1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Per core/cpu state
4 *
5 * Used to coordinate shared registers between HT threads or
6 * among events on a single PMU.
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24
25 #include "../perf_event.h"
26
27 /*
28 * Intel PerfMon, used on Core and later.
29 */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
33 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
34 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
35 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
36 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
37 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
38 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
39 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
40 };
41
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50 EVENT_CONSTRAINT_END
51 };
52
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68 EVENT_CONSTRAINT_END
69 };
70
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84 EVENT_CONSTRAINT_END
85 };
86
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 EVENT_EXTRA_END
93 };
94
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 EVENT_CONSTRAINT_END
105 };
106
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121
122 /*
123 * When HT is off these events can only run on the bottom 4 counters
124 * When HT is on, they are impacted by the HT bug and require EXCL access
125 */
126 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130
131 EVENT_CONSTRAINT_END
132 };
133
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
141 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149
150 /*
151 * When HT is off these events can only run on the bottom 4 counters
152 * When HT is on, they are impacted by the HT bug and require EXCL access
153 */
154 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158
159 EVENT_CONSTRAINT_END
160 };
161
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 EVENT_EXTRA_END
169 };
170
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173 EVENT_CONSTRAINT_END
174 };
175
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 EVENT_CONSTRAINT_END
182 };
183
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189 EVENT_CONSTRAINT_END
190 };
191
192 static struct event_constraint intel_skl_event_constraints[] = {
193 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
194 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
195 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
196 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
197
198 /*
199 * when HT is off, these can only run on the bottom 4 counters
200 */
201 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
202 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
203 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
204 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
205 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
206
207 EVENT_CONSTRAINT_END
208 };
209
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213 EVENT_EXTRA_END
214 };
215
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 EVENT_EXTRA_END
222 };
223
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 EVENT_EXTRA_END
230 };
231
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236 /*
237 * Note the low 8 bits eventsel code is not a continuous field, containing
238 * some #GPing bits. These are masked out.
239 */
240 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241 EVENT_EXTRA_END
242 };
243
244 static struct event_constraint intel_icl_event_constraints[] = {
245 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
246 FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* INST_RETIRED.PREC_DIST */
247 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
248 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
249 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
250 INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
251 INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
252 INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */
253 INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
254 INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
255 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */
256 INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
257 INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
258 INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */
259 INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
260 INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
261 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
262 INTEL_EVENT_CONSTRAINT(0xef, 0xf),
263 INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
264 EVENT_CONSTRAINT_END
265 };
266
267 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
268 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
269 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
270 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
271 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
272 EVENT_EXTRA_END
273 };
274
275 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
276 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
277 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
278
279 static struct attribute *nhm_mem_events_attrs[] = {
280 EVENT_PTR(mem_ld_nhm),
281 NULL,
282 };
283
284 /*
285 * topdown events for Intel Core CPUs.
286 *
287 * The events are all in slots, which is a free slot in a 4 wide
288 * pipeline. Some events are already reported in slots, for cycle
289 * events we multiply by the pipeline width (4).
290 *
291 * With Hyper Threading on, topdown metrics are either summed or averaged
292 * between the threads of a core: (count_t0 + count_t1).
293 *
294 * For the average case the metric is always scaled to pipeline width,
295 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
296 */
297
298 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
299 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
300 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
301 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
302 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
303 "event=0xe,umask=0x1"); /* uops_issued.any */
304 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
305 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
306 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
307 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
308 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
309 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
310 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
311 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
312 "4", "2");
313
314 static struct attribute *snb_events_attrs[] = {
315 EVENT_PTR(td_slots_issued),
316 EVENT_PTR(td_slots_retired),
317 EVENT_PTR(td_fetch_bubbles),
318 EVENT_PTR(td_total_slots),
319 EVENT_PTR(td_total_slots_scale),
320 EVENT_PTR(td_recovery_bubbles),
321 EVENT_PTR(td_recovery_bubbles_scale),
322 NULL,
323 };
324
325 static struct attribute *snb_mem_events_attrs[] = {
326 EVENT_PTR(mem_ld_snb),
327 EVENT_PTR(mem_st_snb),
328 NULL,
329 };
330
331 static struct event_constraint intel_hsw_event_constraints[] = {
332 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
333 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
334 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
335 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
336 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
337 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
338 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
339 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
340 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
341 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
342 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
343 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
344
345 /*
346 * When HT is off these events can only run on the bottom 4 counters
347 * When HT is on, they are impacted by the HT bug and require EXCL access
348 */
349 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
350 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
351 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
352 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
353
354 EVENT_CONSTRAINT_END
355 };
356
357 static struct event_constraint intel_bdw_event_constraints[] = {
358 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
359 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
360 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
361 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
362 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
363 /*
364 * when HT is off, these can only run on the bottom 4 counters
365 */
366 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
367 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
368 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
369 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
370 EVENT_CONSTRAINT_END
371 };
372
intel_pmu_event_map(int hw_event)373 static u64 intel_pmu_event_map(int hw_event)
374 {
375 return intel_perfmon_event_map[hw_event];
376 }
377
378 /*
379 * Notes on the events:
380 * - data reads do not include code reads (comparable to earlier tables)
381 * - data counts include speculative execution (except L1 write, dtlb, bpu)
382 * - remote node access includes remote memory, remote cache, remote mmio.
383 * - prefetches are not included in the counts.
384 * - icache miss does not include decoded icache
385 */
386
387 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
388 #define SKL_DEMAND_RFO BIT_ULL(1)
389 #define SKL_ANY_RESPONSE BIT_ULL(16)
390 #define SKL_SUPPLIER_NONE BIT_ULL(17)
391 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
392 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
393 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
394 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
395 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
396 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
397 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
398 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
399 #define SKL_SPL_HIT BIT_ULL(30)
400 #define SKL_SNOOP_NONE BIT_ULL(31)
401 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
402 #define SKL_SNOOP_MISS BIT_ULL(33)
403 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
404 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
405 #define SKL_SNOOP_HITM BIT_ULL(36)
406 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
407 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
408 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
409 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
410 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
411 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
412 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
413 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
414 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
415 SKL_SNOOP_HITM|SKL_SPL_HIT)
416 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
417 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
418 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
419 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
420 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
421
422 static __initconst const u64 skl_hw_cache_event_ids
423 [PERF_COUNT_HW_CACHE_MAX]
424 [PERF_COUNT_HW_CACHE_OP_MAX]
425 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
426 {
427 [ C(L1D ) ] = {
428 [ C(OP_READ) ] = {
429 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
430 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
431 },
432 [ C(OP_WRITE) ] = {
433 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
434 [ C(RESULT_MISS) ] = 0x0,
435 },
436 [ C(OP_PREFETCH) ] = {
437 [ C(RESULT_ACCESS) ] = 0x0,
438 [ C(RESULT_MISS) ] = 0x0,
439 },
440 },
441 [ C(L1I ) ] = {
442 [ C(OP_READ) ] = {
443 [ C(RESULT_ACCESS) ] = 0x0,
444 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
445 },
446 [ C(OP_WRITE) ] = {
447 [ C(RESULT_ACCESS) ] = -1,
448 [ C(RESULT_MISS) ] = -1,
449 },
450 [ C(OP_PREFETCH) ] = {
451 [ C(RESULT_ACCESS) ] = 0x0,
452 [ C(RESULT_MISS) ] = 0x0,
453 },
454 },
455 [ C(LL ) ] = {
456 [ C(OP_READ) ] = {
457 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
458 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
459 },
460 [ C(OP_WRITE) ] = {
461 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
462 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
463 },
464 [ C(OP_PREFETCH) ] = {
465 [ C(RESULT_ACCESS) ] = 0x0,
466 [ C(RESULT_MISS) ] = 0x0,
467 },
468 },
469 [ C(DTLB) ] = {
470 [ C(OP_READ) ] = {
471 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
472 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
473 },
474 [ C(OP_WRITE) ] = {
475 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
476 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
477 },
478 [ C(OP_PREFETCH) ] = {
479 [ C(RESULT_ACCESS) ] = 0x0,
480 [ C(RESULT_MISS) ] = 0x0,
481 },
482 },
483 [ C(ITLB) ] = {
484 [ C(OP_READ) ] = {
485 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
486 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
487 },
488 [ C(OP_WRITE) ] = {
489 [ C(RESULT_ACCESS) ] = -1,
490 [ C(RESULT_MISS) ] = -1,
491 },
492 [ C(OP_PREFETCH) ] = {
493 [ C(RESULT_ACCESS) ] = -1,
494 [ C(RESULT_MISS) ] = -1,
495 },
496 },
497 [ C(BPU ) ] = {
498 [ C(OP_READ) ] = {
499 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
500 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
501 },
502 [ C(OP_WRITE) ] = {
503 [ C(RESULT_ACCESS) ] = -1,
504 [ C(RESULT_MISS) ] = -1,
505 },
506 [ C(OP_PREFETCH) ] = {
507 [ C(RESULT_ACCESS) ] = -1,
508 [ C(RESULT_MISS) ] = -1,
509 },
510 },
511 [ C(NODE) ] = {
512 [ C(OP_READ) ] = {
513 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
514 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
515 },
516 [ C(OP_WRITE) ] = {
517 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
518 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
519 },
520 [ C(OP_PREFETCH) ] = {
521 [ C(RESULT_ACCESS) ] = 0x0,
522 [ C(RESULT_MISS) ] = 0x0,
523 },
524 },
525 };
526
527 static __initconst const u64 skl_hw_cache_extra_regs
528 [PERF_COUNT_HW_CACHE_MAX]
529 [PERF_COUNT_HW_CACHE_OP_MAX]
530 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
531 {
532 [ C(LL ) ] = {
533 [ C(OP_READ) ] = {
534 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
535 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
536 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
537 SKL_L3_MISS|SKL_ANY_SNOOP|
538 SKL_SUPPLIER_NONE,
539 },
540 [ C(OP_WRITE) ] = {
541 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
542 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
543 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
544 SKL_L3_MISS|SKL_ANY_SNOOP|
545 SKL_SUPPLIER_NONE,
546 },
547 [ C(OP_PREFETCH) ] = {
548 [ C(RESULT_ACCESS) ] = 0x0,
549 [ C(RESULT_MISS) ] = 0x0,
550 },
551 },
552 [ C(NODE) ] = {
553 [ C(OP_READ) ] = {
554 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
555 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
556 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
557 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
558 },
559 [ C(OP_WRITE) ] = {
560 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
561 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
562 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
563 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
564 },
565 [ C(OP_PREFETCH) ] = {
566 [ C(RESULT_ACCESS) ] = 0x0,
567 [ C(RESULT_MISS) ] = 0x0,
568 },
569 },
570 };
571
572 #define SNB_DMND_DATA_RD (1ULL << 0)
573 #define SNB_DMND_RFO (1ULL << 1)
574 #define SNB_DMND_IFETCH (1ULL << 2)
575 #define SNB_DMND_WB (1ULL << 3)
576 #define SNB_PF_DATA_RD (1ULL << 4)
577 #define SNB_PF_RFO (1ULL << 5)
578 #define SNB_PF_IFETCH (1ULL << 6)
579 #define SNB_LLC_DATA_RD (1ULL << 7)
580 #define SNB_LLC_RFO (1ULL << 8)
581 #define SNB_LLC_IFETCH (1ULL << 9)
582 #define SNB_BUS_LOCKS (1ULL << 10)
583 #define SNB_STRM_ST (1ULL << 11)
584 #define SNB_OTHER (1ULL << 15)
585 #define SNB_RESP_ANY (1ULL << 16)
586 #define SNB_NO_SUPP (1ULL << 17)
587 #define SNB_LLC_HITM (1ULL << 18)
588 #define SNB_LLC_HITE (1ULL << 19)
589 #define SNB_LLC_HITS (1ULL << 20)
590 #define SNB_LLC_HITF (1ULL << 21)
591 #define SNB_LOCAL (1ULL << 22)
592 #define SNB_REMOTE (0xffULL << 23)
593 #define SNB_SNP_NONE (1ULL << 31)
594 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
595 #define SNB_SNP_MISS (1ULL << 33)
596 #define SNB_NO_FWD (1ULL << 34)
597 #define SNB_SNP_FWD (1ULL << 35)
598 #define SNB_HITM (1ULL << 36)
599 #define SNB_NON_DRAM (1ULL << 37)
600
601 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
602 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
603 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
604
605 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
606 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
607 SNB_HITM)
608
609 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
610 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
611
612 #define SNB_L3_ACCESS SNB_RESP_ANY
613 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
614
615 static __initconst const u64 snb_hw_cache_extra_regs
616 [PERF_COUNT_HW_CACHE_MAX]
617 [PERF_COUNT_HW_CACHE_OP_MAX]
618 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
619 {
620 [ C(LL ) ] = {
621 [ C(OP_READ) ] = {
622 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
623 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
624 },
625 [ C(OP_WRITE) ] = {
626 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
627 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
628 },
629 [ C(OP_PREFETCH) ] = {
630 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
631 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
632 },
633 },
634 [ C(NODE) ] = {
635 [ C(OP_READ) ] = {
636 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
637 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
638 },
639 [ C(OP_WRITE) ] = {
640 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
641 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
642 },
643 [ C(OP_PREFETCH) ] = {
644 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
645 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
646 },
647 },
648 };
649
650 static __initconst const u64 snb_hw_cache_event_ids
651 [PERF_COUNT_HW_CACHE_MAX]
652 [PERF_COUNT_HW_CACHE_OP_MAX]
653 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
654 {
655 [ C(L1D) ] = {
656 [ C(OP_READ) ] = {
657 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
658 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
659 },
660 [ C(OP_WRITE) ] = {
661 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
662 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
663 },
664 [ C(OP_PREFETCH) ] = {
665 [ C(RESULT_ACCESS) ] = 0x0,
666 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
667 },
668 },
669 [ C(L1I ) ] = {
670 [ C(OP_READ) ] = {
671 [ C(RESULT_ACCESS) ] = 0x0,
672 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
673 },
674 [ C(OP_WRITE) ] = {
675 [ C(RESULT_ACCESS) ] = -1,
676 [ C(RESULT_MISS) ] = -1,
677 },
678 [ C(OP_PREFETCH) ] = {
679 [ C(RESULT_ACCESS) ] = 0x0,
680 [ C(RESULT_MISS) ] = 0x0,
681 },
682 },
683 [ C(LL ) ] = {
684 [ C(OP_READ) ] = {
685 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
686 [ C(RESULT_ACCESS) ] = 0x01b7,
687 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
688 [ C(RESULT_MISS) ] = 0x01b7,
689 },
690 [ C(OP_WRITE) ] = {
691 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
692 [ C(RESULT_ACCESS) ] = 0x01b7,
693 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
694 [ C(RESULT_MISS) ] = 0x01b7,
695 },
696 [ C(OP_PREFETCH) ] = {
697 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
698 [ C(RESULT_ACCESS) ] = 0x01b7,
699 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
700 [ C(RESULT_MISS) ] = 0x01b7,
701 },
702 },
703 [ C(DTLB) ] = {
704 [ C(OP_READ) ] = {
705 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
706 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
707 },
708 [ C(OP_WRITE) ] = {
709 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
710 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
711 },
712 [ C(OP_PREFETCH) ] = {
713 [ C(RESULT_ACCESS) ] = 0x0,
714 [ C(RESULT_MISS) ] = 0x0,
715 },
716 },
717 [ C(ITLB) ] = {
718 [ C(OP_READ) ] = {
719 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
720 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
721 },
722 [ C(OP_WRITE) ] = {
723 [ C(RESULT_ACCESS) ] = -1,
724 [ C(RESULT_MISS) ] = -1,
725 },
726 [ C(OP_PREFETCH) ] = {
727 [ C(RESULT_ACCESS) ] = -1,
728 [ C(RESULT_MISS) ] = -1,
729 },
730 },
731 [ C(BPU ) ] = {
732 [ C(OP_READ) ] = {
733 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
734 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
735 },
736 [ C(OP_WRITE) ] = {
737 [ C(RESULT_ACCESS) ] = -1,
738 [ C(RESULT_MISS) ] = -1,
739 },
740 [ C(OP_PREFETCH) ] = {
741 [ C(RESULT_ACCESS) ] = -1,
742 [ C(RESULT_MISS) ] = -1,
743 },
744 },
745 [ C(NODE) ] = {
746 [ C(OP_READ) ] = {
747 [ C(RESULT_ACCESS) ] = 0x01b7,
748 [ C(RESULT_MISS) ] = 0x01b7,
749 },
750 [ C(OP_WRITE) ] = {
751 [ C(RESULT_ACCESS) ] = 0x01b7,
752 [ C(RESULT_MISS) ] = 0x01b7,
753 },
754 [ C(OP_PREFETCH) ] = {
755 [ C(RESULT_ACCESS) ] = 0x01b7,
756 [ C(RESULT_MISS) ] = 0x01b7,
757 },
758 },
759
760 };
761
762 /*
763 * Notes on the events:
764 * - data reads do not include code reads (comparable to earlier tables)
765 * - data counts include speculative execution (except L1 write, dtlb, bpu)
766 * - remote node access includes remote memory, remote cache, remote mmio.
767 * - prefetches are not included in the counts because they are not
768 * reliably counted.
769 */
770
771 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
772 #define HSW_DEMAND_RFO BIT_ULL(1)
773 #define HSW_ANY_RESPONSE BIT_ULL(16)
774 #define HSW_SUPPLIER_NONE BIT_ULL(17)
775 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
776 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
777 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
778 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
779 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
780 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
781 HSW_L3_MISS_REMOTE_HOP2P)
782 #define HSW_SNOOP_NONE BIT_ULL(31)
783 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
784 #define HSW_SNOOP_MISS BIT_ULL(33)
785 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
786 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
787 #define HSW_SNOOP_HITM BIT_ULL(36)
788 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
789 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
790 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
791 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
792 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
793 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
794 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
795 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
796 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
797 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
798 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
799
800 #define BDW_L3_MISS_LOCAL BIT(26)
801 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
802 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
803 HSW_L3_MISS_REMOTE_HOP2P)
804
805
806 static __initconst const u64 hsw_hw_cache_event_ids
807 [PERF_COUNT_HW_CACHE_MAX]
808 [PERF_COUNT_HW_CACHE_OP_MAX]
809 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
810 {
811 [ C(L1D ) ] = {
812 [ C(OP_READ) ] = {
813 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
814 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
815 },
816 [ C(OP_WRITE) ] = {
817 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
818 [ C(RESULT_MISS) ] = 0x0,
819 },
820 [ C(OP_PREFETCH) ] = {
821 [ C(RESULT_ACCESS) ] = 0x0,
822 [ C(RESULT_MISS) ] = 0x0,
823 },
824 },
825 [ C(L1I ) ] = {
826 [ C(OP_READ) ] = {
827 [ C(RESULT_ACCESS) ] = 0x0,
828 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
829 },
830 [ C(OP_WRITE) ] = {
831 [ C(RESULT_ACCESS) ] = -1,
832 [ C(RESULT_MISS) ] = -1,
833 },
834 [ C(OP_PREFETCH) ] = {
835 [ C(RESULT_ACCESS) ] = 0x0,
836 [ C(RESULT_MISS) ] = 0x0,
837 },
838 },
839 [ C(LL ) ] = {
840 [ C(OP_READ) ] = {
841 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
842 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
843 },
844 [ C(OP_WRITE) ] = {
845 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
846 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
847 },
848 [ C(OP_PREFETCH) ] = {
849 [ C(RESULT_ACCESS) ] = 0x0,
850 [ C(RESULT_MISS) ] = 0x0,
851 },
852 },
853 [ C(DTLB) ] = {
854 [ C(OP_READ) ] = {
855 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
856 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
857 },
858 [ C(OP_WRITE) ] = {
859 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
860 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
861 },
862 [ C(OP_PREFETCH) ] = {
863 [ C(RESULT_ACCESS) ] = 0x0,
864 [ C(RESULT_MISS) ] = 0x0,
865 },
866 },
867 [ C(ITLB) ] = {
868 [ C(OP_READ) ] = {
869 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
870 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
871 },
872 [ C(OP_WRITE) ] = {
873 [ C(RESULT_ACCESS) ] = -1,
874 [ C(RESULT_MISS) ] = -1,
875 },
876 [ C(OP_PREFETCH) ] = {
877 [ C(RESULT_ACCESS) ] = -1,
878 [ C(RESULT_MISS) ] = -1,
879 },
880 },
881 [ C(BPU ) ] = {
882 [ C(OP_READ) ] = {
883 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
884 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
885 },
886 [ C(OP_WRITE) ] = {
887 [ C(RESULT_ACCESS) ] = -1,
888 [ C(RESULT_MISS) ] = -1,
889 },
890 [ C(OP_PREFETCH) ] = {
891 [ C(RESULT_ACCESS) ] = -1,
892 [ C(RESULT_MISS) ] = -1,
893 },
894 },
895 [ C(NODE) ] = {
896 [ C(OP_READ) ] = {
897 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
898 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
899 },
900 [ C(OP_WRITE) ] = {
901 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
902 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
903 },
904 [ C(OP_PREFETCH) ] = {
905 [ C(RESULT_ACCESS) ] = 0x0,
906 [ C(RESULT_MISS) ] = 0x0,
907 },
908 },
909 };
910
911 static __initconst const u64 hsw_hw_cache_extra_regs
912 [PERF_COUNT_HW_CACHE_MAX]
913 [PERF_COUNT_HW_CACHE_OP_MAX]
914 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
915 {
916 [ C(LL ) ] = {
917 [ C(OP_READ) ] = {
918 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
919 HSW_LLC_ACCESS,
920 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
921 HSW_L3_MISS|HSW_ANY_SNOOP,
922 },
923 [ C(OP_WRITE) ] = {
924 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
925 HSW_LLC_ACCESS,
926 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
927 HSW_L3_MISS|HSW_ANY_SNOOP,
928 },
929 [ C(OP_PREFETCH) ] = {
930 [ C(RESULT_ACCESS) ] = 0x0,
931 [ C(RESULT_MISS) ] = 0x0,
932 },
933 },
934 [ C(NODE) ] = {
935 [ C(OP_READ) ] = {
936 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
937 HSW_L3_MISS_LOCAL_DRAM|
938 HSW_SNOOP_DRAM,
939 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
940 HSW_L3_MISS_REMOTE|
941 HSW_SNOOP_DRAM,
942 },
943 [ C(OP_WRITE) ] = {
944 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
945 HSW_L3_MISS_LOCAL_DRAM|
946 HSW_SNOOP_DRAM,
947 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
948 HSW_L3_MISS_REMOTE|
949 HSW_SNOOP_DRAM,
950 },
951 [ C(OP_PREFETCH) ] = {
952 [ C(RESULT_ACCESS) ] = 0x0,
953 [ C(RESULT_MISS) ] = 0x0,
954 },
955 },
956 };
957
958 static __initconst const u64 westmere_hw_cache_event_ids
959 [PERF_COUNT_HW_CACHE_MAX]
960 [PERF_COUNT_HW_CACHE_OP_MAX]
961 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
962 {
963 [ C(L1D) ] = {
964 [ C(OP_READ) ] = {
965 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
966 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
967 },
968 [ C(OP_WRITE) ] = {
969 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
970 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
971 },
972 [ C(OP_PREFETCH) ] = {
973 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
974 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
975 },
976 },
977 [ C(L1I ) ] = {
978 [ C(OP_READ) ] = {
979 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
980 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
981 },
982 [ C(OP_WRITE) ] = {
983 [ C(RESULT_ACCESS) ] = -1,
984 [ C(RESULT_MISS) ] = -1,
985 },
986 [ C(OP_PREFETCH) ] = {
987 [ C(RESULT_ACCESS) ] = 0x0,
988 [ C(RESULT_MISS) ] = 0x0,
989 },
990 },
991 [ C(LL ) ] = {
992 [ C(OP_READ) ] = {
993 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
994 [ C(RESULT_ACCESS) ] = 0x01b7,
995 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
996 [ C(RESULT_MISS) ] = 0x01b7,
997 },
998 /*
999 * Use RFO, not WRITEBACK, because a write miss would typically occur
1000 * on RFO.
1001 */
1002 [ C(OP_WRITE) ] = {
1003 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1004 [ C(RESULT_ACCESS) ] = 0x01b7,
1005 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1006 [ C(RESULT_MISS) ] = 0x01b7,
1007 },
1008 [ C(OP_PREFETCH) ] = {
1009 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1010 [ C(RESULT_ACCESS) ] = 0x01b7,
1011 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1012 [ C(RESULT_MISS) ] = 0x01b7,
1013 },
1014 },
1015 [ C(DTLB) ] = {
1016 [ C(OP_READ) ] = {
1017 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1018 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1019 },
1020 [ C(OP_WRITE) ] = {
1021 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1022 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1023 },
1024 [ C(OP_PREFETCH) ] = {
1025 [ C(RESULT_ACCESS) ] = 0x0,
1026 [ C(RESULT_MISS) ] = 0x0,
1027 },
1028 },
1029 [ C(ITLB) ] = {
1030 [ C(OP_READ) ] = {
1031 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1032 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
1033 },
1034 [ C(OP_WRITE) ] = {
1035 [ C(RESULT_ACCESS) ] = -1,
1036 [ C(RESULT_MISS) ] = -1,
1037 },
1038 [ C(OP_PREFETCH) ] = {
1039 [ C(RESULT_ACCESS) ] = -1,
1040 [ C(RESULT_MISS) ] = -1,
1041 },
1042 },
1043 [ C(BPU ) ] = {
1044 [ C(OP_READ) ] = {
1045 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1046 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1047 },
1048 [ C(OP_WRITE) ] = {
1049 [ C(RESULT_ACCESS) ] = -1,
1050 [ C(RESULT_MISS) ] = -1,
1051 },
1052 [ C(OP_PREFETCH) ] = {
1053 [ C(RESULT_ACCESS) ] = -1,
1054 [ C(RESULT_MISS) ] = -1,
1055 },
1056 },
1057 [ C(NODE) ] = {
1058 [ C(OP_READ) ] = {
1059 [ C(RESULT_ACCESS) ] = 0x01b7,
1060 [ C(RESULT_MISS) ] = 0x01b7,
1061 },
1062 [ C(OP_WRITE) ] = {
1063 [ C(RESULT_ACCESS) ] = 0x01b7,
1064 [ C(RESULT_MISS) ] = 0x01b7,
1065 },
1066 [ C(OP_PREFETCH) ] = {
1067 [ C(RESULT_ACCESS) ] = 0x01b7,
1068 [ C(RESULT_MISS) ] = 0x01b7,
1069 },
1070 },
1071 };
1072
1073 /*
1074 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1075 * See IA32 SDM Vol 3B 30.6.1.3
1076 */
1077
1078 #define NHM_DMND_DATA_RD (1 << 0)
1079 #define NHM_DMND_RFO (1 << 1)
1080 #define NHM_DMND_IFETCH (1 << 2)
1081 #define NHM_DMND_WB (1 << 3)
1082 #define NHM_PF_DATA_RD (1 << 4)
1083 #define NHM_PF_DATA_RFO (1 << 5)
1084 #define NHM_PF_IFETCH (1 << 6)
1085 #define NHM_OFFCORE_OTHER (1 << 7)
1086 #define NHM_UNCORE_HIT (1 << 8)
1087 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1088 #define NHM_OTHER_CORE_HITM (1 << 10)
1089 /* reserved */
1090 #define NHM_REMOTE_CACHE_FWD (1 << 12)
1091 #define NHM_REMOTE_DRAM (1 << 13)
1092 #define NHM_LOCAL_DRAM (1 << 14)
1093 #define NHM_NON_DRAM (1 << 15)
1094
1095 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1096 #define NHM_REMOTE (NHM_REMOTE_DRAM)
1097
1098 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
1099 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1100 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1101
1102 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1103 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1104 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1105
1106 static __initconst const u64 nehalem_hw_cache_extra_regs
1107 [PERF_COUNT_HW_CACHE_MAX]
1108 [PERF_COUNT_HW_CACHE_OP_MAX]
1109 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1110 {
1111 [ C(LL ) ] = {
1112 [ C(OP_READ) ] = {
1113 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1114 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
1115 },
1116 [ C(OP_WRITE) ] = {
1117 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1118 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
1119 },
1120 [ C(OP_PREFETCH) ] = {
1121 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1122 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1123 },
1124 },
1125 [ C(NODE) ] = {
1126 [ C(OP_READ) ] = {
1127 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1128 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
1129 },
1130 [ C(OP_WRITE) ] = {
1131 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1132 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
1133 },
1134 [ C(OP_PREFETCH) ] = {
1135 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1136 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1137 },
1138 },
1139 };
1140
1141 static __initconst const u64 nehalem_hw_cache_event_ids
1142 [PERF_COUNT_HW_CACHE_MAX]
1143 [PERF_COUNT_HW_CACHE_OP_MAX]
1144 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1145 {
1146 [ C(L1D) ] = {
1147 [ C(OP_READ) ] = {
1148 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1149 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1150 },
1151 [ C(OP_WRITE) ] = {
1152 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1153 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1154 },
1155 [ C(OP_PREFETCH) ] = {
1156 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1157 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1158 },
1159 },
1160 [ C(L1I ) ] = {
1161 [ C(OP_READ) ] = {
1162 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1163 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1164 },
1165 [ C(OP_WRITE) ] = {
1166 [ C(RESULT_ACCESS) ] = -1,
1167 [ C(RESULT_MISS) ] = -1,
1168 },
1169 [ C(OP_PREFETCH) ] = {
1170 [ C(RESULT_ACCESS) ] = 0x0,
1171 [ C(RESULT_MISS) ] = 0x0,
1172 },
1173 },
1174 [ C(LL ) ] = {
1175 [ C(OP_READ) ] = {
1176 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1177 [ C(RESULT_ACCESS) ] = 0x01b7,
1178 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1179 [ C(RESULT_MISS) ] = 0x01b7,
1180 },
1181 /*
1182 * Use RFO, not WRITEBACK, because a write miss would typically occur
1183 * on RFO.
1184 */
1185 [ C(OP_WRITE) ] = {
1186 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1187 [ C(RESULT_ACCESS) ] = 0x01b7,
1188 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1189 [ C(RESULT_MISS) ] = 0x01b7,
1190 },
1191 [ C(OP_PREFETCH) ] = {
1192 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1193 [ C(RESULT_ACCESS) ] = 0x01b7,
1194 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1195 [ C(RESULT_MISS) ] = 0x01b7,
1196 },
1197 },
1198 [ C(DTLB) ] = {
1199 [ C(OP_READ) ] = {
1200 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1201 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1202 },
1203 [ C(OP_WRITE) ] = {
1204 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1205 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1206 },
1207 [ C(OP_PREFETCH) ] = {
1208 [ C(RESULT_ACCESS) ] = 0x0,
1209 [ C(RESULT_MISS) ] = 0x0,
1210 },
1211 },
1212 [ C(ITLB) ] = {
1213 [ C(OP_READ) ] = {
1214 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1215 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1216 },
1217 [ C(OP_WRITE) ] = {
1218 [ C(RESULT_ACCESS) ] = -1,
1219 [ C(RESULT_MISS) ] = -1,
1220 },
1221 [ C(OP_PREFETCH) ] = {
1222 [ C(RESULT_ACCESS) ] = -1,
1223 [ C(RESULT_MISS) ] = -1,
1224 },
1225 },
1226 [ C(BPU ) ] = {
1227 [ C(OP_READ) ] = {
1228 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1229 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1230 },
1231 [ C(OP_WRITE) ] = {
1232 [ C(RESULT_ACCESS) ] = -1,
1233 [ C(RESULT_MISS) ] = -1,
1234 },
1235 [ C(OP_PREFETCH) ] = {
1236 [ C(RESULT_ACCESS) ] = -1,
1237 [ C(RESULT_MISS) ] = -1,
1238 },
1239 },
1240 [ C(NODE) ] = {
1241 [ C(OP_READ) ] = {
1242 [ C(RESULT_ACCESS) ] = 0x01b7,
1243 [ C(RESULT_MISS) ] = 0x01b7,
1244 },
1245 [ C(OP_WRITE) ] = {
1246 [ C(RESULT_ACCESS) ] = 0x01b7,
1247 [ C(RESULT_MISS) ] = 0x01b7,
1248 },
1249 [ C(OP_PREFETCH) ] = {
1250 [ C(RESULT_ACCESS) ] = 0x01b7,
1251 [ C(RESULT_MISS) ] = 0x01b7,
1252 },
1253 },
1254 };
1255
1256 static __initconst const u64 core2_hw_cache_event_ids
1257 [PERF_COUNT_HW_CACHE_MAX]
1258 [PERF_COUNT_HW_CACHE_OP_MAX]
1259 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1260 {
1261 [ C(L1D) ] = {
1262 [ C(OP_READ) ] = {
1263 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1264 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1265 },
1266 [ C(OP_WRITE) ] = {
1267 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1268 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1269 },
1270 [ C(OP_PREFETCH) ] = {
1271 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1272 [ C(RESULT_MISS) ] = 0,
1273 },
1274 },
1275 [ C(L1I ) ] = {
1276 [ C(OP_READ) ] = {
1277 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1278 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1279 },
1280 [ C(OP_WRITE) ] = {
1281 [ C(RESULT_ACCESS) ] = -1,
1282 [ C(RESULT_MISS) ] = -1,
1283 },
1284 [ C(OP_PREFETCH) ] = {
1285 [ C(RESULT_ACCESS) ] = 0,
1286 [ C(RESULT_MISS) ] = 0,
1287 },
1288 },
1289 [ C(LL ) ] = {
1290 [ C(OP_READ) ] = {
1291 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1292 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1293 },
1294 [ C(OP_WRITE) ] = {
1295 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1296 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1297 },
1298 [ C(OP_PREFETCH) ] = {
1299 [ C(RESULT_ACCESS) ] = 0,
1300 [ C(RESULT_MISS) ] = 0,
1301 },
1302 },
1303 [ C(DTLB) ] = {
1304 [ C(OP_READ) ] = {
1305 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1306 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1307 },
1308 [ C(OP_WRITE) ] = {
1309 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1310 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1311 },
1312 [ C(OP_PREFETCH) ] = {
1313 [ C(RESULT_ACCESS) ] = 0,
1314 [ C(RESULT_MISS) ] = 0,
1315 },
1316 },
1317 [ C(ITLB) ] = {
1318 [ C(OP_READ) ] = {
1319 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1320 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1321 },
1322 [ C(OP_WRITE) ] = {
1323 [ C(RESULT_ACCESS) ] = -1,
1324 [ C(RESULT_MISS) ] = -1,
1325 },
1326 [ C(OP_PREFETCH) ] = {
1327 [ C(RESULT_ACCESS) ] = -1,
1328 [ C(RESULT_MISS) ] = -1,
1329 },
1330 },
1331 [ C(BPU ) ] = {
1332 [ C(OP_READ) ] = {
1333 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1334 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1335 },
1336 [ C(OP_WRITE) ] = {
1337 [ C(RESULT_ACCESS) ] = -1,
1338 [ C(RESULT_MISS) ] = -1,
1339 },
1340 [ C(OP_PREFETCH) ] = {
1341 [ C(RESULT_ACCESS) ] = -1,
1342 [ C(RESULT_MISS) ] = -1,
1343 },
1344 },
1345 };
1346
1347 static __initconst const u64 atom_hw_cache_event_ids
1348 [PERF_COUNT_HW_CACHE_MAX]
1349 [PERF_COUNT_HW_CACHE_OP_MAX]
1350 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1351 {
1352 [ C(L1D) ] = {
1353 [ C(OP_READ) ] = {
1354 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1355 [ C(RESULT_MISS) ] = 0,
1356 },
1357 [ C(OP_WRITE) ] = {
1358 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1359 [ C(RESULT_MISS) ] = 0,
1360 },
1361 [ C(OP_PREFETCH) ] = {
1362 [ C(RESULT_ACCESS) ] = 0x0,
1363 [ C(RESULT_MISS) ] = 0,
1364 },
1365 },
1366 [ C(L1I ) ] = {
1367 [ C(OP_READ) ] = {
1368 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1369 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1370 },
1371 [ C(OP_WRITE) ] = {
1372 [ C(RESULT_ACCESS) ] = -1,
1373 [ C(RESULT_MISS) ] = -1,
1374 },
1375 [ C(OP_PREFETCH) ] = {
1376 [ C(RESULT_ACCESS) ] = 0,
1377 [ C(RESULT_MISS) ] = 0,
1378 },
1379 },
1380 [ C(LL ) ] = {
1381 [ C(OP_READ) ] = {
1382 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1383 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1384 },
1385 [ C(OP_WRITE) ] = {
1386 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1387 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1388 },
1389 [ C(OP_PREFETCH) ] = {
1390 [ C(RESULT_ACCESS) ] = 0,
1391 [ C(RESULT_MISS) ] = 0,
1392 },
1393 },
1394 [ C(DTLB) ] = {
1395 [ C(OP_READ) ] = {
1396 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1397 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1398 },
1399 [ C(OP_WRITE) ] = {
1400 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1401 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1402 },
1403 [ C(OP_PREFETCH) ] = {
1404 [ C(RESULT_ACCESS) ] = 0,
1405 [ C(RESULT_MISS) ] = 0,
1406 },
1407 },
1408 [ C(ITLB) ] = {
1409 [ C(OP_READ) ] = {
1410 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1411 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1412 },
1413 [ C(OP_WRITE) ] = {
1414 [ C(RESULT_ACCESS) ] = -1,
1415 [ C(RESULT_MISS) ] = -1,
1416 },
1417 [ C(OP_PREFETCH) ] = {
1418 [ C(RESULT_ACCESS) ] = -1,
1419 [ C(RESULT_MISS) ] = -1,
1420 },
1421 },
1422 [ C(BPU ) ] = {
1423 [ C(OP_READ) ] = {
1424 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1425 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1426 },
1427 [ C(OP_WRITE) ] = {
1428 [ C(RESULT_ACCESS) ] = -1,
1429 [ C(RESULT_MISS) ] = -1,
1430 },
1431 [ C(OP_PREFETCH) ] = {
1432 [ C(RESULT_ACCESS) ] = -1,
1433 [ C(RESULT_MISS) ] = -1,
1434 },
1435 },
1436 };
1437
1438 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1439 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1440 /* no_alloc_cycles.not_delivered */
1441 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1442 "event=0xca,umask=0x50");
1443 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1444 /* uops_retired.all */
1445 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1446 "event=0xc2,umask=0x10");
1447 /* uops_retired.all */
1448 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1449 "event=0xc2,umask=0x10");
1450
1451 static struct attribute *slm_events_attrs[] = {
1452 EVENT_PTR(td_total_slots_slm),
1453 EVENT_PTR(td_total_slots_scale_slm),
1454 EVENT_PTR(td_fetch_bubbles_slm),
1455 EVENT_PTR(td_fetch_bubbles_scale_slm),
1456 EVENT_PTR(td_slots_issued_slm),
1457 EVENT_PTR(td_slots_retired_slm),
1458 NULL
1459 };
1460
1461 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1462 {
1463 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1464 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1465 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1466 EVENT_EXTRA_END
1467 };
1468
1469 #define SLM_DMND_READ SNB_DMND_DATA_RD
1470 #define SLM_DMND_WRITE SNB_DMND_RFO
1471 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1472
1473 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1474 #define SLM_LLC_ACCESS SNB_RESP_ANY
1475 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1476
1477 static __initconst const u64 slm_hw_cache_extra_regs
1478 [PERF_COUNT_HW_CACHE_MAX]
1479 [PERF_COUNT_HW_CACHE_OP_MAX]
1480 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1481 {
1482 [ C(LL ) ] = {
1483 [ C(OP_READ) ] = {
1484 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1485 [ C(RESULT_MISS) ] = 0,
1486 },
1487 [ C(OP_WRITE) ] = {
1488 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1489 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1490 },
1491 [ C(OP_PREFETCH) ] = {
1492 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1493 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1494 },
1495 },
1496 };
1497
1498 static __initconst const u64 slm_hw_cache_event_ids
1499 [PERF_COUNT_HW_CACHE_MAX]
1500 [PERF_COUNT_HW_CACHE_OP_MAX]
1501 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1502 {
1503 [ C(L1D) ] = {
1504 [ C(OP_READ) ] = {
1505 [ C(RESULT_ACCESS) ] = 0,
1506 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1507 },
1508 [ C(OP_WRITE) ] = {
1509 [ C(RESULT_ACCESS) ] = 0,
1510 [ C(RESULT_MISS) ] = 0,
1511 },
1512 [ C(OP_PREFETCH) ] = {
1513 [ C(RESULT_ACCESS) ] = 0,
1514 [ C(RESULT_MISS) ] = 0,
1515 },
1516 },
1517 [ C(L1I ) ] = {
1518 [ C(OP_READ) ] = {
1519 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1520 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1521 },
1522 [ C(OP_WRITE) ] = {
1523 [ C(RESULT_ACCESS) ] = -1,
1524 [ C(RESULT_MISS) ] = -1,
1525 },
1526 [ C(OP_PREFETCH) ] = {
1527 [ C(RESULT_ACCESS) ] = 0,
1528 [ C(RESULT_MISS) ] = 0,
1529 },
1530 },
1531 [ C(LL ) ] = {
1532 [ C(OP_READ) ] = {
1533 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1534 [ C(RESULT_ACCESS) ] = 0x01b7,
1535 [ C(RESULT_MISS) ] = 0,
1536 },
1537 [ C(OP_WRITE) ] = {
1538 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1539 [ C(RESULT_ACCESS) ] = 0x01b7,
1540 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1541 [ C(RESULT_MISS) ] = 0x01b7,
1542 },
1543 [ C(OP_PREFETCH) ] = {
1544 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1545 [ C(RESULT_ACCESS) ] = 0x01b7,
1546 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1547 [ C(RESULT_MISS) ] = 0x01b7,
1548 },
1549 },
1550 [ C(DTLB) ] = {
1551 [ C(OP_READ) ] = {
1552 [ C(RESULT_ACCESS) ] = 0,
1553 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1554 },
1555 [ C(OP_WRITE) ] = {
1556 [ C(RESULT_ACCESS) ] = 0,
1557 [ C(RESULT_MISS) ] = 0,
1558 },
1559 [ C(OP_PREFETCH) ] = {
1560 [ C(RESULT_ACCESS) ] = 0,
1561 [ C(RESULT_MISS) ] = 0,
1562 },
1563 },
1564 [ C(ITLB) ] = {
1565 [ C(OP_READ) ] = {
1566 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1567 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1568 },
1569 [ C(OP_WRITE) ] = {
1570 [ C(RESULT_ACCESS) ] = -1,
1571 [ C(RESULT_MISS) ] = -1,
1572 },
1573 [ C(OP_PREFETCH) ] = {
1574 [ C(RESULT_ACCESS) ] = -1,
1575 [ C(RESULT_MISS) ] = -1,
1576 },
1577 },
1578 [ C(BPU ) ] = {
1579 [ C(OP_READ) ] = {
1580 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1581 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1582 },
1583 [ C(OP_WRITE) ] = {
1584 [ C(RESULT_ACCESS) ] = -1,
1585 [ C(RESULT_MISS) ] = -1,
1586 },
1587 [ C(OP_PREFETCH) ] = {
1588 [ C(RESULT_ACCESS) ] = -1,
1589 [ C(RESULT_MISS) ] = -1,
1590 },
1591 },
1592 };
1593
1594 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1595 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1596 /* UOPS_NOT_DELIVERED.ANY */
1597 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1598 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1599 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1600 /* UOPS_RETIRED.ANY */
1601 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1602 /* UOPS_ISSUED.ANY */
1603 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1604
1605 static struct attribute *glm_events_attrs[] = {
1606 EVENT_PTR(td_total_slots_glm),
1607 EVENT_PTR(td_total_slots_scale_glm),
1608 EVENT_PTR(td_fetch_bubbles_glm),
1609 EVENT_PTR(td_recovery_bubbles_glm),
1610 EVENT_PTR(td_slots_issued_glm),
1611 EVENT_PTR(td_slots_retired_glm),
1612 NULL
1613 };
1614
1615 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1616 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1617 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1618 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1619 EVENT_EXTRA_END
1620 };
1621
1622 #define GLM_DEMAND_DATA_RD BIT_ULL(0)
1623 #define GLM_DEMAND_RFO BIT_ULL(1)
1624 #define GLM_ANY_RESPONSE BIT_ULL(16)
1625 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1626 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1627 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1628 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1629 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1630 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1631 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1632
1633 static __initconst const u64 glm_hw_cache_event_ids
1634 [PERF_COUNT_HW_CACHE_MAX]
1635 [PERF_COUNT_HW_CACHE_OP_MAX]
1636 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1637 [C(L1D)] = {
1638 [C(OP_READ)] = {
1639 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1640 [C(RESULT_MISS)] = 0x0,
1641 },
1642 [C(OP_WRITE)] = {
1643 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1644 [C(RESULT_MISS)] = 0x0,
1645 },
1646 [C(OP_PREFETCH)] = {
1647 [C(RESULT_ACCESS)] = 0x0,
1648 [C(RESULT_MISS)] = 0x0,
1649 },
1650 },
1651 [C(L1I)] = {
1652 [C(OP_READ)] = {
1653 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1654 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1655 },
1656 [C(OP_WRITE)] = {
1657 [C(RESULT_ACCESS)] = -1,
1658 [C(RESULT_MISS)] = -1,
1659 },
1660 [C(OP_PREFETCH)] = {
1661 [C(RESULT_ACCESS)] = 0x0,
1662 [C(RESULT_MISS)] = 0x0,
1663 },
1664 },
1665 [C(LL)] = {
1666 [C(OP_READ)] = {
1667 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1668 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1669 },
1670 [C(OP_WRITE)] = {
1671 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1672 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1673 },
1674 [C(OP_PREFETCH)] = {
1675 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1676 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1677 },
1678 },
1679 [C(DTLB)] = {
1680 [C(OP_READ)] = {
1681 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1682 [C(RESULT_MISS)] = 0x0,
1683 },
1684 [C(OP_WRITE)] = {
1685 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1686 [C(RESULT_MISS)] = 0x0,
1687 },
1688 [C(OP_PREFETCH)] = {
1689 [C(RESULT_ACCESS)] = 0x0,
1690 [C(RESULT_MISS)] = 0x0,
1691 },
1692 },
1693 [C(ITLB)] = {
1694 [C(OP_READ)] = {
1695 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1696 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1697 },
1698 [C(OP_WRITE)] = {
1699 [C(RESULT_ACCESS)] = -1,
1700 [C(RESULT_MISS)] = -1,
1701 },
1702 [C(OP_PREFETCH)] = {
1703 [C(RESULT_ACCESS)] = -1,
1704 [C(RESULT_MISS)] = -1,
1705 },
1706 },
1707 [C(BPU)] = {
1708 [C(OP_READ)] = {
1709 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1710 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1711 },
1712 [C(OP_WRITE)] = {
1713 [C(RESULT_ACCESS)] = -1,
1714 [C(RESULT_MISS)] = -1,
1715 },
1716 [C(OP_PREFETCH)] = {
1717 [C(RESULT_ACCESS)] = -1,
1718 [C(RESULT_MISS)] = -1,
1719 },
1720 },
1721 };
1722
1723 static __initconst const u64 glm_hw_cache_extra_regs
1724 [PERF_COUNT_HW_CACHE_MAX]
1725 [PERF_COUNT_HW_CACHE_OP_MAX]
1726 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1727 [C(LL)] = {
1728 [C(OP_READ)] = {
1729 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
1730 GLM_LLC_ACCESS,
1731 [C(RESULT_MISS)] = GLM_DEMAND_READ|
1732 GLM_LLC_MISS,
1733 },
1734 [C(OP_WRITE)] = {
1735 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
1736 GLM_LLC_ACCESS,
1737 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
1738 GLM_LLC_MISS,
1739 },
1740 [C(OP_PREFETCH)] = {
1741 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
1742 GLM_LLC_ACCESS,
1743 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
1744 GLM_LLC_MISS,
1745 },
1746 },
1747 };
1748
1749 static __initconst const u64 glp_hw_cache_event_ids
1750 [PERF_COUNT_HW_CACHE_MAX]
1751 [PERF_COUNT_HW_CACHE_OP_MAX]
1752 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1753 [C(L1D)] = {
1754 [C(OP_READ)] = {
1755 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1756 [C(RESULT_MISS)] = 0x0,
1757 },
1758 [C(OP_WRITE)] = {
1759 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1760 [C(RESULT_MISS)] = 0x0,
1761 },
1762 [C(OP_PREFETCH)] = {
1763 [C(RESULT_ACCESS)] = 0x0,
1764 [C(RESULT_MISS)] = 0x0,
1765 },
1766 },
1767 [C(L1I)] = {
1768 [C(OP_READ)] = {
1769 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1770 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1771 },
1772 [C(OP_WRITE)] = {
1773 [C(RESULT_ACCESS)] = -1,
1774 [C(RESULT_MISS)] = -1,
1775 },
1776 [C(OP_PREFETCH)] = {
1777 [C(RESULT_ACCESS)] = 0x0,
1778 [C(RESULT_MISS)] = 0x0,
1779 },
1780 },
1781 [C(LL)] = {
1782 [C(OP_READ)] = {
1783 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1784 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1785 },
1786 [C(OP_WRITE)] = {
1787 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1788 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1789 },
1790 [C(OP_PREFETCH)] = {
1791 [C(RESULT_ACCESS)] = 0x0,
1792 [C(RESULT_MISS)] = 0x0,
1793 },
1794 },
1795 [C(DTLB)] = {
1796 [C(OP_READ)] = {
1797 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1798 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1799 },
1800 [C(OP_WRITE)] = {
1801 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1802 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
1803 },
1804 [C(OP_PREFETCH)] = {
1805 [C(RESULT_ACCESS)] = 0x0,
1806 [C(RESULT_MISS)] = 0x0,
1807 },
1808 },
1809 [C(ITLB)] = {
1810 [C(OP_READ)] = {
1811 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1812 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1813 },
1814 [C(OP_WRITE)] = {
1815 [C(RESULT_ACCESS)] = -1,
1816 [C(RESULT_MISS)] = -1,
1817 },
1818 [C(OP_PREFETCH)] = {
1819 [C(RESULT_ACCESS)] = -1,
1820 [C(RESULT_MISS)] = -1,
1821 },
1822 },
1823 [C(BPU)] = {
1824 [C(OP_READ)] = {
1825 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1826 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1827 },
1828 [C(OP_WRITE)] = {
1829 [C(RESULT_ACCESS)] = -1,
1830 [C(RESULT_MISS)] = -1,
1831 },
1832 [C(OP_PREFETCH)] = {
1833 [C(RESULT_ACCESS)] = -1,
1834 [C(RESULT_MISS)] = -1,
1835 },
1836 },
1837 };
1838
1839 static __initconst const u64 glp_hw_cache_extra_regs
1840 [PERF_COUNT_HW_CACHE_MAX]
1841 [PERF_COUNT_HW_CACHE_OP_MAX]
1842 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1843 [C(LL)] = {
1844 [C(OP_READ)] = {
1845 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
1846 GLM_LLC_ACCESS,
1847 [C(RESULT_MISS)] = GLM_DEMAND_READ|
1848 GLM_LLC_MISS,
1849 },
1850 [C(OP_WRITE)] = {
1851 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
1852 GLM_LLC_ACCESS,
1853 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
1854 GLM_LLC_MISS,
1855 },
1856 [C(OP_PREFETCH)] = {
1857 [C(RESULT_ACCESS)] = 0x0,
1858 [C(RESULT_MISS)] = 0x0,
1859 },
1860 },
1861 };
1862
1863 #define TNT_LOCAL_DRAM BIT_ULL(26)
1864 #define TNT_DEMAND_READ GLM_DEMAND_DATA_RD
1865 #define TNT_DEMAND_WRITE GLM_DEMAND_RFO
1866 #define TNT_LLC_ACCESS GLM_ANY_RESPONSE
1867 #define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
1868 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
1869 #define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
1870
1871 static __initconst const u64 tnt_hw_cache_extra_regs
1872 [PERF_COUNT_HW_CACHE_MAX]
1873 [PERF_COUNT_HW_CACHE_OP_MAX]
1874 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1875 [C(LL)] = {
1876 [C(OP_READ)] = {
1877 [C(RESULT_ACCESS)] = TNT_DEMAND_READ|
1878 TNT_LLC_ACCESS,
1879 [C(RESULT_MISS)] = TNT_DEMAND_READ|
1880 TNT_LLC_MISS,
1881 },
1882 [C(OP_WRITE)] = {
1883 [C(RESULT_ACCESS)] = TNT_DEMAND_WRITE|
1884 TNT_LLC_ACCESS,
1885 [C(RESULT_MISS)] = TNT_DEMAND_WRITE|
1886 TNT_LLC_MISS,
1887 },
1888 [C(OP_PREFETCH)] = {
1889 [C(RESULT_ACCESS)] = 0x0,
1890 [C(RESULT_MISS)] = 0x0,
1891 },
1892 },
1893 };
1894
1895 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
1896 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1897 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
1898 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
1899 EVENT_EXTRA_END
1900 };
1901
1902 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
1903 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
1904 #define KNL_MCDRAM_LOCAL BIT_ULL(21)
1905 #define KNL_MCDRAM_FAR BIT_ULL(22)
1906 #define KNL_DDR_LOCAL BIT_ULL(23)
1907 #define KNL_DDR_FAR BIT_ULL(24)
1908 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1909 KNL_DDR_LOCAL | KNL_DDR_FAR)
1910 #define KNL_L2_READ SLM_DMND_READ
1911 #define KNL_L2_WRITE SLM_DMND_WRITE
1912 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
1913 #define KNL_L2_ACCESS SLM_LLC_ACCESS
1914 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1915 KNL_DRAM_ANY | SNB_SNP_ANY | \
1916 SNB_NON_DRAM)
1917
1918 static __initconst const u64 knl_hw_cache_extra_regs
1919 [PERF_COUNT_HW_CACHE_MAX]
1920 [PERF_COUNT_HW_CACHE_OP_MAX]
1921 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1922 [C(LL)] = {
1923 [C(OP_READ)] = {
1924 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1925 [C(RESULT_MISS)] = 0,
1926 },
1927 [C(OP_WRITE)] = {
1928 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1929 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
1930 },
1931 [C(OP_PREFETCH)] = {
1932 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1933 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
1934 },
1935 },
1936 };
1937
1938 /*
1939 * Used from PMIs where the LBRs are already disabled.
1940 *
1941 * This function could be called consecutively. It is required to remain in
1942 * disabled state if called consecutively.
1943 *
1944 * During consecutive calls, the same disable value will be written to related
1945 * registers, so the PMU state remains unchanged.
1946 *
1947 * intel_bts events don't coexist with intel PMU's BTS events because of
1948 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1949 * disabled around intel PMU's event batching etc, only inside the PMI handler.
1950 */
__intel_pmu_disable_all(void)1951 static void __intel_pmu_disable_all(void)
1952 {
1953 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1954
1955 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1956
1957 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1958 intel_pmu_disable_bts();
1959
1960 intel_pmu_pebs_disable_all();
1961 }
1962
intel_pmu_disable_all(void)1963 static void intel_pmu_disable_all(void)
1964 {
1965 __intel_pmu_disable_all();
1966 intel_pmu_lbr_disable_all();
1967 }
1968
__intel_pmu_enable_all(int added,bool pmi)1969 static void __intel_pmu_enable_all(int added, bool pmi)
1970 {
1971 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1972
1973 intel_pmu_pebs_enable_all();
1974 intel_pmu_lbr_enable_all(pmi);
1975 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1976 x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1977
1978 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1979 struct perf_event *event =
1980 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1981
1982 if (WARN_ON_ONCE(!event))
1983 return;
1984
1985 intel_pmu_enable_bts(event->hw.config);
1986 }
1987 }
1988
intel_pmu_enable_all(int added)1989 static void intel_pmu_enable_all(int added)
1990 {
1991 __intel_pmu_enable_all(added, false);
1992 }
1993
1994 /*
1995 * Workaround for:
1996 * Intel Errata AAK100 (model 26)
1997 * Intel Errata AAP53 (model 30)
1998 * Intel Errata BD53 (model 44)
1999 *
2000 * The official story:
2001 * These chips need to be 'reset' when adding counters by programming the
2002 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2003 * in sequence on the same PMC or on different PMCs.
2004 *
2005 * In practise it appears some of these events do in fact count, and
2006 * we need to program all 4 events.
2007 */
intel_pmu_nhm_workaround(void)2008 static void intel_pmu_nhm_workaround(void)
2009 {
2010 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2011 static const unsigned long nhm_magic[4] = {
2012 0x4300B5,
2013 0x4300D2,
2014 0x4300B1,
2015 0x4300B1
2016 };
2017 struct perf_event *event;
2018 int i;
2019
2020 /*
2021 * The Errata requires below steps:
2022 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2023 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2024 * the corresponding PMCx;
2025 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2026 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2027 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2028 */
2029
2030 /*
2031 * The real steps we choose are a little different from above.
2032 * A) To reduce MSR operations, we don't run step 1) as they
2033 * are already cleared before this function is called;
2034 * B) Call x86_perf_event_update to save PMCx before configuring
2035 * PERFEVTSELx with magic number;
2036 * C) With step 5), we do clear only when the PERFEVTSELx is
2037 * not used currently.
2038 * D) Call x86_perf_event_set_period to restore PMCx;
2039 */
2040
2041 /* We always operate 4 pairs of PERF Counters */
2042 for (i = 0; i < 4; i++) {
2043 event = cpuc->events[i];
2044 if (event)
2045 x86_perf_event_update(event);
2046 }
2047
2048 for (i = 0; i < 4; i++) {
2049 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2050 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2051 }
2052
2053 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2054 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2055
2056 for (i = 0; i < 4; i++) {
2057 event = cpuc->events[i];
2058
2059 if (event) {
2060 x86_perf_event_set_period(event);
2061 __x86_pmu_enable_event(&event->hw,
2062 ARCH_PERFMON_EVENTSEL_ENABLE);
2063 } else
2064 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2065 }
2066 }
2067
intel_pmu_nhm_enable_all(int added)2068 static void intel_pmu_nhm_enable_all(int added)
2069 {
2070 if (added)
2071 intel_pmu_nhm_workaround();
2072 intel_pmu_enable_all(added);
2073 }
2074
intel_set_tfa(struct cpu_hw_events * cpuc,bool on)2075 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2076 {
2077 u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2078
2079 if (cpuc->tfa_shadow != val) {
2080 cpuc->tfa_shadow = val;
2081 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2082 }
2083 }
2084
intel_tfa_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)2085 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2086 {
2087 /*
2088 * We're going to use PMC3, make sure TFA is set before we touch it.
2089 */
2090 if (cntr == 3)
2091 intel_set_tfa(cpuc, true);
2092 }
2093
intel_tfa_pmu_enable_all(int added)2094 static void intel_tfa_pmu_enable_all(int added)
2095 {
2096 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2097
2098 /*
2099 * If we find PMC3 is no longer used when we enable the PMU, we can
2100 * clear TFA.
2101 */
2102 if (!test_bit(3, cpuc->active_mask))
2103 intel_set_tfa(cpuc, false);
2104
2105 intel_pmu_enable_all(added);
2106 }
2107
enable_counter_freeze(void)2108 static void enable_counter_freeze(void)
2109 {
2110 update_debugctlmsr(get_debugctlmsr() |
2111 DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2112 }
2113
disable_counter_freeze(void)2114 static void disable_counter_freeze(void)
2115 {
2116 update_debugctlmsr(get_debugctlmsr() &
2117 ~DEBUGCTLMSR_FREEZE_PERFMON_ON_PMI);
2118 }
2119
intel_pmu_get_status(void)2120 static inline u64 intel_pmu_get_status(void)
2121 {
2122 u64 status;
2123
2124 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2125
2126 return status;
2127 }
2128
intel_pmu_ack_status(u64 ack)2129 static inline void intel_pmu_ack_status(u64 ack)
2130 {
2131 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2132 }
2133
intel_pmu_disable_fixed(struct hw_perf_event * hwc)2134 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2135 {
2136 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2137 u64 ctrl_val, mask;
2138
2139 mask = 0xfULL << (idx * 4);
2140
2141 rdmsrl(hwc->config_base, ctrl_val);
2142 ctrl_val &= ~mask;
2143 wrmsrl(hwc->config_base, ctrl_val);
2144 }
2145
event_is_checkpointed(struct perf_event * event)2146 static inline bool event_is_checkpointed(struct perf_event *event)
2147 {
2148 return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2149 }
2150
intel_pmu_disable_event(struct perf_event * event)2151 static void intel_pmu_disable_event(struct perf_event *event)
2152 {
2153 struct hw_perf_event *hwc = &event->hw;
2154 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2155
2156 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2157 intel_pmu_disable_bts();
2158 intel_pmu_drain_bts_buffer();
2159 return;
2160 }
2161
2162 cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2163 cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2164 cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2165
2166 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL))
2167 intel_pmu_disable_fixed(hwc);
2168 else
2169 x86_pmu_disable_event(event);
2170
2171 /*
2172 * Needs to be called after x86_pmu_disable_event,
2173 * so we don't trigger the event without PEBS bit set.
2174 */
2175 if (unlikely(event->attr.precise_ip))
2176 intel_pmu_pebs_disable(event);
2177 }
2178
intel_pmu_del_event(struct perf_event * event)2179 static void intel_pmu_del_event(struct perf_event *event)
2180 {
2181 if (needs_branch_stack(event))
2182 intel_pmu_lbr_del(event);
2183 if (event->attr.precise_ip)
2184 intel_pmu_pebs_del(event);
2185 }
2186
intel_pmu_read_event(struct perf_event * event)2187 static void intel_pmu_read_event(struct perf_event *event)
2188 {
2189 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2190 intel_pmu_auto_reload_read(event);
2191 else
2192 x86_perf_event_update(event);
2193 }
2194
intel_pmu_enable_fixed(struct perf_event * event)2195 static void intel_pmu_enable_fixed(struct perf_event *event)
2196 {
2197 struct hw_perf_event *hwc = &event->hw;
2198 int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2199 u64 ctrl_val, mask, bits = 0;
2200
2201 /*
2202 * Enable IRQ generation (0x8), if not PEBS,
2203 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2204 * if requested:
2205 */
2206 if (!event->attr.precise_ip)
2207 bits |= 0x8;
2208 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2209 bits |= 0x2;
2210 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2211 bits |= 0x1;
2212
2213 /*
2214 * ANY bit is supported in v3 and up
2215 */
2216 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2217 bits |= 0x4;
2218
2219 bits <<= (idx * 4);
2220 mask = 0xfULL << (idx * 4);
2221
2222 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2223 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2224 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2225 }
2226
2227 rdmsrl(hwc->config_base, ctrl_val);
2228 ctrl_val &= ~mask;
2229 ctrl_val |= bits;
2230 wrmsrl(hwc->config_base, ctrl_val);
2231 }
2232
intel_pmu_enable_event(struct perf_event * event)2233 static void intel_pmu_enable_event(struct perf_event *event)
2234 {
2235 struct hw_perf_event *hwc = &event->hw;
2236 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2237
2238 if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2239 if (!__this_cpu_read(cpu_hw_events.enabled))
2240 return;
2241
2242 intel_pmu_enable_bts(hwc->config);
2243 return;
2244 }
2245
2246 if (event->attr.exclude_host)
2247 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2248 if (event->attr.exclude_guest)
2249 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2250
2251 if (unlikely(event_is_checkpointed(event)))
2252 cpuc->intel_cp_status |= (1ull << hwc->idx);
2253
2254 if (unlikely(event->attr.precise_ip))
2255 intel_pmu_pebs_enable(event);
2256
2257 if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2258 intel_pmu_enable_fixed(event);
2259 return;
2260 }
2261
2262 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2263 }
2264
intel_pmu_add_event(struct perf_event * event)2265 static void intel_pmu_add_event(struct perf_event *event)
2266 {
2267 if (event->attr.precise_ip)
2268 intel_pmu_pebs_add(event);
2269 if (needs_branch_stack(event))
2270 intel_pmu_lbr_add(event);
2271 }
2272
2273 /*
2274 * Save and restart an expired event. Called by NMI contexts,
2275 * so it has to be careful about preempting normal event ops:
2276 */
intel_pmu_save_and_restart(struct perf_event * event)2277 int intel_pmu_save_and_restart(struct perf_event *event)
2278 {
2279 x86_perf_event_update(event);
2280 /*
2281 * For a checkpointed counter always reset back to 0. This
2282 * avoids a situation where the counter overflows, aborts the
2283 * transaction and is then set back to shortly before the
2284 * overflow, and overflows and aborts again.
2285 */
2286 if (unlikely(event_is_checkpointed(event))) {
2287 /* No race with NMIs because the counter should not be armed */
2288 wrmsrl(event->hw.event_base, 0);
2289 local64_set(&event->hw.prev_count, 0);
2290 }
2291 return x86_perf_event_set_period(event);
2292 }
2293
intel_pmu_reset(void)2294 static void intel_pmu_reset(void)
2295 {
2296 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2297 unsigned long flags;
2298 int idx;
2299
2300 if (!x86_pmu.num_counters)
2301 return;
2302
2303 local_irq_save(flags);
2304
2305 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2306
2307 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2308 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2309 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
2310 }
2311 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2312 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2313
2314 if (ds)
2315 ds->bts_index = ds->bts_buffer_base;
2316
2317 /* Ack all overflows and disable fixed counters */
2318 if (x86_pmu.version >= 2) {
2319 intel_pmu_ack_status(intel_pmu_get_status());
2320 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2321 }
2322
2323 /* Reset LBRs and LBR freezing */
2324 if (x86_pmu.lbr_nr) {
2325 update_debugctlmsr(get_debugctlmsr() &
2326 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2327 }
2328
2329 local_irq_restore(flags);
2330 }
2331
handle_pmi_common(struct pt_regs * regs,u64 status)2332 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2333 {
2334 struct perf_sample_data data;
2335 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2336 struct perf_guest_info_callbacks *guest_cbs;
2337 int bit;
2338 int handled = 0;
2339
2340 inc_irq_stat(apic_perf_irqs);
2341
2342 /*
2343 * Ignore a range of extra bits in status that do not indicate
2344 * overflow by themselves.
2345 */
2346 status &= ~(GLOBAL_STATUS_COND_CHG |
2347 GLOBAL_STATUS_ASIF |
2348 GLOBAL_STATUS_LBRS_FROZEN);
2349 if (!status)
2350 return 0;
2351 /*
2352 * In case multiple PEBS events are sampled at the same time,
2353 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2354 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2355 * having their bits set in the status register. This is a sign
2356 * that there was at least one PEBS record pending at the time
2357 * of the PMU interrupt. PEBS counters must only be processed
2358 * via the drain_pebs() calls and not via the regular sample
2359 * processing loop coming after that the function, otherwise
2360 * phony regular samples may be generated in the sampling buffer
2361 * not marked with the EXACT tag. Another possibility is to have
2362 * one PEBS event and at least one non-PEBS event whic hoverflows
2363 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2364 * not be set, yet the overflow status bit for the PEBS counter will
2365 * be on Skylake.
2366 *
2367 * To avoid this problem, we systematically ignore the PEBS-enabled
2368 * counters from the GLOBAL_STATUS mask and we always process PEBS
2369 * events via drain_pebs().
2370 */
2371 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2372 status &= ~cpuc->pebs_enabled;
2373 else
2374 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2375
2376 /*
2377 * PEBS overflow sets bit 62 in the global status register
2378 */
2379 if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2380 handled++;
2381 x86_pmu.drain_pebs(regs);
2382 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2383 }
2384
2385 /*
2386 * Intel PT
2387 */
2388 if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2389 handled++;
2390
2391 guest_cbs = perf_get_guest_cbs();
2392 if (unlikely(guest_cbs && guest_cbs->is_in_guest() &&
2393 guest_cbs->handle_intel_pt_intr))
2394 guest_cbs->handle_intel_pt_intr();
2395 else
2396 intel_pt_interrupt();
2397 }
2398
2399 /*
2400 * Checkpointed counters can lead to 'spurious' PMIs because the
2401 * rollback caused by the PMI will have cleared the overflow status
2402 * bit. Therefore always force probe these counters.
2403 */
2404 status |= cpuc->intel_cp_status;
2405
2406 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2407 struct perf_event *event = cpuc->events[bit];
2408
2409 handled++;
2410
2411 if (!test_bit(bit, cpuc->active_mask))
2412 continue;
2413
2414 if (!intel_pmu_save_and_restart(event))
2415 continue;
2416
2417 perf_sample_data_init(&data, 0, event->hw.last_period);
2418
2419 if (has_branch_stack(event))
2420 data.br_stack = &cpuc->lbr_stack;
2421
2422 if (perf_event_overflow(event, &data, regs))
2423 x86_pmu_stop(event, 0);
2424 }
2425
2426 return handled;
2427 }
2428
2429 static bool disable_counter_freezing = true;
intel_perf_counter_freezing_setup(char * s)2430 static int __init intel_perf_counter_freezing_setup(char *s)
2431 {
2432 bool res;
2433
2434 if (kstrtobool(s, &res))
2435 return -EINVAL;
2436
2437 disable_counter_freezing = !res;
2438 return 1;
2439 }
2440 __setup("perf_v4_pmi=", intel_perf_counter_freezing_setup);
2441
2442 /*
2443 * Simplified handler for Arch Perfmon v4:
2444 * - We rely on counter freezing/unfreezing to enable/disable the PMU.
2445 * This is done automatically on PMU ack.
2446 * - Ack the PMU only after the APIC.
2447 */
2448
intel_pmu_handle_irq_v4(struct pt_regs * regs)2449 static int intel_pmu_handle_irq_v4(struct pt_regs *regs)
2450 {
2451 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2452 int handled = 0;
2453 bool bts = false;
2454 u64 status;
2455 int pmu_enabled = cpuc->enabled;
2456 int loops = 0;
2457
2458 /* PMU has been disabled because of counter freezing */
2459 cpuc->enabled = 0;
2460 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2461 bts = true;
2462 intel_bts_disable_local();
2463 handled = intel_pmu_drain_bts_buffer();
2464 handled += intel_bts_interrupt();
2465 }
2466 status = intel_pmu_get_status();
2467 if (!status)
2468 goto done;
2469 again:
2470 intel_pmu_lbr_read();
2471 if (++loops > 100) {
2472 static bool warned;
2473
2474 if (!warned) {
2475 WARN(1, "perfevents: irq loop stuck!\n");
2476 perf_event_print_debug();
2477 warned = true;
2478 }
2479 intel_pmu_reset();
2480 goto done;
2481 }
2482
2483
2484 handled += handle_pmi_common(regs, status);
2485 done:
2486 /* Ack the PMI in the APIC */
2487 apic_write(APIC_LVTPC, APIC_DM_NMI);
2488
2489 /*
2490 * The counters start counting immediately while ack the status.
2491 * Make it as close as possible to IRET. This avoids bogus
2492 * freezing on Skylake CPUs.
2493 */
2494 if (status) {
2495 intel_pmu_ack_status(status);
2496 } else {
2497 /*
2498 * CPU may issues two PMIs very close to each other.
2499 * When the PMI handler services the first one, the
2500 * GLOBAL_STATUS is already updated to reflect both.
2501 * When it IRETs, the second PMI is immediately
2502 * handled and it sees clear status. At the meantime,
2503 * there may be a third PMI, because the freezing bit
2504 * isn't set since the ack in first PMI handlers.
2505 * Double check if there is more work to be done.
2506 */
2507 status = intel_pmu_get_status();
2508 if (status)
2509 goto again;
2510 }
2511
2512 if (bts)
2513 intel_bts_enable_local();
2514 cpuc->enabled = pmu_enabled;
2515 return handled;
2516 }
2517
2518 /*
2519 * This handler is triggered by the local APIC, so the APIC IRQ handling
2520 * rules apply:
2521 */
intel_pmu_handle_irq(struct pt_regs * regs)2522 static int intel_pmu_handle_irq(struct pt_regs *regs)
2523 {
2524 struct cpu_hw_events *cpuc;
2525 int loops;
2526 u64 status;
2527 int handled;
2528 int pmu_enabled;
2529
2530 cpuc = this_cpu_ptr(&cpu_hw_events);
2531
2532 /*
2533 * Save the PMU state.
2534 * It needs to be restored when leaving the handler.
2535 */
2536 pmu_enabled = cpuc->enabled;
2537 /*
2538 * No known reason to not always do late ACK,
2539 * but just in case do it opt-in.
2540 */
2541 if (!x86_pmu.late_ack)
2542 apic_write(APIC_LVTPC, APIC_DM_NMI);
2543 intel_bts_disable_local();
2544 cpuc->enabled = 0;
2545 __intel_pmu_disable_all();
2546 handled = intel_pmu_drain_bts_buffer();
2547 handled += intel_bts_interrupt();
2548 status = intel_pmu_get_status();
2549 if (!status)
2550 goto done;
2551
2552 loops = 0;
2553 again:
2554 intel_pmu_lbr_read();
2555 intel_pmu_ack_status(status);
2556 if (++loops > 100) {
2557 static bool warned;
2558
2559 if (!warned) {
2560 WARN(1, "perfevents: irq loop stuck!\n");
2561 perf_event_print_debug();
2562 warned = true;
2563 }
2564 intel_pmu_reset();
2565 goto done;
2566 }
2567
2568 handled += handle_pmi_common(regs, status);
2569
2570 /*
2571 * Repeat if there is more work to be done:
2572 */
2573 status = intel_pmu_get_status();
2574 if (status)
2575 goto again;
2576
2577 done:
2578 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2579 cpuc->enabled = pmu_enabled;
2580 if (pmu_enabled)
2581 __intel_pmu_enable_all(0, true);
2582 intel_bts_enable_local();
2583
2584 /*
2585 * Only unmask the NMI after the overflow counters
2586 * have been reset. This avoids spurious NMIs on
2587 * Haswell CPUs.
2588 */
2589 if (x86_pmu.late_ack)
2590 apic_write(APIC_LVTPC, APIC_DM_NMI);
2591 return handled;
2592 }
2593
2594 static struct event_constraint *
intel_bts_constraints(struct perf_event * event)2595 intel_bts_constraints(struct perf_event *event)
2596 {
2597 if (unlikely(intel_pmu_has_bts(event)))
2598 return &bts_constraint;
2599
2600 return NULL;
2601 }
2602
intel_alt_er(int idx,u64 config)2603 static int intel_alt_er(int idx, u64 config)
2604 {
2605 int alt_idx = idx;
2606
2607 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2608 return idx;
2609
2610 if (idx == EXTRA_REG_RSP_0)
2611 alt_idx = EXTRA_REG_RSP_1;
2612
2613 if (idx == EXTRA_REG_RSP_1)
2614 alt_idx = EXTRA_REG_RSP_0;
2615
2616 if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2617 return idx;
2618
2619 return alt_idx;
2620 }
2621
intel_fixup_er(struct perf_event * event,int idx)2622 static void intel_fixup_er(struct perf_event *event, int idx)
2623 {
2624 event->hw.extra_reg.idx = idx;
2625
2626 if (idx == EXTRA_REG_RSP_0) {
2627 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2628 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2629 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2630 } else if (idx == EXTRA_REG_RSP_1) {
2631 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2632 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2633 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2634 }
2635 }
2636
2637 /*
2638 * manage allocation of shared extra msr for certain events
2639 *
2640 * sharing can be:
2641 * per-cpu: to be shared between the various events on a single PMU
2642 * per-core: per-cpu + shared by HT threads
2643 */
2644 static struct event_constraint *
__intel_shared_reg_get_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,struct hw_perf_event_extra * reg)2645 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2646 struct perf_event *event,
2647 struct hw_perf_event_extra *reg)
2648 {
2649 struct event_constraint *c = &emptyconstraint;
2650 struct er_account *era;
2651 unsigned long flags;
2652 int idx = reg->idx;
2653
2654 /*
2655 * reg->alloc can be set due to existing state, so for fake cpuc we
2656 * need to ignore this, otherwise we might fail to allocate proper fake
2657 * state for this extra reg constraint. Also see the comment below.
2658 */
2659 if (reg->alloc && !cpuc->is_fake)
2660 return NULL; /* call x86_get_event_constraint() */
2661
2662 again:
2663 era = &cpuc->shared_regs->regs[idx];
2664 /*
2665 * we use spin_lock_irqsave() to avoid lockdep issues when
2666 * passing a fake cpuc
2667 */
2668 raw_spin_lock_irqsave(&era->lock, flags);
2669
2670 if (!atomic_read(&era->ref) || era->config == reg->config) {
2671
2672 /*
2673 * If its a fake cpuc -- as per validate_{group,event}() we
2674 * shouldn't touch event state and we can avoid doing so
2675 * since both will only call get_event_constraints() once
2676 * on each event, this avoids the need for reg->alloc.
2677 *
2678 * Not doing the ER fixup will only result in era->reg being
2679 * wrong, but since we won't actually try and program hardware
2680 * this isn't a problem either.
2681 */
2682 if (!cpuc->is_fake) {
2683 if (idx != reg->idx)
2684 intel_fixup_er(event, idx);
2685
2686 /*
2687 * x86_schedule_events() can call get_event_constraints()
2688 * multiple times on events in the case of incremental
2689 * scheduling(). reg->alloc ensures we only do the ER
2690 * allocation once.
2691 */
2692 reg->alloc = 1;
2693 }
2694
2695 /* lock in msr value */
2696 era->config = reg->config;
2697 era->reg = reg->reg;
2698
2699 /* one more user */
2700 atomic_inc(&era->ref);
2701
2702 /*
2703 * need to call x86_get_event_constraint()
2704 * to check if associated event has constraints
2705 */
2706 c = NULL;
2707 } else {
2708 idx = intel_alt_er(idx, reg->config);
2709 if (idx != reg->idx) {
2710 raw_spin_unlock_irqrestore(&era->lock, flags);
2711 goto again;
2712 }
2713 }
2714 raw_spin_unlock_irqrestore(&era->lock, flags);
2715
2716 return c;
2717 }
2718
2719 static void
__intel_shared_reg_put_constraints(struct cpu_hw_events * cpuc,struct hw_perf_event_extra * reg)2720 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2721 struct hw_perf_event_extra *reg)
2722 {
2723 struct er_account *era;
2724
2725 /*
2726 * Only put constraint if extra reg was actually allocated. Also takes
2727 * care of event which do not use an extra shared reg.
2728 *
2729 * Also, if this is a fake cpuc we shouldn't touch any event state
2730 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2731 * either since it'll be thrown out.
2732 */
2733 if (!reg->alloc || cpuc->is_fake)
2734 return;
2735
2736 era = &cpuc->shared_regs->regs[reg->idx];
2737
2738 /* one fewer user */
2739 atomic_dec(&era->ref);
2740
2741 /* allocate again next time */
2742 reg->alloc = 0;
2743 }
2744
2745 static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)2746 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2747 struct perf_event *event)
2748 {
2749 struct event_constraint *c = NULL, *d;
2750 struct hw_perf_event_extra *xreg, *breg;
2751
2752 xreg = &event->hw.extra_reg;
2753 if (xreg->idx != EXTRA_REG_NONE) {
2754 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2755 if (c == &emptyconstraint)
2756 return c;
2757 }
2758 breg = &event->hw.branch_reg;
2759 if (breg->idx != EXTRA_REG_NONE) {
2760 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2761 if (d == &emptyconstraint) {
2762 __intel_shared_reg_put_constraints(cpuc, xreg);
2763 c = d;
2764 }
2765 }
2766 return c;
2767 }
2768
2769 struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)2770 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2771 struct perf_event *event)
2772 {
2773 struct event_constraint *c;
2774
2775 if (x86_pmu.event_constraints) {
2776 for_each_event_constraint(c, x86_pmu.event_constraints) {
2777 if (constraint_match(c, event->hw.config)) {
2778 event->hw.flags |= c->flags;
2779 return c;
2780 }
2781 }
2782 }
2783
2784 return &unconstrained;
2785 }
2786
2787 static struct event_constraint *
__intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)2788 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2789 struct perf_event *event)
2790 {
2791 struct event_constraint *c;
2792
2793 c = intel_bts_constraints(event);
2794 if (c)
2795 return c;
2796
2797 c = intel_shared_regs_constraints(cpuc, event);
2798 if (c)
2799 return c;
2800
2801 c = intel_pebs_constraints(event);
2802 if (c)
2803 return c;
2804
2805 return x86_get_event_constraints(cpuc, idx, event);
2806 }
2807
2808 static void
intel_start_scheduling(struct cpu_hw_events * cpuc)2809 intel_start_scheduling(struct cpu_hw_events *cpuc)
2810 {
2811 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2812 struct intel_excl_states *xl;
2813 int tid = cpuc->excl_thread_id;
2814
2815 /*
2816 * nothing needed if in group validation mode
2817 */
2818 if (cpuc->is_fake || !is_ht_workaround_enabled())
2819 return;
2820
2821 /*
2822 * no exclusion needed
2823 */
2824 if (WARN_ON_ONCE(!excl_cntrs))
2825 return;
2826
2827 xl = &excl_cntrs->states[tid];
2828
2829 xl->sched_started = true;
2830 /*
2831 * lock shared state until we are done scheduling
2832 * in stop_event_scheduling()
2833 * makes scheduling appear as a transaction
2834 */
2835 raw_spin_lock(&excl_cntrs->lock);
2836 }
2837
intel_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)2838 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2839 {
2840 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2841 struct event_constraint *c = cpuc->event_constraint[idx];
2842 struct intel_excl_states *xl;
2843 int tid = cpuc->excl_thread_id;
2844
2845 if (cpuc->is_fake || !is_ht_workaround_enabled())
2846 return;
2847
2848 if (WARN_ON_ONCE(!excl_cntrs))
2849 return;
2850
2851 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2852 return;
2853
2854 xl = &excl_cntrs->states[tid];
2855
2856 lockdep_assert_held(&excl_cntrs->lock);
2857
2858 if (c->flags & PERF_X86_EVENT_EXCL)
2859 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2860 else
2861 xl->state[cntr] = INTEL_EXCL_SHARED;
2862 }
2863
2864 static void
intel_stop_scheduling(struct cpu_hw_events * cpuc)2865 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2866 {
2867 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2868 struct intel_excl_states *xl;
2869 int tid = cpuc->excl_thread_id;
2870
2871 /*
2872 * nothing needed if in group validation mode
2873 */
2874 if (cpuc->is_fake || !is_ht_workaround_enabled())
2875 return;
2876 /*
2877 * no exclusion needed
2878 */
2879 if (WARN_ON_ONCE(!excl_cntrs))
2880 return;
2881
2882 xl = &excl_cntrs->states[tid];
2883
2884 xl->sched_started = false;
2885 /*
2886 * release shared state lock (acquired in intel_start_scheduling())
2887 */
2888 raw_spin_unlock(&excl_cntrs->lock);
2889 }
2890
2891 static struct event_constraint *
dyn_constraint(struct cpu_hw_events * cpuc,struct event_constraint * c,int idx)2892 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
2893 {
2894 WARN_ON_ONCE(!cpuc->constraint_list);
2895
2896 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2897 struct event_constraint *cx;
2898
2899 /*
2900 * grab pre-allocated constraint entry
2901 */
2902 cx = &cpuc->constraint_list[idx];
2903
2904 /*
2905 * initialize dynamic constraint
2906 * with static constraint
2907 */
2908 *cx = *c;
2909
2910 /*
2911 * mark constraint as dynamic
2912 */
2913 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2914 c = cx;
2915 }
2916
2917 return c;
2918 }
2919
2920 static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,int idx,struct event_constraint * c)2921 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2922 int idx, struct event_constraint *c)
2923 {
2924 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2925 struct intel_excl_states *xlo;
2926 int tid = cpuc->excl_thread_id;
2927 int is_excl, i, w;
2928
2929 /*
2930 * validating a group does not require
2931 * enforcing cross-thread exclusion
2932 */
2933 if (cpuc->is_fake || !is_ht_workaround_enabled())
2934 return c;
2935
2936 /*
2937 * no exclusion needed
2938 */
2939 if (WARN_ON_ONCE(!excl_cntrs))
2940 return c;
2941
2942 /*
2943 * because we modify the constraint, we need
2944 * to make a copy. Static constraints come
2945 * from static const tables.
2946 *
2947 * only needed when constraint has not yet
2948 * been cloned (marked dynamic)
2949 */
2950 c = dyn_constraint(cpuc, c, idx);
2951
2952 /*
2953 * From here on, the constraint is dynamic.
2954 * Either it was just allocated above, or it
2955 * was allocated during a earlier invocation
2956 * of this function
2957 */
2958
2959 /*
2960 * state of sibling HT
2961 */
2962 xlo = &excl_cntrs->states[tid ^ 1];
2963
2964 /*
2965 * event requires exclusive counter access
2966 * across HT threads
2967 */
2968 is_excl = c->flags & PERF_X86_EVENT_EXCL;
2969 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2970 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2971 if (!cpuc->n_excl++)
2972 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2973 }
2974
2975 /*
2976 * Modify static constraint with current dynamic
2977 * state of thread
2978 *
2979 * EXCLUSIVE: sibling counter measuring exclusive event
2980 * SHARED : sibling counter measuring non-exclusive event
2981 * UNUSED : sibling counter unused
2982 */
2983 w = c->weight;
2984 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2985 /*
2986 * exclusive event in sibling counter
2987 * our corresponding counter cannot be used
2988 * regardless of our event
2989 */
2990 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
2991 __clear_bit(i, c->idxmsk);
2992 w--;
2993 continue;
2994 }
2995 /*
2996 * if measuring an exclusive event, sibling
2997 * measuring non-exclusive, then counter cannot
2998 * be used
2999 */
3000 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3001 __clear_bit(i, c->idxmsk);
3002 w--;
3003 continue;
3004 }
3005 }
3006
3007 /*
3008 * if we return an empty mask, then switch
3009 * back to static empty constraint to avoid
3010 * the cost of freeing later on
3011 */
3012 if (!w)
3013 c = &emptyconstraint;
3014
3015 c->weight = w;
3016
3017 return c;
3018 }
3019
3020 static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3021 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3022 struct perf_event *event)
3023 {
3024 struct event_constraint *c1, *c2;
3025
3026 c1 = cpuc->event_constraint[idx];
3027
3028 /*
3029 * first time only
3030 * - static constraint: no change across incremental scheduling calls
3031 * - dynamic constraint: handled by intel_get_excl_constraints()
3032 */
3033 c2 = __intel_get_event_constraints(cpuc, idx, event);
3034 if (c1) {
3035 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3036 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3037 c1->weight = c2->weight;
3038 c2 = c1;
3039 }
3040
3041 if (cpuc->excl_cntrs)
3042 return intel_get_excl_constraints(cpuc, event, idx, c2);
3043
3044 return c2;
3045 }
3046
intel_put_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3047 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3048 struct perf_event *event)
3049 {
3050 struct hw_perf_event *hwc = &event->hw;
3051 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3052 int tid = cpuc->excl_thread_id;
3053 struct intel_excl_states *xl;
3054
3055 /*
3056 * nothing needed if in group validation mode
3057 */
3058 if (cpuc->is_fake)
3059 return;
3060
3061 if (WARN_ON_ONCE(!excl_cntrs))
3062 return;
3063
3064 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3065 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3066 if (!--cpuc->n_excl)
3067 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3068 }
3069
3070 /*
3071 * If event was actually assigned, then mark the counter state as
3072 * unused now.
3073 */
3074 if (hwc->idx >= 0) {
3075 xl = &excl_cntrs->states[tid];
3076
3077 /*
3078 * put_constraint may be called from x86_schedule_events()
3079 * which already has the lock held so here make locking
3080 * conditional.
3081 */
3082 if (!xl->sched_started)
3083 raw_spin_lock(&excl_cntrs->lock);
3084
3085 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3086
3087 if (!xl->sched_started)
3088 raw_spin_unlock(&excl_cntrs->lock);
3089 }
3090 }
3091
3092 static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3093 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3094 struct perf_event *event)
3095 {
3096 struct hw_perf_event_extra *reg;
3097
3098 reg = &event->hw.extra_reg;
3099 if (reg->idx != EXTRA_REG_NONE)
3100 __intel_shared_reg_put_constraints(cpuc, reg);
3101
3102 reg = &event->hw.branch_reg;
3103 if (reg->idx != EXTRA_REG_NONE)
3104 __intel_shared_reg_put_constraints(cpuc, reg);
3105 }
3106
intel_put_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3107 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3108 struct perf_event *event)
3109 {
3110 intel_put_shared_regs_event_constraints(cpuc, event);
3111
3112 /*
3113 * is PMU has exclusive counter restrictions, then
3114 * all events are subject to and must call the
3115 * put_excl_constraints() routine
3116 */
3117 if (cpuc->excl_cntrs)
3118 intel_put_excl_constraints(cpuc, event);
3119 }
3120
intel_pebs_aliases_core2(struct perf_event * event)3121 static void intel_pebs_aliases_core2(struct perf_event *event)
3122 {
3123 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3124 /*
3125 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3126 * (0x003c) so that we can use it with PEBS.
3127 *
3128 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3129 * PEBS capable. However we can use INST_RETIRED.ANY_P
3130 * (0x00c0), which is a PEBS capable event, to get the same
3131 * count.
3132 *
3133 * INST_RETIRED.ANY_P counts the number of cycles that retires
3134 * CNTMASK instructions. By setting CNTMASK to a value (16)
3135 * larger than the maximum number of instructions that can be
3136 * retired per cycle (4) and then inverting the condition, we
3137 * count all cycles that retire 16 or less instructions, which
3138 * is every cycle.
3139 *
3140 * Thereby we gain a PEBS capable cycle counter.
3141 */
3142 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3143
3144 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3145 event->hw.config = alt_config;
3146 }
3147 }
3148
intel_pebs_aliases_snb(struct perf_event * event)3149 static void intel_pebs_aliases_snb(struct perf_event *event)
3150 {
3151 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3152 /*
3153 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3154 * (0x003c) so that we can use it with PEBS.
3155 *
3156 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3157 * PEBS capable. However we can use UOPS_RETIRED.ALL
3158 * (0x01c2), which is a PEBS capable event, to get the same
3159 * count.
3160 *
3161 * UOPS_RETIRED.ALL counts the number of cycles that retires
3162 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3163 * larger than the maximum number of micro-ops that can be
3164 * retired per cycle (4) and then inverting the condition, we
3165 * count all cycles that retire 16 or less micro-ops, which
3166 * is every cycle.
3167 *
3168 * Thereby we gain a PEBS capable cycle counter.
3169 */
3170 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3171
3172 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3173 event->hw.config = alt_config;
3174 }
3175 }
3176
intel_pebs_aliases_precdist(struct perf_event * event)3177 static void intel_pebs_aliases_precdist(struct perf_event *event)
3178 {
3179 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3180 /*
3181 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3182 * (0x003c) so that we can use it with PEBS.
3183 *
3184 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3185 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3186 * (0x01c0), which is a PEBS capable event, to get the same
3187 * count.
3188 *
3189 * The PREC_DIST event has special support to minimize sample
3190 * shadowing effects. One drawback is that it can be
3191 * only programmed on counter 1, but that seems like an
3192 * acceptable trade off.
3193 */
3194 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3195
3196 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3197 event->hw.config = alt_config;
3198 }
3199 }
3200
intel_pebs_aliases_ivb(struct perf_event * event)3201 static void intel_pebs_aliases_ivb(struct perf_event *event)
3202 {
3203 if (event->attr.precise_ip < 3)
3204 return intel_pebs_aliases_snb(event);
3205 return intel_pebs_aliases_precdist(event);
3206 }
3207
intel_pebs_aliases_skl(struct perf_event * event)3208 static void intel_pebs_aliases_skl(struct perf_event *event)
3209 {
3210 if (event->attr.precise_ip < 3)
3211 return intel_pebs_aliases_core2(event);
3212 return intel_pebs_aliases_precdist(event);
3213 }
3214
intel_pmu_large_pebs_flags(struct perf_event * event)3215 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3216 {
3217 unsigned long flags = x86_pmu.large_pebs_flags;
3218
3219 if (event->attr.use_clockid)
3220 flags &= ~PERF_SAMPLE_TIME;
3221 if (!event->attr.exclude_kernel)
3222 flags &= ~PERF_SAMPLE_REGS_USER;
3223 if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3224 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3225 return flags;
3226 }
3227
intel_pmu_bts_config(struct perf_event * event)3228 static int intel_pmu_bts_config(struct perf_event *event)
3229 {
3230 struct perf_event_attr *attr = &event->attr;
3231
3232 if (unlikely(intel_pmu_has_bts(event))) {
3233 /* BTS is not supported by this architecture. */
3234 if (!x86_pmu.bts_active)
3235 return -EOPNOTSUPP;
3236
3237 /* BTS is currently only allowed for user-mode. */
3238 if (!attr->exclude_kernel)
3239 return -EOPNOTSUPP;
3240
3241 /* BTS is not allowed for precise events. */
3242 if (attr->precise_ip)
3243 return -EOPNOTSUPP;
3244
3245 /* disallow bts if conflicting events are present */
3246 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3247 return -EBUSY;
3248
3249 event->destroy = hw_perf_lbr_event_destroy;
3250 }
3251
3252 return 0;
3253 }
3254
core_pmu_hw_config(struct perf_event * event)3255 static int core_pmu_hw_config(struct perf_event *event)
3256 {
3257 int ret = x86_pmu_hw_config(event);
3258
3259 if (ret)
3260 return ret;
3261
3262 return intel_pmu_bts_config(event);
3263 }
3264
intel_pmu_hw_config(struct perf_event * event)3265 static int intel_pmu_hw_config(struct perf_event *event)
3266 {
3267 int ret = x86_pmu_hw_config(event);
3268
3269 if (ret)
3270 return ret;
3271
3272 ret = intel_pmu_bts_config(event);
3273 if (ret)
3274 return ret;
3275
3276 if (event->attr.precise_ip) {
3277 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3278 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3279 if (!(event->attr.sample_type &
3280 ~intel_pmu_large_pebs_flags(event)))
3281 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3282 }
3283 if (x86_pmu.pebs_aliases)
3284 x86_pmu.pebs_aliases(event);
3285
3286 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3287 event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3288 }
3289
3290 if (needs_branch_stack(event)) {
3291 ret = intel_pmu_setup_lbr_filter(event);
3292 if (ret)
3293 return ret;
3294
3295 /*
3296 * BTS is set up earlier in this path, so don't account twice
3297 */
3298 if (!unlikely(intel_pmu_has_bts(event))) {
3299 /* disallow lbr if conflicting events are present */
3300 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3301 return -EBUSY;
3302
3303 event->destroy = hw_perf_lbr_event_destroy;
3304 }
3305 }
3306
3307 if (event->attr.aux_output) {
3308 if (!event->attr.precise_ip)
3309 return -EINVAL;
3310
3311 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3312 }
3313
3314 if (event->attr.type != PERF_TYPE_RAW)
3315 return 0;
3316
3317 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3318 return 0;
3319
3320 if (x86_pmu.version < 3)
3321 return -EINVAL;
3322
3323 ret = perf_allow_cpu(&event->attr);
3324 if (ret)
3325 return ret;
3326
3327 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3328
3329 return 0;
3330 }
3331
perf_guest_get_msrs(int * nr)3332 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3333 {
3334 if (x86_pmu.guest_get_msrs)
3335 return x86_pmu.guest_get_msrs(nr);
3336 *nr = 0;
3337 return NULL;
3338 }
3339 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3340
intel_guest_get_msrs(int * nr)3341 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3342 {
3343 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3344 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3345
3346 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3347 arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3348 arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3349 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3350 arr[0].guest &= ~cpuc->pebs_enabled;
3351 else
3352 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3353 *nr = 1;
3354
3355 if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3356 /*
3357 * If PMU counter has PEBS enabled it is not enough to
3358 * disable counter on a guest entry since PEBS memory
3359 * write can overshoot guest entry and corrupt guest
3360 * memory. Disabling PEBS solves the problem.
3361 *
3362 * Don't do this if the CPU already enforces it.
3363 */
3364 arr[1].msr = MSR_IA32_PEBS_ENABLE;
3365 arr[1].host = cpuc->pebs_enabled;
3366 arr[1].guest = 0;
3367 *nr = 2;
3368 }
3369
3370 return arr;
3371 }
3372
core_guest_get_msrs(int * nr)3373 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3374 {
3375 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3376 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3377 int idx;
3378
3379 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3380 struct perf_event *event = cpuc->events[idx];
3381
3382 arr[idx].msr = x86_pmu_config_addr(idx);
3383 arr[idx].host = arr[idx].guest = 0;
3384
3385 if (!test_bit(idx, cpuc->active_mask))
3386 continue;
3387
3388 arr[idx].host = arr[idx].guest =
3389 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3390
3391 if (event->attr.exclude_host)
3392 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3393 else if (event->attr.exclude_guest)
3394 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3395 }
3396
3397 *nr = x86_pmu.num_counters;
3398 return arr;
3399 }
3400
core_pmu_enable_event(struct perf_event * event)3401 static void core_pmu_enable_event(struct perf_event *event)
3402 {
3403 if (!event->attr.exclude_host)
3404 x86_pmu_enable_event(event);
3405 }
3406
core_pmu_enable_all(int added)3407 static void core_pmu_enable_all(int added)
3408 {
3409 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3410 int idx;
3411
3412 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3413 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3414
3415 if (!test_bit(idx, cpuc->active_mask) ||
3416 cpuc->events[idx]->attr.exclude_host)
3417 continue;
3418
3419 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3420 }
3421 }
3422
hsw_hw_config(struct perf_event * event)3423 static int hsw_hw_config(struct perf_event *event)
3424 {
3425 int ret = intel_pmu_hw_config(event);
3426
3427 if (ret)
3428 return ret;
3429 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3430 return 0;
3431 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3432
3433 /*
3434 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3435 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3436 * this combination.
3437 */
3438 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3439 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3440 event->attr.precise_ip > 0))
3441 return -EOPNOTSUPP;
3442
3443 if (event_is_checkpointed(event)) {
3444 /*
3445 * Sampling of checkpointed events can cause situations where
3446 * the CPU constantly aborts because of a overflow, which is
3447 * then checkpointed back and ignored. Forbid checkpointing
3448 * for sampling.
3449 *
3450 * But still allow a long sampling period, so that perf stat
3451 * from KVM works.
3452 */
3453 if (event->attr.sample_period > 0 &&
3454 event->attr.sample_period < 0x7fffffff)
3455 return -EOPNOTSUPP;
3456 }
3457 return 0;
3458 }
3459
3460 static struct event_constraint counter0_constraint =
3461 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3462
3463 static struct event_constraint counter2_constraint =
3464 EVENT_CONSTRAINT(0, 0x4, 0);
3465
3466 static struct event_constraint fixed0_constraint =
3467 FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3468
3469 static struct event_constraint fixed0_counter0_constraint =
3470 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
3471
3472 static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3473 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3474 struct perf_event *event)
3475 {
3476 struct event_constraint *c;
3477
3478 c = intel_get_event_constraints(cpuc, idx, event);
3479
3480 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3481 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3482 if (c->idxmsk64 & (1U << 2))
3483 return &counter2_constraint;
3484 return &emptyconstraint;
3485 }
3486
3487 return c;
3488 }
3489
3490 static struct event_constraint *
icl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3491 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3492 struct perf_event *event)
3493 {
3494 /*
3495 * Fixed counter 0 has less skid.
3496 * Force instruction:ppp in Fixed counter 0
3497 */
3498 if ((event->attr.precise_ip == 3) &&
3499 constraint_match(&fixed0_constraint, event->hw.config))
3500 return &fixed0_constraint;
3501
3502 return hsw_get_event_constraints(cpuc, idx, event);
3503 }
3504
3505 static struct event_constraint *
glp_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3506 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3507 struct perf_event *event)
3508 {
3509 struct event_constraint *c;
3510
3511 /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3512 if (event->attr.precise_ip == 3)
3513 return &counter0_constraint;
3514
3515 c = intel_get_event_constraints(cpuc, idx, event);
3516
3517 return c;
3518 }
3519
3520 static struct event_constraint *
tnt_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3521 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3522 struct perf_event *event)
3523 {
3524 struct event_constraint *c;
3525
3526 /*
3527 * :ppp means to do reduced skid PEBS,
3528 * which is available on PMC0 and fixed counter 0.
3529 */
3530 if (event->attr.precise_ip == 3) {
3531 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
3532 if (constraint_match(&fixed0_constraint, event->hw.config))
3533 return &fixed0_counter0_constraint;
3534
3535 return &counter0_constraint;
3536 }
3537
3538 c = intel_get_event_constraints(cpuc, idx, event);
3539
3540 return c;
3541 }
3542
3543 static bool allow_tsx_force_abort = true;
3544
3545 static struct event_constraint *
tfa_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3546 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3547 struct perf_event *event)
3548 {
3549 struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
3550
3551 /*
3552 * Without TFA we must not use PMC3.
3553 */
3554 if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
3555 c = dyn_constraint(cpuc, c, idx);
3556 c->idxmsk64 &= ~(1ULL << 3);
3557 c->weight--;
3558 }
3559
3560 return c;
3561 }
3562
3563 /*
3564 * Broadwell:
3565 *
3566 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3567 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3568 * the two to enforce a minimum period of 128 (the smallest value that has bits
3569 * 0-5 cleared and >= 100).
3570 *
3571 * Because of how the code in x86_perf_event_set_period() works, the truncation
3572 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3573 * to make up for the 'lost' events due to carrying the 'error' in period_left.
3574 *
3575 * Therefore the effective (average) period matches the requested period,
3576 * despite coarser hardware granularity.
3577 */
bdw_limit_period(struct perf_event * event,u64 left)3578 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3579 {
3580 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3581 X86_CONFIG(.event=0xc0, .umask=0x01)) {
3582 if (left < 128)
3583 left = 128;
3584 left &= ~0x3fULL;
3585 }
3586 return left;
3587 }
3588
nhm_limit_period(struct perf_event * event,u64 left)3589 static u64 nhm_limit_period(struct perf_event *event, u64 left)
3590 {
3591 return max(left, 32ULL);
3592 }
3593
3594 PMU_FORMAT_ATTR(event, "config:0-7" );
3595 PMU_FORMAT_ATTR(umask, "config:8-15" );
3596 PMU_FORMAT_ATTR(edge, "config:18" );
3597 PMU_FORMAT_ATTR(pc, "config:19" );
3598 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
3599 PMU_FORMAT_ATTR(inv, "config:23" );
3600 PMU_FORMAT_ATTR(cmask, "config:24-31" );
3601 PMU_FORMAT_ATTR(in_tx, "config:32");
3602 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3603
3604 static struct attribute *intel_arch_formats_attr[] = {
3605 &format_attr_event.attr,
3606 &format_attr_umask.attr,
3607 &format_attr_edge.attr,
3608 &format_attr_pc.attr,
3609 &format_attr_inv.attr,
3610 &format_attr_cmask.attr,
3611 NULL,
3612 };
3613
intel_event_sysfs_show(char * page,u64 config)3614 ssize_t intel_event_sysfs_show(char *page, u64 config)
3615 {
3616 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3617
3618 return x86_event_sysfs_show(page, config, event);
3619 }
3620
allocate_shared_regs(int cpu)3621 static struct intel_shared_regs *allocate_shared_regs(int cpu)
3622 {
3623 struct intel_shared_regs *regs;
3624 int i;
3625
3626 regs = kzalloc_node(sizeof(struct intel_shared_regs),
3627 GFP_KERNEL, cpu_to_node(cpu));
3628 if (regs) {
3629 /*
3630 * initialize the locks to keep lockdep happy
3631 */
3632 for (i = 0; i < EXTRA_REG_MAX; i++)
3633 raw_spin_lock_init(®s->regs[i].lock);
3634
3635 regs->core_id = -1;
3636 }
3637 return regs;
3638 }
3639
allocate_excl_cntrs(int cpu)3640 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3641 {
3642 struct intel_excl_cntrs *c;
3643
3644 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3645 GFP_KERNEL, cpu_to_node(cpu));
3646 if (c) {
3647 raw_spin_lock_init(&c->lock);
3648 c->core_id = -1;
3649 }
3650 return c;
3651 }
3652
3653
intel_cpuc_prepare(struct cpu_hw_events * cpuc,int cpu)3654 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
3655 {
3656 cpuc->pebs_record_size = x86_pmu.pebs_record_size;
3657
3658 if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3659 cpuc->shared_regs = allocate_shared_regs(cpu);
3660 if (!cpuc->shared_regs)
3661 goto err;
3662 }
3663
3664 if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
3665 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3666
3667 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
3668 if (!cpuc->constraint_list)
3669 goto err_shared_regs;
3670 }
3671
3672 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3673 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3674 if (!cpuc->excl_cntrs)
3675 goto err_constraint_list;
3676
3677 cpuc->excl_thread_id = 0;
3678 }
3679
3680 return 0;
3681
3682 err_constraint_list:
3683 kfree(cpuc->constraint_list);
3684 cpuc->constraint_list = NULL;
3685
3686 err_shared_regs:
3687 kfree(cpuc->shared_regs);
3688 cpuc->shared_regs = NULL;
3689
3690 err:
3691 return -ENOMEM;
3692 }
3693
intel_pmu_cpu_prepare(int cpu)3694 static int intel_pmu_cpu_prepare(int cpu)
3695 {
3696 return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
3697 }
3698
flip_smm_bit(void * data)3699 static void flip_smm_bit(void *data)
3700 {
3701 unsigned long set = *(unsigned long *)data;
3702
3703 if (set > 0) {
3704 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3705 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3706 } else {
3707 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3708 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3709 }
3710 }
3711
intel_pmu_cpu_starting(int cpu)3712 static void intel_pmu_cpu_starting(int cpu)
3713 {
3714 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3715 int core_id = topology_core_id(cpu);
3716 int i;
3717
3718 init_debug_store_on_cpu(cpu);
3719 /*
3720 * Deal with CPUs that don't clear their LBRs on power-up.
3721 */
3722 intel_pmu_lbr_reset();
3723
3724 cpuc->lbr_sel = NULL;
3725
3726 if (x86_pmu.flags & PMU_FL_TFA) {
3727 WARN_ON_ONCE(cpuc->tfa_shadow);
3728 cpuc->tfa_shadow = ~0ULL;
3729 intel_set_tfa(cpuc, false);
3730 }
3731
3732 if (x86_pmu.version > 1)
3733 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3734
3735 if (x86_pmu.counter_freezing)
3736 enable_counter_freeze();
3737
3738 if (!cpuc->shared_regs)
3739 return;
3740
3741 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3742 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3743 struct intel_shared_regs *pc;
3744
3745 pc = per_cpu(cpu_hw_events, i).shared_regs;
3746 if (pc && pc->core_id == core_id) {
3747 cpuc->kfree_on_online[0] = cpuc->shared_regs;
3748 cpuc->shared_regs = pc;
3749 break;
3750 }
3751 }
3752 cpuc->shared_regs->core_id = core_id;
3753 cpuc->shared_regs->refcnt++;
3754 }
3755
3756 if (x86_pmu.lbr_sel_map)
3757 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3758
3759 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3760 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3761 struct cpu_hw_events *sibling;
3762 struct intel_excl_cntrs *c;
3763
3764 sibling = &per_cpu(cpu_hw_events, i);
3765 c = sibling->excl_cntrs;
3766 if (c && c->core_id == core_id) {
3767 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3768 cpuc->excl_cntrs = c;
3769 if (!sibling->excl_thread_id)
3770 cpuc->excl_thread_id = 1;
3771 break;
3772 }
3773 }
3774 cpuc->excl_cntrs->core_id = core_id;
3775 cpuc->excl_cntrs->refcnt++;
3776 }
3777 }
3778
free_excl_cntrs(struct cpu_hw_events * cpuc)3779 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
3780 {
3781 struct intel_excl_cntrs *c;
3782
3783 c = cpuc->excl_cntrs;
3784 if (c) {
3785 if (c->core_id == -1 || --c->refcnt == 0)
3786 kfree(c);
3787 cpuc->excl_cntrs = NULL;
3788 }
3789
3790 kfree(cpuc->constraint_list);
3791 cpuc->constraint_list = NULL;
3792 }
3793
intel_pmu_cpu_dying(int cpu)3794 static void intel_pmu_cpu_dying(int cpu)
3795 {
3796 fini_debug_store_on_cpu(cpu);
3797
3798 if (x86_pmu.counter_freezing)
3799 disable_counter_freeze();
3800 }
3801
intel_cpuc_finish(struct cpu_hw_events * cpuc)3802 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
3803 {
3804 struct intel_shared_regs *pc;
3805
3806 pc = cpuc->shared_regs;
3807 if (pc) {
3808 if (pc->core_id == -1 || --pc->refcnt == 0)
3809 kfree(pc);
3810 cpuc->shared_regs = NULL;
3811 }
3812
3813 free_excl_cntrs(cpuc);
3814 }
3815
intel_pmu_cpu_dead(int cpu)3816 static void intel_pmu_cpu_dead(int cpu)
3817 {
3818 intel_cpuc_finish(&per_cpu(cpu_hw_events, cpu));
3819 }
3820
intel_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)3821 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3822 bool sched_in)
3823 {
3824 intel_pmu_pebs_sched_task(ctx, sched_in);
3825 intel_pmu_lbr_sched_task(ctx, sched_in);
3826 }
3827
intel_pmu_check_period(struct perf_event * event,u64 value)3828 static int intel_pmu_check_period(struct perf_event *event, u64 value)
3829 {
3830 return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
3831 }
3832
intel_pmu_aux_output_match(struct perf_event * event)3833 static int intel_pmu_aux_output_match(struct perf_event *event)
3834 {
3835 if (!x86_pmu.intel_cap.pebs_output_pt_available)
3836 return 0;
3837
3838 return is_intel_pt_event(event);
3839 }
3840
3841 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3842
3843 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3844
3845 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3846
3847 static struct attribute *intel_arch3_formats_attr[] = {
3848 &format_attr_event.attr,
3849 &format_attr_umask.attr,
3850 &format_attr_edge.attr,
3851 &format_attr_pc.attr,
3852 &format_attr_any.attr,
3853 &format_attr_inv.attr,
3854 &format_attr_cmask.attr,
3855 NULL,
3856 };
3857
3858 static struct attribute *hsw_format_attr[] = {
3859 &format_attr_in_tx.attr,
3860 &format_attr_in_tx_cp.attr,
3861 &format_attr_offcore_rsp.attr,
3862 &format_attr_ldlat.attr,
3863 NULL
3864 };
3865
3866 static struct attribute *nhm_format_attr[] = {
3867 &format_attr_offcore_rsp.attr,
3868 &format_attr_ldlat.attr,
3869 NULL
3870 };
3871
3872 static struct attribute *slm_format_attr[] = {
3873 &format_attr_offcore_rsp.attr,
3874 NULL
3875 };
3876
3877 static struct attribute *skl_format_attr[] = {
3878 &format_attr_frontend.attr,
3879 NULL,
3880 };
3881
3882 static __initconst const struct x86_pmu core_pmu = {
3883 .name = "core",
3884 .handle_irq = x86_pmu_handle_irq,
3885 .disable_all = x86_pmu_disable_all,
3886 .enable_all = core_pmu_enable_all,
3887 .enable = core_pmu_enable_event,
3888 .disable = x86_pmu_disable_event,
3889 .hw_config = core_pmu_hw_config,
3890 .schedule_events = x86_schedule_events,
3891 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
3892 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
3893 .event_map = intel_pmu_event_map,
3894 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
3895 .apic = 1,
3896 .large_pebs_flags = LARGE_PEBS_FLAGS,
3897
3898 /*
3899 * Intel PMCs cannot be accessed sanely above 32-bit width,
3900 * so we install an artificial 1<<31 period regardless of
3901 * the generic event period:
3902 */
3903 .max_period = (1ULL<<31) - 1,
3904 .get_event_constraints = intel_get_event_constraints,
3905 .put_event_constraints = intel_put_event_constraints,
3906 .event_constraints = intel_core_event_constraints,
3907 .guest_get_msrs = core_guest_get_msrs,
3908 .format_attrs = intel_arch_formats_attr,
3909 .events_sysfs_show = intel_event_sysfs_show,
3910
3911 /*
3912 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3913 * together with PMU version 1 and thus be using core_pmu with
3914 * shared_regs. We need following callbacks here to allocate
3915 * it properly.
3916 */
3917 .cpu_prepare = intel_pmu_cpu_prepare,
3918 .cpu_starting = intel_pmu_cpu_starting,
3919 .cpu_dying = intel_pmu_cpu_dying,
3920 .cpu_dead = intel_pmu_cpu_dead,
3921
3922 .check_period = intel_pmu_check_period,
3923 };
3924
3925 static __initconst const struct x86_pmu intel_pmu = {
3926 .name = "Intel",
3927 .handle_irq = intel_pmu_handle_irq,
3928 .disable_all = intel_pmu_disable_all,
3929 .enable_all = intel_pmu_enable_all,
3930 .enable = intel_pmu_enable_event,
3931 .disable = intel_pmu_disable_event,
3932 .add = intel_pmu_add_event,
3933 .del = intel_pmu_del_event,
3934 .read = intel_pmu_read_event,
3935 .hw_config = intel_pmu_hw_config,
3936 .schedule_events = x86_schedule_events,
3937 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
3938 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
3939 .event_map = intel_pmu_event_map,
3940 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
3941 .apic = 1,
3942 .large_pebs_flags = LARGE_PEBS_FLAGS,
3943 /*
3944 * Intel PMCs cannot be accessed sanely above 32 bit width,
3945 * so we install an artificial 1<<31 period regardless of
3946 * the generic event period:
3947 */
3948 .max_period = (1ULL << 31) - 1,
3949 .get_event_constraints = intel_get_event_constraints,
3950 .put_event_constraints = intel_put_event_constraints,
3951 .pebs_aliases = intel_pebs_aliases_core2,
3952
3953 .format_attrs = intel_arch3_formats_attr,
3954 .events_sysfs_show = intel_event_sysfs_show,
3955
3956 .cpu_prepare = intel_pmu_cpu_prepare,
3957 .cpu_starting = intel_pmu_cpu_starting,
3958 .cpu_dying = intel_pmu_cpu_dying,
3959 .cpu_dead = intel_pmu_cpu_dead,
3960
3961 .guest_get_msrs = intel_guest_get_msrs,
3962 .sched_task = intel_pmu_sched_task,
3963
3964 .check_period = intel_pmu_check_period,
3965
3966 .aux_output_match = intel_pmu_aux_output_match,
3967 };
3968
intel_clovertown_quirk(void)3969 static __init void intel_clovertown_quirk(void)
3970 {
3971 /*
3972 * PEBS is unreliable due to:
3973 *
3974 * AJ67 - PEBS may experience CPL leaks
3975 * AJ68 - PEBS PMI may be delayed by one event
3976 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3977 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3978 *
3979 * AJ67 could be worked around by restricting the OS/USR flags.
3980 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3981 *
3982 * AJ106 could possibly be worked around by not allowing LBR
3983 * usage from PEBS, including the fixup.
3984 * AJ68 could possibly be worked around by always programming
3985 * a pebs_event_reset[0] value and coping with the lost events.
3986 *
3987 * But taken together it might just make sense to not enable PEBS on
3988 * these chips.
3989 */
3990 pr_warn("PEBS disabled due to CPU errata\n");
3991 x86_pmu.pebs = 0;
3992 x86_pmu.pebs_constraints = NULL;
3993 }
3994
3995 static const struct x86_cpu_desc isolation_ucodes[] = {
3996 INTEL_CPU_DESC(INTEL_FAM6_HASWELL, 3, 0x0000001f),
3997 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L, 1, 0x0000001e),
3998 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G, 1, 0x00000015),
3999 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 2, 0x00000037),
4000 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 4, 0x0000000a),
4001 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL, 4, 0x00000023),
4002 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G, 1, 0x00000014),
4003 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 2, 0x00000010),
4004 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 3, 0x07000009),
4005 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 4, 0x0f000009),
4006 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 5, 0x0e000002),
4007 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X, 1, 0x0b000014),
4008 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 3, 0x00000021),
4009 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 4, 0x00000000),
4010 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 5, 0x00000000),
4011 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 6, 0x00000000),
4012 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 7, 0x00000000),
4013 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 11, 0x00000000),
4014 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L, 3, 0x0000007c),
4015 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE, 3, 0x0000007c),
4016 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 9, 0x0000004e),
4017 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 9, 0x0000004e),
4018 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 10, 0x0000004e),
4019 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 11, 0x0000004e),
4020 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 12, 0x0000004e),
4021 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 10, 0x0000004e),
4022 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 11, 0x0000004e),
4023 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 12, 0x0000004e),
4024 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 13, 0x0000004e),
4025 {}
4026 };
4027
intel_check_pebs_isolation(void)4028 static void intel_check_pebs_isolation(void)
4029 {
4030 x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4031 }
4032
intel_pebs_isolation_quirk(void)4033 static __init void intel_pebs_isolation_quirk(void)
4034 {
4035 WARN_ON_ONCE(x86_pmu.check_microcode);
4036 x86_pmu.check_microcode = intel_check_pebs_isolation;
4037 intel_check_pebs_isolation();
4038 }
4039
4040 static const struct x86_cpu_desc pebs_ucodes[] = {
4041 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE, 7, 0x00000028),
4042 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 6, 0x00000618),
4043 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 7, 0x0000070c),
4044 {}
4045 };
4046
intel_snb_pebs_broken(void)4047 static bool intel_snb_pebs_broken(void)
4048 {
4049 return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4050 }
4051
intel_snb_check_microcode(void)4052 static void intel_snb_check_microcode(void)
4053 {
4054 if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4055 return;
4056
4057 /*
4058 * Serialized by the microcode lock..
4059 */
4060 if (x86_pmu.pebs_broken) {
4061 pr_info("PEBS enabled due to microcode update\n");
4062 x86_pmu.pebs_broken = 0;
4063 } else {
4064 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4065 x86_pmu.pebs_broken = 1;
4066 }
4067 }
4068
is_lbr_from(unsigned long msr)4069 static bool is_lbr_from(unsigned long msr)
4070 {
4071 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4072
4073 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4074 }
4075
4076 /*
4077 * Under certain circumstances, access certain MSR may cause #GP.
4078 * The function tests if the input MSR can be safely accessed.
4079 */
check_msr(unsigned long msr,u64 mask)4080 static bool check_msr(unsigned long msr, u64 mask)
4081 {
4082 u64 val_old, val_new, val_tmp;
4083
4084 /*
4085 * Disable the check for real HW, so we don't
4086 * mess with potentionaly enabled registers:
4087 */
4088 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4089 return true;
4090
4091 /*
4092 * Read the current value, change it and read it back to see if it
4093 * matches, this is needed to detect certain hardware emulators
4094 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4095 */
4096 if (rdmsrl_safe(msr, &val_old))
4097 return false;
4098
4099 /*
4100 * Only change the bits which can be updated by wrmsrl.
4101 */
4102 val_tmp = val_old ^ mask;
4103
4104 if (is_lbr_from(msr))
4105 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4106
4107 if (wrmsrl_safe(msr, val_tmp) ||
4108 rdmsrl_safe(msr, &val_new))
4109 return false;
4110
4111 /*
4112 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4113 * should equal rdmsrl()'s even with the quirk.
4114 */
4115 if (val_new != val_tmp)
4116 return false;
4117
4118 if (is_lbr_from(msr))
4119 val_old = lbr_from_signext_quirk_wr(val_old);
4120
4121 /* Here it's sure that the MSR can be safely accessed.
4122 * Restore the old value and return.
4123 */
4124 wrmsrl(msr, val_old);
4125
4126 return true;
4127 }
4128
intel_sandybridge_quirk(void)4129 static __init void intel_sandybridge_quirk(void)
4130 {
4131 x86_pmu.check_microcode = intel_snb_check_microcode;
4132 cpus_read_lock();
4133 intel_snb_check_microcode();
4134 cpus_read_unlock();
4135 }
4136
4137 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4138 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4139 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4140 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4141 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4142 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4143 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4144 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4145 };
4146
intel_arch_events_quirk(void)4147 static __init void intel_arch_events_quirk(void)
4148 {
4149 int bit;
4150
4151 /* disable event that reported as not presend by cpuid */
4152 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4153 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4154 pr_warn("CPUID marked event: \'%s\' unavailable\n",
4155 intel_arch_events_map[bit].name);
4156 }
4157 }
4158
intel_nehalem_quirk(void)4159 static __init void intel_nehalem_quirk(void)
4160 {
4161 union cpuid10_ebx ebx;
4162
4163 ebx.full = x86_pmu.events_maskl;
4164 if (ebx.split.no_branch_misses_retired) {
4165 /*
4166 * Erratum AAJ80 detected, we work it around by using
4167 * the BR_MISP_EXEC.ANY event. This will over-count
4168 * branch-misses, but it's still much better than the
4169 * architectural event which is often completely bogus:
4170 */
4171 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4172 ebx.split.no_branch_misses_retired = 0;
4173 x86_pmu.events_maskl = ebx.full;
4174 pr_info("CPU erratum AAJ80 worked around\n");
4175 }
4176 }
4177
4178 static const struct x86_cpu_desc counter_freezing_ucodes[] = {
4179 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT, 2, 0x0000000e),
4180 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT, 9, 0x0000002e),
4181 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT, 10, 0x00000008),
4182 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_D, 1, 0x00000028),
4183 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS, 1, 0x00000028),
4184 INTEL_CPU_DESC(INTEL_FAM6_ATOM_GOLDMONT_PLUS, 8, 0x00000006),
4185 {}
4186 };
4187
intel_counter_freezing_broken(void)4188 static bool intel_counter_freezing_broken(void)
4189 {
4190 return !x86_cpu_has_min_microcode_rev(counter_freezing_ucodes);
4191 }
4192
intel_counter_freezing_quirk(void)4193 static __init void intel_counter_freezing_quirk(void)
4194 {
4195 /* Check if it's already disabled */
4196 if (disable_counter_freezing)
4197 return;
4198
4199 /*
4200 * If the system starts with the wrong ucode, leave the
4201 * counter-freezing feature permanently disabled.
4202 */
4203 if (intel_counter_freezing_broken()) {
4204 pr_info("PMU counter freezing disabled due to CPU errata,"
4205 "please upgrade microcode\n");
4206 x86_pmu.counter_freezing = false;
4207 x86_pmu.handle_irq = intel_pmu_handle_irq;
4208 }
4209 }
4210
4211 /*
4212 * enable software workaround for errata:
4213 * SNB: BJ122
4214 * IVB: BV98
4215 * HSW: HSD29
4216 *
4217 * Only needed when HT is enabled. However detecting
4218 * if HT is enabled is difficult (model specific). So instead,
4219 * we enable the workaround in the early boot, and verify if
4220 * it is needed in a later initcall phase once we have valid
4221 * topology information to check if HT is actually enabled
4222 */
intel_ht_bug(void)4223 static __init void intel_ht_bug(void)
4224 {
4225 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4226
4227 x86_pmu.start_scheduling = intel_start_scheduling;
4228 x86_pmu.commit_scheduling = intel_commit_scheduling;
4229 x86_pmu.stop_scheduling = intel_stop_scheduling;
4230 }
4231
4232 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
4233 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
4234
4235 /* Haswell special events */
4236 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
4237 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
4238 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
4239 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
4240 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
4241 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
4242 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
4243 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
4244 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
4245 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
4246 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
4247 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
4248
4249 static struct attribute *hsw_events_attrs[] = {
4250 EVENT_PTR(td_slots_issued),
4251 EVENT_PTR(td_slots_retired),
4252 EVENT_PTR(td_fetch_bubbles),
4253 EVENT_PTR(td_total_slots),
4254 EVENT_PTR(td_total_slots_scale),
4255 EVENT_PTR(td_recovery_bubbles),
4256 EVENT_PTR(td_recovery_bubbles_scale),
4257 NULL
4258 };
4259
4260 static struct attribute *hsw_mem_events_attrs[] = {
4261 EVENT_PTR(mem_ld_hsw),
4262 EVENT_PTR(mem_st_hsw),
4263 NULL,
4264 };
4265
4266 static struct attribute *hsw_tsx_events_attrs[] = {
4267 EVENT_PTR(tx_start),
4268 EVENT_PTR(tx_commit),
4269 EVENT_PTR(tx_abort),
4270 EVENT_PTR(tx_capacity),
4271 EVENT_PTR(tx_conflict),
4272 EVENT_PTR(el_start),
4273 EVENT_PTR(el_commit),
4274 EVENT_PTR(el_abort),
4275 EVENT_PTR(el_capacity),
4276 EVENT_PTR(el_conflict),
4277 EVENT_PTR(cycles_t),
4278 EVENT_PTR(cycles_ct),
4279 NULL
4280 };
4281
4282 EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80");
4283 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4284 EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80");
4285 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4286
4287 static struct attribute *icl_events_attrs[] = {
4288 EVENT_PTR(mem_ld_hsw),
4289 EVENT_PTR(mem_st_hsw),
4290 NULL,
4291 };
4292
4293 static struct attribute *icl_tsx_events_attrs[] = {
4294 EVENT_PTR(tx_start),
4295 EVENT_PTR(tx_abort),
4296 EVENT_PTR(tx_commit),
4297 EVENT_PTR(tx_capacity_read),
4298 EVENT_PTR(tx_capacity_write),
4299 EVENT_PTR(tx_conflict),
4300 EVENT_PTR(el_start),
4301 EVENT_PTR(el_abort),
4302 EVENT_PTR(el_commit),
4303 EVENT_PTR(el_capacity_read),
4304 EVENT_PTR(el_capacity_write),
4305 EVENT_PTR(el_conflict),
4306 EVENT_PTR(cycles_t),
4307 EVENT_PTR(cycles_ct),
4308 NULL,
4309 };
4310
freeze_on_smi_show(struct device * cdev,struct device_attribute * attr,char * buf)4311 static ssize_t freeze_on_smi_show(struct device *cdev,
4312 struct device_attribute *attr,
4313 char *buf)
4314 {
4315 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
4316 }
4317
4318 static DEFINE_MUTEX(freeze_on_smi_mutex);
4319
freeze_on_smi_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)4320 static ssize_t freeze_on_smi_store(struct device *cdev,
4321 struct device_attribute *attr,
4322 const char *buf, size_t count)
4323 {
4324 unsigned long val;
4325 ssize_t ret;
4326
4327 ret = kstrtoul(buf, 0, &val);
4328 if (ret)
4329 return ret;
4330
4331 if (val > 1)
4332 return -EINVAL;
4333
4334 mutex_lock(&freeze_on_smi_mutex);
4335
4336 if (x86_pmu.attr_freeze_on_smi == val)
4337 goto done;
4338
4339 x86_pmu.attr_freeze_on_smi = val;
4340
4341 get_online_cpus();
4342 on_each_cpu(flip_smm_bit, &val, 1);
4343 put_online_cpus();
4344 done:
4345 mutex_unlock(&freeze_on_smi_mutex);
4346
4347 return count;
4348 }
4349
update_tfa_sched(void * ignored)4350 static void update_tfa_sched(void *ignored)
4351 {
4352 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4353
4354 /*
4355 * check if PMC3 is used
4356 * and if so force schedule out for all event types all contexts
4357 */
4358 if (test_bit(3, cpuc->active_mask))
4359 perf_pmu_resched(x86_get_pmu());
4360 }
4361
show_sysctl_tfa(struct device * cdev,struct device_attribute * attr,char * buf)4362 static ssize_t show_sysctl_tfa(struct device *cdev,
4363 struct device_attribute *attr,
4364 char *buf)
4365 {
4366 return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
4367 }
4368
set_sysctl_tfa(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)4369 static ssize_t set_sysctl_tfa(struct device *cdev,
4370 struct device_attribute *attr,
4371 const char *buf, size_t count)
4372 {
4373 bool val;
4374 ssize_t ret;
4375
4376 ret = kstrtobool(buf, &val);
4377 if (ret)
4378 return ret;
4379
4380 /* no change */
4381 if (val == allow_tsx_force_abort)
4382 return count;
4383
4384 allow_tsx_force_abort = val;
4385
4386 get_online_cpus();
4387 on_each_cpu(update_tfa_sched, NULL, 1);
4388 put_online_cpus();
4389
4390 return count;
4391 }
4392
4393
4394 static DEVICE_ATTR_RW(freeze_on_smi);
4395
branches_show(struct device * cdev,struct device_attribute * attr,char * buf)4396 static ssize_t branches_show(struct device *cdev,
4397 struct device_attribute *attr,
4398 char *buf)
4399 {
4400 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
4401 }
4402
4403 static DEVICE_ATTR_RO(branches);
4404
4405 static struct attribute *lbr_attrs[] = {
4406 &dev_attr_branches.attr,
4407 NULL
4408 };
4409
4410 static char pmu_name_str[30];
4411
pmu_name_show(struct device * cdev,struct device_attribute * attr,char * buf)4412 static ssize_t pmu_name_show(struct device *cdev,
4413 struct device_attribute *attr,
4414 char *buf)
4415 {
4416 return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
4417 }
4418
4419 static DEVICE_ATTR_RO(pmu_name);
4420
4421 static struct attribute *intel_pmu_caps_attrs[] = {
4422 &dev_attr_pmu_name.attr,
4423 NULL
4424 };
4425
4426 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
4427 show_sysctl_tfa,
4428 set_sysctl_tfa);
4429
4430 static struct attribute *intel_pmu_attrs[] = {
4431 &dev_attr_freeze_on_smi.attr,
4432 &dev_attr_allow_tsx_force_abort.attr,
4433 NULL,
4434 };
4435
4436 static umode_t
tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)4437 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4438 {
4439 return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
4440 }
4441
4442 static umode_t
pebs_is_visible(struct kobject * kobj,struct attribute * attr,int i)4443 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4444 {
4445 return x86_pmu.pebs ? attr->mode : 0;
4446 }
4447
4448 static umode_t
lbr_is_visible(struct kobject * kobj,struct attribute * attr,int i)4449 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4450 {
4451 return x86_pmu.lbr_nr ? attr->mode : 0;
4452 }
4453
4454 static umode_t
exra_is_visible(struct kobject * kobj,struct attribute * attr,int i)4455 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4456 {
4457 return x86_pmu.version >= 2 ? attr->mode : 0;
4458 }
4459
4460 static umode_t
default_is_visible(struct kobject * kobj,struct attribute * attr,int i)4461 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
4462 {
4463 if (attr == &dev_attr_allow_tsx_force_abort.attr)
4464 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
4465
4466 return attr->mode;
4467 }
4468
4469 static struct attribute_group group_events_td = {
4470 .name = "events",
4471 };
4472
4473 static struct attribute_group group_events_mem = {
4474 .name = "events",
4475 .is_visible = pebs_is_visible,
4476 };
4477
4478 static struct attribute_group group_events_tsx = {
4479 .name = "events",
4480 .is_visible = tsx_is_visible,
4481 };
4482
4483 static struct attribute_group group_caps_gen = {
4484 .name = "caps",
4485 .attrs = intel_pmu_caps_attrs,
4486 };
4487
4488 static struct attribute_group group_caps_lbr = {
4489 .name = "caps",
4490 .attrs = lbr_attrs,
4491 .is_visible = lbr_is_visible,
4492 };
4493
4494 static struct attribute_group group_format_extra = {
4495 .name = "format",
4496 .is_visible = exra_is_visible,
4497 };
4498
4499 static struct attribute_group group_format_extra_skl = {
4500 .name = "format",
4501 .is_visible = exra_is_visible,
4502 };
4503
4504 static struct attribute_group group_default = {
4505 .attrs = intel_pmu_attrs,
4506 .is_visible = default_is_visible,
4507 };
4508
4509 static const struct attribute_group *attr_update[] = {
4510 &group_events_td,
4511 &group_events_mem,
4512 &group_events_tsx,
4513 &group_caps_gen,
4514 &group_caps_lbr,
4515 &group_format_extra,
4516 &group_format_extra_skl,
4517 &group_default,
4518 NULL,
4519 };
4520
4521 static struct attribute *empty_attrs;
4522
intel_pmu_init(void)4523 __init int intel_pmu_init(void)
4524 {
4525 struct attribute **extra_skl_attr = &empty_attrs;
4526 struct attribute **extra_attr = &empty_attrs;
4527 struct attribute **td_attr = &empty_attrs;
4528 struct attribute **mem_attr = &empty_attrs;
4529 struct attribute **tsx_attr = &empty_attrs;
4530 union cpuid10_edx edx;
4531 union cpuid10_eax eax;
4532 union cpuid10_ebx ebx;
4533 struct event_constraint *c;
4534 unsigned int unused;
4535 struct extra_reg *er;
4536 bool pmem = false;
4537 int version, i;
4538 char *name;
4539
4540 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
4541 switch (boot_cpu_data.x86) {
4542 case 0x6:
4543 return p6_pmu_init();
4544 case 0xb:
4545 return knc_pmu_init();
4546 case 0xf:
4547 return p4_pmu_init();
4548 }
4549 return -ENODEV;
4550 }
4551
4552 /*
4553 * Check whether the Architectural PerfMon supports
4554 * Branch Misses Retired hw_event or not.
4555 */
4556 cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
4557 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
4558 return -ENODEV;
4559
4560 version = eax.split.version_id;
4561 if (version < 2)
4562 x86_pmu = core_pmu;
4563 else
4564 x86_pmu = intel_pmu;
4565
4566 x86_pmu.version = version;
4567 x86_pmu.num_counters = eax.split.num_counters;
4568 x86_pmu.cntval_bits = eax.split.bit_width;
4569 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
4570
4571 x86_pmu.events_maskl = ebx.full;
4572 x86_pmu.events_mask_len = eax.split.mask_length;
4573
4574 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
4575
4576 /*
4577 * Quirk: v2 perfmon does not report fixed-purpose events, so
4578 * assume at least 3 events, when not running in a hypervisor:
4579 */
4580 if (version > 1) {
4581 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
4582
4583 x86_pmu.num_counters_fixed =
4584 max((int)edx.split.num_counters_fixed, assume);
4585 }
4586
4587 if (version >= 4)
4588 x86_pmu.counter_freezing = !disable_counter_freezing;
4589
4590 if (boot_cpu_has(X86_FEATURE_PDCM)) {
4591 u64 capabilities;
4592
4593 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
4594 x86_pmu.intel_cap.capabilities = capabilities;
4595 }
4596
4597 intel_ds_init();
4598
4599 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
4600
4601 /*
4602 * Install the hw-cache-events table:
4603 */
4604 switch (boot_cpu_data.x86_model) {
4605 case INTEL_FAM6_CORE_YONAH:
4606 pr_cont("Core events, ");
4607 name = "core";
4608 break;
4609
4610 case INTEL_FAM6_CORE2_MEROM:
4611 x86_add_quirk(intel_clovertown_quirk);
4612 /* fall through */
4613
4614 case INTEL_FAM6_CORE2_MEROM_L:
4615 case INTEL_FAM6_CORE2_PENRYN:
4616 case INTEL_FAM6_CORE2_DUNNINGTON:
4617 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
4618 sizeof(hw_cache_event_ids));
4619
4620 intel_pmu_lbr_init_core();
4621
4622 x86_pmu.event_constraints = intel_core2_event_constraints;
4623 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
4624 pr_cont("Core2 events, ");
4625 name = "core2";
4626 break;
4627
4628 case INTEL_FAM6_NEHALEM:
4629 case INTEL_FAM6_NEHALEM_EP:
4630 case INTEL_FAM6_NEHALEM_EX:
4631 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
4632 sizeof(hw_cache_event_ids));
4633 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4634 sizeof(hw_cache_extra_regs));
4635
4636 intel_pmu_lbr_init_nhm();
4637
4638 x86_pmu.event_constraints = intel_nehalem_event_constraints;
4639 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
4640 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4641 x86_pmu.extra_regs = intel_nehalem_extra_regs;
4642 x86_pmu.limit_period = nhm_limit_period;
4643
4644 mem_attr = nhm_mem_events_attrs;
4645
4646 /* UOPS_ISSUED.STALLED_CYCLES */
4647 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4648 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4649 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4650 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4651 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4652
4653 intel_pmu_pebs_data_source_nhm();
4654 x86_add_quirk(intel_nehalem_quirk);
4655 x86_pmu.pebs_no_tlb = 1;
4656 extra_attr = nhm_format_attr;
4657
4658 pr_cont("Nehalem events, ");
4659 name = "nehalem";
4660 break;
4661
4662 case INTEL_FAM6_ATOM_BONNELL:
4663 case INTEL_FAM6_ATOM_BONNELL_MID:
4664 case INTEL_FAM6_ATOM_SALTWELL:
4665 case INTEL_FAM6_ATOM_SALTWELL_MID:
4666 case INTEL_FAM6_ATOM_SALTWELL_TABLET:
4667 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4668 sizeof(hw_cache_event_ids));
4669
4670 intel_pmu_lbr_init_atom();
4671
4672 x86_pmu.event_constraints = intel_gen_event_constraints;
4673 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4674 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4675 pr_cont("Atom events, ");
4676 name = "bonnell";
4677 break;
4678
4679 case INTEL_FAM6_ATOM_SILVERMONT:
4680 case INTEL_FAM6_ATOM_SILVERMONT_D:
4681 case INTEL_FAM6_ATOM_SILVERMONT_MID:
4682 case INTEL_FAM6_ATOM_AIRMONT:
4683 case INTEL_FAM6_ATOM_AIRMONT_MID:
4684 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4685 sizeof(hw_cache_event_ids));
4686 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4687 sizeof(hw_cache_extra_regs));
4688
4689 intel_pmu_lbr_init_slm();
4690
4691 x86_pmu.event_constraints = intel_slm_event_constraints;
4692 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4693 x86_pmu.extra_regs = intel_slm_extra_regs;
4694 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4695 td_attr = slm_events_attrs;
4696 extra_attr = slm_format_attr;
4697 pr_cont("Silvermont events, ");
4698 name = "silvermont";
4699 break;
4700
4701 case INTEL_FAM6_ATOM_GOLDMONT:
4702 case INTEL_FAM6_ATOM_GOLDMONT_D:
4703 x86_add_quirk(intel_counter_freezing_quirk);
4704 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4705 sizeof(hw_cache_event_ids));
4706 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4707 sizeof(hw_cache_extra_regs));
4708
4709 intel_pmu_lbr_init_skl();
4710
4711 x86_pmu.event_constraints = intel_slm_event_constraints;
4712 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4713 x86_pmu.extra_regs = intel_glm_extra_regs;
4714 /*
4715 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4716 * for precise cycles.
4717 * :pp is identical to :ppp
4718 */
4719 x86_pmu.pebs_aliases = NULL;
4720 x86_pmu.pebs_prec_dist = true;
4721 x86_pmu.lbr_pt_coexist = true;
4722 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4723 td_attr = glm_events_attrs;
4724 extra_attr = slm_format_attr;
4725 pr_cont("Goldmont events, ");
4726 name = "goldmont";
4727 break;
4728
4729 case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
4730 x86_add_quirk(intel_counter_freezing_quirk);
4731 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4732 sizeof(hw_cache_event_ids));
4733 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4734 sizeof(hw_cache_extra_regs));
4735
4736 intel_pmu_lbr_init_skl();
4737
4738 x86_pmu.event_constraints = intel_slm_event_constraints;
4739 x86_pmu.extra_regs = intel_glm_extra_regs;
4740 /*
4741 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4742 * for precise cycles.
4743 */
4744 x86_pmu.pebs_aliases = NULL;
4745 x86_pmu.pebs_prec_dist = true;
4746 x86_pmu.lbr_pt_coexist = true;
4747 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4748 x86_pmu.flags |= PMU_FL_PEBS_ALL;
4749 x86_pmu.get_event_constraints = glp_get_event_constraints;
4750 td_attr = glm_events_attrs;
4751 /* Goldmont Plus has 4-wide pipeline */
4752 event_attr_td_total_slots_scale_glm.event_str = "4";
4753 extra_attr = slm_format_attr;
4754 pr_cont("Goldmont plus events, ");
4755 name = "goldmont_plus";
4756 break;
4757
4758 case INTEL_FAM6_ATOM_TREMONT_D:
4759 case INTEL_FAM6_ATOM_TREMONT:
4760 x86_pmu.late_ack = true;
4761 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4762 sizeof(hw_cache_event_ids));
4763 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
4764 sizeof(hw_cache_extra_regs));
4765 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
4766
4767 intel_pmu_lbr_init_skl();
4768
4769 x86_pmu.event_constraints = intel_slm_event_constraints;
4770 x86_pmu.extra_regs = intel_tnt_extra_regs;
4771 /*
4772 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4773 * for precise cycles.
4774 */
4775 x86_pmu.pebs_aliases = NULL;
4776 x86_pmu.pebs_prec_dist = true;
4777 x86_pmu.lbr_pt_coexist = true;
4778 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4779 x86_pmu.get_event_constraints = tnt_get_event_constraints;
4780 extra_attr = slm_format_attr;
4781 pr_cont("Tremont events, ");
4782 name = "Tremont";
4783 break;
4784
4785 case INTEL_FAM6_WESTMERE:
4786 case INTEL_FAM6_WESTMERE_EP:
4787 case INTEL_FAM6_WESTMERE_EX:
4788 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4789 sizeof(hw_cache_event_ids));
4790 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4791 sizeof(hw_cache_extra_regs));
4792
4793 intel_pmu_lbr_init_nhm();
4794
4795 x86_pmu.event_constraints = intel_westmere_event_constraints;
4796 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4797 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4798 x86_pmu.extra_regs = intel_westmere_extra_regs;
4799 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4800
4801 mem_attr = nhm_mem_events_attrs;
4802
4803 /* UOPS_ISSUED.STALLED_CYCLES */
4804 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4805 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4806 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4807 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4808 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4809
4810 intel_pmu_pebs_data_source_nhm();
4811 extra_attr = nhm_format_attr;
4812 pr_cont("Westmere events, ");
4813 name = "westmere";
4814 break;
4815
4816 case INTEL_FAM6_SANDYBRIDGE:
4817 case INTEL_FAM6_SANDYBRIDGE_X:
4818 x86_add_quirk(intel_sandybridge_quirk);
4819 x86_add_quirk(intel_ht_bug);
4820 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4821 sizeof(hw_cache_event_ids));
4822 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4823 sizeof(hw_cache_extra_regs));
4824
4825 intel_pmu_lbr_init_snb();
4826
4827 x86_pmu.event_constraints = intel_snb_event_constraints;
4828 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4829 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4830 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4831 x86_pmu.extra_regs = intel_snbep_extra_regs;
4832 else
4833 x86_pmu.extra_regs = intel_snb_extra_regs;
4834
4835
4836 /* all extra regs are per-cpu when HT is on */
4837 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4838 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4839
4840 td_attr = snb_events_attrs;
4841 mem_attr = snb_mem_events_attrs;
4842
4843 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4844 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4845 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4846 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4847 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4848 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4849
4850 extra_attr = nhm_format_attr;
4851
4852 pr_cont("SandyBridge events, ");
4853 name = "sandybridge";
4854 break;
4855
4856 case INTEL_FAM6_IVYBRIDGE:
4857 case INTEL_FAM6_IVYBRIDGE_X:
4858 x86_add_quirk(intel_ht_bug);
4859 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4860 sizeof(hw_cache_event_ids));
4861 /* dTLB-load-misses on IVB is different than SNB */
4862 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4863
4864 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4865 sizeof(hw_cache_extra_regs));
4866
4867 intel_pmu_lbr_init_snb();
4868
4869 x86_pmu.event_constraints = intel_ivb_event_constraints;
4870 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4871 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4872 x86_pmu.pebs_prec_dist = true;
4873 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4874 x86_pmu.extra_regs = intel_snbep_extra_regs;
4875 else
4876 x86_pmu.extra_regs = intel_snb_extra_regs;
4877 /* all extra regs are per-cpu when HT is on */
4878 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4879 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4880
4881 td_attr = snb_events_attrs;
4882 mem_attr = snb_mem_events_attrs;
4883
4884 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4885 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4886 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4887
4888 extra_attr = nhm_format_attr;
4889
4890 pr_cont("IvyBridge events, ");
4891 name = "ivybridge";
4892 break;
4893
4894
4895 case INTEL_FAM6_HASWELL:
4896 case INTEL_FAM6_HASWELL_X:
4897 case INTEL_FAM6_HASWELL_L:
4898 case INTEL_FAM6_HASWELL_G:
4899 x86_add_quirk(intel_ht_bug);
4900 x86_add_quirk(intel_pebs_isolation_quirk);
4901 x86_pmu.late_ack = true;
4902 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4903 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4904
4905 intel_pmu_lbr_init_hsw();
4906
4907 x86_pmu.event_constraints = intel_hsw_event_constraints;
4908 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4909 x86_pmu.extra_regs = intel_snbep_extra_regs;
4910 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4911 x86_pmu.pebs_prec_dist = true;
4912 /* all extra regs are per-cpu when HT is on */
4913 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4914 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4915
4916 x86_pmu.hw_config = hsw_hw_config;
4917 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4918 x86_pmu.lbr_double_abort = true;
4919 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4920 hsw_format_attr : nhm_format_attr;
4921 td_attr = hsw_events_attrs;
4922 mem_attr = hsw_mem_events_attrs;
4923 tsx_attr = hsw_tsx_events_attrs;
4924 pr_cont("Haswell events, ");
4925 name = "haswell";
4926 break;
4927
4928 case INTEL_FAM6_BROADWELL:
4929 case INTEL_FAM6_BROADWELL_D:
4930 case INTEL_FAM6_BROADWELL_G:
4931 case INTEL_FAM6_BROADWELL_X:
4932 x86_add_quirk(intel_pebs_isolation_quirk);
4933 x86_pmu.late_ack = true;
4934 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4935 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4936
4937 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4938 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4939 BDW_L3_MISS|HSW_SNOOP_DRAM;
4940 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4941 HSW_SNOOP_DRAM;
4942 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4943 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4944 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4945 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4946
4947 intel_pmu_lbr_init_hsw();
4948
4949 x86_pmu.event_constraints = intel_bdw_event_constraints;
4950 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4951 x86_pmu.extra_regs = intel_snbep_extra_regs;
4952 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4953 x86_pmu.pebs_prec_dist = true;
4954 /* all extra regs are per-cpu when HT is on */
4955 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4956 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4957
4958 x86_pmu.hw_config = hsw_hw_config;
4959 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4960 x86_pmu.limit_period = bdw_limit_period;
4961 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4962 hsw_format_attr : nhm_format_attr;
4963 td_attr = hsw_events_attrs;
4964 mem_attr = hsw_mem_events_attrs;
4965 tsx_attr = hsw_tsx_events_attrs;
4966 pr_cont("Broadwell events, ");
4967 name = "broadwell";
4968 break;
4969
4970 case INTEL_FAM6_XEON_PHI_KNL:
4971 case INTEL_FAM6_XEON_PHI_KNM:
4972 memcpy(hw_cache_event_ids,
4973 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4974 memcpy(hw_cache_extra_regs,
4975 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4976 intel_pmu_lbr_init_knl();
4977
4978 x86_pmu.event_constraints = intel_slm_event_constraints;
4979 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4980 x86_pmu.extra_regs = intel_knl_extra_regs;
4981
4982 /* all extra regs are per-cpu when HT is on */
4983 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4984 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4985 extra_attr = slm_format_attr;
4986 pr_cont("Knights Landing/Mill events, ");
4987 name = "knights-landing";
4988 break;
4989
4990 case INTEL_FAM6_SKYLAKE_X:
4991 pmem = true;
4992 /* fall through */
4993 case INTEL_FAM6_SKYLAKE_L:
4994 case INTEL_FAM6_SKYLAKE:
4995 case INTEL_FAM6_KABYLAKE_L:
4996 case INTEL_FAM6_KABYLAKE:
4997 case INTEL_FAM6_COMETLAKE_L:
4998 case INTEL_FAM6_COMETLAKE:
4999 x86_add_quirk(intel_pebs_isolation_quirk);
5000 x86_pmu.late_ack = true;
5001 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5002 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5003 intel_pmu_lbr_init_skl();
5004
5005 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
5006 event_attr_td_recovery_bubbles.event_str_noht =
5007 "event=0xd,umask=0x1,cmask=1";
5008 event_attr_td_recovery_bubbles.event_str_ht =
5009 "event=0xd,umask=0x1,cmask=1,any=1";
5010
5011 x86_pmu.event_constraints = intel_skl_event_constraints;
5012 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
5013 x86_pmu.extra_regs = intel_skl_extra_regs;
5014 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
5015 x86_pmu.pebs_prec_dist = true;
5016 /* all extra regs are per-cpu when HT is on */
5017 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5018 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5019
5020 x86_pmu.hw_config = hsw_hw_config;
5021 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5022 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5023 hsw_format_attr : nhm_format_attr;
5024 extra_skl_attr = skl_format_attr;
5025 td_attr = hsw_events_attrs;
5026 mem_attr = hsw_mem_events_attrs;
5027 tsx_attr = hsw_tsx_events_attrs;
5028 intel_pmu_pebs_data_source_skl(pmem);
5029
5030 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT)) {
5031 x86_pmu.flags |= PMU_FL_TFA;
5032 x86_pmu.get_event_constraints = tfa_get_event_constraints;
5033 x86_pmu.enable_all = intel_tfa_pmu_enable_all;
5034 x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
5035 }
5036
5037 pr_cont("Skylake events, ");
5038 name = "skylake";
5039 break;
5040
5041 case INTEL_FAM6_ICELAKE_X:
5042 case INTEL_FAM6_ICELAKE_D:
5043 pmem = true;
5044 /* fall through */
5045 case INTEL_FAM6_ICELAKE_L:
5046 case INTEL_FAM6_ICELAKE:
5047 case INTEL_FAM6_TIGERLAKE_L:
5048 case INTEL_FAM6_TIGERLAKE:
5049 x86_pmu.late_ack = true;
5050 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5051 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5052 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5053 intel_pmu_lbr_init_skl();
5054
5055 x86_pmu.event_constraints = intel_icl_event_constraints;
5056 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
5057 x86_pmu.extra_regs = intel_icl_extra_regs;
5058 x86_pmu.pebs_aliases = NULL;
5059 x86_pmu.pebs_prec_dist = true;
5060 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5061 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5062
5063 x86_pmu.hw_config = hsw_hw_config;
5064 x86_pmu.get_event_constraints = icl_get_event_constraints;
5065 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5066 hsw_format_attr : nhm_format_attr;
5067 extra_skl_attr = skl_format_attr;
5068 mem_attr = icl_events_attrs;
5069 tsx_attr = icl_tsx_events_attrs;
5070 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
5071 x86_pmu.lbr_pt_coexist = true;
5072 intel_pmu_pebs_data_source_skl(pmem);
5073 pr_cont("Icelake events, ");
5074 name = "icelake";
5075 break;
5076
5077 default:
5078 switch (x86_pmu.version) {
5079 case 1:
5080 x86_pmu.event_constraints = intel_v1_event_constraints;
5081 pr_cont("generic architected perfmon v1, ");
5082 name = "generic_arch_v1";
5083 break;
5084 default:
5085 /*
5086 * default constraints for v2 and up
5087 */
5088 x86_pmu.event_constraints = intel_gen_event_constraints;
5089 pr_cont("generic architected perfmon, ");
5090 name = "generic_arch_v2+";
5091 break;
5092 }
5093 }
5094
5095 snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
5096
5097
5098 group_events_td.attrs = td_attr;
5099 group_events_mem.attrs = mem_attr;
5100 group_events_tsx.attrs = tsx_attr;
5101 group_format_extra.attrs = extra_attr;
5102 group_format_extra_skl.attrs = extra_skl_attr;
5103
5104 x86_pmu.attr_update = attr_update;
5105
5106 if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
5107 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5108 x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
5109 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
5110 }
5111 x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
5112
5113 if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5114 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5115 x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
5116 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
5117 }
5118
5119 x86_pmu.intel_ctrl |=
5120 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
5121
5122 if (x86_pmu.event_constraints) {
5123 /*
5124 * event on fixed counter2 (REF_CYCLES) only works on this
5125 * counter, so do not extend mask to generic counters
5126 */
5127 for_each_event_constraint(c, x86_pmu.event_constraints) {
5128 if (c->cmask == FIXED_EVENT_FLAGS
5129 && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
5130 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
5131 }
5132 c->idxmsk64 &=
5133 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
5134 c->weight = hweight64(c->idxmsk64);
5135 }
5136 }
5137
5138 /*
5139 * Access LBR MSR may cause #GP under certain circumstances.
5140 * E.g. KVM doesn't support LBR MSR
5141 * Check all LBT MSR here.
5142 * Disable LBR access if any LBR MSRs can not be accessed.
5143 */
5144 if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
5145 x86_pmu.lbr_nr = 0;
5146 for (i = 0; i < x86_pmu.lbr_nr; i++) {
5147 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
5148 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
5149 x86_pmu.lbr_nr = 0;
5150 }
5151
5152 if (x86_pmu.lbr_nr)
5153 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
5154
5155 /*
5156 * Access extra MSR may cause #GP under certain circumstances.
5157 * E.g. KVM doesn't support offcore event
5158 * Check all extra_regs here.
5159 */
5160 if (x86_pmu.extra_regs) {
5161 for (er = x86_pmu.extra_regs; er->msr; er++) {
5162 er->extra_msr_access = check_msr(er->msr, 0x11UL);
5163 /* Disable LBR select mapping */
5164 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5165 x86_pmu.lbr_sel_map = NULL;
5166 }
5167 }
5168
5169 /* Support full width counters using alternative MSR range */
5170 if (x86_pmu.intel_cap.full_width_write) {
5171 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
5172 x86_pmu.perfctr = MSR_IA32_PMC0;
5173 pr_cont("full-width counters, ");
5174 }
5175
5176 /*
5177 * For arch perfmon 4 use counter freezing to avoid
5178 * several MSR accesses in the PMI.
5179 */
5180 if (x86_pmu.counter_freezing)
5181 x86_pmu.handle_irq = intel_pmu_handle_irq_v4;
5182
5183 return 0;
5184 }
5185
5186 /*
5187 * HT bug: phase 2 init
5188 * Called once we have valid topology information to check
5189 * whether or not HT is enabled
5190 * If HT is off, then we disable the workaround
5191 */
fixup_ht_bug(void)5192 static __init int fixup_ht_bug(void)
5193 {
5194 int c;
5195 /*
5196 * problem not present on this CPU model, nothing to do
5197 */
5198 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
5199 return 0;
5200
5201 if (topology_max_smt_threads() > 1) {
5202 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
5203 return 0;
5204 }
5205
5206 cpus_read_lock();
5207
5208 hardlockup_detector_perf_stop();
5209
5210 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
5211
5212 x86_pmu.start_scheduling = NULL;
5213 x86_pmu.commit_scheduling = NULL;
5214 x86_pmu.stop_scheduling = NULL;
5215
5216 hardlockup_detector_perf_restart();
5217
5218 for_each_online_cpu(c)
5219 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
5220
5221 cpus_read_unlock();
5222 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
5223 return 0;
5224 }
5225 subsys_initcall(fixup_ht_bug)
5226