• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Implementation of the kernel access vector cache (AVC).
4  *
5  * Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
6  *	     James Morris <jmorris@redhat.com>
7  *
8  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
9  *	Replaced the avc_lock spinlock by RCU.
10  *
11  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
12  */
13 #include <linux/types.h>
14 #include <linux/stddef.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/fs.h>
18 #include <linux/dcache.h>
19 #include <linux/init.h>
20 #include <linux/skbuff.h>
21 #include <linux/percpu.h>
22 #include <linux/list.h>
23 #include <net/sock.h>
24 #include <linux/un.h>
25 #include <net/af_unix.h>
26 #include <linux/ip.h>
27 #include <linux/audit.h>
28 #include <linux/ipv6.h>
29 #include <net/ipv6.h>
30 #include "avc.h"
31 #include "avc_ss.h"
32 #include "classmap.h"
33 
34 #define AVC_CACHE_SLOTS			512
35 #define AVC_DEF_CACHE_THRESHOLD		512
36 #define AVC_CACHE_RECLAIM		16
37 
38 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
39 #define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
40 #else
41 #define avc_cache_stats_incr(field)	do {} while (0)
42 #endif
43 
44 struct avc_entry {
45 	u32			ssid;
46 	u32			tsid;
47 	u16			tclass;
48 	struct av_decision	avd;
49 	struct avc_xperms_node	*xp_node;
50 };
51 
52 struct avc_node {
53 	struct avc_entry	ae;
54 	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
55 	struct rcu_head		rhead;
56 };
57 
58 struct avc_xperms_decision_node {
59 	struct extended_perms_decision xpd;
60 	struct list_head xpd_list; /* list of extended_perms_decision */
61 };
62 
63 struct avc_xperms_node {
64 	struct extended_perms xp;
65 	struct list_head xpd_head; /* list head of extended_perms_decision */
66 };
67 
68 struct avc_cache {
69 	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
70 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
71 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
72 	atomic_t		active_nodes;
73 	u32			latest_notif;	/* latest revocation notification */
74 };
75 
76 struct avc_callback_node {
77 	int (*callback) (u32 event);
78 	u32 events;
79 	struct avc_callback_node *next;
80 };
81 
82 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
83 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
84 #endif
85 
86 struct selinux_avc {
87 	unsigned int avc_cache_threshold;
88 	struct avc_cache avc_cache;
89 };
90 
91 static struct selinux_avc selinux_avc;
92 
selinux_avc_init(struct selinux_avc ** avc)93 void selinux_avc_init(struct selinux_avc **avc)
94 {
95 	int i;
96 
97 	selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
98 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
99 		INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]);
100 		spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]);
101 	}
102 	atomic_set(&selinux_avc.avc_cache.active_nodes, 0);
103 	atomic_set(&selinux_avc.avc_cache.lru_hint, 0);
104 	*avc = &selinux_avc;
105 }
106 
avc_get_cache_threshold(struct selinux_avc * avc)107 unsigned int avc_get_cache_threshold(struct selinux_avc *avc)
108 {
109 	return avc->avc_cache_threshold;
110 }
111 
avc_set_cache_threshold(struct selinux_avc * avc,unsigned int cache_threshold)112 void avc_set_cache_threshold(struct selinux_avc *avc,
113 			     unsigned int cache_threshold)
114 {
115 	avc->avc_cache_threshold = cache_threshold;
116 }
117 
118 static struct avc_callback_node *avc_callbacks;
119 static struct kmem_cache *avc_node_cachep;
120 static struct kmem_cache *avc_xperms_data_cachep;
121 static struct kmem_cache *avc_xperms_decision_cachep;
122 static struct kmem_cache *avc_xperms_cachep;
123 
avc_hash(u32 ssid,u32 tsid,u16 tclass)124 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
125 {
126 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
127 }
128 
129 /**
130  * avc_init - Initialize the AVC.
131  *
132  * Initialize the access vector cache.
133  */
avc_init(void)134 void __init avc_init(void)
135 {
136 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
137 					0, SLAB_PANIC, NULL);
138 	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
139 					sizeof(struct avc_xperms_node),
140 					0, SLAB_PANIC, NULL);
141 	avc_xperms_decision_cachep = kmem_cache_create(
142 					"avc_xperms_decision_node",
143 					sizeof(struct avc_xperms_decision_node),
144 					0, SLAB_PANIC, NULL);
145 	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
146 					sizeof(struct extended_perms_data),
147 					0, SLAB_PANIC, NULL);
148 }
149 
avc_get_hash_stats(struct selinux_avc * avc,char * page)150 int avc_get_hash_stats(struct selinux_avc *avc, char *page)
151 {
152 	int i, chain_len, max_chain_len, slots_used;
153 	struct avc_node *node;
154 	struct hlist_head *head;
155 
156 	rcu_read_lock();
157 
158 	slots_used = 0;
159 	max_chain_len = 0;
160 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
161 		head = &avc->avc_cache.slots[i];
162 		if (!hlist_empty(head)) {
163 			slots_used++;
164 			chain_len = 0;
165 			hlist_for_each_entry_rcu(node, head, list)
166 				chain_len++;
167 			if (chain_len > max_chain_len)
168 				max_chain_len = chain_len;
169 		}
170 	}
171 
172 	rcu_read_unlock();
173 
174 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
175 			 "longest chain: %d\n",
176 			 atomic_read(&avc->avc_cache.active_nodes),
177 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
178 }
179 
180 /*
181  * using a linked list for extended_perms_decision lookup because the list is
182  * always small. i.e. less than 5, typically 1
183  */
avc_xperms_decision_lookup(u8 driver,struct avc_xperms_node * xp_node)184 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
185 					struct avc_xperms_node *xp_node)
186 {
187 	struct avc_xperms_decision_node *xpd_node;
188 
189 	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
190 		if (xpd_node->xpd.driver == driver)
191 			return &xpd_node->xpd;
192 	}
193 	return NULL;
194 }
195 
196 static inline unsigned int
avc_xperms_has_perm(struct extended_perms_decision * xpd,u8 perm,u8 which)197 avc_xperms_has_perm(struct extended_perms_decision *xpd,
198 					u8 perm, u8 which)
199 {
200 	unsigned int rc = 0;
201 
202 	if ((which == XPERMS_ALLOWED) &&
203 			(xpd->used & XPERMS_ALLOWED))
204 		rc = security_xperm_test(xpd->allowed->p, perm);
205 	else if ((which == XPERMS_AUDITALLOW) &&
206 			(xpd->used & XPERMS_AUDITALLOW))
207 		rc = security_xperm_test(xpd->auditallow->p, perm);
208 	else if ((which == XPERMS_DONTAUDIT) &&
209 			(xpd->used & XPERMS_DONTAUDIT))
210 		rc = security_xperm_test(xpd->dontaudit->p, perm);
211 	return rc;
212 }
213 
avc_xperms_allow_perm(struct avc_xperms_node * xp_node,u8 driver,u8 perm)214 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
215 				u8 driver, u8 perm)
216 {
217 	struct extended_perms_decision *xpd;
218 	security_xperm_set(xp_node->xp.drivers.p, driver);
219 	xpd = avc_xperms_decision_lookup(driver, xp_node);
220 	if (xpd && xpd->allowed)
221 		security_xperm_set(xpd->allowed->p, perm);
222 }
223 
avc_xperms_decision_free(struct avc_xperms_decision_node * xpd_node)224 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
225 {
226 	struct extended_perms_decision *xpd;
227 
228 	xpd = &xpd_node->xpd;
229 	if (xpd->allowed)
230 		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
231 	if (xpd->auditallow)
232 		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
233 	if (xpd->dontaudit)
234 		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
235 	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
236 }
237 
avc_xperms_free(struct avc_xperms_node * xp_node)238 static void avc_xperms_free(struct avc_xperms_node *xp_node)
239 {
240 	struct avc_xperms_decision_node *xpd_node, *tmp;
241 
242 	if (!xp_node)
243 		return;
244 
245 	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
246 		list_del(&xpd_node->xpd_list);
247 		avc_xperms_decision_free(xpd_node);
248 	}
249 	kmem_cache_free(avc_xperms_cachep, xp_node);
250 }
251 
avc_copy_xperms_decision(struct extended_perms_decision * dest,struct extended_perms_decision * src)252 static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
253 					struct extended_perms_decision *src)
254 {
255 	dest->driver = src->driver;
256 	dest->used = src->used;
257 	if (dest->used & XPERMS_ALLOWED)
258 		memcpy(dest->allowed->p, src->allowed->p,
259 				sizeof(src->allowed->p));
260 	if (dest->used & XPERMS_AUDITALLOW)
261 		memcpy(dest->auditallow->p, src->auditallow->p,
262 				sizeof(src->auditallow->p));
263 	if (dest->used & XPERMS_DONTAUDIT)
264 		memcpy(dest->dontaudit->p, src->dontaudit->p,
265 				sizeof(src->dontaudit->p));
266 }
267 
268 /*
269  * similar to avc_copy_xperms_decision, but only copy decision
270  * information relevant to this perm
271  */
avc_quick_copy_xperms_decision(u8 perm,struct extended_perms_decision * dest,struct extended_perms_decision * src)272 static inline void avc_quick_copy_xperms_decision(u8 perm,
273 			struct extended_perms_decision *dest,
274 			struct extended_perms_decision *src)
275 {
276 	/*
277 	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
278 	 * command permission
279 	 */
280 	u8 i = perm >> 5;
281 
282 	dest->used = src->used;
283 	if (dest->used & XPERMS_ALLOWED)
284 		dest->allowed->p[i] = src->allowed->p[i];
285 	if (dest->used & XPERMS_AUDITALLOW)
286 		dest->auditallow->p[i] = src->auditallow->p[i];
287 	if (dest->used & XPERMS_DONTAUDIT)
288 		dest->dontaudit->p[i] = src->dontaudit->p[i];
289 }
290 
291 static struct avc_xperms_decision_node
avc_xperms_decision_alloc(u8 which)292 		*avc_xperms_decision_alloc(u8 which)
293 {
294 	struct avc_xperms_decision_node *xpd_node;
295 	struct extended_perms_decision *xpd;
296 
297 	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
298 				     GFP_NOWAIT | __GFP_NOWARN);
299 	if (!xpd_node)
300 		return NULL;
301 
302 	xpd = &xpd_node->xpd;
303 	if (which & XPERMS_ALLOWED) {
304 		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
305 						GFP_NOWAIT | __GFP_NOWARN);
306 		if (!xpd->allowed)
307 			goto error;
308 	}
309 	if (which & XPERMS_AUDITALLOW) {
310 		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
311 						GFP_NOWAIT | __GFP_NOWARN);
312 		if (!xpd->auditallow)
313 			goto error;
314 	}
315 	if (which & XPERMS_DONTAUDIT) {
316 		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
317 						GFP_NOWAIT | __GFP_NOWARN);
318 		if (!xpd->dontaudit)
319 			goto error;
320 	}
321 	return xpd_node;
322 error:
323 	avc_xperms_decision_free(xpd_node);
324 	return NULL;
325 }
326 
avc_add_xperms_decision(struct avc_node * node,struct extended_perms_decision * src)327 static int avc_add_xperms_decision(struct avc_node *node,
328 			struct extended_perms_decision *src)
329 {
330 	struct avc_xperms_decision_node *dest_xpd;
331 
332 	node->ae.xp_node->xp.len++;
333 	dest_xpd = avc_xperms_decision_alloc(src->used);
334 	if (!dest_xpd)
335 		return -ENOMEM;
336 	avc_copy_xperms_decision(&dest_xpd->xpd, src);
337 	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
338 	return 0;
339 }
340 
avc_xperms_alloc(void)341 static struct avc_xperms_node *avc_xperms_alloc(void)
342 {
343 	struct avc_xperms_node *xp_node;
344 
345 	xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN);
346 	if (!xp_node)
347 		return xp_node;
348 	INIT_LIST_HEAD(&xp_node->xpd_head);
349 	return xp_node;
350 }
351 
avc_xperms_populate(struct avc_node * node,struct avc_xperms_node * src)352 static int avc_xperms_populate(struct avc_node *node,
353 				struct avc_xperms_node *src)
354 {
355 	struct avc_xperms_node *dest;
356 	struct avc_xperms_decision_node *dest_xpd;
357 	struct avc_xperms_decision_node *src_xpd;
358 
359 	if (src->xp.len == 0)
360 		return 0;
361 	dest = avc_xperms_alloc();
362 	if (!dest)
363 		return -ENOMEM;
364 
365 	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
366 	dest->xp.len = src->xp.len;
367 
368 	/* for each source xpd allocate a destination xpd and copy */
369 	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
370 		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
371 		if (!dest_xpd)
372 			goto error;
373 		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
374 		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
375 	}
376 	node->ae.xp_node = dest;
377 	return 0;
378 error:
379 	avc_xperms_free(dest);
380 	return -ENOMEM;
381 
382 }
383 
avc_xperms_audit_required(u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,u32 * deniedp)384 static inline u32 avc_xperms_audit_required(u32 requested,
385 					struct av_decision *avd,
386 					struct extended_perms_decision *xpd,
387 					u8 perm,
388 					int result,
389 					u32 *deniedp)
390 {
391 	u32 denied, audited;
392 
393 	denied = requested & ~avd->allowed;
394 	if (unlikely(denied)) {
395 		audited = denied & avd->auditdeny;
396 		if (audited && xpd) {
397 			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
398 				audited &= ~requested;
399 		}
400 	} else if (result) {
401 		audited = denied = requested;
402 	} else {
403 		audited = requested & avd->auditallow;
404 		if (audited && xpd) {
405 			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
406 				audited &= ~requested;
407 		}
408 	}
409 
410 	*deniedp = denied;
411 	return audited;
412 }
413 
avc_xperms_audit(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,struct av_decision * avd,struct extended_perms_decision * xpd,u8 perm,int result,struct common_audit_data * ad)414 static inline int avc_xperms_audit(struct selinux_state *state,
415 				   u32 ssid, u32 tsid, u16 tclass,
416 				   u32 requested, struct av_decision *avd,
417 				   struct extended_perms_decision *xpd,
418 				   u8 perm, int result,
419 				   struct common_audit_data *ad)
420 {
421 	u32 audited, denied;
422 
423 	audited = avc_xperms_audit_required(
424 			requested, avd, xpd, perm, result, &denied);
425 	if (likely(!audited))
426 		return 0;
427 	return slow_avc_audit(state, ssid, tsid, tclass, requested,
428 			audited, denied, result, ad);
429 }
430 
avc_node_free(struct rcu_head * rhead)431 static void avc_node_free(struct rcu_head *rhead)
432 {
433 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
434 	avc_xperms_free(node->ae.xp_node);
435 	kmem_cache_free(avc_node_cachep, node);
436 	avc_cache_stats_incr(frees);
437 }
438 
avc_node_delete(struct selinux_avc * avc,struct avc_node * node)439 static void avc_node_delete(struct selinux_avc *avc, struct avc_node *node)
440 {
441 	hlist_del_rcu(&node->list);
442 	call_rcu(&node->rhead, avc_node_free);
443 	atomic_dec(&avc->avc_cache.active_nodes);
444 }
445 
avc_node_kill(struct selinux_avc * avc,struct avc_node * node)446 static void avc_node_kill(struct selinux_avc *avc, struct avc_node *node)
447 {
448 	avc_xperms_free(node->ae.xp_node);
449 	kmem_cache_free(avc_node_cachep, node);
450 	avc_cache_stats_incr(frees);
451 	atomic_dec(&avc->avc_cache.active_nodes);
452 }
453 
avc_node_replace(struct selinux_avc * avc,struct avc_node * new,struct avc_node * old)454 static void avc_node_replace(struct selinux_avc *avc,
455 			     struct avc_node *new, struct avc_node *old)
456 {
457 	hlist_replace_rcu(&old->list, &new->list);
458 	call_rcu(&old->rhead, avc_node_free);
459 	atomic_dec(&avc->avc_cache.active_nodes);
460 }
461 
avc_reclaim_node(struct selinux_avc * avc)462 static inline int avc_reclaim_node(struct selinux_avc *avc)
463 {
464 	struct avc_node *node;
465 	int hvalue, try, ecx;
466 	unsigned long flags;
467 	struct hlist_head *head;
468 	spinlock_t *lock;
469 
470 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
471 		hvalue = atomic_inc_return(&avc->avc_cache.lru_hint) &
472 			(AVC_CACHE_SLOTS - 1);
473 		head = &avc->avc_cache.slots[hvalue];
474 		lock = &avc->avc_cache.slots_lock[hvalue];
475 
476 		if (!spin_trylock_irqsave(lock, flags))
477 			continue;
478 
479 		rcu_read_lock();
480 		hlist_for_each_entry(node, head, list) {
481 			avc_node_delete(avc, node);
482 			avc_cache_stats_incr(reclaims);
483 			ecx++;
484 			if (ecx >= AVC_CACHE_RECLAIM) {
485 				rcu_read_unlock();
486 				spin_unlock_irqrestore(lock, flags);
487 				goto out;
488 			}
489 		}
490 		rcu_read_unlock();
491 		spin_unlock_irqrestore(lock, flags);
492 	}
493 out:
494 	return ecx;
495 }
496 
avc_alloc_node(struct selinux_avc * avc)497 static struct avc_node *avc_alloc_node(struct selinux_avc *avc)
498 {
499 	struct avc_node *node;
500 
501 	node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN);
502 	if (!node)
503 		goto out;
504 
505 	INIT_HLIST_NODE(&node->list);
506 	avc_cache_stats_incr(allocations);
507 
508 	if (atomic_inc_return(&avc->avc_cache.active_nodes) >
509 	    avc->avc_cache_threshold)
510 		avc_reclaim_node(avc);
511 
512 out:
513 	return node;
514 }
515 
avc_node_populate(struct avc_node * node,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)516 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
517 {
518 	node->ae.ssid = ssid;
519 	node->ae.tsid = tsid;
520 	node->ae.tclass = tclass;
521 	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
522 }
523 
avc_search_node(struct selinux_avc * avc,u32 ssid,u32 tsid,u16 tclass)524 static inline struct avc_node *avc_search_node(struct selinux_avc *avc,
525 					       u32 ssid, u32 tsid, u16 tclass)
526 {
527 	struct avc_node *node, *ret = NULL;
528 	int hvalue;
529 	struct hlist_head *head;
530 
531 	hvalue = avc_hash(ssid, tsid, tclass);
532 	head = &avc->avc_cache.slots[hvalue];
533 	hlist_for_each_entry_rcu(node, head, list) {
534 		if (ssid == node->ae.ssid &&
535 		    tclass == node->ae.tclass &&
536 		    tsid == node->ae.tsid) {
537 			ret = node;
538 			break;
539 		}
540 	}
541 
542 	return ret;
543 }
544 
545 /**
546  * avc_lookup - Look up an AVC entry.
547  * @ssid: source security identifier
548  * @tsid: target security identifier
549  * @tclass: target security class
550  *
551  * Look up an AVC entry that is valid for the
552  * (@ssid, @tsid), interpreting the permissions
553  * based on @tclass.  If a valid AVC entry exists,
554  * then this function returns the avc_node.
555  * Otherwise, this function returns NULL.
556  */
avc_lookup(struct selinux_avc * avc,u32 ssid,u32 tsid,u16 tclass)557 static struct avc_node *avc_lookup(struct selinux_avc *avc,
558 				   u32 ssid, u32 tsid, u16 tclass)
559 {
560 	struct avc_node *node;
561 
562 	avc_cache_stats_incr(lookups);
563 	node = avc_search_node(avc, ssid, tsid, tclass);
564 
565 	if (node)
566 		return node;
567 
568 	avc_cache_stats_incr(misses);
569 	return NULL;
570 }
571 
avc_latest_notif_update(struct selinux_avc * avc,int seqno,int is_insert)572 static int avc_latest_notif_update(struct selinux_avc *avc,
573 				   int seqno, int is_insert)
574 {
575 	int ret = 0;
576 	static DEFINE_SPINLOCK(notif_lock);
577 	unsigned long flag;
578 
579 	spin_lock_irqsave(&notif_lock, flag);
580 	if (is_insert) {
581 		if (seqno < avc->avc_cache.latest_notif) {
582 			pr_warn("SELinux: avc:  seqno %d < latest_notif %d\n",
583 			       seqno, avc->avc_cache.latest_notif);
584 			ret = -EAGAIN;
585 		}
586 	} else {
587 		if (seqno > avc->avc_cache.latest_notif)
588 			avc->avc_cache.latest_notif = seqno;
589 	}
590 	spin_unlock_irqrestore(&notif_lock, flag);
591 
592 	return ret;
593 }
594 
595 /**
596  * avc_insert - Insert an AVC entry.
597  * @ssid: source security identifier
598  * @tsid: target security identifier
599  * @tclass: target security class
600  * @avd: resulting av decision
601  * @xp_node: resulting extended permissions
602  *
603  * Insert an AVC entry for the SID pair
604  * (@ssid, @tsid) and class @tclass.
605  * The access vectors and the sequence number are
606  * normally provided by the security server in
607  * response to a security_compute_av() call.  If the
608  * sequence number @avd->seqno is not less than the latest
609  * revocation notification, then the function copies
610  * the access vectors into a cache entry, returns
611  * avc_node inserted. Otherwise, this function returns NULL.
612  */
avc_insert(struct selinux_avc * avc,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)613 static struct avc_node *avc_insert(struct selinux_avc *avc,
614 				   u32 ssid, u32 tsid, u16 tclass,
615 				   struct av_decision *avd,
616 				   struct avc_xperms_node *xp_node)
617 {
618 	struct avc_node *pos, *node = NULL;
619 	int hvalue;
620 	unsigned long flag;
621 	spinlock_t *lock;
622 	struct hlist_head *head;
623 
624 	if (avc_latest_notif_update(avc, avd->seqno, 1))
625 		return NULL;
626 
627 	node = avc_alloc_node(avc);
628 	if (!node)
629 		return NULL;
630 
631 	avc_node_populate(node, ssid, tsid, tclass, avd);
632 	if (avc_xperms_populate(node, xp_node)) {
633 		avc_node_kill(avc, node);
634 		return NULL;
635 	}
636 
637 	hvalue = avc_hash(ssid, tsid, tclass);
638 	head = &avc->avc_cache.slots[hvalue];
639 	lock = &avc->avc_cache.slots_lock[hvalue];
640 	spin_lock_irqsave(lock, flag);
641 	hlist_for_each_entry(pos, head, list) {
642 		if (pos->ae.ssid == ssid &&
643 			pos->ae.tsid == tsid &&
644 			pos->ae.tclass == tclass) {
645 			avc_node_replace(avc, node, pos);
646 			goto found;
647 		}
648 	}
649 	hlist_add_head_rcu(&node->list, head);
650 found:
651 	spin_unlock_irqrestore(lock, flag);
652 	return node;
653 }
654 
655 /**
656  * avc_audit_pre_callback - SELinux specific information
657  * will be called by generic audit code
658  * @ab: the audit buffer
659  * @a: audit_data
660  */
avc_audit_pre_callback(struct audit_buffer * ab,void * a)661 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
662 {
663 	struct common_audit_data *ad = a;
664 	struct selinux_audit_data *sad = ad->selinux_audit_data;
665 	u32 av = sad->audited;
666 	const char **perms;
667 	int i, perm;
668 
669 	audit_log_format(ab, "avc:  %s ", sad->denied ? "denied" : "granted");
670 
671 	if (av == 0) {
672 		audit_log_format(ab, " null");
673 		return;
674 	}
675 
676 	perms = secclass_map[sad->tclass-1].perms;
677 
678 	audit_log_format(ab, " {");
679 	i = 0;
680 	perm = 1;
681 	while (i < (sizeof(av) * 8)) {
682 		if ((perm & av) && perms[i]) {
683 			audit_log_format(ab, " %s", perms[i]);
684 			av &= ~perm;
685 		}
686 		i++;
687 		perm <<= 1;
688 	}
689 
690 	if (av)
691 		audit_log_format(ab, " 0x%x", av);
692 
693 	audit_log_format(ab, " } for ");
694 }
695 
696 /**
697  * avc_audit_post_callback - SELinux specific information
698  * will be called by generic audit code
699  * @ab: the audit buffer
700  * @a: audit_data
701  */
avc_audit_post_callback(struct audit_buffer * ab,void * a)702 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
703 {
704 	struct common_audit_data *ad = a;
705 	struct selinux_audit_data *sad = ad->selinux_audit_data;
706 	char *scontext;
707 	u32 scontext_len;
708 	int rc;
709 
710 	rc = security_sid_to_context(sad->state, sad->ssid, &scontext,
711 				     &scontext_len);
712 	if (rc)
713 		audit_log_format(ab, " ssid=%d", sad->ssid);
714 	else {
715 		audit_log_format(ab, " scontext=%s", scontext);
716 		kfree(scontext);
717 	}
718 
719 	rc = security_sid_to_context(sad->state, sad->tsid, &scontext,
720 				     &scontext_len);
721 	if (rc)
722 		audit_log_format(ab, " tsid=%d", sad->tsid);
723 	else {
724 		audit_log_format(ab, " tcontext=%s", scontext);
725 		kfree(scontext);
726 	}
727 
728 	audit_log_format(ab, " tclass=%s", secclass_map[sad->tclass-1].name);
729 
730 	if (sad->denied)
731 		audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1);
732 
733 	/* in case of invalid context report also the actual context string */
734 	rc = security_sid_to_context_inval(sad->state, sad->ssid, &scontext,
735 					   &scontext_len);
736 	if (!rc && scontext) {
737 		if (scontext_len && scontext[scontext_len - 1] == '\0')
738 			scontext_len--;
739 		audit_log_format(ab, " srawcon=");
740 		audit_log_n_untrustedstring(ab, scontext, scontext_len);
741 		kfree(scontext);
742 	}
743 
744 	rc = security_sid_to_context_inval(sad->state, sad->tsid, &scontext,
745 					   &scontext_len);
746 	if (!rc && scontext) {
747 		if (scontext_len && scontext[scontext_len - 1] == '\0')
748 			scontext_len--;
749 		audit_log_format(ab, " trawcon=");
750 		audit_log_n_untrustedstring(ab, scontext, scontext_len);
751 		kfree(scontext);
752 	}
753 }
754 
755 /* This is the slow part of avc audit with big stack footprint */
slow_avc_audit(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,u32 audited,u32 denied,int result,struct common_audit_data * a)756 noinline int slow_avc_audit(struct selinux_state *state,
757 			    u32 ssid, u32 tsid, u16 tclass,
758 			    u32 requested, u32 audited, u32 denied, int result,
759 			    struct common_audit_data *a)
760 {
761 	struct common_audit_data stack_data;
762 	struct selinux_audit_data sad;
763 
764 	if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map)))
765 		return -EINVAL;
766 
767 	if (!a) {
768 		a = &stack_data;
769 		a->type = LSM_AUDIT_DATA_NONE;
770 	}
771 
772 	sad.tclass = tclass;
773 	sad.requested = requested;
774 	sad.ssid = ssid;
775 	sad.tsid = tsid;
776 	sad.audited = audited;
777 	sad.denied = denied;
778 	sad.result = result;
779 	sad.state = state;
780 
781 	a->selinux_audit_data = &sad;
782 
783 	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
784 	return 0;
785 }
786 
787 /**
788  * avc_add_callback - Register a callback for security events.
789  * @callback: callback function
790  * @events: security events
791  *
792  * Register a callback function for events in the set @events.
793  * Returns %0 on success or -%ENOMEM if insufficient memory
794  * exists to add the callback.
795  */
avc_add_callback(int (* callback)(u32 event),u32 events)796 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
797 {
798 	struct avc_callback_node *c;
799 	int rc = 0;
800 
801 	c = kmalloc(sizeof(*c), GFP_KERNEL);
802 	if (!c) {
803 		rc = -ENOMEM;
804 		goto out;
805 	}
806 
807 	c->callback = callback;
808 	c->events = events;
809 	c->next = avc_callbacks;
810 	avc_callbacks = c;
811 out:
812 	return rc;
813 }
814 
815 /**
816  * avc_update_node Update an AVC entry
817  * @event : Updating event
818  * @perms : Permission mask bits
819  * @ssid,@tsid,@tclass : identifier of an AVC entry
820  * @seqno : sequence number when decision was made
821  * @xpd: extended_perms_decision to be added to the node
822  * @flags: the AVC_* flags, e.g. AVC_NONBLOCKING, AVC_EXTENDED_PERMS, or 0.
823  *
824  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
825  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
826  * otherwise, this function updates the AVC entry. The original AVC-entry object
827  * will release later by RCU.
828  */
avc_update_node(struct selinux_avc * avc,u32 event,u32 perms,u8 driver,u8 xperm,u32 ssid,u32 tsid,u16 tclass,u32 seqno,struct extended_perms_decision * xpd,u32 flags)829 static int avc_update_node(struct selinux_avc *avc,
830 			   u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
831 			   u32 tsid, u16 tclass, u32 seqno,
832 			   struct extended_perms_decision *xpd,
833 			   u32 flags)
834 {
835 	int hvalue, rc = 0;
836 	unsigned long flag;
837 	struct avc_node *pos, *node, *orig = NULL;
838 	struct hlist_head *head;
839 	spinlock_t *lock;
840 
841 	/*
842 	 * If we are in a non-blocking code path, e.g. VFS RCU walk,
843 	 * then we must not add permissions to a cache entry
844 	 * because we will not audit the denial.  Otherwise,
845 	 * during the subsequent blocking retry (e.g. VFS ref walk), we
846 	 * will find the permissions already granted in the cache entry
847 	 * and won't audit anything at all, leading to silent denials in
848 	 * permissive mode that only appear when in enforcing mode.
849 	 *
850 	 * See the corresponding handling of MAY_NOT_BLOCK in avc_audit()
851 	 * and selinux_inode_permission().
852 	 */
853 	if (flags & AVC_NONBLOCKING)
854 		return 0;
855 
856 	node = avc_alloc_node(avc);
857 	if (!node) {
858 		rc = -ENOMEM;
859 		goto out;
860 	}
861 
862 	/* Lock the target slot */
863 	hvalue = avc_hash(ssid, tsid, tclass);
864 
865 	head = &avc->avc_cache.slots[hvalue];
866 	lock = &avc->avc_cache.slots_lock[hvalue];
867 
868 	spin_lock_irqsave(lock, flag);
869 
870 	hlist_for_each_entry(pos, head, list) {
871 		if (ssid == pos->ae.ssid &&
872 		    tsid == pos->ae.tsid &&
873 		    tclass == pos->ae.tclass &&
874 		    seqno == pos->ae.avd.seqno){
875 			orig = pos;
876 			break;
877 		}
878 	}
879 
880 	if (!orig) {
881 		rc = -ENOENT;
882 		avc_node_kill(avc, node);
883 		goto out_unlock;
884 	}
885 
886 	/*
887 	 * Copy and replace original node.
888 	 */
889 
890 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
891 
892 	if (orig->ae.xp_node) {
893 		rc = avc_xperms_populate(node, orig->ae.xp_node);
894 		if (rc) {
895 			avc_node_kill(avc, node);
896 			goto out_unlock;
897 		}
898 	}
899 
900 	switch (event) {
901 	case AVC_CALLBACK_GRANT:
902 		node->ae.avd.allowed |= perms;
903 		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
904 			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
905 		break;
906 	case AVC_CALLBACK_TRY_REVOKE:
907 	case AVC_CALLBACK_REVOKE:
908 		node->ae.avd.allowed &= ~perms;
909 		break;
910 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
911 		node->ae.avd.auditallow |= perms;
912 		break;
913 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
914 		node->ae.avd.auditallow &= ~perms;
915 		break;
916 	case AVC_CALLBACK_AUDITDENY_ENABLE:
917 		node->ae.avd.auditdeny |= perms;
918 		break;
919 	case AVC_CALLBACK_AUDITDENY_DISABLE:
920 		node->ae.avd.auditdeny &= ~perms;
921 		break;
922 	case AVC_CALLBACK_ADD_XPERMS:
923 		avc_add_xperms_decision(node, xpd);
924 		break;
925 	}
926 	avc_node_replace(avc, node, orig);
927 out_unlock:
928 	spin_unlock_irqrestore(lock, flag);
929 out:
930 	return rc;
931 }
932 
933 /**
934  * avc_flush - Flush the cache
935  */
avc_flush(struct selinux_avc * avc)936 static void avc_flush(struct selinux_avc *avc)
937 {
938 	struct hlist_head *head;
939 	struct avc_node *node;
940 	spinlock_t *lock;
941 	unsigned long flag;
942 	int i;
943 
944 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
945 		head = &avc->avc_cache.slots[i];
946 		lock = &avc->avc_cache.slots_lock[i];
947 
948 		spin_lock_irqsave(lock, flag);
949 		/*
950 		 * With preemptable RCU, the outer spinlock does not
951 		 * prevent RCU grace periods from ending.
952 		 */
953 		rcu_read_lock();
954 		hlist_for_each_entry(node, head, list)
955 			avc_node_delete(avc, node);
956 		rcu_read_unlock();
957 		spin_unlock_irqrestore(lock, flag);
958 	}
959 }
960 
961 /**
962  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
963  * @seqno: policy sequence number
964  */
avc_ss_reset(struct selinux_avc * avc,u32 seqno)965 int avc_ss_reset(struct selinux_avc *avc, u32 seqno)
966 {
967 	struct avc_callback_node *c;
968 	int rc = 0, tmprc;
969 
970 	avc_flush(avc);
971 
972 	for (c = avc_callbacks; c; c = c->next) {
973 		if (c->events & AVC_CALLBACK_RESET) {
974 			tmprc = c->callback(AVC_CALLBACK_RESET);
975 			/* save the first error encountered for the return
976 			   value and continue processing the callbacks */
977 			if (!rc)
978 				rc = tmprc;
979 		}
980 	}
981 
982 	avc_latest_notif_update(avc, seqno, 0);
983 	return rc;
984 }
985 
986 /*
987  * Slow-path helper function for avc_has_perm_noaudit,
988  * when the avc_node lookup fails. We get called with
989  * the RCU read lock held, and need to return with it
990  * still held, but drop if for the security compute.
991  *
992  * Don't inline this, since it's the slow-path and just
993  * results in a bigger stack frame.
994  */
995 static noinline
avc_compute_av(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd,struct avc_xperms_node * xp_node)996 struct avc_node *avc_compute_av(struct selinux_state *state,
997 				u32 ssid, u32 tsid,
998 				u16 tclass, struct av_decision *avd,
999 				struct avc_xperms_node *xp_node)
1000 {
1001 	rcu_read_unlock();
1002 	INIT_LIST_HEAD(&xp_node->xpd_head);
1003 	security_compute_av(state, ssid, tsid, tclass, avd, &xp_node->xp);
1004 	rcu_read_lock();
1005 	return avc_insert(state->avc, ssid, tsid, tclass, avd, xp_node);
1006 }
1007 
avc_denied(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 xperm,unsigned int flags,struct av_decision * avd)1008 static noinline int avc_denied(struct selinux_state *state,
1009 			       u32 ssid, u32 tsid,
1010 			       u16 tclass, u32 requested,
1011 			       u8 driver, u8 xperm, unsigned int flags,
1012 			       struct av_decision *avd)
1013 {
1014 	if (flags & AVC_STRICT)
1015 		return -EACCES;
1016 
1017 	if (enforcing_enabled(state) &&
1018 	    !(avd->flags & AVD_FLAGS_PERMISSIVE))
1019 		return -EACCES;
1020 
1021 	avc_update_node(state->avc, AVC_CALLBACK_GRANT, requested, driver,
1022 			xperm, ssid, tsid, tclass, avd->seqno, NULL, flags);
1023 	return 0;
1024 }
1025 
1026 /*
1027  * The avc extended permissions logic adds an additional 256 bits of
1028  * permissions to an avc node when extended permissions for that node are
1029  * specified in the avtab. If the additional 256 permissions is not adequate,
1030  * as-is the case with ioctls, then multiple may be chained together and the
1031  * driver field is used to specify which set contains the permission.
1032  */
avc_has_extended_perms(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,u8 driver,u8 xperm,struct common_audit_data * ad)1033 int avc_has_extended_perms(struct selinux_state *state,
1034 			   u32 ssid, u32 tsid, u16 tclass, u32 requested,
1035 			   u8 driver, u8 xperm, struct common_audit_data *ad)
1036 {
1037 	struct avc_node *node;
1038 	struct av_decision avd;
1039 	u32 denied;
1040 	struct extended_perms_decision local_xpd;
1041 	struct extended_perms_decision *xpd = NULL;
1042 	struct extended_perms_data allowed;
1043 	struct extended_perms_data auditallow;
1044 	struct extended_perms_data dontaudit;
1045 	struct avc_xperms_node local_xp_node;
1046 	struct avc_xperms_node *xp_node;
1047 	int rc = 0, rc2;
1048 
1049 	xp_node = &local_xp_node;
1050 	if (WARN_ON(!requested))
1051 		return -EACCES;
1052 
1053 	rcu_read_lock();
1054 
1055 	node = avc_lookup(state->avc, ssid, tsid, tclass);
1056 	if (unlikely(!node)) {
1057 		node = avc_compute_av(state, ssid, tsid, tclass, &avd, xp_node);
1058 	} else {
1059 		memcpy(&avd, &node->ae.avd, sizeof(avd));
1060 		xp_node = node->ae.xp_node;
1061 	}
1062 	/* if extended permissions are not defined, only consider av_decision */
1063 	if (!xp_node || !xp_node->xp.len)
1064 		goto decision;
1065 
1066 	local_xpd.allowed = &allowed;
1067 	local_xpd.auditallow = &auditallow;
1068 	local_xpd.dontaudit = &dontaudit;
1069 
1070 	xpd = avc_xperms_decision_lookup(driver, xp_node);
1071 	if (unlikely(!xpd)) {
1072 		/*
1073 		 * Compute the extended_perms_decision only if the driver
1074 		 * is flagged
1075 		 */
1076 		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1077 			avd.allowed &= ~requested;
1078 			goto decision;
1079 		}
1080 		rcu_read_unlock();
1081 		security_compute_xperms_decision(state, ssid, tsid, tclass,
1082 						 driver, &local_xpd);
1083 		rcu_read_lock();
1084 		avc_update_node(state->avc, AVC_CALLBACK_ADD_XPERMS, requested,
1085 				driver, xperm, ssid, tsid, tclass, avd.seqno,
1086 				&local_xpd, 0);
1087 	} else {
1088 		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1089 	}
1090 	xpd = &local_xpd;
1091 
1092 	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1093 		avd.allowed &= ~requested;
1094 
1095 decision:
1096 	denied = requested & ~(avd.allowed);
1097 	if (unlikely(denied))
1098 		rc = avc_denied(state, ssid, tsid, tclass, requested,
1099 				driver, xperm, AVC_EXTENDED_PERMS, &avd);
1100 
1101 	rcu_read_unlock();
1102 
1103 	rc2 = avc_xperms_audit(state, ssid, tsid, tclass, requested,
1104 			&avd, xpd, xperm, rc, ad);
1105 	if (rc2)
1106 		return rc2;
1107 	return rc;
1108 }
1109 
1110 /**
1111  * avc_has_perm_noaudit - Check permissions but perform no auditing.
1112  * @ssid: source security identifier
1113  * @tsid: target security identifier
1114  * @tclass: target security class
1115  * @requested: requested permissions, interpreted based on @tclass
1116  * @flags:  AVC_STRICT, AVC_NONBLOCKING, or 0
1117  * @avd: access vector decisions
1118  *
1119  * Check the AVC to determine whether the @requested permissions are granted
1120  * for the SID pair (@ssid, @tsid), interpreting the permissions
1121  * based on @tclass, and call the security server on a cache miss to obtain
1122  * a new decision and add it to the cache.  Return a copy of the decisions
1123  * in @avd.  Return %0 if all @requested permissions are granted,
1124  * -%EACCES if any permissions are denied, or another -errno upon
1125  * other errors.  This function is typically called by avc_has_perm(),
1126  * but may also be called directly to separate permission checking from
1127  * auditing, e.g. in cases where a lock must be held for the check but
1128  * should be released for the auditing.
1129  */
avc_has_perm_noaudit(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,unsigned int flags,struct av_decision * avd)1130 inline int avc_has_perm_noaudit(struct selinux_state *state,
1131 				u32 ssid, u32 tsid,
1132 				u16 tclass, u32 requested,
1133 				unsigned int flags,
1134 				struct av_decision *avd)
1135 {
1136 	struct avc_node *node;
1137 	struct avc_xperms_node xp_node;
1138 	int rc = 0;
1139 	u32 denied;
1140 
1141 	if (WARN_ON(!requested))
1142 		return -EACCES;
1143 
1144 	rcu_read_lock();
1145 
1146 	node = avc_lookup(state->avc, ssid, tsid, tclass);
1147 	if (unlikely(!node))
1148 		node = avc_compute_av(state, ssid, tsid, tclass, avd, &xp_node);
1149 	else
1150 		memcpy(avd, &node->ae.avd, sizeof(*avd));
1151 
1152 	denied = requested & ~(avd->allowed);
1153 	if (unlikely(denied))
1154 		rc = avc_denied(state, ssid, tsid, tclass, requested, 0, 0,
1155 				flags, avd);
1156 
1157 	rcu_read_unlock();
1158 	return rc;
1159 }
1160 
1161 /**
1162  * avc_has_perm - Check permissions and perform any appropriate auditing.
1163  * @ssid: source security identifier
1164  * @tsid: target security identifier
1165  * @tclass: target security class
1166  * @requested: requested permissions, interpreted based on @tclass
1167  * @auditdata: auxiliary audit data
1168  *
1169  * Check the AVC to determine whether the @requested permissions are granted
1170  * for the SID pair (@ssid, @tsid), interpreting the permissions
1171  * based on @tclass, and call the security server on a cache miss to obtain
1172  * a new decision and add it to the cache.  Audit the granting or denial of
1173  * permissions in accordance with the policy.  Return %0 if all @requested
1174  * permissions are granted, -%EACCES if any permissions are denied, or
1175  * another -errno upon other errors.
1176  */
avc_has_perm(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,struct common_audit_data * auditdata)1177 int avc_has_perm(struct selinux_state *state, u32 ssid, u32 tsid, u16 tclass,
1178 		 u32 requested, struct common_audit_data *auditdata)
1179 {
1180 	struct av_decision avd;
1181 	int rc, rc2;
1182 
1183 	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested, 0,
1184 				  &avd);
1185 
1186 	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1187 			auditdata, 0);
1188 	if (rc2)
1189 		return rc2;
1190 	return rc;
1191 }
1192 
avc_has_perm_flags(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 requested,struct common_audit_data * auditdata,int flags)1193 int avc_has_perm_flags(struct selinux_state *state,
1194 		       u32 ssid, u32 tsid, u16 tclass, u32 requested,
1195 		       struct common_audit_data *auditdata,
1196 		       int flags)
1197 {
1198 	struct av_decision avd;
1199 	int rc, rc2;
1200 
1201 	rc = avc_has_perm_noaudit(state, ssid, tsid, tclass, requested,
1202 				  (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
1203 				  &avd);
1204 
1205 	rc2 = avc_audit(state, ssid, tsid, tclass, requested, &avd, rc,
1206 			auditdata, flags);
1207 	if (rc2)
1208 		return rc2;
1209 	return rc;
1210 }
1211 
avc_policy_seqno(struct selinux_state * state)1212 u32 avc_policy_seqno(struct selinux_state *state)
1213 {
1214 	return state->avc->avc_cache.latest_notif;
1215 }
1216 
avc_disable(void)1217 void avc_disable(void)
1218 {
1219 	/*
1220 	 * If you are looking at this because you have realized that we are
1221 	 * not destroying the avc_node_cachep it might be easy to fix, but
1222 	 * I don't know the memory barrier semantics well enough to know.  It's
1223 	 * possible that some other task dereferenced security_ops when
1224 	 * it still pointed to selinux operations.  If that is the case it's
1225 	 * possible that it is about to use the avc and is about to need the
1226 	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
1227 	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1228 	 * the cache and get that memory back.
1229 	 */
1230 	if (avc_node_cachep) {
1231 		avc_flush(selinux_state.avc);
1232 		/* kmem_cache_destroy(avc_node_cachep); */
1233 	}
1234 }
1235