• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Fusion-io  All rights reserved.
4  * Copyright (C) 2012 Intel Corp. All rights reserved.
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "volumes.h"
19 #include "raid56.h"
20 #include "async-thread.h"
21 
22 /* set when additional merges to this rbio are not allowed */
23 #define RBIO_RMW_LOCKED_BIT	1
24 
25 /*
26  * set when this rbio is sitting in the hash, but it is just a cache
27  * of past RMW
28  */
29 #define RBIO_CACHE_BIT		2
30 
31 /*
32  * set when it is safe to trust the stripe_pages for caching
33  */
34 #define RBIO_CACHE_READY_BIT	3
35 
36 #define RBIO_CACHE_SIZE 1024
37 
38 #define BTRFS_STRIPE_HASH_TABLE_BITS				11
39 
40 /* Used by the raid56 code to lock stripes for read/modify/write */
41 struct btrfs_stripe_hash {
42 	struct list_head hash_list;
43 	spinlock_t lock;
44 };
45 
46 /* Used by the raid56 code to lock stripes for read/modify/write */
47 struct btrfs_stripe_hash_table {
48 	struct list_head stripe_cache;
49 	spinlock_t cache_lock;
50 	int cache_size;
51 	struct btrfs_stripe_hash table[];
52 };
53 
54 enum btrfs_rbio_ops {
55 	BTRFS_RBIO_WRITE,
56 	BTRFS_RBIO_READ_REBUILD,
57 	BTRFS_RBIO_PARITY_SCRUB,
58 	BTRFS_RBIO_REBUILD_MISSING,
59 };
60 
61 struct btrfs_raid_bio {
62 	struct btrfs_fs_info *fs_info;
63 	struct btrfs_bio *bbio;
64 
65 	/* while we're doing rmw on a stripe
66 	 * we put it into a hash table so we can
67 	 * lock the stripe and merge more rbios
68 	 * into it.
69 	 */
70 	struct list_head hash_list;
71 
72 	/*
73 	 * LRU list for the stripe cache
74 	 */
75 	struct list_head stripe_cache;
76 
77 	/*
78 	 * for scheduling work in the helper threads
79 	 */
80 	struct btrfs_work work;
81 
82 	/*
83 	 * bio list and bio_list_lock are used
84 	 * to add more bios into the stripe
85 	 * in hopes of avoiding the full rmw
86 	 */
87 	struct bio_list bio_list;
88 	spinlock_t bio_list_lock;
89 
90 	/* also protected by the bio_list_lock, the
91 	 * plug list is used by the plugging code
92 	 * to collect partial bios while plugged.  The
93 	 * stripe locking code also uses it to hand off
94 	 * the stripe lock to the next pending IO
95 	 */
96 	struct list_head plug_list;
97 
98 	/*
99 	 * flags that tell us if it is safe to
100 	 * merge with this bio
101 	 */
102 	unsigned long flags;
103 
104 	/* size of each individual stripe on disk */
105 	int stripe_len;
106 
107 	/* number of data stripes (no p/q) */
108 	int nr_data;
109 
110 	int real_stripes;
111 
112 	int stripe_npages;
113 	/*
114 	 * set if we're doing a parity rebuild
115 	 * for a read from higher up, which is handled
116 	 * differently from a parity rebuild as part of
117 	 * rmw
118 	 */
119 	enum btrfs_rbio_ops operation;
120 
121 	/* first bad stripe */
122 	int faila;
123 
124 	/* second bad stripe (for raid6 use) */
125 	int failb;
126 
127 	int scrubp;
128 	/*
129 	 * number of pages needed to represent the full
130 	 * stripe
131 	 */
132 	int nr_pages;
133 
134 	/*
135 	 * size of all the bios in the bio_list.  This
136 	 * helps us decide if the rbio maps to a full
137 	 * stripe or not
138 	 */
139 	int bio_list_bytes;
140 
141 	int generic_bio_cnt;
142 
143 	refcount_t refs;
144 
145 	atomic_t stripes_pending;
146 
147 	atomic_t error;
148 	/*
149 	 * these are two arrays of pointers.  We allocate the
150 	 * rbio big enough to hold them both and setup their
151 	 * locations when the rbio is allocated
152 	 */
153 
154 	/* pointers to pages that we allocated for
155 	 * reading/writing stripes directly from the disk (including P/Q)
156 	 */
157 	struct page **stripe_pages;
158 
159 	/*
160 	 * pointers to the pages in the bio_list.  Stored
161 	 * here for faster lookup
162 	 */
163 	struct page **bio_pages;
164 
165 	/*
166 	 * bitmap to record which horizontal stripe has data
167 	 */
168 	unsigned long *dbitmap;
169 
170 	/* allocated with real_stripes-many pointers for finish_*() calls */
171 	void **finish_pointers;
172 
173 	/* allocated with stripe_npages-many bits for finish_*() calls */
174 	unsigned long *finish_pbitmap;
175 };
176 
177 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
178 static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
179 static void rmw_work(struct btrfs_work *work);
180 static void read_rebuild_work(struct btrfs_work *work);
181 static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
182 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
183 static void __free_raid_bio(struct btrfs_raid_bio *rbio);
184 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
185 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
186 
187 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
188 					 int need_check);
189 static void scrub_parity_work(struct btrfs_work *work);
190 
start_async_work(struct btrfs_raid_bio * rbio,btrfs_func_t work_func)191 static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
192 {
193 	btrfs_init_work(&rbio->work, work_func, NULL, NULL);
194 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
195 }
196 
197 /*
198  * the stripe hash table is used for locking, and to collect
199  * bios in hopes of making a full stripe
200  */
btrfs_alloc_stripe_hash_table(struct btrfs_fs_info * info)201 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
202 {
203 	struct btrfs_stripe_hash_table *table;
204 	struct btrfs_stripe_hash_table *x;
205 	struct btrfs_stripe_hash *cur;
206 	struct btrfs_stripe_hash *h;
207 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
208 	int i;
209 	int table_size;
210 
211 	if (info->stripe_hash_table)
212 		return 0;
213 
214 	/*
215 	 * The table is large, starting with order 4 and can go as high as
216 	 * order 7 in case lock debugging is turned on.
217 	 *
218 	 * Try harder to allocate and fallback to vmalloc to lower the chance
219 	 * of a failing mount.
220 	 */
221 	table_size = sizeof(*table) + sizeof(*h) * num_entries;
222 	table = kvzalloc(table_size, GFP_KERNEL);
223 	if (!table)
224 		return -ENOMEM;
225 
226 	spin_lock_init(&table->cache_lock);
227 	INIT_LIST_HEAD(&table->stripe_cache);
228 
229 	h = table->table;
230 
231 	for (i = 0; i < num_entries; i++) {
232 		cur = h + i;
233 		INIT_LIST_HEAD(&cur->hash_list);
234 		spin_lock_init(&cur->lock);
235 	}
236 
237 	x = cmpxchg(&info->stripe_hash_table, NULL, table);
238 	if (x)
239 		kvfree(x);
240 	return 0;
241 }
242 
243 /*
244  * caching an rbio means to copy anything from the
245  * bio_pages array into the stripe_pages array.  We
246  * use the page uptodate bit in the stripe cache array
247  * to indicate if it has valid data
248  *
249  * once the caching is done, we set the cache ready
250  * bit.
251  */
cache_rbio_pages(struct btrfs_raid_bio * rbio)252 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
253 {
254 	int i;
255 	char *s;
256 	char *d;
257 	int ret;
258 
259 	ret = alloc_rbio_pages(rbio);
260 	if (ret)
261 		return;
262 
263 	for (i = 0; i < rbio->nr_pages; i++) {
264 		if (!rbio->bio_pages[i])
265 			continue;
266 
267 		s = kmap(rbio->bio_pages[i]);
268 		d = kmap(rbio->stripe_pages[i]);
269 
270 		copy_page(d, s);
271 
272 		kunmap(rbio->bio_pages[i]);
273 		kunmap(rbio->stripe_pages[i]);
274 		SetPageUptodate(rbio->stripe_pages[i]);
275 	}
276 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
277 }
278 
279 /*
280  * we hash on the first logical address of the stripe
281  */
rbio_bucket(struct btrfs_raid_bio * rbio)282 static int rbio_bucket(struct btrfs_raid_bio *rbio)
283 {
284 	u64 num = rbio->bbio->raid_map[0];
285 
286 	/*
287 	 * we shift down quite a bit.  We're using byte
288 	 * addressing, and most of the lower bits are zeros.
289 	 * This tends to upset hash_64, and it consistently
290 	 * returns just one or two different values.
291 	 *
292 	 * shifting off the lower bits fixes things.
293 	 */
294 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
295 }
296 
297 /*
298  * stealing an rbio means taking all the uptodate pages from the stripe
299  * array in the source rbio and putting them into the destination rbio
300  */
steal_rbio(struct btrfs_raid_bio * src,struct btrfs_raid_bio * dest)301 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
302 {
303 	int i;
304 	struct page *s;
305 	struct page *d;
306 
307 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
308 		return;
309 
310 	for (i = 0; i < dest->nr_pages; i++) {
311 		s = src->stripe_pages[i];
312 		if (!s || !PageUptodate(s)) {
313 			continue;
314 		}
315 
316 		d = dest->stripe_pages[i];
317 		if (d)
318 			__free_page(d);
319 
320 		dest->stripe_pages[i] = s;
321 		src->stripe_pages[i] = NULL;
322 	}
323 }
324 
325 /*
326  * merging means we take the bio_list from the victim and
327  * splice it into the destination.  The victim should
328  * be discarded afterwards.
329  *
330  * must be called with dest->rbio_list_lock held
331  */
merge_rbio(struct btrfs_raid_bio * dest,struct btrfs_raid_bio * victim)332 static void merge_rbio(struct btrfs_raid_bio *dest,
333 		       struct btrfs_raid_bio *victim)
334 {
335 	bio_list_merge(&dest->bio_list, &victim->bio_list);
336 	dest->bio_list_bytes += victim->bio_list_bytes;
337 	/* Also inherit the bitmaps from @victim. */
338 	bitmap_or(dest->dbitmap, victim->dbitmap, dest->dbitmap,
339 		  dest->stripe_npages);
340 	dest->generic_bio_cnt += victim->generic_bio_cnt;
341 	bio_list_init(&victim->bio_list);
342 }
343 
344 /*
345  * used to prune items that are in the cache.  The caller
346  * must hold the hash table lock.
347  */
__remove_rbio_from_cache(struct btrfs_raid_bio * rbio)348 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
349 {
350 	int bucket = rbio_bucket(rbio);
351 	struct btrfs_stripe_hash_table *table;
352 	struct btrfs_stripe_hash *h;
353 	int freeit = 0;
354 
355 	/*
356 	 * check the bit again under the hash table lock.
357 	 */
358 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
359 		return;
360 
361 	table = rbio->fs_info->stripe_hash_table;
362 	h = table->table + bucket;
363 
364 	/* hold the lock for the bucket because we may be
365 	 * removing it from the hash table
366 	 */
367 	spin_lock(&h->lock);
368 
369 	/*
370 	 * hold the lock for the bio list because we need
371 	 * to make sure the bio list is empty
372 	 */
373 	spin_lock(&rbio->bio_list_lock);
374 
375 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
376 		list_del_init(&rbio->stripe_cache);
377 		table->cache_size -= 1;
378 		freeit = 1;
379 
380 		/* if the bio list isn't empty, this rbio is
381 		 * still involved in an IO.  We take it out
382 		 * of the cache list, and drop the ref that
383 		 * was held for the list.
384 		 *
385 		 * If the bio_list was empty, we also remove
386 		 * the rbio from the hash_table, and drop
387 		 * the corresponding ref
388 		 */
389 		if (bio_list_empty(&rbio->bio_list)) {
390 			if (!list_empty(&rbio->hash_list)) {
391 				list_del_init(&rbio->hash_list);
392 				refcount_dec(&rbio->refs);
393 				BUG_ON(!list_empty(&rbio->plug_list));
394 			}
395 		}
396 	}
397 
398 	spin_unlock(&rbio->bio_list_lock);
399 	spin_unlock(&h->lock);
400 
401 	if (freeit)
402 		__free_raid_bio(rbio);
403 }
404 
405 /*
406  * prune a given rbio from the cache
407  */
remove_rbio_from_cache(struct btrfs_raid_bio * rbio)408 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
409 {
410 	struct btrfs_stripe_hash_table *table;
411 	unsigned long flags;
412 
413 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
414 		return;
415 
416 	table = rbio->fs_info->stripe_hash_table;
417 
418 	spin_lock_irqsave(&table->cache_lock, flags);
419 	__remove_rbio_from_cache(rbio);
420 	spin_unlock_irqrestore(&table->cache_lock, flags);
421 }
422 
423 /*
424  * remove everything in the cache
425  */
btrfs_clear_rbio_cache(struct btrfs_fs_info * info)426 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
427 {
428 	struct btrfs_stripe_hash_table *table;
429 	unsigned long flags;
430 	struct btrfs_raid_bio *rbio;
431 
432 	table = info->stripe_hash_table;
433 
434 	spin_lock_irqsave(&table->cache_lock, flags);
435 	while (!list_empty(&table->stripe_cache)) {
436 		rbio = list_entry(table->stripe_cache.next,
437 				  struct btrfs_raid_bio,
438 				  stripe_cache);
439 		__remove_rbio_from_cache(rbio);
440 	}
441 	spin_unlock_irqrestore(&table->cache_lock, flags);
442 }
443 
444 /*
445  * remove all cached entries and free the hash table
446  * used by unmount
447  */
btrfs_free_stripe_hash_table(struct btrfs_fs_info * info)448 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
449 {
450 	if (!info->stripe_hash_table)
451 		return;
452 	btrfs_clear_rbio_cache(info);
453 	kvfree(info->stripe_hash_table);
454 	info->stripe_hash_table = NULL;
455 }
456 
457 /*
458  * insert an rbio into the stripe cache.  It
459  * must have already been prepared by calling
460  * cache_rbio_pages
461  *
462  * If this rbio was already cached, it gets
463  * moved to the front of the lru.
464  *
465  * If the size of the rbio cache is too big, we
466  * prune an item.
467  */
cache_rbio(struct btrfs_raid_bio * rbio)468 static void cache_rbio(struct btrfs_raid_bio *rbio)
469 {
470 	struct btrfs_stripe_hash_table *table;
471 	unsigned long flags;
472 
473 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
474 		return;
475 
476 	table = rbio->fs_info->stripe_hash_table;
477 
478 	spin_lock_irqsave(&table->cache_lock, flags);
479 	spin_lock(&rbio->bio_list_lock);
480 
481 	/* bump our ref if we were not in the list before */
482 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
483 		refcount_inc(&rbio->refs);
484 
485 	if (!list_empty(&rbio->stripe_cache)){
486 		list_move(&rbio->stripe_cache, &table->stripe_cache);
487 	} else {
488 		list_add(&rbio->stripe_cache, &table->stripe_cache);
489 		table->cache_size += 1;
490 	}
491 
492 	spin_unlock(&rbio->bio_list_lock);
493 
494 	if (table->cache_size > RBIO_CACHE_SIZE) {
495 		struct btrfs_raid_bio *found;
496 
497 		found = list_entry(table->stripe_cache.prev,
498 				  struct btrfs_raid_bio,
499 				  stripe_cache);
500 
501 		if (found != rbio)
502 			__remove_rbio_from_cache(found);
503 	}
504 
505 	spin_unlock_irqrestore(&table->cache_lock, flags);
506 }
507 
508 /*
509  * helper function to run the xor_blocks api.  It is only
510  * able to do MAX_XOR_BLOCKS at a time, so we need to
511  * loop through.
512  */
run_xor(void ** pages,int src_cnt,ssize_t len)513 static void run_xor(void **pages, int src_cnt, ssize_t len)
514 {
515 	int src_off = 0;
516 	int xor_src_cnt = 0;
517 	void *dest = pages[src_cnt];
518 
519 	while(src_cnt > 0) {
520 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
521 		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
522 
523 		src_cnt -= xor_src_cnt;
524 		src_off += xor_src_cnt;
525 	}
526 }
527 
528 /*
529  * Returns true if the bio list inside this rbio covers an entire stripe (no
530  * rmw required).
531  */
rbio_is_full(struct btrfs_raid_bio * rbio)532 static int rbio_is_full(struct btrfs_raid_bio *rbio)
533 {
534 	unsigned long flags;
535 	unsigned long size = rbio->bio_list_bytes;
536 	int ret = 1;
537 
538 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
539 	if (size != rbio->nr_data * rbio->stripe_len)
540 		ret = 0;
541 	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
542 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
543 
544 	return ret;
545 }
546 
547 /*
548  * returns 1 if it is safe to merge two rbios together.
549  * The merging is safe if the two rbios correspond to
550  * the same stripe and if they are both going in the same
551  * direction (read vs write), and if neither one is
552  * locked for final IO
553  *
554  * The caller is responsible for locking such that
555  * rmw_locked is safe to test
556  */
rbio_can_merge(struct btrfs_raid_bio * last,struct btrfs_raid_bio * cur)557 static int rbio_can_merge(struct btrfs_raid_bio *last,
558 			  struct btrfs_raid_bio *cur)
559 {
560 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
561 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
562 		return 0;
563 
564 	/*
565 	 * we can't merge with cached rbios, since the
566 	 * idea is that when we merge the destination
567 	 * rbio is going to run our IO for us.  We can
568 	 * steal from cached rbios though, other functions
569 	 * handle that.
570 	 */
571 	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
572 	    test_bit(RBIO_CACHE_BIT, &cur->flags))
573 		return 0;
574 
575 	if (last->bbio->raid_map[0] !=
576 	    cur->bbio->raid_map[0])
577 		return 0;
578 
579 	/* we can't merge with different operations */
580 	if (last->operation != cur->operation)
581 		return 0;
582 	/*
583 	 * We've need read the full stripe from the drive.
584 	 * check and repair the parity and write the new results.
585 	 *
586 	 * We're not allowed to add any new bios to the
587 	 * bio list here, anyone else that wants to
588 	 * change this stripe needs to do their own rmw.
589 	 */
590 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
591 		return 0;
592 
593 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
594 		return 0;
595 
596 	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
597 		int fa = last->faila;
598 		int fb = last->failb;
599 		int cur_fa = cur->faila;
600 		int cur_fb = cur->failb;
601 
602 		if (last->faila >= last->failb) {
603 			fa = last->failb;
604 			fb = last->faila;
605 		}
606 
607 		if (cur->faila >= cur->failb) {
608 			cur_fa = cur->failb;
609 			cur_fb = cur->faila;
610 		}
611 
612 		if (fa != cur_fa || fb != cur_fb)
613 			return 0;
614 	}
615 	return 1;
616 }
617 
rbio_stripe_page_index(struct btrfs_raid_bio * rbio,int stripe,int index)618 static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
619 				  int index)
620 {
621 	return stripe * rbio->stripe_npages + index;
622 }
623 
624 /*
625  * these are just the pages from the rbio array, not from anything
626  * the FS sent down to us
627  */
rbio_stripe_page(struct btrfs_raid_bio * rbio,int stripe,int index)628 static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
629 				     int index)
630 {
631 	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
632 }
633 
634 /*
635  * helper to index into the pstripe
636  */
rbio_pstripe_page(struct btrfs_raid_bio * rbio,int index)637 static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
638 {
639 	return rbio_stripe_page(rbio, rbio->nr_data, index);
640 }
641 
642 /*
643  * helper to index into the qstripe, returns null
644  * if there is no qstripe
645  */
rbio_qstripe_page(struct btrfs_raid_bio * rbio,int index)646 static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
647 {
648 	if (rbio->nr_data + 1 == rbio->real_stripes)
649 		return NULL;
650 	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
651 }
652 
653 /*
654  * The first stripe in the table for a logical address
655  * has the lock.  rbios are added in one of three ways:
656  *
657  * 1) Nobody has the stripe locked yet.  The rbio is given
658  * the lock and 0 is returned.  The caller must start the IO
659  * themselves.
660  *
661  * 2) Someone has the stripe locked, but we're able to merge
662  * with the lock owner.  The rbio is freed and the IO will
663  * start automatically along with the existing rbio.  1 is returned.
664  *
665  * 3) Someone has the stripe locked, but we're not able to merge.
666  * The rbio is added to the lock owner's plug list, or merged into
667  * an rbio already on the plug list.  When the lock owner unlocks,
668  * the next rbio on the list is run and the IO is started automatically.
669  * 1 is returned
670  *
671  * If we return 0, the caller still owns the rbio and must continue with
672  * IO submission.  If we return 1, the caller must assume the rbio has
673  * already been freed.
674  */
lock_stripe_add(struct btrfs_raid_bio * rbio)675 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
676 {
677 	int bucket = rbio_bucket(rbio);
678 	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
679 	struct btrfs_raid_bio *cur;
680 	struct btrfs_raid_bio *pending;
681 	unsigned long flags;
682 	struct btrfs_raid_bio *freeit = NULL;
683 	struct btrfs_raid_bio *cache_drop = NULL;
684 	int ret = 0;
685 
686 	spin_lock_irqsave(&h->lock, flags);
687 	list_for_each_entry(cur, &h->hash_list, hash_list) {
688 		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
689 			spin_lock(&cur->bio_list_lock);
690 
691 			/* can we steal this cached rbio's pages? */
692 			if (bio_list_empty(&cur->bio_list) &&
693 			    list_empty(&cur->plug_list) &&
694 			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
695 			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
696 				list_del_init(&cur->hash_list);
697 				refcount_dec(&cur->refs);
698 
699 				steal_rbio(cur, rbio);
700 				cache_drop = cur;
701 				spin_unlock(&cur->bio_list_lock);
702 
703 				goto lockit;
704 			}
705 
706 			/* can we merge into the lock owner? */
707 			if (rbio_can_merge(cur, rbio)) {
708 				merge_rbio(cur, rbio);
709 				spin_unlock(&cur->bio_list_lock);
710 				freeit = rbio;
711 				ret = 1;
712 				goto out;
713 			}
714 
715 
716 			/*
717 			 * we couldn't merge with the running
718 			 * rbio, see if we can merge with the
719 			 * pending ones.  We don't have to
720 			 * check for rmw_locked because there
721 			 * is no way they are inside finish_rmw
722 			 * right now
723 			 */
724 			list_for_each_entry(pending, &cur->plug_list,
725 					    plug_list) {
726 				if (rbio_can_merge(pending, rbio)) {
727 					merge_rbio(pending, rbio);
728 					spin_unlock(&cur->bio_list_lock);
729 					freeit = rbio;
730 					ret = 1;
731 					goto out;
732 				}
733 			}
734 
735 			/* no merging, put us on the tail of the plug list,
736 			 * our rbio will be started with the currently
737 			 * running rbio unlocks
738 			 */
739 			list_add_tail(&rbio->plug_list, &cur->plug_list);
740 			spin_unlock(&cur->bio_list_lock);
741 			ret = 1;
742 			goto out;
743 		}
744 	}
745 lockit:
746 	refcount_inc(&rbio->refs);
747 	list_add(&rbio->hash_list, &h->hash_list);
748 out:
749 	spin_unlock_irqrestore(&h->lock, flags);
750 	if (cache_drop)
751 		remove_rbio_from_cache(cache_drop);
752 	if (freeit)
753 		__free_raid_bio(freeit);
754 	return ret;
755 }
756 
757 /*
758  * called as rmw or parity rebuild is completed.  If the plug list has more
759  * rbios waiting for this stripe, the next one on the list will be started
760  */
unlock_stripe(struct btrfs_raid_bio * rbio)761 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
762 {
763 	int bucket;
764 	struct btrfs_stripe_hash *h;
765 	unsigned long flags;
766 	int keep_cache = 0;
767 
768 	bucket = rbio_bucket(rbio);
769 	h = rbio->fs_info->stripe_hash_table->table + bucket;
770 
771 	if (list_empty(&rbio->plug_list))
772 		cache_rbio(rbio);
773 
774 	spin_lock_irqsave(&h->lock, flags);
775 	spin_lock(&rbio->bio_list_lock);
776 
777 	if (!list_empty(&rbio->hash_list)) {
778 		/*
779 		 * if we're still cached and there is no other IO
780 		 * to perform, just leave this rbio here for others
781 		 * to steal from later
782 		 */
783 		if (list_empty(&rbio->plug_list) &&
784 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
785 			keep_cache = 1;
786 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
787 			BUG_ON(!bio_list_empty(&rbio->bio_list));
788 			goto done;
789 		}
790 
791 		list_del_init(&rbio->hash_list);
792 		refcount_dec(&rbio->refs);
793 
794 		/*
795 		 * we use the plug list to hold all the rbios
796 		 * waiting for the chance to lock this stripe.
797 		 * hand the lock over to one of them.
798 		 */
799 		if (!list_empty(&rbio->plug_list)) {
800 			struct btrfs_raid_bio *next;
801 			struct list_head *head = rbio->plug_list.next;
802 
803 			next = list_entry(head, struct btrfs_raid_bio,
804 					  plug_list);
805 
806 			list_del_init(&rbio->plug_list);
807 
808 			list_add(&next->hash_list, &h->hash_list);
809 			refcount_inc(&next->refs);
810 			spin_unlock(&rbio->bio_list_lock);
811 			spin_unlock_irqrestore(&h->lock, flags);
812 
813 			if (next->operation == BTRFS_RBIO_READ_REBUILD)
814 				start_async_work(next, read_rebuild_work);
815 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
816 				steal_rbio(rbio, next);
817 				start_async_work(next, read_rebuild_work);
818 			} else if (next->operation == BTRFS_RBIO_WRITE) {
819 				steal_rbio(rbio, next);
820 				start_async_work(next, rmw_work);
821 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
822 				steal_rbio(rbio, next);
823 				start_async_work(next, scrub_parity_work);
824 			}
825 
826 			goto done_nolock;
827 		}
828 	}
829 done:
830 	spin_unlock(&rbio->bio_list_lock);
831 	spin_unlock_irqrestore(&h->lock, flags);
832 
833 done_nolock:
834 	if (!keep_cache)
835 		remove_rbio_from_cache(rbio);
836 }
837 
__free_raid_bio(struct btrfs_raid_bio * rbio)838 static void __free_raid_bio(struct btrfs_raid_bio *rbio)
839 {
840 	int i;
841 
842 	if (!refcount_dec_and_test(&rbio->refs))
843 		return;
844 
845 	WARN_ON(!list_empty(&rbio->stripe_cache));
846 	WARN_ON(!list_empty(&rbio->hash_list));
847 	WARN_ON(!bio_list_empty(&rbio->bio_list));
848 
849 	for (i = 0; i < rbio->nr_pages; i++) {
850 		if (rbio->stripe_pages[i]) {
851 			__free_page(rbio->stripe_pages[i]);
852 			rbio->stripe_pages[i] = NULL;
853 		}
854 	}
855 
856 	btrfs_put_bbio(rbio->bbio);
857 	kfree(rbio);
858 }
859 
rbio_endio_bio_list(struct bio * cur,blk_status_t err)860 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
861 {
862 	struct bio *next;
863 
864 	while (cur) {
865 		next = cur->bi_next;
866 		cur->bi_next = NULL;
867 		cur->bi_status = err;
868 		bio_endio(cur);
869 		cur = next;
870 	}
871 }
872 
873 /*
874  * this frees the rbio and runs through all the bios in the
875  * bio_list and calls end_io on them
876  */
rbio_orig_end_io(struct btrfs_raid_bio * rbio,blk_status_t err)877 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
878 {
879 	struct bio *cur = bio_list_get(&rbio->bio_list);
880 	struct bio *extra;
881 
882 	if (rbio->generic_bio_cnt)
883 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
884 	/*
885 	 * Clear the data bitmap, as the rbio may be cached for later usage.
886 	 * do this before before unlock_stripe() so there will be no new bio
887 	 * for this bio.
888 	 */
889 	bitmap_clear(rbio->dbitmap, 0, rbio->stripe_npages);
890 
891 	/*
892 	 * At this moment, rbio->bio_list is empty, however since rbio does not
893 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
894 	 * hash list, rbio may be merged with others so that rbio->bio_list
895 	 * becomes non-empty.
896 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
897 	 * more and we can call bio_endio() on all queued bios.
898 	 */
899 	unlock_stripe(rbio);
900 	extra = bio_list_get(&rbio->bio_list);
901 	__free_raid_bio(rbio);
902 
903 	rbio_endio_bio_list(cur, err);
904 	if (extra)
905 		rbio_endio_bio_list(extra, err);
906 }
907 
908 /*
909  * end io function used by finish_rmw.  When we finally
910  * get here, we've written a full stripe
911  */
raid_write_end_io(struct bio * bio)912 static void raid_write_end_io(struct bio *bio)
913 {
914 	struct btrfs_raid_bio *rbio = bio->bi_private;
915 	blk_status_t err = bio->bi_status;
916 	int max_errors;
917 
918 	if (err)
919 		fail_bio_stripe(rbio, bio);
920 
921 	bio_put(bio);
922 
923 	if (!atomic_dec_and_test(&rbio->stripes_pending))
924 		return;
925 
926 	err = BLK_STS_OK;
927 
928 	/* OK, we have read all the stripes we need to. */
929 	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
930 		     0 : rbio->bbio->max_errors;
931 	if (atomic_read(&rbio->error) > max_errors)
932 		err = BLK_STS_IOERR;
933 
934 	rbio_orig_end_io(rbio, err);
935 }
936 
937 /*
938  * the read/modify/write code wants to use the original bio for
939  * any pages it included, and then use the rbio for everything
940  * else.  This function decides if a given index (stripe number)
941  * and page number in that stripe fall inside the original bio
942  * or the rbio.
943  *
944  * if you set bio_list_only, you'll get a NULL back for any ranges
945  * that are outside the bio_list
946  *
947  * This doesn't take any refs on anything, you get a bare page pointer
948  * and the caller must bump refs as required.
949  *
950  * You must call index_rbio_pages once before you can trust
951  * the answers from this function.
952  */
page_in_rbio(struct btrfs_raid_bio * rbio,int index,int pagenr,int bio_list_only)953 static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
954 				 int index, int pagenr, int bio_list_only)
955 {
956 	int chunk_page;
957 	struct page *p = NULL;
958 
959 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
960 
961 	spin_lock_irq(&rbio->bio_list_lock);
962 	p = rbio->bio_pages[chunk_page];
963 	spin_unlock_irq(&rbio->bio_list_lock);
964 
965 	if (p || bio_list_only)
966 		return p;
967 
968 	return rbio->stripe_pages[chunk_page];
969 }
970 
971 /*
972  * number of pages we need for the entire stripe across all the
973  * drives
974  */
rbio_nr_pages(unsigned long stripe_len,int nr_stripes)975 static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
976 {
977 	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
978 }
979 
980 /*
981  * allocation and initial setup for the btrfs_raid_bio.  Not
982  * this does not allocate any pages for rbio->pages.
983  */
alloc_rbio(struct btrfs_fs_info * fs_info,struct btrfs_bio * bbio,u64 stripe_len)984 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
985 					 struct btrfs_bio *bbio,
986 					 u64 stripe_len)
987 {
988 	struct btrfs_raid_bio *rbio;
989 	int nr_data = 0;
990 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
991 	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
992 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
993 	void *p;
994 
995 	rbio = kzalloc(sizeof(*rbio) +
996 		       sizeof(*rbio->stripe_pages) * num_pages +
997 		       sizeof(*rbio->bio_pages) * num_pages +
998 		       sizeof(*rbio->finish_pointers) * real_stripes +
999 		       sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
1000 		       sizeof(*rbio->finish_pbitmap) *
1001 				BITS_TO_LONGS(stripe_npages),
1002 		       GFP_NOFS);
1003 	if (!rbio)
1004 		return ERR_PTR(-ENOMEM);
1005 
1006 	bio_list_init(&rbio->bio_list);
1007 	INIT_LIST_HEAD(&rbio->plug_list);
1008 	spin_lock_init(&rbio->bio_list_lock);
1009 	INIT_LIST_HEAD(&rbio->stripe_cache);
1010 	INIT_LIST_HEAD(&rbio->hash_list);
1011 	rbio->bbio = bbio;
1012 	rbio->fs_info = fs_info;
1013 	rbio->stripe_len = stripe_len;
1014 	rbio->nr_pages = num_pages;
1015 	rbio->real_stripes = real_stripes;
1016 	rbio->stripe_npages = stripe_npages;
1017 	rbio->faila = -1;
1018 	rbio->failb = -1;
1019 	refcount_set(&rbio->refs, 1);
1020 	atomic_set(&rbio->error, 0);
1021 	atomic_set(&rbio->stripes_pending, 0);
1022 
1023 	/*
1024 	 * the stripe_pages, bio_pages, etc arrays point to the extra
1025 	 * memory we allocated past the end of the rbio
1026 	 */
1027 	p = rbio + 1;
1028 #define CONSUME_ALLOC(ptr, count)	do {				\
1029 		ptr = p;						\
1030 		p = (unsigned char *)p + sizeof(*(ptr)) * (count);	\
1031 	} while (0)
1032 	CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1033 	CONSUME_ALLOC(rbio->bio_pages, num_pages);
1034 	CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1035 	CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1036 	CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1037 #undef  CONSUME_ALLOC
1038 
1039 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1040 		nr_data = real_stripes - 1;
1041 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1042 		nr_data = real_stripes - 2;
1043 	else
1044 		BUG();
1045 
1046 	rbio->nr_data = nr_data;
1047 	return rbio;
1048 }
1049 
1050 /* allocate pages for all the stripes in the bio, including parity */
alloc_rbio_pages(struct btrfs_raid_bio * rbio)1051 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1052 {
1053 	int i;
1054 	struct page *page;
1055 
1056 	for (i = 0; i < rbio->nr_pages; i++) {
1057 		if (rbio->stripe_pages[i])
1058 			continue;
1059 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1060 		if (!page)
1061 			return -ENOMEM;
1062 		rbio->stripe_pages[i] = page;
1063 	}
1064 	return 0;
1065 }
1066 
1067 /* only allocate pages for p/q stripes */
alloc_rbio_parity_pages(struct btrfs_raid_bio * rbio)1068 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1069 {
1070 	int i;
1071 	struct page *page;
1072 
1073 	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
1074 
1075 	for (; i < rbio->nr_pages; i++) {
1076 		if (rbio->stripe_pages[i])
1077 			continue;
1078 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1079 		if (!page)
1080 			return -ENOMEM;
1081 		rbio->stripe_pages[i] = page;
1082 	}
1083 	return 0;
1084 }
1085 
1086 /*
1087  * add a single page from a specific stripe into our list of bios for IO
1088  * this will try to merge into existing bios if possible, and returns
1089  * zero if all went well.
1090  */
rbio_add_io_page(struct btrfs_raid_bio * rbio,struct bio_list * bio_list,struct page * page,int stripe_nr,unsigned long page_index,unsigned long bio_max_len)1091 static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1092 			    struct bio_list *bio_list,
1093 			    struct page *page,
1094 			    int stripe_nr,
1095 			    unsigned long page_index,
1096 			    unsigned long bio_max_len)
1097 {
1098 	struct bio *last = bio_list->tail;
1099 	u64 last_end = 0;
1100 	int ret;
1101 	struct bio *bio;
1102 	struct btrfs_bio_stripe *stripe;
1103 	u64 disk_start;
1104 
1105 	stripe = &rbio->bbio->stripes[stripe_nr];
1106 	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
1107 
1108 	/* if the device is missing, just fail this stripe */
1109 	if (!stripe->dev->bdev)
1110 		return fail_rbio_index(rbio, stripe_nr);
1111 
1112 	/* see if we can add this page onto our existing bio */
1113 	if (last) {
1114 		last_end = (u64)last->bi_iter.bi_sector << 9;
1115 		last_end += last->bi_iter.bi_size;
1116 
1117 		/*
1118 		 * we can't merge these if they are from different
1119 		 * devices or if they are not contiguous
1120 		 */
1121 		if (last_end == disk_start && stripe->dev->bdev &&
1122 		    !last->bi_status &&
1123 		    last->bi_disk == stripe->dev->bdev->bd_disk &&
1124 		    last->bi_partno == stripe->dev->bdev->bd_partno) {
1125 			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1126 			if (ret == PAGE_SIZE)
1127 				return 0;
1128 		}
1129 	}
1130 
1131 	/* put a new bio on the list */
1132 	bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1133 	bio->bi_iter.bi_size = 0;
1134 	bio_set_dev(bio, stripe->dev->bdev);
1135 	bio->bi_iter.bi_sector = disk_start >> 9;
1136 
1137 	bio_add_page(bio, page, PAGE_SIZE, 0);
1138 	bio_list_add(bio_list, bio);
1139 	return 0;
1140 }
1141 
1142 /*
1143  * while we're doing the read/modify/write cycle, we could
1144  * have errors in reading pages off the disk.  This checks
1145  * for errors and if we're not able to read the page it'll
1146  * trigger parity reconstruction.  The rmw will be finished
1147  * after we've reconstructed the failed stripes
1148  */
validate_rbio_for_rmw(struct btrfs_raid_bio * rbio)1149 static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1150 {
1151 	if (rbio->faila >= 0 || rbio->failb >= 0) {
1152 		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1153 		__raid56_parity_recover(rbio);
1154 	} else {
1155 		finish_rmw(rbio);
1156 	}
1157 }
1158 
1159 /*
1160  * helper function to walk our bio list and populate the bio_pages array with
1161  * the result.  This seems expensive, but it is faster than constantly
1162  * searching through the bio list as we setup the IO in finish_rmw or stripe
1163  * reconstruction.
1164  *
1165  * This must be called before you trust the answers from page_in_rbio
1166  */
index_rbio_pages(struct btrfs_raid_bio * rbio)1167 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1168 {
1169 	struct bio *bio;
1170 	u64 start;
1171 	unsigned long stripe_offset;
1172 	unsigned long page_index;
1173 
1174 	spin_lock_irq(&rbio->bio_list_lock);
1175 	bio_list_for_each(bio, &rbio->bio_list) {
1176 		struct bio_vec bvec;
1177 		struct bvec_iter iter;
1178 		int i = 0;
1179 
1180 		start = (u64)bio->bi_iter.bi_sector << 9;
1181 		stripe_offset = start - rbio->bbio->raid_map[0];
1182 		page_index = stripe_offset >> PAGE_SHIFT;
1183 
1184 		if (bio_flagged(bio, BIO_CLONED))
1185 			bio->bi_iter = btrfs_io_bio(bio)->iter;
1186 
1187 		bio_for_each_segment(bvec, bio, iter) {
1188 			rbio->bio_pages[page_index + i] = bvec.bv_page;
1189 			i++;
1190 		}
1191 	}
1192 	spin_unlock_irq(&rbio->bio_list_lock);
1193 }
1194 
1195 /*
1196  * this is called from one of two situations.  We either
1197  * have a full stripe from the higher layers, or we've read all
1198  * the missing bits off disk.
1199  *
1200  * This will calculate the parity and then send down any
1201  * changed blocks.
1202  */
finish_rmw(struct btrfs_raid_bio * rbio)1203 static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1204 {
1205 	struct btrfs_bio *bbio = rbio->bbio;
1206 	void **pointers = rbio->finish_pointers;
1207 	int nr_data = rbio->nr_data;
1208 	int stripe;
1209 	int pagenr;
1210 	bool has_qstripe;
1211 	struct bio_list bio_list;
1212 	struct bio *bio;
1213 	int ret;
1214 
1215 	bio_list_init(&bio_list);
1216 
1217 	if (rbio->real_stripes - rbio->nr_data == 1)
1218 		has_qstripe = false;
1219 	else if (rbio->real_stripes - rbio->nr_data == 2)
1220 		has_qstripe = true;
1221 	else
1222 		BUG();
1223 
1224 	/* We should have at least one data sector. */
1225 	ASSERT(bitmap_weight(rbio->dbitmap, rbio->stripe_npages));
1226 
1227 	/* at this point we either have a full stripe,
1228 	 * or we've read the full stripe from the drive.
1229 	 * recalculate the parity and write the new results.
1230 	 *
1231 	 * We're not allowed to add any new bios to the
1232 	 * bio list here, anyone else that wants to
1233 	 * change this stripe needs to do their own rmw.
1234 	 */
1235 	spin_lock_irq(&rbio->bio_list_lock);
1236 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1237 	spin_unlock_irq(&rbio->bio_list_lock);
1238 
1239 	atomic_set(&rbio->error, 0);
1240 
1241 	/*
1242 	 * now that we've set rmw_locked, run through the
1243 	 * bio list one last time and map the page pointers
1244 	 *
1245 	 * We don't cache full rbios because we're assuming
1246 	 * the higher layers are unlikely to use this area of
1247 	 * the disk again soon.  If they do use it again,
1248 	 * hopefully they will send another full bio.
1249 	 */
1250 	index_rbio_pages(rbio);
1251 	if (!rbio_is_full(rbio))
1252 		cache_rbio_pages(rbio);
1253 	else
1254 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1255 
1256 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1257 		struct page *p;
1258 		/* first collect one page from each data stripe */
1259 		for (stripe = 0; stripe < nr_data; stripe++) {
1260 			p = page_in_rbio(rbio, stripe, pagenr, 0);
1261 			pointers[stripe] = kmap(p);
1262 		}
1263 
1264 		/* then add the parity stripe */
1265 		p = rbio_pstripe_page(rbio, pagenr);
1266 		SetPageUptodate(p);
1267 		pointers[stripe++] = kmap(p);
1268 
1269 		if (has_qstripe) {
1270 
1271 			/*
1272 			 * raid6, add the qstripe and call the
1273 			 * library function to fill in our p/q
1274 			 */
1275 			p = rbio_qstripe_page(rbio, pagenr);
1276 			SetPageUptodate(p);
1277 			pointers[stripe++] = kmap(p);
1278 
1279 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1280 						pointers);
1281 		} else {
1282 			/* raid5 */
1283 			copy_page(pointers[nr_data], pointers[0]);
1284 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1285 		}
1286 
1287 
1288 		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1289 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1290 	}
1291 
1292 	/*
1293 	 * time to start writing.  Make bios for everything from the
1294 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1295 	 * everything else.
1296 	 */
1297 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1298 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1299 			struct page *page;
1300 
1301 			/* This vertical stripe has no data, skip it. */
1302 			if (!test_bit(pagenr, rbio->dbitmap))
1303 				continue;
1304 
1305 			if (stripe < rbio->nr_data) {
1306 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1307 				if (!page)
1308 					continue;
1309 			} else {
1310 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1311 			}
1312 
1313 			ret = rbio_add_io_page(rbio, &bio_list,
1314 				       page, stripe, pagenr, rbio->stripe_len);
1315 			if (ret)
1316 				goto cleanup;
1317 		}
1318 	}
1319 
1320 	if (likely(!bbio->num_tgtdevs))
1321 		goto write_data;
1322 
1323 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1324 		if (!bbio->tgtdev_map[stripe])
1325 			continue;
1326 
1327 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1328 			struct page *page;
1329 
1330 			/* This vertical stripe has no data, skip it. */
1331 			if (!test_bit(pagenr, rbio->dbitmap))
1332 				continue;
1333 
1334 			if (stripe < rbio->nr_data) {
1335 				page = page_in_rbio(rbio, stripe, pagenr, 1);
1336 				if (!page)
1337 					continue;
1338 			} else {
1339 			       page = rbio_stripe_page(rbio, stripe, pagenr);
1340 			}
1341 
1342 			ret = rbio_add_io_page(rbio, &bio_list, page,
1343 					       rbio->bbio->tgtdev_map[stripe],
1344 					       pagenr, rbio->stripe_len);
1345 			if (ret)
1346 				goto cleanup;
1347 		}
1348 	}
1349 
1350 write_data:
1351 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1352 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1353 
1354 	while (1) {
1355 		bio = bio_list_pop(&bio_list);
1356 		if (!bio)
1357 			break;
1358 
1359 		bio->bi_private = rbio;
1360 		bio->bi_end_io = raid_write_end_io;
1361 		bio->bi_opf = REQ_OP_WRITE;
1362 
1363 		submit_bio(bio);
1364 	}
1365 	return;
1366 
1367 cleanup:
1368 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1369 
1370 	while ((bio = bio_list_pop(&bio_list)))
1371 		bio_put(bio);
1372 }
1373 
1374 /*
1375  * helper to find the stripe number for a given bio.  Used to figure out which
1376  * stripe has failed.  This expects the bio to correspond to a physical disk,
1377  * so it looks up based on physical sector numbers.
1378  */
find_bio_stripe(struct btrfs_raid_bio * rbio,struct bio * bio)1379 static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1380 			   struct bio *bio)
1381 {
1382 	u64 physical = bio->bi_iter.bi_sector;
1383 	u64 stripe_start;
1384 	int i;
1385 	struct btrfs_bio_stripe *stripe;
1386 
1387 	physical <<= 9;
1388 
1389 	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1390 		stripe = &rbio->bbio->stripes[i];
1391 		stripe_start = stripe->physical;
1392 		if (physical >= stripe_start &&
1393 		    physical < stripe_start + rbio->stripe_len &&
1394 		    stripe->dev->bdev &&
1395 		    bio->bi_disk == stripe->dev->bdev->bd_disk &&
1396 		    bio->bi_partno == stripe->dev->bdev->bd_partno) {
1397 			return i;
1398 		}
1399 	}
1400 	return -1;
1401 }
1402 
1403 /*
1404  * helper to find the stripe number for a given
1405  * bio (before mapping).  Used to figure out which stripe has
1406  * failed.  This looks up based on logical block numbers.
1407  */
find_logical_bio_stripe(struct btrfs_raid_bio * rbio,struct bio * bio)1408 static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1409 				   struct bio *bio)
1410 {
1411 	u64 logical = bio->bi_iter.bi_sector;
1412 	u64 stripe_start;
1413 	int i;
1414 
1415 	logical <<= 9;
1416 
1417 	for (i = 0; i < rbio->nr_data; i++) {
1418 		stripe_start = rbio->bbio->raid_map[i];
1419 		if (logical >= stripe_start &&
1420 		    logical < stripe_start + rbio->stripe_len) {
1421 			return i;
1422 		}
1423 	}
1424 	return -1;
1425 }
1426 
1427 /*
1428  * returns -EIO if we had too many failures
1429  */
fail_rbio_index(struct btrfs_raid_bio * rbio,int failed)1430 static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1431 {
1432 	unsigned long flags;
1433 	int ret = 0;
1434 
1435 	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1436 
1437 	/* we already know this stripe is bad, move on */
1438 	if (rbio->faila == failed || rbio->failb == failed)
1439 		goto out;
1440 
1441 	if (rbio->faila == -1) {
1442 		/* first failure on this rbio */
1443 		rbio->faila = failed;
1444 		atomic_inc(&rbio->error);
1445 	} else if (rbio->failb == -1) {
1446 		/* second failure on this rbio */
1447 		rbio->failb = failed;
1448 		atomic_inc(&rbio->error);
1449 	} else {
1450 		ret = -EIO;
1451 	}
1452 out:
1453 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1454 
1455 	return ret;
1456 }
1457 
1458 /*
1459  * helper to fail a stripe based on a physical disk
1460  * bio.
1461  */
fail_bio_stripe(struct btrfs_raid_bio * rbio,struct bio * bio)1462 static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1463 			   struct bio *bio)
1464 {
1465 	int failed = find_bio_stripe(rbio, bio);
1466 
1467 	if (failed < 0)
1468 		return -EIO;
1469 
1470 	return fail_rbio_index(rbio, failed);
1471 }
1472 
1473 /*
1474  * this sets each page in the bio uptodate.  It should only be used on private
1475  * rbio pages, nothing that comes in from the higher layers
1476  */
set_bio_pages_uptodate(struct bio * bio)1477 static void set_bio_pages_uptodate(struct bio *bio)
1478 {
1479 	struct bio_vec *bvec;
1480 	struct bvec_iter_all iter_all;
1481 
1482 	ASSERT(!bio_flagged(bio, BIO_CLONED));
1483 
1484 	bio_for_each_segment_all(bvec, bio, iter_all)
1485 		SetPageUptodate(bvec->bv_page);
1486 }
1487 
1488 /*
1489  * end io for the read phase of the rmw cycle.  All the bios here are physical
1490  * stripe bios we've read from the disk so we can recalculate the parity of the
1491  * stripe.
1492  *
1493  * This will usually kick off finish_rmw once all the bios are read in, but it
1494  * may trigger parity reconstruction if we had any errors along the way
1495  */
raid_rmw_end_io(struct bio * bio)1496 static void raid_rmw_end_io(struct bio *bio)
1497 {
1498 	struct btrfs_raid_bio *rbio = bio->bi_private;
1499 
1500 	if (bio->bi_status)
1501 		fail_bio_stripe(rbio, bio);
1502 	else
1503 		set_bio_pages_uptodate(bio);
1504 
1505 	bio_put(bio);
1506 
1507 	if (!atomic_dec_and_test(&rbio->stripes_pending))
1508 		return;
1509 
1510 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1511 		goto cleanup;
1512 
1513 	/*
1514 	 * this will normally call finish_rmw to start our write
1515 	 * but if there are any failed stripes we'll reconstruct
1516 	 * from parity first
1517 	 */
1518 	validate_rbio_for_rmw(rbio);
1519 	return;
1520 
1521 cleanup:
1522 
1523 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1524 }
1525 
1526 /*
1527  * the stripe must be locked by the caller.  It will
1528  * unlock after all the writes are done
1529  */
raid56_rmw_stripe(struct btrfs_raid_bio * rbio)1530 static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1531 {
1532 	int bios_to_read = 0;
1533 	struct bio_list bio_list;
1534 	int ret;
1535 	int pagenr;
1536 	int stripe;
1537 	struct bio *bio;
1538 
1539 	bio_list_init(&bio_list);
1540 
1541 	ret = alloc_rbio_pages(rbio);
1542 	if (ret)
1543 		goto cleanup;
1544 
1545 	index_rbio_pages(rbio);
1546 
1547 	atomic_set(&rbio->error, 0);
1548 	/*
1549 	 * build a list of bios to read all the missing parts of this
1550 	 * stripe
1551 	 */
1552 	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1553 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1554 			struct page *page;
1555 			/*
1556 			 * we want to find all the pages missing from
1557 			 * the rbio and read them from the disk.  If
1558 			 * page_in_rbio finds a page in the bio list
1559 			 * we don't need to read it off the stripe.
1560 			 */
1561 			page = page_in_rbio(rbio, stripe, pagenr, 1);
1562 			if (page)
1563 				continue;
1564 
1565 			page = rbio_stripe_page(rbio, stripe, pagenr);
1566 			/*
1567 			 * the bio cache may have handed us an uptodate
1568 			 * page.  If so, be happy and use it
1569 			 */
1570 			if (PageUptodate(page))
1571 				continue;
1572 
1573 			ret = rbio_add_io_page(rbio, &bio_list, page,
1574 				       stripe, pagenr, rbio->stripe_len);
1575 			if (ret)
1576 				goto cleanup;
1577 		}
1578 	}
1579 
1580 	bios_to_read = bio_list_size(&bio_list);
1581 	if (!bios_to_read) {
1582 		/*
1583 		 * this can happen if others have merged with
1584 		 * us, it means there is nothing left to read.
1585 		 * But if there are missing devices it may not be
1586 		 * safe to do the full stripe write yet.
1587 		 */
1588 		goto finish;
1589 	}
1590 
1591 	/*
1592 	 * the bbio may be freed once we submit the last bio.  Make sure
1593 	 * not to touch it after that
1594 	 */
1595 	atomic_set(&rbio->stripes_pending, bios_to_read);
1596 	while (1) {
1597 		bio = bio_list_pop(&bio_list);
1598 		if (!bio)
1599 			break;
1600 
1601 		bio->bi_private = rbio;
1602 		bio->bi_end_io = raid_rmw_end_io;
1603 		bio->bi_opf = REQ_OP_READ;
1604 
1605 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1606 
1607 		submit_bio(bio);
1608 	}
1609 	/* the actual write will happen once the reads are done */
1610 	return 0;
1611 
1612 cleanup:
1613 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1614 
1615 	while ((bio = bio_list_pop(&bio_list)))
1616 		bio_put(bio);
1617 
1618 	return -EIO;
1619 
1620 finish:
1621 	validate_rbio_for_rmw(rbio);
1622 	return 0;
1623 }
1624 
1625 /*
1626  * if the upper layers pass in a full stripe, we thank them by only allocating
1627  * enough pages to hold the parity, and sending it all down quickly.
1628  */
full_stripe_write(struct btrfs_raid_bio * rbio)1629 static int full_stripe_write(struct btrfs_raid_bio *rbio)
1630 {
1631 	int ret;
1632 
1633 	ret = alloc_rbio_parity_pages(rbio);
1634 	if (ret) {
1635 		__free_raid_bio(rbio);
1636 		return ret;
1637 	}
1638 
1639 	ret = lock_stripe_add(rbio);
1640 	if (ret == 0)
1641 		finish_rmw(rbio);
1642 	return 0;
1643 }
1644 
1645 /*
1646  * partial stripe writes get handed over to async helpers.
1647  * We're really hoping to merge a few more writes into this
1648  * rbio before calculating new parity
1649  */
partial_stripe_write(struct btrfs_raid_bio * rbio)1650 static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1651 {
1652 	int ret;
1653 
1654 	ret = lock_stripe_add(rbio);
1655 	if (ret == 0)
1656 		start_async_work(rbio, rmw_work);
1657 	return 0;
1658 }
1659 
1660 /*
1661  * sometimes while we were reading from the drive to
1662  * recalculate parity, enough new bios come into create
1663  * a full stripe.  So we do a check here to see if we can
1664  * go directly to finish_rmw
1665  */
__raid56_parity_write(struct btrfs_raid_bio * rbio)1666 static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1667 {
1668 	/* head off into rmw land if we don't have a full stripe */
1669 	if (!rbio_is_full(rbio))
1670 		return partial_stripe_write(rbio);
1671 	return full_stripe_write(rbio);
1672 }
1673 
1674 /*
1675  * We use plugging call backs to collect full stripes.
1676  * Any time we get a partial stripe write while plugged
1677  * we collect it into a list.  When the unplug comes down,
1678  * we sort the list by logical block number and merge
1679  * everything we can into the same rbios
1680  */
1681 struct btrfs_plug_cb {
1682 	struct blk_plug_cb cb;
1683 	struct btrfs_fs_info *info;
1684 	struct list_head rbio_list;
1685 	struct btrfs_work work;
1686 };
1687 
1688 /*
1689  * rbios on the plug list are sorted for easier merging.
1690  */
plug_cmp(void * priv,struct list_head * a,struct list_head * b)1691 static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1692 {
1693 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1694 						 plug_list);
1695 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1696 						 plug_list);
1697 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1698 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1699 
1700 	if (a_sector < b_sector)
1701 		return -1;
1702 	if (a_sector > b_sector)
1703 		return 1;
1704 	return 0;
1705 }
1706 
run_plug(struct btrfs_plug_cb * plug)1707 static void run_plug(struct btrfs_plug_cb *plug)
1708 {
1709 	struct btrfs_raid_bio *cur;
1710 	struct btrfs_raid_bio *last = NULL;
1711 
1712 	/*
1713 	 * sort our plug list then try to merge
1714 	 * everything we can in hopes of creating full
1715 	 * stripes.
1716 	 */
1717 	list_sort(NULL, &plug->rbio_list, plug_cmp);
1718 	while (!list_empty(&plug->rbio_list)) {
1719 		cur = list_entry(plug->rbio_list.next,
1720 				 struct btrfs_raid_bio, plug_list);
1721 		list_del_init(&cur->plug_list);
1722 
1723 		if (rbio_is_full(cur)) {
1724 			int ret;
1725 
1726 			/* we have a full stripe, send it down */
1727 			ret = full_stripe_write(cur);
1728 			BUG_ON(ret);
1729 			continue;
1730 		}
1731 		if (last) {
1732 			if (rbio_can_merge(last, cur)) {
1733 				merge_rbio(last, cur);
1734 				__free_raid_bio(cur);
1735 				continue;
1736 
1737 			}
1738 			__raid56_parity_write(last);
1739 		}
1740 		last = cur;
1741 	}
1742 	if (last) {
1743 		__raid56_parity_write(last);
1744 	}
1745 	kfree(plug);
1746 }
1747 
1748 /*
1749  * if the unplug comes from schedule, we have to push the
1750  * work off to a helper thread
1751  */
unplug_work(struct btrfs_work * work)1752 static void unplug_work(struct btrfs_work *work)
1753 {
1754 	struct btrfs_plug_cb *plug;
1755 	plug = container_of(work, struct btrfs_plug_cb, work);
1756 	run_plug(plug);
1757 }
1758 
btrfs_raid_unplug(struct blk_plug_cb * cb,bool from_schedule)1759 static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1760 {
1761 	struct btrfs_plug_cb *plug;
1762 	plug = container_of(cb, struct btrfs_plug_cb, cb);
1763 
1764 	if (from_schedule) {
1765 		btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
1766 		btrfs_queue_work(plug->info->rmw_workers,
1767 				 &plug->work);
1768 		return;
1769 	}
1770 	run_plug(plug);
1771 }
1772 
1773 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
rbio_add_bio(struct btrfs_raid_bio * rbio,struct bio * orig_bio)1774 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1775 {
1776 	const struct btrfs_fs_info *fs_info = rbio->fs_info;
1777 	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1778 	const u64 full_stripe_start = rbio->bbio->raid_map[0];
1779 	const u32 orig_len = orig_bio->bi_iter.bi_size;
1780 	const u32 sectorsize = fs_info->sectorsize;
1781 	u64 cur_logical;
1782 
1783 	ASSERT(orig_logical >= full_stripe_start &&
1784 	       orig_logical + orig_len <= full_stripe_start +
1785 	       rbio->nr_data * rbio->stripe_len);
1786 
1787 	bio_list_add(&rbio->bio_list, orig_bio);
1788 	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1789 
1790 	/* Update the dbitmap. */
1791 	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1792 	     cur_logical += sectorsize) {
1793 		int bit = ((u32)(cur_logical - full_stripe_start) >>
1794 			   PAGE_SHIFT) % rbio->stripe_npages;
1795 
1796 		set_bit(bit, rbio->dbitmap);
1797 	}
1798 }
1799 
1800 /*
1801  * our main entry point for writes from the rest of the FS.
1802  */
raid56_parity_write(struct btrfs_fs_info * fs_info,struct bio * bio,struct btrfs_bio * bbio,u64 stripe_len)1803 int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1804 			struct btrfs_bio *bbio, u64 stripe_len)
1805 {
1806 	struct btrfs_raid_bio *rbio;
1807 	struct btrfs_plug_cb *plug = NULL;
1808 	struct blk_plug_cb *cb;
1809 	int ret;
1810 
1811 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1812 	if (IS_ERR(rbio)) {
1813 		btrfs_put_bbio(bbio);
1814 		return PTR_ERR(rbio);
1815 	}
1816 	rbio->operation = BTRFS_RBIO_WRITE;
1817 	rbio_add_bio(rbio, bio);
1818 
1819 	btrfs_bio_counter_inc_noblocked(fs_info);
1820 	rbio->generic_bio_cnt = 1;
1821 
1822 	/*
1823 	 * don't plug on full rbios, just get them out the door
1824 	 * as quickly as we can
1825 	 */
1826 	if (rbio_is_full(rbio)) {
1827 		ret = full_stripe_write(rbio);
1828 		if (ret)
1829 			btrfs_bio_counter_dec(fs_info);
1830 		return ret;
1831 	}
1832 
1833 	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1834 	if (cb) {
1835 		plug = container_of(cb, struct btrfs_plug_cb, cb);
1836 		if (!plug->info) {
1837 			plug->info = fs_info;
1838 			INIT_LIST_HEAD(&plug->rbio_list);
1839 		}
1840 		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1841 		ret = 0;
1842 	} else {
1843 		ret = __raid56_parity_write(rbio);
1844 		if (ret)
1845 			btrfs_bio_counter_dec(fs_info);
1846 	}
1847 	return ret;
1848 }
1849 
1850 /*
1851  * all parity reconstruction happens here.  We've read in everything
1852  * we can find from the drives and this does the heavy lifting of
1853  * sorting the good from the bad.
1854  */
__raid_recover_end_io(struct btrfs_raid_bio * rbio)1855 static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1856 {
1857 	int pagenr, stripe;
1858 	void **pointers;
1859 	int faila = -1, failb = -1;
1860 	struct page *page;
1861 	blk_status_t err;
1862 	int i;
1863 
1864 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1865 	if (!pointers) {
1866 		err = BLK_STS_RESOURCE;
1867 		goto cleanup_io;
1868 	}
1869 
1870 	faila = rbio->faila;
1871 	failb = rbio->failb;
1872 
1873 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1874 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1875 		spin_lock_irq(&rbio->bio_list_lock);
1876 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1877 		spin_unlock_irq(&rbio->bio_list_lock);
1878 	}
1879 
1880 	index_rbio_pages(rbio);
1881 
1882 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1883 		/*
1884 		 * Now we just use bitmap to mark the horizontal stripes in
1885 		 * which we have data when doing parity scrub.
1886 		 */
1887 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1888 		    !test_bit(pagenr, rbio->dbitmap))
1889 			continue;
1890 
1891 		/* setup our array of pointers with pages
1892 		 * from each stripe
1893 		 */
1894 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1895 			/*
1896 			 * if we're rebuilding a read, we have to use
1897 			 * pages from the bio list
1898 			 */
1899 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1900 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1901 			    (stripe == faila || stripe == failb)) {
1902 				page = page_in_rbio(rbio, stripe, pagenr, 0);
1903 			} else {
1904 				page = rbio_stripe_page(rbio, stripe, pagenr);
1905 			}
1906 			pointers[stripe] = kmap(page);
1907 		}
1908 
1909 		/* all raid6 handling here */
1910 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1911 			/*
1912 			 * single failure, rebuild from parity raid5
1913 			 * style
1914 			 */
1915 			if (failb < 0) {
1916 				if (faila == rbio->nr_data) {
1917 					/*
1918 					 * Just the P stripe has failed, without
1919 					 * a bad data or Q stripe.
1920 					 * TODO, we should redo the xor here.
1921 					 */
1922 					err = BLK_STS_IOERR;
1923 					goto cleanup;
1924 				}
1925 				/*
1926 				 * a single failure in raid6 is rebuilt
1927 				 * in the pstripe code below
1928 				 */
1929 				goto pstripe;
1930 			}
1931 
1932 			/* make sure our ps and qs are in order */
1933 			if (faila > failb) {
1934 				int tmp = failb;
1935 				failb = faila;
1936 				faila = tmp;
1937 			}
1938 
1939 			/* if the q stripe is failed, do a pstripe reconstruction
1940 			 * from the xors.
1941 			 * If both the q stripe and the P stripe are failed, we're
1942 			 * here due to a crc mismatch and we can't give them the
1943 			 * data they want
1944 			 */
1945 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1946 				if (rbio->bbio->raid_map[faila] ==
1947 				    RAID5_P_STRIPE) {
1948 					err = BLK_STS_IOERR;
1949 					goto cleanup;
1950 				}
1951 				/*
1952 				 * otherwise we have one bad data stripe and
1953 				 * a good P stripe.  raid5!
1954 				 */
1955 				goto pstripe;
1956 			}
1957 
1958 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1959 				raid6_datap_recov(rbio->real_stripes,
1960 						  PAGE_SIZE, faila, pointers);
1961 			} else {
1962 				raid6_2data_recov(rbio->real_stripes,
1963 						  PAGE_SIZE, faila, failb,
1964 						  pointers);
1965 			}
1966 		} else {
1967 			void *p;
1968 
1969 			/* rebuild from P stripe here (raid5 or raid6) */
1970 			BUG_ON(failb != -1);
1971 pstripe:
1972 			/* Copy parity block into failed block to start with */
1973 			copy_page(pointers[faila], pointers[rbio->nr_data]);
1974 
1975 			/* rearrange the pointer array */
1976 			p = pointers[faila];
1977 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1978 				pointers[stripe] = pointers[stripe + 1];
1979 			pointers[rbio->nr_data - 1] = p;
1980 
1981 			/* xor in the rest */
1982 			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1983 		}
1984 		/* if we're doing this rebuild as part of an rmw, go through
1985 		 * and set all of our private rbio pages in the
1986 		 * failed stripes as uptodate.  This way finish_rmw will
1987 		 * know they can be trusted.  If this was a read reconstruction,
1988 		 * other endio functions will fiddle the uptodate bits
1989 		 */
1990 		if (rbio->operation == BTRFS_RBIO_WRITE) {
1991 			for (i = 0;  i < rbio->stripe_npages; i++) {
1992 				if (faila != -1) {
1993 					page = rbio_stripe_page(rbio, faila, i);
1994 					SetPageUptodate(page);
1995 				}
1996 				if (failb != -1) {
1997 					page = rbio_stripe_page(rbio, failb, i);
1998 					SetPageUptodate(page);
1999 				}
2000 			}
2001 		}
2002 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2003 			/*
2004 			 * if we're rebuilding a read, we have to use
2005 			 * pages from the bio list
2006 			 */
2007 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2008 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
2009 			    (stripe == faila || stripe == failb)) {
2010 				page = page_in_rbio(rbio, stripe, pagenr, 0);
2011 			} else {
2012 				page = rbio_stripe_page(rbio, stripe, pagenr);
2013 			}
2014 			kunmap(page);
2015 		}
2016 	}
2017 
2018 	err = BLK_STS_OK;
2019 cleanup:
2020 	kfree(pointers);
2021 
2022 cleanup_io:
2023 	/*
2024 	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
2025 	 * valid rbio which is consistent with ondisk content, thus such a
2026 	 * valid rbio can be cached to avoid further disk reads.
2027 	 */
2028 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2029 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
2030 		/*
2031 		 * - In case of two failures, where rbio->failb != -1:
2032 		 *
2033 		 *   Do not cache this rbio since the above read reconstruction
2034 		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
2035 		 *   changed some content of stripes which are not identical to
2036 		 *   on-disk content any more, otherwise, a later write/recover
2037 		 *   may steal stripe_pages from this rbio and end up with
2038 		 *   corruptions or rebuild failures.
2039 		 *
2040 		 * - In case of single failure, where rbio->failb == -1:
2041 		 *
2042 		 *   Cache this rbio iff the above read reconstruction is
2043 		 *   executed without problems.
2044 		 */
2045 		if (err == BLK_STS_OK && rbio->failb < 0)
2046 			cache_rbio_pages(rbio);
2047 		else
2048 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2049 
2050 		rbio_orig_end_io(rbio, err);
2051 	} else if (err == BLK_STS_OK) {
2052 		rbio->faila = -1;
2053 		rbio->failb = -1;
2054 
2055 		if (rbio->operation == BTRFS_RBIO_WRITE)
2056 			finish_rmw(rbio);
2057 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2058 			finish_parity_scrub(rbio, 0);
2059 		else
2060 			BUG();
2061 	} else {
2062 		rbio_orig_end_io(rbio, err);
2063 	}
2064 }
2065 
2066 /*
2067  * This is called only for stripes we've read from disk to
2068  * reconstruct the parity.
2069  */
raid_recover_end_io(struct bio * bio)2070 static void raid_recover_end_io(struct bio *bio)
2071 {
2072 	struct btrfs_raid_bio *rbio = bio->bi_private;
2073 
2074 	/*
2075 	 * we only read stripe pages off the disk, set them
2076 	 * up to date if there were no errors
2077 	 */
2078 	if (bio->bi_status)
2079 		fail_bio_stripe(rbio, bio);
2080 	else
2081 		set_bio_pages_uptodate(bio);
2082 	bio_put(bio);
2083 
2084 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2085 		return;
2086 
2087 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2088 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2089 	else
2090 		__raid_recover_end_io(rbio);
2091 }
2092 
2093 /*
2094  * reads everything we need off the disk to reconstruct
2095  * the parity. endio handlers trigger final reconstruction
2096  * when the IO is done.
2097  *
2098  * This is used both for reads from the higher layers and for
2099  * parity construction required to finish a rmw cycle.
2100  */
__raid56_parity_recover(struct btrfs_raid_bio * rbio)2101 static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2102 {
2103 	int bios_to_read = 0;
2104 	struct bio_list bio_list;
2105 	int ret;
2106 	int pagenr;
2107 	int stripe;
2108 	struct bio *bio;
2109 
2110 	bio_list_init(&bio_list);
2111 
2112 	ret = alloc_rbio_pages(rbio);
2113 	if (ret)
2114 		goto cleanup;
2115 
2116 	atomic_set(&rbio->error, 0);
2117 
2118 	/*
2119 	 * Read everything that hasn't failed. However this time we will
2120 	 * not trust any cached sector.
2121 	 * As we may read out some stale data but higher layer is not reading
2122 	 * that stale part.
2123 	 *
2124 	 * So here we always re-read everything in recovery path.
2125 	 */
2126 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2127 		if (rbio->faila == stripe || rbio->failb == stripe) {
2128 			atomic_inc(&rbio->error);
2129 			continue;
2130 		}
2131 
2132 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2133 			ret = rbio_add_io_page(rbio, &bio_list,
2134 				       rbio_stripe_page(rbio, stripe, pagenr),
2135 				       stripe, pagenr, rbio->stripe_len);
2136 			if (ret < 0)
2137 				goto cleanup;
2138 		}
2139 	}
2140 
2141 	bios_to_read = bio_list_size(&bio_list);
2142 	if (!bios_to_read) {
2143 		/*
2144 		 * we might have no bios to read just because the pages
2145 		 * were up to date, or we might have no bios to read because
2146 		 * the devices were gone.
2147 		 */
2148 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2149 			__raid_recover_end_io(rbio);
2150 			goto out;
2151 		} else {
2152 			goto cleanup;
2153 		}
2154 	}
2155 
2156 	/*
2157 	 * the bbio may be freed once we submit the last bio.  Make sure
2158 	 * not to touch it after that
2159 	 */
2160 	atomic_set(&rbio->stripes_pending, bios_to_read);
2161 	while (1) {
2162 		bio = bio_list_pop(&bio_list);
2163 		if (!bio)
2164 			break;
2165 
2166 		bio->bi_private = rbio;
2167 		bio->bi_end_io = raid_recover_end_io;
2168 		bio->bi_opf = REQ_OP_READ;
2169 
2170 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2171 
2172 		submit_bio(bio);
2173 	}
2174 out:
2175 	return 0;
2176 
2177 cleanup:
2178 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2179 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2180 		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2181 
2182 	while ((bio = bio_list_pop(&bio_list)))
2183 		bio_put(bio);
2184 
2185 	return -EIO;
2186 }
2187 
2188 /*
2189  * the main entry point for reads from the higher layers.  This
2190  * is really only called when the normal read path had a failure,
2191  * so we assume the bio they send down corresponds to a failed part
2192  * of the drive.
2193  */
raid56_parity_recover(struct btrfs_fs_info * fs_info,struct bio * bio,struct btrfs_bio * bbio,u64 stripe_len,int mirror_num,int generic_io)2194 int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2195 			  struct btrfs_bio *bbio, u64 stripe_len,
2196 			  int mirror_num, int generic_io)
2197 {
2198 	struct btrfs_raid_bio *rbio;
2199 	int ret;
2200 
2201 	if (generic_io) {
2202 		ASSERT(bbio->mirror_num == mirror_num);
2203 		btrfs_io_bio(bio)->mirror_num = mirror_num;
2204 	}
2205 
2206 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2207 	if (IS_ERR(rbio)) {
2208 		if (generic_io)
2209 			btrfs_put_bbio(bbio);
2210 		return PTR_ERR(rbio);
2211 	}
2212 
2213 	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2214 	rbio_add_bio(rbio, bio);
2215 
2216 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2217 	if (rbio->faila == -1) {
2218 		btrfs_warn(fs_info,
2219 	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2220 			   __func__, (u64)bio->bi_iter.bi_sector << 9,
2221 			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2222 		if (generic_io)
2223 			btrfs_put_bbio(bbio);
2224 		kfree(rbio);
2225 		return -EIO;
2226 	}
2227 
2228 	if (generic_io) {
2229 		btrfs_bio_counter_inc_noblocked(fs_info);
2230 		rbio->generic_bio_cnt = 1;
2231 	} else {
2232 		btrfs_get_bbio(bbio);
2233 	}
2234 
2235 	/*
2236 	 * Loop retry:
2237 	 * for 'mirror == 2', reconstruct from all other stripes.
2238 	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2239 	 */
2240 	if (mirror_num > 2) {
2241 		/*
2242 		 * 'mirror == 3' is to fail the p stripe and
2243 		 * reconstruct from the q stripe.  'mirror > 3' is to
2244 		 * fail a data stripe and reconstruct from p+q stripe.
2245 		 */
2246 		rbio->failb = rbio->real_stripes - (mirror_num - 1);
2247 		ASSERT(rbio->failb > 0);
2248 		if (rbio->failb <= rbio->faila)
2249 			rbio->failb--;
2250 	}
2251 
2252 	ret = lock_stripe_add(rbio);
2253 
2254 	/*
2255 	 * __raid56_parity_recover will end the bio with
2256 	 * any errors it hits.  We don't want to return
2257 	 * its error value up the stack because our caller
2258 	 * will end up calling bio_endio with any nonzero
2259 	 * return
2260 	 */
2261 	if (ret == 0)
2262 		__raid56_parity_recover(rbio);
2263 	/*
2264 	 * our rbio has been added to the list of
2265 	 * rbios that will be handled after the
2266 	 * currently lock owner is done
2267 	 */
2268 	return 0;
2269 
2270 }
2271 
rmw_work(struct btrfs_work * work)2272 static void rmw_work(struct btrfs_work *work)
2273 {
2274 	struct btrfs_raid_bio *rbio;
2275 
2276 	rbio = container_of(work, struct btrfs_raid_bio, work);
2277 	raid56_rmw_stripe(rbio);
2278 }
2279 
read_rebuild_work(struct btrfs_work * work)2280 static void read_rebuild_work(struct btrfs_work *work)
2281 {
2282 	struct btrfs_raid_bio *rbio;
2283 
2284 	rbio = container_of(work, struct btrfs_raid_bio, work);
2285 	__raid56_parity_recover(rbio);
2286 }
2287 
2288 /*
2289  * The following code is used to scrub/replace the parity stripe
2290  *
2291  * Caller must have already increased bio_counter for getting @bbio.
2292  *
2293  * Note: We need make sure all the pages that add into the scrub/replace
2294  * raid bio are correct and not be changed during the scrub/replace. That
2295  * is those pages just hold metadata or file data with checksum.
2296  */
2297 
2298 struct btrfs_raid_bio *
raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info * fs_info,struct bio * bio,struct btrfs_bio * bbio,u64 stripe_len,struct btrfs_device * scrub_dev,unsigned long * dbitmap,int stripe_nsectors)2299 raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2300 			       struct btrfs_bio *bbio, u64 stripe_len,
2301 			       struct btrfs_device *scrub_dev,
2302 			       unsigned long *dbitmap, int stripe_nsectors)
2303 {
2304 	struct btrfs_raid_bio *rbio;
2305 	int i;
2306 
2307 	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2308 	if (IS_ERR(rbio))
2309 		return NULL;
2310 	bio_list_add(&rbio->bio_list, bio);
2311 	/*
2312 	 * This is a special bio which is used to hold the completion handler
2313 	 * and make the scrub rbio is similar to the other types
2314 	 */
2315 	ASSERT(!bio->bi_iter.bi_size);
2316 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2317 
2318 	/*
2319 	 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2320 	 * to the end position, so this search can start from the first parity
2321 	 * stripe.
2322 	 */
2323 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2324 		if (bbio->stripes[i].dev == scrub_dev) {
2325 			rbio->scrubp = i;
2326 			break;
2327 		}
2328 	}
2329 	ASSERT(i < rbio->real_stripes);
2330 
2331 	/* Now we just support the sectorsize equals to page size */
2332 	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2333 	ASSERT(rbio->stripe_npages == stripe_nsectors);
2334 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2335 
2336 	/*
2337 	 * We have already increased bio_counter when getting bbio, record it
2338 	 * so we can free it at rbio_orig_end_io().
2339 	 */
2340 	rbio->generic_bio_cnt = 1;
2341 
2342 	return rbio;
2343 }
2344 
2345 /* Used for both parity scrub and missing. */
raid56_add_scrub_pages(struct btrfs_raid_bio * rbio,struct page * page,u64 logical)2346 void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2347 			    u64 logical)
2348 {
2349 	int stripe_offset;
2350 	int index;
2351 
2352 	ASSERT(logical >= rbio->bbio->raid_map[0]);
2353 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2354 				rbio->stripe_len * rbio->nr_data);
2355 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2356 	index = stripe_offset >> PAGE_SHIFT;
2357 	rbio->bio_pages[index] = page;
2358 }
2359 
2360 /*
2361  * We just scrub the parity that we have correct data on the same horizontal,
2362  * so we needn't allocate all pages for all the stripes.
2363  */
alloc_rbio_essential_pages(struct btrfs_raid_bio * rbio)2364 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2365 {
2366 	int i;
2367 	int bit;
2368 	int index;
2369 	struct page *page;
2370 
2371 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2372 		for (i = 0; i < rbio->real_stripes; i++) {
2373 			index = i * rbio->stripe_npages + bit;
2374 			if (rbio->stripe_pages[index])
2375 				continue;
2376 
2377 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2378 			if (!page)
2379 				return -ENOMEM;
2380 			rbio->stripe_pages[index] = page;
2381 		}
2382 	}
2383 	return 0;
2384 }
2385 
finish_parity_scrub(struct btrfs_raid_bio * rbio,int need_check)2386 static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2387 					 int need_check)
2388 {
2389 	struct btrfs_bio *bbio = rbio->bbio;
2390 	void **pointers = rbio->finish_pointers;
2391 	unsigned long *pbitmap = rbio->finish_pbitmap;
2392 	int nr_data = rbio->nr_data;
2393 	int stripe;
2394 	int pagenr;
2395 	bool has_qstripe;
2396 	struct page *p_page = NULL;
2397 	struct page *q_page = NULL;
2398 	struct bio_list bio_list;
2399 	struct bio *bio;
2400 	int is_replace = 0;
2401 	int ret;
2402 
2403 	bio_list_init(&bio_list);
2404 
2405 	if (rbio->real_stripes - rbio->nr_data == 1)
2406 		has_qstripe = false;
2407 	else if (rbio->real_stripes - rbio->nr_data == 2)
2408 		has_qstripe = true;
2409 	else
2410 		BUG();
2411 
2412 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2413 		is_replace = 1;
2414 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2415 	}
2416 
2417 	/*
2418 	 * Because the higher layers(scrubber) are unlikely to
2419 	 * use this area of the disk again soon, so don't cache
2420 	 * it.
2421 	 */
2422 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2423 
2424 	if (!need_check)
2425 		goto writeback;
2426 
2427 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2428 	if (!p_page)
2429 		goto cleanup;
2430 	SetPageUptodate(p_page);
2431 
2432 	if (has_qstripe) {
2433 		/* RAID6, allocate and map temp space for the Q stripe */
2434 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2435 		if (!q_page) {
2436 			__free_page(p_page);
2437 			goto cleanup;
2438 		}
2439 		SetPageUptodate(q_page);
2440 		pointers[rbio->real_stripes - 1] = kmap(q_page);
2441 	}
2442 
2443 	atomic_set(&rbio->error, 0);
2444 
2445 	/* Map the parity stripe just once */
2446 	pointers[nr_data] = kmap(p_page);
2447 
2448 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2449 		struct page *p;
2450 		void *parity;
2451 		/* first collect one page from each data stripe */
2452 		for (stripe = 0; stripe < nr_data; stripe++) {
2453 			p = page_in_rbio(rbio, stripe, pagenr, 0);
2454 			pointers[stripe] = kmap(p);
2455 		}
2456 
2457 		if (has_qstripe) {
2458 			/* RAID6, call the library function to fill in our P/Q */
2459 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2460 						pointers);
2461 		} else {
2462 			/* raid5 */
2463 			copy_page(pointers[nr_data], pointers[0]);
2464 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2465 		}
2466 
2467 		/* Check scrubbing parity and repair it */
2468 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2469 		parity = kmap(p);
2470 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2471 			copy_page(parity, pointers[rbio->scrubp]);
2472 		else
2473 			/* Parity is right, needn't writeback */
2474 			bitmap_clear(rbio->dbitmap, pagenr, 1);
2475 		kunmap(p);
2476 
2477 		for (stripe = 0; stripe < nr_data; stripe++)
2478 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2479 	}
2480 
2481 	kunmap(p_page);
2482 	__free_page(p_page);
2483 	if (q_page) {
2484 		kunmap(q_page);
2485 		__free_page(q_page);
2486 	}
2487 
2488 writeback:
2489 	/*
2490 	 * time to start writing.  Make bios for everything from the
2491 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2492 	 * everything else.
2493 	 */
2494 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2495 		struct page *page;
2496 
2497 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2498 		ret = rbio_add_io_page(rbio, &bio_list,
2499 			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2500 		if (ret)
2501 			goto cleanup;
2502 	}
2503 
2504 	if (!is_replace)
2505 		goto submit_write;
2506 
2507 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2508 		struct page *page;
2509 
2510 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2511 		ret = rbio_add_io_page(rbio, &bio_list, page,
2512 				       bbio->tgtdev_map[rbio->scrubp],
2513 				       pagenr, rbio->stripe_len);
2514 		if (ret)
2515 			goto cleanup;
2516 	}
2517 
2518 submit_write:
2519 	nr_data = bio_list_size(&bio_list);
2520 	if (!nr_data) {
2521 		/* Every parity is right */
2522 		rbio_orig_end_io(rbio, BLK_STS_OK);
2523 		return;
2524 	}
2525 
2526 	atomic_set(&rbio->stripes_pending, nr_data);
2527 
2528 	while (1) {
2529 		bio = bio_list_pop(&bio_list);
2530 		if (!bio)
2531 			break;
2532 
2533 		bio->bi_private = rbio;
2534 		bio->bi_end_io = raid_write_end_io;
2535 		bio->bi_opf = REQ_OP_WRITE;
2536 
2537 		submit_bio(bio);
2538 	}
2539 	return;
2540 
2541 cleanup:
2542 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2543 
2544 	while ((bio = bio_list_pop(&bio_list)))
2545 		bio_put(bio);
2546 }
2547 
is_data_stripe(struct btrfs_raid_bio * rbio,int stripe)2548 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2549 {
2550 	if (stripe >= 0 && stripe < rbio->nr_data)
2551 		return 1;
2552 	return 0;
2553 }
2554 
2555 /*
2556  * While we're doing the parity check and repair, we could have errors
2557  * in reading pages off the disk.  This checks for errors and if we're
2558  * not able to read the page it'll trigger parity reconstruction.  The
2559  * parity scrub will be finished after we've reconstructed the failed
2560  * stripes
2561  */
validate_rbio_for_parity_scrub(struct btrfs_raid_bio * rbio)2562 static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2563 {
2564 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2565 		goto cleanup;
2566 
2567 	if (rbio->faila >= 0 || rbio->failb >= 0) {
2568 		int dfail = 0, failp = -1;
2569 
2570 		if (is_data_stripe(rbio, rbio->faila))
2571 			dfail++;
2572 		else if (is_parity_stripe(rbio->faila))
2573 			failp = rbio->faila;
2574 
2575 		if (is_data_stripe(rbio, rbio->failb))
2576 			dfail++;
2577 		else if (is_parity_stripe(rbio->failb))
2578 			failp = rbio->failb;
2579 
2580 		/*
2581 		 * Because we can not use a scrubbing parity to repair
2582 		 * the data, so the capability of the repair is declined.
2583 		 * (In the case of RAID5, we can not repair anything)
2584 		 */
2585 		if (dfail > rbio->bbio->max_errors - 1)
2586 			goto cleanup;
2587 
2588 		/*
2589 		 * If all data is good, only parity is correctly, just
2590 		 * repair the parity.
2591 		 */
2592 		if (dfail == 0) {
2593 			finish_parity_scrub(rbio, 0);
2594 			return;
2595 		}
2596 
2597 		/*
2598 		 * Here means we got one corrupted data stripe and one
2599 		 * corrupted parity on RAID6, if the corrupted parity
2600 		 * is scrubbing parity, luckily, use the other one to repair
2601 		 * the data, or we can not repair the data stripe.
2602 		 */
2603 		if (failp != rbio->scrubp)
2604 			goto cleanup;
2605 
2606 		__raid_recover_end_io(rbio);
2607 	} else {
2608 		finish_parity_scrub(rbio, 1);
2609 	}
2610 	return;
2611 
2612 cleanup:
2613 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2614 }
2615 
2616 /*
2617  * end io for the read phase of the rmw cycle.  All the bios here are physical
2618  * stripe bios we've read from the disk so we can recalculate the parity of the
2619  * stripe.
2620  *
2621  * This will usually kick off finish_rmw once all the bios are read in, but it
2622  * may trigger parity reconstruction if we had any errors along the way
2623  */
raid56_parity_scrub_end_io(struct bio * bio)2624 static void raid56_parity_scrub_end_io(struct bio *bio)
2625 {
2626 	struct btrfs_raid_bio *rbio = bio->bi_private;
2627 
2628 	if (bio->bi_status)
2629 		fail_bio_stripe(rbio, bio);
2630 	else
2631 		set_bio_pages_uptodate(bio);
2632 
2633 	bio_put(bio);
2634 
2635 	if (!atomic_dec_and_test(&rbio->stripes_pending))
2636 		return;
2637 
2638 	/*
2639 	 * this will normally call finish_rmw to start our write
2640 	 * but if there are any failed stripes we'll reconstruct
2641 	 * from parity first
2642 	 */
2643 	validate_rbio_for_parity_scrub(rbio);
2644 }
2645 
raid56_parity_scrub_stripe(struct btrfs_raid_bio * rbio)2646 static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2647 {
2648 	int bios_to_read = 0;
2649 	struct bio_list bio_list;
2650 	int ret;
2651 	int pagenr;
2652 	int stripe;
2653 	struct bio *bio;
2654 
2655 	bio_list_init(&bio_list);
2656 
2657 	ret = alloc_rbio_essential_pages(rbio);
2658 	if (ret)
2659 		goto cleanup;
2660 
2661 	atomic_set(&rbio->error, 0);
2662 	/*
2663 	 * build a list of bios to read all the missing parts of this
2664 	 * stripe
2665 	 */
2666 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2667 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2668 			struct page *page;
2669 			/*
2670 			 * we want to find all the pages missing from
2671 			 * the rbio and read them from the disk.  If
2672 			 * page_in_rbio finds a page in the bio list
2673 			 * we don't need to read it off the stripe.
2674 			 */
2675 			page = page_in_rbio(rbio, stripe, pagenr, 1);
2676 			if (page)
2677 				continue;
2678 
2679 			page = rbio_stripe_page(rbio, stripe, pagenr);
2680 			/*
2681 			 * the bio cache may have handed us an uptodate
2682 			 * page.  If so, be happy and use it
2683 			 */
2684 			if (PageUptodate(page))
2685 				continue;
2686 
2687 			ret = rbio_add_io_page(rbio, &bio_list, page,
2688 				       stripe, pagenr, rbio->stripe_len);
2689 			if (ret)
2690 				goto cleanup;
2691 		}
2692 	}
2693 
2694 	bios_to_read = bio_list_size(&bio_list);
2695 	if (!bios_to_read) {
2696 		/*
2697 		 * this can happen if others have merged with
2698 		 * us, it means there is nothing left to read.
2699 		 * But if there are missing devices it may not be
2700 		 * safe to do the full stripe write yet.
2701 		 */
2702 		goto finish;
2703 	}
2704 
2705 	/*
2706 	 * the bbio may be freed once we submit the last bio.  Make sure
2707 	 * not to touch it after that
2708 	 */
2709 	atomic_set(&rbio->stripes_pending, bios_to_read);
2710 	while (1) {
2711 		bio = bio_list_pop(&bio_list);
2712 		if (!bio)
2713 			break;
2714 
2715 		bio->bi_private = rbio;
2716 		bio->bi_end_io = raid56_parity_scrub_end_io;
2717 		bio->bi_opf = REQ_OP_READ;
2718 
2719 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2720 
2721 		submit_bio(bio);
2722 	}
2723 	/* the actual write will happen once the reads are done */
2724 	return;
2725 
2726 cleanup:
2727 	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2728 
2729 	while ((bio = bio_list_pop(&bio_list)))
2730 		bio_put(bio);
2731 
2732 	return;
2733 
2734 finish:
2735 	validate_rbio_for_parity_scrub(rbio);
2736 }
2737 
scrub_parity_work(struct btrfs_work * work)2738 static void scrub_parity_work(struct btrfs_work *work)
2739 {
2740 	struct btrfs_raid_bio *rbio;
2741 
2742 	rbio = container_of(work, struct btrfs_raid_bio, work);
2743 	raid56_parity_scrub_stripe(rbio);
2744 }
2745 
raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio * rbio)2746 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2747 {
2748 	if (!lock_stripe_add(rbio))
2749 		start_async_work(rbio, scrub_parity_work);
2750 }
2751 
2752 /* The following code is used for dev replace of a missing RAID 5/6 device. */
2753 
2754 struct btrfs_raid_bio *
raid56_alloc_missing_rbio(struct btrfs_fs_info * fs_info,struct bio * bio,struct btrfs_bio * bbio,u64 length)2755 raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2756 			  struct btrfs_bio *bbio, u64 length)
2757 {
2758 	struct btrfs_raid_bio *rbio;
2759 
2760 	rbio = alloc_rbio(fs_info, bbio, length);
2761 	if (IS_ERR(rbio))
2762 		return NULL;
2763 
2764 	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2765 	bio_list_add(&rbio->bio_list, bio);
2766 	/*
2767 	 * This is a special bio which is used to hold the completion handler
2768 	 * and make the scrub rbio is similar to the other types
2769 	 */
2770 	ASSERT(!bio->bi_iter.bi_size);
2771 
2772 	rbio->faila = find_logical_bio_stripe(rbio, bio);
2773 	if (rbio->faila == -1) {
2774 		BUG();
2775 		kfree(rbio);
2776 		return NULL;
2777 	}
2778 
2779 	/*
2780 	 * When we get bbio, we have already increased bio_counter, record it
2781 	 * so we can free it at rbio_orig_end_io()
2782 	 */
2783 	rbio->generic_bio_cnt = 1;
2784 
2785 	return rbio;
2786 }
2787 
raid56_submit_missing_rbio(struct btrfs_raid_bio * rbio)2788 void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2789 {
2790 	if (!lock_stripe_add(rbio))
2791 		start_async_work(rbio, read_rebuild_work);
2792 }
2793