1635 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1636 			cpa->numpages = 1;
1637 
1638 		if (!debug_pagealloc_enabled())
1639 			spin_lock(&cpa_lock);
1640 		ret = __change_page_attr(cpa, checkalias);
1641 		if (!debug_pagealloc_enabled())
1642 			spin_unlock(&cpa_lock);
1643 		if (ret)
1644 			goto out;
1645 
1646 		if (checkalias) {
1647 			ret = cpa_process_alias(cpa);
1648 			if (ret)
1649 				goto out;
1650 		}
1651 
1652 		/*
1653 		 * Adjust the number of pages with the result of the
1654 		 * CPA operation. Either a large page has been
1655 		 * preserved or a single page update happened.
1656 		 */
1657 		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1658 		rempages -= cpa->numpages;
1659 		cpa->curpage += cpa->numpages;
1660 	}
1661 
1662 out:
1663 	/* Restore the original numpages */
1664 	cpa->numpages = numpages;
1665 	return ret;
1666 }
1667 
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)1668 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1669 				    pgprot_t mask_set, pgprot_t mask_clr,
1670 				    int force_split, int in_flag,
1671 				    struct page **pages)
1672 {
1673 	struct cpa_data cpa;
1674 	int ret, cache, checkalias;
1675 
1676 	memset(&cpa, 0, sizeof(cpa));
1677 
1678 	/*
1679 	 * Check, if we are requested to set a not supported
1680 	 * feature.  Clearing non-supported features is OK.
1681 	 */
1682 	mask_set = canon_pgprot(mask_set);
1683 
1684 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1685 		return 0;
1686 
1687 	/* Ensure we are PAGE_SIZE aligned */
1688 	if (in_flag & CPA_ARRAY) {
1689 		int i;
1690 		for (i = 0; i < numpages; i++) {
1691 			if (addr[i] & ~PAGE_MASK) {
1692 				addr[i] &= PAGE_MASK;
1693 				WARN_ON_ONCE(1);
1694 			}
1695 		}
1696 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1697 		/*
1698 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1699 		 * No need to check in that case
1700 		 */
1701 		if (*addr & ~PAGE_MASK) {
1702 			*addr &= PAGE_MASK;
1703 			/*
1704 			 * People should not be passing in unaligned addresses:
1705 			 */
1706 			WARN_ON_ONCE(1);
1707 		}
1708 	}
1709 
1710 	/* Must avoid aliasing mappings in the highmem code */
1711 	kmap_flush_unused();
1712 
1713 	vm_unmap_aliases();
1714 
1715 	cpa.vaddr = addr;
1716 	cpa.pages = pages;
1717 	cpa.numpages = numpages;
1718 	cpa.mask_set = mask_set;
1719 	cpa.mask_clr = mask_clr;
1720 	cpa.flags = 0;
1721 	cpa.curpage = 0;
1722 	cpa.force_split = force_split;
1723 
1724 	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1725 		cpa.flags |= in_flag;
1726 
1727 	/* No alias checking for _NX bit modifications */
1728 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1729 	/* Has caller explicitly disabled alias checking? */
1730 	if (in_flag & CPA_NO_CHECK_ALIAS)
1731 		checkalias = 0;
1732 
1733 	ret = __change_page_attr_set_clr(&cpa, checkalias);
1734 
1735 	/*
1736 	 * Check whether we really changed something:
1737 	 */
1738 	if (!(cpa.flags & CPA_FLUSHTLB))
1739 		goto out;
1740 
1741 	/*
1742 	 * No need to flush, when we did not set any of the caching
1743 	 * attributes:
1744 	 */
1745 	cache = !!pgprot2cachemode(mask_set);
1746 
1747 	/*
1748 	 * On error; flush everything to be sure.
1749 	 */
1750 	if (ret) {
1751 		cpa_flush_all(cache);
1752 		goto out;
1753 	}
1754 
1755 	cpa_flush(&cpa, cache);
1756 out:
1757 	return ret;
1758 }
1759 
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1760 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1761 				       pgprot_t mask, int array)
1762 {
1763 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1764 		(array ? CPA_ARRAY : 0), NULL);
1765 }
1766 
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1767 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1768 					 pgprot_t mask, int array)
1769 {
1770 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1771 		(array ? CPA_ARRAY : 0), NULL);
1772 }
1773 
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1774 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1775 				       pgprot_t mask)
1776 {
1777 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1778 		CPA_PAGES_ARRAY, pages);
1779 }
1780 
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1781 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1782 					 pgprot_t mask)
1783 {
1784 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1785 		CPA_PAGES_ARRAY, pages);
1786 }
1787 
_set_memory_uc(unsigned long addr,int numpages)1788 int _set_memory_uc(unsigned long addr, int numpages)
1789 {
1790 	/*
1791 	 * for now UC MINUS. see comments in ioremap_nocache()
1792 	 * If you really need strong UC use ioremap_uc(), but note
1793 	 * that you cannot override IO areas with set_memory_*() as
1794 	 * these helpers cannot work with IO memory.
1795 	 */
1796 	return change_page_attr_set(&addr, numpages,
1797 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1798 				    0);
1799 }
1800 
set_memory_uc(unsigned long addr,int numpages)1801 int set_memory_uc(unsigned long addr, int numpages)
1802 {
1803 	int ret;
1804 
1805 	/*
1806 	 * for now UC MINUS. see comments in ioremap_nocache()
1807 	 */
1808 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1809 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1810 	if (ret)
1811 		goto out_err;
1812 
1813 	ret = _set_memory_uc(addr, numpages);
1814 	if (ret)
1815 		goto out_free;
1816 
1817 	return 0;
1818 
1819 out_free:
1820 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1821 out_err:
1822 	return ret;
1823 }
1824 EXPORT_SYMBOL(set_memory_uc);
1825 
_set_memory_wc(unsigned long addr,int numpages)1826 int _set_memory_wc(unsigned long addr, int numpages)
1827 {
1828 	int ret;
1829 
1830 	ret = change_page_attr_set(&addr, numpages,
1831 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1832 				   0);
1833 	if (!ret) {
1834 		ret = change_page_attr_set_clr(&addr, numpages,
1835 					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1836 					       __pgprot(_PAGE_CACHE_MASK),
1837 					       0, 0, NULL);
1838 	}
1839 	return ret;
1840 }
1841 
set_memory_wc(unsigned long addr,int numpages)1842 int set_memory_wc(unsigned long addr, int numpages)
1843 {
1844 	int ret;
1845 
1846 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1847 		_PAGE_CACHE_MODE_WC, NULL);
1848 	if (ret)
1849 		return ret;
1850 
1851 	ret = _set_memory_wc(addr, numpages);
1852 	if (ret)
1853 		free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1854 
1855 	return ret;
1856 }
1857 EXPORT_SYMBOL(set_memory_wc);
1858 
_set_memory_wt(unsigned long addr,int numpages)1859 int _set_memory_wt(unsigned long addr, int numpages)
1860 {
1861 	return change_page_attr_set(&addr, numpages,
1862 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1863 }
1864 
_set_memory_wb(unsigned long addr,int numpages)1865 int _set_memory_wb(unsigned long addr, int numpages)
1866 {
1867 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1868 	return change_page_attr_clear(&addr, numpages,
1869 				      __pgprot(_PAGE_CACHE_MASK), 0);
1870 }
1871 
set_memory_wb(unsigned long addr,int numpages)1872 int set_memory_wb(unsigned long addr, int numpages)
1873 {
1874 	int ret;
1875 
1876 	ret = _set_memory_wb(addr, numpages);
1877 	if (ret)
1878 		return ret;
1879 
1880 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1881 	return 0;
1882 }
1883 EXPORT_SYMBOL(set_memory_wb);
1884 
set_memory_x(unsigned long addr,int numpages)1885 int set_memory_x(unsigned long addr, int numpages)
1886 {
1887 	if (!(__supported_pte_mask & _PAGE_NX))
1888 		return 0;
1889 
1890 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1891 }
1892 
set_memory_nx(unsigned long addr,int numpages)1893 int set_memory_nx(unsigned long addr, int numpages)
1894 {
1895 	if (!(__supported_pte_mask & _PAGE_NX))
1896 		return 0;
1897 
1898 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1899 }
1900 
set_memory_ro(unsigned long addr,int numpages)1901 int set_memory_ro(unsigned long addr, int numpages)
1902 {
1903 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1904 }
1905 
set_memory_rw(unsigned long addr,int numpages)1906 int set_memory_rw(unsigned long addr, int numpages)
1907 {
1908 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1909 }
1910 
set_memory_np(unsigned long addr,int numpages)1911 int set_memory_np(unsigned long addr, int numpages)
1912 {
1913 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1914 }
1915 
set_memory_np_noalias(unsigned long addr,int numpages)1916 int set_memory_np_noalias(unsigned long addr, int numpages)
1917 {
1918 	int cpa_flags = CPA_NO_CHECK_ALIAS;
1919 
1920 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1921 					__pgprot(_PAGE_PRESENT), 0,
1922 					cpa_flags, NULL);
1923 }
1924 
set_memory_4k(unsigned long addr,int numpages)1925 int set_memory_4k(unsigned long addr, int numpages)
1926 {
1927 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1928 					__pgprot(0), 1, 0, NULL);
1929 }
1930 
set_memory_nonglobal(unsigned long addr,int numpages)1931 int set_memory_nonglobal(unsigned long addr, int numpages)
1932 {
1933 	return change_page_attr_clear(&addr, numpages,
1934 				      __pgprot(_PAGE_GLOBAL), 0);
1935 }
1936 
set_memory_global(unsigned long addr,int numpages)1937 int set_memory_global(unsigned long addr, int numpages)
1938 {
1939 	return change_page_attr_set(&addr, numpages,
1940 				    __pgprot(_PAGE_GLOBAL), 0);
1941 }
1942 
__set_memory_enc_dec(unsigned long addr,int numpages,bool enc)1943 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1944 {
1945 	struct cpa_data cpa;
1946 	int ret;
1947 
1948 	/* Nothing to do if memory encryption is not active */
1949 	if (!mem_encrypt_active())
1950 		return 0;
1951 
1952 	/* Should not be working on unaligned addresses */
1953 	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1954 		addr &= PAGE_MASK;
1955 
1956 	memset(&cpa, 0, sizeof(cpa));
1957 	cpa.vaddr = &addr;
1958 	cpa.numpages = numpages;
1959 	cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
1960 	cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
1961 	cpa.pgd = init_mm.pgd;
1962 
1963 	/* Must avoid aliasing mappings in the highmem code */
1964 	kmap_flush_unused();
1965 	vm_unmap_aliases();
1966 
1967 	/*
1968 	 * Before changing the encryption attribute, we need to flush caches.
1969 	 */
1970 	cpa_flush(&cpa, !this_cpu_has(X86_FEATURE_SME_COHERENT));
1971 
1972 	ret = __change_page_attr_set_clr(&cpa, 1);
1973 
1974 	/*
1975 	 * After changing the encryption attribute, we need to flush TLBs again
1976 	 * in case any speculative TLB caching occurred (but no need to flush
1977 	 * caches again).  We could just use cpa_flush_all(), but in case TLB
1978 	 * flushing gets optimized in the cpa_flush() path use the same logic
1979 	 * as above.
1980 	 */
1981 	cpa_flush(&cpa, 0);
1982 
1983 	return ret;
1984 }
1985 
set_memory_encrypted(unsigned long addr,int numpages)1986 int set_memory_encrypted(unsigned long addr, int numpages)
1987 {
1988 	return __set_memory_enc_dec(addr, numpages, true);
1989 }
1990 EXPORT_SYMBOL_GPL(set_memory_encrypted);
1991 
set_memory_decrypted(unsigned long addr,int numpages)1992 int set_memory_decrypted(unsigned long addr, int numpages)
1993 {
1994 	return __set_memory_enc_dec(addr, numpages, false);
1995 }
1996 EXPORT_SYMBOL_GPL(set_memory_decrypted);
1997 
set_pages_uc(struct page * page,int numpages)1998 int set_pages_uc(struct page *page, int numpages)
1999 {
2000 	unsigned long addr = (unsigned long)page_address(page);
2001 
2002 	return set_memory_uc(addr, numpages);
2003 }
2004 EXPORT_SYMBOL(set_pages_uc);
2005 
_set_pages_array(struct page ** pages,int numpages,enum page_cache_mode new_type)2006 static int _set_pages_array(struct page **pages, int numpages,
2007 		enum page_cache_mode new_type)
2008 {
2009 	unsigned long start;
2010 	unsigned long end;
2011 	enum page_cache_mode set_type;
2012 	int i;
2013 	int free_idx;
2014 	int ret;
2015 
2016 	for (i = 0; i < numpages; i++) {
2017 		if (PageHighMem(pages[i]))
2018 			continue;
2019 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2020 		end = start + PAGE_SIZE;
2021 		if (reserve_memtype(start, end, new_type, NULL))
2022 			goto err_out;
2023 	}
2024 
2025 	/* If WC, set to UC- first and then WC */
2026 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2027 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
2028 
2029 	ret = cpa_set_pages_array(pages, numpages,
2030 				  cachemode2pgprot(set_type));
2031 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2032 		ret = change_page_attr_set_clr(NULL, numpages,
2033 					       cachemode2pgprot(
2034 						_PAGE_CACHE_MODE_WC),
2035 					       __pgprot(_PAGE_CACHE_MASK),
2036 					       0, CPA_PAGES_ARRAY, pages);
2037 	if (ret)
2038 		goto err_out;
2039 	return 0; /* Success */
2040 err_out:
2041 	free_idx = i;
2042 	for (i = 0; i < free_idx; i++) {
2043 		if (PageHighMem(pages[i]))
2044 			continue;
2045 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2046 		end = start + PAGE_SIZE;
2047 		free_memtype(start, end);
2048 	}
2049 	return -EINVAL;
2050 }
2051 
set_pages_array_uc(struct page ** pages,int numpages)2052 int set_pages_array_uc(struct page **pages, int numpages)
2053 {
2054 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2055 }
2056 EXPORT_SYMBOL(set_pages_array_uc);
2057 
set_pages_array_wc(struct page ** pages,int numpages)2058 int set_pages_array_wc(struct page **pages, int numpages)
2059 {
2060 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2061 }
2062 EXPORT_SYMBOL(set_pages_array_wc);
2063 
set_pages_array_wt(struct page ** pages,int numpages)2064 int set_pages_array_wt(struct page **pages, int numpages)
2065 {
2066 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2067 }
2068 EXPORT_SYMBOL_GPL(set_pages_array_wt);
2069 
set_pages_wb(struct page * page,int numpages)2070 int set_pages_wb(struct page *page, int numpages)
2071 {
2072 	unsigned long addr = (unsigned long)page_address(page);
2073 
2074 	return set_memory_wb(addr, numpages);
2075 }
2076 EXPORT_SYMBOL(set_pages_wb);
2077 
set_pages_array_wb(struct page ** pages,int numpages)2078 int set_pages_array_wb(struct page **pages, int numpages)
2079 {
2080 	int retval;
2081 	unsigned long start;
2082 	unsigned long end;
2083 	int i;
2084 
2085 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2086 	retval = cpa_clear_pages_array(pages, numpages,
2087 			__pgprot(_PAGE_CACHE_MASK));
2088 	if (retval)
2089 		return retval;
2090 
2091 	for (i = 0; i < numpages; i++) {
2092 		if (PageHighMem(pages[i]))
2093 			continue;
2094 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2095 		end = start + PAGE_SIZE;
2096 		free_memtype(start, end);
2097 	}
2098 
2099 	return 0;
2100 }
2101 EXPORT_SYMBOL(set_pages_array_wb);
2102 
set_pages_ro(struct page * page,int numpages)2103 int set_pages_ro(struct page *page, int numpages)
2104 {
2105 	unsigned long addr = (unsigned long)page_address(page);
2106 
2107 	return set_memory_ro(addr, numpages);
2108 }
2109 
set_pages_rw(struct page * page,int numpages)2110 int set_pages_rw(struct page *page, int numpages)
2111 {
2112 	unsigned long addr = (unsigned long)page_address(page);
2113 
2114 	return set_memory_rw(addr, numpages);
2115 }
2116 
__set_pages_p(struct page * page,int numpages)2117 static int __set_pages_p(struct page *page, int numpages)
2118 {
2119 	unsigned long tempaddr = (unsigned long) page_address(page);
2120 	struct cpa_data cpa = { .vaddr = &tempaddr,
2121 				.pgd = NULL,
2122 				.numpages = numpages,
2123 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2124 				.mask_clr = __pgprot(0),
2125 				.flags = 0};
2126 
2127 	/*
2128 	 * No alias checking needed for setting present flag. otherwise,
2129 	 * we may need to break large pages for 64-bit kernel text
2130 	 * mappings (this adds to complexity if we want to do this from
2131 	 * atomic context especially). Let's keep it simple!
2132 	 */
2133 	return __change_page_attr_set_clr(&cpa, 0);
2134 }
2135 
__set_pages_np(struct page * page,int numpages)2136 static int __set_pages_np(struct page *page, int numpages)
2137 {
2138 	unsigned long tempaddr = (unsigned long) page_address(page);
2139 	struct cpa_data cpa = { .vaddr = &tempaddr,
2140 				.pgd = NULL,
2141 				.numpages = numpages,
2142 				.mask_set = __pgprot(0),
2143 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2144 				.flags = 0};
2145 
2146 	/*
2147 	 * No alias checking needed for setting not present flag. otherwise,
2148 	 * we may need to break large pages for 64-bit kernel text
2149 	 * mappings (this adds to complexity if we want to do this from
2150 	 * atomic context especially). Let's keep it simple!
2151 	 */
2152 	return __change_page_attr_set_clr(&cpa, 0);
2153 }
2154 
set_direct_map_invalid_noflush(struct page * page)2155 int set_direct_map_invalid_noflush(struct page *page)
2156 {
2157 	return __set_pages_np(page, 1);
2158 }
2159 
set_direct_map_default_noflush(struct page * page)2160 int set_direct_map_default_noflush(struct page *page)
2161 {
2162 	return __set_pages_p(page, 1);
2163 }
2164 
__kernel_map_pages(struct page * page,int numpages,int enable)2165 void __kernel_map_pages(struct page *page, int numpages, int enable)
2166 {
2167 	if (PageHighMem(page))
2168 		return;
2169 	if (!enable) {
2170 		debug_check_no_locks_freed(page_address(page),
2171 					   numpages * PAGE_SIZE);
2172 	}
2173 
2174 	/*
2175 	 * The return value is ignored as the calls cannot fail.
2176 	 * Large pages for identity mappings are not used at boot time
2177 	 * and hence no memory allocations during large page split.
2178 	 */
2179 	if (enable)
2180 		__set_pages_p(page, numpages);
2181 	else
2182 		__set_pages_np(page, numpages);
2183 
2184 	/*
2185 	 * We should perform an IPI and flush all tlbs,
2186 	 * but that can deadlock->flush only current cpu.
2187 	 * Preemption needs to be disabled around __flush_tlb_all() due to
2188 	 * CR3 reload in __native_flush_tlb().
2189 	 */
2190 	preempt_disable();
2191 	__flush_tlb_all();
2192 	preempt_enable();
2193 
2194 	arch_flush_lazy_mmu_mode();
2195 }
2196 
2197 #ifdef CONFIG_HIBERNATION
kernel_page_present(struct page * page)2198 bool kernel_page_present(struct page *page)
2199 {
2200 	unsigned int level;
2201 	pte_t *pte;
2202 
2203 	if (PageHighMem(page))
2204 		return false;
2205 
2206 	pte = lookup_address((unsigned long)page_address(page), &level);
2207 	return (pte_val(*pte) & _PAGE_PRESENT);
2208 }
2209 #endif /* CONFIG_HIBERNATION */
2210 
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)2211 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2212 				   unsigned numpages, unsigned long page_flags)
2213 {
2214 	int retval = -EINVAL;
2215 
2216 	struct cpa_data cpa = {
2217 		.vaddr = &address,
2218 		.pfn = pfn,
2219 		.pgd = pgd,
2220 		.numpages = numpages,
2221 		.mask_set = __pgprot(0),
2222 		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2223 		.flags = 0,
2224 	};
2225 
2226 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2227 
2228 	if (!(__supported_pte_mask & _PAGE_NX))
2229 		goto out;
2230 
2231 	if (!(page_flags & _PAGE_ENC))
2232 		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2233 
2234 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2235 
2236 	retval = __change_page_attr_set_clr(&cpa, 0);
2237 	__flush_tlb_all();
2238 
2239 out:
2240 	return retval;
2241 }
2242 
2243 /*
2244  * __flush_tlb_all() flushes mappings only on current CPU and hence this
2245  * function shouldn't be used in an SMP environment. Presently, it's used only
2246  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2247  */
kernel_unmap_pages_in_pgd(pgd_t * pgd,unsigned long address,unsigned long numpages)2248 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2249 				     unsigned long numpages)
2250 {
2251 	int retval;
2252 
2253 	/*
2254 	 * The typical sequence for unmapping is to find a pte through
2255 	 * lookup_address_in_pgd() (ideally, it should never return NULL because
2256 	 * the address is already mapped) and change it's protections. As pfn is
2257 	 * the *target* of a mapping, it's not useful while unmapping.
2258 	 */
2259 	struct cpa_data cpa = {
2260 		.vaddr		= &address,
2261 		.pfn		= 0,
2262 		.pgd		= pgd,
2263 		.numpages	= numpages,
2264 		.mask_set	= __pgprot(0),
2265 		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
2266 		.flags		= 0,
2267 	};
2268 
2269 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2270 
2271 	retval = __change_page_attr_set_clr(&cpa, 0);
2272 	__flush_tlb_all();
2273 
2274 	return retval;
2275 }
2276 
2277 /*
2278  * The testcases use internal knowledge of the implementation that shouldn't
2279  * be exposed to the rest of the kernel. Include these directly here.
2280  */
2281 #ifdef CONFIG_CPA_DEBUG
2282 #include "pageattr-test.c"
2283 #endif
2284