• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10 
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/delay.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
23 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 #include <linux/kexec.h>
29 
30 #include <asm/time.h>
31 #include <asm/pgtable.h>
32 #include <asm/processor.h>
33 #include <asm/bootinfo.h>
34 #include <asm/pmon.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mipsregs.h>
38 #include <asm/bmips.h>
39 #include <asm/traps.h>
40 #include <asm/barrier.h>
41 #include <asm/cpu-features.h>
42 
43 static int __maybe_unused max_cpus = 1;
44 
45 /* these may be configured by the platform code */
46 int bmips_smp_enabled = 1;
47 int bmips_cpu_offset;
48 cpumask_t bmips_booted_mask;
49 unsigned long bmips_tp1_irqs = IE_IRQ1;
50 
51 #define RESET_FROM_KSEG0		0x80080800
52 #define RESET_FROM_KSEG1		0xa0080800
53 
54 static void bmips_set_reset_vec(int cpu, u32 val);
55 
56 #ifdef CONFIG_SMP
57 
58 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
59 unsigned long bmips_smp_boot_sp;
60 unsigned long bmips_smp_boot_gp;
61 
62 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
63 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
64 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
65 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
66 
67 /* SW interrupts 0,1 are used for interprocessor signaling */
68 #define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
69 #define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
70 
71 #define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
72 #define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
73 #define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
74 #define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
75 
bmips_smp_setup(void)76 static void __init bmips_smp_setup(void)
77 {
78 	int i, cpu = 1, boot_cpu = 0;
79 	int cpu_hw_intr;
80 
81 	switch (current_cpu_type()) {
82 	case CPU_BMIPS4350:
83 	case CPU_BMIPS4380:
84 		/* arbitration priority */
85 		clear_c0_brcm_cmt_ctrl(0x30);
86 
87 		/* NBK and weak order flags */
88 		set_c0_brcm_config_0(0x30000);
89 
90 		/* Find out if we are running on TP0 or TP1 */
91 		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
92 
93 		/*
94 		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
95 		 * thread
96 		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
97 		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
98 		 */
99 		if (boot_cpu == 0)
100 			cpu_hw_intr = 0x02;
101 		else
102 			cpu_hw_intr = 0x1d;
103 
104 		change_c0_brcm_cmt_intr(0xf8018000,
105 					(cpu_hw_intr << 27) | (0x03 << 15));
106 
107 		/* single core, 2 threads (2 pipelines) */
108 		max_cpus = 2;
109 
110 		break;
111 	case CPU_BMIPS5000:
112 		/* enable raceless SW interrupts */
113 		set_c0_brcm_config(0x03 << 22);
114 
115 		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
116 		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
117 
118 		/* N cores, 2 threads per core */
119 		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
120 
121 		/* clear any pending SW interrupts */
122 		for (i = 0; i < max_cpus; i++) {
123 			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
124 			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
125 		}
126 
127 		break;
128 	default:
129 		max_cpus = 1;
130 	}
131 
132 	if (!bmips_smp_enabled)
133 		max_cpus = 1;
134 
135 	/* this can be overridden by the BSP */
136 	if (!board_ebase_setup)
137 		board_ebase_setup = &bmips_ebase_setup;
138 
139 	__cpu_number_map[boot_cpu] = 0;
140 	__cpu_logical_map[0] = boot_cpu;
141 
142 	for (i = 0; i < max_cpus; i++) {
143 		if (i != boot_cpu) {
144 			__cpu_number_map[i] = cpu;
145 			__cpu_logical_map[cpu] = i;
146 			cpu++;
147 		}
148 		set_cpu_possible(i, 1);
149 		set_cpu_present(i, 1);
150 	}
151 }
152 
153 /*
154  * IPI IRQ setup - runs on CPU0
155  */
bmips_prepare_cpus(unsigned int max_cpus)156 static void bmips_prepare_cpus(unsigned int max_cpus)
157 {
158 	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
159 
160 	switch (current_cpu_type()) {
161 	case CPU_BMIPS4350:
162 	case CPU_BMIPS4380:
163 		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
164 		break;
165 	case CPU_BMIPS5000:
166 		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
167 		break;
168 	default:
169 		return;
170 	}
171 
172 	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
173 			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
174 		panic("Can't request IPI0 interrupt");
175 	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
176 			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
177 		panic("Can't request IPI1 interrupt");
178 }
179 
180 /*
181  * Tell the hardware to boot CPUx - runs on CPU0
182  */
bmips_boot_secondary(int cpu,struct task_struct * idle)183 static int bmips_boot_secondary(int cpu, struct task_struct *idle)
184 {
185 	bmips_smp_boot_sp = __KSTK_TOS(idle);
186 	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
187 	mb();
188 
189 	/*
190 	 * Initial boot sequence for secondary CPU:
191 	 *   bmips_reset_nmi_vec @ a000_0000 ->
192 	 *   bmips_smp_entry ->
193 	 *   plat_wired_tlb_setup (cached function call; optional) ->
194 	 *   start_secondary (cached jump)
195 	 *
196 	 * Warm restart sequence:
197 	 *   play_dead WAIT loop ->
198 	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
199 	 *   eret to play_dead ->
200 	 *   bmips_secondary_reentry ->
201 	 *   start_secondary
202 	 */
203 
204 	pr_info("SMP: Booting CPU%d...\n", cpu);
205 
206 	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
207 		/* kseg1 might not exist if this CPU enabled XKS01 */
208 		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
209 
210 		switch (current_cpu_type()) {
211 		case CPU_BMIPS4350:
212 		case CPU_BMIPS4380:
213 			bmips43xx_send_ipi_single(cpu, 0);
214 			break;
215 		case CPU_BMIPS5000:
216 			bmips5000_send_ipi_single(cpu, 0);
217 			break;
218 		}
219 	} else {
220 		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
221 
222 		switch (current_cpu_type()) {
223 		case CPU_BMIPS4350:
224 		case CPU_BMIPS4380:
225 			/* Reset slave TP1 if booting from TP0 */
226 			if (cpu_logical_map(cpu) == 1)
227 				set_c0_brcm_cmt_ctrl(0x01);
228 			break;
229 		case CPU_BMIPS5000:
230 			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
231 			break;
232 		}
233 		cpumask_set_cpu(cpu, &bmips_booted_mask);
234 	}
235 
236 	return 0;
237 }
238 
239 /*
240  * Early setup - runs on secondary CPU after cache probe
241  */
bmips_init_secondary(void)242 static void bmips_init_secondary(void)
243 {
244 	bmips_cpu_setup();
245 
246 	switch (current_cpu_type()) {
247 	case CPU_BMIPS4350:
248 	case CPU_BMIPS4380:
249 		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
250 		break;
251 	case CPU_BMIPS5000:
252 		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
253 		cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
254 		break;
255 	}
256 }
257 
258 /*
259  * Late setup - runs on secondary CPU before entering the idle loop
260  */
bmips_smp_finish(void)261 static void bmips_smp_finish(void)
262 {
263 	pr_info("SMP: CPU%d is running\n", smp_processor_id());
264 
265 	/* make sure there won't be a timer interrupt for a little while */
266 	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
267 
268 	irq_enable_hazard();
269 	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
270 	irq_enable_hazard();
271 }
272 
273 /*
274  * BMIPS5000 raceless IPIs
275  *
276  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
277  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
278  * IPI1 is used for SMP_CALL_FUNCTION
279  */
280 
bmips5000_send_ipi_single(int cpu,unsigned int action)281 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
282 {
283 	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
284 }
285 
bmips5000_ipi_interrupt(int irq,void * dev_id)286 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
287 {
288 	int action = irq - IPI0_IRQ;
289 
290 	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
291 
292 	if (action == 0)
293 		scheduler_ipi();
294 	else
295 		generic_smp_call_function_interrupt();
296 
297 	return IRQ_HANDLED;
298 }
299 
bmips5000_send_ipi_mask(const struct cpumask * mask,unsigned int action)300 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
301 	unsigned int action)
302 {
303 	unsigned int i;
304 
305 	for_each_cpu(i, mask)
306 		bmips5000_send_ipi_single(i, action);
307 }
308 
309 /*
310  * BMIPS43xx racey IPIs
311  *
312  * We use one inbound SW IRQ for each CPU.
313  *
314  * A spinlock must be held in order to keep CPUx from accidentally clearing
315  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
316  * same spinlock is used to protect the action masks.
317  */
318 
319 static DEFINE_SPINLOCK(ipi_lock);
320 static DEFINE_PER_CPU(int, ipi_action_mask);
321 
bmips43xx_send_ipi_single(int cpu,unsigned int action)322 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
323 {
324 	unsigned long flags;
325 
326 	spin_lock_irqsave(&ipi_lock, flags);
327 	set_c0_cause(cpu ? C_SW1 : C_SW0);
328 	per_cpu(ipi_action_mask, cpu) |= action;
329 	irq_enable_hazard();
330 	spin_unlock_irqrestore(&ipi_lock, flags);
331 }
332 
bmips43xx_ipi_interrupt(int irq,void * dev_id)333 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
334 {
335 	unsigned long flags;
336 	int action, cpu = irq - IPI0_IRQ;
337 
338 	spin_lock_irqsave(&ipi_lock, flags);
339 	action = __this_cpu_read(ipi_action_mask);
340 	per_cpu(ipi_action_mask, cpu) = 0;
341 	clear_c0_cause(cpu ? C_SW1 : C_SW0);
342 	spin_unlock_irqrestore(&ipi_lock, flags);
343 
344 	if (action & SMP_RESCHEDULE_YOURSELF)
345 		scheduler_ipi();
346 	if (action & SMP_CALL_FUNCTION)
347 		generic_smp_call_function_interrupt();
348 
349 	return IRQ_HANDLED;
350 }
351 
bmips43xx_send_ipi_mask(const struct cpumask * mask,unsigned int action)352 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
353 	unsigned int action)
354 {
355 	unsigned int i;
356 
357 	for_each_cpu(i, mask)
358 		bmips43xx_send_ipi_single(i, action);
359 }
360 
361 #ifdef CONFIG_HOTPLUG_CPU
362 
bmips_cpu_disable(void)363 static int bmips_cpu_disable(void)
364 {
365 	unsigned int cpu = smp_processor_id();
366 
367 	if (cpu == 0)
368 		return -EBUSY;
369 
370 	pr_info("SMP: CPU%d is offline\n", cpu);
371 
372 	set_cpu_online(cpu, false);
373 	calculate_cpu_foreign_map();
374 	irq_cpu_offline();
375 	clear_c0_status(IE_IRQ5);
376 
377 	local_flush_tlb_all();
378 	local_flush_icache_range(0, ~0);
379 
380 	return 0;
381 }
382 
bmips_cpu_die(unsigned int cpu)383 static void bmips_cpu_die(unsigned int cpu)
384 {
385 }
386 
play_dead(void)387 void __ref play_dead(void)
388 {
389 	idle_task_exit();
390 
391 	/* flush data cache */
392 	_dma_cache_wback_inv(0, ~0);
393 
394 	/*
395 	 * Wakeup is on SW0 or SW1; disable everything else
396 	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
397 	 * IRQ handlers; this clears ST0_IE and returns immediately.
398 	 */
399 	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
400 	change_c0_status(
401 		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
402 		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
403 	irq_disable_hazard();
404 
405 	/*
406 	 * wait for SW interrupt from bmips_boot_secondary(), then jump
407 	 * back to start_secondary()
408 	 */
409 	__asm__ __volatile__(
410 	"	wait\n"
411 	"	j	bmips_secondary_reentry\n"
412 	: : : "memory");
413 }
414 
415 #endif /* CONFIG_HOTPLUG_CPU */
416 
417 const struct plat_smp_ops bmips43xx_smp_ops = {
418 	.smp_setup		= bmips_smp_setup,
419 	.prepare_cpus		= bmips_prepare_cpus,
420 	.boot_secondary		= bmips_boot_secondary,
421 	.smp_finish		= bmips_smp_finish,
422 	.init_secondary		= bmips_init_secondary,
423 	.send_ipi_single	= bmips43xx_send_ipi_single,
424 	.send_ipi_mask		= bmips43xx_send_ipi_mask,
425 #ifdef CONFIG_HOTPLUG_CPU
426 	.cpu_disable		= bmips_cpu_disable,
427 	.cpu_die		= bmips_cpu_die,
428 #endif
429 #ifdef CONFIG_KEXEC
430 	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
431 #endif
432 };
433 
434 const struct plat_smp_ops bmips5000_smp_ops = {
435 	.smp_setup		= bmips_smp_setup,
436 	.prepare_cpus		= bmips_prepare_cpus,
437 	.boot_secondary		= bmips_boot_secondary,
438 	.smp_finish		= bmips_smp_finish,
439 	.init_secondary		= bmips_init_secondary,
440 	.send_ipi_single	= bmips5000_send_ipi_single,
441 	.send_ipi_mask		= bmips5000_send_ipi_mask,
442 #ifdef CONFIG_HOTPLUG_CPU
443 	.cpu_disable		= bmips_cpu_disable,
444 	.cpu_die		= bmips_cpu_die,
445 #endif
446 #ifdef CONFIG_KEXEC
447 	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
448 #endif
449 };
450 
451 #endif /* CONFIG_SMP */
452 
453 /***********************************************************************
454  * BMIPS vector relocation
455  * This is primarily used for SMP boot, but it is applicable to some
456  * UP BMIPS systems as well.
457  ***********************************************************************/
458 
bmips_wr_vec(unsigned long dst,char * start,char * end)459 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
460 {
461 	memcpy((void *)dst, start, end - start);
462 	dma_cache_wback(dst, end - start);
463 	local_flush_icache_range(dst, dst + (end - start));
464 	instruction_hazard();
465 }
466 
bmips_nmi_handler_setup(void)467 static inline void bmips_nmi_handler_setup(void)
468 {
469 	bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
470 		bmips_reset_nmi_vec_end);
471 	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
472 		bmips_smp_int_vec_end);
473 }
474 
475 struct reset_vec_info {
476 	int cpu;
477 	u32 val;
478 };
479 
bmips_set_reset_vec_remote(void * vinfo)480 static void bmips_set_reset_vec_remote(void *vinfo)
481 {
482 	struct reset_vec_info *info = vinfo;
483 	int shift = info->cpu & 0x01 ? 16 : 0;
484 	u32 mask = ~(0xffff << shift), val = info->val >> 16;
485 
486 	preempt_disable();
487 	if (smp_processor_id() > 0) {
488 		smp_call_function_single(0, &bmips_set_reset_vec_remote,
489 					 info, 1);
490 	} else {
491 		if (info->cpu & 0x02) {
492 			/* BMIPS5200 "should" use mask/shift, but it's buggy */
493 			bmips_write_zscm_reg(0xa0, (val << 16) | val);
494 			bmips_read_zscm_reg(0xa0);
495 		} else {
496 			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
497 					      (val << shift));
498 		}
499 	}
500 	preempt_enable();
501 }
502 
bmips_set_reset_vec(int cpu,u32 val)503 static void bmips_set_reset_vec(int cpu, u32 val)
504 {
505 	struct reset_vec_info info;
506 
507 	if (current_cpu_type() == CPU_BMIPS5000) {
508 		/* this needs to run from CPU0 (which is always online) */
509 		info.cpu = cpu;
510 		info.val = val;
511 		bmips_set_reset_vec_remote(&info);
512 	} else {
513 		void __iomem *cbr = BMIPS_GET_CBR();
514 
515 		if (cpu == 0)
516 			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
517 		else {
518 			if (current_cpu_type() != CPU_BMIPS4380)
519 				return;
520 			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
521 		}
522 	}
523 	__sync();
524 	back_to_back_c0_hazard();
525 }
526 
bmips_ebase_setup(void)527 void bmips_ebase_setup(void)
528 {
529 	unsigned long new_ebase = ebase;
530 
531 	BUG_ON(ebase != CKSEG0);
532 
533 	switch (current_cpu_type()) {
534 	case CPU_BMIPS4350:
535 		/*
536 		 * BMIPS4350 cannot relocate the normal vectors, but it
537 		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
538 		 * the relocated BEV=1, IV=0 general exception vector @
539 		 * 0xa000_0380.
540 		 *
541 		 * set_uncached_handler() is used here because:
542 		 *  - CPU1 will run this from uncached space
543 		 *  - None of the cacheflush functions are set up yet
544 		 */
545 		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
546 			&bmips_smp_int_vec, 0x80);
547 		__sync();
548 		return;
549 	case CPU_BMIPS3300:
550 	case CPU_BMIPS4380:
551 		/*
552 		 * 0x8000_0000: reset/NMI (initially in kseg1)
553 		 * 0x8000_0400: normal vectors
554 		 */
555 		new_ebase = 0x80000400;
556 		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
557 		break;
558 	case CPU_BMIPS5000:
559 		/*
560 		 * 0x8000_0000: reset/NMI (initially in kseg1)
561 		 * 0x8000_1000: normal vectors
562 		 */
563 		new_ebase = 0x80001000;
564 		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
565 		write_c0_ebase(new_ebase);
566 		break;
567 	default:
568 		return;
569 	}
570 
571 	board_nmi_handler_setup = &bmips_nmi_handler_setup;
572 	ebase = new_ebase;
573 }
574 
plat_wired_tlb_setup(void)575 asmlinkage void __weak plat_wired_tlb_setup(void)
576 {
577 	/*
578 	 * Called when starting/restarting a secondary CPU.
579 	 * Kernel stacks and other important data might only be accessible
580 	 * once the wired entries are present.
581 	 */
582 }
583 
bmips_cpu_setup(void)584 void bmips_cpu_setup(void)
585 {
586 	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
587 	u32 __maybe_unused cfg;
588 
589 	switch (current_cpu_type()) {
590 	case CPU_BMIPS3300:
591 		/* Set BIU to async mode */
592 		set_c0_brcm_bus_pll(BIT(22));
593 		__sync();
594 
595 		/* put the BIU back in sync mode */
596 		clear_c0_brcm_bus_pll(BIT(22));
597 
598 		/* clear BHTD to enable branch history table */
599 		clear_c0_brcm_reset(BIT(16));
600 
601 		/* Flush and enable RAC */
602 		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
603 		__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
604 		__raw_readl(cbr + BMIPS_RAC_CONFIG);
605 
606 		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
607 		__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
608 		__raw_readl(cbr + BMIPS_RAC_CONFIG);
609 
610 		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
611 		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
612 		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
613 		break;
614 
615 	case CPU_BMIPS4380:
616 		/* CBG workaround for early BMIPS4380 CPUs */
617 		switch (read_c0_prid()) {
618 		case 0x2a040:
619 		case 0x2a042:
620 		case 0x2a044:
621 		case 0x2a060:
622 			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
623 			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
624 			__raw_readl(cbr + BMIPS_L2_CONFIG);
625 		}
626 
627 		/* clear BHTD to enable branch history table */
628 		clear_c0_brcm_config_0(BIT(21));
629 
630 		/* XI/ROTR enable */
631 		set_c0_brcm_config_0(BIT(23));
632 		set_c0_brcm_cmt_ctrl(BIT(15));
633 		break;
634 
635 	case CPU_BMIPS5000:
636 		/* enable RDHWR, BRDHWR */
637 		set_c0_brcm_config(BIT(17) | BIT(21));
638 
639 		/* Disable JTB */
640 		__asm__ __volatile__(
641 		"	.set	noreorder\n"
642 		"	li	$8, 0x5a455048\n"
643 		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
644 		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
645 		"	li	$9, 0x00008000\n"
646 		"	or	$8, $8, $9\n"
647 		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
648 		"	sync\n"
649 		"	li	$8, 0x0\n"
650 		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
651 		"	.set	reorder\n"
652 		: : : "$8", "$9");
653 
654 		/* XI enable */
655 		set_c0_brcm_config(BIT(27));
656 
657 		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
658 		__asm__ __volatile__(
659 		"	li	$8, 0x5a455048\n"
660 		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
661 		"	nop; nop; nop\n"
662 		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
663 		"	lui	$9, 0x0100\n"
664 		"	or	$8, $9\n"
665 		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
666 		: : : "$8", "$9");
667 		break;
668 	}
669 }
670