1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
4 *
5 * Created by: Nicolas Pitre, March 2012
6 * Copyright: (C) 2012-2013 Linaro Limited
7 */
8
9 #include <linux/atomic.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched/signal.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/interrupt.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/cpu.h>
18 #include <linux/cpumask.h>
19 #include <linux/kthread.h>
20 #include <linux/wait.h>
21 #include <linux/time.h>
22 #include <linux/clockchips.h>
23 #include <linux/hrtimer.h>
24 #include <linux/tick.h>
25 #include <linux/notifier.h>
26 #include <linux/mm.h>
27 #include <linux/mutex.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/string.h>
31 #include <linux/sysfs.h>
32 #include <linux/irqchip/arm-gic.h>
33 #include <linux/moduleparam.h>
34
35 #include <asm/smp_plat.h>
36 #include <asm/cputype.h>
37 #include <asm/suspend.h>
38 #include <asm/mcpm.h>
39 #include <asm/bL_switcher.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/power_cpu_migrate.h>
43
44
45 /*
46 * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
47 * __attribute_const__ and we don't want the compiler to assume any
48 * constness here as the value _does_ change along some code paths.
49 */
50
read_mpidr(void)51 static int read_mpidr(void)
52 {
53 unsigned int id;
54 asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
55 return id & MPIDR_HWID_BITMASK;
56 }
57
58 /*
59 * bL switcher core code.
60 */
61
bL_do_switch(void * _arg)62 static void bL_do_switch(void *_arg)
63 {
64 unsigned ib_mpidr, ib_cpu, ib_cluster;
65 long volatile handshake, **handshake_ptr = _arg;
66
67 pr_debug("%s\n", __func__);
68
69 ib_mpidr = cpu_logical_map(smp_processor_id());
70 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
71 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
72
73 /* Advertise our handshake location */
74 if (handshake_ptr) {
75 handshake = 0;
76 *handshake_ptr = &handshake;
77 } else
78 handshake = -1;
79
80 /*
81 * Our state has been saved at this point. Let's release our
82 * inbound CPU.
83 */
84 mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
85 sev();
86
87 /*
88 * From this point, we must assume that our counterpart CPU might
89 * have taken over in its parallel world already, as if execution
90 * just returned from cpu_suspend(). It is therefore important to
91 * be very careful not to make any change the other guy is not
92 * expecting. This is why we need stack isolation.
93 *
94 * Fancy under cover tasks could be performed here. For now
95 * we have none.
96 */
97
98 /*
99 * Let's wait until our inbound is alive.
100 */
101 while (!handshake) {
102 wfe();
103 smp_mb();
104 }
105
106 /* Let's put ourself down. */
107 mcpm_cpu_power_down();
108
109 /* should never get here */
110 BUG();
111 }
112
113 /*
114 * Stack isolation. To ensure 'current' remains valid, we just use another
115 * piece of our thread's stack space which should be fairly lightly used.
116 * The selected area starts just above the thread_info structure located
117 * at the very bottom of the stack, aligned to a cache line, and indexed
118 * with the cluster number.
119 */
120 #define STACK_SIZE 512
121 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
bL_switchpoint(unsigned long _arg)122 static int bL_switchpoint(unsigned long _arg)
123 {
124 unsigned int mpidr = read_mpidr();
125 unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
126 void *stack = current_thread_info() + 1;
127 stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
128 stack += clusterid * STACK_SIZE + STACK_SIZE;
129 call_with_stack(bL_do_switch, (void *)_arg, stack);
130 BUG();
131 }
132
133 /*
134 * Generic switcher interface
135 */
136
137 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
138 static int bL_switcher_cpu_pairing[NR_CPUS];
139
140 /*
141 * bL_switch_to - Switch to a specific cluster for the current CPU
142 * @new_cluster_id: the ID of the cluster to switch to.
143 *
144 * This function must be called on the CPU to be switched.
145 * Returns 0 on success, else a negative status code.
146 */
bL_switch_to(unsigned int new_cluster_id)147 static int bL_switch_to(unsigned int new_cluster_id)
148 {
149 unsigned int mpidr, this_cpu, that_cpu;
150 unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
151 struct completion inbound_alive;
152 long volatile *handshake_ptr;
153 int ipi_nr, ret;
154
155 this_cpu = smp_processor_id();
156 ob_mpidr = read_mpidr();
157 ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
158 ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
159 BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
160
161 if (new_cluster_id == ob_cluster)
162 return 0;
163
164 that_cpu = bL_switcher_cpu_pairing[this_cpu];
165 ib_mpidr = cpu_logical_map(that_cpu);
166 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
167 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
168
169 pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
170 this_cpu, ob_mpidr, ib_mpidr);
171
172 this_cpu = smp_processor_id();
173
174 /* Close the gate for our entry vectors */
175 mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
176 mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
177
178 /* Install our "inbound alive" notifier. */
179 init_completion(&inbound_alive);
180 ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
181 ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
182 mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
183
184 /*
185 * Let's wake up the inbound CPU now in case it requires some delay
186 * to come online, but leave it gated in our entry vector code.
187 */
188 ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
189 if (ret) {
190 pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
191 return ret;
192 }
193
194 /*
195 * Raise a SGI on the inbound CPU to make sure it doesn't stall
196 * in a possible WFI, such as in bL_power_down().
197 */
198 gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
199
200 /*
201 * Wait for the inbound to come up. This allows for other
202 * tasks to be scheduled in the mean time.
203 */
204 wait_for_completion(&inbound_alive);
205 mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
206
207 /*
208 * From this point we are entering the switch critical zone
209 * and can't take any interrupts anymore.
210 */
211 local_irq_disable();
212 local_fiq_disable();
213 trace_cpu_migrate_begin(ktime_get_real_ns(), ob_mpidr);
214
215 /* redirect GIC's SGIs to our counterpart */
216 gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
217
218 tick_suspend_local();
219
220 ret = cpu_pm_enter();
221
222 /* we can not tolerate errors at this point */
223 if (ret)
224 panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
225
226 /* Swap the physical CPUs in the logical map for this logical CPU. */
227 cpu_logical_map(this_cpu) = ib_mpidr;
228 cpu_logical_map(that_cpu) = ob_mpidr;
229
230 /* Let's do the actual CPU switch. */
231 ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
232 if (ret > 0)
233 panic("%s: cpu_suspend() returned %d\n", __func__, ret);
234
235 /* We are executing on the inbound CPU at this point */
236 mpidr = read_mpidr();
237 pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
238 BUG_ON(mpidr != ib_mpidr);
239
240 mcpm_cpu_powered_up();
241
242 ret = cpu_pm_exit();
243
244 tick_resume_local();
245
246 trace_cpu_migrate_finish(ktime_get_real_ns(), ib_mpidr);
247 local_fiq_enable();
248 local_irq_enable();
249
250 *handshake_ptr = 1;
251 dsb_sev();
252
253 if (ret)
254 pr_err("%s exiting with error %d\n", __func__, ret);
255 return ret;
256 }
257
258 struct bL_thread {
259 spinlock_t lock;
260 struct task_struct *task;
261 wait_queue_head_t wq;
262 int wanted_cluster;
263 struct completion started;
264 bL_switch_completion_handler completer;
265 void *completer_cookie;
266 };
267
268 static struct bL_thread bL_threads[NR_CPUS];
269
bL_switcher_thread(void * arg)270 static int bL_switcher_thread(void *arg)
271 {
272 struct bL_thread *t = arg;
273 struct sched_param param = { .sched_priority = 1 };
274 int cluster;
275 bL_switch_completion_handler completer;
276 void *completer_cookie;
277
278 sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m);
279 complete(&t->started);
280
281 do {
282 if (signal_pending(current))
283 flush_signals(current);
284 wait_event_interruptible(t->wq,
285 t->wanted_cluster != -1 ||
286 kthread_should_stop());
287
288 spin_lock(&t->lock);
289 cluster = t->wanted_cluster;
290 completer = t->completer;
291 completer_cookie = t->completer_cookie;
292 t->wanted_cluster = -1;
293 t->completer = NULL;
294 spin_unlock(&t->lock);
295
296 if (cluster != -1) {
297 bL_switch_to(cluster);
298
299 if (completer)
300 completer(completer_cookie);
301 }
302 } while (!kthread_should_stop());
303
304 return 0;
305 }
306
bL_switcher_thread_create(int cpu,void * arg)307 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
308 {
309 struct task_struct *task;
310
311 task = kthread_create_on_node(bL_switcher_thread, arg,
312 cpu_to_node(cpu), "kswitcher_%d", cpu);
313 if (!IS_ERR(task)) {
314 kthread_bind(task, cpu);
315 wake_up_process(task);
316 } else
317 pr_err("%s failed for CPU %d\n", __func__, cpu);
318 return task;
319 }
320
321 /*
322 * bL_switch_request_cb - Switch to a specific cluster for the given CPU,
323 * with completion notification via a callback
324 *
325 * @cpu: the CPU to switch
326 * @new_cluster_id: the ID of the cluster to switch to.
327 * @completer: switch completion callback. if non-NULL,
328 * @completer(@completer_cookie) will be called on completion of
329 * the switch, in non-atomic context.
330 * @completer_cookie: opaque context argument for @completer.
331 *
332 * This function causes a cluster switch on the given CPU by waking up
333 * the appropriate switcher thread. This function may or may not return
334 * before the switch has occurred.
335 *
336 * If a @completer callback function is supplied, it will be called when
337 * the switch is complete. This can be used to determine asynchronously
338 * when the switch is complete, regardless of when bL_switch_request()
339 * returns. When @completer is supplied, no new switch request is permitted
340 * for the affected CPU until after the switch is complete, and @completer
341 * has returned.
342 */
bL_switch_request_cb(unsigned int cpu,unsigned int new_cluster_id,bL_switch_completion_handler completer,void * completer_cookie)343 int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
344 bL_switch_completion_handler completer,
345 void *completer_cookie)
346 {
347 struct bL_thread *t;
348
349 if (cpu >= ARRAY_SIZE(bL_threads)) {
350 pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
351 return -EINVAL;
352 }
353
354 t = &bL_threads[cpu];
355
356 if (IS_ERR(t->task))
357 return PTR_ERR(t->task);
358 if (!t->task)
359 return -ESRCH;
360
361 spin_lock(&t->lock);
362 if (t->completer) {
363 spin_unlock(&t->lock);
364 return -EBUSY;
365 }
366 t->completer = completer;
367 t->completer_cookie = completer_cookie;
368 t->wanted_cluster = new_cluster_id;
369 spin_unlock(&t->lock);
370 wake_up(&t->wq);
371 return 0;
372 }
373 EXPORT_SYMBOL_GPL(bL_switch_request_cb);
374
375 /*
376 * Activation and configuration code.
377 */
378
379 static DEFINE_MUTEX(bL_switcher_activation_lock);
380 static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
381 static unsigned int bL_switcher_active;
382 static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
383 static cpumask_t bL_switcher_removed_logical_cpus;
384
bL_switcher_register_notifier(struct notifier_block * nb)385 int bL_switcher_register_notifier(struct notifier_block *nb)
386 {
387 return blocking_notifier_chain_register(&bL_activation_notifier, nb);
388 }
389 EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
390
bL_switcher_unregister_notifier(struct notifier_block * nb)391 int bL_switcher_unregister_notifier(struct notifier_block *nb)
392 {
393 return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
394 }
395 EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
396
bL_activation_notify(unsigned long val)397 static int bL_activation_notify(unsigned long val)
398 {
399 int ret;
400
401 ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
402 if (ret & NOTIFY_STOP_MASK)
403 pr_err("%s: notifier chain failed with status 0x%x\n",
404 __func__, ret);
405 return notifier_to_errno(ret);
406 }
407
bL_switcher_restore_cpus(void)408 static void bL_switcher_restore_cpus(void)
409 {
410 int i;
411
412 for_each_cpu(i, &bL_switcher_removed_logical_cpus) {
413 struct device *cpu_dev = get_cpu_device(i);
414 int ret = device_online(cpu_dev);
415 if (ret)
416 dev_err(cpu_dev, "switcher: unable to restore CPU\n");
417 }
418 }
419
bL_switcher_halve_cpus(void)420 static int bL_switcher_halve_cpus(void)
421 {
422 int i, j, cluster_0, gic_id, ret;
423 unsigned int cpu, cluster, mask;
424 cpumask_t available_cpus;
425
426 /* First pass to validate what we have */
427 mask = 0;
428 for_each_online_cpu(i) {
429 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
430 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
431 if (cluster >= 2) {
432 pr_err("%s: only dual cluster systems are supported\n", __func__);
433 return -EINVAL;
434 }
435 if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
436 return -EINVAL;
437 mask |= (1 << cluster);
438 }
439 if (mask != 3) {
440 pr_err("%s: no CPU pairing possible\n", __func__);
441 return -EINVAL;
442 }
443
444 /*
445 * Now let's do the pairing. We match each CPU with another CPU
446 * from a different cluster. To get a uniform scheduling behavior
447 * without fiddling with CPU topology and compute capacity data,
448 * we'll use logical CPUs initially belonging to the same cluster.
449 */
450 memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
451 cpumask_copy(&available_cpus, cpu_online_mask);
452 cluster_0 = -1;
453 for_each_cpu(i, &available_cpus) {
454 int match = -1;
455 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
456 if (cluster_0 == -1)
457 cluster_0 = cluster;
458 if (cluster != cluster_0)
459 continue;
460 cpumask_clear_cpu(i, &available_cpus);
461 for_each_cpu(j, &available_cpus) {
462 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
463 /*
464 * Let's remember the last match to create "odd"
465 * pairings on purpose in order for other code not
466 * to assume any relation between physical and
467 * logical CPU numbers.
468 */
469 if (cluster != cluster_0)
470 match = j;
471 }
472 if (match != -1) {
473 bL_switcher_cpu_pairing[i] = match;
474 cpumask_clear_cpu(match, &available_cpus);
475 pr_info("CPU%d paired with CPU%d\n", i, match);
476 }
477 }
478
479 /*
480 * Now we disable the unwanted CPUs i.e. everything that has no
481 * pairing information (that includes the pairing counterparts).
482 */
483 cpumask_clear(&bL_switcher_removed_logical_cpus);
484 for_each_online_cpu(i) {
485 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
486 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
487
488 /* Let's take note of the GIC ID for this CPU */
489 gic_id = gic_get_cpu_id(i);
490 if (gic_id < 0) {
491 pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
492 bL_switcher_restore_cpus();
493 return -EINVAL;
494 }
495 bL_gic_id[cpu][cluster] = gic_id;
496 pr_info("GIC ID for CPU %u cluster %u is %u\n",
497 cpu, cluster, gic_id);
498
499 if (bL_switcher_cpu_pairing[i] != -1) {
500 bL_switcher_cpu_original_cluster[i] = cluster;
501 continue;
502 }
503
504 ret = device_offline(get_cpu_device(i));
505 if (ret) {
506 bL_switcher_restore_cpus();
507 return ret;
508 }
509 cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
510 }
511
512 return 0;
513 }
514
515 /* Determine the logical CPU a given physical CPU is grouped on. */
bL_switcher_get_logical_index(u32 mpidr)516 int bL_switcher_get_logical_index(u32 mpidr)
517 {
518 int cpu;
519
520 if (!bL_switcher_active)
521 return -EUNATCH;
522
523 mpidr &= MPIDR_HWID_BITMASK;
524 for_each_online_cpu(cpu) {
525 int pairing = bL_switcher_cpu_pairing[cpu];
526 if (pairing == -1)
527 continue;
528 if ((mpidr == cpu_logical_map(cpu)) ||
529 (mpidr == cpu_logical_map(pairing)))
530 return cpu;
531 }
532 return -EINVAL;
533 }
534
bL_switcher_trace_trigger_cpu(void * __always_unused info)535 static void bL_switcher_trace_trigger_cpu(void *__always_unused info)
536 {
537 trace_cpu_migrate_current(ktime_get_real_ns(), read_mpidr());
538 }
539
bL_switcher_trace_trigger(void)540 int bL_switcher_trace_trigger(void)
541 {
542 preempt_disable();
543
544 bL_switcher_trace_trigger_cpu(NULL);
545 smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true);
546
547 preempt_enable();
548
549 return 0;
550 }
551 EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger);
552
bL_switcher_enable(void)553 static int bL_switcher_enable(void)
554 {
555 int cpu, ret;
556
557 mutex_lock(&bL_switcher_activation_lock);
558 lock_device_hotplug();
559 if (bL_switcher_active) {
560 unlock_device_hotplug();
561 mutex_unlock(&bL_switcher_activation_lock);
562 return 0;
563 }
564
565 pr_info("big.LITTLE switcher initializing\n");
566
567 ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
568 if (ret)
569 goto error;
570
571 ret = bL_switcher_halve_cpus();
572 if (ret)
573 goto error;
574
575 bL_switcher_trace_trigger();
576
577 for_each_online_cpu(cpu) {
578 struct bL_thread *t = &bL_threads[cpu];
579 spin_lock_init(&t->lock);
580 init_waitqueue_head(&t->wq);
581 init_completion(&t->started);
582 t->wanted_cluster = -1;
583 t->task = bL_switcher_thread_create(cpu, t);
584 }
585
586 bL_switcher_active = 1;
587 bL_activation_notify(BL_NOTIFY_POST_ENABLE);
588 pr_info("big.LITTLE switcher initialized\n");
589 goto out;
590
591 error:
592 pr_warn("big.LITTLE switcher initialization failed\n");
593 bL_activation_notify(BL_NOTIFY_POST_DISABLE);
594
595 out:
596 unlock_device_hotplug();
597 mutex_unlock(&bL_switcher_activation_lock);
598 return ret;
599 }
600
601 #ifdef CONFIG_SYSFS
602
bL_switcher_disable(void)603 static void bL_switcher_disable(void)
604 {
605 unsigned int cpu, cluster;
606 struct bL_thread *t;
607 struct task_struct *task;
608
609 mutex_lock(&bL_switcher_activation_lock);
610 lock_device_hotplug();
611
612 if (!bL_switcher_active)
613 goto out;
614
615 if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
616 bL_activation_notify(BL_NOTIFY_POST_ENABLE);
617 goto out;
618 }
619
620 bL_switcher_active = 0;
621
622 /*
623 * To deactivate the switcher, we must shut down the switcher
624 * threads to prevent any other requests from being accepted.
625 * Then, if the final cluster for given logical CPU is not the
626 * same as the original one, we'll recreate a switcher thread
627 * just for the purpose of switching the CPU back without any
628 * possibility for interference from external requests.
629 */
630 for_each_online_cpu(cpu) {
631 t = &bL_threads[cpu];
632 task = t->task;
633 t->task = NULL;
634 if (!task || IS_ERR(task))
635 continue;
636 kthread_stop(task);
637 /* no more switch may happen on this CPU at this point */
638 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
639 if (cluster == bL_switcher_cpu_original_cluster[cpu])
640 continue;
641 init_completion(&t->started);
642 t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
643 task = bL_switcher_thread_create(cpu, t);
644 if (!IS_ERR(task)) {
645 wait_for_completion(&t->started);
646 kthread_stop(task);
647 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
648 if (cluster == bL_switcher_cpu_original_cluster[cpu])
649 continue;
650 }
651 /* If execution gets here, we're in trouble. */
652 pr_crit("%s: unable to restore original cluster for CPU %d\n",
653 __func__, cpu);
654 pr_crit("%s: CPU %d can't be restored\n",
655 __func__, bL_switcher_cpu_pairing[cpu]);
656 cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
657 &bL_switcher_removed_logical_cpus);
658 }
659
660 bL_switcher_restore_cpus();
661 bL_switcher_trace_trigger();
662
663 bL_activation_notify(BL_NOTIFY_POST_DISABLE);
664
665 out:
666 unlock_device_hotplug();
667 mutex_unlock(&bL_switcher_activation_lock);
668 }
669
bL_switcher_active_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)670 static ssize_t bL_switcher_active_show(struct kobject *kobj,
671 struct kobj_attribute *attr, char *buf)
672 {
673 return sprintf(buf, "%u\n", bL_switcher_active);
674 }
675
bL_switcher_active_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)676 static ssize_t bL_switcher_active_store(struct kobject *kobj,
677 struct kobj_attribute *attr, const char *buf, size_t count)
678 {
679 int ret;
680
681 switch (buf[0]) {
682 case '0':
683 bL_switcher_disable();
684 ret = 0;
685 break;
686 case '1':
687 ret = bL_switcher_enable();
688 break;
689 default:
690 ret = -EINVAL;
691 }
692
693 return (ret >= 0) ? count : ret;
694 }
695
bL_switcher_trace_trigger_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)696 static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj,
697 struct kobj_attribute *attr, const char *buf, size_t count)
698 {
699 int ret = bL_switcher_trace_trigger();
700
701 return ret ? ret : count;
702 }
703
704 static struct kobj_attribute bL_switcher_active_attr =
705 __ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
706
707 static struct kobj_attribute bL_switcher_trace_trigger_attr =
708 __ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store);
709
710 static struct attribute *bL_switcher_attrs[] = {
711 &bL_switcher_active_attr.attr,
712 &bL_switcher_trace_trigger_attr.attr,
713 NULL,
714 };
715
716 static struct attribute_group bL_switcher_attr_group = {
717 .attrs = bL_switcher_attrs,
718 };
719
720 static struct kobject *bL_switcher_kobj;
721
bL_switcher_sysfs_init(void)722 static int __init bL_switcher_sysfs_init(void)
723 {
724 int ret;
725
726 bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
727 if (!bL_switcher_kobj)
728 return -ENOMEM;
729 ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
730 if (ret)
731 kobject_put(bL_switcher_kobj);
732 return ret;
733 }
734
735 #endif /* CONFIG_SYSFS */
736
bL_switcher_get_enabled(void)737 bool bL_switcher_get_enabled(void)
738 {
739 mutex_lock(&bL_switcher_activation_lock);
740
741 return bL_switcher_active;
742 }
743 EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
744
bL_switcher_put_enabled(void)745 void bL_switcher_put_enabled(void)
746 {
747 mutex_unlock(&bL_switcher_activation_lock);
748 }
749 EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
750
751 /*
752 * Veto any CPU hotplug operation on those CPUs we've removed
753 * while the switcher is active.
754 * We're just not ready to deal with that given the trickery involved.
755 */
bL_switcher_cpu_pre(unsigned int cpu)756 static int bL_switcher_cpu_pre(unsigned int cpu)
757 {
758 int pairing;
759
760 if (!bL_switcher_active)
761 return 0;
762
763 pairing = bL_switcher_cpu_pairing[cpu];
764
765 if (pairing == -1)
766 return -EINVAL;
767 return 0;
768 }
769
770 static bool no_bL_switcher;
771 core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
772
bL_switcher_init(void)773 static int __init bL_switcher_init(void)
774 {
775 int ret;
776
777 if (!mcpm_is_available())
778 return -ENODEV;
779
780 cpuhp_setup_state_nocalls(CPUHP_ARM_BL_PREPARE, "arm/bl:prepare",
781 bL_switcher_cpu_pre, NULL);
782 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "arm/bl:predown",
783 NULL, bL_switcher_cpu_pre);
784 if (ret < 0) {
785 cpuhp_remove_state_nocalls(CPUHP_ARM_BL_PREPARE);
786 pr_err("bL_switcher: Failed to allocate a hotplug state\n");
787 return ret;
788 }
789 if (!no_bL_switcher) {
790 ret = bL_switcher_enable();
791 if (ret)
792 return ret;
793 }
794
795 #ifdef CONFIG_SYSFS
796 ret = bL_switcher_sysfs_init();
797 if (ret)
798 pr_err("%s: unable to create sysfs entry\n", __func__);
799 #endif
800
801 return 0;
802 }
803
804 late_initcall(bL_switcher_init);
805