1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * auxtrace.c: AUX area trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28
29 #include "evlist.h"
30 #include "dso.h"
31 #include "map.h"
32 #include "pmu.h"
33 #include "evsel.h"
34 #include "symbol.h"
35 #include "util/synthetic-events.h"
36 #include "thread_map.h"
37 #include "asm/bug.h"
38 #include "auxtrace.h"
39
40 #include <linux/hash.h>
41
42 #include "event.h"
43 #include "record.h"
44 #include "session.h"
45 #include "debug.h"
46 #include <subcmd/parse-options.h>
47
48 #include "cs-etm.h"
49 #include "intel-pt.h"
50 #include "intel-bts.h"
51 #include "arm-spe.h"
52 #include "s390-cpumsf.h"
53 #include "util/mmap.h"
54
55 #include <linux/ctype.h>
56 #include <linux/kernel.h>
57 #include "symbol/kallsyms.h"
58 #include <internal/lib.h>
59
auxtrace__dont_decode(struct perf_session * session)60 static bool auxtrace__dont_decode(struct perf_session *session)
61 {
62 return !session->itrace_synth_opts ||
63 session->itrace_synth_opts->dont_decode;
64 }
65
auxtrace_mmap__mmap(struct auxtrace_mmap * mm,struct auxtrace_mmap_params * mp,void * userpg,int fd)66 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
67 struct auxtrace_mmap_params *mp,
68 void *userpg, int fd)
69 {
70 struct perf_event_mmap_page *pc = userpg;
71
72 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
73
74 mm->userpg = userpg;
75 mm->mask = mp->mask;
76 mm->len = mp->len;
77 mm->prev = 0;
78 mm->idx = mp->idx;
79 mm->tid = mp->tid;
80 mm->cpu = mp->cpu;
81
82 if (!mp->len) {
83 mm->base = NULL;
84 return 0;
85 }
86
87 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
88 pr_err("Cannot use AUX area tracing mmaps\n");
89 return -1;
90 #endif
91
92 pc->aux_offset = mp->offset;
93 pc->aux_size = mp->len;
94
95 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
96 if (mm->base == MAP_FAILED) {
97 pr_debug2("failed to mmap AUX area\n");
98 mm->base = NULL;
99 return -1;
100 }
101
102 return 0;
103 }
104
auxtrace_mmap__munmap(struct auxtrace_mmap * mm)105 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
106 {
107 if (mm->base) {
108 munmap(mm->base, mm->len);
109 mm->base = NULL;
110 }
111 }
112
auxtrace_mmap_params__init(struct auxtrace_mmap_params * mp,off_t auxtrace_offset,unsigned int auxtrace_pages,bool auxtrace_overwrite)113 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
114 off_t auxtrace_offset,
115 unsigned int auxtrace_pages,
116 bool auxtrace_overwrite)
117 {
118 if (auxtrace_pages) {
119 mp->offset = auxtrace_offset;
120 mp->len = auxtrace_pages * (size_t)page_size;
121 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
122 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
123 pr_debug2("AUX area mmap length %zu\n", mp->len);
124 } else {
125 mp->len = 0;
126 }
127 }
128
auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params * mp,struct evlist * evlist,int idx,bool per_cpu)129 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
130 struct evlist *evlist, int idx,
131 bool per_cpu)
132 {
133 mp->idx = idx;
134
135 if (per_cpu) {
136 mp->cpu = evlist->core.cpus->map[idx];
137 if (evlist->core.threads)
138 mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
139 else
140 mp->tid = -1;
141 } else {
142 mp->cpu = -1;
143 mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
144 }
145 }
146
147 #define AUXTRACE_INIT_NR_QUEUES 32
148
auxtrace_alloc_queue_array(unsigned int nr_queues)149 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
150 {
151 struct auxtrace_queue *queue_array;
152 unsigned int max_nr_queues, i;
153
154 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
155 if (nr_queues > max_nr_queues)
156 return NULL;
157
158 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
159 if (!queue_array)
160 return NULL;
161
162 for (i = 0; i < nr_queues; i++) {
163 INIT_LIST_HEAD(&queue_array[i].head);
164 queue_array[i].priv = NULL;
165 }
166
167 return queue_array;
168 }
169
auxtrace_queues__init(struct auxtrace_queues * queues)170 int auxtrace_queues__init(struct auxtrace_queues *queues)
171 {
172 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
173 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
174 if (!queues->queue_array)
175 return -ENOMEM;
176 return 0;
177 }
178
auxtrace_queues__grow(struct auxtrace_queues * queues,unsigned int new_nr_queues)179 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
180 unsigned int new_nr_queues)
181 {
182 unsigned int nr_queues = queues->nr_queues;
183 struct auxtrace_queue *queue_array;
184 unsigned int i;
185
186 if (!nr_queues)
187 nr_queues = AUXTRACE_INIT_NR_QUEUES;
188
189 while (nr_queues && nr_queues < new_nr_queues)
190 nr_queues <<= 1;
191
192 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
193 return -EINVAL;
194
195 queue_array = auxtrace_alloc_queue_array(nr_queues);
196 if (!queue_array)
197 return -ENOMEM;
198
199 for (i = 0; i < queues->nr_queues; i++) {
200 list_splice_tail(&queues->queue_array[i].head,
201 &queue_array[i].head);
202 queue_array[i].tid = queues->queue_array[i].tid;
203 queue_array[i].cpu = queues->queue_array[i].cpu;
204 queue_array[i].set = queues->queue_array[i].set;
205 queue_array[i].priv = queues->queue_array[i].priv;
206 }
207
208 queues->nr_queues = nr_queues;
209 queues->queue_array = queue_array;
210
211 return 0;
212 }
213
auxtrace_copy_data(u64 size,struct perf_session * session)214 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
215 {
216 int fd = perf_data__fd(session->data);
217 void *p;
218 ssize_t ret;
219
220 if (size > SSIZE_MAX)
221 return NULL;
222
223 p = malloc(size);
224 if (!p)
225 return NULL;
226
227 ret = readn(fd, p, size);
228 if (ret != (ssize_t)size) {
229 free(p);
230 return NULL;
231 }
232
233 return p;
234 }
235
auxtrace_queues__queue_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)236 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
237 unsigned int idx,
238 struct auxtrace_buffer *buffer)
239 {
240 struct auxtrace_queue *queue;
241 int err;
242
243 if (idx >= queues->nr_queues) {
244 err = auxtrace_queues__grow(queues, idx + 1);
245 if (err)
246 return err;
247 }
248
249 queue = &queues->queue_array[idx];
250
251 if (!queue->set) {
252 queue->set = true;
253 queue->tid = buffer->tid;
254 queue->cpu = buffer->cpu;
255 }
256
257 buffer->buffer_nr = queues->next_buffer_nr++;
258
259 list_add_tail(&buffer->list, &queue->head);
260
261 queues->new_data = true;
262 queues->populated = true;
263
264 return 0;
265 }
266
267 /* Limit buffers to 32MiB on 32-bit */
268 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
269
auxtrace_queues__split_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)270 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
271 unsigned int idx,
272 struct auxtrace_buffer *buffer)
273 {
274 u64 sz = buffer->size;
275 bool consecutive = false;
276 struct auxtrace_buffer *b;
277 int err;
278
279 while (sz > BUFFER_LIMIT_FOR_32_BIT) {
280 b = memdup(buffer, sizeof(struct auxtrace_buffer));
281 if (!b)
282 return -ENOMEM;
283 b->size = BUFFER_LIMIT_FOR_32_BIT;
284 b->consecutive = consecutive;
285 err = auxtrace_queues__queue_buffer(queues, idx, b);
286 if (err) {
287 auxtrace_buffer__free(b);
288 return err;
289 }
290 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
291 sz -= BUFFER_LIMIT_FOR_32_BIT;
292 consecutive = true;
293 }
294
295 buffer->size = sz;
296 buffer->consecutive = consecutive;
297
298 return 0;
299 }
300
filter_cpu(struct perf_session * session,int cpu)301 static bool filter_cpu(struct perf_session *session, int cpu)
302 {
303 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
304
305 return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
306 }
307
auxtrace_queues__add_buffer(struct auxtrace_queues * queues,struct perf_session * session,unsigned int idx,struct auxtrace_buffer * buffer,struct auxtrace_buffer ** buffer_ptr)308 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
309 struct perf_session *session,
310 unsigned int idx,
311 struct auxtrace_buffer *buffer,
312 struct auxtrace_buffer **buffer_ptr)
313 {
314 int err = -ENOMEM;
315
316 if (filter_cpu(session, buffer->cpu))
317 return 0;
318
319 buffer = memdup(buffer, sizeof(*buffer));
320 if (!buffer)
321 return -ENOMEM;
322
323 if (session->one_mmap) {
324 buffer->data = buffer->data_offset - session->one_mmap_offset +
325 session->one_mmap_addr;
326 } else if (perf_data__is_pipe(session->data)) {
327 buffer->data = auxtrace_copy_data(buffer->size, session);
328 if (!buffer->data)
329 goto out_free;
330 buffer->data_needs_freeing = true;
331 } else if (BITS_PER_LONG == 32 &&
332 buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
333 err = auxtrace_queues__split_buffer(queues, idx, buffer);
334 if (err)
335 goto out_free;
336 }
337
338 err = auxtrace_queues__queue_buffer(queues, idx, buffer);
339 if (err)
340 goto out_free;
341
342 /* FIXME: Doesn't work for split buffer */
343 if (buffer_ptr)
344 *buffer_ptr = buffer;
345
346 return 0;
347
348 out_free:
349 auxtrace_buffer__free(buffer);
350 return err;
351 }
352
auxtrace_queues__add_event(struct auxtrace_queues * queues,struct perf_session * session,union perf_event * event,off_t data_offset,struct auxtrace_buffer ** buffer_ptr)353 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
354 struct perf_session *session,
355 union perf_event *event, off_t data_offset,
356 struct auxtrace_buffer **buffer_ptr)
357 {
358 struct auxtrace_buffer buffer = {
359 .pid = -1,
360 .tid = event->auxtrace.tid,
361 .cpu = event->auxtrace.cpu,
362 .data_offset = data_offset,
363 .offset = event->auxtrace.offset,
364 .reference = event->auxtrace.reference,
365 .size = event->auxtrace.size,
366 };
367 unsigned int idx = event->auxtrace.idx;
368
369 return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
370 buffer_ptr);
371 }
372
auxtrace_queues__add_indexed_event(struct auxtrace_queues * queues,struct perf_session * session,off_t file_offset,size_t sz)373 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
374 struct perf_session *session,
375 off_t file_offset, size_t sz)
376 {
377 union perf_event *event;
378 int err;
379 char buf[PERF_SAMPLE_MAX_SIZE];
380
381 err = perf_session__peek_event(session, file_offset, buf,
382 PERF_SAMPLE_MAX_SIZE, &event, NULL);
383 if (err)
384 return err;
385
386 if (event->header.type == PERF_RECORD_AUXTRACE) {
387 if (event->header.size < sizeof(struct perf_record_auxtrace) ||
388 event->header.size != sz) {
389 err = -EINVAL;
390 goto out;
391 }
392 file_offset += event->header.size;
393 err = auxtrace_queues__add_event(queues, session, event,
394 file_offset, NULL);
395 }
396 out:
397 return err;
398 }
399
auxtrace_queues__free(struct auxtrace_queues * queues)400 void auxtrace_queues__free(struct auxtrace_queues *queues)
401 {
402 unsigned int i;
403
404 for (i = 0; i < queues->nr_queues; i++) {
405 while (!list_empty(&queues->queue_array[i].head)) {
406 struct auxtrace_buffer *buffer;
407
408 buffer = list_entry(queues->queue_array[i].head.next,
409 struct auxtrace_buffer, list);
410 list_del_init(&buffer->list);
411 auxtrace_buffer__free(buffer);
412 }
413 }
414
415 zfree(&queues->queue_array);
416 queues->nr_queues = 0;
417 }
418
auxtrace_heapify(struct auxtrace_heap_item * heap_array,unsigned int pos,unsigned int queue_nr,u64 ordinal)419 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
420 unsigned int pos, unsigned int queue_nr,
421 u64 ordinal)
422 {
423 unsigned int parent;
424
425 while (pos) {
426 parent = (pos - 1) >> 1;
427 if (heap_array[parent].ordinal <= ordinal)
428 break;
429 heap_array[pos] = heap_array[parent];
430 pos = parent;
431 }
432 heap_array[pos].queue_nr = queue_nr;
433 heap_array[pos].ordinal = ordinal;
434 }
435
auxtrace_heap__add(struct auxtrace_heap * heap,unsigned int queue_nr,u64 ordinal)436 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
437 u64 ordinal)
438 {
439 struct auxtrace_heap_item *heap_array;
440
441 if (queue_nr >= heap->heap_sz) {
442 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
443
444 while (heap_sz <= queue_nr)
445 heap_sz <<= 1;
446 heap_array = realloc(heap->heap_array,
447 heap_sz * sizeof(struct auxtrace_heap_item));
448 if (!heap_array)
449 return -ENOMEM;
450 heap->heap_array = heap_array;
451 heap->heap_sz = heap_sz;
452 }
453
454 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
455
456 return 0;
457 }
458
auxtrace_heap__free(struct auxtrace_heap * heap)459 void auxtrace_heap__free(struct auxtrace_heap *heap)
460 {
461 zfree(&heap->heap_array);
462 heap->heap_cnt = 0;
463 heap->heap_sz = 0;
464 }
465
auxtrace_heap__pop(struct auxtrace_heap * heap)466 void auxtrace_heap__pop(struct auxtrace_heap *heap)
467 {
468 unsigned int pos, last, heap_cnt = heap->heap_cnt;
469 struct auxtrace_heap_item *heap_array;
470
471 if (!heap_cnt)
472 return;
473
474 heap->heap_cnt -= 1;
475
476 heap_array = heap->heap_array;
477
478 pos = 0;
479 while (1) {
480 unsigned int left, right;
481
482 left = (pos << 1) + 1;
483 if (left >= heap_cnt)
484 break;
485 right = left + 1;
486 if (right >= heap_cnt) {
487 heap_array[pos] = heap_array[left];
488 return;
489 }
490 if (heap_array[left].ordinal < heap_array[right].ordinal) {
491 heap_array[pos] = heap_array[left];
492 pos = left;
493 } else {
494 heap_array[pos] = heap_array[right];
495 pos = right;
496 }
497 }
498
499 last = heap_cnt - 1;
500 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
501 heap_array[last].ordinal);
502 }
503
auxtrace_record__info_priv_size(struct auxtrace_record * itr,struct evlist * evlist)504 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
505 struct evlist *evlist)
506 {
507 if (itr)
508 return itr->info_priv_size(itr, evlist);
509 return 0;
510 }
511
auxtrace_not_supported(void)512 static int auxtrace_not_supported(void)
513 {
514 pr_err("AUX area tracing is not supported on this architecture\n");
515 return -EINVAL;
516 }
517
auxtrace_record__info_fill(struct auxtrace_record * itr,struct perf_session * session,struct perf_record_auxtrace_info * auxtrace_info,size_t priv_size)518 int auxtrace_record__info_fill(struct auxtrace_record *itr,
519 struct perf_session *session,
520 struct perf_record_auxtrace_info *auxtrace_info,
521 size_t priv_size)
522 {
523 if (itr)
524 return itr->info_fill(itr, session, auxtrace_info, priv_size);
525 return auxtrace_not_supported();
526 }
527
auxtrace_record__free(struct auxtrace_record * itr)528 void auxtrace_record__free(struct auxtrace_record *itr)
529 {
530 if (itr)
531 itr->free(itr);
532 }
533
auxtrace_record__snapshot_start(struct auxtrace_record * itr)534 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
535 {
536 if (itr && itr->snapshot_start)
537 return itr->snapshot_start(itr);
538 return 0;
539 }
540
auxtrace_record__snapshot_finish(struct auxtrace_record * itr,bool on_exit)541 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
542 {
543 if (!on_exit && itr && itr->snapshot_finish)
544 return itr->snapshot_finish(itr);
545 return 0;
546 }
547
auxtrace_record__find_snapshot(struct auxtrace_record * itr,int idx,struct auxtrace_mmap * mm,unsigned char * data,u64 * head,u64 * old)548 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
549 struct auxtrace_mmap *mm,
550 unsigned char *data, u64 *head, u64 *old)
551 {
552 if (itr && itr->find_snapshot)
553 return itr->find_snapshot(itr, idx, mm, data, head, old);
554 return 0;
555 }
556
auxtrace_record__options(struct auxtrace_record * itr,struct evlist * evlist,struct record_opts * opts)557 int auxtrace_record__options(struct auxtrace_record *itr,
558 struct evlist *evlist,
559 struct record_opts *opts)
560 {
561 if (itr)
562 return itr->recording_options(itr, evlist, opts);
563 return 0;
564 }
565
auxtrace_record__reference(struct auxtrace_record * itr)566 u64 auxtrace_record__reference(struct auxtrace_record *itr)
567 {
568 if (itr)
569 return itr->reference(itr);
570 return 0;
571 }
572
auxtrace_parse_snapshot_options(struct auxtrace_record * itr,struct record_opts * opts,const char * str)573 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
574 struct record_opts *opts, const char *str)
575 {
576 if (!str)
577 return 0;
578
579 /* PMU-agnostic options */
580 switch (*str) {
581 case 'e':
582 opts->auxtrace_snapshot_on_exit = true;
583 str++;
584 break;
585 default:
586 break;
587 }
588
589 if (itr && itr->parse_snapshot_options)
590 return itr->parse_snapshot_options(itr, opts, str);
591
592 pr_err("No AUX area tracing to snapshot\n");
593 return -EINVAL;
594 }
595
596 struct auxtrace_record *__weak
auxtrace_record__init(struct evlist * evlist __maybe_unused,int * err)597 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
598 {
599 *err = 0;
600 return NULL;
601 }
602
auxtrace_index__alloc(struct list_head * head)603 static int auxtrace_index__alloc(struct list_head *head)
604 {
605 struct auxtrace_index *auxtrace_index;
606
607 auxtrace_index = malloc(sizeof(struct auxtrace_index));
608 if (!auxtrace_index)
609 return -ENOMEM;
610
611 auxtrace_index->nr = 0;
612 INIT_LIST_HEAD(&auxtrace_index->list);
613
614 list_add_tail(&auxtrace_index->list, head);
615
616 return 0;
617 }
618
auxtrace_index__free(struct list_head * head)619 void auxtrace_index__free(struct list_head *head)
620 {
621 struct auxtrace_index *auxtrace_index, *n;
622
623 list_for_each_entry_safe(auxtrace_index, n, head, list) {
624 list_del_init(&auxtrace_index->list);
625 free(auxtrace_index);
626 }
627 }
628
auxtrace_index__last(struct list_head * head)629 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
630 {
631 struct auxtrace_index *auxtrace_index;
632 int err;
633
634 if (list_empty(head)) {
635 err = auxtrace_index__alloc(head);
636 if (err)
637 return NULL;
638 }
639
640 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
641
642 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
643 err = auxtrace_index__alloc(head);
644 if (err)
645 return NULL;
646 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
647 list);
648 }
649
650 return auxtrace_index;
651 }
652
auxtrace_index__auxtrace_event(struct list_head * head,union perf_event * event,off_t file_offset)653 int auxtrace_index__auxtrace_event(struct list_head *head,
654 union perf_event *event, off_t file_offset)
655 {
656 struct auxtrace_index *auxtrace_index;
657 size_t nr;
658
659 auxtrace_index = auxtrace_index__last(head);
660 if (!auxtrace_index)
661 return -ENOMEM;
662
663 nr = auxtrace_index->nr;
664 auxtrace_index->entries[nr].file_offset = file_offset;
665 auxtrace_index->entries[nr].sz = event->header.size;
666 auxtrace_index->nr += 1;
667
668 return 0;
669 }
670
auxtrace_index__do_write(int fd,struct auxtrace_index * auxtrace_index)671 static int auxtrace_index__do_write(int fd,
672 struct auxtrace_index *auxtrace_index)
673 {
674 struct auxtrace_index_entry ent;
675 size_t i;
676
677 for (i = 0; i < auxtrace_index->nr; i++) {
678 ent.file_offset = auxtrace_index->entries[i].file_offset;
679 ent.sz = auxtrace_index->entries[i].sz;
680 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
681 return -errno;
682 }
683 return 0;
684 }
685
auxtrace_index__write(int fd,struct list_head * head)686 int auxtrace_index__write(int fd, struct list_head *head)
687 {
688 struct auxtrace_index *auxtrace_index;
689 u64 total = 0;
690 int err;
691
692 list_for_each_entry(auxtrace_index, head, list)
693 total += auxtrace_index->nr;
694
695 if (writen(fd, &total, sizeof(total)) != sizeof(total))
696 return -errno;
697
698 list_for_each_entry(auxtrace_index, head, list) {
699 err = auxtrace_index__do_write(fd, auxtrace_index);
700 if (err)
701 return err;
702 }
703
704 return 0;
705 }
706
auxtrace_index__process_entry(int fd,struct list_head * head,bool needs_swap)707 static int auxtrace_index__process_entry(int fd, struct list_head *head,
708 bool needs_swap)
709 {
710 struct auxtrace_index *auxtrace_index;
711 struct auxtrace_index_entry ent;
712 size_t nr;
713
714 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
715 return -1;
716
717 auxtrace_index = auxtrace_index__last(head);
718 if (!auxtrace_index)
719 return -1;
720
721 nr = auxtrace_index->nr;
722 if (needs_swap) {
723 auxtrace_index->entries[nr].file_offset =
724 bswap_64(ent.file_offset);
725 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
726 } else {
727 auxtrace_index->entries[nr].file_offset = ent.file_offset;
728 auxtrace_index->entries[nr].sz = ent.sz;
729 }
730
731 auxtrace_index->nr = nr + 1;
732
733 return 0;
734 }
735
auxtrace_index__process(int fd,u64 size,struct perf_session * session,bool needs_swap)736 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
737 bool needs_swap)
738 {
739 struct list_head *head = &session->auxtrace_index;
740 u64 nr;
741
742 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
743 return -1;
744
745 if (needs_swap)
746 nr = bswap_64(nr);
747
748 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
749 return -1;
750
751 while (nr--) {
752 int err;
753
754 err = auxtrace_index__process_entry(fd, head, needs_swap);
755 if (err)
756 return -1;
757 }
758
759 return 0;
760 }
761
auxtrace_queues__process_index_entry(struct auxtrace_queues * queues,struct perf_session * session,struct auxtrace_index_entry * ent)762 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
763 struct perf_session *session,
764 struct auxtrace_index_entry *ent)
765 {
766 return auxtrace_queues__add_indexed_event(queues, session,
767 ent->file_offset, ent->sz);
768 }
769
auxtrace_queues__process_index(struct auxtrace_queues * queues,struct perf_session * session)770 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
771 struct perf_session *session)
772 {
773 struct auxtrace_index *auxtrace_index;
774 struct auxtrace_index_entry *ent;
775 size_t i;
776 int err;
777
778 if (auxtrace__dont_decode(session))
779 return 0;
780
781 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
782 for (i = 0; i < auxtrace_index->nr; i++) {
783 ent = &auxtrace_index->entries[i];
784 err = auxtrace_queues__process_index_entry(queues,
785 session,
786 ent);
787 if (err)
788 return err;
789 }
790 }
791 return 0;
792 }
793
auxtrace_buffer__next(struct auxtrace_queue * queue,struct auxtrace_buffer * buffer)794 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
795 struct auxtrace_buffer *buffer)
796 {
797 if (buffer) {
798 if (list_is_last(&buffer->list, &queue->head))
799 return NULL;
800 return list_entry(buffer->list.next, struct auxtrace_buffer,
801 list);
802 } else {
803 if (list_empty(&queue->head))
804 return NULL;
805 return list_entry(queue->head.next, struct auxtrace_buffer,
806 list);
807 }
808 }
809
auxtrace_buffer__get_data(struct auxtrace_buffer * buffer,int fd)810 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
811 {
812 size_t adj = buffer->data_offset & (page_size - 1);
813 size_t size = buffer->size + adj;
814 off_t file_offset = buffer->data_offset - adj;
815 void *addr;
816
817 if (buffer->data)
818 return buffer->data;
819
820 addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
821 if (addr == MAP_FAILED)
822 return NULL;
823
824 buffer->mmap_addr = addr;
825 buffer->mmap_size = size;
826
827 buffer->data = addr + adj;
828
829 return buffer->data;
830 }
831
auxtrace_buffer__put_data(struct auxtrace_buffer * buffer)832 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
833 {
834 if (!buffer->data || !buffer->mmap_addr)
835 return;
836 munmap(buffer->mmap_addr, buffer->mmap_size);
837 buffer->mmap_addr = NULL;
838 buffer->mmap_size = 0;
839 buffer->data = NULL;
840 buffer->use_data = NULL;
841 }
842
auxtrace_buffer__drop_data(struct auxtrace_buffer * buffer)843 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
844 {
845 auxtrace_buffer__put_data(buffer);
846 if (buffer->data_needs_freeing) {
847 buffer->data_needs_freeing = false;
848 zfree(&buffer->data);
849 buffer->use_data = NULL;
850 buffer->size = 0;
851 }
852 }
853
auxtrace_buffer__free(struct auxtrace_buffer * buffer)854 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
855 {
856 auxtrace_buffer__drop_data(buffer);
857 free(buffer);
858 }
859
auxtrace_synth_error(struct perf_record_auxtrace_error * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg,u64 timestamp)860 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
861 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
862 const char *msg, u64 timestamp)
863 {
864 size_t size;
865
866 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
867
868 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
869 auxtrace_error->type = type;
870 auxtrace_error->code = code;
871 auxtrace_error->cpu = cpu;
872 auxtrace_error->pid = pid;
873 auxtrace_error->tid = tid;
874 auxtrace_error->fmt = 1;
875 auxtrace_error->ip = ip;
876 auxtrace_error->time = timestamp;
877 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
878
879 size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
880 strlen(auxtrace_error->msg) + 1;
881 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
882 }
883
perf_event__synthesize_auxtrace_info(struct auxtrace_record * itr,struct perf_tool * tool,struct perf_session * session,perf_event__handler_t process)884 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
885 struct perf_tool *tool,
886 struct perf_session *session,
887 perf_event__handler_t process)
888 {
889 union perf_event *ev;
890 size_t priv_size;
891 int err;
892
893 pr_debug2("Synthesizing auxtrace information\n");
894 priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
895 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
896 if (!ev)
897 return -ENOMEM;
898
899 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
900 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
901 priv_size;
902 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
903 priv_size);
904 if (err)
905 goto out_free;
906
907 err = process(tool, ev, NULL, NULL);
908 out_free:
909 free(ev);
910 return err;
911 }
912
perf_event__process_auxtrace_info(struct perf_session * session,union perf_event * event)913 int perf_event__process_auxtrace_info(struct perf_session *session,
914 union perf_event *event)
915 {
916 enum auxtrace_type type = event->auxtrace_info.type;
917
918 if (dump_trace)
919 fprintf(stdout, " type: %u\n", type);
920
921 switch (type) {
922 case PERF_AUXTRACE_INTEL_PT:
923 return intel_pt_process_auxtrace_info(event, session);
924 case PERF_AUXTRACE_INTEL_BTS:
925 return intel_bts_process_auxtrace_info(event, session);
926 case PERF_AUXTRACE_ARM_SPE:
927 return arm_spe_process_auxtrace_info(event, session);
928 case PERF_AUXTRACE_CS_ETM:
929 return cs_etm__process_auxtrace_info(event, session);
930 case PERF_AUXTRACE_S390_CPUMSF:
931 return s390_cpumsf_process_auxtrace_info(event, session);
932 case PERF_AUXTRACE_UNKNOWN:
933 default:
934 return -EINVAL;
935 }
936 }
937
perf_event__process_auxtrace(struct perf_session * session,union perf_event * event)938 s64 perf_event__process_auxtrace(struct perf_session *session,
939 union perf_event *event)
940 {
941 s64 err;
942
943 if (dump_trace)
944 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n",
945 event->auxtrace.size, event->auxtrace.offset,
946 event->auxtrace.reference, event->auxtrace.idx,
947 event->auxtrace.tid, event->auxtrace.cpu);
948
949 if (auxtrace__dont_decode(session))
950 return event->auxtrace.size;
951
952 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
953 return -EINVAL;
954
955 err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
956 if (err < 0)
957 return err;
958
959 return event->auxtrace.size;
960 }
961
962 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS
963 #define PERF_ITRACE_DEFAULT_PERIOD 100000
964 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16
965 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024
966 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64
967 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024
968
itrace_synth_opts__set_default(struct itrace_synth_opts * synth_opts,bool no_sample)969 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
970 bool no_sample)
971 {
972 synth_opts->branches = true;
973 synth_opts->transactions = true;
974 synth_opts->ptwrites = true;
975 synth_opts->pwr_events = true;
976 synth_opts->other_events = true;
977 synth_opts->errors = true;
978 if (no_sample) {
979 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
980 synth_opts->period = 1;
981 synth_opts->calls = true;
982 } else {
983 synth_opts->instructions = true;
984 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
985 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
986 }
987 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
988 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
989 synth_opts->initial_skip = 0;
990 }
991
992 /*
993 * Please check tools/perf/Documentation/perf-script.txt for information
994 * about the options parsed here, which is introduced after this cset,
995 * when support in 'perf script' for these options is introduced.
996 */
itrace_parse_synth_opts(const struct option * opt,const char * str,int unset)997 int itrace_parse_synth_opts(const struct option *opt, const char *str,
998 int unset)
999 {
1000 struct itrace_synth_opts *synth_opts = opt->value;
1001 const char *p;
1002 char *endptr;
1003 bool period_type_set = false;
1004 bool period_set = false;
1005
1006 synth_opts->set = true;
1007
1008 if (unset) {
1009 synth_opts->dont_decode = true;
1010 return 0;
1011 }
1012
1013 if (!str) {
1014 itrace_synth_opts__set_default(synth_opts,
1015 synth_opts->default_no_sample);
1016 return 0;
1017 }
1018
1019 for (p = str; *p;) {
1020 switch (*p++) {
1021 case 'i':
1022 synth_opts->instructions = true;
1023 while (*p == ' ' || *p == ',')
1024 p += 1;
1025 if (isdigit(*p)) {
1026 synth_opts->period = strtoull(p, &endptr, 10);
1027 period_set = true;
1028 p = endptr;
1029 while (*p == ' ' || *p == ',')
1030 p += 1;
1031 switch (*p++) {
1032 case 'i':
1033 synth_opts->period_type =
1034 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1035 period_type_set = true;
1036 break;
1037 case 't':
1038 synth_opts->period_type =
1039 PERF_ITRACE_PERIOD_TICKS;
1040 period_type_set = true;
1041 break;
1042 case 'm':
1043 synth_opts->period *= 1000;
1044 /* Fall through */
1045 case 'u':
1046 synth_opts->period *= 1000;
1047 /* Fall through */
1048 case 'n':
1049 if (*p++ != 's')
1050 goto out_err;
1051 synth_opts->period_type =
1052 PERF_ITRACE_PERIOD_NANOSECS;
1053 period_type_set = true;
1054 break;
1055 case '\0':
1056 goto out;
1057 default:
1058 goto out_err;
1059 }
1060 }
1061 break;
1062 case 'b':
1063 synth_opts->branches = true;
1064 break;
1065 case 'x':
1066 synth_opts->transactions = true;
1067 break;
1068 case 'w':
1069 synth_opts->ptwrites = true;
1070 break;
1071 case 'p':
1072 synth_opts->pwr_events = true;
1073 break;
1074 case 'o':
1075 synth_opts->other_events = true;
1076 break;
1077 case 'e':
1078 synth_opts->errors = true;
1079 break;
1080 case 'd':
1081 synth_opts->log = true;
1082 break;
1083 case 'c':
1084 synth_opts->branches = true;
1085 synth_opts->calls = true;
1086 break;
1087 case 'r':
1088 synth_opts->branches = true;
1089 synth_opts->returns = true;
1090 break;
1091 case 'g':
1092 synth_opts->callchain = true;
1093 synth_opts->callchain_sz =
1094 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1095 while (*p == ' ' || *p == ',')
1096 p += 1;
1097 if (isdigit(*p)) {
1098 unsigned int val;
1099
1100 val = strtoul(p, &endptr, 10);
1101 p = endptr;
1102 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1103 goto out_err;
1104 synth_opts->callchain_sz = val;
1105 }
1106 break;
1107 case 'l':
1108 synth_opts->last_branch = true;
1109 synth_opts->last_branch_sz =
1110 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1111 while (*p == ' ' || *p == ',')
1112 p += 1;
1113 if (isdigit(*p)) {
1114 unsigned int val;
1115
1116 val = strtoul(p, &endptr, 10);
1117 p = endptr;
1118 if (!val ||
1119 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1120 goto out_err;
1121 synth_opts->last_branch_sz = val;
1122 }
1123 break;
1124 case 's':
1125 synth_opts->initial_skip = strtoul(p, &endptr, 10);
1126 if (p == endptr)
1127 goto out_err;
1128 p = endptr;
1129 break;
1130 case ' ':
1131 case ',':
1132 break;
1133 default:
1134 goto out_err;
1135 }
1136 }
1137 out:
1138 if (synth_opts->instructions) {
1139 if (!period_type_set)
1140 synth_opts->period_type =
1141 PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1142 if (!period_set)
1143 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1144 }
1145
1146 return 0;
1147
1148 out_err:
1149 pr_err("Bad Instruction Tracing options '%s'\n", str);
1150 return -EINVAL;
1151 }
1152
1153 static const char * const auxtrace_error_type_name[] = {
1154 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1155 };
1156
auxtrace_error_name(int type)1157 static const char *auxtrace_error_name(int type)
1158 {
1159 const char *error_type_name = NULL;
1160
1161 if (type < PERF_AUXTRACE_ERROR_MAX)
1162 error_type_name = auxtrace_error_type_name[type];
1163 if (!error_type_name)
1164 error_type_name = "unknown AUX";
1165 return error_type_name;
1166 }
1167
perf_event__fprintf_auxtrace_error(union perf_event * event,FILE * fp)1168 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1169 {
1170 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1171 unsigned long long nsecs = e->time;
1172 const char *msg = e->msg;
1173 int ret;
1174
1175 ret = fprintf(fp, " %s error type %u",
1176 auxtrace_error_name(e->type), e->type);
1177
1178 if (e->fmt && nsecs) {
1179 unsigned long secs = nsecs / NSEC_PER_SEC;
1180
1181 nsecs -= secs * NSEC_PER_SEC;
1182 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1183 } else {
1184 ret += fprintf(fp, " time 0");
1185 }
1186
1187 if (!e->fmt)
1188 msg = (const char *)&e->time;
1189
1190 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1191 e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1192 return ret;
1193 }
1194
perf_session__auxtrace_error_inc(struct perf_session * session,union perf_event * event)1195 void perf_session__auxtrace_error_inc(struct perf_session *session,
1196 union perf_event *event)
1197 {
1198 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1199
1200 if (e->type < PERF_AUXTRACE_ERROR_MAX)
1201 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1202 }
1203
events_stats__auxtrace_error_warn(const struct events_stats * stats)1204 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1205 {
1206 int i;
1207
1208 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1209 if (!stats->nr_auxtrace_errors[i])
1210 continue;
1211 ui__warning("%u %s errors\n",
1212 stats->nr_auxtrace_errors[i],
1213 auxtrace_error_name(i));
1214 }
1215 }
1216
perf_event__process_auxtrace_error(struct perf_session * session,union perf_event * event)1217 int perf_event__process_auxtrace_error(struct perf_session *session,
1218 union perf_event *event)
1219 {
1220 if (auxtrace__dont_decode(session))
1221 return 0;
1222
1223 perf_event__fprintf_auxtrace_error(event, stdout);
1224 return 0;
1225 }
1226
__auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn,bool snapshot,size_t snapshot_size)1227 static int __auxtrace_mmap__read(struct mmap *map,
1228 struct auxtrace_record *itr,
1229 struct perf_tool *tool, process_auxtrace_t fn,
1230 bool snapshot, size_t snapshot_size)
1231 {
1232 struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1233 u64 head, old = mm->prev, offset, ref;
1234 unsigned char *data = mm->base;
1235 size_t size, head_off, old_off, len1, len2, padding;
1236 union perf_event ev;
1237 void *data1, *data2;
1238
1239 if (snapshot) {
1240 head = auxtrace_mmap__read_snapshot_head(mm);
1241 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1242 &head, &old))
1243 return -1;
1244 } else {
1245 head = auxtrace_mmap__read_head(mm);
1246 }
1247
1248 if (old == head)
1249 return 0;
1250
1251 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1252 mm->idx, old, head, head - old);
1253
1254 if (mm->mask) {
1255 head_off = head & mm->mask;
1256 old_off = old & mm->mask;
1257 } else {
1258 head_off = head % mm->len;
1259 old_off = old % mm->len;
1260 }
1261
1262 if (head_off > old_off)
1263 size = head_off - old_off;
1264 else
1265 size = mm->len - (old_off - head_off);
1266
1267 if (snapshot && size > snapshot_size)
1268 size = snapshot_size;
1269
1270 ref = auxtrace_record__reference(itr);
1271
1272 if (head > old || size <= head || mm->mask) {
1273 offset = head - size;
1274 } else {
1275 /*
1276 * When the buffer size is not a power of 2, 'head' wraps at the
1277 * highest multiple of the buffer size, so we have to subtract
1278 * the remainder here.
1279 */
1280 u64 rem = (0ULL - mm->len) % mm->len;
1281
1282 offset = head - size - rem;
1283 }
1284
1285 if (size > head_off) {
1286 len1 = size - head_off;
1287 data1 = &data[mm->len - len1];
1288 len2 = head_off;
1289 data2 = &data[0];
1290 } else {
1291 len1 = size;
1292 data1 = &data[head_off - len1];
1293 len2 = 0;
1294 data2 = NULL;
1295 }
1296
1297 if (itr->alignment) {
1298 unsigned int unwanted = len1 % itr->alignment;
1299
1300 len1 -= unwanted;
1301 size -= unwanted;
1302 }
1303
1304 /* padding must be written by fn() e.g. record__process_auxtrace() */
1305 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1306 if (padding)
1307 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1308
1309 memset(&ev, 0, sizeof(ev));
1310 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1311 ev.auxtrace.header.size = sizeof(ev.auxtrace);
1312 ev.auxtrace.size = size + padding;
1313 ev.auxtrace.offset = offset;
1314 ev.auxtrace.reference = ref;
1315 ev.auxtrace.idx = mm->idx;
1316 ev.auxtrace.tid = mm->tid;
1317 ev.auxtrace.cpu = mm->cpu;
1318
1319 if (fn(tool, map, &ev, data1, len1, data2, len2))
1320 return -1;
1321
1322 mm->prev = head;
1323
1324 if (!snapshot) {
1325 auxtrace_mmap__write_tail(mm, head);
1326 if (itr->read_finish) {
1327 int err;
1328
1329 err = itr->read_finish(itr, mm->idx);
1330 if (err < 0)
1331 return err;
1332 }
1333 }
1334
1335 return 1;
1336 }
1337
auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn)1338 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1339 struct perf_tool *tool, process_auxtrace_t fn)
1340 {
1341 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1342 }
1343
auxtrace_mmap__read_snapshot(struct mmap * map,struct auxtrace_record * itr,struct perf_tool * tool,process_auxtrace_t fn,size_t snapshot_size)1344 int auxtrace_mmap__read_snapshot(struct mmap *map,
1345 struct auxtrace_record *itr,
1346 struct perf_tool *tool, process_auxtrace_t fn,
1347 size_t snapshot_size)
1348 {
1349 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1350 }
1351
1352 /**
1353 * struct auxtrace_cache - hash table to implement a cache
1354 * @hashtable: the hashtable
1355 * @sz: hashtable size (number of hlists)
1356 * @entry_size: size of an entry
1357 * @limit: limit the number of entries to this maximum, when reached the cache
1358 * is dropped and caching begins again with an empty cache
1359 * @cnt: current number of entries
1360 * @bits: hashtable size (@sz = 2^@bits)
1361 */
1362 struct auxtrace_cache {
1363 struct hlist_head *hashtable;
1364 size_t sz;
1365 size_t entry_size;
1366 size_t limit;
1367 size_t cnt;
1368 unsigned int bits;
1369 };
1370
auxtrace_cache__new(unsigned int bits,size_t entry_size,unsigned int limit_percent)1371 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1372 unsigned int limit_percent)
1373 {
1374 struct auxtrace_cache *c;
1375 struct hlist_head *ht;
1376 size_t sz, i;
1377
1378 c = zalloc(sizeof(struct auxtrace_cache));
1379 if (!c)
1380 return NULL;
1381
1382 sz = 1UL << bits;
1383
1384 ht = calloc(sz, sizeof(struct hlist_head));
1385 if (!ht)
1386 goto out_free;
1387
1388 for (i = 0; i < sz; i++)
1389 INIT_HLIST_HEAD(&ht[i]);
1390
1391 c->hashtable = ht;
1392 c->sz = sz;
1393 c->entry_size = entry_size;
1394 c->limit = (c->sz * limit_percent) / 100;
1395 c->bits = bits;
1396
1397 return c;
1398
1399 out_free:
1400 free(c);
1401 return NULL;
1402 }
1403
auxtrace_cache__drop(struct auxtrace_cache * c)1404 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1405 {
1406 struct auxtrace_cache_entry *entry;
1407 struct hlist_node *tmp;
1408 size_t i;
1409
1410 if (!c)
1411 return;
1412
1413 for (i = 0; i < c->sz; i++) {
1414 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1415 hlist_del(&entry->hash);
1416 auxtrace_cache__free_entry(c, entry);
1417 }
1418 }
1419
1420 c->cnt = 0;
1421 }
1422
auxtrace_cache__free(struct auxtrace_cache * c)1423 void auxtrace_cache__free(struct auxtrace_cache *c)
1424 {
1425 if (!c)
1426 return;
1427
1428 auxtrace_cache__drop(c);
1429 zfree(&c->hashtable);
1430 free(c);
1431 }
1432
auxtrace_cache__alloc_entry(struct auxtrace_cache * c)1433 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1434 {
1435 return malloc(c->entry_size);
1436 }
1437
auxtrace_cache__free_entry(struct auxtrace_cache * c __maybe_unused,void * entry)1438 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1439 void *entry)
1440 {
1441 free(entry);
1442 }
1443
auxtrace_cache__add(struct auxtrace_cache * c,u32 key,struct auxtrace_cache_entry * entry)1444 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1445 struct auxtrace_cache_entry *entry)
1446 {
1447 if (c->limit && ++c->cnt > c->limit)
1448 auxtrace_cache__drop(c);
1449
1450 entry->key = key;
1451 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1452
1453 return 0;
1454 }
1455
auxtrace_cache__lookup(struct auxtrace_cache * c,u32 key)1456 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1457 {
1458 struct auxtrace_cache_entry *entry;
1459 struct hlist_head *hlist;
1460
1461 if (!c)
1462 return NULL;
1463
1464 hlist = &c->hashtable[hash_32(key, c->bits)];
1465 hlist_for_each_entry(entry, hlist, hash) {
1466 if (entry->key == key)
1467 return entry;
1468 }
1469
1470 return NULL;
1471 }
1472
addr_filter__free_str(struct addr_filter * filt)1473 static void addr_filter__free_str(struct addr_filter *filt)
1474 {
1475 zfree(&filt->str);
1476 filt->action = NULL;
1477 filt->sym_from = NULL;
1478 filt->sym_to = NULL;
1479 filt->filename = NULL;
1480 }
1481
addr_filter__new(void)1482 static struct addr_filter *addr_filter__new(void)
1483 {
1484 struct addr_filter *filt = zalloc(sizeof(*filt));
1485
1486 if (filt)
1487 INIT_LIST_HEAD(&filt->list);
1488
1489 return filt;
1490 }
1491
addr_filter__free(struct addr_filter * filt)1492 static void addr_filter__free(struct addr_filter *filt)
1493 {
1494 if (filt)
1495 addr_filter__free_str(filt);
1496 free(filt);
1497 }
1498
addr_filters__add(struct addr_filters * filts,struct addr_filter * filt)1499 static void addr_filters__add(struct addr_filters *filts,
1500 struct addr_filter *filt)
1501 {
1502 list_add_tail(&filt->list, &filts->head);
1503 filts->cnt += 1;
1504 }
1505
addr_filters__del(struct addr_filters * filts,struct addr_filter * filt)1506 static void addr_filters__del(struct addr_filters *filts,
1507 struct addr_filter *filt)
1508 {
1509 list_del_init(&filt->list);
1510 filts->cnt -= 1;
1511 }
1512
addr_filters__init(struct addr_filters * filts)1513 void addr_filters__init(struct addr_filters *filts)
1514 {
1515 INIT_LIST_HEAD(&filts->head);
1516 filts->cnt = 0;
1517 }
1518
addr_filters__exit(struct addr_filters * filts)1519 void addr_filters__exit(struct addr_filters *filts)
1520 {
1521 struct addr_filter *filt, *n;
1522
1523 list_for_each_entry_safe(filt, n, &filts->head, list) {
1524 addr_filters__del(filts, filt);
1525 addr_filter__free(filt);
1526 }
1527 }
1528
parse_num_or_str(char ** inp,u64 * num,const char ** str,const char * str_delim)1529 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1530 const char *str_delim)
1531 {
1532 *inp += strspn(*inp, " ");
1533
1534 if (isdigit(**inp)) {
1535 char *endptr;
1536
1537 if (!num)
1538 return -EINVAL;
1539 errno = 0;
1540 *num = strtoull(*inp, &endptr, 0);
1541 if (errno)
1542 return -errno;
1543 if (endptr == *inp)
1544 return -EINVAL;
1545 *inp = endptr;
1546 } else {
1547 size_t n;
1548
1549 if (!str)
1550 return -EINVAL;
1551 *inp += strspn(*inp, " ");
1552 *str = *inp;
1553 n = strcspn(*inp, str_delim);
1554 if (!n)
1555 return -EINVAL;
1556 *inp += n;
1557 if (**inp) {
1558 **inp = '\0';
1559 *inp += 1;
1560 }
1561 }
1562 return 0;
1563 }
1564
parse_action(struct addr_filter * filt)1565 static int parse_action(struct addr_filter *filt)
1566 {
1567 if (!strcmp(filt->action, "filter")) {
1568 filt->start = true;
1569 filt->range = true;
1570 } else if (!strcmp(filt->action, "start")) {
1571 filt->start = true;
1572 } else if (!strcmp(filt->action, "stop")) {
1573 filt->start = false;
1574 } else if (!strcmp(filt->action, "tracestop")) {
1575 filt->start = false;
1576 filt->range = true;
1577 filt->action += 5; /* Change 'tracestop' to 'stop' */
1578 } else {
1579 return -EINVAL;
1580 }
1581 return 0;
1582 }
1583
parse_sym_idx(char ** inp,int * idx)1584 static int parse_sym_idx(char **inp, int *idx)
1585 {
1586 *idx = -1;
1587
1588 *inp += strspn(*inp, " ");
1589
1590 if (**inp != '#')
1591 return 0;
1592
1593 *inp += 1;
1594
1595 if (**inp == 'g' || **inp == 'G') {
1596 *inp += 1;
1597 *idx = 0;
1598 } else {
1599 unsigned long num;
1600 char *endptr;
1601
1602 errno = 0;
1603 num = strtoul(*inp, &endptr, 0);
1604 if (errno)
1605 return -errno;
1606 if (endptr == *inp || num > INT_MAX)
1607 return -EINVAL;
1608 *inp = endptr;
1609 *idx = num;
1610 }
1611
1612 return 0;
1613 }
1614
parse_addr_size(char ** inp,u64 * num,const char ** str,int * idx)1615 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1616 {
1617 int err = parse_num_or_str(inp, num, str, " ");
1618
1619 if (!err && *str)
1620 err = parse_sym_idx(inp, idx);
1621
1622 return err;
1623 }
1624
parse_one_filter(struct addr_filter * filt,const char ** filter_inp)1625 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1626 {
1627 char *fstr;
1628 int err;
1629
1630 filt->str = fstr = strdup(*filter_inp);
1631 if (!fstr)
1632 return -ENOMEM;
1633
1634 err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1635 if (err)
1636 goto out_err;
1637
1638 err = parse_action(filt);
1639 if (err)
1640 goto out_err;
1641
1642 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1643 &filt->sym_from_idx);
1644 if (err)
1645 goto out_err;
1646
1647 fstr += strspn(fstr, " ");
1648
1649 if (*fstr == '/') {
1650 fstr += 1;
1651 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1652 &filt->sym_to_idx);
1653 if (err)
1654 goto out_err;
1655 filt->range = true;
1656 }
1657
1658 fstr += strspn(fstr, " ");
1659
1660 if (*fstr == '@') {
1661 fstr += 1;
1662 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1663 if (err)
1664 goto out_err;
1665 }
1666
1667 fstr += strspn(fstr, " ,");
1668
1669 *filter_inp += fstr - filt->str;
1670
1671 return 0;
1672
1673 out_err:
1674 addr_filter__free_str(filt);
1675
1676 return err;
1677 }
1678
addr_filters__parse_bare_filter(struct addr_filters * filts,const char * filter)1679 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1680 const char *filter)
1681 {
1682 struct addr_filter *filt;
1683 const char *fstr = filter;
1684 int err;
1685
1686 while (*fstr) {
1687 filt = addr_filter__new();
1688 err = parse_one_filter(filt, &fstr);
1689 if (err) {
1690 addr_filter__free(filt);
1691 addr_filters__exit(filts);
1692 return err;
1693 }
1694 addr_filters__add(filts, filt);
1695 }
1696
1697 return 0;
1698 }
1699
1700 struct sym_args {
1701 const char *name;
1702 u64 start;
1703 u64 size;
1704 int idx;
1705 int cnt;
1706 bool started;
1707 bool global;
1708 bool selected;
1709 bool duplicate;
1710 bool near;
1711 };
1712
kern_sym_name_match(const char * kname,const char * name)1713 static bool kern_sym_name_match(const char *kname, const char *name)
1714 {
1715 size_t n = strlen(name);
1716
1717 return !strcmp(kname, name) ||
1718 (!strncmp(kname, name, n) && kname[n] == '\t');
1719 }
1720
kern_sym_match(struct sym_args * args,const char * name,char type)1721 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1722 {
1723 /* A function with the same name, and global or the n'th found or any */
1724 return kallsyms__is_function(type) &&
1725 kern_sym_name_match(name, args->name) &&
1726 ((args->global && isupper(type)) ||
1727 (args->selected && ++(args->cnt) == args->idx) ||
1728 (!args->global && !args->selected));
1729 }
1730
find_kern_sym_cb(void * arg,const char * name,char type,u64 start)1731 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1732 {
1733 struct sym_args *args = arg;
1734
1735 if (args->started) {
1736 if (!args->size)
1737 args->size = start - args->start;
1738 if (args->selected) {
1739 if (args->size)
1740 return 1;
1741 } else if (kern_sym_match(args, name, type)) {
1742 args->duplicate = true;
1743 return 1;
1744 }
1745 } else if (kern_sym_match(args, name, type)) {
1746 args->started = true;
1747 args->start = start;
1748 }
1749
1750 return 0;
1751 }
1752
print_kern_sym_cb(void * arg,const char * name,char type,u64 start)1753 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1754 {
1755 struct sym_args *args = arg;
1756
1757 if (kern_sym_match(args, name, type)) {
1758 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1759 ++args->cnt, start, type, name);
1760 args->near = true;
1761 } else if (args->near) {
1762 args->near = false;
1763 pr_err("\t\twhich is near\t\t%s\n", name);
1764 }
1765
1766 return 0;
1767 }
1768
sym_not_found_error(const char * sym_name,int idx)1769 static int sym_not_found_error(const char *sym_name, int idx)
1770 {
1771 if (idx > 0) {
1772 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1773 idx, sym_name);
1774 } else if (!idx) {
1775 pr_err("Global symbol '%s' not found.\n", sym_name);
1776 } else {
1777 pr_err("Symbol '%s' not found.\n", sym_name);
1778 }
1779 pr_err("Note that symbols must be functions.\n");
1780
1781 return -EINVAL;
1782 }
1783
find_kern_sym(const char * sym_name,u64 * start,u64 * size,int idx)1784 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1785 {
1786 struct sym_args args = {
1787 .name = sym_name,
1788 .idx = idx,
1789 .global = !idx,
1790 .selected = idx > 0,
1791 };
1792 int err;
1793
1794 *start = 0;
1795 *size = 0;
1796
1797 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1798 if (err < 0) {
1799 pr_err("Failed to parse /proc/kallsyms\n");
1800 return err;
1801 }
1802
1803 if (args.duplicate) {
1804 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1805 args.cnt = 0;
1806 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1807 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1808 sym_name);
1809 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1810 return -EINVAL;
1811 }
1812
1813 if (!args.started) {
1814 pr_err("Kernel symbol lookup: ");
1815 return sym_not_found_error(sym_name, idx);
1816 }
1817
1818 *start = args.start;
1819 *size = args.size;
1820
1821 return 0;
1822 }
1823
find_entire_kern_cb(void * arg,const char * name __maybe_unused,char type,u64 start)1824 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1825 char type, u64 start)
1826 {
1827 struct sym_args *args = arg;
1828 u64 size;
1829
1830 if (!kallsyms__is_function(type))
1831 return 0;
1832
1833 if (!args->started) {
1834 args->started = true;
1835 args->start = start;
1836 }
1837 /* Don't know exactly where the kernel ends, so we add a page */
1838 size = round_up(start, page_size) + page_size - args->start;
1839 if (size > args->size)
1840 args->size = size;
1841
1842 return 0;
1843 }
1844
addr_filter__entire_kernel(struct addr_filter * filt)1845 static int addr_filter__entire_kernel(struct addr_filter *filt)
1846 {
1847 struct sym_args args = { .started = false };
1848 int err;
1849
1850 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1851 if (err < 0 || !args.started) {
1852 pr_err("Failed to parse /proc/kallsyms\n");
1853 return err;
1854 }
1855
1856 filt->addr = args.start;
1857 filt->size = args.size;
1858
1859 return 0;
1860 }
1861
check_end_after_start(struct addr_filter * filt,u64 start,u64 size)1862 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1863 {
1864 if (start + size >= filt->addr)
1865 return 0;
1866
1867 if (filt->sym_from) {
1868 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1869 filt->sym_to, start, filt->sym_from, filt->addr);
1870 } else {
1871 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1872 filt->sym_to, start, filt->addr);
1873 }
1874
1875 return -EINVAL;
1876 }
1877
addr_filter__resolve_kernel_syms(struct addr_filter * filt)1878 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1879 {
1880 bool no_size = false;
1881 u64 start, size;
1882 int err;
1883
1884 if (symbol_conf.kptr_restrict) {
1885 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1886 return -EINVAL;
1887 }
1888
1889 if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1890 return addr_filter__entire_kernel(filt);
1891
1892 if (filt->sym_from) {
1893 err = find_kern_sym(filt->sym_from, &start, &size,
1894 filt->sym_from_idx);
1895 if (err)
1896 return err;
1897 filt->addr = start;
1898 if (filt->range && !filt->size && !filt->sym_to) {
1899 filt->size = size;
1900 no_size = !size;
1901 }
1902 }
1903
1904 if (filt->sym_to) {
1905 err = find_kern_sym(filt->sym_to, &start, &size,
1906 filt->sym_to_idx);
1907 if (err)
1908 return err;
1909
1910 err = check_end_after_start(filt, start, size);
1911 if (err)
1912 return err;
1913 filt->size = start + size - filt->addr;
1914 no_size = !size;
1915 }
1916
1917 /* The very last symbol in kallsyms does not imply a particular size */
1918 if (no_size) {
1919 pr_err("Cannot determine size of symbol '%s'\n",
1920 filt->sym_to ? filt->sym_to : filt->sym_from);
1921 return -EINVAL;
1922 }
1923
1924 return 0;
1925 }
1926
load_dso(const char * name)1927 static struct dso *load_dso(const char *name)
1928 {
1929 struct map *map;
1930 struct dso *dso;
1931
1932 map = dso__new_map(name);
1933 if (!map)
1934 return NULL;
1935
1936 if (map__load(map) < 0)
1937 pr_err("File '%s' not found or has no symbols.\n", name);
1938
1939 dso = dso__get(map->dso);
1940
1941 map__put(map);
1942
1943 return dso;
1944 }
1945
dso_sym_match(struct symbol * sym,const char * name,int * cnt,int idx)1946 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1947 int idx)
1948 {
1949 /* Same name, and global or the n'th found or any */
1950 return !arch__compare_symbol_names(name, sym->name) &&
1951 ((!idx && sym->binding == STB_GLOBAL) ||
1952 (idx > 0 && ++*cnt == idx) ||
1953 idx < 0);
1954 }
1955
print_duplicate_syms(struct dso * dso,const char * sym_name)1956 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1957 {
1958 struct symbol *sym;
1959 bool near = false;
1960 int cnt = 0;
1961
1962 pr_err("Multiple symbols with name '%s'\n", sym_name);
1963
1964 sym = dso__first_symbol(dso);
1965 while (sym) {
1966 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1967 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1968 ++cnt, sym->start,
1969 sym->binding == STB_GLOBAL ? 'g' :
1970 sym->binding == STB_LOCAL ? 'l' : 'w',
1971 sym->name);
1972 near = true;
1973 } else if (near) {
1974 near = false;
1975 pr_err("\t\twhich is near\t\t%s\n", sym->name);
1976 }
1977 sym = dso__next_symbol(sym);
1978 }
1979
1980 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1981 sym_name);
1982 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1983 }
1984
find_dso_sym(struct dso * dso,const char * sym_name,u64 * start,u64 * size,int idx)1985 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1986 u64 *size, int idx)
1987 {
1988 struct symbol *sym;
1989 int cnt = 0;
1990
1991 *start = 0;
1992 *size = 0;
1993
1994 sym = dso__first_symbol(dso);
1995 while (sym) {
1996 if (*start) {
1997 if (!*size)
1998 *size = sym->start - *start;
1999 if (idx > 0) {
2000 if (*size)
2001 return 0;
2002 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2003 print_duplicate_syms(dso, sym_name);
2004 return -EINVAL;
2005 }
2006 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2007 *start = sym->start;
2008 *size = sym->end - sym->start;
2009 }
2010 sym = dso__next_symbol(sym);
2011 }
2012
2013 if (!*start)
2014 return sym_not_found_error(sym_name, idx);
2015
2016 return 0;
2017 }
2018
addr_filter__entire_dso(struct addr_filter * filt,struct dso * dso)2019 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2020 {
2021 if (dso__data_file_size(dso, NULL)) {
2022 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2023 filt->filename);
2024 return -EINVAL;
2025 }
2026
2027 filt->addr = 0;
2028 filt->size = dso->data.file_size;
2029
2030 return 0;
2031 }
2032
addr_filter__resolve_syms(struct addr_filter * filt)2033 static int addr_filter__resolve_syms(struct addr_filter *filt)
2034 {
2035 u64 start, size;
2036 struct dso *dso;
2037 int err = 0;
2038
2039 if (!filt->sym_from && !filt->sym_to)
2040 return 0;
2041
2042 if (!filt->filename)
2043 return addr_filter__resolve_kernel_syms(filt);
2044
2045 dso = load_dso(filt->filename);
2046 if (!dso) {
2047 pr_err("Failed to load symbols from: %s\n", filt->filename);
2048 return -EINVAL;
2049 }
2050
2051 if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2052 err = addr_filter__entire_dso(filt, dso);
2053 goto put_dso;
2054 }
2055
2056 if (filt->sym_from) {
2057 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2058 filt->sym_from_idx);
2059 if (err)
2060 goto put_dso;
2061 filt->addr = start;
2062 if (filt->range && !filt->size && !filt->sym_to)
2063 filt->size = size;
2064 }
2065
2066 if (filt->sym_to) {
2067 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2068 filt->sym_to_idx);
2069 if (err)
2070 goto put_dso;
2071
2072 err = check_end_after_start(filt, start, size);
2073 if (err)
2074 return err;
2075
2076 filt->size = start + size - filt->addr;
2077 }
2078
2079 put_dso:
2080 dso__put(dso);
2081
2082 return err;
2083 }
2084
addr_filter__to_str(struct addr_filter * filt)2085 static char *addr_filter__to_str(struct addr_filter *filt)
2086 {
2087 char filename_buf[PATH_MAX];
2088 const char *at = "";
2089 const char *fn = "";
2090 char *filter;
2091 int err;
2092
2093 if (filt->filename) {
2094 at = "@";
2095 fn = realpath(filt->filename, filename_buf);
2096 if (!fn)
2097 return NULL;
2098 }
2099
2100 if (filt->range) {
2101 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2102 filt->action, filt->addr, filt->size, at, fn);
2103 } else {
2104 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2105 filt->action, filt->addr, at, fn);
2106 }
2107
2108 return err < 0 ? NULL : filter;
2109 }
2110
parse_addr_filter(struct evsel * evsel,const char * filter,int max_nr)2111 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2112 int max_nr)
2113 {
2114 struct addr_filters filts;
2115 struct addr_filter *filt;
2116 int err;
2117
2118 addr_filters__init(&filts);
2119
2120 err = addr_filters__parse_bare_filter(&filts, filter);
2121 if (err)
2122 goto out_exit;
2123
2124 if (filts.cnt > max_nr) {
2125 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2126 filts.cnt, max_nr);
2127 err = -EINVAL;
2128 goto out_exit;
2129 }
2130
2131 list_for_each_entry(filt, &filts.head, list) {
2132 char *new_filter;
2133
2134 err = addr_filter__resolve_syms(filt);
2135 if (err)
2136 goto out_exit;
2137
2138 new_filter = addr_filter__to_str(filt);
2139 if (!new_filter) {
2140 err = -ENOMEM;
2141 goto out_exit;
2142 }
2143
2144 if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2145 err = -ENOMEM;
2146 goto out_exit;
2147 }
2148 }
2149
2150 out_exit:
2151 addr_filters__exit(&filts);
2152
2153 if (err) {
2154 pr_err("Failed to parse address filter: '%s'\n", filter);
2155 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2156 pr_err("Where multiple filters are separated by space or comma.\n");
2157 }
2158
2159 return err;
2160 }
2161
perf_evsel__find_pmu(struct evsel * evsel)2162 static struct perf_pmu *perf_evsel__find_pmu(struct evsel *evsel)
2163 {
2164 struct perf_pmu *pmu = NULL;
2165
2166 while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2167 if (pmu->type == evsel->core.attr.type)
2168 break;
2169 }
2170
2171 return pmu;
2172 }
2173
perf_evsel__nr_addr_filter(struct evsel * evsel)2174 static int perf_evsel__nr_addr_filter(struct evsel *evsel)
2175 {
2176 struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2177 int nr_addr_filters = 0;
2178
2179 if (!pmu)
2180 return 0;
2181
2182 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2183
2184 return nr_addr_filters;
2185 }
2186
auxtrace_parse_filters(struct evlist * evlist)2187 int auxtrace_parse_filters(struct evlist *evlist)
2188 {
2189 struct evsel *evsel;
2190 char *filter;
2191 int err, max_nr;
2192
2193 evlist__for_each_entry(evlist, evsel) {
2194 filter = evsel->filter;
2195 max_nr = perf_evsel__nr_addr_filter(evsel);
2196 if (!filter || !max_nr)
2197 continue;
2198 evsel->filter = NULL;
2199 err = parse_addr_filter(evsel, filter, max_nr);
2200 free(filter);
2201 if (err)
2202 return err;
2203 pr_debug("Address filter: %s\n", evsel->filter);
2204 }
2205
2206 return 0;
2207 }
2208
auxtrace__process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,struct perf_tool * tool)2209 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2210 struct perf_sample *sample, struct perf_tool *tool)
2211 {
2212 if (!session->auxtrace)
2213 return 0;
2214
2215 return session->auxtrace->process_event(session, event, sample, tool);
2216 }
2217
auxtrace__flush_events(struct perf_session * session,struct perf_tool * tool)2218 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2219 {
2220 if (!session->auxtrace)
2221 return 0;
2222
2223 return session->auxtrace->flush_events(session, tool);
2224 }
2225
auxtrace__free_events(struct perf_session * session)2226 void auxtrace__free_events(struct perf_session *session)
2227 {
2228 if (!session->auxtrace)
2229 return;
2230
2231 return session->auxtrace->free_events(session);
2232 }
2233
auxtrace__free(struct perf_session * session)2234 void auxtrace__free(struct perf_session *session)
2235 {
2236 if (!session->auxtrace)
2237 return;
2238
2239 return session->auxtrace->free(session);
2240 }
2241