1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <uapi/linux/btf.h>
21 #include <linux/filter.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/random.h>
25 #include <linux/moduleloader.h>
26 #include <linux/bpf.h>
27 #include <linux/btf.h>
28 #include <linux/frame.h>
29 #include <linux/rbtree_latch.h>
30 #include <linux/kallsyms.h>
31 #include <linux/rcupdate.h>
32 #include <linux/perf_event.h>
33 #include <linux/nospec.h>
34
35 #include <asm/barrier.h>
36 #include <asm/unaligned.h>
37
38 /* Registers */
39 #define BPF_R0 regs[BPF_REG_0]
40 #define BPF_R1 regs[BPF_REG_1]
41 #define BPF_R2 regs[BPF_REG_2]
42 #define BPF_R3 regs[BPF_REG_3]
43 #define BPF_R4 regs[BPF_REG_4]
44 #define BPF_R5 regs[BPF_REG_5]
45 #define BPF_R6 regs[BPF_REG_6]
46 #define BPF_R7 regs[BPF_REG_7]
47 #define BPF_R8 regs[BPF_REG_8]
48 #define BPF_R9 regs[BPF_REG_9]
49 #define BPF_R10 regs[BPF_REG_10]
50
51 /* Named registers */
52 #define DST regs[insn->dst_reg]
53 #define SRC regs[insn->src_reg]
54 #define FP regs[BPF_REG_FP]
55 #define AX regs[BPF_REG_AX]
56 #define ARG1 regs[BPF_REG_ARG1]
57 #define CTX regs[BPF_REG_CTX]
58 #define IMM insn->imm
59
60 /* No hurry in this branch
61 *
62 * Exported for the bpf jit load helper.
63 */
bpf_internal_load_pointer_neg_helper(const struct sk_buff * skb,int k,unsigned int size)64 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
65 {
66 u8 *ptr = NULL;
67
68 if (k >= SKF_NET_OFF) {
69 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
70 } else if (k >= SKF_LL_OFF) {
71 if (unlikely(!skb_mac_header_was_set(skb)))
72 return NULL;
73 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
74 }
75 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
76 return ptr;
77
78 return NULL;
79 }
80
bpf_prog_alloc_no_stats(unsigned int size,gfp_t gfp_extra_flags)81 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
82 {
83 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
84 struct bpf_prog_aux *aux;
85 struct bpf_prog *fp;
86
87 size = round_up(size, PAGE_SIZE);
88 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
89 if (fp == NULL)
90 return NULL;
91
92 aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
93 if (aux == NULL) {
94 vfree(fp);
95 return NULL;
96 }
97
98 fp->pages = size / PAGE_SIZE;
99 fp->aux = aux;
100 fp->aux->prog = fp;
101 fp->jit_requested = ebpf_jit_enabled();
102
103 INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
104
105 return fp;
106 }
107
bpf_prog_alloc(unsigned int size,gfp_t gfp_extra_flags)108 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
109 {
110 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
111 struct bpf_prog *prog;
112 int cpu;
113
114 prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
115 if (!prog)
116 return NULL;
117
118 prog->aux->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
119 if (!prog->aux->stats) {
120 kfree(prog->aux);
121 vfree(prog);
122 return NULL;
123 }
124
125 for_each_possible_cpu(cpu) {
126 struct bpf_prog_stats *pstats;
127
128 pstats = per_cpu_ptr(prog->aux->stats, cpu);
129 u64_stats_init(&pstats->syncp);
130 }
131 return prog;
132 }
133 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
134
bpf_prog_alloc_jited_linfo(struct bpf_prog * prog)135 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
136 {
137 if (!prog->aux->nr_linfo || !prog->jit_requested)
138 return 0;
139
140 prog->aux->jited_linfo = kcalloc(prog->aux->nr_linfo,
141 sizeof(*prog->aux->jited_linfo),
142 GFP_KERNEL | __GFP_NOWARN);
143 if (!prog->aux->jited_linfo)
144 return -ENOMEM;
145
146 return 0;
147 }
148
bpf_prog_free_jited_linfo(struct bpf_prog * prog)149 void bpf_prog_free_jited_linfo(struct bpf_prog *prog)
150 {
151 kfree(prog->aux->jited_linfo);
152 prog->aux->jited_linfo = NULL;
153 }
154
bpf_prog_free_unused_jited_linfo(struct bpf_prog * prog)155 void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog)
156 {
157 if (prog->aux->jited_linfo && !prog->aux->jited_linfo[0])
158 bpf_prog_free_jited_linfo(prog);
159 }
160
161 /* The jit engine is responsible to provide an array
162 * for insn_off to the jited_off mapping (insn_to_jit_off).
163 *
164 * The idx to this array is the insn_off. Hence, the insn_off
165 * here is relative to the prog itself instead of the main prog.
166 * This array has one entry for each xlated bpf insn.
167 *
168 * jited_off is the byte off to the last byte of the jited insn.
169 *
170 * Hence, with
171 * insn_start:
172 * The first bpf insn off of the prog. The insn off
173 * here is relative to the main prog.
174 * e.g. if prog is a subprog, insn_start > 0
175 * linfo_idx:
176 * The prog's idx to prog->aux->linfo and jited_linfo
177 *
178 * jited_linfo[linfo_idx] = prog->bpf_func
179 *
180 * For i > linfo_idx,
181 *
182 * jited_linfo[i] = prog->bpf_func +
183 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
184 */
bpf_prog_fill_jited_linfo(struct bpf_prog * prog,const u32 * insn_to_jit_off)185 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
186 const u32 *insn_to_jit_off)
187 {
188 u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
189 const struct bpf_line_info *linfo;
190 void **jited_linfo;
191
192 if (!prog->aux->jited_linfo)
193 /* Userspace did not provide linfo */
194 return;
195
196 linfo_idx = prog->aux->linfo_idx;
197 linfo = &prog->aux->linfo[linfo_idx];
198 insn_start = linfo[0].insn_off;
199 insn_end = insn_start + prog->len;
200
201 jited_linfo = &prog->aux->jited_linfo[linfo_idx];
202 jited_linfo[0] = prog->bpf_func;
203
204 nr_linfo = prog->aux->nr_linfo - linfo_idx;
205
206 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
207 /* The verifier ensures that linfo[i].insn_off is
208 * strictly increasing
209 */
210 jited_linfo[i] = prog->bpf_func +
211 insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
212 }
213
bpf_prog_free_linfo(struct bpf_prog * prog)214 void bpf_prog_free_linfo(struct bpf_prog *prog)
215 {
216 bpf_prog_free_jited_linfo(prog);
217 kvfree(prog->aux->linfo);
218 }
219
bpf_prog_realloc(struct bpf_prog * fp_old,unsigned int size,gfp_t gfp_extra_flags)220 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
221 gfp_t gfp_extra_flags)
222 {
223 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
224 struct bpf_prog *fp;
225 u32 pages, delta;
226 int ret;
227
228 BUG_ON(fp_old == NULL);
229
230 size = round_up(size, PAGE_SIZE);
231 pages = size / PAGE_SIZE;
232 if (pages <= fp_old->pages)
233 return fp_old;
234
235 delta = pages - fp_old->pages;
236 ret = __bpf_prog_charge(fp_old->aux->user, delta);
237 if (ret)
238 return NULL;
239
240 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
241 if (fp == NULL) {
242 __bpf_prog_uncharge(fp_old->aux->user, delta);
243 } else {
244 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
245 fp->pages = pages;
246 fp->aux->prog = fp;
247
248 /* We keep fp->aux from fp_old around in the new
249 * reallocated structure.
250 */
251 fp_old->aux = NULL;
252 __bpf_prog_free(fp_old);
253 }
254
255 return fp;
256 }
257
__bpf_prog_free(struct bpf_prog * fp)258 void __bpf_prog_free(struct bpf_prog *fp)
259 {
260 if (fp->aux) {
261 free_percpu(fp->aux->stats);
262 kfree(fp->aux);
263 }
264 vfree(fp);
265 }
266
bpf_prog_calc_tag(struct bpf_prog * fp)267 int bpf_prog_calc_tag(struct bpf_prog *fp)
268 {
269 const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
270 u32 raw_size = bpf_prog_tag_scratch_size(fp);
271 u32 digest[SHA_DIGEST_WORDS];
272 u32 ws[SHA_WORKSPACE_WORDS];
273 u32 i, bsize, psize, blocks;
274 struct bpf_insn *dst;
275 bool was_ld_map;
276 u8 *raw, *todo;
277 __be32 *result;
278 __be64 *bits;
279
280 raw = vmalloc(raw_size);
281 if (!raw)
282 return -ENOMEM;
283
284 sha_init(digest);
285 memset(ws, 0, sizeof(ws));
286
287 /* We need to take out the map fd for the digest calculation
288 * since they are unstable from user space side.
289 */
290 dst = (void *)raw;
291 for (i = 0, was_ld_map = false; i < fp->len; i++) {
292 dst[i] = fp->insnsi[i];
293 if (!was_ld_map &&
294 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
295 (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
296 dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
297 was_ld_map = true;
298 dst[i].imm = 0;
299 } else if (was_ld_map &&
300 dst[i].code == 0 &&
301 dst[i].dst_reg == 0 &&
302 dst[i].src_reg == 0 &&
303 dst[i].off == 0) {
304 was_ld_map = false;
305 dst[i].imm = 0;
306 } else {
307 was_ld_map = false;
308 }
309 }
310
311 psize = bpf_prog_insn_size(fp);
312 memset(&raw[psize], 0, raw_size - psize);
313 raw[psize++] = 0x80;
314
315 bsize = round_up(psize, SHA_MESSAGE_BYTES);
316 blocks = bsize / SHA_MESSAGE_BYTES;
317 todo = raw;
318 if (bsize - psize >= sizeof(__be64)) {
319 bits = (__be64 *)(todo + bsize - sizeof(__be64));
320 } else {
321 bits = (__be64 *)(todo + bsize + bits_offset);
322 blocks++;
323 }
324 *bits = cpu_to_be64((psize - 1) << 3);
325
326 while (blocks--) {
327 sha_transform(digest, todo, ws);
328 todo += SHA_MESSAGE_BYTES;
329 }
330
331 result = (__force __be32 *)digest;
332 for (i = 0; i < SHA_DIGEST_WORDS; i++)
333 result[i] = cpu_to_be32(digest[i]);
334 memcpy(fp->tag, result, sizeof(fp->tag));
335
336 vfree(raw);
337 return 0;
338 }
339
bpf_adj_delta_to_imm(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)340 static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
341 s32 end_new, s32 curr, const bool probe_pass)
342 {
343 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
344 s32 delta = end_new - end_old;
345 s64 imm = insn->imm;
346
347 if (curr < pos && curr + imm + 1 >= end_old)
348 imm += delta;
349 else if (curr >= end_new && curr + imm + 1 < end_new)
350 imm -= delta;
351 if (imm < imm_min || imm > imm_max)
352 return -ERANGE;
353 if (!probe_pass)
354 insn->imm = imm;
355 return 0;
356 }
357
bpf_adj_delta_to_off(struct bpf_insn * insn,u32 pos,s32 end_old,s32 end_new,s32 curr,const bool probe_pass)358 static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
359 s32 end_new, s32 curr, const bool probe_pass)
360 {
361 const s32 off_min = S16_MIN, off_max = S16_MAX;
362 s32 delta = end_new - end_old;
363 s32 off = insn->off;
364
365 if (curr < pos && curr + off + 1 >= end_old)
366 off += delta;
367 else if (curr >= end_new && curr + off + 1 < end_new)
368 off -= delta;
369 if (off < off_min || off > off_max)
370 return -ERANGE;
371 if (!probe_pass)
372 insn->off = off;
373 return 0;
374 }
375
bpf_adj_branches(struct bpf_prog * prog,u32 pos,s32 end_old,s32 end_new,const bool probe_pass)376 static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
377 s32 end_new, const bool probe_pass)
378 {
379 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
380 struct bpf_insn *insn = prog->insnsi;
381 int ret = 0;
382
383 for (i = 0; i < insn_cnt; i++, insn++) {
384 u8 code;
385
386 /* In the probing pass we still operate on the original,
387 * unpatched image in order to check overflows before we
388 * do any other adjustments. Therefore skip the patchlet.
389 */
390 if (probe_pass && i == pos) {
391 i = end_new;
392 insn = prog->insnsi + end_old;
393 }
394 code = insn->code;
395 if ((BPF_CLASS(code) != BPF_JMP &&
396 BPF_CLASS(code) != BPF_JMP32) ||
397 BPF_OP(code) == BPF_EXIT)
398 continue;
399 /* Adjust offset of jmps if we cross patch boundaries. */
400 if (BPF_OP(code) == BPF_CALL) {
401 if (insn->src_reg != BPF_PSEUDO_CALL)
402 continue;
403 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
404 end_new, i, probe_pass);
405 } else {
406 ret = bpf_adj_delta_to_off(insn, pos, end_old,
407 end_new, i, probe_pass);
408 }
409 if (ret)
410 break;
411 }
412
413 return ret;
414 }
415
bpf_adj_linfo(struct bpf_prog * prog,u32 off,u32 delta)416 static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
417 {
418 struct bpf_line_info *linfo;
419 u32 i, nr_linfo;
420
421 nr_linfo = prog->aux->nr_linfo;
422 if (!nr_linfo || !delta)
423 return;
424
425 linfo = prog->aux->linfo;
426
427 for (i = 0; i < nr_linfo; i++)
428 if (off < linfo[i].insn_off)
429 break;
430
431 /* Push all off < linfo[i].insn_off by delta */
432 for (; i < nr_linfo; i++)
433 linfo[i].insn_off += delta;
434 }
435
bpf_patch_insn_single(struct bpf_prog * prog,u32 off,const struct bpf_insn * patch,u32 len)436 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
437 const struct bpf_insn *patch, u32 len)
438 {
439 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
440 const u32 cnt_max = S16_MAX;
441 struct bpf_prog *prog_adj;
442 int err;
443
444 /* Since our patchlet doesn't expand the image, we're done. */
445 if (insn_delta == 0) {
446 memcpy(prog->insnsi + off, patch, sizeof(*patch));
447 return prog;
448 }
449
450 insn_adj_cnt = prog->len + insn_delta;
451
452 /* Reject anything that would potentially let the insn->off
453 * target overflow when we have excessive program expansions.
454 * We need to probe here before we do any reallocation where
455 * we afterwards may not fail anymore.
456 */
457 if (insn_adj_cnt > cnt_max &&
458 (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
459 return ERR_PTR(err);
460
461 /* Several new instructions need to be inserted. Make room
462 * for them. Likely, there's no need for a new allocation as
463 * last page could have large enough tailroom.
464 */
465 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
466 GFP_USER);
467 if (!prog_adj)
468 return ERR_PTR(-ENOMEM);
469
470 prog_adj->len = insn_adj_cnt;
471
472 /* Patching happens in 3 steps:
473 *
474 * 1) Move over tail of insnsi from next instruction onwards,
475 * so we can patch the single target insn with one or more
476 * new ones (patching is always from 1 to n insns, n > 0).
477 * 2) Inject new instructions at the target location.
478 * 3) Adjust branch offsets if necessary.
479 */
480 insn_rest = insn_adj_cnt - off - len;
481
482 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
483 sizeof(*patch) * insn_rest);
484 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
485
486 /* We are guaranteed to not fail at this point, otherwise
487 * the ship has sailed to reverse to the original state. An
488 * overflow cannot happen at this point.
489 */
490 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
491
492 bpf_adj_linfo(prog_adj, off, insn_delta);
493
494 return prog_adj;
495 }
496
bpf_remove_insns(struct bpf_prog * prog,u32 off,u32 cnt)497 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
498 {
499 /* Branch offsets can't overflow when program is shrinking, no need
500 * to call bpf_adj_branches(..., true) here
501 */
502 memmove(prog->insnsi + off, prog->insnsi + off + cnt,
503 sizeof(struct bpf_insn) * (prog->len - off - cnt));
504 prog->len -= cnt;
505
506 return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
507 }
508
bpf_prog_kallsyms_del_subprogs(struct bpf_prog * fp)509 static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
510 {
511 int i;
512
513 for (i = 0; i < fp->aux->func_cnt; i++)
514 bpf_prog_kallsyms_del(fp->aux->func[i]);
515 }
516
bpf_prog_kallsyms_del_all(struct bpf_prog * fp)517 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
518 {
519 bpf_prog_kallsyms_del_subprogs(fp);
520 bpf_prog_kallsyms_del(fp);
521 }
522
523 #ifdef CONFIG_BPF_JIT
524 /* All BPF JIT sysctl knobs here. */
525 int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_ALWAYS_ON);
526 int bpf_jit_harden __read_mostly;
527 int bpf_jit_kallsyms __read_mostly;
528 long bpf_jit_limit __read_mostly;
529 long bpf_jit_limit_max __read_mostly;
530
531 static __always_inline void
bpf_get_prog_addr_region(const struct bpf_prog * prog,unsigned long * symbol_start,unsigned long * symbol_end)532 bpf_get_prog_addr_region(const struct bpf_prog *prog,
533 unsigned long *symbol_start,
534 unsigned long *symbol_end)
535 {
536 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
537 unsigned long addr = (unsigned long)hdr;
538
539 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
540
541 *symbol_start = addr;
542 *symbol_end = addr + hdr->pages * PAGE_SIZE;
543 }
544
bpf_get_prog_name(const struct bpf_prog * prog,char * sym)545 void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
546 {
547 const char *end = sym + KSYM_NAME_LEN;
548 const struct btf_type *type;
549 const char *func_name;
550
551 BUILD_BUG_ON(sizeof("bpf_prog_") +
552 sizeof(prog->tag) * 2 +
553 /* name has been null terminated.
554 * We should need +1 for the '_' preceding
555 * the name. However, the null character
556 * is double counted between the name and the
557 * sizeof("bpf_prog_") above, so we omit
558 * the +1 here.
559 */
560 sizeof(prog->aux->name) > KSYM_NAME_LEN);
561
562 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
563 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
564
565 /* prog->aux->name will be ignored if full btf name is available */
566 if (prog->aux->func_info_cnt) {
567 type = btf_type_by_id(prog->aux->btf,
568 prog->aux->func_info[prog->aux->func_idx].type_id);
569 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
570 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
571 return;
572 }
573
574 if (prog->aux->name[0])
575 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
576 else
577 *sym = 0;
578 }
579
580 static __always_inline unsigned long
bpf_get_prog_addr_start(struct latch_tree_node * n)581 bpf_get_prog_addr_start(struct latch_tree_node *n)
582 {
583 unsigned long symbol_start, symbol_end;
584 const struct bpf_prog_aux *aux;
585
586 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
587 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
588
589 return symbol_start;
590 }
591
bpf_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)592 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
593 struct latch_tree_node *b)
594 {
595 return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
596 }
597
bpf_tree_comp(void * key,struct latch_tree_node * n)598 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
599 {
600 unsigned long val = (unsigned long)key;
601 unsigned long symbol_start, symbol_end;
602 const struct bpf_prog_aux *aux;
603
604 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
605 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
606
607 if (val < symbol_start)
608 return -1;
609 if (val >= symbol_end)
610 return 1;
611
612 return 0;
613 }
614
615 static const struct latch_tree_ops bpf_tree_ops = {
616 .less = bpf_tree_less,
617 .comp = bpf_tree_comp,
618 };
619
620 static DEFINE_SPINLOCK(bpf_lock);
621 static LIST_HEAD(bpf_kallsyms);
622 static struct latch_tree_root bpf_tree __cacheline_aligned;
623
bpf_prog_ksym_node_add(struct bpf_prog_aux * aux)624 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
625 {
626 WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
627 list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
628 latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
629 }
630
bpf_prog_ksym_node_del(struct bpf_prog_aux * aux)631 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
632 {
633 if (list_empty(&aux->ksym_lnode))
634 return;
635
636 latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
637 list_del_rcu(&aux->ksym_lnode);
638 }
639
bpf_prog_kallsyms_candidate(const struct bpf_prog * fp)640 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
641 {
642 return fp->jited && !bpf_prog_was_classic(fp);
643 }
644
bpf_prog_kallsyms_verify_off(const struct bpf_prog * fp)645 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
646 {
647 return list_empty(&fp->aux->ksym_lnode) ||
648 fp->aux->ksym_lnode.prev == LIST_POISON2;
649 }
650
bpf_prog_kallsyms_add(struct bpf_prog * fp)651 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
652 {
653 if (!bpf_prog_kallsyms_candidate(fp) ||
654 !capable(CAP_SYS_ADMIN))
655 return;
656
657 spin_lock_bh(&bpf_lock);
658 bpf_prog_ksym_node_add(fp->aux);
659 spin_unlock_bh(&bpf_lock);
660 }
661
bpf_prog_kallsyms_del(struct bpf_prog * fp)662 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
663 {
664 if (!bpf_prog_kallsyms_candidate(fp))
665 return;
666
667 spin_lock_bh(&bpf_lock);
668 bpf_prog_ksym_node_del(fp->aux);
669 spin_unlock_bh(&bpf_lock);
670 }
671
bpf_prog_kallsyms_find(unsigned long addr)672 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
673 {
674 struct latch_tree_node *n;
675
676 if (!bpf_jit_kallsyms_enabled())
677 return NULL;
678
679 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
680 return n ?
681 container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
682 NULL;
683 }
684
__bpf_address_lookup(unsigned long addr,unsigned long * size,unsigned long * off,char * sym)685 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
686 unsigned long *off, char *sym)
687 {
688 unsigned long symbol_start, symbol_end;
689 struct bpf_prog *prog;
690 char *ret = NULL;
691
692 rcu_read_lock();
693 prog = bpf_prog_kallsyms_find(addr);
694 if (prog) {
695 bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
696 bpf_get_prog_name(prog, sym);
697
698 ret = sym;
699 if (size)
700 *size = symbol_end - symbol_start;
701 if (off)
702 *off = addr - symbol_start;
703 }
704 rcu_read_unlock();
705
706 return ret;
707 }
708
is_bpf_text_address(unsigned long addr)709 bool is_bpf_text_address(unsigned long addr)
710 {
711 bool ret;
712
713 rcu_read_lock();
714 ret = bpf_prog_kallsyms_find(addr) != NULL;
715 rcu_read_unlock();
716
717 return ret;
718 }
719
bpf_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)720 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
721 char *sym)
722 {
723 struct bpf_prog_aux *aux;
724 unsigned int it = 0;
725 int ret = -ERANGE;
726
727 if (!bpf_jit_kallsyms_enabled())
728 return ret;
729
730 rcu_read_lock();
731 list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
732 if (it++ != symnum)
733 continue;
734
735 bpf_get_prog_name(aux->prog, sym);
736
737 *value = (unsigned long)aux->prog->bpf_func;
738 *type = BPF_SYM_ELF_TYPE;
739
740 ret = 0;
741 break;
742 }
743 rcu_read_unlock();
744
745 return ret;
746 }
747
748 static atomic_long_t bpf_jit_current;
749
750 /* Can be overridden by an arch's JIT compiler if it has a custom,
751 * dedicated BPF backend memory area, or if neither of the two
752 * below apply.
753 */
bpf_jit_alloc_exec_limit(void)754 u64 __weak bpf_jit_alloc_exec_limit(void)
755 {
756 #if defined(MODULES_VADDR)
757 return MODULES_END - MODULES_VADDR;
758 #else
759 return VMALLOC_END - VMALLOC_START;
760 #endif
761 }
762
bpf_jit_charge_init(void)763 static int __init bpf_jit_charge_init(void)
764 {
765 /* Only used as heuristic here to derive limit. */
766 bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
767 bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
768 PAGE_SIZE), LONG_MAX);
769 return 0;
770 }
771 pure_initcall(bpf_jit_charge_init);
772
bpf_jit_charge_modmem(u32 pages)773 static int bpf_jit_charge_modmem(u32 pages)
774 {
775 if (atomic_long_add_return(pages, &bpf_jit_current) >
776 (bpf_jit_limit >> PAGE_SHIFT)) {
777 if (!capable(CAP_SYS_ADMIN)) {
778 atomic_long_sub(pages, &bpf_jit_current);
779 return -EPERM;
780 }
781 }
782
783 return 0;
784 }
785
bpf_jit_uncharge_modmem(u32 pages)786 static void bpf_jit_uncharge_modmem(u32 pages)
787 {
788 atomic_long_sub(pages, &bpf_jit_current);
789 }
790
bpf_jit_alloc_exec(unsigned long size)791 void *__weak bpf_jit_alloc_exec(unsigned long size)
792 {
793 return module_alloc(size);
794 }
795
bpf_jit_free_exec(void * addr)796 void __weak bpf_jit_free_exec(void *addr)
797 {
798 module_memfree(addr);
799 }
800
801 #if IS_ENABLED(CONFIG_BPF_JIT) && IS_ENABLED(CONFIG_CFI_CLANG)
arch_bpf_jit_check_func(const struct bpf_prog * prog)802 bool __weak arch_bpf_jit_check_func(const struct bpf_prog *prog)
803 {
804 return true;
805 }
806 EXPORT_SYMBOL_GPL(arch_bpf_jit_check_func);
807 #endif
808
809 struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen,u8 ** image_ptr,unsigned int alignment,bpf_jit_fill_hole_t bpf_fill_ill_insns)810 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
811 unsigned int alignment,
812 bpf_jit_fill_hole_t bpf_fill_ill_insns)
813 {
814 struct bpf_binary_header *hdr;
815 u32 size, hole, start, pages;
816
817 /* Most of BPF filters are really small, but if some of them
818 * fill a page, allow at least 128 extra bytes to insert a
819 * random section of illegal instructions.
820 */
821 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
822 pages = size / PAGE_SIZE;
823
824 if (bpf_jit_charge_modmem(pages))
825 return NULL;
826 hdr = bpf_jit_alloc_exec(size);
827 if (!hdr) {
828 bpf_jit_uncharge_modmem(pages);
829 return NULL;
830 }
831
832 /* Fill space with illegal/arch-dep instructions. */
833 bpf_fill_ill_insns(hdr, size);
834
835 bpf_jit_set_header_magic(hdr);
836 hdr->pages = pages;
837 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
838 PAGE_SIZE - sizeof(*hdr));
839 start = (get_random_int() % hole) & ~(alignment - 1);
840
841 /* Leave a random number of instructions before BPF code. */
842 *image_ptr = &hdr->image[start];
843
844 return hdr;
845 }
846
bpf_jit_binary_free(struct bpf_binary_header * hdr)847 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
848 {
849 u32 pages = hdr->pages;
850
851 bpf_jit_free_exec(hdr);
852 bpf_jit_uncharge_modmem(pages);
853 }
854
855 /* This symbol is only overridden by archs that have different
856 * requirements than the usual eBPF JITs, f.e. when they only
857 * implement cBPF JIT, do not set images read-only, etc.
858 */
bpf_jit_free(struct bpf_prog * fp)859 void __weak bpf_jit_free(struct bpf_prog *fp)
860 {
861 if (fp->jited) {
862 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
863
864 bpf_jit_binary_free(hdr);
865
866 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
867 }
868
869 bpf_prog_unlock_free(fp);
870 }
871
bpf_jit_get_func_addr(const struct bpf_prog * prog,const struct bpf_insn * insn,bool extra_pass,u64 * func_addr,bool * func_addr_fixed)872 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
873 const struct bpf_insn *insn, bool extra_pass,
874 u64 *func_addr, bool *func_addr_fixed)
875 {
876 s16 off = insn->off;
877 s32 imm = insn->imm;
878 u8 *addr;
879
880 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
881 if (!*func_addr_fixed) {
882 /* Place-holder address till the last pass has collected
883 * all addresses for JITed subprograms in which case we
884 * can pick them up from prog->aux.
885 */
886 if (!extra_pass)
887 addr = NULL;
888 else if (prog->aux->func &&
889 off >= 0 && off < prog->aux->func_cnt)
890 addr = (u8 *)prog->aux->func[off]->bpf_func;
891 else
892 return -EINVAL;
893 } else {
894 /* Address of a BPF helper call. Since part of the core
895 * kernel, it's always at a fixed location. __bpf_call_base
896 * and the helper with imm relative to it are both in core
897 * kernel.
898 */
899 addr = (u8 *)__bpf_call_base + imm;
900 }
901
902 *func_addr = (unsigned long)addr;
903 return 0;
904 }
905
bpf_jit_blind_insn(const struct bpf_insn * from,const struct bpf_insn * aux,struct bpf_insn * to_buff,bool emit_zext)906 static int bpf_jit_blind_insn(const struct bpf_insn *from,
907 const struct bpf_insn *aux,
908 struct bpf_insn *to_buff,
909 bool emit_zext)
910 {
911 struct bpf_insn *to = to_buff;
912 u32 imm_rnd = get_random_int();
913 s16 off;
914
915 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
916 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
917
918 /* Constraints on AX register:
919 *
920 * AX register is inaccessible from user space. It is mapped in
921 * all JITs, and used here for constant blinding rewrites. It is
922 * typically "stateless" meaning its contents are only valid within
923 * the executed instruction, but not across several instructions.
924 * There are a few exceptions however which are further detailed
925 * below.
926 *
927 * Constant blinding is only used by JITs, not in the interpreter.
928 * The interpreter uses AX in some occasions as a local temporary
929 * register e.g. in DIV or MOD instructions.
930 *
931 * In restricted circumstances, the verifier can also use the AX
932 * register for rewrites as long as they do not interfere with
933 * the above cases!
934 */
935 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
936 goto out;
937
938 if (from->imm == 0 &&
939 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
940 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
941 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
942 goto out;
943 }
944
945 switch (from->code) {
946 case BPF_ALU | BPF_ADD | BPF_K:
947 case BPF_ALU | BPF_SUB | BPF_K:
948 case BPF_ALU | BPF_AND | BPF_K:
949 case BPF_ALU | BPF_OR | BPF_K:
950 case BPF_ALU | BPF_XOR | BPF_K:
951 case BPF_ALU | BPF_MUL | BPF_K:
952 case BPF_ALU | BPF_MOV | BPF_K:
953 case BPF_ALU | BPF_DIV | BPF_K:
954 case BPF_ALU | BPF_MOD | BPF_K:
955 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
956 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
957 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
958 break;
959
960 case BPF_ALU64 | BPF_ADD | BPF_K:
961 case BPF_ALU64 | BPF_SUB | BPF_K:
962 case BPF_ALU64 | BPF_AND | BPF_K:
963 case BPF_ALU64 | BPF_OR | BPF_K:
964 case BPF_ALU64 | BPF_XOR | BPF_K:
965 case BPF_ALU64 | BPF_MUL | BPF_K:
966 case BPF_ALU64 | BPF_MOV | BPF_K:
967 case BPF_ALU64 | BPF_DIV | BPF_K:
968 case BPF_ALU64 | BPF_MOD | BPF_K:
969 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
970 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
971 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
972 break;
973
974 case BPF_JMP | BPF_JEQ | BPF_K:
975 case BPF_JMP | BPF_JNE | BPF_K:
976 case BPF_JMP | BPF_JGT | BPF_K:
977 case BPF_JMP | BPF_JLT | BPF_K:
978 case BPF_JMP | BPF_JGE | BPF_K:
979 case BPF_JMP | BPF_JLE | BPF_K:
980 case BPF_JMP | BPF_JSGT | BPF_K:
981 case BPF_JMP | BPF_JSLT | BPF_K:
982 case BPF_JMP | BPF_JSGE | BPF_K:
983 case BPF_JMP | BPF_JSLE | BPF_K:
984 case BPF_JMP | BPF_JSET | BPF_K:
985 /* Accommodate for extra offset in case of a backjump. */
986 off = from->off;
987 if (off < 0)
988 off -= 2;
989 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
990 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
991 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
992 break;
993
994 case BPF_JMP32 | BPF_JEQ | BPF_K:
995 case BPF_JMP32 | BPF_JNE | BPF_K:
996 case BPF_JMP32 | BPF_JGT | BPF_K:
997 case BPF_JMP32 | BPF_JLT | BPF_K:
998 case BPF_JMP32 | BPF_JGE | BPF_K:
999 case BPF_JMP32 | BPF_JLE | BPF_K:
1000 case BPF_JMP32 | BPF_JSGT | BPF_K:
1001 case BPF_JMP32 | BPF_JSLT | BPF_K:
1002 case BPF_JMP32 | BPF_JSGE | BPF_K:
1003 case BPF_JMP32 | BPF_JSLE | BPF_K:
1004 case BPF_JMP32 | BPF_JSET | BPF_K:
1005 /* Accommodate for extra offset in case of a backjump. */
1006 off = from->off;
1007 if (off < 0)
1008 off -= 2;
1009 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1010 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1011 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1012 off);
1013 break;
1014
1015 case BPF_LD | BPF_IMM | BPF_DW:
1016 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1017 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1018 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1019 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1020 break;
1021 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1022 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1023 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1024 if (emit_zext)
1025 *to++ = BPF_ZEXT_REG(BPF_REG_AX);
1026 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
1027 break;
1028
1029 case BPF_ST | BPF_MEM | BPF_DW:
1030 case BPF_ST | BPF_MEM | BPF_W:
1031 case BPF_ST | BPF_MEM | BPF_H:
1032 case BPF_ST | BPF_MEM | BPF_B:
1033 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1034 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1035 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1036 break;
1037 }
1038 out:
1039 return to - to_buff;
1040 }
1041
bpf_prog_clone_create(struct bpf_prog * fp_other,gfp_t gfp_extra_flags)1042 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1043 gfp_t gfp_extra_flags)
1044 {
1045 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1046 struct bpf_prog *fp;
1047
1048 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
1049 if (fp != NULL) {
1050 /* aux->prog still points to the fp_other one, so
1051 * when promoting the clone to the real program,
1052 * this still needs to be adapted.
1053 */
1054 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1055 }
1056
1057 return fp;
1058 }
1059
bpf_prog_clone_free(struct bpf_prog * fp)1060 static void bpf_prog_clone_free(struct bpf_prog *fp)
1061 {
1062 /* aux was stolen by the other clone, so we cannot free
1063 * it from this path! It will be freed eventually by the
1064 * other program on release.
1065 *
1066 * At this point, we don't need a deferred release since
1067 * clone is guaranteed to not be locked.
1068 */
1069 fp->aux = NULL;
1070 __bpf_prog_free(fp);
1071 }
1072
bpf_jit_prog_release_other(struct bpf_prog * fp,struct bpf_prog * fp_other)1073 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1074 {
1075 /* We have to repoint aux->prog to self, as we don't
1076 * know whether fp here is the clone or the original.
1077 */
1078 fp->aux->prog = fp;
1079 bpf_prog_clone_free(fp_other);
1080 }
1081
bpf_jit_blind_constants(struct bpf_prog * prog)1082 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1083 {
1084 struct bpf_insn insn_buff[16], aux[2];
1085 struct bpf_prog *clone, *tmp;
1086 int insn_delta, insn_cnt;
1087 struct bpf_insn *insn;
1088 int i, rewritten;
1089
1090 if (!bpf_jit_blinding_enabled(prog) || prog->blinded)
1091 return prog;
1092
1093 clone = bpf_prog_clone_create(prog, GFP_USER);
1094 if (!clone)
1095 return ERR_PTR(-ENOMEM);
1096
1097 insn_cnt = clone->len;
1098 insn = clone->insnsi;
1099
1100 for (i = 0; i < insn_cnt; i++, insn++) {
1101 /* We temporarily need to hold the original ld64 insn
1102 * so that we can still access the first part in the
1103 * second blinding run.
1104 */
1105 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1106 insn[1].code == 0)
1107 memcpy(aux, insn, sizeof(aux));
1108
1109 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1110 clone->aux->verifier_zext);
1111 if (!rewritten)
1112 continue;
1113
1114 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1115 if (IS_ERR(tmp)) {
1116 /* Patching may have repointed aux->prog during
1117 * realloc from the original one, so we need to
1118 * fix it up here on error.
1119 */
1120 bpf_jit_prog_release_other(prog, clone);
1121 return tmp;
1122 }
1123
1124 clone = tmp;
1125 insn_delta = rewritten - 1;
1126
1127 /* Walk new program and skip insns we just inserted. */
1128 insn = clone->insnsi + i + insn_delta;
1129 insn_cnt += insn_delta;
1130 i += insn_delta;
1131 }
1132
1133 clone->blinded = 1;
1134 return clone;
1135 }
1136 #endif /* CONFIG_BPF_JIT */
1137
1138 /* Base function for offset calculation. Needs to go into .text section,
1139 * therefore keeping it non-static as well; will also be used by JITs
1140 * anyway later on, so do not let the compiler omit it. This also needs
1141 * to go into kallsyms for correlation from e.g. bpftool, so naming
1142 * must not change.
1143 */
__bpf_call_base(u64 r1,u64 r2,u64 r3,u64 r4,u64 r5)1144 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1145 {
1146 return 0;
1147 }
1148 EXPORT_SYMBOL_GPL(__bpf_call_base);
1149
1150 /* All UAPI available opcodes. */
1151 #define BPF_INSN_MAP(INSN_2, INSN_3) \
1152 /* 32 bit ALU operations. */ \
1153 /* Register based. */ \
1154 INSN_3(ALU, ADD, X), \
1155 INSN_3(ALU, SUB, X), \
1156 INSN_3(ALU, AND, X), \
1157 INSN_3(ALU, OR, X), \
1158 INSN_3(ALU, LSH, X), \
1159 INSN_3(ALU, RSH, X), \
1160 INSN_3(ALU, XOR, X), \
1161 INSN_3(ALU, MUL, X), \
1162 INSN_3(ALU, MOV, X), \
1163 INSN_3(ALU, ARSH, X), \
1164 INSN_3(ALU, DIV, X), \
1165 INSN_3(ALU, MOD, X), \
1166 INSN_2(ALU, NEG), \
1167 INSN_3(ALU, END, TO_BE), \
1168 INSN_3(ALU, END, TO_LE), \
1169 /* Immediate based. */ \
1170 INSN_3(ALU, ADD, K), \
1171 INSN_3(ALU, SUB, K), \
1172 INSN_3(ALU, AND, K), \
1173 INSN_3(ALU, OR, K), \
1174 INSN_3(ALU, LSH, K), \
1175 INSN_3(ALU, RSH, K), \
1176 INSN_3(ALU, XOR, K), \
1177 INSN_3(ALU, MUL, K), \
1178 INSN_3(ALU, MOV, K), \
1179 INSN_3(ALU, ARSH, K), \
1180 INSN_3(ALU, DIV, K), \
1181 INSN_3(ALU, MOD, K), \
1182 /* 64 bit ALU operations. */ \
1183 /* Register based. */ \
1184 INSN_3(ALU64, ADD, X), \
1185 INSN_3(ALU64, SUB, X), \
1186 INSN_3(ALU64, AND, X), \
1187 INSN_3(ALU64, OR, X), \
1188 INSN_3(ALU64, LSH, X), \
1189 INSN_3(ALU64, RSH, X), \
1190 INSN_3(ALU64, XOR, X), \
1191 INSN_3(ALU64, MUL, X), \
1192 INSN_3(ALU64, MOV, X), \
1193 INSN_3(ALU64, ARSH, X), \
1194 INSN_3(ALU64, DIV, X), \
1195 INSN_3(ALU64, MOD, X), \
1196 INSN_2(ALU64, NEG), \
1197 /* Immediate based. */ \
1198 INSN_3(ALU64, ADD, K), \
1199 INSN_3(ALU64, SUB, K), \
1200 INSN_3(ALU64, AND, K), \
1201 INSN_3(ALU64, OR, K), \
1202 INSN_3(ALU64, LSH, K), \
1203 INSN_3(ALU64, RSH, K), \
1204 INSN_3(ALU64, XOR, K), \
1205 INSN_3(ALU64, MUL, K), \
1206 INSN_3(ALU64, MOV, K), \
1207 INSN_3(ALU64, ARSH, K), \
1208 INSN_3(ALU64, DIV, K), \
1209 INSN_3(ALU64, MOD, K), \
1210 /* Call instruction. */ \
1211 INSN_2(JMP, CALL), \
1212 /* Exit instruction. */ \
1213 INSN_2(JMP, EXIT), \
1214 /* 32-bit Jump instructions. */ \
1215 /* Register based. */ \
1216 INSN_3(JMP32, JEQ, X), \
1217 INSN_3(JMP32, JNE, X), \
1218 INSN_3(JMP32, JGT, X), \
1219 INSN_3(JMP32, JLT, X), \
1220 INSN_3(JMP32, JGE, X), \
1221 INSN_3(JMP32, JLE, X), \
1222 INSN_3(JMP32, JSGT, X), \
1223 INSN_3(JMP32, JSLT, X), \
1224 INSN_3(JMP32, JSGE, X), \
1225 INSN_3(JMP32, JSLE, X), \
1226 INSN_3(JMP32, JSET, X), \
1227 /* Immediate based. */ \
1228 INSN_3(JMP32, JEQ, K), \
1229 INSN_3(JMP32, JNE, K), \
1230 INSN_3(JMP32, JGT, K), \
1231 INSN_3(JMP32, JLT, K), \
1232 INSN_3(JMP32, JGE, K), \
1233 INSN_3(JMP32, JLE, K), \
1234 INSN_3(JMP32, JSGT, K), \
1235 INSN_3(JMP32, JSLT, K), \
1236 INSN_3(JMP32, JSGE, K), \
1237 INSN_3(JMP32, JSLE, K), \
1238 INSN_3(JMP32, JSET, K), \
1239 /* Jump instructions. */ \
1240 /* Register based. */ \
1241 INSN_3(JMP, JEQ, X), \
1242 INSN_3(JMP, JNE, X), \
1243 INSN_3(JMP, JGT, X), \
1244 INSN_3(JMP, JLT, X), \
1245 INSN_3(JMP, JGE, X), \
1246 INSN_3(JMP, JLE, X), \
1247 INSN_3(JMP, JSGT, X), \
1248 INSN_3(JMP, JSLT, X), \
1249 INSN_3(JMP, JSGE, X), \
1250 INSN_3(JMP, JSLE, X), \
1251 INSN_3(JMP, JSET, X), \
1252 /* Immediate based. */ \
1253 INSN_3(JMP, JEQ, K), \
1254 INSN_3(JMP, JNE, K), \
1255 INSN_3(JMP, JGT, K), \
1256 INSN_3(JMP, JLT, K), \
1257 INSN_3(JMP, JGE, K), \
1258 INSN_3(JMP, JLE, K), \
1259 INSN_3(JMP, JSGT, K), \
1260 INSN_3(JMP, JSLT, K), \
1261 INSN_3(JMP, JSGE, K), \
1262 INSN_3(JMP, JSLE, K), \
1263 INSN_3(JMP, JSET, K), \
1264 INSN_2(JMP, JA), \
1265 /* Store instructions. */ \
1266 /* Register based. */ \
1267 INSN_3(STX, MEM, B), \
1268 INSN_3(STX, MEM, H), \
1269 INSN_3(STX, MEM, W), \
1270 INSN_3(STX, MEM, DW), \
1271 INSN_3(STX, XADD, W), \
1272 INSN_3(STX, XADD, DW), \
1273 /* Immediate based. */ \
1274 INSN_3(ST, MEM, B), \
1275 INSN_3(ST, MEM, H), \
1276 INSN_3(ST, MEM, W), \
1277 INSN_3(ST, MEM, DW), \
1278 /* Load instructions. */ \
1279 /* Register based. */ \
1280 INSN_3(LDX, MEM, B), \
1281 INSN_3(LDX, MEM, H), \
1282 INSN_3(LDX, MEM, W), \
1283 INSN_3(LDX, MEM, DW), \
1284 /* Immediate based. */ \
1285 INSN_3(LD, IMM, DW)
1286
bpf_opcode_in_insntable(u8 code)1287 bool bpf_opcode_in_insntable(u8 code)
1288 {
1289 #define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1290 #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1291 static const bool public_insntable[256] = {
1292 [0 ... 255] = false,
1293 /* Now overwrite non-defaults ... */
1294 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1295 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1296 [BPF_LD | BPF_ABS | BPF_B] = true,
1297 [BPF_LD | BPF_ABS | BPF_H] = true,
1298 [BPF_LD | BPF_ABS | BPF_W] = true,
1299 [BPF_LD | BPF_IND | BPF_B] = true,
1300 [BPF_LD | BPF_IND | BPF_H] = true,
1301 [BPF_LD | BPF_IND | BPF_W] = true,
1302 };
1303 #undef BPF_INSN_3_TBL
1304 #undef BPF_INSN_2_TBL
1305 return public_insntable[code];
1306 }
1307
1308 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1309 /**
1310 * __bpf_prog_run - run eBPF program on a given context
1311 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
1312 * @insn: is the array of eBPF instructions
1313 * @stack: is the eBPF storage stack
1314 *
1315 * Decode and execute eBPF instructions.
1316 */
___bpf_prog_run(u64 * regs,const struct bpf_insn * insn,u64 * stack)1317 static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn, u64 *stack)
1318 {
1319 #define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1320 #define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1321 static const void * const jumptable[256] __annotate_jump_table = {
1322 [0 ... 255] = &&default_label,
1323 /* Now overwrite non-defaults ... */
1324 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1325 /* Non-UAPI available opcodes. */
1326 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1327 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1328 [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC,
1329 };
1330 #undef BPF_INSN_3_LBL
1331 #undef BPF_INSN_2_LBL
1332 u32 tail_call_cnt = 0;
1333
1334 #define CONT ({ insn++; goto select_insn; })
1335 #define CONT_JMP ({ insn++; goto select_insn; })
1336
1337 select_insn:
1338 goto *jumptable[insn->code];
1339
1340 /* Explicitly mask the register-based shift amounts with 63 or 31
1341 * to avoid undefined behavior. Normally this won't affect the
1342 * generated code, for example, in case of native 64 bit archs such
1343 * as x86-64 or arm64, the compiler is optimizing the AND away for
1344 * the interpreter. In case of JITs, each of the JIT backends compiles
1345 * the BPF shift operations to machine instructions which produce
1346 * implementation-defined results in such a case; the resulting
1347 * contents of the register may be arbitrary, but program behaviour
1348 * as a whole remains defined. In other words, in case of JIT backends,
1349 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1350 */
1351 /* ALU (shifts) */
1352 #define SHT(OPCODE, OP) \
1353 ALU64_##OPCODE##_X: \
1354 DST = DST OP (SRC & 63); \
1355 CONT; \
1356 ALU_##OPCODE##_X: \
1357 DST = (u32) DST OP ((u32) SRC & 31); \
1358 CONT; \
1359 ALU64_##OPCODE##_K: \
1360 DST = DST OP IMM; \
1361 CONT; \
1362 ALU_##OPCODE##_K: \
1363 DST = (u32) DST OP (u32) IMM; \
1364 CONT;
1365 /* ALU (rest) */
1366 #define ALU(OPCODE, OP) \
1367 ALU64_##OPCODE##_X: \
1368 DST = DST OP SRC; \
1369 CONT; \
1370 ALU_##OPCODE##_X: \
1371 DST = (u32) DST OP (u32) SRC; \
1372 CONT; \
1373 ALU64_##OPCODE##_K: \
1374 DST = DST OP IMM; \
1375 CONT; \
1376 ALU_##OPCODE##_K: \
1377 DST = (u32) DST OP (u32) IMM; \
1378 CONT;
1379 ALU(ADD, +)
1380 ALU(SUB, -)
1381 ALU(AND, &)
1382 ALU(OR, |)
1383 ALU(XOR, ^)
1384 ALU(MUL, *)
1385 SHT(LSH, <<)
1386 SHT(RSH, >>)
1387 #undef SHT
1388 #undef ALU
1389 ALU_NEG:
1390 DST = (u32) -DST;
1391 CONT;
1392 ALU64_NEG:
1393 DST = -DST;
1394 CONT;
1395 ALU_MOV_X:
1396 DST = (u32) SRC;
1397 CONT;
1398 ALU_MOV_K:
1399 DST = (u32) IMM;
1400 CONT;
1401 ALU64_MOV_X:
1402 DST = SRC;
1403 CONT;
1404 ALU64_MOV_K:
1405 DST = IMM;
1406 CONT;
1407 LD_IMM_DW:
1408 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1409 insn++;
1410 CONT;
1411 ALU_ARSH_X:
1412 DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1413 CONT;
1414 ALU_ARSH_K:
1415 DST = (u64) (u32) (((s32) DST) >> IMM);
1416 CONT;
1417 ALU64_ARSH_X:
1418 (*(s64 *) &DST) >>= (SRC & 63);
1419 CONT;
1420 ALU64_ARSH_K:
1421 (*(s64 *) &DST) >>= IMM;
1422 CONT;
1423 ALU64_MOD_X:
1424 div64_u64_rem(DST, SRC, &AX);
1425 DST = AX;
1426 CONT;
1427 ALU_MOD_X:
1428 AX = (u32) DST;
1429 DST = do_div(AX, (u32) SRC);
1430 CONT;
1431 ALU64_MOD_K:
1432 div64_u64_rem(DST, IMM, &AX);
1433 DST = AX;
1434 CONT;
1435 ALU_MOD_K:
1436 AX = (u32) DST;
1437 DST = do_div(AX, (u32) IMM);
1438 CONT;
1439 ALU64_DIV_X:
1440 DST = div64_u64(DST, SRC);
1441 CONT;
1442 ALU_DIV_X:
1443 AX = (u32) DST;
1444 do_div(AX, (u32) SRC);
1445 DST = (u32) AX;
1446 CONT;
1447 ALU64_DIV_K:
1448 DST = div64_u64(DST, IMM);
1449 CONT;
1450 ALU_DIV_K:
1451 AX = (u32) DST;
1452 do_div(AX, (u32) IMM);
1453 DST = (u32) AX;
1454 CONT;
1455 ALU_END_TO_BE:
1456 switch (IMM) {
1457 case 16:
1458 DST = (__force u16) cpu_to_be16(DST);
1459 break;
1460 case 32:
1461 DST = (__force u32) cpu_to_be32(DST);
1462 break;
1463 case 64:
1464 DST = (__force u64) cpu_to_be64(DST);
1465 break;
1466 }
1467 CONT;
1468 ALU_END_TO_LE:
1469 switch (IMM) {
1470 case 16:
1471 DST = (__force u16) cpu_to_le16(DST);
1472 break;
1473 case 32:
1474 DST = (__force u32) cpu_to_le32(DST);
1475 break;
1476 case 64:
1477 DST = (__force u64) cpu_to_le64(DST);
1478 break;
1479 }
1480 CONT;
1481
1482 /* CALL */
1483 JMP_CALL:
1484 /* Function call scratches BPF_R1-BPF_R5 registers,
1485 * preserves BPF_R6-BPF_R9, and stores return value
1486 * into BPF_R0.
1487 */
1488 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1489 BPF_R4, BPF_R5);
1490 CONT;
1491
1492 JMP_CALL_ARGS:
1493 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1494 BPF_R3, BPF_R4,
1495 BPF_R5,
1496 insn + insn->off + 1);
1497 CONT;
1498
1499 JMP_TAIL_CALL: {
1500 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1501 struct bpf_array *array = container_of(map, struct bpf_array, map);
1502 struct bpf_prog *prog;
1503 u32 index = BPF_R3;
1504
1505 if (unlikely(index >= array->map.max_entries))
1506 goto out;
1507 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1508 goto out;
1509
1510 tail_call_cnt++;
1511
1512 prog = READ_ONCE(array->ptrs[index]);
1513 if (!prog)
1514 goto out;
1515
1516 /* ARG1 at this point is guaranteed to point to CTX from
1517 * the verifier side due to the fact that the tail call is
1518 * handeled like a helper, that is, bpf_tail_call_proto,
1519 * where arg1_type is ARG_PTR_TO_CTX.
1520 */
1521 insn = prog->insnsi;
1522 goto select_insn;
1523 out:
1524 CONT;
1525 }
1526 JMP_JA:
1527 insn += insn->off;
1528 CONT;
1529 JMP_EXIT:
1530 return BPF_R0;
1531 /* JMP */
1532 #define COND_JMP(SIGN, OPCODE, CMP_OP) \
1533 JMP_##OPCODE##_X: \
1534 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
1535 insn += insn->off; \
1536 CONT_JMP; \
1537 } \
1538 CONT; \
1539 JMP32_##OPCODE##_X: \
1540 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
1541 insn += insn->off; \
1542 CONT_JMP; \
1543 } \
1544 CONT; \
1545 JMP_##OPCODE##_K: \
1546 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
1547 insn += insn->off; \
1548 CONT_JMP; \
1549 } \
1550 CONT; \
1551 JMP32_##OPCODE##_K: \
1552 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
1553 insn += insn->off; \
1554 CONT_JMP; \
1555 } \
1556 CONT;
1557 COND_JMP(u, JEQ, ==)
1558 COND_JMP(u, JNE, !=)
1559 COND_JMP(u, JGT, >)
1560 COND_JMP(u, JLT, <)
1561 COND_JMP(u, JGE, >=)
1562 COND_JMP(u, JLE, <=)
1563 COND_JMP(u, JSET, &)
1564 COND_JMP(s, JSGT, >)
1565 COND_JMP(s, JSLT, <)
1566 COND_JMP(s, JSGE, >=)
1567 COND_JMP(s, JSLE, <=)
1568 #undef COND_JMP
1569 /* ST, STX and LDX*/
1570 ST_NOSPEC:
1571 /* Speculation barrier for mitigating Speculative Store Bypass.
1572 * In case of arm64, we rely on the firmware mitigation as
1573 * controlled via the ssbd kernel parameter. Whenever the
1574 * mitigation is enabled, it works for all of the kernel code
1575 * with no need to provide any additional instructions here.
1576 * In case of x86, we use 'lfence' insn for mitigation. We
1577 * reuse preexisting logic from Spectre v1 mitigation that
1578 * happens to produce the required code on x86 for v4 as well.
1579 */
1580 barrier_nospec();
1581 CONT;
1582 #define LDST(SIZEOP, SIZE) \
1583 STX_MEM_##SIZEOP: \
1584 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1585 CONT; \
1586 ST_MEM_##SIZEOP: \
1587 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1588 CONT; \
1589 LDX_MEM_##SIZEOP: \
1590 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1591 CONT;
1592
1593 LDST(B, u8)
1594 LDST(H, u16)
1595 LDST(W, u32)
1596 LDST(DW, u64)
1597 #undef LDST
1598 STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1599 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1600 (DST + insn->off));
1601 CONT;
1602 STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1603 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1604 (DST + insn->off));
1605 CONT;
1606
1607 default_label:
1608 /* If we ever reach this, we have a bug somewhere. Die hard here
1609 * instead of just returning 0; we could be somewhere in a subprog,
1610 * so execution could continue otherwise which we do /not/ want.
1611 *
1612 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
1613 */
1614 pr_warn("BPF interpreter: unknown opcode %02x\n", insn->code);
1615 BUG_ON(1);
1616 return 0;
1617 }
1618
1619 #define PROG_NAME(stack_size) __bpf_prog_run##stack_size
1620 #define DEFINE_BPF_PROG_RUN(stack_size) \
1621 static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
1622 { \
1623 u64 stack[stack_size / sizeof(u64)]; \
1624 u64 regs[MAX_BPF_EXT_REG]; \
1625 \
1626 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1627 ARG1 = (u64) (unsigned long) ctx; \
1628 return ___bpf_prog_run(regs, insn, stack); \
1629 }
1630
1631 #define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
1632 #define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
1633 static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
1634 const struct bpf_insn *insn) \
1635 { \
1636 u64 stack[stack_size / sizeof(u64)]; \
1637 u64 regs[MAX_BPF_EXT_REG]; \
1638 \
1639 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
1640 BPF_R1 = r1; \
1641 BPF_R2 = r2; \
1642 BPF_R3 = r3; \
1643 BPF_R4 = r4; \
1644 BPF_R5 = r5; \
1645 return ___bpf_prog_run(regs, insn, stack); \
1646 }
1647
1648 #define EVAL1(FN, X) FN(X)
1649 #define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
1650 #define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
1651 #define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
1652 #define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
1653 #define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
1654
1655 EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
1656 EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
1657 EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
1658
1659 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
1660 EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
1661 EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
1662
1663 #define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
1664
1665 static unsigned int (*interpreters[])(const void *ctx,
1666 const struct bpf_insn *insn) = {
1667 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1668 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1669 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1670 };
1671 #undef PROG_NAME_LIST
1672 #define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
1673 static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
1674 const struct bpf_insn *insn) = {
1675 EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
1676 EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
1677 EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
1678 };
1679 #undef PROG_NAME_LIST
1680
bpf_patch_call_args(struct bpf_insn * insn,u32 stack_depth)1681 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
1682 {
1683 stack_depth = max_t(u32, stack_depth, 1);
1684 insn->off = (s16) insn->imm;
1685 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
1686 __bpf_call_base_args;
1687 insn->code = BPF_JMP | BPF_CALL_ARGS;
1688 }
1689
1690 #else
__bpf_prog_ret0_warn(const void * ctx,const struct bpf_insn * insn)1691 static unsigned int __bpf_prog_ret0_warn(const void *ctx,
1692 const struct bpf_insn *insn)
1693 {
1694 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
1695 * is not working properly, so warn about it!
1696 */
1697 WARN_ON_ONCE(1);
1698 return 0;
1699 }
1700 #endif
1701
bpf_prog_array_compatible(struct bpf_array * array,const struct bpf_prog * fp)1702 bool bpf_prog_array_compatible(struct bpf_array *array,
1703 const struct bpf_prog *fp)
1704 {
1705 if (fp->kprobe_override)
1706 return false;
1707
1708 if (!array->owner_prog_type) {
1709 /* There's no owner yet where we could check for
1710 * compatibility.
1711 */
1712 array->owner_prog_type = fp->type;
1713 array->owner_jited = fp->jited;
1714
1715 return true;
1716 }
1717
1718 return array->owner_prog_type == fp->type &&
1719 array->owner_jited == fp->jited;
1720 }
1721
bpf_check_tail_call(const struct bpf_prog * fp)1722 static int bpf_check_tail_call(const struct bpf_prog *fp)
1723 {
1724 struct bpf_prog_aux *aux = fp->aux;
1725 int i;
1726
1727 for (i = 0; i < aux->used_map_cnt; i++) {
1728 struct bpf_map *map = aux->used_maps[i];
1729 struct bpf_array *array;
1730
1731 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1732 continue;
1733
1734 array = container_of(map, struct bpf_array, map);
1735 if (!bpf_prog_array_compatible(array, fp))
1736 return -EINVAL;
1737 }
1738
1739 return 0;
1740 }
1741
bpf_prog_select_func(struct bpf_prog * fp)1742 static void bpf_prog_select_func(struct bpf_prog *fp)
1743 {
1744 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1745 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
1746
1747 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
1748 #else
1749 fp->bpf_func = __bpf_prog_ret0_warn;
1750 #endif
1751 }
1752
1753 /**
1754 * bpf_prog_select_runtime - select exec runtime for BPF program
1755 * @fp: bpf_prog populated with internal BPF program
1756 * @err: pointer to error variable
1757 *
1758 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1759 * The BPF program will be executed via BPF_PROG_RUN() macro.
1760 */
bpf_prog_select_runtime(struct bpf_prog * fp,int * err)1761 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1762 {
1763 /* In case of BPF to BPF calls, verifier did all the prep
1764 * work with regards to JITing, etc.
1765 */
1766 if (fp->bpf_func)
1767 goto finalize;
1768
1769 bpf_prog_select_func(fp);
1770
1771 /* eBPF JITs can rewrite the program in case constant
1772 * blinding is active. However, in case of error during
1773 * blinding, bpf_int_jit_compile() must always return a
1774 * valid program, which in this case would simply not
1775 * be JITed, but falls back to the interpreter.
1776 */
1777 if (!bpf_prog_is_dev_bound(fp->aux)) {
1778 *err = bpf_prog_alloc_jited_linfo(fp);
1779 if (*err)
1780 return fp;
1781
1782 fp = bpf_int_jit_compile(fp);
1783 if (!fp->jited) {
1784 bpf_prog_free_jited_linfo(fp);
1785 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
1786 *err = -ENOTSUPP;
1787 return fp;
1788 #endif
1789 } else {
1790 bpf_prog_free_unused_jited_linfo(fp);
1791 }
1792 } else {
1793 *err = bpf_prog_offload_compile(fp);
1794 if (*err)
1795 return fp;
1796 }
1797
1798 finalize:
1799 bpf_prog_lock_ro(fp);
1800
1801 /* The tail call compatibility check can only be done at
1802 * this late stage as we need to determine, if we deal
1803 * with JITed or non JITed program concatenations and not
1804 * all eBPF JITs might immediately support all features.
1805 */
1806 *err = bpf_check_tail_call(fp);
1807
1808 return fp;
1809 }
1810 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1811
__bpf_prog_ret1(const void * ctx,const struct bpf_insn * insn)1812 static unsigned int __bpf_prog_ret1(const void *ctx,
1813 const struct bpf_insn *insn)
1814 {
1815 return 1;
1816 }
1817
1818 static struct bpf_prog_dummy {
1819 struct bpf_prog prog;
1820 } dummy_bpf_prog = {
1821 .prog = {
1822 .bpf_func = __bpf_prog_ret1,
1823 },
1824 };
1825
1826 /* to avoid allocating empty bpf_prog_array for cgroups that
1827 * don't have bpf program attached use one global 'empty_prog_array'
1828 * It will not be modified the caller of bpf_prog_array_alloc()
1829 * (since caller requested prog_cnt == 0)
1830 * that pointer should be 'freed' by bpf_prog_array_free()
1831 */
1832 static struct {
1833 struct bpf_prog_array hdr;
1834 struct bpf_prog *null_prog;
1835 } empty_prog_array = {
1836 .null_prog = NULL,
1837 };
1838
bpf_prog_array_alloc(u32 prog_cnt,gfp_t flags)1839 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
1840 {
1841 if (prog_cnt)
1842 return kzalloc(sizeof(struct bpf_prog_array) +
1843 sizeof(struct bpf_prog_array_item) *
1844 (prog_cnt + 1),
1845 flags);
1846
1847 return &empty_prog_array.hdr;
1848 }
1849
bpf_prog_array_free(struct bpf_prog_array * progs)1850 void bpf_prog_array_free(struct bpf_prog_array *progs)
1851 {
1852 if (!progs || progs == &empty_prog_array.hdr)
1853 return;
1854 kfree_rcu(progs, rcu);
1855 }
1856
bpf_prog_array_length(struct bpf_prog_array * array)1857 int bpf_prog_array_length(struct bpf_prog_array *array)
1858 {
1859 struct bpf_prog_array_item *item;
1860 u32 cnt = 0;
1861
1862 for (item = array->items; item->prog; item++)
1863 if (item->prog != &dummy_bpf_prog.prog)
1864 cnt++;
1865 return cnt;
1866 }
1867
bpf_prog_array_is_empty(struct bpf_prog_array * array)1868 bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
1869 {
1870 struct bpf_prog_array_item *item;
1871
1872 for (item = array->items; item->prog; item++)
1873 if (item->prog != &dummy_bpf_prog.prog)
1874 return false;
1875 return true;
1876 }
1877
bpf_prog_array_copy_core(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt)1878 static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
1879 u32 *prog_ids,
1880 u32 request_cnt)
1881 {
1882 struct bpf_prog_array_item *item;
1883 int i = 0;
1884
1885 for (item = array->items; item->prog; item++) {
1886 if (item->prog == &dummy_bpf_prog.prog)
1887 continue;
1888 prog_ids[i] = item->prog->aux->id;
1889 if (++i == request_cnt) {
1890 item++;
1891 break;
1892 }
1893 }
1894
1895 return !!(item->prog);
1896 }
1897
bpf_prog_array_copy_to_user(struct bpf_prog_array * array,__u32 __user * prog_ids,u32 cnt)1898 int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
1899 __u32 __user *prog_ids, u32 cnt)
1900 {
1901 unsigned long err = 0;
1902 bool nospc;
1903 u32 *ids;
1904
1905 /* users of this function are doing:
1906 * cnt = bpf_prog_array_length();
1907 * if (cnt > 0)
1908 * bpf_prog_array_copy_to_user(..., cnt);
1909 * so below kcalloc doesn't need extra cnt > 0 check.
1910 */
1911 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
1912 if (!ids)
1913 return -ENOMEM;
1914 nospc = bpf_prog_array_copy_core(array, ids, cnt);
1915 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
1916 kfree(ids);
1917 if (err)
1918 return -EFAULT;
1919 if (nospc)
1920 return -ENOSPC;
1921 return 0;
1922 }
1923
bpf_prog_array_delete_safe(struct bpf_prog_array * array,struct bpf_prog * old_prog)1924 void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
1925 struct bpf_prog *old_prog)
1926 {
1927 struct bpf_prog_array_item *item;
1928
1929 for (item = array->items; item->prog; item++)
1930 if (item->prog == old_prog) {
1931 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
1932 break;
1933 }
1934 }
1935
bpf_prog_array_copy(struct bpf_prog_array * old_array,struct bpf_prog * exclude_prog,struct bpf_prog * include_prog,struct bpf_prog_array ** new_array)1936 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1937 struct bpf_prog *exclude_prog,
1938 struct bpf_prog *include_prog,
1939 struct bpf_prog_array **new_array)
1940 {
1941 int new_prog_cnt, carry_prog_cnt = 0;
1942 struct bpf_prog_array_item *existing;
1943 struct bpf_prog_array *array;
1944 bool found_exclude = false;
1945 int new_prog_idx = 0;
1946
1947 /* Figure out how many existing progs we need to carry over to
1948 * the new array.
1949 */
1950 if (old_array) {
1951 existing = old_array->items;
1952 for (; existing->prog; existing++) {
1953 if (existing->prog == exclude_prog) {
1954 found_exclude = true;
1955 continue;
1956 }
1957 if (existing->prog != &dummy_bpf_prog.prog)
1958 carry_prog_cnt++;
1959 if (existing->prog == include_prog)
1960 return -EEXIST;
1961 }
1962 }
1963
1964 if (exclude_prog && !found_exclude)
1965 return -ENOENT;
1966
1967 /* How many progs (not NULL) will be in the new array? */
1968 new_prog_cnt = carry_prog_cnt;
1969 if (include_prog)
1970 new_prog_cnt += 1;
1971
1972 /* Do we have any prog (not NULL) in the new array? */
1973 if (!new_prog_cnt) {
1974 *new_array = NULL;
1975 return 0;
1976 }
1977
1978 /* +1 as the end of prog_array is marked with NULL */
1979 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
1980 if (!array)
1981 return -ENOMEM;
1982
1983 /* Fill in the new prog array */
1984 if (carry_prog_cnt) {
1985 existing = old_array->items;
1986 for (; existing->prog; existing++)
1987 if (existing->prog != exclude_prog &&
1988 existing->prog != &dummy_bpf_prog.prog) {
1989 array->items[new_prog_idx++].prog =
1990 existing->prog;
1991 }
1992 }
1993 if (include_prog)
1994 array->items[new_prog_idx++].prog = include_prog;
1995 array->items[new_prog_idx].prog = NULL;
1996 *new_array = array;
1997 return 0;
1998 }
1999
bpf_prog_array_copy_info(struct bpf_prog_array * array,u32 * prog_ids,u32 request_cnt,u32 * prog_cnt)2000 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2001 u32 *prog_ids, u32 request_cnt,
2002 u32 *prog_cnt)
2003 {
2004 u32 cnt = 0;
2005
2006 if (array)
2007 cnt = bpf_prog_array_length(array);
2008
2009 *prog_cnt = cnt;
2010
2011 /* return early if user requested only program count or nothing to copy */
2012 if (!request_cnt || !cnt)
2013 return 0;
2014
2015 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
2016 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2017 : 0;
2018 }
2019
bpf_prog_free_deferred(struct work_struct * work)2020 static void bpf_prog_free_deferred(struct work_struct *work)
2021 {
2022 struct bpf_prog_aux *aux;
2023 int i;
2024
2025 aux = container_of(work, struct bpf_prog_aux, work);
2026 if (bpf_prog_is_dev_bound(aux))
2027 bpf_prog_offload_destroy(aux->prog);
2028 #ifdef CONFIG_PERF_EVENTS
2029 if (aux->prog->has_callchain_buf)
2030 put_callchain_buffers();
2031 #endif
2032 for (i = 0; i < aux->func_cnt; i++)
2033 bpf_jit_free(aux->func[i]);
2034 if (aux->func_cnt) {
2035 kfree(aux->func);
2036 bpf_prog_unlock_free(aux->prog);
2037 } else {
2038 bpf_jit_free(aux->prog);
2039 }
2040 }
2041
2042 /* Free internal BPF program */
bpf_prog_free(struct bpf_prog * fp)2043 void bpf_prog_free(struct bpf_prog *fp)
2044 {
2045 struct bpf_prog_aux *aux = fp->aux;
2046
2047 INIT_WORK(&aux->work, bpf_prog_free_deferred);
2048 schedule_work(&aux->work);
2049 }
2050 EXPORT_SYMBOL_GPL(bpf_prog_free);
2051
2052 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
2053 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2054
bpf_user_rnd_init_once(void)2055 void bpf_user_rnd_init_once(void)
2056 {
2057 prandom_init_once(&bpf_user_rnd_state);
2058 }
2059
BPF_CALL_0(bpf_user_rnd_u32)2060 BPF_CALL_0(bpf_user_rnd_u32)
2061 {
2062 /* Should someone ever have the rather unwise idea to use some
2063 * of the registers passed into this function, then note that
2064 * this function is called from native eBPF and classic-to-eBPF
2065 * transformations. Register assignments from both sides are
2066 * different, f.e. classic always sets fn(ctx, A, X) here.
2067 */
2068 struct rnd_state *state;
2069 u32 res;
2070
2071 state = &get_cpu_var(bpf_user_rnd_state);
2072 res = prandom_u32_state(state);
2073 put_cpu_var(bpf_user_rnd_state);
2074
2075 return res;
2076 }
2077
2078 /* Weak definitions of helper functions in case we don't have bpf syscall. */
2079 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2080 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2081 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2082 const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2083 const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2084 const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2085 const struct bpf_func_proto bpf_spin_lock_proto __weak;
2086 const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2087
2088 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2089 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2090 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2091 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2092 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2093
2094 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2095 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2096 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2097 const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2098 const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2099
bpf_get_trace_printk_proto(void)2100 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2101 {
2102 return NULL;
2103 }
2104
2105 u64 __weak
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)2106 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2107 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2108 {
2109 return -ENOTSUPP;
2110 }
2111 EXPORT_SYMBOL_GPL(bpf_event_output);
2112
2113 /* Always built-in helper functions. */
2114 const struct bpf_func_proto bpf_tail_call_proto = {
2115 .func = NULL,
2116 .gpl_only = false,
2117 .ret_type = RET_VOID,
2118 .arg1_type = ARG_PTR_TO_CTX,
2119 .arg2_type = ARG_CONST_MAP_PTR,
2120 .arg3_type = ARG_ANYTHING,
2121 };
2122
2123 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2124 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2125 * eBPF and implicitly also cBPF can get JITed!
2126 */
bpf_int_jit_compile(struct bpf_prog * prog)2127 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2128 {
2129 return prog;
2130 }
2131
2132 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
2133 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2134 */
bpf_jit_compile(struct bpf_prog * prog)2135 void __weak bpf_jit_compile(struct bpf_prog *prog)
2136 {
2137 }
2138
bpf_helper_changes_pkt_data(void * func)2139 bool __weak bpf_helper_changes_pkt_data(void *func)
2140 {
2141 return false;
2142 }
2143
2144 /* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2145 * analysis code and wants explicit zero extension inserted by verifier.
2146 * Otherwise, return FALSE.
2147 */
bpf_jit_needs_zext(void)2148 bool __weak bpf_jit_needs_zext(void)
2149 {
2150 return false;
2151 }
2152
2153 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2154 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2155 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2156 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2157 int len)
2158 {
2159 return -EFAULT;
2160 }
2161
2162 DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2163 EXPORT_SYMBOL(bpf_stats_enabled_key);
2164
2165 /* All definitions of tracepoints related to BPF. */
2166 #define CREATE_TRACE_POINTS
2167 #include <linux/bpf_trace.h>
2168
2169 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2170 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2171