• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <endian.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <fcntl.h>
9 #include <unistd.h>
10 #include <errno.h>
11 #include <linux/err.h>
12 #include <linux/btf.h>
13 #include <gelf.h>
14 #include "btf.h"
15 #include "bpf.h"
16 #include "libbpf.h"
17 #include "libbpf_internal.h"
18 #include "hashmap.h"
19 
20 #define BTF_MAX_NR_TYPES 0x7fffffff
21 #define BTF_MAX_STR_OFFSET 0x7fffffff
22 
23 static struct btf_type btf_void;
24 
25 struct btf {
26 	union {
27 		struct btf_header *hdr;
28 		void *data;
29 	};
30 	struct btf_type **types;
31 	const char *strings;
32 	void *nohdr_data;
33 	__u32 nr_types;
34 	__u32 types_size;
35 	__u32 data_size;
36 	int fd;
37 };
38 
ptr_to_u64(const void * ptr)39 static inline __u64 ptr_to_u64(const void *ptr)
40 {
41 	return (__u64) (unsigned long) ptr;
42 }
43 
btf_add_type(struct btf * btf,struct btf_type * t)44 static int btf_add_type(struct btf *btf, struct btf_type *t)
45 {
46 	if (btf->types_size - btf->nr_types < 2) {
47 		struct btf_type **new_types;
48 		__u32 expand_by, new_size;
49 
50 		if (btf->types_size == BTF_MAX_NR_TYPES)
51 			return -E2BIG;
52 
53 		expand_by = max(btf->types_size >> 2, 16);
54 		new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by);
55 
56 		new_types = realloc(btf->types, sizeof(*new_types) * new_size);
57 		if (!new_types)
58 			return -ENOMEM;
59 
60 		if (btf->nr_types == 0)
61 			new_types[0] = &btf_void;
62 
63 		btf->types = new_types;
64 		btf->types_size = new_size;
65 	}
66 
67 	btf->types[++(btf->nr_types)] = t;
68 
69 	return 0;
70 }
71 
btf_parse_hdr(struct btf * btf)72 static int btf_parse_hdr(struct btf *btf)
73 {
74 	const struct btf_header *hdr = btf->hdr;
75 	__u32 meta_left;
76 
77 	if (btf->data_size < sizeof(struct btf_header)) {
78 		pr_debug("BTF header not found\n");
79 		return -EINVAL;
80 	}
81 
82 	if (hdr->magic != BTF_MAGIC) {
83 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
84 		return -EINVAL;
85 	}
86 
87 	if (hdr->version != BTF_VERSION) {
88 		pr_debug("Unsupported BTF version:%u\n", hdr->version);
89 		return -ENOTSUP;
90 	}
91 
92 	if (hdr->flags) {
93 		pr_debug("Unsupported BTF flags:%x\n", hdr->flags);
94 		return -ENOTSUP;
95 	}
96 
97 	meta_left = btf->data_size - sizeof(*hdr);
98 	if (!meta_left) {
99 		pr_debug("BTF has no data\n");
100 		return -EINVAL;
101 	}
102 
103 	if (meta_left < hdr->str_off + hdr->str_len) {
104 		pr_debug("Invalid BTF total size:%u\n", btf->data_size);
105 		return -EINVAL;
106 	}
107 
108 	if (hdr->type_off + hdr->type_len > hdr->str_off) {
109 		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
110 			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
111 		return -EINVAL;
112 	}
113 
114 	if (hdr->type_off % 4) {
115 		pr_debug("BTF type section is not aligned to 4 bytes\n");
116 		return -EINVAL;
117 	}
118 
119 	btf->nohdr_data = btf->hdr + 1;
120 
121 	return 0;
122 }
123 
btf_parse_str_sec(struct btf * btf)124 static int btf_parse_str_sec(struct btf *btf)
125 {
126 	const struct btf_header *hdr = btf->hdr;
127 	const char *start = btf->nohdr_data + hdr->str_off;
128 	const char *end = start + btf->hdr->str_len;
129 
130 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
131 	    start[0] || end[-1]) {
132 		pr_debug("Invalid BTF string section\n");
133 		return -EINVAL;
134 	}
135 
136 	btf->strings = start;
137 
138 	return 0;
139 }
140 
btf_type_size(struct btf_type * t)141 static int btf_type_size(struct btf_type *t)
142 {
143 	int base_size = sizeof(struct btf_type);
144 	__u16 vlen = btf_vlen(t);
145 
146 	switch (btf_kind(t)) {
147 	case BTF_KIND_FWD:
148 	case BTF_KIND_CONST:
149 	case BTF_KIND_VOLATILE:
150 	case BTF_KIND_RESTRICT:
151 	case BTF_KIND_PTR:
152 	case BTF_KIND_TYPEDEF:
153 	case BTF_KIND_FUNC:
154 		return base_size;
155 	case BTF_KIND_INT:
156 		return base_size + sizeof(__u32);
157 	case BTF_KIND_ENUM:
158 		return base_size + vlen * sizeof(struct btf_enum);
159 	case BTF_KIND_ARRAY:
160 		return base_size + sizeof(struct btf_array);
161 	case BTF_KIND_STRUCT:
162 	case BTF_KIND_UNION:
163 		return base_size + vlen * sizeof(struct btf_member);
164 	case BTF_KIND_FUNC_PROTO:
165 		return base_size + vlen * sizeof(struct btf_param);
166 	case BTF_KIND_VAR:
167 		return base_size + sizeof(struct btf_var);
168 	case BTF_KIND_DATASEC:
169 		return base_size + vlen * sizeof(struct btf_var_secinfo);
170 	default:
171 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
172 		return -EINVAL;
173 	}
174 }
175 
btf_parse_type_sec(struct btf * btf)176 static int btf_parse_type_sec(struct btf *btf)
177 {
178 	struct btf_header *hdr = btf->hdr;
179 	void *nohdr_data = btf->nohdr_data;
180 	void *next_type = nohdr_data + hdr->type_off;
181 	void *end_type = nohdr_data + hdr->str_off;
182 
183 	while (next_type < end_type) {
184 		struct btf_type *t = next_type;
185 		int type_size;
186 		int err;
187 
188 		type_size = btf_type_size(t);
189 		if (type_size < 0)
190 			return type_size;
191 		next_type += type_size;
192 		err = btf_add_type(btf, t);
193 		if (err)
194 			return err;
195 	}
196 
197 	return 0;
198 }
199 
btf__get_nr_types(const struct btf * btf)200 __u32 btf__get_nr_types(const struct btf *btf)
201 {
202 	return btf->nr_types;
203 }
204 
btf__type_by_id(const struct btf * btf,__u32 type_id)205 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
206 {
207 	if (type_id > btf->nr_types)
208 		return NULL;
209 
210 	return btf->types[type_id];
211 }
212 
btf_type_is_void(const struct btf_type * t)213 static bool btf_type_is_void(const struct btf_type *t)
214 {
215 	return t == &btf_void || btf_is_fwd(t);
216 }
217 
btf_type_is_void_or_null(const struct btf_type * t)218 static bool btf_type_is_void_or_null(const struct btf_type *t)
219 {
220 	return !t || btf_type_is_void(t);
221 }
222 
223 #define MAX_RESOLVE_DEPTH 32
224 
btf__resolve_size(const struct btf * btf,__u32 type_id)225 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
226 {
227 	const struct btf_array *array;
228 	const struct btf_type *t;
229 	__u32 nelems = 1;
230 	__s64 size = -1;
231 	int i;
232 
233 	t = btf__type_by_id(btf, type_id);
234 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
235 	     i++) {
236 		switch (btf_kind(t)) {
237 		case BTF_KIND_INT:
238 		case BTF_KIND_STRUCT:
239 		case BTF_KIND_UNION:
240 		case BTF_KIND_ENUM:
241 		case BTF_KIND_DATASEC:
242 			size = t->size;
243 			goto done;
244 		case BTF_KIND_PTR:
245 			size = sizeof(void *);
246 			goto done;
247 		case BTF_KIND_TYPEDEF:
248 		case BTF_KIND_VOLATILE:
249 		case BTF_KIND_CONST:
250 		case BTF_KIND_RESTRICT:
251 		case BTF_KIND_VAR:
252 			type_id = t->type;
253 			break;
254 		case BTF_KIND_ARRAY:
255 			array = btf_array(t);
256 			if (nelems && array->nelems > UINT32_MAX / nelems)
257 				return -E2BIG;
258 			nelems *= array->nelems;
259 			type_id = array->type;
260 			break;
261 		default:
262 			return -EINVAL;
263 		}
264 
265 		t = btf__type_by_id(btf, type_id);
266 	}
267 
268 done:
269 	if (size < 0)
270 		return -EINVAL;
271 	if (nelems && size > UINT32_MAX / nelems)
272 		return -E2BIG;
273 
274 	return nelems * size;
275 }
276 
btf__resolve_type(const struct btf * btf,__u32 type_id)277 int btf__resolve_type(const struct btf *btf, __u32 type_id)
278 {
279 	const struct btf_type *t;
280 	int depth = 0;
281 
282 	t = btf__type_by_id(btf, type_id);
283 	while (depth < MAX_RESOLVE_DEPTH &&
284 	       !btf_type_is_void_or_null(t) &&
285 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
286 		type_id = t->type;
287 		t = btf__type_by_id(btf, type_id);
288 		depth++;
289 	}
290 
291 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
292 		return -EINVAL;
293 
294 	return type_id;
295 }
296 
btf__find_by_name(const struct btf * btf,const char * type_name)297 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
298 {
299 	__u32 i;
300 
301 	if (!strcmp(type_name, "void"))
302 		return 0;
303 
304 	for (i = 1; i <= btf->nr_types; i++) {
305 		const struct btf_type *t = btf->types[i];
306 		const char *name = btf__name_by_offset(btf, t->name_off);
307 
308 		if (name && !strcmp(type_name, name))
309 			return i;
310 	}
311 
312 	return -ENOENT;
313 }
314 
btf__free(struct btf * btf)315 void btf__free(struct btf *btf)
316 {
317 	if (!btf)
318 		return;
319 
320 	if (btf->fd != -1)
321 		close(btf->fd);
322 
323 	free(btf->data);
324 	free(btf->types);
325 	free(btf);
326 }
327 
btf__new(__u8 * data,__u32 size)328 struct btf *btf__new(__u8 *data, __u32 size)
329 {
330 	struct btf *btf;
331 	int err;
332 
333 	btf = calloc(1, sizeof(struct btf));
334 	if (!btf)
335 		return ERR_PTR(-ENOMEM);
336 
337 	btf->fd = -1;
338 
339 	btf->data = malloc(size);
340 	if (!btf->data) {
341 		err = -ENOMEM;
342 		goto done;
343 	}
344 
345 	memcpy(btf->data, data, size);
346 	btf->data_size = size;
347 
348 	err = btf_parse_hdr(btf);
349 	if (err)
350 		goto done;
351 
352 	err = btf_parse_str_sec(btf);
353 	if (err)
354 		goto done;
355 
356 	err = btf_parse_type_sec(btf);
357 
358 done:
359 	if (err) {
360 		btf__free(btf);
361 		return ERR_PTR(err);
362 	}
363 
364 	return btf;
365 }
366 
btf_check_endianness(const GElf_Ehdr * ehdr)367 static bool btf_check_endianness(const GElf_Ehdr *ehdr)
368 {
369 #if __BYTE_ORDER == __LITTLE_ENDIAN
370 	return ehdr->e_ident[EI_DATA] == ELFDATA2LSB;
371 #elif __BYTE_ORDER == __BIG_ENDIAN
372 	return ehdr->e_ident[EI_DATA] == ELFDATA2MSB;
373 #else
374 # error "Unrecognized __BYTE_ORDER__"
375 #endif
376 }
377 
btf__parse_elf(const char * path,struct btf_ext ** btf_ext)378 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
379 {
380 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
381 	int err = 0, fd = -1, idx = 0;
382 	struct btf *btf = NULL;
383 	Elf_Scn *scn = NULL;
384 	Elf *elf = NULL;
385 	GElf_Ehdr ehdr;
386 
387 	if (elf_version(EV_CURRENT) == EV_NONE) {
388 		pr_warning("failed to init libelf for %s\n", path);
389 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
390 	}
391 
392 	fd = open(path, O_RDONLY);
393 	if (fd < 0) {
394 		err = -errno;
395 		pr_warning("failed to open %s: %s\n", path, strerror(errno));
396 		return ERR_PTR(err);
397 	}
398 
399 	err = -LIBBPF_ERRNO__FORMAT;
400 
401 	elf = elf_begin(fd, ELF_C_READ, NULL);
402 	if (!elf) {
403 		pr_warning("failed to open %s as ELF file\n", path);
404 		goto done;
405 	}
406 	if (!gelf_getehdr(elf, &ehdr)) {
407 		pr_warning("failed to get EHDR from %s\n", path);
408 		goto done;
409 	}
410 	if (!btf_check_endianness(&ehdr)) {
411 		pr_warning("non-native ELF endianness is not supported\n");
412 		goto done;
413 	}
414 	if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
415 		pr_warning("failed to get e_shstrndx from %s\n", path);
416 		goto done;
417 	}
418 
419 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
420 		GElf_Shdr sh;
421 		char *name;
422 
423 		idx++;
424 		if (gelf_getshdr(scn, &sh) != &sh) {
425 			pr_warning("failed to get section(%d) header from %s\n",
426 				   idx, path);
427 			goto done;
428 		}
429 		name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
430 		if (!name) {
431 			pr_warning("failed to get section(%d) name from %s\n",
432 				   idx, path);
433 			goto done;
434 		}
435 		if (strcmp(name, BTF_ELF_SEC) == 0) {
436 			btf_data = elf_getdata(scn, 0);
437 			if (!btf_data) {
438 				pr_warning("failed to get section(%d, %s) data from %s\n",
439 					   idx, name, path);
440 				goto done;
441 			}
442 			continue;
443 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
444 			btf_ext_data = elf_getdata(scn, 0);
445 			if (!btf_ext_data) {
446 				pr_warning("failed to get section(%d, %s) data from %s\n",
447 					   idx, name, path);
448 				goto done;
449 			}
450 			continue;
451 		}
452 	}
453 
454 	err = 0;
455 
456 	if (!btf_data) {
457 		err = -ENOENT;
458 		goto done;
459 	}
460 	btf = btf__new(btf_data->d_buf, btf_data->d_size);
461 	if (IS_ERR(btf))
462 		goto done;
463 
464 	if (btf_ext && btf_ext_data) {
465 		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
466 					btf_ext_data->d_size);
467 		if (IS_ERR(*btf_ext))
468 			goto done;
469 	} else if (btf_ext) {
470 		*btf_ext = NULL;
471 	}
472 done:
473 	if (elf)
474 		elf_end(elf);
475 	close(fd);
476 
477 	if (err)
478 		return ERR_PTR(err);
479 	/*
480 	 * btf is always parsed before btf_ext, so no need to clean up
481 	 * btf_ext, if btf loading failed
482 	 */
483 	if (IS_ERR(btf))
484 		return btf;
485 	if (btf_ext && IS_ERR(*btf_ext)) {
486 		btf__free(btf);
487 		err = PTR_ERR(*btf_ext);
488 		return ERR_PTR(err);
489 	}
490 	return btf;
491 }
492 
compare_vsi_off(const void * _a,const void * _b)493 static int compare_vsi_off(const void *_a, const void *_b)
494 {
495 	const struct btf_var_secinfo *a = _a;
496 	const struct btf_var_secinfo *b = _b;
497 
498 	return a->offset - b->offset;
499 }
500 
btf_fixup_datasec(struct bpf_object * obj,struct btf * btf,struct btf_type * t)501 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
502 			     struct btf_type *t)
503 {
504 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
505 	const char *name = btf__name_by_offset(btf, t->name_off);
506 	const struct btf_type *t_var;
507 	struct btf_var_secinfo *vsi;
508 	const struct btf_var *var;
509 	int ret;
510 
511 	if (!name) {
512 		pr_debug("No name found in string section for DATASEC kind.\n");
513 		return -ENOENT;
514 	}
515 
516 	ret = bpf_object__section_size(obj, name, &size);
517 	if (ret || !size || (t->size && t->size != size)) {
518 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
519 		return -ENOENT;
520 	}
521 
522 	t->size = size;
523 
524 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
525 		t_var = btf__type_by_id(btf, vsi->type);
526 		var = btf_var(t_var);
527 
528 		if (!btf_is_var(t_var)) {
529 			pr_debug("Non-VAR type seen in section %s\n", name);
530 			return -EINVAL;
531 		}
532 
533 		if (var->linkage == BTF_VAR_STATIC)
534 			continue;
535 
536 		name = btf__name_by_offset(btf, t_var->name_off);
537 		if (!name) {
538 			pr_debug("No name found in string section for VAR kind\n");
539 			return -ENOENT;
540 		}
541 
542 		ret = bpf_object__variable_offset(obj, name, &off);
543 		if (ret) {
544 			pr_debug("No offset found in symbol table for VAR %s\n",
545 				 name);
546 			return -ENOENT;
547 		}
548 
549 		vsi->offset = off;
550 	}
551 
552 	qsort(t + 1, vars, sizeof(*vsi), compare_vsi_off);
553 	return 0;
554 }
555 
btf__finalize_data(struct bpf_object * obj,struct btf * btf)556 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
557 {
558 	int err = 0;
559 	__u32 i;
560 
561 	for (i = 1; i <= btf->nr_types; i++) {
562 		struct btf_type *t = btf->types[i];
563 
564 		/* Loader needs to fix up some of the things compiler
565 		 * couldn't get its hands on while emitting BTF. This
566 		 * is section size and global variable offset. We use
567 		 * the info from the ELF itself for this purpose.
568 		 */
569 		if (btf_is_datasec(t)) {
570 			err = btf_fixup_datasec(obj, btf, t);
571 			if (err)
572 				break;
573 		}
574 	}
575 
576 	return err;
577 }
578 
btf__load(struct btf * btf)579 int btf__load(struct btf *btf)
580 {
581 	__u32 log_buf_size = BPF_LOG_BUF_SIZE;
582 	char *log_buf = NULL;
583 	int err = 0;
584 
585 	if (btf->fd >= 0)
586 		return -EEXIST;
587 
588 	log_buf = malloc(log_buf_size);
589 	if (!log_buf)
590 		return -ENOMEM;
591 
592 	*log_buf = 0;
593 
594 	btf->fd = bpf_load_btf(btf->data, btf->data_size,
595 			       log_buf, log_buf_size, false);
596 	if (btf->fd < 0) {
597 		err = -errno;
598 		pr_warning("Error loading BTF: %s(%d)\n", strerror(errno), errno);
599 		if (*log_buf)
600 			pr_warning("%s\n", log_buf);
601 		goto done;
602 	}
603 
604 done:
605 	free(log_buf);
606 	return err;
607 }
608 
btf__fd(const struct btf * btf)609 int btf__fd(const struct btf *btf)
610 {
611 	return btf->fd;
612 }
613 
btf__get_raw_data(const struct btf * btf,__u32 * size)614 const void *btf__get_raw_data(const struct btf *btf, __u32 *size)
615 {
616 	*size = btf->data_size;
617 	return btf->data;
618 }
619 
btf__name_by_offset(const struct btf * btf,__u32 offset)620 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
621 {
622 	if (offset < btf->hdr->str_len)
623 		return &btf->strings[offset];
624 	else
625 		return NULL;
626 }
627 
btf__get_from_id(__u32 id,struct btf ** btf)628 int btf__get_from_id(__u32 id, struct btf **btf)
629 {
630 	struct bpf_btf_info btf_info = { 0 };
631 	__u32 len = sizeof(btf_info);
632 	__u32 last_size;
633 	int btf_fd;
634 	void *ptr;
635 	int err;
636 
637 	err = 0;
638 	*btf = NULL;
639 	btf_fd = bpf_btf_get_fd_by_id(id);
640 	if (btf_fd < 0)
641 		return 0;
642 
643 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
644 	 * let's start with a sane default - 4KiB here - and resize it only if
645 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
646 	 */
647 	btf_info.btf_size = 4096;
648 	last_size = btf_info.btf_size;
649 	ptr = malloc(last_size);
650 	if (!ptr) {
651 		err = -ENOMEM;
652 		goto exit_free;
653 	}
654 
655 	memset(ptr, 0, last_size);
656 	btf_info.btf = ptr_to_u64(ptr);
657 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
658 
659 	if (!err && btf_info.btf_size > last_size) {
660 		void *temp_ptr;
661 
662 		last_size = btf_info.btf_size;
663 		temp_ptr = realloc(ptr, last_size);
664 		if (!temp_ptr) {
665 			err = -ENOMEM;
666 			goto exit_free;
667 		}
668 		ptr = temp_ptr;
669 		memset(ptr, 0, last_size);
670 		btf_info.btf = ptr_to_u64(ptr);
671 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
672 	}
673 
674 	if (err || btf_info.btf_size > last_size) {
675 		err = errno;
676 		goto exit_free;
677 	}
678 
679 	*btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
680 	if (IS_ERR(*btf)) {
681 		err = PTR_ERR(*btf);
682 		*btf = NULL;
683 	}
684 
685 exit_free:
686 	close(btf_fd);
687 	free(ptr);
688 
689 	return err;
690 }
691 
btf__get_map_kv_tids(const struct btf * btf,const char * map_name,__u32 expected_key_size,__u32 expected_value_size,__u32 * key_type_id,__u32 * value_type_id)692 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
693 			 __u32 expected_key_size, __u32 expected_value_size,
694 			 __u32 *key_type_id, __u32 *value_type_id)
695 {
696 	const struct btf_type *container_type;
697 	const struct btf_member *key, *value;
698 	const size_t max_name = 256;
699 	char container_name[max_name];
700 	__s64 key_size, value_size;
701 	__s32 container_id;
702 
703 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
704 	    max_name) {
705 		pr_warning("map:%s length of '____btf_map_%s' is too long\n",
706 			   map_name, map_name);
707 		return -EINVAL;
708 	}
709 
710 	container_id = btf__find_by_name(btf, container_name);
711 	if (container_id < 0) {
712 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
713 			 map_name, container_name);
714 		return container_id;
715 	}
716 
717 	container_type = btf__type_by_id(btf, container_id);
718 	if (!container_type) {
719 		pr_warning("map:%s cannot find BTF type for container_id:%u\n",
720 			   map_name, container_id);
721 		return -EINVAL;
722 	}
723 
724 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
725 		pr_warning("map:%s container_name:%s is an invalid container struct\n",
726 			   map_name, container_name);
727 		return -EINVAL;
728 	}
729 
730 	key = btf_members(container_type);
731 	value = key + 1;
732 
733 	key_size = btf__resolve_size(btf, key->type);
734 	if (key_size < 0) {
735 		pr_warning("map:%s invalid BTF key_type_size\n", map_name);
736 		return key_size;
737 	}
738 
739 	if (expected_key_size != key_size) {
740 		pr_warning("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
741 			   map_name, (__u32)key_size, expected_key_size);
742 		return -EINVAL;
743 	}
744 
745 	value_size = btf__resolve_size(btf, value->type);
746 	if (value_size < 0) {
747 		pr_warning("map:%s invalid BTF value_type_size\n", map_name);
748 		return value_size;
749 	}
750 
751 	if (expected_value_size != value_size) {
752 		pr_warning("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
753 			   map_name, (__u32)value_size, expected_value_size);
754 		return -EINVAL;
755 	}
756 
757 	*key_type_id = key->type;
758 	*value_type_id = value->type;
759 
760 	return 0;
761 }
762 
763 struct btf_ext_sec_setup_param {
764 	__u32 off;
765 	__u32 len;
766 	__u32 min_rec_size;
767 	struct btf_ext_info *ext_info;
768 	const char *desc;
769 };
770 
btf_ext_setup_info(struct btf_ext * btf_ext,struct btf_ext_sec_setup_param * ext_sec)771 static int btf_ext_setup_info(struct btf_ext *btf_ext,
772 			      struct btf_ext_sec_setup_param *ext_sec)
773 {
774 	const struct btf_ext_info_sec *sinfo;
775 	struct btf_ext_info *ext_info;
776 	__u32 info_left, record_size;
777 	/* The start of the info sec (including the __u32 record_size). */
778 	void *info;
779 
780 	if (ext_sec->len == 0)
781 		return 0;
782 
783 	if (ext_sec->off & 0x03) {
784 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
785 		     ext_sec->desc);
786 		return -EINVAL;
787 	}
788 
789 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
790 	info_left = ext_sec->len;
791 
792 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
793 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
794 			 ext_sec->desc, ext_sec->off, ext_sec->len);
795 		return -EINVAL;
796 	}
797 
798 	/* At least a record size */
799 	if (info_left < sizeof(__u32)) {
800 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
801 		return -EINVAL;
802 	}
803 
804 	/* The record size needs to meet the minimum standard */
805 	record_size = *(__u32 *)info;
806 	if (record_size < ext_sec->min_rec_size ||
807 	    record_size & 0x03) {
808 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
809 			 ext_sec->desc, record_size);
810 		return -EINVAL;
811 	}
812 
813 	sinfo = info + sizeof(__u32);
814 	info_left -= sizeof(__u32);
815 
816 	/* If no records, return failure now so .BTF.ext won't be used. */
817 	if (!info_left) {
818 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
819 		return -EINVAL;
820 	}
821 
822 	while (info_left) {
823 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
824 		__u64 total_record_size;
825 		__u32 num_records;
826 
827 		if (info_left < sec_hdrlen) {
828 			pr_debug("%s section header is not found in .BTF.ext\n",
829 			     ext_sec->desc);
830 			return -EINVAL;
831 		}
832 
833 		num_records = sinfo->num_info;
834 		if (num_records == 0) {
835 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
836 			     ext_sec->desc);
837 			return -EINVAL;
838 		}
839 
840 		total_record_size = sec_hdrlen +
841 				    (__u64)num_records * record_size;
842 		if (info_left < total_record_size) {
843 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
844 			     ext_sec->desc);
845 			return -EINVAL;
846 		}
847 
848 		info_left -= total_record_size;
849 		sinfo = (void *)sinfo + total_record_size;
850 	}
851 
852 	ext_info = ext_sec->ext_info;
853 	ext_info->len = ext_sec->len - sizeof(__u32);
854 	ext_info->rec_size = record_size;
855 	ext_info->info = info + sizeof(__u32);
856 
857 	return 0;
858 }
859 
btf_ext_setup_func_info(struct btf_ext * btf_ext)860 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
861 {
862 	struct btf_ext_sec_setup_param param = {
863 		.off = btf_ext->hdr->func_info_off,
864 		.len = btf_ext->hdr->func_info_len,
865 		.min_rec_size = sizeof(struct bpf_func_info_min),
866 		.ext_info = &btf_ext->func_info,
867 		.desc = "func_info"
868 	};
869 
870 	return btf_ext_setup_info(btf_ext, &param);
871 }
872 
btf_ext_setup_line_info(struct btf_ext * btf_ext)873 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
874 {
875 	struct btf_ext_sec_setup_param param = {
876 		.off = btf_ext->hdr->line_info_off,
877 		.len = btf_ext->hdr->line_info_len,
878 		.min_rec_size = sizeof(struct bpf_line_info_min),
879 		.ext_info = &btf_ext->line_info,
880 		.desc = "line_info",
881 	};
882 
883 	return btf_ext_setup_info(btf_ext, &param);
884 }
885 
btf_ext_setup_offset_reloc(struct btf_ext * btf_ext)886 static int btf_ext_setup_offset_reloc(struct btf_ext *btf_ext)
887 {
888 	struct btf_ext_sec_setup_param param = {
889 		.off = btf_ext->hdr->offset_reloc_off,
890 		.len = btf_ext->hdr->offset_reloc_len,
891 		.min_rec_size = sizeof(struct bpf_offset_reloc),
892 		.ext_info = &btf_ext->offset_reloc_info,
893 		.desc = "offset_reloc",
894 	};
895 
896 	return btf_ext_setup_info(btf_ext, &param);
897 }
898 
btf_ext_parse_hdr(__u8 * data,__u32 data_size)899 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
900 {
901 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
902 
903 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
904 	    data_size < hdr->hdr_len) {
905 		pr_debug("BTF.ext header not found");
906 		return -EINVAL;
907 	}
908 
909 	if (hdr->magic != BTF_MAGIC) {
910 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
911 		return -EINVAL;
912 	}
913 
914 	if (hdr->version != BTF_VERSION) {
915 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
916 		return -ENOTSUP;
917 	}
918 
919 	if (hdr->flags) {
920 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
921 		return -ENOTSUP;
922 	}
923 
924 	if (data_size == hdr->hdr_len) {
925 		pr_debug("BTF.ext has no data\n");
926 		return -EINVAL;
927 	}
928 
929 	return 0;
930 }
931 
btf_ext__free(struct btf_ext * btf_ext)932 void btf_ext__free(struct btf_ext *btf_ext)
933 {
934 	if (!btf_ext)
935 		return;
936 	free(btf_ext->data);
937 	free(btf_ext);
938 }
939 
btf_ext__new(__u8 * data,__u32 size)940 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
941 {
942 	struct btf_ext *btf_ext;
943 	int err;
944 
945 	err = btf_ext_parse_hdr(data, size);
946 	if (err)
947 		return ERR_PTR(err);
948 
949 	btf_ext = calloc(1, sizeof(struct btf_ext));
950 	if (!btf_ext)
951 		return ERR_PTR(-ENOMEM);
952 
953 	btf_ext->data_size = size;
954 	btf_ext->data = malloc(size);
955 	if (!btf_ext->data) {
956 		err = -ENOMEM;
957 		goto done;
958 	}
959 	memcpy(btf_ext->data, data, size);
960 
961 	if (btf_ext->hdr->hdr_len <
962 	    offsetofend(struct btf_ext_header, line_info_len))
963 		goto done;
964 	err = btf_ext_setup_func_info(btf_ext);
965 	if (err)
966 		goto done;
967 
968 	err = btf_ext_setup_line_info(btf_ext);
969 	if (err)
970 		goto done;
971 
972 	if (btf_ext->hdr->hdr_len <
973 	    offsetofend(struct btf_ext_header, offset_reloc_len))
974 		goto done;
975 	err = btf_ext_setup_offset_reloc(btf_ext);
976 	if (err)
977 		goto done;
978 
979 done:
980 	if (err) {
981 		btf_ext__free(btf_ext);
982 		return ERR_PTR(err);
983 	}
984 
985 	return btf_ext;
986 }
987 
btf_ext__get_raw_data(const struct btf_ext * btf_ext,__u32 * size)988 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
989 {
990 	*size = btf_ext->data_size;
991 	return btf_ext->data;
992 }
993 
btf_ext_reloc_info(const struct btf * btf,const struct btf_ext_info * ext_info,const char * sec_name,__u32 insns_cnt,void ** info,__u32 * cnt)994 static int btf_ext_reloc_info(const struct btf *btf,
995 			      const struct btf_ext_info *ext_info,
996 			      const char *sec_name, __u32 insns_cnt,
997 			      void **info, __u32 *cnt)
998 {
999 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
1000 	__u32 i, record_size, existing_len, records_len;
1001 	struct btf_ext_info_sec *sinfo;
1002 	const char *info_sec_name;
1003 	__u64 remain_len;
1004 	void *data;
1005 
1006 	record_size = ext_info->rec_size;
1007 	sinfo = ext_info->info;
1008 	remain_len = ext_info->len;
1009 	while (remain_len > 0) {
1010 		records_len = sinfo->num_info * record_size;
1011 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
1012 		if (strcmp(info_sec_name, sec_name)) {
1013 			remain_len -= sec_hdrlen + records_len;
1014 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
1015 			continue;
1016 		}
1017 
1018 		existing_len = (*cnt) * record_size;
1019 		data = realloc(*info, existing_len + records_len);
1020 		if (!data)
1021 			return -ENOMEM;
1022 
1023 		memcpy(data + existing_len, sinfo->data, records_len);
1024 		/* adjust insn_off only, the rest data will be passed
1025 		 * to the kernel.
1026 		 */
1027 		for (i = 0; i < sinfo->num_info; i++) {
1028 			__u32 *insn_off;
1029 
1030 			insn_off = data + existing_len + (i * record_size);
1031 			*insn_off = *insn_off / sizeof(struct bpf_insn) +
1032 				insns_cnt;
1033 		}
1034 		*info = data;
1035 		*cnt += sinfo->num_info;
1036 		return 0;
1037 	}
1038 
1039 	return -ENOENT;
1040 }
1041 
btf_ext__reloc_func_info(const struct btf * btf,const struct btf_ext * btf_ext,const char * sec_name,__u32 insns_cnt,void ** func_info,__u32 * cnt)1042 int btf_ext__reloc_func_info(const struct btf *btf,
1043 			     const struct btf_ext *btf_ext,
1044 			     const char *sec_name, __u32 insns_cnt,
1045 			     void **func_info, __u32 *cnt)
1046 {
1047 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
1048 				  insns_cnt, func_info, cnt);
1049 }
1050 
btf_ext__reloc_line_info(const struct btf * btf,const struct btf_ext * btf_ext,const char * sec_name,__u32 insns_cnt,void ** line_info,__u32 * cnt)1051 int btf_ext__reloc_line_info(const struct btf *btf,
1052 			     const struct btf_ext *btf_ext,
1053 			     const char *sec_name, __u32 insns_cnt,
1054 			     void **line_info, __u32 *cnt)
1055 {
1056 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
1057 				  insns_cnt, line_info, cnt);
1058 }
1059 
btf_ext__func_info_rec_size(const struct btf_ext * btf_ext)1060 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
1061 {
1062 	return btf_ext->func_info.rec_size;
1063 }
1064 
btf_ext__line_info_rec_size(const struct btf_ext * btf_ext)1065 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
1066 {
1067 	return btf_ext->line_info.rec_size;
1068 }
1069 
1070 struct btf_dedup;
1071 
1072 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1073 				       const struct btf_dedup_opts *opts);
1074 static void btf_dedup_free(struct btf_dedup *d);
1075 static int btf_dedup_strings(struct btf_dedup *d);
1076 static int btf_dedup_prim_types(struct btf_dedup *d);
1077 static int btf_dedup_struct_types(struct btf_dedup *d);
1078 static int btf_dedup_ref_types(struct btf_dedup *d);
1079 static int btf_dedup_compact_types(struct btf_dedup *d);
1080 static int btf_dedup_remap_types(struct btf_dedup *d);
1081 
1082 /*
1083  * Deduplicate BTF types and strings.
1084  *
1085  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
1086  * section with all BTF type descriptors and string data. It overwrites that
1087  * memory in-place with deduplicated types and strings without any loss of
1088  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
1089  * is provided, all the strings referenced from .BTF.ext section are honored
1090  * and updated to point to the right offsets after deduplication.
1091  *
1092  * If function returns with error, type/string data might be garbled and should
1093  * be discarded.
1094  *
1095  * More verbose and detailed description of both problem btf_dedup is solving,
1096  * as well as solution could be found at:
1097  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
1098  *
1099  * Problem description and justification
1100  * =====================================
1101  *
1102  * BTF type information is typically emitted either as a result of conversion
1103  * from DWARF to BTF or directly by compiler. In both cases, each compilation
1104  * unit contains information about a subset of all the types that are used
1105  * in an application. These subsets are frequently overlapping and contain a lot
1106  * of duplicated information when later concatenated together into a single
1107  * binary. This algorithm ensures that each unique type is represented by single
1108  * BTF type descriptor, greatly reducing resulting size of BTF data.
1109  *
1110  * Compilation unit isolation and subsequent duplication of data is not the only
1111  * problem. The same type hierarchy (e.g., struct and all the type that struct
1112  * references) in different compilation units can be represented in BTF to
1113  * various degrees of completeness (or, rather, incompleteness) due to
1114  * struct/union forward declarations.
1115  *
1116  * Let's take a look at an example, that we'll use to better understand the
1117  * problem (and solution). Suppose we have two compilation units, each using
1118  * same `struct S`, but each of them having incomplete type information about
1119  * struct's fields:
1120  *
1121  * // CU #1:
1122  * struct S;
1123  * struct A {
1124  *	int a;
1125  *	struct A* self;
1126  *	struct S* parent;
1127  * };
1128  * struct B;
1129  * struct S {
1130  *	struct A* a_ptr;
1131  *	struct B* b_ptr;
1132  * };
1133  *
1134  * // CU #2:
1135  * struct S;
1136  * struct A;
1137  * struct B {
1138  *	int b;
1139  *	struct B* self;
1140  *	struct S* parent;
1141  * };
1142  * struct S {
1143  *	struct A* a_ptr;
1144  *	struct B* b_ptr;
1145  * };
1146  *
1147  * In case of CU #1, BTF data will know only that `struct B` exist (but no
1148  * more), but will know the complete type information about `struct A`. While
1149  * for CU #2, it will know full type information about `struct B`, but will
1150  * only know about forward declaration of `struct A` (in BTF terms, it will
1151  * have `BTF_KIND_FWD` type descriptor with name `B`).
1152  *
1153  * This compilation unit isolation means that it's possible that there is no
1154  * single CU with complete type information describing structs `S`, `A`, and
1155  * `B`. Also, we might get tons of duplicated and redundant type information.
1156  *
1157  * Additional complication we need to keep in mind comes from the fact that
1158  * types, in general, can form graphs containing cycles, not just DAGs.
1159  *
1160  * While algorithm does deduplication, it also merges and resolves type
1161  * information (unless disabled throught `struct btf_opts`), whenever possible.
1162  * E.g., in the example above with two compilation units having partial type
1163  * information for structs `A` and `B`, the output of algorithm will emit
1164  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
1165  * (as well as type information for `int` and pointers), as if they were defined
1166  * in a single compilation unit as:
1167  *
1168  * struct A {
1169  *	int a;
1170  *	struct A* self;
1171  *	struct S* parent;
1172  * };
1173  * struct B {
1174  *	int b;
1175  *	struct B* self;
1176  *	struct S* parent;
1177  * };
1178  * struct S {
1179  *	struct A* a_ptr;
1180  *	struct B* b_ptr;
1181  * };
1182  *
1183  * Algorithm summary
1184  * =================
1185  *
1186  * Algorithm completes its work in 6 separate passes:
1187  *
1188  * 1. Strings deduplication.
1189  * 2. Primitive types deduplication (int, enum, fwd).
1190  * 3. Struct/union types deduplication.
1191  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
1192  *    protos, and const/volatile/restrict modifiers).
1193  * 5. Types compaction.
1194  * 6. Types remapping.
1195  *
1196  * Algorithm determines canonical type descriptor, which is a single
1197  * representative type for each truly unique type. This canonical type is the
1198  * one that will go into final deduplicated BTF type information. For
1199  * struct/unions, it is also the type that algorithm will merge additional type
1200  * information into (while resolving FWDs), as it discovers it from data in
1201  * other CUs. Each input BTF type eventually gets either mapped to itself, if
1202  * that type is canonical, or to some other type, if that type is equivalent
1203  * and was chosen as canonical representative. This mapping is stored in
1204  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
1205  * FWD type got resolved to.
1206  *
1207  * To facilitate fast discovery of canonical types, we also maintain canonical
1208  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
1209  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
1210  * that match that signature. With sufficiently good choice of type signature
1211  * hashing function, we can limit number of canonical types for each unique type
1212  * signature to a very small number, allowing to find canonical type for any
1213  * duplicated type very quickly.
1214  *
1215  * Struct/union deduplication is the most critical part and algorithm for
1216  * deduplicating structs/unions is described in greater details in comments for
1217  * `btf_dedup_is_equiv` function.
1218  */
btf__dedup(struct btf * btf,struct btf_ext * btf_ext,const struct btf_dedup_opts * opts)1219 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
1220 	       const struct btf_dedup_opts *opts)
1221 {
1222 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
1223 	int err;
1224 
1225 	if (IS_ERR(d)) {
1226 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
1227 		return -EINVAL;
1228 	}
1229 
1230 	err = btf_dedup_strings(d);
1231 	if (err < 0) {
1232 		pr_debug("btf_dedup_strings failed:%d\n", err);
1233 		goto done;
1234 	}
1235 	err = btf_dedup_prim_types(d);
1236 	if (err < 0) {
1237 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
1238 		goto done;
1239 	}
1240 	err = btf_dedup_struct_types(d);
1241 	if (err < 0) {
1242 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
1243 		goto done;
1244 	}
1245 	err = btf_dedup_ref_types(d);
1246 	if (err < 0) {
1247 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
1248 		goto done;
1249 	}
1250 	err = btf_dedup_compact_types(d);
1251 	if (err < 0) {
1252 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
1253 		goto done;
1254 	}
1255 	err = btf_dedup_remap_types(d);
1256 	if (err < 0) {
1257 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
1258 		goto done;
1259 	}
1260 
1261 done:
1262 	btf_dedup_free(d);
1263 	return err;
1264 }
1265 
1266 #define BTF_UNPROCESSED_ID ((__u32)-1)
1267 #define BTF_IN_PROGRESS_ID ((__u32)-2)
1268 
1269 struct btf_dedup {
1270 	/* .BTF section to be deduped in-place */
1271 	struct btf *btf;
1272 	/*
1273 	 * Optional .BTF.ext section. When provided, any strings referenced
1274 	 * from it will be taken into account when deduping strings
1275 	 */
1276 	struct btf_ext *btf_ext;
1277 	/*
1278 	 * This is a map from any type's signature hash to a list of possible
1279 	 * canonical representative type candidates. Hash collisions are
1280 	 * ignored, so even types of various kinds can share same list of
1281 	 * candidates, which is fine because we rely on subsequent
1282 	 * btf_xxx_equal() checks to authoritatively verify type equality.
1283 	 */
1284 	struct hashmap *dedup_table;
1285 	/* Canonical types map */
1286 	__u32 *map;
1287 	/* Hypothetical mapping, used during type graph equivalence checks */
1288 	__u32 *hypot_map;
1289 	__u32 *hypot_list;
1290 	size_t hypot_cnt;
1291 	size_t hypot_cap;
1292 	/* Various option modifying behavior of algorithm */
1293 	struct btf_dedup_opts opts;
1294 };
1295 
1296 struct btf_str_ptr {
1297 	const char *str;
1298 	__u32 new_off;
1299 	bool used;
1300 };
1301 
1302 struct btf_str_ptrs {
1303 	struct btf_str_ptr *ptrs;
1304 	const char *data;
1305 	__u32 cnt;
1306 	__u32 cap;
1307 };
1308 
hash_combine(long h,long value)1309 static long hash_combine(long h, long value)
1310 {
1311 	return h * 31 + value;
1312 }
1313 
1314 #define for_each_dedup_cand(d, node, hash) \
1315 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
1316 
btf_dedup_table_add(struct btf_dedup * d,long hash,__u32 type_id)1317 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
1318 {
1319 	return hashmap__append(d->dedup_table,
1320 			       (void *)hash, (void *)(long)type_id);
1321 }
1322 
btf_dedup_hypot_map_add(struct btf_dedup * d,__u32 from_id,__u32 to_id)1323 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
1324 				   __u32 from_id, __u32 to_id)
1325 {
1326 	if (d->hypot_cnt == d->hypot_cap) {
1327 		__u32 *new_list;
1328 
1329 		d->hypot_cap += max(16, d->hypot_cap / 2);
1330 		new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap);
1331 		if (!new_list)
1332 			return -ENOMEM;
1333 		d->hypot_list = new_list;
1334 	}
1335 	d->hypot_list[d->hypot_cnt++] = from_id;
1336 	d->hypot_map[from_id] = to_id;
1337 	return 0;
1338 }
1339 
btf_dedup_clear_hypot_map(struct btf_dedup * d)1340 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
1341 {
1342 	int i;
1343 
1344 	for (i = 0; i < d->hypot_cnt; i++)
1345 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
1346 	d->hypot_cnt = 0;
1347 }
1348 
btf_dedup_free(struct btf_dedup * d)1349 static void btf_dedup_free(struct btf_dedup *d)
1350 {
1351 	hashmap__free(d->dedup_table);
1352 	d->dedup_table = NULL;
1353 
1354 	free(d->map);
1355 	d->map = NULL;
1356 
1357 	free(d->hypot_map);
1358 	d->hypot_map = NULL;
1359 
1360 	free(d->hypot_list);
1361 	d->hypot_list = NULL;
1362 
1363 	free(d);
1364 }
1365 
btf_dedup_identity_hash_fn(const void * key,void * ctx)1366 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
1367 {
1368 	return (size_t)key;
1369 }
1370 
btf_dedup_collision_hash_fn(const void * key,void * ctx)1371 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
1372 {
1373 	return 0;
1374 }
1375 
btf_dedup_equal_fn(const void * k1,const void * k2,void * ctx)1376 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
1377 {
1378 	return k1 == k2;
1379 }
1380 
btf_dedup_new(struct btf * btf,struct btf_ext * btf_ext,const struct btf_dedup_opts * opts)1381 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1382 				       const struct btf_dedup_opts *opts)
1383 {
1384 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
1385 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
1386 	int i, err = 0;
1387 
1388 	if (!d)
1389 		return ERR_PTR(-ENOMEM);
1390 
1391 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
1392 	/* dedup_table_size is now used only to force collisions in tests */
1393 	if (opts && opts->dedup_table_size == 1)
1394 		hash_fn = btf_dedup_collision_hash_fn;
1395 
1396 	d->btf = btf;
1397 	d->btf_ext = btf_ext;
1398 
1399 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
1400 	if (IS_ERR(d->dedup_table)) {
1401 		err = PTR_ERR(d->dedup_table);
1402 		d->dedup_table = NULL;
1403 		goto done;
1404 	}
1405 
1406 	d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1407 	if (!d->map) {
1408 		err = -ENOMEM;
1409 		goto done;
1410 	}
1411 	/* special BTF "void" type is made canonical immediately */
1412 	d->map[0] = 0;
1413 	for (i = 1; i <= btf->nr_types; i++) {
1414 		struct btf_type *t = d->btf->types[i];
1415 
1416 		/* VAR and DATASEC are never deduped and are self-canonical */
1417 		if (btf_is_var(t) || btf_is_datasec(t))
1418 			d->map[i] = i;
1419 		else
1420 			d->map[i] = BTF_UNPROCESSED_ID;
1421 	}
1422 
1423 	d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1424 	if (!d->hypot_map) {
1425 		err = -ENOMEM;
1426 		goto done;
1427 	}
1428 	for (i = 0; i <= btf->nr_types; i++)
1429 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
1430 
1431 done:
1432 	if (err) {
1433 		btf_dedup_free(d);
1434 		return ERR_PTR(err);
1435 	}
1436 
1437 	return d;
1438 }
1439 
1440 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
1441 
1442 /*
1443  * Iterate over all possible places in .BTF and .BTF.ext that can reference
1444  * string and pass pointer to it to a provided callback `fn`.
1445  */
btf_for_each_str_off(struct btf_dedup * d,str_off_fn_t fn,void * ctx)1446 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
1447 {
1448 	void *line_data_cur, *line_data_end;
1449 	int i, j, r, rec_size;
1450 	struct btf_type *t;
1451 
1452 	for (i = 1; i <= d->btf->nr_types; i++) {
1453 		t = d->btf->types[i];
1454 		r = fn(&t->name_off, ctx);
1455 		if (r)
1456 			return r;
1457 
1458 		switch (btf_kind(t)) {
1459 		case BTF_KIND_STRUCT:
1460 		case BTF_KIND_UNION: {
1461 			struct btf_member *m = btf_members(t);
1462 			__u16 vlen = btf_vlen(t);
1463 
1464 			for (j = 0; j < vlen; j++) {
1465 				r = fn(&m->name_off, ctx);
1466 				if (r)
1467 					return r;
1468 				m++;
1469 			}
1470 			break;
1471 		}
1472 		case BTF_KIND_ENUM: {
1473 			struct btf_enum *m = btf_enum(t);
1474 			__u16 vlen = btf_vlen(t);
1475 
1476 			for (j = 0; j < vlen; j++) {
1477 				r = fn(&m->name_off, ctx);
1478 				if (r)
1479 					return r;
1480 				m++;
1481 			}
1482 			break;
1483 		}
1484 		case BTF_KIND_FUNC_PROTO: {
1485 			struct btf_param *m = btf_params(t);
1486 			__u16 vlen = btf_vlen(t);
1487 
1488 			for (j = 0; j < vlen; j++) {
1489 				r = fn(&m->name_off, ctx);
1490 				if (r)
1491 					return r;
1492 				m++;
1493 			}
1494 			break;
1495 		}
1496 		default:
1497 			break;
1498 		}
1499 	}
1500 
1501 	if (!d->btf_ext)
1502 		return 0;
1503 
1504 	line_data_cur = d->btf_ext->line_info.info;
1505 	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
1506 	rec_size = d->btf_ext->line_info.rec_size;
1507 
1508 	while (line_data_cur < line_data_end) {
1509 		struct btf_ext_info_sec *sec = line_data_cur;
1510 		struct bpf_line_info_min *line_info;
1511 		__u32 num_info = sec->num_info;
1512 
1513 		r = fn(&sec->sec_name_off, ctx);
1514 		if (r)
1515 			return r;
1516 
1517 		line_data_cur += sizeof(struct btf_ext_info_sec);
1518 		for (i = 0; i < num_info; i++) {
1519 			line_info = line_data_cur;
1520 			r = fn(&line_info->file_name_off, ctx);
1521 			if (r)
1522 				return r;
1523 			r = fn(&line_info->line_off, ctx);
1524 			if (r)
1525 				return r;
1526 			line_data_cur += rec_size;
1527 		}
1528 	}
1529 
1530 	return 0;
1531 }
1532 
str_sort_by_content(const void * a1,const void * a2)1533 static int str_sort_by_content(const void *a1, const void *a2)
1534 {
1535 	const struct btf_str_ptr *p1 = a1;
1536 	const struct btf_str_ptr *p2 = a2;
1537 
1538 	return strcmp(p1->str, p2->str);
1539 }
1540 
str_sort_by_offset(const void * a1,const void * a2)1541 static int str_sort_by_offset(const void *a1, const void *a2)
1542 {
1543 	const struct btf_str_ptr *p1 = a1;
1544 	const struct btf_str_ptr *p2 = a2;
1545 
1546 	if (p1->str != p2->str)
1547 		return p1->str < p2->str ? -1 : 1;
1548 	return 0;
1549 }
1550 
btf_dedup_str_ptr_cmp(const void * str_ptr,const void * pelem)1551 static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
1552 {
1553 	const struct btf_str_ptr *p = pelem;
1554 
1555 	if (str_ptr != p->str)
1556 		return (const char *)str_ptr < p->str ? -1 : 1;
1557 	return 0;
1558 }
1559 
btf_str_mark_as_used(__u32 * str_off_ptr,void * ctx)1560 static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
1561 {
1562 	struct btf_str_ptrs *strs;
1563 	struct btf_str_ptr *s;
1564 
1565 	if (*str_off_ptr == 0)
1566 		return 0;
1567 
1568 	strs = ctx;
1569 	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1570 		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1571 	if (!s)
1572 		return -EINVAL;
1573 	s->used = true;
1574 	return 0;
1575 }
1576 
btf_str_remap_offset(__u32 * str_off_ptr,void * ctx)1577 static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
1578 {
1579 	struct btf_str_ptrs *strs;
1580 	struct btf_str_ptr *s;
1581 
1582 	if (*str_off_ptr == 0)
1583 		return 0;
1584 
1585 	strs = ctx;
1586 	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1587 		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1588 	if (!s)
1589 		return -EINVAL;
1590 	*str_off_ptr = s->new_off;
1591 	return 0;
1592 }
1593 
1594 /*
1595  * Dedup string and filter out those that are not referenced from either .BTF
1596  * or .BTF.ext (if provided) sections.
1597  *
1598  * This is done by building index of all strings in BTF's string section,
1599  * then iterating over all entities that can reference strings (e.g., type
1600  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
1601  * strings as used. After that all used strings are deduped and compacted into
1602  * sequential blob of memory and new offsets are calculated. Then all the string
1603  * references are iterated again and rewritten using new offsets.
1604  */
btf_dedup_strings(struct btf_dedup * d)1605 static int btf_dedup_strings(struct btf_dedup *d)
1606 {
1607 	const struct btf_header *hdr = d->btf->hdr;
1608 	char *start = (char *)d->btf->nohdr_data + hdr->str_off;
1609 	char *end = start + d->btf->hdr->str_len;
1610 	char *p = start, *tmp_strs = NULL;
1611 	struct btf_str_ptrs strs = {
1612 		.cnt = 0,
1613 		.cap = 0,
1614 		.ptrs = NULL,
1615 		.data = start,
1616 	};
1617 	int i, j, err = 0, grp_idx;
1618 	bool grp_used;
1619 
1620 	/* build index of all strings */
1621 	while (p < end) {
1622 		if (strs.cnt + 1 > strs.cap) {
1623 			struct btf_str_ptr *new_ptrs;
1624 
1625 			strs.cap += max(strs.cnt / 2, 16);
1626 			new_ptrs = realloc(strs.ptrs,
1627 					   sizeof(strs.ptrs[0]) * strs.cap);
1628 			if (!new_ptrs) {
1629 				err = -ENOMEM;
1630 				goto done;
1631 			}
1632 			strs.ptrs = new_ptrs;
1633 		}
1634 
1635 		strs.ptrs[strs.cnt].str = p;
1636 		strs.ptrs[strs.cnt].used = false;
1637 
1638 		p += strlen(p) + 1;
1639 		strs.cnt++;
1640 	}
1641 
1642 	/* temporary storage for deduplicated strings */
1643 	tmp_strs = malloc(d->btf->hdr->str_len);
1644 	if (!tmp_strs) {
1645 		err = -ENOMEM;
1646 		goto done;
1647 	}
1648 
1649 	/* mark all used strings */
1650 	strs.ptrs[0].used = true;
1651 	err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
1652 	if (err)
1653 		goto done;
1654 
1655 	/* sort strings by context, so that we can identify duplicates */
1656 	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
1657 
1658 	/*
1659 	 * iterate groups of equal strings and if any instance in a group was
1660 	 * referenced, emit single instance and remember new offset
1661 	 */
1662 	p = tmp_strs;
1663 	grp_idx = 0;
1664 	grp_used = strs.ptrs[0].used;
1665 	/* iterate past end to avoid code duplication after loop */
1666 	for (i = 1; i <= strs.cnt; i++) {
1667 		/*
1668 		 * when i == strs.cnt, we want to skip string comparison and go
1669 		 * straight to handling last group of strings (otherwise we'd
1670 		 * need to handle last group after the loop w/ duplicated code)
1671 		 */
1672 		if (i < strs.cnt &&
1673 		    !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
1674 			grp_used = grp_used || strs.ptrs[i].used;
1675 			continue;
1676 		}
1677 
1678 		/*
1679 		 * this check would have been required after the loop to handle
1680 		 * last group of strings, but due to <= condition in a loop
1681 		 * we avoid that duplication
1682 		 */
1683 		if (grp_used) {
1684 			int new_off = p - tmp_strs;
1685 			__u32 len = strlen(strs.ptrs[grp_idx].str);
1686 
1687 			memmove(p, strs.ptrs[grp_idx].str, len + 1);
1688 			for (j = grp_idx; j < i; j++)
1689 				strs.ptrs[j].new_off = new_off;
1690 			p += len + 1;
1691 		}
1692 
1693 		if (i < strs.cnt) {
1694 			grp_idx = i;
1695 			grp_used = strs.ptrs[i].used;
1696 		}
1697 	}
1698 
1699 	/* replace original strings with deduped ones */
1700 	d->btf->hdr->str_len = p - tmp_strs;
1701 	memmove(start, tmp_strs, d->btf->hdr->str_len);
1702 	end = start + d->btf->hdr->str_len;
1703 
1704 	/* restore original order for further binary search lookups */
1705 	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
1706 
1707 	/* remap string offsets */
1708 	err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
1709 	if (err)
1710 		goto done;
1711 
1712 	d->btf->hdr->str_len = end - start;
1713 
1714 done:
1715 	free(tmp_strs);
1716 	free(strs.ptrs);
1717 	return err;
1718 }
1719 
btf_hash_common(struct btf_type * t)1720 static long btf_hash_common(struct btf_type *t)
1721 {
1722 	long h;
1723 
1724 	h = hash_combine(0, t->name_off);
1725 	h = hash_combine(h, t->info);
1726 	h = hash_combine(h, t->size);
1727 	return h;
1728 }
1729 
btf_equal_common(struct btf_type * t1,struct btf_type * t2)1730 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
1731 {
1732 	return t1->name_off == t2->name_off &&
1733 	       t1->info == t2->info &&
1734 	       t1->size == t2->size;
1735 }
1736 
1737 /* Calculate type signature hash of INT. */
btf_hash_int(struct btf_type * t)1738 static long btf_hash_int(struct btf_type *t)
1739 {
1740 	__u32 info = *(__u32 *)(t + 1);
1741 	long h;
1742 
1743 	h = btf_hash_common(t);
1744 	h = hash_combine(h, info);
1745 	return h;
1746 }
1747 
1748 /* Check structural equality of two INTs. */
btf_equal_int(struct btf_type * t1,struct btf_type * t2)1749 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
1750 {
1751 	__u32 info1, info2;
1752 
1753 	if (!btf_equal_common(t1, t2))
1754 		return false;
1755 	info1 = *(__u32 *)(t1 + 1);
1756 	info2 = *(__u32 *)(t2 + 1);
1757 	return info1 == info2;
1758 }
1759 
1760 /* Calculate type signature hash of ENUM. */
btf_hash_enum(struct btf_type * t)1761 static long btf_hash_enum(struct btf_type *t)
1762 {
1763 	long h;
1764 
1765 	/* don't hash vlen and enum members to support enum fwd resolving */
1766 	h = hash_combine(0, t->name_off);
1767 	h = hash_combine(h, t->info & ~0xffff);
1768 	h = hash_combine(h, t->size);
1769 	return h;
1770 }
1771 
1772 /* Check structural equality of two ENUMs. */
btf_equal_enum(struct btf_type * t1,struct btf_type * t2)1773 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
1774 {
1775 	const struct btf_enum *m1, *m2;
1776 	__u16 vlen;
1777 	int i;
1778 
1779 	if (!btf_equal_common(t1, t2))
1780 		return false;
1781 
1782 	vlen = btf_vlen(t1);
1783 	m1 = btf_enum(t1);
1784 	m2 = btf_enum(t2);
1785 	for (i = 0; i < vlen; i++) {
1786 		if (m1->name_off != m2->name_off || m1->val != m2->val)
1787 			return false;
1788 		m1++;
1789 		m2++;
1790 	}
1791 	return true;
1792 }
1793 
btf_is_enum_fwd(struct btf_type * t)1794 static inline bool btf_is_enum_fwd(struct btf_type *t)
1795 {
1796 	return btf_is_enum(t) && btf_vlen(t) == 0;
1797 }
1798 
btf_compat_enum(struct btf_type * t1,struct btf_type * t2)1799 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
1800 {
1801 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
1802 		return btf_equal_enum(t1, t2);
1803 	/* ignore vlen when comparing */
1804 	return t1->name_off == t2->name_off &&
1805 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
1806 	       t1->size == t2->size;
1807 }
1808 
1809 /*
1810  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
1811  * as referenced type IDs equivalence is established separately during type
1812  * graph equivalence check algorithm.
1813  */
btf_hash_struct(struct btf_type * t)1814 static long btf_hash_struct(struct btf_type *t)
1815 {
1816 	const struct btf_member *member = btf_members(t);
1817 	__u32 vlen = btf_vlen(t);
1818 	long h = btf_hash_common(t);
1819 	int i;
1820 
1821 	for (i = 0; i < vlen; i++) {
1822 		h = hash_combine(h, member->name_off);
1823 		h = hash_combine(h, member->offset);
1824 		/* no hashing of referenced type ID, it can be unresolved yet */
1825 		member++;
1826 	}
1827 	return h;
1828 }
1829 
1830 /*
1831  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1832  * IDs. This check is performed during type graph equivalence check and
1833  * referenced types equivalence is checked separately.
1834  */
btf_shallow_equal_struct(struct btf_type * t1,struct btf_type * t2)1835 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
1836 {
1837 	const struct btf_member *m1, *m2;
1838 	__u16 vlen;
1839 	int i;
1840 
1841 	if (!btf_equal_common(t1, t2))
1842 		return false;
1843 
1844 	vlen = btf_vlen(t1);
1845 	m1 = btf_members(t1);
1846 	m2 = btf_members(t2);
1847 	for (i = 0; i < vlen; i++) {
1848 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
1849 			return false;
1850 		m1++;
1851 		m2++;
1852 	}
1853 	return true;
1854 }
1855 
1856 /*
1857  * Calculate type signature hash of ARRAY, including referenced type IDs,
1858  * under assumption that they were already resolved to canonical type IDs and
1859  * are not going to change.
1860  */
btf_hash_array(struct btf_type * t)1861 static long btf_hash_array(struct btf_type *t)
1862 {
1863 	const struct btf_array *info = btf_array(t);
1864 	long h = btf_hash_common(t);
1865 
1866 	h = hash_combine(h, info->type);
1867 	h = hash_combine(h, info->index_type);
1868 	h = hash_combine(h, info->nelems);
1869 	return h;
1870 }
1871 
1872 /*
1873  * Check exact equality of two ARRAYs, taking into account referenced
1874  * type IDs, under assumption that they were already resolved to canonical
1875  * type IDs and are not going to change.
1876  * This function is called during reference types deduplication to compare
1877  * ARRAY to potential canonical representative.
1878  */
btf_equal_array(struct btf_type * t1,struct btf_type * t2)1879 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
1880 {
1881 	const struct btf_array *info1, *info2;
1882 
1883 	if (!btf_equal_common(t1, t2))
1884 		return false;
1885 
1886 	info1 = btf_array(t1);
1887 	info2 = btf_array(t2);
1888 	return info1->type == info2->type &&
1889 	       info1->index_type == info2->index_type &&
1890 	       info1->nelems == info2->nelems;
1891 }
1892 
1893 /*
1894  * Check structural compatibility of two ARRAYs, ignoring referenced type
1895  * IDs. This check is performed during type graph equivalence check and
1896  * referenced types equivalence is checked separately.
1897  */
btf_compat_array(struct btf_type * t1,struct btf_type * t2)1898 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
1899 {
1900 	if (!btf_equal_common(t1, t2))
1901 		return false;
1902 
1903 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
1904 }
1905 
1906 /*
1907  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
1908  * under assumption that they were already resolved to canonical type IDs and
1909  * are not going to change.
1910  */
btf_hash_fnproto(struct btf_type * t)1911 static long btf_hash_fnproto(struct btf_type *t)
1912 {
1913 	const struct btf_param *member = btf_params(t);
1914 	__u16 vlen = btf_vlen(t);
1915 	long h = btf_hash_common(t);
1916 	int i;
1917 
1918 	for (i = 0; i < vlen; i++) {
1919 		h = hash_combine(h, member->name_off);
1920 		h = hash_combine(h, member->type);
1921 		member++;
1922 	}
1923 	return h;
1924 }
1925 
1926 /*
1927  * Check exact equality of two FUNC_PROTOs, taking into account referenced
1928  * type IDs, under assumption that they were already resolved to canonical
1929  * type IDs and are not going to change.
1930  * This function is called during reference types deduplication to compare
1931  * FUNC_PROTO to potential canonical representative.
1932  */
btf_equal_fnproto(struct btf_type * t1,struct btf_type * t2)1933 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
1934 {
1935 	const struct btf_param *m1, *m2;
1936 	__u16 vlen;
1937 	int i;
1938 
1939 	if (!btf_equal_common(t1, t2))
1940 		return false;
1941 
1942 	vlen = btf_vlen(t1);
1943 	m1 = btf_params(t1);
1944 	m2 = btf_params(t2);
1945 	for (i = 0; i < vlen; i++) {
1946 		if (m1->name_off != m2->name_off || m1->type != m2->type)
1947 			return false;
1948 		m1++;
1949 		m2++;
1950 	}
1951 	return true;
1952 }
1953 
1954 /*
1955  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1956  * IDs. This check is performed during type graph equivalence check and
1957  * referenced types equivalence is checked separately.
1958  */
btf_compat_fnproto(struct btf_type * t1,struct btf_type * t2)1959 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
1960 {
1961 	const struct btf_param *m1, *m2;
1962 	__u16 vlen;
1963 	int i;
1964 
1965 	/* skip return type ID */
1966 	if (t1->name_off != t2->name_off || t1->info != t2->info)
1967 		return false;
1968 
1969 	vlen = btf_vlen(t1);
1970 	m1 = btf_params(t1);
1971 	m2 = btf_params(t2);
1972 	for (i = 0; i < vlen; i++) {
1973 		if (m1->name_off != m2->name_off)
1974 			return false;
1975 		m1++;
1976 		m2++;
1977 	}
1978 	return true;
1979 }
1980 
1981 /*
1982  * Deduplicate primitive types, that can't reference other types, by calculating
1983  * their type signature hash and comparing them with any possible canonical
1984  * candidate. If no canonical candidate matches, type itself is marked as
1985  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
1986  */
btf_dedup_prim_type(struct btf_dedup * d,__u32 type_id)1987 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
1988 {
1989 	struct btf_type *t = d->btf->types[type_id];
1990 	struct hashmap_entry *hash_entry;
1991 	struct btf_type *cand;
1992 	/* if we don't find equivalent type, then we are canonical */
1993 	__u32 new_id = type_id;
1994 	__u32 cand_id;
1995 	long h;
1996 
1997 	switch (btf_kind(t)) {
1998 	case BTF_KIND_CONST:
1999 	case BTF_KIND_VOLATILE:
2000 	case BTF_KIND_RESTRICT:
2001 	case BTF_KIND_PTR:
2002 	case BTF_KIND_TYPEDEF:
2003 	case BTF_KIND_ARRAY:
2004 	case BTF_KIND_STRUCT:
2005 	case BTF_KIND_UNION:
2006 	case BTF_KIND_FUNC:
2007 	case BTF_KIND_FUNC_PROTO:
2008 	case BTF_KIND_VAR:
2009 	case BTF_KIND_DATASEC:
2010 		return 0;
2011 
2012 	case BTF_KIND_INT:
2013 		h = btf_hash_int(t);
2014 		for_each_dedup_cand(d, hash_entry, h) {
2015 			cand_id = (__u32)(long)hash_entry->value;
2016 			cand = d->btf->types[cand_id];
2017 			if (btf_equal_int(t, cand)) {
2018 				new_id = cand_id;
2019 				break;
2020 			}
2021 		}
2022 		break;
2023 
2024 	case BTF_KIND_ENUM:
2025 		h = btf_hash_enum(t);
2026 		for_each_dedup_cand(d, hash_entry, h) {
2027 			cand_id = (__u32)(long)hash_entry->value;
2028 			cand = d->btf->types[cand_id];
2029 			if (btf_equal_enum(t, cand)) {
2030 				new_id = cand_id;
2031 				break;
2032 			}
2033 			if (d->opts.dont_resolve_fwds)
2034 				continue;
2035 			if (btf_compat_enum(t, cand)) {
2036 				if (btf_is_enum_fwd(t)) {
2037 					/* resolve fwd to full enum */
2038 					new_id = cand_id;
2039 					break;
2040 				}
2041 				/* resolve canonical enum fwd to full enum */
2042 				d->map[cand_id] = type_id;
2043 			}
2044 		}
2045 		break;
2046 
2047 	case BTF_KIND_FWD:
2048 		h = btf_hash_common(t);
2049 		for_each_dedup_cand(d, hash_entry, h) {
2050 			cand_id = (__u32)(long)hash_entry->value;
2051 			cand = d->btf->types[cand_id];
2052 			if (btf_equal_common(t, cand)) {
2053 				new_id = cand_id;
2054 				break;
2055 			}
2056 		}
2057 		break;
2058 
2059 	default:
2060 		return -EINVAL;
2061 	}
2062 
2063 	d->map[type_id] = new_id;
2064 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2065 		return -ENOMEM;
2066 
2067 	return 0;
2068 }
2069 
btf_dedup_prim_types(struct btf_dedup * d)2070 static int btf_dedup_prim_types(struct btf_dedup *d)
2071 {
2072 	int i, err;
2073 
2074 	for (i = 1; i <= d->btf->nr_types; i++) {
2075 		err = btf_dedup_prim_type(d, i);
2076 		if (err)
2077 			return err;
2078 	}
2079 	return 0;
2080 }
2081 
2082 /*
2083  * Check whether type is already mapped into canonical one (could be to itself).
2084  */
is_type_mapped(struct btf_dedup * d,uint32_t type_id)2085 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
2086 {
2087 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
2088 }
2089 
2090 /*
2091  * Resolve type ID into its canonical type ID, if any; otherwise return original
2092  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
2093  * STRUCT/UNION link and resolve it into canonical type ID as well.
2094  */
resolve_type_id(struct btf_dedup * d,__u32 type_id)2095 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
2096 {
2097 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2098 		type_id = d->map[type_id];
2099 	return type_id;
2100 }
2101 
2102 /*
2103  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
2104  * type ID.
2105  */
resolve_fwd_id(struct btf_dedup * d,uint32_t type_id)2106 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
2107 {
2108 	__u32 orig_type_id = type_id;
2109 
2110 	if (!btf_is_fwd(d->btf->types[type_id]))
2111 		return type_id;
2112 
2113 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2114 		type_id = d->map[type_id];
2115 
2116 	if (!btf_is_fwd(d->btf->types[type_id]))
2117 		return type_id;
2118 
2119 	return orig_type_id;
2120 }
2121 
2122 
btf_fwd_kind(struct btf_type * t)2123 static inline __u16 btf_fwd_kind(struct btf_type *t)
2124 {
2125 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
2126 }
2127 
2128 /*
2129  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
2130  * call it "candidate graph" in this description for brevity) to a type graph
2131  * formed by (potential) canonical struct/union ("canonical graph" for brevity
2132  * here, though keep in mind that not all types in canonical graph are
2133  * necessarily canonical representatives themselves, some of them might be
2134  * duplicates or its uniqueness might not have been established yet).
2135  * Returns:
2136  *  - >0, if type graphs are equivalent;
2137  *  -  0, if not equivalent;
2138  *  - <0, on error.
2139  *
2140  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
2141  * equivalence of BTF types at each step. If at any point BTF types in candidate
2142  * and canonical graphs are not compatible structurally, whole graphs are
2143  * incompatible. If types are structurally equivalent (i.e., all information
2144  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
2145  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
2146  * If a type references other types, then those referenced types are checked
2147  * for equivalence recursively.
2148  *
2149  * During DFS traversal, if we find that for current `canon_id` type we
2150  * already have some mapping in hypothetical map, we check for two possible
2151  * situations:
2152  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
2153  *     happen when type graphs have cycles. In this case we assume those two
2154  *     types are equivalent.
2155  *   - `canon_id` is mapped to different type. This is contradiction in our
2156  *     hypothetical mapping, because same graph in canonical graph corresponds
2157  *     to two different types in candidate graph, which for equivalent type
2158  *     graphs shouldn't happen. This condition terminates equivalence check
2159  *     with negative result.
2160  *
2161  * If type graphs traversal exhausts types to check and find no contradiction,
2162  * then type graphs are equivalent.
2163  *
2164  * When checking types for equivalence, there is one special case: FWD types.
2165  * If FWD type resolution is allowed and one of the types (either from canonical
2166  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
2167  * flag) and their names match, hypothetical mapping is updated to point from
2168  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
2169  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
2170  *
2171  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
2172  * if there are two exactly named (or anonymous) structs/unions that are
2173  * compatible structurally, one of which has FWD field, while other is concrete
2174  * STRUCT/UNION, but according to C sources they are different structs/unions
2175  * that are referencing different types with the same name. This is extremely
2176  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
2177  * this logic is causing problems.
2178  *
2179  * Doing FWD resolution means that both candidate and/or canonical graphs can
2180  * consists of portions of the graph that come from multiple compilation units.
2181  * This is due to the fact that types within single compilation unit are always
2182  * deduplicated and FWDs are already resolved, if referenced struct/union
2183  * definiton is available. So, if we had unresolved FWD and found corresponding
2184  * STRUCT/UNION, they will be from different compilation units. This
2185  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
2186  * type graph will likely have at least two different BTF types that describe
2187  * same type (e.g., most probably there will be two different BTF types for the
2188  * same 'int' primitive type) and could even have "overlapping" parts of type
2189  * graph that describe same subset of types.
2190  *
2191  * This in turn means that our assumption that each type in canonical graph
2192  * must correspond to exactly one type in candidate graph might not hold
2193  * anymore and will make it harder to detect contradictions using hypothetical
2194  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
2195  * resolution only in canonical graph. FWDs in candidate graphs are never
2196  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
2197  * that can occur:
2198  *   - Both types in canonical and candidate graphs are FWDs. If they are
2199  *     structurally equivalent, then they can either be both resolved to the
2200  *     same STRUCT/UNION or not resolved at all. In both cases they are
2201  *     equivalent and there is no need to resolve FWD on candidate side.
2202  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
2203  *     so nothing to resolve as well, algorithm will check equivalence anyway.
2204  *   - Type in canonical graph is FWD, while type in candidate is concrete
2205  *     STRUCT/UNION. In this case candidate graph comes from single compilation
2206  *     unit, so there is exactly one BTF type for each unique C type. After
2207  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
2208  *     in canonical graph mapping to single BTF type in candidate graph, but
2209  *     because hypothetical mapping maps from canonical to candidate types, it's
2210  *     alright, and we still maintain the property of having single `canon_id`
2211  *     mapping to single `cand_id` (there could be two different `canon_id`
2212  *     mapped to the same `cand_id`, but it's not contradictory).
2213  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
2214  *     graph is FWD. In this case we are just going to check compatibility of
2215  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
2216  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
2217  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
2218  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
2219  *     canonical graph.
2220  */
btf_dedup_is_equiv(struct btf_dedup * d,__u32 cand_id,__u32 canon_id)2221 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
2222 			      __u32 canon_id)
2223 {
2224 	struct btf_type *cand_type;
2225 	struct btf_type *canon_type;
2226 	__u32 hypot_type_id;
2227 	__u16 cand_kind;
2228 	__u16 canon_kind;
2229 	int i, eq;
2230 
2231 	/* if both resolve to the same canonical, they must be equivalent */
2232 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
2233 		return 1;
2234 
2235 	canon_id = resolve_fwd_id(d, canon_id);
2236 
2237 	hypot_type_id = d->hypot_map[canon_id];
2238 	if (hypot_type_id <= BTF_MAX_NR_TYPES)
2239 		return hypot_type_id == cand_id;
2240 
2241 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
2242 		return -ENOMEM;
2243 
2244 	cand_type = d->btf->types[cand_id];
2245 	canon_type = d->btf->types[canon_id];
2246 	cand_kind = btf_kind(cand_type);
2247 	canon_kind = btf_kind(canon_type);
2248 
2249 	if (cand_type->name_off != canon_type->name_off)
2250 		return 0;
2251 
2252 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
2253 	if (!d->opts.dont_resolve_fwds
2254 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
2255 	    && cand_kind != canon_kind) {
2256 		__u16 real_kind;
2257 		__u16 fwd_kind;
2258 
2259 		if (cand_kind == BTF_KIND_FWD) {
2260 			real_kind = canon_kind;
2261 			fwd_kind = btf_fwd_kind(cand_type);
2262 		} else {
2263 			real_kind = cand_kind;
2264 			fwd_kind = btf_fwd_kind(canon_type);
2265 		}
2266 		return fwd_kind == real_kind;
2267 	}
2268 
2269 	if (cand_kind != canon_kind)
2270 		return 0;
2271 
2272 	switch (cand_kind) {
2273 	case BTF_KIND_INT:
2274 		return btf_equal_int(cand_type, canon_type);
2275 
2276 	case BTF_KIND_ENUM:
2277 		if (d->opts.dont_resolve_fwds)
2278 			return btf_equal_enum(cand_type, canon_type);
2279 		else
2280 			return btf_compat_enum(cand_type, canon_type);
2281 
2282 	case BTF_KIND_FWD:
2283 		return btf_equal_common(cand_type, canon_type);
2284 
2285 	case BTF_KIND_CONST:
2286 	case BTF_KIND_VOLATILE:
2287 	case BTF_KIND_RESTRICT:
2288 	case BTF_KIND_PTR:
2289 	case BTF_KIND_TYPEDEF:
2290 	case BTF_KIND_FUNC:
2291 		if (cand_type->info != canon_type->info)
2292 			return 0;
2293 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2294 
2295 	case BTF_KIND_ARRAY: {
2296 		const struct btf_array *cand_arr, *canon_arr;
2297 
2298 		if (!btf_compat_array(cand_type, canon_type))
2299 			return 0;
2300 		cand_arr = btf_array(cand_type);
2301 		canon_arr = btf_array(canon_type);
2302 		eq = btf_dedup_is_equiv(d,
2303 			cand_arr->index_type, canon_arr->index_type);
2304 		if (eq <= 0)
2305 			return eq;
2306 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
2307 	}
2308 
2309 	case BTF_KIND_STRUCT:
2310 	case BTF_KIND_UNION: {
2311 		const struct btf_member *cand_m, *canon_m;
2312 		__u16 vlen;
2313 
2314 		if (!btf_shallow_equal_struct(cand_type, canon_type))
2315 			return 0;
2316 		vlen = btf_vlen(cand_type);
2317 		cand_m = btf_members(cand_type);
2318 		canon_m = btf_members(canon_type);
2319 		for (i = 0; i < vlen; i++) {
2320 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
2321 			if (eq <= 0)
2322 				return eq;
2323 			cand_m++;
2324 			canon_m++;
2325 		}
2326 
2327 		return 1;
2328 	}
2329 
2330 	case BTF_KIND_FUNC_PROTO: {
2331 		const struct btf_param *cand_p, *canon_p;
2332 		__u16 vlen;
2333 
2334 		if (!btf_compat_fnproto(cand_type, canon_type))
2335 			return 0;
2336 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2337 		if (eq <= 0)
2338 			return eq;
2339 		vlen = btf_vlen(cand_type);
2340 		cand_p = btf_params(cand_type);
2341 		canon_p = btf_params(canon_type);
2342 		for (i = 0; i < vlen; i++) {
2343 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
2344 			if (eq <= 0)
2345 				return eq;
2346 			cand_p++;
2347 			canon_p++;
2348 		}
2349 		return 1;
2350 	}
2351 
2352 	default:
2353 		return -EINVAL;
2354 	}
2355 	return 0;
2356 }
2357 
2358 /*
2359  * Use hypothetical mapping, produced by successful type graph equivalence
2360  * check, to augment existing struct/union canonical mapping, where possible.
2361  *
2362  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
2363  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
2364  * it doesn't matter if FWD type was part of canonical graph or candidate one,
2365  * we are recording the mapping anyway. As opposed to carefulness required
2366  * for struct/union correspondence mapping (described below), for FWD resolution
2367  * it's not important, as by the time that FWD type (reference type) will be
2368  * deduplicated all structs/unions will be deduped already anyway.
2369  *
2370  * Recording STRUCT/UNION mapping is purely a performance optimization and is
2371  * not required for correctness. It needs to be done carefully to ensure that
2372  * struct/union from candidate's type graph is not mapped into corresponding
2373  * struct/union from canonical type graph that itself hasn't been resolved into
2374  * canonical representative. The only guarantee we have is that canonical
2375  * struct/union was determined as canonical and that won't change. But any
2376  * types referenced through that struct/union fields could have been not yet
2377  * resolved, so in case like that it's too early to establish any kind of
2378  * correspondence between structs/unions.
2379  *
2380  * No canonical correspondence is derived for primitive types (they are already
2381  * deduplicated completely already anyway) or reference types (they rely on
2382  * stability of struct/union canonical relationship for equivalence checks).
2383  */
btf_dedup_merge_hypot_map(struct btf_dedup * d)2384 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
2385 {
2386 	__u32 cand_type_id, targ_type_id;
2387 	__u16 t_kind, c_kind;
2388 	__u32 t_id, c_id;
2389 	int i;
2390 
2391 	for (i = 0; i < d->hypot_cnt; i++) {
2392 		cand_type_id = d->hypot_list[i];
2393 		targ_type_id = d->hypot_map[cand_type_id];
2394 		t_id = resolve_type_id(d, targ_type_id);
2395 		c_id = resolve_type_id(d, cand_type_id);
2396 		t_kind = btf_kind(d->btf->types[t_id]);
2397 		c_kind = btf_kind(d->btf->types[c_id]);
2398 		/*
2399 		 * Resolve FWD into STRUCT/UNION.
2400 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
2401 		 * mapped to canonical representative (as opposed to
2402 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
2403 		 * eventually that struct is going to be mapped and all resolved
2404 		 * FWDs will automatically resolve to correct canonical
2405 		 * representative. This will happen before ref type deduping,
2406 		 * which critically depends on stability of these mapping. This
2407 		 * stability is not a requirement for STRUCT/UNION equivalence
2408 		 * checks, though.
2409 		 */
2410 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
2411 			d->map[c_id] = t_id;
2412 		else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
2413 			d->map[t_id] = c_id;
2414 
2415 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
2416 		    c_kind != BTF_KIND_FWD &&
2417 		    is_type_mapped(d, c_id) &&
2418 		    !is_type_mapped(d, t_id)) {
2419 			/*
2420 			 * as a perf optimization, we can map struct/union
2421 			 * that's part of type graph we just verified for
2422 			 * equivalence. We can do that for struct/union that has
2423 			 * canonical representative only, though.
2424 			 */
2425 			d->map[t_id] = c_id;
2426 		}
2427 	}
2428 }
2429 
2430 /*
2431  * Deduplicate struct/union types.
2432  *
2433  * For each struct/union type its type signature hash is calculated, taking
2434  * into account type's name, size, number, order and names of fields, but
2435  * ignoring type ID's referenced from fields, because they might not be deduped
2436  * completely until after reference types deduplication phase. This type hash
2437  * is used to iterate over all potential canonical types, sharing same hash.
2438  * For each canonical candidate we check whether type graphs that they form
2439  * (through referenced types in fields and so on) are equivalent using algorithm
2440  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
2441  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
2442  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
2443  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
2444  * potentially map other structs/unions to their canonical representatives,
2445  * if such relationship hasn't yet been established. This speeds up algorithm
2446  * by eliminating some of the duplicate work.
2447  *
2448  * If no matching canonical representative was found, struct/union is marked
2449  * as canonical for itself and is added into btf_dedup->dedup_table hash map
2450  * for further look ups.
2451  */
btf_dedup_struct_type(struct btf_dedup * d,__u32 type_id)2452 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
2453 {
2454 	struct btf_type *cand_type, *t;
2455 	struct hashmap_entry *hash_entry;
2456 	/* if we don't find equivalent type, then we are canonical */
2457 	__u32 new_id = type_id;
2458 	__u16 kind;
2459 	long h;
2460 
2461 	/* already deduped or is in process of deduping (loop detected) */
2462 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2463 		return 0;
2464 
2465 	t = d->btf->types[type_id];
2466 	kind = btf_kind(t);
2467 
2468 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
2469 		return 0;
2470 
2471 	h = btf_hash_struct(t);
2472 	for_each_dedup_cand(d, hash_entry, h) {
2473 		__u32 cand_id = (__u32)(long)hash_entry->value;
2474 		int eq;
2475 
2476 		/*
2477 		 * Even though btf_dedup_is_equiv() checks for
2478 		 * btf_shallow_equal_struct() internally when checking two
2479 		 * structs (unions) for equivalence, we need to guard here
2480 		 * from picking matching FWD type as a dedup candidate.
2481 		 * This can happen due to hash collision. In such case just
2482 		 * relying on btf_dedup_is_equiv() would lead to potentially
2483 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
2484 		 * FWD and compatible STRUCT/UNION are considered equivalent.
2485 		 */
2486 		cand_type = d->btf->types[cand_id];
2487 		if (!btf_shallow_equal_struct(t, cand_type))
2488 			continue;
2489 
2490 		btf_dedup_clear_hypot_map(d);
2491 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
2492 		if (eq < 0)
2493 			return eq;
2494 		if (!eq)
2495 			continue;
2496 		new_id = cand_id;
2497 		btf_dedup_merge_hypot_map(d);
2498 		break;
2499 	}
2500 
2501 	d->map[type_id] = new_id;
2502 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2503 		return -ENOMEM;
2504 
2505 	return 0;
2506 }
2507 
btf_dedup_struct_types(struct btf_dedup * d)2508 static int btf_dedup_struct_types(struct btf_dedup *d)
2509 {
2510 	int i, err;
2511 
2512 	for (i = 1; i <= d->btf->nr_types; i++) {
2513 		err = btf_dedup_struct_type(d, i);
2514 		if (err)
2515 			return err;
2516 	}
2517 	return 0;
2518 }
2519 
2520 /*
2521  * Deduplicate reference type.
2522  *
2523  * Once all primitive and struct/union types got deduplicated, we can easily
2524  * deduplicate all other (reference) BTF types. This is done in two steps:
2525  *
2526  * 1. Resolve all referenced type IDs into their canonical type IDs. This
2527  * resolution can be done either immediately for primitive or struct/union types
2528  * (because they were deduped in previous two phases) or recursively for
2529  * reference types. Recursion will always terminate at either primitive or
2530  * struct/union type, at which point we can "unwind" chain of reference types
2531  * one by one. There is no danger of encountering cycles because in C type
2532  * system the only way to form type cycle is through struct/union, so any chain
2533  * of reference types, even those taking part in a type cycle, will inevitably
2534  * reach struct/union at some point.
2535  *
2536  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
2537  * becomes "stable", in the sense that no further deduplication will cause
2538  * any changes to it. With that, it's now possible to calculate type's signature
2539  * hash (this time taking into account referenced type IDs) and loop over all
2540  * potential canonical representatives. If no match was found, current type
2541  * will become canonical representative of itself and will be added into
2542  * btf_dedup->dedup_table as another possible canonical representative.
2543  */
btf_dedup_ref_type(struct btf_dedup * d,__u32 type_id)2544 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
2545 {
2546 	struct hashmap_entry *hash_entry;
2547 	__u32 new_id = type_id, cand_id;
2548 	struct btf_type *t, *cand;
2549 	/* if we don't find equivalent type, then we are representative type */
2550 	int ref_type_id;
2551 	long h;
2552 
2553 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
2554 		return -ELOOP;
2555 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2556 		return resolve_type_id(d, type_id);
2557 
2558 	t = d->btf->types[type_id];
2559 	d->map[type_id] = BTF_IN_PROGRESS_ID;
2560 
2561 	switch (btf_kind(t)) {
2562 	case BTF_KIND_CONST:
2563 	case BTF_KIND_VOLATILE:
2564 	case BTF_KIND_RESTRICT:
2565 	case BTF_KIND_PTR:
2566 	case BTF_KIND_TYPEDEF:
2567 	case BTF_KIND_FUNC:
2568 		ref_type_id = btf_dedup_ref_type(d, t->type);
2569 		if (ref_type_id < 0)
2570 			return ref_type_id;
2571 		t->type = ref_type_id;
2572 
2573 		h = btf_hash_common(t);
2574 		for_each_dedup_cand(d, hash_entry, h) {
2575 			cand_id = (__u32)(long)hash_entry->value;
2576 			cand = d->btf->types[cand_id];
2577 			if (btf_equal_common(t, cand)) {
2578 				new_id = cand_id;
2579 				break;
2580 			}
2581 		}
2582 		break;
2583 
2584 	case BTF_KIND_ARRAY: {
2585 		struct btf_array *info = btf_array(t);
2586 
2587 		ref_type_id = btf_dedup_ref_type(d, info->type);
2588 		if (ref_type_id < 0)
2589 			return ref_type_id;
2590 		info->type = ref_type_id;
2591 
2592 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
2593 		if (ref_type_id < 0)
2594 			return ref_type_id;
2595 		info->index_type = ref_type_id;
2596 
2597 		h = btf_hash_array(t);
2598 		for_each_dedup_cand(d, hash_entry, h) {
2599 			cand_id = (__u32)(long)hash_entry->value;
2600 			cand = d->btf->types[cand_id];
2601 			if (btf_equal_array(t, cand)) {
2602 				new_id = cand_id;
2603 				break;
2604 			}
2605 		}
2606 		break;
2607 	}
2608 
2609 	case BTF_KIND_FUNC_PROTO: {
2610 		struct btf_param *param;
2611 		__u16 vlen;
2612 		int i;
2613 
2614 		ref_type_id = btf_dedup_ref_type(d, t->type);
2615 		if (ref_type_id < 0)
2616 			return ref_type_id;
2617 		t->type = ref_type_id;
2618 
2619 		vlen = btf_vlen(t);
2620 		param = btf_params(t);
2621 		for (i = 0; i < vlen; i++) {
2622 			ref_type_id = btf_dedup_ref_type(d, param->type);
2623 			if (ref_type_id < 0)
2624 				return ref_type_id;
2625 			param->type = ref_type_id;
2626 			param++;
2627 		}
2628 
2629 		h = btf_hash_fnproto(t);
2630 		for_each_dedup_cand(d, hash_entry, h) {
2631 			cand_id = (__u32)(long)hash_entry->value;
2632 			cand = d->btf->types[cand_id];
2633 			if (btf_equal_fnproto(t, cand)) {
2634 				new_id = cand_id;
2635 				break;
2636 			}
2637 		}
2638 		break;
2639 	}
2640 
2641 	default:
2642 		return -EINVAL;
2643 	}
2644 
2645 	d->map[type_id] = new_id;
2646 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2647 		return -ENOMEM;
2648 
2649 	return new_id;
2650 }
2651 
btf_dedup_ref_types(struct btf_dedup * d)2652 static int btf_dedup_ref_types(struct btf_dedup *d)
2653 {
2654 	int i, err;
2655 
2656 	for (i = 1; i <= d->btf->nr_types; i++) {
2657 		err = btf_dedup_ref_type(d, i);
2658 		if (err < 0)
2659 			return err;
2660 	}
2661 	/* we won't need d->dedup_table anymore */
2662 	hashmap__free(d->dedup_table);
2663 	d->dedup_table = NULL;
2664 	return 0;
2665 }
2666 
2667 /*
2668  * Compact types.
2669  *
2670  * After we established for each type its corresponding canonical representative
2671  * type, we now can eliminate types that are not canonical and leave only
2672  * canonical ones layed out sequentially in memory by copying them over
2673  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
2674  * a map from original type ID to a new compacted type ID, which will be used
2675  * during next phase to "fix up" type IDs, referenced from struct/union and
2676  * reference types.
2677  */
btf_dedup_compact_types(struct btf_dedup * d)2678 static int btf_dedup_compact_types(struct btf_dedup *d)
2679 {
2680 	struct btf_type **new_types;
2681 	__u32 next_type_id = 1;
2682 	char *types_start, *p;
2683 	int i, len;
2684 
2685 	/* we are going to reuse hypot_map to store compaction remapping */
2686 	d->hypot_map[0] = 0;
2687 	for (i = 1; i <= d->btf->nr_types; i++)
2688 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
2689 
2690 	types_start = d->btf->nohdr_data + d->btf->hdr->type_off;
2691 	p = types_start;
2692 
2693 	for (i = 1; i <= d->btf->nr_types; i++) {
2694 		if (d->map[i] != i)
2695 			continue;
2696 
2697 		len = btf_type_size(d->btf->types[i]);
2698 		if (len < 0)
2699 			return len;
2700 
2701 		memmove(p, d->btf->types[i], len);
2702 		d->hypot_map[i] = next_type_id;
2703 		d->btf->types[next_type_id] = (struct btf_type *)p;
2704 		p += len;
2705 		next_type_id++;
2706 	}
2707 
2708 	/* shrink struct btf's internal types index and update btf_header */
2709 	d->btf->nr_types = next_type_id - 1;
2710 	d->btf->types_size = d->btf->nr_types;
2711 	d->btf->hdr->type_len = p - types_start;
2712 	new_types = realloc(d->btf->types,
2713 			    (1 + d->btf->nr_types) * sizeof(struct btf_type *));
2714 	if (!new_types)
2715 		return -ENOMEM;
2716 	d->btf->types = new_types;
2717 
2718 	/* make sure string section follows type information without gaps */
2719 	d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data;
2720 	memmove(p, d->btf->strings, d->btf->hdr->str_len);
2721 	d->btf->strings = p;
2722 	p += d->btf->hdr->str_len;
2723 
2724 	d->btf->data_size = p - (char *)d->btf->data;
2725 	return 0;
2726 }
2727 
2728 /*
2729  * Figure out final (deduplicated and compacted) type ID for provided original
2730  * `type_id` by first resolving it into corresponding canonical type ID and
2731  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
2732  * which is populated during compaction phase.
2733  */
btf_dedup_remap_type_id(struct btf_dedup * d,__u32 type_id)2734 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
2735 {
2736 	__u32 resolved_type_id, new_type_id;
2737 
2738 	resolved_type_id = resolve_type_id(d, type_id);
2739 	new_type_id = d->hypot_map[resolved_type_id];
2740 	if (new_type_id > BTF_MAX_NR_TYPES)
2741 		return -EINVAL;
2742 	return new_type_id;
2743 }
2744 
2745 /*
2746  * Remap referenced type IDs into deduped type IDs.
2747  *
2748  * After BTF types are deduplicated and compacted, their final type IDs may
2749  * differ from original ones. The map from original to a corresponding
2750  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
2751  * compaction phase. During remapping phase we are rewriting all type IDs
2752  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
2753  * their final deduped type IDs.
2754  */
btf_dedup_remap_type(struct btf_dedup * d,__u32 type_id)2755 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
2756 {
2757 	struct btf_type *t = d->btf->types[type_id];
2758 	int i, r;
2759 
2760 	switch (btf_kind(t)) {
2761 	case BTF_KIND_INT:
2762 	case BTF_KIND_ENUM:
2763 		break;
2764 
2765 	case BTF_KIND_FWD:
2766 	case BTF_KIND_CONST:
2767 	case BTF_KIND_VOLATILE:
2768 	case BTF_KIND_RESTRICT:
2769 	case BTF_KIND_PTR:
2770 	case BTF_KIND_TYPEDEF:
2771 	case BTF_KIND_FUNC:
2772 	case BTF_KIND_VAR:
2773 		r = btf_dedup_remap_type_id(d, t->type);
2774 		if (r < 0)
2775 			return r;
2776 		t->type = r;
2777 		break;
2778 
2779 	case BTF_KIND_ARRAY: {
2780 		struct btf_array *arr_info = btf_array(t);
2781 
2782 		r = btf_dedup_remap_type_id(d, arr_info->type);
2783 		if (r < 0)
2784 			return r;
2785 		arr_info->type = r;
2786 		r = btf_dedup_remap_type_id(d, arr_info->index_type);
2787 		if (r < 0)
2788 			return r;
2789 		arr_info->index_type = r;
2790 		break;
2791 	}
2792 
2793 	case BTF_KIND_STRUCT:
2794 	case BTF_KIND_UNION: {
2795 		struct btf_member *member = btf_members(t);
2796 		__u16 vlen = btf_vlen(t);
2797 
2798 		for (i = 0; i < vlen; i++) {
2799 			r = btf_dedup_remap_type_id(d, member->type);
2800 			if (r < 0)
2801 				return r;
2802 			member->type = r;
2803 			member++;
2804 		}
2805 		break;
2806 	}
2807 
2808 	case BTF_KIND_FUNC_PROTO: {
2809 		struct btf_param *param = btf_params(t);
2810 		__u16 vlen = btf_vlen(t);
2811 
2812 		r = btf_dedup_remap_type_id(d, t->type);
2813 		if (r < 0)
2814 			return r;
2815 		t->type = r;
2816 
2817 		for (i = 0; i < vlen; i++) {
2818 			r = btf_dedup_remap_type_id(d, param->type);
2819 			if (r < 0)
2820 				return r;
2821 			param->type = r;
2822 			param++;
2823 		}
2824 		break;
2825 	}
2826 
2827 	case BTF_KIND_DATASEC: {
2828 		struct btf_var_secinfo *var = btf_var_secinfos(t);
2829 		__u16 vlen = btf_vlen(t);
2830 
2831 		for (i = 0; i < vlen; i++) {
2832 			r = btf_dedup_remap_type_id(d, var->type);
2833 			if (r < 0)
2834 				return r;
2835 			var->type = r;
2836 			var++;
2837 		}
2838 		break;
2839 	}
2840 
2841 	default:
2842 		return -EINVAL;
2843 	}
2844 
2845 	return 0;
2846 }
2847 
btf_dedup_remap_types(struct btf_dedup * d)2848 static int btf_dedup_remap_types(struct btf_dedup *d)
2849 {
2850 	int i, r;
2851 
2852 	for (i = 1; i <= d->btf->nr_types; i++) {
2853 		r = btf_dedup_remap_type(d, i);
2854 		if (r < 0)
2855 			return r;
2856 	}
2857 	return 0;
2858 }
2859