1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Implementation of the kernel access vector cache (AVC).
4 *
5 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
9 * Replaced the avc_lock spinlock by RCU.
10 *
11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12 */
13 #include <linux/types.h>
14 #include <linux/stddef.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/fs.h>
18 #include <linux/dcache.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/percpu.h>
22 #include <linux/list.h>
23 #include <net/sock.h>
24 #include <linux/un.h>
25 #include <net/af_unix.h>
26 #include <linux/ip.h>
27 #include <linux/audit.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include "avc.h"
31 #include "avc_ss.h"
32 #include "classmap.h"
33
34 #define AVC_CACHE_SLOTS 512
35 #define AVC_DEF_CACHE_THRESHOLD 512
36 #define AVC_CACHE_RECLAIM 16
37
38 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
39 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
40 #else
41 #define avc_cache_stats_incr(field) do {} while (0)
42 #endif
43
44 struct avc_entry {
45 u32 ssid;
46 u32 tsid;
47 u16 tclass;
48 struct av_decision avd;
49 struct avc_xperms_node *xp_node;
50 };
51
52 struct avc_node {
53 struct avc_entry ae;
54 struct hlist_node list; /* anchored in avc_cache->slots[i] */
55 struct rcu_head rhead;
56 };
57
58 struct avc_xperms_decision_node {
59 struct extended_perms_decision xpd;
60 struct list_head xpd_list; /* list of extended_perms_decision */
61 };
62
63 struct avc_xperms_node {
64 struct extended_perms xp;
65 struct list_head xpd_head; /* list head of extended_perms_decision */
66 };
67
68 struct avc_cache {
69 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
70 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
71 atomic_t lru_hint; /* LRU hint for reclaim scan */
72 atomic_t active_nodes;
73 u32 latest_notif; /* latest revocation notification */
74 };
75
76 struct avc_callback_node {
77 int (*callback) (u32 event);
78 u32 events;
79 struct avc_callback_node *next;
80 };
81
82 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
83 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
84 #endif
85
86 struct selinux_avc {
87 unsigned int avc_cache_threshold;
88 struct avc_cache avc_cache;
89 };
90
91 static struct selinux_avc selinux_avc;
92
selinux_avc_init(struct selinux_avc ** avc)93 void selinux_avc_init(struct selinux_avc **avc)
94 {
95 int i;
96
97 selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
98 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
99 INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
100 spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
101 }
102 atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
103 atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
104 *avc = &selinux_avc;
105 }
106
avc_get_cache_threshold(struct selinux_avc * avc)107 unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
108 {
109 return avc->avc_cache_threshold;
110 }
111
avc_set_cache_threshold(struct selinux_avc * avc,unsigned int cache_threshold)112 void avc_set_cache_threshold(struct selinux_avc *avc,
113 unsigned int cache_threshold)
114 {
115 avc->avc_cache_threshold = cache_threshold;
116 }
117
118 static struct avc_callback_node *avc_callbacks;
119 static struct kmem_cache *avc_node_cachep;
120 static struct kmem_cache *avc_xperms_data_cachep;
121 static struct kmem_cache *avc_xperms_decision_cachep;
122 static struct kmem_cache *avc_xperms_cachep;
123
avc_hash(u32 ssid,u32 tsid,u16 tclass)124 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
125 {
126 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
127 }
128
129 /**
130 * avc_init - Initialize the AVC.
131 *
132 * Initialize the access vector cache.
133 */
avc_init(void)134 void __init avc_init(void)
135 {
136 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
137 0, SLAB_PANIC, NULL);
138 avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
139 sizeof(struct avc_xperms_node),
140 0, SLAB_PANIC, NULL);
141 avc_xperms_decision_cachep = kmem_cache_create(
142 "avc_xperms_decision_node",
143 sizeof(struct avc_xperms_decision_node),
144 0, SLAB_PANIC, NULL);
145 avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
146 sizeof(struct extended_perms_data),
147 0, SLAB_PANIC, NULL);
148 }
149
avc_get_hash_stats(struct selinux_avc * avc,char * page)150 int avc_get_hash_stats(struct selinux_avc *avc, char *page)
151 {
152 int i, chain_len, max_chain_len, slots_used;
153 struct avc_node *node;
154 struct hlist_head *head;
155
156 rcu_read_lock();
157
158 slots_used = 0;
159 max_chain_len = 0;
160 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
161 head = &avc->avc_cache.slots[i];
162 if (!hlist_empty(head)) {
163 slots_used++;
164 chain_len = 0;
165 hlist_for_each_entry_rcu(node, head, list)
166 chain_len++;
167 if (chain_len > max_chain_len)
168 max_chain_len = chain_len;
169 }
170 }
171
172 rcu_read_unlock();
173
174 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
175 "longest chain: %d\n",
176 atomic_read(&avc->avc_cache.active_nodes),
177 slots_used, AVC_CACHE_SLOTS, max_chain_len);
178 }
179
180 /*
181 * using a linked list for extended_perms_decision lookup because the list is
182 * always small. i.e. less than 5, typically 1
183 */
avc_xperms_decision_lookup(u8 driver,struct avc_xperms_node * xp_node)184 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
185 struct avc_xperms_node *xp_node)
186 {
187 struct avc_xperms_decision_node *xpd_node;
188
189 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
190 if (xpd_node->xpd.driver == driver)
191 return &xpd_node->xpd;
192 }
193 return NULL;
194 }
195
196 static inline unsigned int
avc_xperms_has_perm(struct extended_perms_decision * xpd,u8 perm,u8 which)197 avc_xperms_has_perm(struct extended_perms_decision *xpd,
198 u8 perm, u8 which)
199 {
200 unsigned int rc = 0;
201
202 if ((which == XPERMS_ALLOWED) &&
203 (xpd->used & XPERMS_ALLOWED))
204 rc = security_xperm_test(xpd->allowed->p, perm);
205 else if ((which == XPERMS_AUDITALLOW) &&
206 (xpd->used & XPERMS_AUDITALLOW))
207 rc = security_xperm_test(xpd->auditallow->p, perm);
208 else if ((which == XPERMS_DONTAUDIT) &&
209 (xpd->used & XPERMS_DONTAUDIT))
210 rc = security_xperm_test(xpd->dontaudit->p, perm);
211 return rc;
212 }
213
avc_xperms_allow_perm(struct avc_xperms_node * xp_node,u8 driver,u8 perm)214 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
215 u8 driver, u8 perm)
216 {
217 struct extended_perms_decision *xpd;
218 security_xperm_set(xp_node->xp.drivers.p, driver);
219 xpd = avc_xperms_decision_lookup(driver, xp_node);
220 if (xpd && xpd->allowed)
221 security_xperm_set(xpd->allowed->p, perm);
222 }
223
avc_xperms_decision_free(struct avc_xperms_decision_node * xpd_node)224 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
225 {
226 struct extended_perms_decision *xpd;
227
228 xpd = &xpd_node->xpd;
229 if (xpd->allowed)
230 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
231 if (xpd->auditallow)
232 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
233 if (xpd->dontaudit)
234 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
235 kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
236 }
237
avc_xperms_free(struct avc_xperms_node * xp_node)238 static void avc_xperms_free(struct avc_xperms_node *xp_node)
239 {
240 struct avc_xperms_decision_node *xpd_node, *tmp;
241
242 if (!xp_node)
243 return;
244
245 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
246 list_del(&xpd_node->xpd_list);
247 avc_xperms_decision_free(xpd_node);
248 }
249 kmem_cache_free(avc_xperms_cachep, xp_node);
250 }
251
avc_copy_xperms_decision(struct extended_perms_decision * dest,struct extended_perms_decision * src)252 static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
253 struct extended_perms_decision *src)
254 {
255 dest->driver = src->driver;
256 dest->used = src->used;
257 if (dest->used & XPERMS_ALLOWED)
258 memcpy(dest->allowed->p, src->allowed->p,
259 sizeof(src->allowed->p));
260 if (dest->used & XPERMS_AUDITALLOW)
261 memcpy(dest->auditallow->p, src->auditallow->p,
262 sizeof(src->auditallow->p));
263 if (dest->used & XPERMS_DONTAUDIT)
264 memcpy(dest->dontaudit->p, src->dontaudit->p,
265 sizeof(src->dontaudit->p));
266 }
267
268 /*
269 * similar to avc_copy_xperms_decision, but only copy decision
270 * information relevant to this perm
271 */
avc_quick_copy_xperms_decision(u8 perm,struct extended_perms_decision * dest,struct extended_perms_decision * src)272 static inline void avc_quick_copy_xperms_decision(u8 perm,
273 struct extended_perms_decision *dest,
274 struct extended_perms_decision *src)
275 {
276 /*
277 * compute index of the u32 of the 256 bits (8 u32s) that contain this
278 * command permission
279 */
280 u8 i = perm >> 5;
281
282 dest->used = src->used;
283 if (dest->used & XPERMS_ALLOWED)
284 dest->allowed->p[i] = src->allowed->p[i];
285 if (dest->used & XPERMS_AUDITALLOW)
286 dest->auditallow->p[i] = src->auditallow->p[i];
287 if (dest->used & XPERMS_DONTAUDIT)
288 dest->dontaudit->p[i] = src->dontaudit->p[i];
289 }
290
291 static struct avc_xperms_decision_node
avc_xperms_decision_alloc(u8 which)292 *avc_xperms_decision_alloc(u8 which)
293 {
294 struct avc_xperms_decision_node *xpd_node;
295 struct extended_perms_decision *xpd;
296
297 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
298 GFP_NOWAIT | __GFP_NOWARN);
299 if (!xpd_node)
300 return NULL;
301
302 xpd = &xpd_node->xpd;
303 if (which & XPERMS_ALLOWED) {
304 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
305 GFP_NOWAIT | __GFP_NOWARN);
306 if (!xpd->allowed)
307 goto error;
308 }
309 if (which & XPERMS_AUDITALLOW) {
310 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
311 GFP_NOWAIT | __GFP_NOWARN);
312 if (!xpd->auditallow)
313 goto error;
314 }
315 if (which & XPERMS_DONTAUDIT) {
316 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
317 GFP_NOWAIT | __GFP_NOWARN);
318 if (!xpd->dontaudit)
319 goto error;
320 }
321 return xpd_node;
322 error:
323 avc_xperms_decision_free(xpd_node);
324 return NULL;
325 }
326
avc_add_xperms_decision(struct avc_node * node,struct extended_perms_decision * src)327 static int avc_add_xperms_decision(struct avc_node *node,
328 struct extended_perms_decision *src)
329 {
330 struct avc_xperms_decision_node *dest_xpd;
331
332 node->ae.xp_node->xp.len++;
333 dest_xpd = avc_xperms_decision_alloc(src->used);
334 if (!dest_xpd)
335 return -ENOMEM;
336 avc_copy_xperms_decision(&dest_xpd->xpd, src);
337 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
338 return 0;
339 }
340
avc_xperms_alloc(void)341 static struct avc_xperms_node *avc_xperms_alloc(void)
342 {
343 struct avc_xperms_node *xp_node;
344
345 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN);
346 if (!xp_node)
347 return xp_node;
348 INIT_LIST_HEAD(&xp_node->xpd_head);
349 return xp_node;
350 }
351
avc_xperms_populate(struct avc_node * node,struct avc_xperms_node * src)352 static int avc_xperms_populate(struct avc_node *node,
353 struct avc_xperms_node *src)
354 {
355 struct avc_xperms_node *dest;
356 struct avc_xperms_decision_node *dest_xpd;
357 struct avc_xperms_decision_node *src_xpd;
358
359 if (src->xp.len == 0)
360 return 0;
361 dest = avc_xperms_alloc();
362 if (!dest)
363 return -ENOMEM;
364
365 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
366 dest->xp.len = src->xp.len;
367
368 /* for each source xpd allocate a destination xpd and copy */
369 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
370 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
371 if (!dest_xpd)
372 goto error;
373 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
374 list_add(&dest_xpd->xpd_list, &dest->xpd_head);
375 }
376 node->ae.xp_node = dest;
377 return 0;
378 error:
379 avc_xperms_free(dest);
380 return -ENOMEM;
381
382 }
383
avc_xperms_audit_required(u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,u32 * deniedp)384 static inline u32 avc_xperms_audit_required(u32 requested,
385 struct av_decision *avd,
386 struct extended_perms_decision *xpd,
387 u8 perm,
388 int result,
389 u32 *deniedp)
390 {
391 u32 denied, audited;
392
393 denied = requested & ~avd->allowed;
394 if (unlikely(denied)) {
395 audited = denied & avd->auditdeny;
396 if (audited && xpd) {
397 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
398 audited &= ~requested;
399 }
400 } else if (result) {
401 audited = denied = requested;
402 } else {
403 audited = requested & avd->auditallow;
404 if (audited && xpd) {
405 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
406 audited &= ~requested;
407 }
408 }
409
410 *deniedp = denied;
411 return audited;
412 }
413
avc_xperms_audit(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,struct common_audit_data * ad)414 static inline int avc_xperms_audit(struct selinux_state *state,
415 u32 ssid, u32 tsid, u16 tclass,
416 u32 requested, struct av_decision *avd,
417 struct extended_perms_decision *xpd,
418 u8 perm, int result,
419 struct common_audit_data *ad)
420 {
421 u32 audited, denied;
422
423 audited = avc_xperms_audit_required(
424 requested, avd, xpd, perm, result, &denied);
425 if (likely(!audited))
426 return 0;
427 return slow_avc_audit(state, ssid, tsid, tclass, requested,
428 audited, denied, result, ad);
429 }
430
avc_node_free(struct rcu_head * rhead)431 static void avc_node_free(struct rcu_head *rhead)
432 {
433 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
434 avc_xperms_free(node->ae.xp_node);
435 kmem_cache_free(avc_node_cachep, node);
436 avc_cache_stats_incr(frees);
437 }
438
avc_node_delete(struct selinux_avc * avc,struct avc_node * node)439 static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
440 {
441 hlist_del_rcu(&node->list);
442 call_rcu(&node->rhead, avc_node_free);
443 atomic_dec(&avc->avc_cache.active_nodes);
444 }
445
avc_node_kill(struct selinux_avc * avc,struct avc_node * node)446 static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
447 {
448 avc_xperms_free(node->ae.xp_node);
449 kmem_cache_free(avc_node_cachep, node);
450 avc_cache_stats_incr(frees);
451 atomic_dec(&avc->avc_cache.active_nodes);
452 }
453
avc_node_replace(struct selinux_avc * avc,struct avc_node * new,struct avc_node * old)454 static void avc_node_replace(struct selinux_avc *avc,
455 struct avc_node *new, struct avc_node *old)
456 {
457 hlist_replace_rcu(&old->list, &new->list);
458 call_rcu(&old->rhead, avc_node_free);
459 atomic_dec(&avc->avc_cache.active_nodes);
460 }
461
avc_reclaim_node(struct selinux_avc * avc)462 static inline int avc_reclaim_node(struct selinux_avc *avc)
463 {
464 struct avc_node *node;
465 int hvalue, try, ecx;
466 unsigned long flags;
467 struct hlist_head *head;
468 spinlock_t *lock;
469
470 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
471 hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
472 (AVC_CACHE_SLOTS - 1);
473 head = &avc->avc_cache.slots[hvalue];
474 lock = &avc->avc_cache.slots_lock[hvalue];
475
476 if (!spin_trylock_irqsave(lock, flags))
477 continue;
478
479 rcu_read_lock();
480 hlist_for_each_entry(node, head, list) {
481 avc_node_delete(avc, node);
482 avc_cache_stats_incr(reclaims);
483 ecx++;
484 if (ecx >= AVC_CACHE_RECLAIM) {
485 rcu_read_unlock();
486 spin_unlock_irqrestore(lock, flags);
487 goto out;
488 }
489 }
490 rcu_read_unlock();
491 spin_unlock_irqrestore(lock, flags);
492 }
493 out:
494 return ecx;
495 }
496
avc_alloc_node(struct selinux_avc * avc)497 static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
498 {
499 struct avc_node *node;
500
501 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN);
502 if (!node)
503 goto out;
504
505 INIT_HLIST_NODE(&node->list);
506 avc_cache_stats_incr(allocations);
507
508 if (atomic_inc_return(&avc->avc_cache.active_nodes) >
509 avc->avc_cache_threshold)
510 avc_reclaim_node(avc);
511
512 out:
513 return node;
514 }
515
avc_node_populate(struct avc_node * node,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)516 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
517 {
518 node->ae.ssid = ssid;
519 node->ae.tsid = tsid;
520 node->ae.tclass = tclass;
521 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
522 }
523
avc_search_node(struct selinux_avc * avc,u32 ssid,u32 tsid,u16 tclass)524 static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
525 u32 ssid, u32 tsid, u16 tclass)
526 {
527 struct avc_node *node, *ret = NULL;
528 int hvalue;
529 struct hlist_head *head;
530
531 hvalue = avc_hash(ssid, tsid, tclass);
532 head = &avc->avc_cache.slots[hvalue];
533 hlist_for_each_entry_rcu(node, head, list) {
534 if (ssid == node->ae.ssid &&
535 tclass == node->ae.tclass &&
536 tsid == node->ae.tsid) {
537 ret = node;
538 break;
539 }
540 }
541
542 return ret;
543 }
544
545 /**
546 * avc_lookup - Look up an AVC entry.
547 * @ssid: source security identifier
548 * @tsid: target security identifier
549 * @tclass: target security class
550 *
551 * Look up an AVC entry that is valid for the
552 * (@ssid, @tsid), interpreting the permissions
553 * based on @tclass. If a valid AVC entry exists,
554 * then this function returns the avc_node.
555 * Otherwise, this function returns NULL.
556 */
avc_lookup(struct selinux_avc * avc,u32 ssid,u32 tsid,u16 tclass)557 static struct avc_node *avc_lookup(struct selinux_avc *avc,
558 u32 ssid, u32 tsid, u16 tclass)
559 {
560 struct avc_node *node;
561
562 avc_cache_stats_incr(lookups);
563 node = avc_search_node(avc, ssid, tsid, tclass);
564
565 if (node)
566 return node;
567
568 avc_cache_stats_incr(misses);
569 return NULL;
570 }
571
avc_latest_notif_update(struct selinux_avc * avc,int seqno,int is_insert)572 static int avc_latest_notif_update(struct selinux_avc *avc,
573 int seqno, int is_insert)
574 {
575 int ret = 0;
576 static DEFINE_SPINLOCK(notif_lock);
577 unsigned long flag;
578
579 spin_lock_irqsave(¬if_lock, flag);
580 if (is_insert) {
581 if (seqno < avc->avc_cache.latest_notif) {
582 pr_warn("SELinux: avc: seqno %d < latest_notif %d\n",
583 seqno, avc->avc_cache.latest_notif);
584 ret = -EAGAIN;
585 }
586 } else {
587 if (seqno > avc->avc_cache.latest_notif)
588 avc->avc_cache.latest_notif = seqno;
589 }
590 spin_unlock_irqrestore(¬if_lock, flag);
591
592 return ret;
593 }
594
595 /**
596 * avc_insert - Insert an AVC entry.
597 * @ssid: source security identifier
598 * @tsid: target security identifier
599 * @tclass: target security class
600 * @avd: resulting av decision
601 * @xp_node: resulting extended permissions
602 *
603 * Insert an AVC entry for the SID pair
604 * (@ssid, @tsid) and class @tclass.
605 * The access vectors and the sequence number are
606 * normally provided by the security server in
607 * response to a security_compute_av() call. If the
608 * sequence number @avd->seqno is not less than the latest
609 * revocation notification, then the function copies
610 * the access vectors into a cache entry, returns
611 * avc_node inserted. Otherwise, this function returns NULL.
612 */
avc_insert(struct selinux_avc * avc,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)613 static struct avc_node *avc_insert(struct selinux_avc *avc,
614 u32 ssid, u32 tsid, u16 tclass,
615 struct av_decision *avd,
616 struct avc_xperms_node *xp_node)
617 {
618 struct avc_node *pos, *node = NULL;
619 int hvalue;
620 unsigned long flag;
621 spinlock_t *lock;
622 struct hlist_head *head;
623
624 if (avc_latest_notif_update(avc, avd->seqno, 1))
625 return NULL;
626
627 node = avc_alloc_node(avc);
628 if (!node)
629 return NULL;
630
631 avc_node_populate(node, ssid, tsid, tclass, avd);
632 if (avc_xperms_populate(node, xp_node)) {
633 avc_node_kill(avc, node);
634 return NULL;
635 }
636
637 hvalue = avc_hash(ssid, tsid, tclass);
638 head = &avc->avc_cache.slots[hvalue];
639 lock = &avc->avc_cache.slots_lock[hvalue];
640 spin_lock_irqsave(lock, flag);
641 hlist_for_each_entry(pos, head, list) {
642 if (pos->ae.ssid == ssid &&
643 pos->ae.tsid == tsid &&
644 pos->ae.tclass == tclass) {
645 avc_node_replace(avc, node, pos);
646 goto found;
647 }
648 }
649 hlist_add_head_rcu(&node->list, head);
650 found:
651 spin_unlock_irqrestore(lock, flag);
652 return node;
653 }
654
655 /**
656 * avc_audit_pre_callback - SELinux specific information
657 * will be called by generic audit code
658 * @ab: the audit buffer
659 * @a: audit_data
660 */
avc_audit_pre_callback(struct audit_buffer * ab,void * a)661 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
662 {
663 struct common_audit_data *ad = a;
664 struct selinux_audit_data *sad = ad->selinux_audit_data;
665 u32 av = sad->audited;
666 const char **perms;
667 int i, perm;
668
669 audit_log_format(ab, "avc: %s ", sad->denied ? "denied" : "granted");
670
671 if (av == 0) {
672 audit_log_format(ab, " null");
673 return;
674 }
675
676 perms = secclass_map[sad->tclass-1].perms;
677
678 audit_log_format(ab, " {");
679 i = 0;
680 perm = 1;
681 while (i < (sizeof(av) * 8)) {
682 if ((perm & av) && perms[i]) {
683 audit_log_format(ab, " %s", perms[i]);
684 av &= ~perm;
685 }
686 i++;
687 perm <<= 1;
688 }
689
690 if (av)
691 audit_log_format(ab, " 0x%x", av);
692
693 audit_log_format(ab, " } for ");
694 }
695
696 /**
697 * avc_audit_post_callback - SELinux specific information
698 * will be called by generic audit code
699 * @ab: the audit buffer
700 * @a: audit_data
701 */
avc_audit_post_callback(struct audit_buffer * ab,void * a)702 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
703 {
704 struct common_audit_data *ad = a;
705 struct selinux_audit_data *sad = ad->selinux_audit_data;
706 char *scontext;
707 u32 scontext_len;
708 int rc;
709
710 rc = security_sid_to_context(sad->state, sad->ssid, &scontext,
711 &scontext_len);
712 if (rc)
713 audit_log_format(ab, " ssid=%d", sad->ssid);
714 else {
715 audit_log_format(ab, " scontext=%s", scontext);
716 kfree(scontext);
717 }
718
719 rc = security_sid_to_context(sad->state, sad->tsid, &scontext,
720 &scontext_len);
721 if (rc)
722 audit_log_format(ab, " tsid=%d", sad->tsid);
723 else {
724 audit_log_format(ab, " tcontext=%s", scontext);
725 kfree(scontext);
726 }
727
728 audit_log_format(ab, " tclass=%s", secclass_map[sad->tclass-1].name);
729
730 if (sad->denied)
731 audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
732
733 /* in case of invalid context report also the actual context string */
734 rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext,
735 &scontext_len);
736 if (!rc && scontext) {
737 if (scontext_len && scontext[scontext_len - 1] == '\0')
738 scontext_len--;
739 audit_log_format(ab, " srawcon=");
740 audit_log_n_untrustedstring(ab, scontext, scontext_len);
741 kfree(scontext);
742 }
743
744 rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext,
745 &scontext_len);
746 if (!rc && scontext) {
747 if (scontext_len && scontext[scontext_len - 1] == '\0')
748 scontext_len--;
749 audit_log_format(ab, " trawcon=");
750 audit_log_n_untrustedstring(ab, scontext, scontext_len);
751 kfree(scontext);
752 }
753 }
754
755 /* This is the slow part of avc audit with big stack footprint */
slow_avc_audit(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,u32 audited,u32 denied,int result,struct common_audit_data * a)756 noinline int slow_avc_audit(struct selinux_state *state,
757 u32 ssid, u32 tsid, u16 tclass,
758 u32 requested, u32 audited, u32 denied, int result,
759 struct common_audit_data *a)
760 {
761 struct common_audit_data stack_data;
762 struct selinux_audit_data sad;
763
764 if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
765 return -EINVAL;
766
767 if (!a) {
768 a = &stack_data;
769 a->type = LSM_AUDIT_DATA_NONE;
770 }
771
772 sad.tclass = tclass;
773 sad.requested = requested;
774 sad.ssid = ssid;
775 sad.tsid = tsid;
776 sad.audited = audited;
777 sad.denied = denied;
778 sad.result = result;
779 sad.state = state;
780
781 a->selinux_audit_data = &sad;
782
783 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
784 return 0;
785 }
786
787 /**
788 * avc_add_callback - Register a callback for security events.
789 * @callback: callback function
790 * @events: security events
791 *
792 * Register a callback function for events in the set @events.
793 * Returns %0 on success or -%ENOMEM if insufficient memory
794 * exists to add the callback.
795 */
avc_add_callback(int (* callback)(u32 event),u32 events)796 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
797 {
798 struct avc_callback_node *c;
799 int rc = 0;
800
801 c = kmalloc(sizeof(*c), GFP_KERNEL);
802 if (!c) {
803 rc = -ENOMEM;
804 goto out;
805 }
806
807 c->callback = callback;
808 c->events = events;
809 c->next = avc_callbacks;
810 avc_callbacks = c;
811 out:
812 return rc;
813 }
814
815 /**
816 * avc_update_node Update an AVC entry
817 * @event : Updating event
818 * @perms : Permission mask bits
819 * @ssid,@tsid,@tclass : identifier of an AVC entry
820 * @seqno : sequence number when decision was made
821 * @xpd: extended_perms_decision to be added to the node
822 * @flags: the AVC_* flags, e.g. AVC_NONBLOCKING, AVC_EXTENDED_PERMS, or 0.
823 *
824 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
825 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
826 * otherwise, this function updates the AVC entry. The original AVC-entry object
827 * will release later by RCU.
828 */
avc_update_node(struct selinux_avc * avc,u32 event,u32 perms,u8 driver,u8 xperm,u32 ssid,u32 tsid,u16 tclass,u32 seqno,struct extended_perms_decision * xpd,u32 flags)829 static int avc_update_node(struct selinux_avc *avc,
830 u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
831 u32 tsid, u16 tclass, u32 seqno,
832 struct extended_perms_decision *xpd,
833 u32 flags)
834 {
835 int hvalue, rc = 0;
836 unsigned long flag;
837 struct avc_node *pos, *node, *orig = NULL;
838 struct hlist_head *head;
839 spinlock_t *lock;
840
841 /*
842 * If we are in a non-blocking code path, e.g. VFS RCU walk,
843 * then we must not add permissions to a cache entry
844 * because we will not audit the denial. Otherwise,
845 * during the subsequent blocking retry (e.g. VFS ref walk), we
846 * will find the permissions already granted in the cache entry
847 * and won't audit anything at all, leading to silent denials in
848 * permissive mode that only appear when in enforcing mode.
849 *
850 * See the corresponding handling of MAY_NOT_BLOCK in avc_audit()
851 * and selinux_inode_permission().
852 */
853 if (flags & AVC_NONBLOCKING)
854 return 0;
855
856 node = avc_alloc_node(avc);
857 if (!node) {
858 rc = -ENOMEM;
859 goto out;
860 }
861
862 /* Lock the target slot */
863 hvalue = avc_hash(ssid, tsid, tclass);
864
865 head = &avc->avc_cache.slots[hvalue];
866 lock = &avc->avc_cache.slots_lock[hvalue];
867
868 spin_lock_irqsave(lock, flag);
869
870 hlist_for_each_entry(pos, head, list) {
871 if (ssid == pos->ae.ssid &&
872 tsid == pos->ae.tsid &&
873 tclass == pos->ae.tclass &&
874 seqno == pos->ae.avd.seqno){
875 orig = pos;
876 break;
877 }
878 }
879
880 if (!orig) {
881 rc = -ENOENT;
882 avc_node_kill(avc, node);
883 goto out_unlock;
884 }
885
886 /*
887 * Copy and replace original node.
888 */
889
890 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
891
892 if (orig->ae.xp_node) {
893 rc = avc_xperms_populate(node, orig->ae.xp_node);
894 if (rc) {
895 avc_node_kill(avc, node);
896 goto out_unlock;
897 }
898 }
899
900 switch (event) {
901 case AVC_CALLBACK_GRANT:
902 node->ae.avd.allowed |= perms;
903 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
904 avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
905 break;
906 case AVC_CALLBACK_TRY_REVOKE:
907 case AVC_CALLBACK_REVOKE:
908 node->ae.avd.allowed &= ~perms;
909 break;
910 case AVC_CALLBACK_AUDITALLOW_ENABLE:
911 node->ae.avd.auditallow |= perms;
912 break;
913 case AVC_CALLBACK_AUDITALLOW_DISABLE:
914 node->ae.avd.auditallow &= ~perms;
915 break;
916 case AVC_CALLBACK_AUDITDENY_ENABLE:
917 node->ae.avd.auditdeny |= perms;
918 break;
919 case AVC_CALLBACK_AUDITDENY_DISABLE:
920 node->ae.avd.auditdeny &= ~perms;
921 break;
922 case AVC_CALLBACK_ADD_XPERMS:
923 avc_add_xperms_decision(node, xpd);
924 break;
925 }
926 avc_node_replace(avc, node, orig);
927 out_unlock:
928 spin_unlock_irqrestore(lock, flag);
929 out:
930 return rc;
931 }
932
933 /**
934 * avc_flush - Flush the cache
935 */
avc_flush(struct selinux_avc * avc)936 static void avc_flush(struct selinux_avc *avc)
937 {
938 struct hlist_head *head;
939 struct avc_node *node;
940 spinlock_t *lock;
941 unsigned long flag;
942 int i;
943
944 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
945 head = &avc->avc_cache.slots[i];
946 lock = &avc->avc_cache.slots_lock[i];
947
948 spin_lock_irqsave(lock, flag);
949 /*
950 * With preemptable RCU, the outer spinlock does not
951 * prevent RCU grace periods from ending.
952 */
953 rcu_read_lock();
954 hlist_for_each_entry(node, head, list)
955 avc_node_delete(avc, node);
956 rcu_read_unlock();
957 spin_unlock_irqrestore(lock, flag);
958 }
959 }
960
961 /**
962 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
963 * @seqno: policy sequence number
964 */
avc_ss_reset(struct selinux_avc * avc,u32 seqno)965 int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
966 {
967 struct avc_callback_node *c;
968 int rc = 0, tmprc;
969
970 avc_flush(avc);
971
972 for (c = avc_callbacks; c; c = c->next) {
973 if (c->events & AVC_CALLBACK_RESET) {
974 tmprc = c->callback(AVC_CALLBACK_RESET);
975 /* save the first error encountered for the return
976 value and continue processing the callbacks */
977 if (!rc)
978 rc = tmprc;
979 }
980 }
981
982 avc_latest_notif_update(avc, seqno, 0);
983 return rc;
984 }
985
986 /*
987 * Slow-path helper function for avc_has_perm_noaudit,
988 * when the avc_node lookup fails. We get called with
989 * the RCU read lock held, and need to return with it
990 * still held, but drop if for the security compute.
991 *
992 * Don't inline this, since it's the slow-path and just
993 * results in a bigger stack frame.
994 */
995 static noinline
avc_compute_av(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)996 struct avc_node *avc_compute_av(struct selinux_state *state,
997 u32 ssid, u32 tsid,
998 u16 tclass, struct av_decision *avd,
999 struct avc_xperms_node *xp_node)
1000 {
1001 rcu_read_unlock();
1002 INIT_LIST_HEAD(&xp_node->xpd_head);
1003 security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1004 rcu_read_lock();
1005 return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1006 }
1007
avc_denied(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 xperm,unsigned int flags,struct av_decision * avd)1008 static noinline int avc_denied(struct selinux_state *state,
1009 u32 ssid, u32 tsid,
1010 u16 tclass, u32 requested,
1011 u8 driver, u8 xperm, unsigned int flags,
1012 struct av_decision *avd)
1013 {
1014 if (flags & AVC_STRICT)
1015 return -EACCES;
1016
1017 if (enforcing_enabled(state) &&
1018 !(avd->flags & AVD_FLAGS_PERMISSIVE))
1019 return -EACCES;
1020
1021 avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1022 xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1023 return 0;
1024 }
1025
1026 /*
1027 * The avc extended permissions logic adds an additional 256 bits of
1028 * permissions to an avc node when extended permissions for that node are
1029 * specified in the avtab. If the additional 256 permissions is not adequate,
1030 * as-is the case with ioctls, then multiple may be chained together and the
1031 * driver field is used to specify which set contains the permission.
1032 */
avc_has_extended_perms(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 xperm,struct common_audit_data * ad)1033 int avc_has_extended_perms(struct selinux_state *state,
1034 u32 ssid, u32 tsid, u16 tclass, u32 requested,
1035 u8 driver, u8 xperm, struct common_audit_data *ad)
1036 {
1037 struct avc_node *node;
1038 struct av_decision avd;
1039 u32 denied;
1040 struct extended_perms_decision local_xpd;
1041 struct extended_perms_decision *xpd = NULL;
1042 struct extended_perms_data allowed;
1043 struct extended_perms_data auditallow;
1044 struct extended_perms_data dontaudit;
1045 struct avc_xperms_node local_xp_node;
1046 struct avc_xperms_node *xp_node;
1047 int rc = 0, rc2;
1048
1049 xp_node = &local_xp_node;
1050 if (WARN_ON(!requested))
1051 return -EACCES;
1052
1053 rcu_read_lock();
1054
1055 node = avc_lookup(state->avc, ssid, tsid, tclass);
1056 if (unlikely(!node)) {
1057 node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1058 } else {
1059 memcpy(&avd, &node->ae.avd, sizeof(avd));
1060 xp_node = node->ae.xp_node;
1061 }
1062 /* if extended permissions are not defined, only consider av_decision */
1063 if (!xp_node || !xp_node->xp.len)
1064 goto decision;
1065
1066 local_xpd.allowed = &allowed;
1067 local_xpd.auditallow = &auditallow;
1068 local_xpd.dontaudit = &dontaudit;
1069
1070 xpd = avc_xperms_decision_lookup(driver, xp_node);
1071 if (unlikely(!xpd)) {
1072 /*
1073 * Compute the extended_perms_decision only if the driver
1074 * is flagged
1075 */
1076 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1077 avd.allowed &= ~requested;
1078 goto decision;
1079 }
1080 rcu_read_unlock();
1081 security_compute_xperms_decision(state, ssid, tsid, tclass,
1082 driver, &local_xpd);
1083 rcu_read_lock();
1084 avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1085 driver, xperm, ssid, tsid, tclass, avd.seqno,
1086 &local_xpd, 0);
1087 } else {
1088 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1089 }
1090 xpd = &local_xpd;
1091
1092 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1093 avd.allowed &= ~requested;
1094
1095 decision:
1096 denied = requested & ~(avd.allowed);
1097 if (unlikely(denied))
1098 rc = avc_denied(state, ssid, tsid, tclass, requested,
1099 driver, xperm, AVC_EXTENDED_PERMS, &avd);
1100
1101 rcu_read_unlock();
1102
1103 rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1104 &avd, xpd, xperm, rc, ad);
1105 if (rc2)
1106 return rc2;
1107 return rc;
1108 }
1109
1110 /**
1111 * avc_has_perm_noaudit - Check permissions but perform no auditing.
1112 * @ssid: source security identifier
1113 * @tsid: target security identifier
1114 * @tclass: target security class
1115 * @requested: requested permissions, interpreted based on @tclass
1116 * @flags: AVC_STRICT, AVC_NONBLOCKING, or 0
1117 * @avd: access vector decisions
1118 *
1119 * Check the AVC to determine whether the @requested permissions are granted
1120 * for the SID pair (@ssid, @tsid), interpreting the permissions
1121 * based on @tclass, and call the security server on a cache miss to obtain
1122 * a new decision and add it to the cache. Return a copy of the decisions
1123 * in @avd. Return %0 if all @requested permissions are granted,
1124 * -%EACCES if any permissions are denied, or another -errno upon
1125 * other errors. This function is typically called by avc_has_perm(),
1126 * but may also be called directly to separate permission checking from
1127 * auditing, e.g. in cases where a lock must be held for the check but
1128 * should be released for the auditing.
1129 */
avc_has_perm_noaudit(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,unsigned int flags,struct av_decision * avd)1130 inline int avc_has_perm_noaudit(struct selinux_state *state,
1131 u32 ssid, u32 tsid,
1132 u16 tclass, u32 requested,
1133 unsigned int flags,
1134 struct av_decision *avd)
1135 {
1136 struct avc_node *node;
1137 struct avc_xperms_node xp_node;
1138 int rc = 0;
1139 u32 denied;
1140
1141 if (WARN_ON(!requested))
1142 return -EACCES;
1143
1144 rcu_read_lock();
1145
1146 node = avc_lookup(state->avc, ssid, tsid, tclass);
1147 if (unlikely(!node))
1148 node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1149 else
1150 memcpy(avd, &node->ae.avd, sizeof(*avd));
1151
1152 denied = requested & ~(avd->allowed);
1153 if (unlikely(denied))
1154 rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1155 flags, avd);
1156
1157 rcu_read_unlock();
1158 return rc;
1159 }
1160
1161 /**
1162 * avc_has_perm - Check permissions and perform any appropriate auditing.
1163 * @ssid: source security identifier
1164 * @tsid: target security identifier
1165 * @tclass: target security class
1166 * @requested: requested permissions, interpreted based on @tclass
1167 * @auditdata: auxiliary audit data
1168 *
1169 * Check the AVC to determine whether the @requested permissions are granted
1170 * for the SID pair (@ssid, @tsid), interpreting the permissions
1171 * based on @tclass, and call the security server on a cache miss to obtain
1172 * a new decision and add it to the cache. Audit the granting or denial of
1173 * permissions in accordance with the policy. Return %0 if all @requested
1174 * permissions are granted, -%EACCES if any permissions are denied, or
1175 * another -errno upon other errors.
1176 */
avc_has_perm(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,struct common_audit_data * auditdata)1177 int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1178 u32 requested, struct common_audit_data *auditdata)
1179 {
1180 struct av_decision avd;
1181 int rc, rc2;
1182
1183 rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1184 &avd);
1185
1186 rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1187 auditdata, 0);
1188 if (rc2)
1189 return rc2;
1190 return rc;
1191 }
1192
avc_has_perm_flags(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,struct common_audit_data * auditdata,int flags)1193 int avc_has_perm_flags(struct selinux_state *state,
1194 u32 ssid, u32 tsid, u16 tclass, u32 requested,
1195 struct common_audit_data *auditdata,
1196 int flags)
1197 {
1198 struct av_decision avd;
1199 int rc, rc2;
1200
1201 rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested,
1202 (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
1203 &avd);
1204
1205 rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1206 auditdata, flags);
1207 if (rc2)
1208 return rc2;
1209 return rc;
1210 }
1211
avc_policy_seqno(struct selinux_state * state)1212 u32 avc_policy_seqno(struct selinux_state *state)
1213 {
1214 return state->avc->avc_cache.latest_notif;
1215 }
1216
avc_disable(void)1217 void avc_disable(void)
1218 {
1219 /*
1220 * If you are looking at this because you have realized that we are
1221 * not destroying the avc_node_cachep it might be easy to fix, but
1222 * I don't know the memory barrier semantics well enough to know. It's
1223 * possible that some other task dereferenced security_ops when
1224 * it still pointed to selinux operations. If that is the case it's
1225 * possible that it is about to use the avc and is about to need the
1226 * avc_node_cachep. I know I could wrap the security.c security_ops call
1227 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
1228 * the cache and get that memory back.
1229 */
1230 if (avc_node_cachep) {
1231 avc_flush(selinux_state.avc);
1232 /* kmem_cache_destroy(avc_node_cachep); */
1233 }
1234 }
1235