1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3 *
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16
17 struct workqueue_struct *afs_async_calls;
18
19 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
20 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
21 static void afs_process_async_call(struct work_struct *);
22 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
23 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
24 static int afs_deliver_cm_op_id(struct afs_call *);
25
26 /* asynchronous incoming call initial processing */
27 static const struct afs_call_type afs_RXCMxxxx = {
28 .name = "CB.xxxx",
29 .deliver = afs_deliver_cm_op_id,
30 };
31
32 /*
33 * open an RxRPC socket and bind it to be a server for callback notifications
34 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
35 */
afs_open_socket(struct afs_net * net)36 int afs_open_socket(struct afs_net *net)
37 {
38 struct sockaddr_rxrpc srx;
39 struct socket *socket;
40 unsigned int min_level;
41 int ret;
42
43 _enter("");
44
45 ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
46 if (ret < 0)
47 goto error_1;
48
49 socket->sk->sk_allocation = GFP_NOFS;
50
51 /* bind the callback manager's address to make this a server socket */
52 memset(&srx, 0, sizeof(srx));
53 srx.srx_family = AF_RXRPC;
54 srx.srx_service = CM_SERVICE;
55 srx.transport_type = SOCK_DGRAM;
56 srx.transport_len = sizeof(srx.transport.sin6);
57 srx.transport.sin6.sin6_family = AF_INET6;
58 srx.transport.sin6.sin6_port = htons(AFS_CM_PORT);
59
60 min_level = RXRPC_SECURITY_ENCRYPT;
61 ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL,
62 (void *)&min_level, sizeof(min_level));
63 if (ret < 0)
64 goto error_2;
65
66 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
67 if (ret == -EADDRINUSE) {
68 srx.transport.sin6.sin6_port = 0;
69 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
70 }
71 if (ret < 0)
72 goto error_2;
73
74 srx.srx_service = YFS_CM_SERVICE;
75 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
76 if (ret < 0)
77 goto error_2;
78
79 /* Ideally, we'd turn on service upgrade here, but we can't because
80 * OpenAFS is buggy and leaks the userStatus field from packet to
81 * packet and between FS packets and CB packets - so if we try to do an
82 * upgrade on an FS packet, OpenAFS will leak that into the CB packet
83 * it sends back to us.
84 */
85
86 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
87 afs_rx_discard_new_call);
88
89 ret = kernel_listen(socket, INT_MAX);
90 if (ret < 0)
91 goto error_2;
92
93 net->socket = socket;
94 afs_charge_preallocation(&net->charge_preallocation_work);
95 _leave(" = 0");
96 return 0;
97
98 error_2:
99 sock_release(socket);
100 error_1:
101 _leave(" = %d", ret);
102 return ret;
103 }
104
105 /*
106 * close the RxRPC socket AFS was using
107 */
afs_close_socket(struct afs_net * net)108 void afs_close_socket(struct afs_net *net)
109 {
110 _enter("");
111
112 kernel_listen(net->socket, 0);
113 flush_workqueue(afs_async_calls);
114
115 if (net->spare_incoming_call) {
116 afs_put_call(net->spare_incoming_call);
117 net->spare_incoming_call = NULL;
118 }
119
120 _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
121 wait_var_event(&net->nr_outstanding_calls,
122 !atomic_read(&net->nr_outstanding_calls));
123 _debug("no outstanding calls");
124
125 kernel_sock_shutdown(net->socket, SHUT_RDWR);
126 flush_workqueue(afs_async_calls);
127 sock_release(net->socket);
128
129 _debug("dework");
130 _leave("");
131 }
132
133 /*
134 * Allocate a call.
135 */
afs_alloc_call(struct afs_net * net,const struct afs_call_type * type,gfp_t gfp)136 static struct afs_call *afs_alloc_call(struct afs_net *net,
137 const struct afs_call_type *type,
138 gfp_t gfp)
139 {
140 struct afs_call *call;
141 int o;
142
143 call = kzalloc(sizeof(*call), gfp);
144 if (!call)
145 return NULL;
146
147 call->type = type;
148 call->net = net;
149 call->debug_id = atomic_inc_return(&rxrpc_debug_id);
150 atomic_set(&call->usage, 1);
151 INIT_WORK(&call->async_work, afs_process_async_call);
152 init_waitqueue_head(&call->waitq);
153 spin_lock_init(&call->state_lock);
154 call->_iter = &call->iter;
155
156 o = atomic_inc_return(&net->nr_outstanding_calls);
157 trace_afs_call(call, afs_call_trace_alloc, 1, o,
158 __builtin_return_address(0));
159 return call;
160 }
161
162 /*
163 * Dispose of a reference on a call.
164 */
afs_put_call(struct afs_call * call)165 void afs_put_call(struct afs_call *call)
166 {
167 struct afs_net *net = call->net;
168 int n = atomic_dec_return(&call->usage);
169 int o = atomic_read(&net->nr_outstanding_calls);
170
171 trace_afs_call(call, afs_call_trace_put, n, o,
172 __builtin_return_address(0));
173
174 ASSERTCMP(n, >=, 0);
175 if (n == 0) {
176 ASSERT(!work_pending(&call->async_work));
177 ASSERT(call->type->name != NULL);
178
179 if (call->rxcall) {
180 rxrpc_kernel_end_call(net->socket, call->rxcall);
181 call->rxcall = NULL;
182 }
183 if (call->type->destructor)
184 call->type->destructor(call);
185
186 afs_put_server(call->net, call->server, afs_server_trace_put_call);
187 afs_put_cb_interest(call->net, call->cbi);
188 afs_put_addrlist(call->alist);
189 kfree(call->request);
190
191 trace_afs_call(call, afs_call_trace_free, 0, o,
192 __builtin_return_address(0));
193 kfree(call);
194
195 o = atomic_dec_return(&net->nr_outstanding_calls);
196 if (o == 0)
197 wake_up_var(&net->nr_outstanding_calls);
198 }
199 }
200
afs_get_call(struct afs_call * call,enum afs_call_trace why)201 static struct afs_call *afs_get_call(struct afs_call *call,
202 enum afs_call_trace why)
203 {
204 int u = atomic_inc_return(&call->usage);
205
206 trace_afs_call(call, why, u,
207 atomic_read(&call->net->nr_outstanding_calls),
208 __builtin_return_address(0));
209 return call;
210 }
211
212 /*
213 * Queue the call for actual work.
214 */
afs_queue_call_work(struct afs_call * call)215 static void afs_queue_call_work(struct afs_call *call)
216 {
217 if (call->type->work) {
218 INIT_WORK(&call->work, call->type->work);
219
220 afs_get_call(call, afs_call_trace_work);
221 if (!queue_work(afs_wq, &call->work))
222 afs_put_call(call);
223 }
224 }
225
226 /*
227 * allocate a call with flat request and reply buffers
228 */
afs_alloc_flat_call(struct afs_net * net,const struct afs_call_type * type,size_t request_size,size_t reply_max)229 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
230 const struct afs_call_type *type,
231 size_t request_size, size_t reply_max)
232 {
233 struct afs_call *call;
234
235 call = afs_alloc_call(net, type, GFP_NOFS);
236 if (!call)
237 goto nomem_call;
238
239 if (request_size) {
240 call->request_size = request_size;
241 call->request = kmalloc(request_size, GFP_NOFS);
242 if (!call->request)
243 goto nomem_free;
244 }
245
246 if (reply_max) {
247 call->reply_max = reply_max;
248 call->buffer = kmalloc(reply_max, GFP_NOFS);
249 if (!call->buffer)
250 goto nomem_free;
251 }
252
253 afs_extract_to_buf(call, call->reply_max);
254 call->operation_ID = type->op;
255 init_waitqueue_head(&call->waitq);
256 return call;
257
258 nomem_free:
259 afs_put_call(call);
260 nomem_call:
261 return NULL;
262 }
263
264 /*
265 * clean up a call with flat buffer
266 */
afs_flat_call_destructor(struct afs_call * call)267 void afs_flat_call_destructor(struct afs_call *call)
268 {
269 _enter("");
270
271 kfree(call->request);
272 call->request = NULL;
273 kfree(call->buffer);
274 call->buffer = NULL;
275 }
276
277 #define AFS_BVEC_MAX 8
278
279 /*
280 * Load the given bvec with the next few pages.
281 */
afs_load_bvec(struct afs_call * call,struct msghdr * msg,struct bio_vec * bv,pgoff_t first,pgoff_t last,unsigned offset)282 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
283 struct bio_vec *bv, pgoff_t first, pgoff_t last,
284 unsigned offset)
285 {
286 struct page *pages[AFS_BVEC_MAX];
287 unsigned int nr, n, i, to, bytes = 0;
288
289 nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
290 n = find_get_pages_contig(call->mapping, first, nr, pages);
291 ASSERTCMP(n, ==, nr);
292
293 msg->msg_flags |= MSG_MORE;
294 for (i = 0; i < nr; i++) {
295 to = PAGE_SIZE;
296 if (first + i >= last) {
297 to = call->last_to;
298 msg->msg_flags &= ~MSG_MORE;
299 }
300 bv[i].bv_page = pages[i];
301 bv[i].bv_len = to - offset;
302 bv[i].bv_offset = offset;
303 bytes += to - offset;
304 offset = 0;
305 }
306
307 iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes);
308 }
309
310 /*
311 * Advance the AFS call state when the RxRPC call ends the transmit phase.
312 */
afs_notify_end_request_tx(struct sock * sock,struct rxrpc_call * rxcall,unsigned long call_user_ID)313 static void afs_notify_end_request_tx(struct sock *sock,
314 struct rxrpc_call *rxcall,
315 unsigned long call_user_ID)
316 {
317 struct afs_call *call = (struct afs_call *)call_user_ID;
318
319 afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
320 }
321
322 /*
323 * attach the data from a bunch of pages on an inode to a call
324 */
afs_send_pages(struct afs_call * call,struct msghdr * msg)325 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
326 {
327 struct bio_vec bv[AFS_BVEC_MAX];
328 unsigned int bytes, nr, loop, offset;
329 pgoff_t first = call->first, last = call->last;
330 int ret;
331
332 offset = call->first_offset;
333 call->first_offset = 0;
334
335 do {
336 afs_load_bvec(call, msg, bv, first, last, offset);
337 trace_afs_send_pages(call, msg, first, last, offset);
338
339 offset = 0;
340 bytes = msg->msg_iter.count;
341 nr = msg->msg_iter.nr_segs;
342
343 ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg,
344 bytes, afs_notify_end_request_tx);
345 for (loop = 0; loop < nr; loop++)
346 put_page(bv[loop].bv_page);
347 if (ret < 0)
348 break;
349
350 first += nr;
351 } while (first <= last);
352
353 trace_afs_sent_pages(call, call->first, last, first, ret);
354 return ret;
355 }
356
357 /*
358 * Initiate a call and synchronously queue up the parameters for dispatch. Any
359 * error is stored into the call struct, which the caller must check for.
360 */
afs_make_call(struct afs_addr_cursor * ac,struct afs_call * call,gfp_t gfp)361 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
362 {
363 struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
364 struct rxrpc_call *rxcall;
365 struct msghdr msg;
366 struct kvec iov[1];
367 s64 tx_total_len;
368 int ret;
369
370 _enter(",{%pISp},", &srx->transport);
371
372 ASSERT(call->type != NULL);
373 ASSERT(call->type->name != NULL);
374
375 _debug("____MAKE %p{%s,%x} [%d]____",
376 call, call->type->name, key_serial(call->key),
377 atomic_read(&call->net->nr_outstanding_calls));
378
379 call->addr_ix = ac->index;
380 call->alist = afs_get_addrlist(ac->alist);
381
382 /* Work out the length we're going to transmit. This is awkward for
383 * calls such as FS.StoreData where there's an extra injection of data
384 * after the initial fixed part.
385 */
386 tx_total_len = call->request_size;
387 if (call->send_pages) {
388 if (call->last == call->first) {
389 tx_total_len += call->last_to - call->first_offset;
390 } else {
391 /* It looks mathematically like you should be able to
392 * combine the following lines with the ones above, but
393 * unsigned arithmetic is fun when it wraps...
394 */
395 tx_total_len += PAGE_SIZE - call->first_offset;
396 tx_total_len += call->last_to;
397 tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
398 }
399 }
400
401 /* If the call is going to be asynchronous, we need an extra ref for
402 * the call to hold itself so the caller need not hang on to its ref.
403 */
404 if (call->async) {
405 afs_get_call(call, afs_call_trace_get);
406 call->drop_ref = true;
407 }
408
409 /* create a call */
410 rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
411 (unsigned long)call,
412 tx_total_len, gfp,
413 (call->async ?
414 afs_wake_up_async_call :
415 afs_wake_up_call_waiter),
416 call->upgrade,
417 (call->intr ? RXRPC_PREINTERRUPTIBLE :
418 RXRPC_UNINTERRUPTIBLE),
419 call->debug_id);
420 if (IS_ERR(rxcall)) {
421 ret = PTR_ERR(rxcall);
422 call->error = ret;
423 goto error_kill_call;
424 }
425
426 call->rxcall = rxcall;
427
428 if (call->max_lifespan)
429 rxrpc_kernel_set_max_life(call->net->socket, rxcall,
430 call->max_lifespan);
431 call->issue_time = ktime_get_real();
432
433 /* send the request */
434 iov[0].iov_base = call->request;
435 iov[0].iov_len = call->request_size;
436
437 msg.msg_name = NULL;
438 msg.msg_namelen = 0;
439 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size);
440 msg.msg_control = NULL;
441 msg.msg_controllen = 0;
442 msg.msg_flags = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
443
444 ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
445 &msg, call->request_size,
446 afs_notify_end_request_tx);
447 if (ret < 0)
448 goto error_do_abort;
449
450 if (call->send_pages) {
451 ret = afs_send_pages(call, &msg);
452 if (ret < 0)
453 goto error_do_abort;
454 }
455
456 /* Note that at this point, we may have received the reply or an abort
457 * - and an asynchronous call may already have completed.
458 *
459 * afs_wait_for_call_to_complete(call, ac)
460 * must be called to synchronously clean up.
461 */
462 return;
463
464 error_do_abort:
465 if (ret != -ECONNABORTED) {
466 rxrpc_kernel_abort_call(call->net->socket, rxcall,
467 RX_USER_ABORT, ret, "KSD");
468 } else {
469 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0);
470 rxrpc_kernel_recv_data(call->net->socket, rxcall,
471 &msg.msg_iter, false,
472 &call->abort_code, &call->service_id);
473 ac->abort_code = call->abort_code;
474 ac->responded = true;
475 }
476 call->error = ret;
477 trace_afs_call_done(call);
478 error_kill_call:
479 if (call->type->done)
480 call->type->done(call);
481
482 /* We need to dispose of the extra ref we grabbed for an async call.
483 * The call, however, might be queued on afs_async_calls and we need to
484 * make sure we don't get any more notifications that might requeue it.
485 */
486 if (call->rxcall) {
487 rxrpc_kernel_end_call(call->net->socket, call->rxcall);
488 call->rxcall = NULL;
489 }
490 if (call->async) {
491 if (cancel_work_sync(&call->async_work))
492 afs_put_call(call);
493 afs_set_call_complete(call, ret, 0);
494 }
495
496 ac->error = ret;
497 call->state = AFS_CALL_COMPLETE;
498 _leave(" = %d", ret);
499 }
500
501 /*
502 * deliver messages to a call
503 */
afs_deliver_to_call(struct afs_call * call)504 static void afs_deliver_to_call(struct afs_call *call)
505 {
506 enum afs_call_state state;
507 u32 abort_code, remote_abort = 0;
508 int ret;
509
510 _enter("%s", call->type->name);
511
512 while (state = READ_ONCE(call->state),
513 state == AFS_CALL_CL_AWAIT_REPLY ||
514 state == AFS_CALL_SV_AWAIT_OP_ID ||
515 state == AFS_CALL_SV_AWAIT_REQUEST ||
516 state == AFS_CALL_SV_AWAIT_ACK
517 ) {
518 if (state == AFS_CALL_SV_AWAIT_ACK) {
519 iov_iter_kvec(&call->iter, READ, NULL, 0, 0);
520 ret = rxrpc_kernel_recv_data(call->net->socket,
521 call->rxcall, &call->iter,
522 false, &remote_abort,
523 &call->service_id);
524 trace_afs_receive_data(call, &call->iter, false, ret);
525
526 if (ret == -EINPROGRESS || ret == -EAGAIN)
527 return;
528 if (ret < 0 || ret == 1) {
529 if (ret == 1)
530 ret = 0;
531 goto call_complete;
532 }
533 return;
534 }
535
536 ret = call->type->deliver(call);
537 state = READ_ONCE(call->state);
538 if (ret == 0 && call->unmarshalling_error)
539 ret = -EBADMSG;
540 switch (ret) {
541 case 0:
542 afs_queue_call_work(call);
543 if (state == AFS_CALL_CL_PROC_REPLY) {
544 if (call->cbi)
545 set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
546 &call->cbi->server->flags);
547 goto call_complete;
548 }
549 ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
550 goto done;
551 case -EINPROGRESS:
552 case -EAGAIN:
553 goto out;
554 case -ECONNABORTED:
555 ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
556 goto done;
557 case -ENOTSUPP:
558 abort_code = RXGEN_OPCODE;
559 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
560 abort_code, ret, "KIV");
561 goto local_abort;
562 case -EIO:
563 pr_err("kAFS: Call %u in bad state %u\n",
564 call->debug_id, state);
565 /* Fall through */
566 case -ENODATA:
567 case -EBADMSG:
568 case -EMSGSIZE:
569 abort_code = RXGEN_CC_UNMARSHAL;
570 if (state != AFS_CALL_CL_AWAIT_REPLY)
571 abort_code = RXGEN_SS_UNMARSHAL;
572 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
573 abort_code, ret, "KUM");
574 goto local_abort;
575 default:
576 abort_code = RX_USER_ABORT;
577 rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
578 abort_code, ret, "KER");
579 goto local_abort;
580 }
581 }
582
583 done:
584 if (call->type->done)
585 call->type->done(call);
586 out:
587 _leave("");
588 return;
589
590 local_abort:
591 abort_code = 0;
592 call_complete:
593 afs_set_call_complete(call, ret, remote_abort);
594 state = AFS_CALL_COMPLETE;
595 goto done;
596 }
597
598 /*
599 * Wait synchronously for a call to complete and clean up the call struct.
600 */
afs_wait_for_call_to_complete(struct afs_call * call,struct afs_addr_cursor * ac)601 long afs_wait_for_call_to_complete(struct afs_call *call,
602 struct afs_addr_cursor *ac)
603 {
604 long ret;
605 bool rxrpc_complete = false;
606
607 DECLARE_WAITQUEUE(myself, current);
608
609 _enter("");
610
611 ret = call->error;
612 if (ret < 0)
613 goto out;
614
615 add_wait_queue(&call->waitq, &myself);
616 for (;;) {
617 set_current_state(TASK_UNINTERRUPTIBLE);
618
619 /* deliver any messages that are in the queue */
620 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
621 call->need_attention) {
622 call->need_attention = false;
623 __set_current_state(TASK_RUNNING);
624 afs_deliver_to_call(call);
625 continue;
626 }
627
628 if (afs_check_call_state(call, AFS_CALL_COMPLETE))
629 break;
630
631 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
632 /* rxrpc terminated the call. */
633 rxrpc_complete = true;
634 break;
635 }
636
637 schedule();
638 }
639
640 remove_wait_queue(&call->waitq, &myself);
641 __set_current_state(TASK_RUNNING);
642
643 if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
644 if (rxrpc_complete) {
645 afs_set_call_complete(call, call->error, call->abort_code);
646 } else {
647 /* Kill off the call if it's still live. */
648 _debug("call interrupted");
649 if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
650 RX_USER_ABORT, -EINTR, "KWI"))
651 afs_set_call_complete(call, -EINTR, 0);
652 }
653 }
654
655 spin_lock_bh(&call->state_lock);
656 ac->abort_code = call->abort_code;
657 ac->error = call->error;
658 spin_unlock_bh(&call->state_lock);
659
660 ret = ac->error;
661 switch (ret) {
662 case 0:
663 ret = call->ret0;
664 call->ret0 = 0;
665
666 /* Fall through */
667 case -ECONNABORTED:
668 ac->responded = true;
669 break;
670 }
671
672 out:
673 _debug("call complete");
674 afs_put_call(call);
675 _leave(" = %p", (void *)ret);
676 return ret;
677 }
678
679 /*
680 * wake up a waiting call
681 */
afs_wake_up_call_waiter(struct sock * sk,struct rxrpc_call * rxcall,unsigned long call_user_ID)682 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
683 unsigned long call_user_ID)
684 {
685 struct afs_call *call = (struct afs_call *)call_user_ID;
686
687 call->need_attention = true;
688 wake_up(&call->waitq);
689 }
690
691 /*
692 * wake up an asynchronous call
693 */
afs_wake_up_async_call(struct sock * sk,struct rxrpc_call * rxcall,unsigned long call_user_ID)694 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
695 unsigned long call_user_ID)
696 {
697 struct afs_call *call = (struct afs_call *)call_user_ID;
698 int u;
699
700 trace_afs_notify_call(rxcall, call);
701 call->need_attention = true;
702
703 u = atomic_fetch_add_unless(&call->usage, 1, 0);
704 if (u != 0) {
705 trace_afs_call(call, afs_call_trace_wake, u + 1,
706 atomic_read(&call->net->nr_outstanding_calls),
707 __builtin_return_address(0));
708
709 if (!queue_work(afs_async_calls, &call->async_work))
710 afs_put_call(call);
711 }
712 }
713
714 /*
715 * Perform I/O processing on an asynchronous call. The work item carries a ref
716 * to the call struct that we either need to release or to pass on.
717 */
afs_process_async_call(struct work_struct * work)718 static void afs_process_async_call(struct work_struct *work)
719 {
720 struct afs_call *call = container_of(work, struct afs_call, async_work);
721
722 _enter("");
723
724 if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
725 call->need_attention = false;
726 afs_deliver_to_call(call);
727 }
728
729 afs_put_call(call);
730 _leave("");
731 }
732
afs_rx_attach(struct rxrpc_call * rxcall,unsigned long user_call_ID)733 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
734 {
735 struct afs_call *call = (struct afs_call *)user_call_ID;
736
737 call->rxcall = rxcall;
738 }
739
740 /*
741 * Charge the incoming call preallocation.
742 */
afs_charge_preallocation(struct work_struct * work)743 void afs_charge_preallocation(struct work_struct *work)
744 {
745 struct afs_net *net =
746 container_of(work, struct afs_net, charge_preallocation_work);
747 struct afs_call *call = net->spare_incoming_call;
748
749 for (;;) {
750 if (!call) {
751 call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
752 if (!call)
753 break;
754
755 call->drop_ref = true;
756 call->async = true;
757 call->state = AFS_CALL_SV_AWAIT_OP_ID;
758 init_waitqueue_head(&call->waitq);
759 afs_extract_to_tmp(call);
760 }
761
762 if (rxrpc_kernel_charge_accept(net->socket,
763 afs_wake_up_async_call,
764 afs_rx_attach,
765 (unsigned long)call,
766 GFP_KERNEL,
767 call->debug_id) < 0)
768 break;
769 call = NULL;
770 }
771 net->spare_incoming_call = call;
772 }
773
774 /*
775 * Discard a preallocated call when a socket is shut down.
776 */
afs_rx_discard_new_call(struct rxrpc_call * rxcall,unsigned long user_call_ID)777 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
778 unsigned long user_call_ID)
779 {
780 struct afs_call *call = (struct afs_call *)user_call_ID;
781
782 call->rxcall = NULL;
783 afs_put_call(call);
784 }
785
786 /*
787 * Notification of an incoming call.
788 */
afs_rx_new_call(struct sock * sk,struct rxrpc_call * rxcall,unsigned long user_call_ID)789 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
790 unsigned long user_call_ID)
791 {
792 struct afs_net *net = afs_sock2net(sk);
793
794 queue_work(afs_wq, &net->charge_preallocation_work);
795 }
796
797 /*
798 * Grab the operation ID from an incoming cache manager call. The socket
799 * buffer is discarded on error or if we don't yet have sufficient data.
800 */
afs_deliver_cm_op_id(struct afs_call * call)801 static int afs_deliver_cm_op_id(struct afs_call *call)
802 {
803 int ret;
804
805 _enter("{%zu}", iov_iter_count(call->_iter));
806
807 /* the operation ID forms the first four bytes of the request data */
808 ret = afs_extract_data(call, true);
809 if (ret < 0)
810 return ret;
811
812 call->operation_ID = ntohl(call->tmp);
813 afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
814
815 /* ask the cache manager to route the call (it'll change the call type
816 * if successful) */
817 if (!afs_cm_incoming_call(call))
818 return -ENOTSUPP;
819
820 trace_afs_cb_call(call);
821
822 /* pass responsibility for the remainer of this message off to the
823 * cache manager op */
824 return call->type->deliver(call);
825 }
826
827 /*
828 * Advance the AFS call state when an RxRPC service call ends the transmit
829 * phase.
830 */
afs_notify_end_reply_tx(struct sock * sock,struct rxrpc_call * rxcall,unsigned long call_user_ID)831 static void afs_notify_end_reply_tx(struct sock *sock,
832 struct rxrpc_call *rxcall,
833 unsigned long call_user_ID)
834 {
835 struct afs_call *call = (struct afs_call *)call_user_ID;
836
837 afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
838 }
839
840 /*
841 * send an empty reply
842 */
afs_send_empty_reply(struct afs_call * call)843 void afs_send_empty_reply(struct afs_call *call)
844 {
845 struct afs_net *net = call->net;
846 struct msghdr msg;
847
848 _enter("");
849
850 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
851
852 msg.msg_name = NULL;
853 msg.msg_namelen = 0;
854 iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0);
855 msg.msg_control = NULL;
856 msg.msg_controllen = 0;
857 msg.msg_flags = 0;
858
859 switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
860 afs_notify_end_reply_tx)) {
861 case 0:
862 _leave(" [replied]");
863 return;
864
865 case -ENOMEM:
866 _debug("oom");
867 rxrpc_kernel_abort_call(net->socket, call->rxcall,
868 RX_USER_ABORT, -ENOMEM, "KOO");
869 /* Fall through */
870 default:
871 _leave(" [error]");
872 return;
873 }
874 }
875
876 /*
877 * send a simple reply
878 */
afs_send_simple_reply(struct afs_call * call,const void * buf,size_t len)879 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
880 {
881 struct afs_net *net = call->net;
882 struct msghdr msg;
883 struct kvec iov[1];
884 int n;
885
886 _enter("");
887
888 rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
889
890 iov[0].iov_base = (void *) buf;
891 iov[0].iov_len = len;
892 msg.msg_name = NULL;
893 msg.msg_namelen = 0;
894 iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len);
895 msg.msg_control = NULL;
896 msg.msg_controllen = 0;
897 msg.msg_flags = 0;
898
899 n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
900 afs_notify_end_reply_tx);
901 if (n >= 0) {
902 /* Success */
903 _leave(" [replied]");
904 return;
905 }
906
907 if (n == -ENOMEM) {
908 _debug("oom");
909 rxrpc_kernel_abort_call(net->socket, call->rxcall,
910 RX_USER_ABORT, -ENOMEM, "KOO");
911 }
912 _leave(" [error]");
913 }
914
915 /*
916 * Extract a piece of data from the received data socket buffers.
917 */
afs_extract_data(struct afs_call * call,bool want_more)918 int afs_extract_data(struct afs_call *call, bool want_more)
919 {
920 struct afs_net *net = call->net;
921 struct iov_iter *iter = call->_iter;
922 enum afs_call_state state;
923 u32 remote_abort = 0;
924 int ret;
925
926 _enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more);
927
928 ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
929 want_more, &remote_abort,
930 &call->service_id);
931 if (ret == 0 || ret == -EAGAIN)
932 return ret;
933
934 state = READ_ONCE(call->state);
935 if (ret == 1) {
936 switch (state) {
937 case AFS_CALL_CL_AWAIT_REPLY:
938 afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
939 break;
940 case AFS_CALL_SV_AWAIT_REQUEST:
941 afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
942 break;
943 case AFS_CALL_COMPLETE:
944 kdebug("prem complete %d", call->error);
945 return afs_io_error(call, afs_io_error_extract);
946 default:
947 break;
948 }
949 return 0;
950 }
951
952 afs_set_call_complete(call, ret, remote_abort);
953 return ret;
954 }
955
956 /*
957 * Log protocol error production.
958 */
afs_protocol_error(struct afs_call * call,int error,enum afs_eproto_cause cause)959 noinline int afs_protocol_error(struct afs_call *call, int error,
960 enum afs_eproto_cause cause)
961 {
962 trace_afs_protocol_error(call, error, cause);
963 if (call)
964 call->unmarshalling_error = true;
965 return error;
966 }
967