1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple CPU accounting cgroup controller
4 */
5 #include <linux/cpufreq_times.h>
6 #include "sched.h"
7
8 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
9
10 /*
11 * There are no locks covering percpu hardirq/softirq time.
12 * They are only modified in vtime_account, on corresponding CPU
13 * with interrupts disabled. So, writes are safe.
14 * They are read and saved off onto struct rq in update_rq_clock().
15 * This may result in other CPU reading this CPU's irq time and can
16 * race with irq/vtime_account on this CPU. We would either get old
17 * or new value with a side effect of accounting a slice of irq time to wrong
18 * task when irq is in progress while we read rq->clock. That is a worthy
19 * compromise in place of having locks on each irq in account_system_time.
20 */
21 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
22
23 static int sched_clock_irqtime;
24
enable_sched_clock_irqtime(void)25 void enable_sched_clock_irqtime(void)
26 {
27 sched_clock_irqtime = 1;
28 }
29
disable_sched_clock_irqtime(void)30 void disable_sched_clock_irqtime(void)
31 {
32 sched_clock_irqtime = 0;
33 }
34
irqtime_account_delta(struct irqtime * irqtime,u64 delta,enum cpu_usage_stat idx)35 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
36 enum cpu_usage_stat idx)
37 {
38 u64 *cpustat = kcpustat_this_cpu->cpustat;
39
40 u64_stats_update_begin(&irqtime->sync);
41 cpustat[idx] += delta;
42 irqtime->total += delta;
43 irqtime->tick_delta += delta;
44 u64_stats_update_end(&irqtime->sync);
45 }
46
47 /*
48 * Called before incrementing preempt_count on {soft,}irq_enter
49 * and before decrementing preempt_count on {soft,}irq_exit.
50 */
irqtime_account_irq(struct task_struct * curr)51 void irqtime_account_irq(struct task_struct *curr)
52 {
53 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
54 s64 delta;
55 int cpu;
56
57 if (!sched_clock_irqtime)
58 return;
59
60 cpu = smp_processor_id();
61 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
62 irqtime->irq_start_time += delta;
63
64 /*
65 * We do not account for softirq time from ksoftirqd here.
66 * We want to continue accounting softirq time to ksoftirqd thread
67 * in that case, so as not to confuse scheduler with a special task
68 * that do not consume any time, but still wants to run.
69 */
70 if (hardirq_count())
71 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
72 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
73 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
74 }
75 EXPORT_SYMBOL_GPL(irqtime_account_irq);
76
irqtime_tick_accounted(u64 maxtime)77 static u64 irqtime_tick_accounted(u64 maxtime)
78 {
79 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
80 u64 delta;
81
82 delta = min(irqtime->tick_delta, maxtime);
83 irqtime->tick_delta -= delta;
84
85 return delta;
86 }
87
88 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
89
90 #define sched_clock_irqtime (0)
91
irqtime_tick_accounted(u64 dummy)92 static u64 irqtime_tick_accounted(u64 dummy)
93 {
94 return 0;
95 }
96
97 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
98
task_group_account_field(struct task_struct * p,int index,u64 tmp)99 static inline void task_group_account_field(struct task_struct *p, int index,
100 u64 tmp)
101 {
102 /*
103 * Since all updates are sure to touch the root cgroup, we
104 * get ourselves ahead and touch it first. If the root cgroup
105 * is the only cgroup, then nothing else should be necessary.
106 *
107 */
108 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
109
110 cgroup_account_cputime_field(p, index, tmp);
111 }
112
113 /*
114 * Account user CPU time to a process.
115 * @p: the process that the CPU time gets accounted to
116 * @cputime: the CPU time spent in user space since the last update
117 */
account_user_time(struct task_struct * p,u64 cputime)118 void account_user_time(struct task_struct *p, u64 cputime)
119 {
120 int index;
121
122 /* Add user time to process. */
123 p->utime += cputime;
124 account_group_user_time(p, cputime);
125
126 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
127
128 /* Add user time to cpustat. */
129 task_group_account_field(p, index, cputime);
130
131 /* Account for user time used */
132 acct_account_cputime(p);
133
134 /* Account power usage for user time */
135 cpufreq_acct_update_power(p, cputime);
136 }
137
138 /*
139 * Account guest CPU time to a process.
140 * @p: the process that the CPU time gets accounted to
141 * @cputime: the CPU time spent in virtual machine since the last update
142 */
account_guest_time(struct task_struct * p,u64 cputime)143 void account_guest_time(struct task_struct *p, u64 cputime)
144 {
145 u64 *cpustat = kcpustat_this_cpu->cpustat;
146
147 /* Add guest time to process. */
148 p->utime += cputime;
149 account_group_user_time(p, cputime);
150 p->gtime += cputime;
151
152 /* Add guest time to cpustat. */
153 if (task_nice(p) > 0) {
154 task_group_account_field(p, CPUTIME_NICE, cputime);
155 cpustat[CPUTIME_GUEST_NICE] += cputime;
156 } else {
157 task_group_account_field(p, CPUTIME_USER, cputime);
158 cpustat[CPUTIME_GUEST] += cputime;
159 }
160 }
161
162 /*
163 * Account system CPU time to a process and desired cpustat field
164 * @p: the process that the CPU time gets accounted to
165 * @cputime: the CPU time spent in kernel space since the last update
166 * @index: pointer to cpustat field that has to be updated
167 */
account_system_index_time(struct task_struct * p,u64 cputime,enum cpu_usage_stat index)168 void account_system_index_time(struct task_struct *p,
169 u64 cputime, enum cpu_usage_stat index)
170 {
171 /* Add system time to process. */
172 p->stime += cputime;
173 account_group_system_time(p, cputime);
174
175 /* Add system time to cpustat. */
176 task_group_account_field(p, index, cputime);
177
178 /* Account for system time used */
179 acct_account_cputime(p);
180
181 /* Account power usage for system time */
182 cpufreq_acct_update_power(p, cputime);
183 }
184
185 /*
186 * Account system CPU time to a process.
187 * @p: the process that the CPU time gets accounted to
188 * @hardirq_offset: the offset to subtract from hardirq_count()
189 * @cputime: the CPU time spent in kernel space since the last update
190 */
account_system_time(struct task_struct * p,int hardirq_offset,u64 cputime)191 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
192 {
193 int index;
194
195 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
196 account_guest_time(p, cputime);
197 return;
198 }
199
200 if (hardirq_count() - hardirq_offset)
201 index = CPUTIME_IRQ;
202 else if (in_serving_softirq())
203 index = CPUTIME_SOFTIRQ;
204 else
205 index = CPUTIME_SYSTEM;
206
207 account_system_index_time(p, cputime, index);
208 }
209
210 /*
211 * Account for involuntary wait time.
212 * @cputime: the CPU time spent in involuntary wait
213 */
account_steal_time(u64 cputime)214 void account_steal_time(u64 cputime)
215 {
216 u64 *cpustat = kcpustat_this_cpu->cpustat;
217
218 cpustat[CPUTIME_STEAL] += cputime;
219 }
220
221 /*
222 * Account for idle time.
223 * @cputime: the CPU time spent in idle wait
224 */
account_idle_time(u64 cputime)225 void account_idle_time(u64 cputime)
226 {
227 u64 *cpustat = kcpustat_this_cpu->cpustat;
228 struct rq *rq = this_rq();
229
230 if (atomic_read(&rq->nr_iowait) > 0)
231 cpustat[CPUTIME_IOWAIT] += cputime;
232 else
233 cpustat[CPUTIME_IDLE] += cputime;
234 }
235
236 /*
237 * When a guest is interrupted for a longer amount of time, missed clock
238 * ticks are not redelivered later. Due to that, this function may on
239 * occasion account more time than the calling functions think elapsed.
240 */
steal_account_process_time(u64 maxtime)241 static __always_inline u64 steal_account_process_time(u64 maxtime)
242 {
243 #ifdef CONFIG_PARAVIRT
244 if (static_key_false(¶virt_steal_enabled)) {
245 u64 steal;
246
247 steal = paravirt_steal_clock(smp_processor_id());
248 steal -= this_rq()->prev_steal_time;
249 steal = min(steal, maxtime);
250 account_steal_time(steal);
251 this_rq()->prev_steal_time += steal;
252
253 return steal;
254 }
255 #endif
256 return 0;
257 }
258
259 /*
260 * Account how much elapsed time was spent in steal, irq, or softirq time.
261 */
account_other_time(u64 max)262 static inline u64 account_other_time(u64 max)
263 {
264 u64 accounted;
265
266 lockdep_assert_irqs_disabled();
267
268 accounted = steal_account_process_time(max);
269
270 if (accounted < max)
271 accounted += irqtime_tick_accounted(max - accounted);
272
273 return accounted;
274 }
275
276 #ifdef CONFIG_64BIT
read_sum_exec_runtime(struct task_struct * t)277 static inline u64 read_sum_exec_runtime(struct task_struct *t)
278 {
279 return t->se.sum_exec_runtime;
280 }
281 #else
read_sum_exec_runtime(struct task_struct * t)282 static u64 read_sum_exec_runtime(struct task_struct *t)
283 {
284 u64 ns;
285 struct rq_flags rf;
286 struct rq *rq;
287
288 rq = task_rq_lock(t, &rf);
289 ns = t->se.sum_exec_runtime;
290 task_rq_unlock(rq, t, &rf);
291
292 return ns;
293 }
294 #endif
295
296 /*
297 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
298 * tasks (sum on group iteration) belonging to @tsk's group.
299 */
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)300 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
301 {
302 struct signal_struct *sig = tsk->signal;
303 u64 utime, stime;
304 struct task_struct *t;
305 unsigned int seq, nextseq;
306 unsigned long flags;
307
308 /*
309 * Update current task runtime to account pending time since last
310 * scheduler action or thread_group_cputime() call. This thread group
311 * might have other running tasks on different CPUs, but updating
312 * their runtime can affect syscall performance, so we skip account
313 * those pending times and rely only on values updated on tick or
314 * other scheduler action.
315 */
316 if (same_thread_group(current, tsk))
317 (void) task_sched_runtime(current);
318
319 rcu_read_lock();
320 /* Attempt a lockless read on the first round. */
321 nextseq = 0;
322 do {
323 seq = nextseq;
324 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
325 times->utime = sig->utime;
326 times->stime = sig->stime;
327 times->sum_exec_runtime = sig->sum_sched_runtime;
328
329 for_each_thread(tsk, t) {
330 task_cputime(t, &utime, &stime);
331 times->utime += utime;
332 times->stime += stime;
333 times->sum_exec_runtime += read_sum_exec_runtime(t);
334 }
335 /* If lockless access failed, take the lock. */
336 nextseq = 1;
337 } while (need_seqretry(&sig->stats_lock, seq));
338 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
339 rcu_read_unlock();
340 }
341
342 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
343 /*
344 * Account a tick to a process and cpustat
345 * @p: the process that the CPU time gets accounted to
346 * @user_tick: is the tick from userspace
347 * @rq: the pointer to rq
348 *
349 * Tick demultiplexing follows the order
350 * - pending hardirq update
351 * - pending softirq update
352 * - user_time
353 * - idle_time
354 * - system time
355 * - check for guest_time
356 * - else account as system_time
357 *
358 * Check for hardirq is done both for system and user time as there is
359 * no timer going off while we are on hardirq and hence we may never get an
360 * opportunity to update it solely in system time.
361 * p->stime and friends are only updated on system time and not on irq
362 * softirq as those do not count in task exec_runtime any more.
363 */
irqtime_account_process_tick(struct task_struct * p,int user_tick,struct rq * rq,int ticks)364 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
365 struct rq *rq, int ticks)
366 {
367 u64 other, cputime = TICK_NSEC * ticks;
368
369 /*
370 * When returning from idle, many ticks can get accounted at
371 * once, including some ticks of steal, irq, and softirq time.
372 * Subtract those ticks from the amount of time accounted to
373 * idle, or potentially user or system time. Due to rounding,
374 * other time can exceed ticks occasionally.
375 */
376 other = account_other_time(ULONG_MAX);
377 if (other >= cputime)
378 return;
379
380 cputime -= other;
381
382 if (this_cpu_ksoftirqd() == p) {
383 /*
384 * ksoftirqd time do not get accounted in cpu_softirq_time.
385 * So, we have to handle it separately here.
386 * Also, p->stime needs to be updated for ksoftirqd.
387 */
388 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
389 } else if (user_tick) {
390 account_user_time(p, cputime);
391 } else if (p == rq->idle) {
392 account_idle_time(cputime);
393 } else if (p->flags & PF_VCPU) { /* System time or guest time */
394 account_guest_time(p, cputime);
395 } else {
396 account_system_index_time(p, cputime, CPUTIME_SYSTEM);
397 }
398 }
399
irqtime_account_idle_ticks(int ticks)400 static void irqtime_account_idle_ticks(int ticks)
401 {
402 struct rq *rq = this_rq();
403
404 irqtime_account_process_tick(current, 0, rq, ticks);
405 }
406 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
irqtime_account_idle_ticks(int ticks)407 static inline void irqtime_account_idle_ticks(int ticks) { }
irqtime_account_process_tick(struct task_struct * p,int user_tick,struct rq * rq,int nr_ticks)408 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
409 struct rq *rq, int nr_ticks) { }
410 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
411
412 /*
413 * Use precise platform statistics if available:
414 */
415 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
416 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH
vtime_common_task_switch(struct task_struct * prev)417 void vtime_common_task_switch(struct task_struct *prev)
418 {
419 if (is_idle_task(prev))
420 vtime_account_idle(prev);
421 else
422 vtime_account_system(prev);
423
424 vtime_flush(prev);
425 arch_vtime_task_switch(prev);
426 }
427 # endif
428 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
429
430
431 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
432 /*
433 * Archs that account the whole time spent in the idle task
434 * (outside irq) as idle time can rely on this and just implement
435 * vtime_account_system() and vtime_account_idle(). Archs that
436 * have other meaning of the idle time (s390 only includes the
437 * time spent by the CPU when it's in low power mode) must override
438 * vtime_account().
439 */
440 #ifndef __ARCH_HAS_VTIME_ACCOUNT
vtime_account_irq_enter(struct task_struct * tsk)441 void vtime_account_irq_enter(struct task_struct *tsk)
442 {
443 if (!in_interrupt() && is_idle_task(tsk))
444 vtime_account_idle(tsk);
445 else
446 vtime_account_system(tsk);
447 }
448 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
449 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
450
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)451 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
452 u64 *ut, u64 *st)
453 {
454 *ut = curr->utime;
455 *st = curr->stime;
456 }
457
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)458 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
459 {
460 *ut = p->utime;
461 *st = p->stime;
462 }
463 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
464
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)465 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
466 {
467 struct task_cputime cputime;
468
469 thread_group_cputime(p, &cputime);
470
471 *ut = cputime.utime;
472 *st = cputime.stime;
473 }
474 EXPORT_SYMBOL_GPL(thread_group_cputime_adjusted);
475
476 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
477
478 /*
479 * Account a single tick of CPU time.
480 * @p: the process that the CPU time gets accounted to
481 * @user_tick: indicates if the tick is a user or a system tick
482 */
account_process_tick(struct task_struct * p,int user_tick)483 void account_process_tick(struct task_struct *p, int user_tick)
484 {
485 u64 cputime, steal;
486 struct rq *rq = this_rq();
487
488 if (vtime_accounting_cpu_enabled())
489 return;
490
491 if (sched_clock_irqtime) {
492 irqtime_account_process_tick(p, user_tick, rq, 1);
493 return;
494 }
495
496 cputime = TICK_NSEC;
497 steal = steal_account_process_time(ULONG_MAX);
498
499 if (steal >= cputime)
500 return;
501
502 cputime -= steal;
503
504 if (user_tick)
505 account_user_time(p, cputime);
506 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
507 account_system_time(p, HARDIRQ_OFFSET, cputime);
508 else
509 account_idle_time(cputime);
510 }
511
512 /*
513 * Account multiple ticks of idle time.
514 * @ticks: number of stolen ticks
515 */
account_idle_ticks(unsigned long ticks)516 void account_idle_ticks(unsigned long ticks)
517 {
518 u64 cputime, steal;
519
520 if (sched_clock_irqtime) {
521 irqtime_account_idle_ticks(ticks);
522 return;
523 }
524
525 cputime = ticks * TICK_NSEC;
526 steal = steal_account_process_time(ULONG_MAX);
527
528 if (steal >= cputime)
529 return;
530
531 cputime -= steal;
532 account_idle_time(cputime);
533 }
534
535 /*
536 * Perform (stime * rtime) / total, but avoid multiplication overflow by
537 * losing precision when the numbers are big.
538 */
scale_stime(u64 stime,u64 rtime,u64 total)539 static u64 scale_stime(u64 stime, u64 rtime, u64 total)
540 {
541 u64 scaled;
542
543 for (;;) {
544 /* Make sure "rtime" is the bigger of stime/rtime */
545 if (stime > rtime)
546 swap(rtime, stime);
547
548 /* Make sure 'total' fits in 32 bits */
549 if (total >> 32)
550 goto drop_precision;
551
552 /* Does rtime (and thus stime) fit in 32 bits? */
553 if (!(rtime >> 32))
554 break;
555
556 /* Can we just balance rtime/stime rather than dropping bits? */
557 if (stime >> 31)
558 goto drop_precision;
559
560 /* We can grow stime and shrink rtime and try to make them both fit */
561 stime <<= 1;
562 rtime >>= 1;
563 continue;
564
565 drop_precision:
566 /* We drop from rtime, it has more bits than stime */
567 rtime >>= 1;
568 total >>= 1;
569 }
570
571 /*
572 * Make sure gcc understands that this is a 32x32->64 multiply,
573 * followed by a 64/32->64 divide.
574 */
575 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
576 return scaled;
577 }
578
579 /*
580 * Adjust tick based cputime random precision against scheduler runtime
581 * accounting.
582 *
583 * Tick based cputime accounting depend on random scheduling timeslices of a
584 * task to be interrupted or not by the timer. Depending on these
585 * circumstances, the number of these interrupts may be over or
586 * under-optimistic, matching the real user and system cputime with a variable
587 * precision.
588 *
589 * Fix this by scaling these tick based values against the total runtime
590 * accounted by the CFS scheduler.
591 *
592 * This code provides the following guarantees:
593 *
594 * stime + utime == rtime
595 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
596 *
597 * Assuming that rtime_i+1 >= rtime_i.
598 */
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)599 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
600 u64 *ut, u64 *st)
601 {
602 u64 rtime, stime, utime;
603 unsigned long flags;
604
605 /* Serialize concurrent callers such that we can honour our guarantees */
606 raw_spin_lock_irqsave(&prev->lock, flags);
607 rtime = curr->sum_exec_runtime;
608
609 /*
610 * This is possible under two circumstances:
611 * - rtime isn't monotonic after all (a bug);
612 * - we got reordered by the lock.
613 *
614 * In both cases this acts as a filter such that the rest of the code
615 * can assume it is monotonic regardless of anything else.
616 */
617 if (prev->stime + prev->utime >= rtime)
618 goto out;
619
620 stime = curr->stime;
621 utime = curr->utime;
622
623 /*
624 * If either stime or utime are 0, assume all runtime is userspace.
625 * Once a task gets some ticks, the monotonicy code at 'update:'
626 * will ensure things converge to the observed ratio.
627 */
628 if (stime == 0) {
629 utime = rtime;
630 goto update;
631 }
632
633 if (utime == 0) {
634 stime = rtime;
635 goto update;
636 }
637
638 stime = scale_stime(stime, rtime, stime + utime);
639
640 update:
641 /*
642 * Make sure stime doesn't go backwards; this preserves monotonicity
643 * for utime because rtime is monotonic.
644 *
645 * utime_i+1 = rtime_i+1 - stime_i
646 * = rtime_i+1 - (rtime_i - utime_i)
647 * = (rtime_i+1 - rtime_i) + utime_i
648 * >= utime_i
649 */
650 if (stime < prev->stime)
651 stime = prev->stime;
652 utime = rtime - stime;
653
654 /*
655 * Make sure utime doesn't go backwards; this still preserves
656 * monotonicity for stime, analogous argument to above.
657 */
658 if (utime < prev->utime) {
659 utime = prev->utime;
660 stime = rtime - utime;
661 }
662
663 prev->stime = stime;
664 prev->utime = utime;
665 out:
666 *ut = prev->utime;
667 *st = prev->stime;
668 raw_spin_unlock_irqrestore(&prev->lock, flags);
669 }
670
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)671 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
672 {
673 struct task_cputime cputime = {
674 .sum_exec_runtime = p->se.sum_exec_runtime,
675 };
676
677 task_cputime(p, &cputime.utime, &cputime.stime);
678 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
679 }
680 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
681
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)682 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
683 {
684 struct task_cputime cputime;
685
686 thread_group_cputime(p, &cputime);
687 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
688 }
689 EXPORT_SYMBOL_GPL(thread_group_cputime_adjusted);
690
691 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
692
693 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
vtime_delta(struct vtime * vtime)694 static u64 vtime_delta(struct vtime *vtime)
695 {
696 unsigned long long clock;
697
698 clock = sched_clock();
699 if (clock < vtime->starttime)
700 return 0;
701
702 return clock - vtime->starttime;
703 }
704
get_vtime_delta(struct vtime * vtime)705 static u64 get_vtime_delta(struct vtime *vtime)
706 {
707 u64 delta = vtime_delta(vtime);
708 u64 other;
709
710 /*
711 * Unlike tick based timing, vtime based timing never has lost
712 * ticks, and no need for steal time accounting to make up for
713 * lost ticks. Vtime accounts a rounded version of actual
714 * elapsed time. Limit account_other_time to prevent rounding
715 * errors from causing elapsed vtime to go negative.
716 */
717 other = account_other_time(delta);
718 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
719 vtime->starttime += delta;
720
721 return delta - other;
722 }
723
__vtime_account_system(struct task_struct * tsk,struct vtime * vtime)724 static void __vtime_account_system(struct task_struct *tsk,
725 struct vtime *vtime)
726 {
727 vtime->stime += get_vtime_delta(vtime);
728 if (vtime->stime >= TICK_NSEC) {
729 account_system_time(tsk, irq_count(), vtime->stime);
730 vtime->stime = 0;
731 }
732 }
733
vtime_account_guest(struct task_struct * tsk,struct vtime * vtime)734 static void vtime_account_guest(struct task_struct *tsk,
735 struct vtime *vtime)
736 {
737 vtime->gtime += get_vtime_delta(vtime);
738 if (vtime->gtime >= TICK_NSEC) {
739 account_guest_time(tsk, vtime->gtime);
740 vtime->gtime = 0;
741 }
742 }
743
vtime_account_system(struct task_struct * tsk)744 void vtime_account_system(struct task_struct *tsk)
745 {
746 struct vtime *vtime = &tsk->vtime;
747
748 if (!vtime_delta(vtime))
749 return;
750
751 write_seqcount_begin(&vtime->seqcount);
752 /* We might have scheduled out from guest path */
753 if (tsk->flags & PF_VCPU)
754 vtime_account_guest(tsk, vtime);
755 else
756 __vtime_account_system(tsk, vtime);
757 write_seqcount_end(&vtime->seqcount);
758 }
759
vtime_user_enter(struct task_struct * tsk)760 void vtime_user_enter(struct task_struct *tsk)
761 {
762 struct vtime *vtime = &tsk->vtime;
763
764 write_seqcount_begin(&vtime->seqcount);
765 __vtime_account_system(tsk, vtime);
766 vtime->state = VTIME_USER;
767 write_seqcount_end(&vtime->seqcount);
768 }
769
vtime_user_exit(struct task_struct * tsk)770 void vtime_user_exit(struct task_struct *tsk)
771 {
772 struct vtime *vtime = &tsk->vtime;
773
774 write_seqcount_begin(&vtime->seqcount);
775 vtime->utime += get_vtime_delta(vtime);
776 if (vtime->utime >= TICK_NSEC) {
777 account_user_time(tsk, vtime->utime);
778 vtime->utime = 0;
779 }
780 vtime->state = VTIME_SYS;
781 write_seqcount_end(&vtime->seqcount);
782 }
783
vtime_guest_enter(struct task_struct * tsk)784 void vtime_guest_enter(struct task_struct *tsk)
785 {
786 struct vtime *vtime = &tsk->vtime;
787 /*
788 * The flags must be updated under the lock with
789 * the vtime_starttime flush and update.
790 * That enforces a right ordering and update sequence
791 * synchronization against the reader (task_gtime())
792 * that can thus safely catch up with a tickless delta.
793 */
794 write_seqcount_begin(&vtime->seqcount);
795 __vtime_account_system(tsk, vtime);
796 tsk->flags |= PF_VCPU;
797 write_seqcount_end(&vtime->seqcount);
798 }
799 EXPORT_SYMBOL_GPL(vtime_guest_enter);
800
vtime_guest_exit(struct task_struct * tsk)801 void vtime_guest_exit(struct task_struct *tsk)
802 {
803 struct vtime *vtime = &tsk->vtime;
804
805 write_seqcount_begin(&vtime->seqcount);
806 vtime_account_guest(tsk, vtime);
807 tsk->flags &= ~PF_VCPU;
808 write_seqcount_end(&vtime->seqcount);
809 }
810 EXPORT_SYMBOL_GPL(vtime_guest_exit);
811
vtime_account_idle(struct task_struct * tsk)812 void vtime_account_idle(struct task_struct *tsk)
813 {
814 account_idle_time(get_vtime_delta(&tsk->vtime));
815 }
816
arch_vtime_task_switch(struct task_struct * prev)817 void arch_vtime_task_switch(struct task_struct *prev)
818 {
819 struct vtime *vtime = &prev->vtime;
820
821 write_seqcount_begin(&vtime->seqcount);
822 vtime->state = VTIME_INACTIVE;
823 write_seqcount_end(&vtime->seqcount);
824
825 vtime = ¤t->vtime;
826
827 write_seqcount_begin(&vtime->seqcount);
828 vtime->state = VTIME_SYS;
829 vtime->starttime = sched_clock();
830 write_seqcount_end(&vtime->seqcount);
831 }
832
vtime_init_idle(struct task_struct * t,int cpu)833 void vtime_init_idle(struct task_struct *t, int cpu)
834 {
835 struct vtime *vtime = &t->vtime;
836 unsigned long flags;
837
838 local_irq_save(flags);
839 write_seqcount_begin(&vtime->seqcount);
840 vtime->state = VTIME_SYS;
841 vtime->starttime = sched_clock();
842 write_seqcount_end(&vtime->seqcount);
843 local_irq_restore(flags);
844 }
845
task_gtime(struct task_struct * t)846 u64 task_gtime(struct task_struct *t)
847 {
848 struct vtime *vtime = &t->vtime;
849 unsigned int seq;
850 u64 gtime;
851
852 if (!vtime_accounting_enabled())
853 return t->gtime;
854
855 do {
856 seq = read_seqcount_begin(&vtime->seqcount);
857
858 gtime = t->gtime;
859 if (vtime->state == VTIME_SYS && t->flags & PF_VCPU)
860 gtime += vtime->gtime + vtime_delta(vtime);
861
862 } while (read_seqcount_retry(&vtime->seqcount, seq));
863
864 return gtime;
865 }
866
867 /*
868 * Fetch cputime raw values from fields of task_struct and
869 * add up the pending nohz execution time since the last
870 * cputime snapshot.
871 */
task_cputime(struct task_struct * t,u64 * utime,u64 * stime)872 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
873 {
874 struct vtime *vtime = &t->vtime;
875 unsigned int seq;
876 u64 delta;
877
878 if (!vtime_accounting_enabled()) {
879 *utime = t->utime;
880 *stime = t->stime;
881 return;
882 }
883
884 do {
885 seq = read_seqcount_begin(&vtime->seqcount);
886
887 *utime = t->utime;
888 *stime = t->stime;
889
890 /* Task is sleeping, nothing to add */
891 if (vtime->state == VTIME_INACTIVE || is_idle_task(t))
892 continue;
893
894 delta = vtime_delta(vtime);
895
896 /*
897 * Task runs either in user or kernel space, add pending nohz time to
898 * the right place.
899 */
900 if (vtime->state == VTIME_USER || t->flags & PF_VCPU)
901 *utime += vtime->utime + delta;
902 else if (vtime->state == VTIME_SYS)
903 *stime += vtime->stime + delta;
904 } while (read_seqcount_retry(&vtime->seqcount, seq));
905 }
906 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
907