• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include <crypto/hash.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43 #include "block-group.h"
44 
45 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
46 				 BTRFS_HEADER_FLAG_RELOC |\
47 				 BTRFS_SUPER_FLAG_ERROR |\
48 				 BTRFS_SUPER_FLAG_SEEDING |\
49 				 BTRFS_SUPER_FLAG_METADUMP |\
50 				 BTRFS_SUPER_FLAG_METADUMP_V2)
51 
52 static const struct extent_io_ops btree_extent_io_ops;
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 				      struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 					struct extent_io_tree *dirty_pages,
60 					int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 				       struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65 
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72 	struct bio *bio;
73 	bio_end_io_t *end_io;
74 	void *private;
75 	struct btrfs_fs_info *info;
76 	blk_status_t status;
77 	enum btrfs_wq_endio_type metadata;
78 	struct btrfs_work work;
79 };
80 
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82 
btrfs_end_io_wq_init(void)83 int __init btrfs_end_io_wq_init(void)
84 {
85 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 					sizeof(struct btrfs_end_io_wq),
87 					0,
88 					SLAB_MEM_SPREAD,
89 					NULL);
90 	if (!btrfs_end_io_wq_cache)
91 		return -ENOMEM;
92 	return 0;
93 }
94 
btrfs_end_io_wq_exit(void)95 void __cold btrfs_end_io_wq_exit(void)
96 {
97 	kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99 
100 /*
101  * async submit bios are used to offload expensive checksumming
102  * onto the worker threads.  They checksum file and metadata bios
103  * just before they are sent down the IO stack.
104  */
105 struct async_submit_bio {
106 	void *private_data;
107 	struct bio *bio;
108 	extent_submit_bio_start_t *submit_bio_start;
109 	int mirror_num;
110 	/*
111 	 * bio_offset is optional, can be used if the pages in the bio
112 	 * can't tell us where in the file the bio should go
113 	 */
114 	u64 bio_offset;
115 	struct btrfs_work work;
116 	blk_status_t status;
117 };
118 
119 /*
120  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
121  * eb, the lockdep key is determined by the btrfs_root it belongs to and
122  * the level the eb occupies in the tree.
123  *
124  * Different roots are used for different purposes and may nest inside each
125  * other and they require separate keysets.  As lockdep keys should be
126  * static, assign keysets according to the purpose of the root as indicated
127  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
128  * roots have separate keysets.
129  *
130  * Lock-nesting across peer nodes is always done with the immediate parent
131  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
132  * subclass to avoid triggering lockdep warning in such cases.
133  *
134  * The key is set by the readpage_end_io_hook after the buffer has passed
135  * csum validation but before the pages are unlocked.  It is also set by
136  * btrfs_init_new_buffer on freshly allocated blocks.
137  *
138  * We also add a check to make sure the highest level of the tree is the
139  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
140  * needs update as well.
141  */
142 #ifdef CONFIG_DEBUG_LOCK_ALLOC
143 # if BTRFS_MAX_LEVEL != 8
144 #  error
145 # endif
146 
147 static struct btrfs_lockdep_keyset {
148 	u64			id;		/* root objectid */
149 	const char		*name_stem;	/* lock name stem */
150 	char			names[BTRFS_MAX_LEVEL + 1][20];
151 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
152 } btrfs_lockdep_keysets[] = {
153 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
154 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
155 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
156 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
157 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
158 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
159 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
160 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
161 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
162 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
163 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
164 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
165 	{ .id = 0,				.name_stem = "tree"	},
166 };
167 
btrfs_init_lockdep(void)168 void __init btrfs_init_lockdep(void)
169 {
170 	int i, j;
171 
172 	/* initialize lockdep class names */
173 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
174 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
175 
176 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
177 			snprintf(ks->names[j], sizeof(ks->names[j]),
178 				 "btrfs-%s-%02d", ks->name_stem, j);
179 	}
180 }
181 
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)182 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
183 				    int level)
184 {
185 	struct btrfs_lockdep_keyset *ks;
186 
187 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
188 
189 	/* find the matching keyset, id 0 is the default entry */
190 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
191 		if (ks->id == objectid)
192 			break;
193 
194 	lockdep_set_class_and_name(&eb->lock,
195 				   &ks->keys[level], ks->names[level]);
196 }
197 
198 #endif
199 
200 /*
201  * extents on the btree inode are pretty simple, there's one extent
202  * that covers the entire device
203  */
btree_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)204 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
205 		struct page *page, size_t pg_offset, u64 start, u64 len,
206 		int create)
207 {
208 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
209 	struct extent_map_tree *em_tree = &inode->extent_tree;
210 	struct extent_map *em;
211 	int ret;
212 
213 	read_lock(&em_tree->lock);
214 	em = lookup_extent_mapping(em_tree, start, len);
215 	if (em) {
216 		em->bdev = fs_info->fs_devices->latest_bdev;
217 		read_unlock(&em_tree->lock);
218 		goto out;
219 	}
220 	read_unlock(&em_tree->lock);
221 
222 	em = alloc_extent_map();
223 	if (!em) {
224 		em = ERR_PTR(-ENOMEM);
225 		goto out;
226 	}
227 	em->start = 0;
228 	em->len = (u64)-1;
229 	em->block_len = (u64)-1;
230 	em->block_start = 0;
231 	em->bdev = fs_info->fs_devices->latest_bdev;
232 
233 	write_lock(&em_tree->lock);
234 	ret = add_extent_mapping(em_tree, em, 0);
235 	if (ret == -EEXIST) {
236 		free_extent_map(em);
237 		em = lookup_extent_mapping(em_tree, start, len);
238 		if (!em)
239 			em = ERR_PTR(-EIO);
240 	} else if (ret) {
241 		free_extent_map(em);
242 		em = ERR_PTR(ret);
243 	}
244 	write_unlock(&em_tree->lock);
245 
246 out:
247 	return em;
248 }
249 
250 /*
251  * Compute the csum of a btree block and store the result to provided buffer.
252  *
253  * Returns error if the extent buffer cannot be mapped.
254  */
csum_tree_block(struct extent_buffer * buf,u8 * result)255 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
256 {
257 	struct btrfs_fs_info *fs_info = buf->fs_info;
258 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
259 	unsigned long len;
260 	unsigned long cur_len;
261 	unsigned long offset = BTRFS_CSUM_SIZE;
262 	char *kaddr;
263 	unsigned long map_start;
264 	unsigned long map_len;
265 	int err;
266 
267 	shash->tfm = fs_info->csum_shash;
268 	crypto_shash_init(shash);
269 
270 	len = buf->len - offset;
271 
272 	while (len > 0) {
273 		/*
274 		 * Note: we don't need to check for the err == 1 case here, as
275 		 * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
276 		 * and 'min_len = 32' and the currently implemented mapping
277 		 * algorithm we cannot cross a page boundary.
278 		 */
279 		err = map_private_extent_buffer(buf, offset, 32,
280 					&kaddr, &map_start, &map_len);
281 		if (WARN_ON(err))
282 			return err;
283 		cur_len = min(len, map_len - (offset - map_start));
284 		crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
285 		len -= cur_len;
286 		offset += cur_len;
287 	}
288 	memset(result, 0, BTRFS_CSUM_SIZE);
289 
290 	crypto_shash_final(shash, result);
291 
292 	return 0;
293 }
294 
295 /*
296  * we can't consider a given block up to date unless the transid of the
297  * block matches the transid in the parent node's pointer.  This is how we
298  * detect blocks that either didn't get written at all or got written
299  * in the wrong place.
300  */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)301 static int verify_parent_transid(struct extent_io_tree *io_tree,
302 				 struct extent_buffer *eb, u64 parent_transid,
303 				 int atomic)
304 {
305 	struct extent_state *cached_state = NULL;
306 	int ret;
307 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
308 
309 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
310 		return 0;
311 
312 	if (atomic)
313 		return -EAGAIN;
314 
315 	if (need_lock) {
316 		btrfs_tree_read_lock(eb);
317 		btrfs_set_lock_blocking_read(eb);
318 	}
319 
320 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
321 			 &cached_state);
322 	if (extent_buffer_uptodate(eb) &&
323 	    btrfs_header_generation(eb) == parent_transid) {
324 		ret = 0;
325 		goto out;
326 	}
327 	btrfs_err_rl(eb->fs_info,
328 		"parent transid verify failed on %llu wanted %llu found %llu",
329 			eb->start,
330 			parent_transid, btrfs_header_generation(eb));
331 	ret = 1;
332 
333 	/*
334 	 * Things reading via commit roots that don't have normal protection,
335 	 * like send, can have a really old block in cache that may point at a
336 	 * block that has been freed and re-allocated.  So don't clear uptodate
337 	 * if we find an eb that is under IO (dirty/writeback) because we could
338 	 * end up reading in the stale data and then writing it back out and
339 	 * making everybody very sad.
340 	 */
341 	if (!extent_buffer_under_io(eb))
342 		clear_extent_buffer_uptodate(eb);
343 out:
344 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
345 			     &cached_state);
346 	if (need_lock)
347 		btrfs_tree_read_unlock_blocking(eb);
348 	return ret;
349 }
350 
btrfs_supported_super_csum(u16 csum_type)351 static bool btrfs_supported_super_csum(u16 csum_type)
352 {
353 	switch (csum_type) {
354 	case BTRFS_CSUM_TYPE_CRC32:
355 		return true;
356 	default:
357 		return false;
358 	}
359 }
360 
361 /*
362  * Return 0 if the superblock checksum type matches the checksum value of that
363  * algorithm. Pass the raw disk superblock data.
364  */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,char * raw_disk_sb)365 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
366 				  char *raw_disk_sb)
367 {
368 	struct btrfs_super_block *disk_sb =
369 		(struct btrfs_super_block *)raw_disk_sb;
370 	char result[BTRFS_CSUM_SIZE];
371 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
372 
373 	shash->tfm = fs_info->csum_shash;
374 	crypto_shash_init(shash);
375 
376 	/*
377 	 * The super_block structure does not span the whole
378 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
379 	 * filled with zeros and is included in the checksum.
380 	 */
381 	crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
382 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
383 	crypto_shash_final(shash, result);
384 
385 	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
386 		return 1;
387 
388 	return 0;
389 }
390 
btrfs_verify_level_key(struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)391 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
392 			   struct btrfs_key *first_key, u64 parent_transid)
393 {
394 	struct btrfs_fs_info *fs_info = eb->fs_info;
395 	int found_level;
396 	struct btrfs_key found_key;
397 	int ret;
398 
399 	found_level = btrfs_header_level(eb);
400 	if (found_level != level) {
401 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
402 		     KERN_ERR "BTRFS: tree level check failed\n");
403 		btrfs_err(fs_info,
404 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
405 			  eb->start, level, found_level);
406 		return -EIO;
407 	}
408 
409 	if (!first_key)
410 		return 0;
411 
412 	/*
413 	 * For live tree block (new tree blocks in current transaction),
414 	 * we need proper lock context to avoid race, which is impossible here.
415 	 * So we only checks tree blocks which is read from disk, whose
416 	 * generation <= fs_info->last_trans_committed.
417 	 */
418 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
419 		return 0;
420 
421 	/* We have @first_key, so this @eb must have at least one item */
422 	if (btrfs_header_nritems(eb) == 0) {
423 		btrfs_err(fs_info,
424 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
425 			  eb->start);
426 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
427 		return -EUCLEAN;
428 	}
429 
430 	if (found_level)
431 		btrfs_node_key_to_cpu(eb, &found_key, 0);
432 	else
433 		btrfs_item_key_to_cpu(eb, &found_key, 0);
434 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
435 
436 	if (ret) {
437 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
438 		     KERN_ERR "BTRFS: tree first key check failed\n");
439 		btrfs_err(fs_info,
440 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
441 			  eb->start, parent_transid, first_key->objectid,
442 			  first_key->type, first_key->offset,
443 			  found_key.objectid, found_key.type,
444 			  found_key.offset);
445 	}
446 	return ret;
447 }
448 
449 /*
450  * helper to read a given tree block, doing retries as required when
451  * the checksums don't match and we have alternate mirrors to try.
452  *
453  * @parent_transid:	expected transid, skip check if 0
454  * @level:		expected level, mandatory check
455  * @first_key:		expected key of first slot, skip check if NULL
456  */
btree_read_extent_buffer_pages(struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)457 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
458 					  u64 parent_transid, int level,
459 					  struct btrfs_key *first_key)
460 {
461 	struct btrfs_fs_info *fs_info = eb->fs_info;
462 	struct extent_io_tree *io_tree;
463 	int failed = 0;
464 	int ret;
465 	int num_copies = 0;
466 	int mirror_num = 0;
467 	int failed_mirror = 0;
468 
469 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
470 	while (1) {
471 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
472 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
473 		if (!ret) {
474 			if (verify_parent_transid(io_tree, eb,
475 						   parent_transid, 0))
476 				ret = -EIO;
477 			else if (btrfs_verify_level_key(eb, level,
478 						first_key, parent_transid))
479 				ret = -EUCLEAN;
480 			else
481 				break;
482 		}
483 
484 		num_copies = btrfs_num_copies(fs_info,
485 					      eb->start, eb->len);
486 		if (num_copies == 1)
487 			break;
488 
489 		if (!failed_mirror) {
490 			failed = 1;
491 			failed_mirror = eb->read_mirror;
492 		}
493 
494 		mirror_num++;
495 		if (mirror_num == failed_mirror)
496 			mirror_num++;
497 
498 		if (mirror_num > num_copies)
499 			break;
500 	}
501 
502 	if (failed && !ret && failed_mirror)
503 		btrfs_repair_eb_io_failure(eb, failed_mirror);
504 
505 	return ret;
506 }
507 
508 /*
509  * checksum a dirty tree block before IO.  This has extra checks to make sure
510  * we only fill in the checksum field in the first page of a multi-page block
511  */
512 
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct page * page)513 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
514 {
515 	u64 start = page_offset(page);
516 	u64 found_start;
517 	u8 result[BTRFS_CSUM_SIZE];
518 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
519 	struct extent_buffer *eb;
520 	int ret;
521 
522 	eb = (struct extent_buffer *)page->private;
523 	if (page != eb->pages[0])
524 		return 0;
525 
526 	found_start = btrfs_header_bytenr(eb);
527 	/*
528 	 * Please do not consolidate these warnings into a single if.
529 	 * It is useful to know what went wrong.
530 	 */
531 	if (WARN_ON(found_start != start))
532 		return -EUCLEAN;
533 	if (WARN_ON(!PageUptodate(page)))
534 		return -EUCLEAN;
535 
536 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
537 			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
538 
539 	if (csum_tree_block(eb, result))
540 		return -EINVAL;
541 
542 	if (btrfs_header_level(eb))
543 		ret = btrfs_check_node(eb);
544 	else
545 		ret = btrfs_check_leaf_full(eb);
546 
547 	if (ret < 0) {
548 		btrfs_err(fs_info,
549 		"block=%llu write time tree block corruption detected",
550 			  eb->start);
551 		return ret;
552 	}
553 	write_extent_buffer(eb, result, 0, csum_size);
554 
555 	return 0;
556 }
557 
check_tree_block_fsid(struct extent_buffer * eb)558 static int check_tree_block_fsid(struct extent_buffer *eb)
559 {
560 	struct btrfs_fs_info *fs_info = eb->fs_info;
561 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
562 	u8 fsid[BTRFS_FSID_SIZE];
563 	int ret = 1;
564 
565 	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
566 	while (fs_devices) {
567 		u8 *metadata_uuid;
568 
569 		/*
570 		 * Checking the incompat flag is only valid for the current
571 		 * fs. For seed devices it's forbidden to have their uuid
572 		 * changed so reading ->fsid in this case is fine
573 		 */
574 		if (fs_devices == fs_info->fs_devices &&
575 		    btrfs_fs_incompat(fs_info, METADATA_UUID))
576 			metadata_uuid = fs_devices->metadata_uuid;
577 		else
578 			metadata_uuid = fs_devices->fsid;
579 
580 		if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
581 			ret = 0;
582 			break;
583 		}
584 		fs_devices = fs_devices->seed;
585 	}
586 	return ret;
587 }
588 
btree_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)589 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
590 				      u64 phy_offset, struct page *page,
591 				      u64 start, u64 end, int mirror)
592 {
593 	u64 found_start;
594 	int found_level;
595 	struct extent_buffer *eb;
596 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
597 	struct btrfs_fs_info *fs_info = root->fs_info;
598 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
599 	int ret = 0;
600 	u8 result[BTRFS_CSUM_SIZE];
601 	int reads_done;
602 
603 	if (!page->private)
604 		goto out;
605 
606 	eb = (struct extent_buffer *)page->private;
607 
608 	/* the pending IO might have been the only thing that kept this buffer
609 	 * in memory.  Make sure we have a ref for all this other checks
610 	 */
611 	extent_buffer_get(eb);
612 
613 	reads_done = atomic_dec_and_test(&eb->io_pages);
614 	if (!reads_done)
615 		goto err;
616 
617 	eb->read_mirror = mirror;
618 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
619 		ret = -EIO;
620 		goto err;
621 	}
622 
623 	found_start = btrfs_header_bytenr(eb);
624 	if (found_start != eb->start) {
625 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
626 			     eb->start, found_start);
627 		ret = -EIO;
628 		goto err;
629 	}
630 	if (check_tree_block_fsid(eb)) {
631 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
632 			     eb->start);
633 		ret = -EIO;
634 		goto err;
635 	}
636 	found_level = btrfs_header_level(eb);
637 	if (found_level >= BTRFS_MAX_LEVEL) {
638 		btrfs_err(fs_info, "bad tree block level %d on %llu",
639 			  (int)btrfs_header_level(eb), eb->start);
640 		ret = -EIO;
641 		goto err;
642 	}
643 
644 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
645 				       eb, found_level);
646 
647 	ret = csum_tree_block(eb, result);
648 	if (ret)
649 		goto err;
650 
651 	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
652 		u8 val[BTRFS_CSUM_SIZE] = { 0 };
653 
654 		read_extent_buffer(eb, &val, 0, csum_size);
655 		btrfs_warn_rl(fs_info,
656 	"%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
657 			      fs_info->sb->s_id, eb->start,
658 			      CSUM_FMT_VALUE(csum_size, val),
659 			      CSUM_FMT_VALUE(csum_size, result),
660 			      btrfs_header_level(eb));
661 		ret = -EUCLEAN;
662 		goto err;
663 	}
664 
665 	/*
666 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
667 	 * that we don't try and read the other copies of this block, just
668 	 * return -EIO.
669 	 */
670 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
671 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
672 		ret = -EIO;
673 	}
674 
675 	if (found_level > 0 && btrfs_check_node(eb))
676 		ret = -EIO;
677 
678 	if (!ret)
679 		set_extent_buffer_uptodate(eb);
680 	else
681 		btrfs_err(fs_info,
682 			  "block=%llu read time tree block corruption detected",
683 			  eb->start);
684 err:
685 	if (reads_done &&
686 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687 		btree_readahead_hook(eb, ret);
688 
689 	if (ret) {
690 		/*
691 		 * our io error hook is going to dec the io pages
692 		 * again, we have to make sure it has something
693 		 * to decrement
694 		 */
695 		atomic_inc(&eb->io_pages);
696 		clear_extent_buffer_uptodate(eb);
697 	}
698 	free_extent_buffer(eb);
699 out:
700 	return ret;
701 }
702 
end_workqueue_bio(struct bio * bio)703 static void end_workqueue_bio(struct bio *bio)
704 {
705 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
706 	struct btrfs_fs_info *fs_info;
707 	struct btrfs_workqueue *wq;
708 
709 	fs_info = end_io_wq->info;
710 	end_io_wq->status = bio->bi_status;
711 
712 	if (bio_op(bio) == REQ_OP_WRITE) {
713 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
714 			wq = fs_info->endio_meta_write_workers;
715 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
716 			wq = fs_info->endio_freespace_worker;
717 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
718 			wq = fs_info->endio_raid56_workers;
719 		else
720 			wq = fs_info->endio_write_workers;
721 	} else {
722 		if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
723 			wq = fs_info->endio_repair_workers;
724 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
725 			wq = fs_info->endio_raid56_workers;
726 		else if (end_io_wq->metadata)
727 			wq = fs_info->endio_meta_workers;
728 		else
729 			wq = fs_info->endio_workers;
730 	}
731 
732 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
733 	btrfs_queue_work(wq, &end_io_wq->work);
734 }
735 
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)736 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
737 			enum btrfs_wq_endio_type metadata)
738 {
739 	struct btrfs_end_io_wq *end_io_wq;
740 
741 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
742 	if (!end_io_wq)
743 		return BLK_STS_RESOURCE;
744 
745 	end_io_wq->private = bio->bi_private;
746 	end_io_wq->end_io = bio->bi_end_io;
747 	end_io_wq->info = info;
748 	end_io_wq->status = 0;
749 	end_io_wq->bio = bio;
750 	end_io_wq->metadata = metadata;
751 
752 	bio->bi_private = end_io_wq;
753 	bio->bi_end_io = end_workqueue_bio;
754 	return 0;
755 }
756 
run_one_async_start(struct btrfs_work * work)757 static void run_one_async_start(struct btrfs_work *work)
758 {
759 	struct async_submit_bio *async;
760 	blk_status_t ret;
761 
762 	async = container_of(work, struct  async_submit_bio, work);
763 	ret = async->submit_bio_start(async->private_data, async->bio,
764 				      async->bio_offset);
765 	if (ret)
766 		async->status = ret;
767 }
768 
769 /*
770  * In order to insert checksums into the metadata in large chunks, we wait
771  * until bio submission time.   All the pages in the bio are checksummed and
772  * sums are attached onto the ordered extent record.
773  *
774  * At IO completion time the csums attached on the ordered extent record are
775  * inserted into the tree.
776  */
run_one_async_done(struct btrfs_work * work)777 static void run_one_async_done(struct btrfs_work *work)
778 {
779 	struct async_submit_bio *async;
780 	struct inode *inode;
781 	blk_status_t ret;
782 
783 	async = container_of(work, struct  async_submit_bio, work);
784 	inode = async->private_data;
785 
786 	/* If an error occurred we just want to clean up the bio and move on */
787 	if (async->status) {
788 		async->bio->bi_status = async->status;
789 		bio_endio(async->bio);
790 		return;
791 	}
792 
793 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
794 			async->mirror_num, 1);
795 	if (ret) {
796 		async->bio->bi_status = ret;
797 		bio_endio(async->bio);
798 	}
799 }
800 
run_one_async_free(struct btrfs_work * work)801 static void run_one_async_free(struct btrfs_work *work)
802 {
803 	struct async_submit_bio *async;
804 
805 	async = container_of(work, struct  async_submit_bio, work);
806 	kfree(async);
807 }
808 
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,void * private_data,extent_submit_bio_start_t * submit_bio_start)809 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
810 				 int mirror_num, unsigned long bio_flags,
811 				 u64 bio_offset, void *private_data,
812 				 extent_submit_bio_start_t *submit_bio_start)
813 {
814 	struct async_submit_bio *async;
815 
816 	async = kmalloc(sizeof(*async), GFP_NOFS);
817 	if (!async)
818 		return BLK_STS_RESOURCE;
819 
820 	async->private_data = private_data;
821 	async->bio = bio;
822 	async->mirror_num = mirror_num;
823 	async->submit_bio_start = submit_bio_start;
824 
825 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
826 			run_one_async_free);
827 
828 	async->bio_offset = bio_offset;
829 
830 	async->status = 0;
831 
832 	if (op_is_sync(bio->bi_opf))
833 		btrfs_set_work_high_priority(&async->work);
834 
835 	btrfs_queue_work(fs_info->workers, &async->work);
836 	return 0;
837 }
838 
btree_csum_one_bio(struct bio * bio)839 static blk_status_t btree_csum_one_bio(struct bio *bio)
840 {
841 	struct bio_vec *bvec;
842 	struct btrfs_root *root;
843 	int ret = 0;
844 	struct bvec_iter_all iter_all;
845 
846 	ASSERT(!bio_flagged(bio, BIO_CLONED));
847 	bio_for_each_segment_all(bvec, bio, iter_all) {
848 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
849 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
850 		if (ret)
851 			break;
852 	}
853 
854 	return errno_to_blk_status(ret);
855 }
856 
btree_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)857 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
858 					     u64 bio_offset)
859 {
860 	/*
861 	 * when we're called for a write, we're already in the async
862 	 * submission context.  Just jump into btrfs_map_bio
863 	 */
864 	return btree_csum_one_bio(bio);
865 }
866 
check_async_write(struct btrfs_fs_info * fs_info,struct btrfs_inode * bi)867 static int check_async_write(struct btrfs_fs_info *fs_info,
868 			     struct btrfs_inode *bi)
869 {
870 	if (atomic_read(&bi->sync_writers))
871 		return 0;
872 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
873 		return 0;
874 	return 1;
875 }
876 
btree_submit_bio_hook(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)877 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
878 					  int mirror_num,
879 					  unsigned long bio_flags)
880 {
881 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
882 	int async = check_async_write(fs_info, BTRFS_I(inode));
883 	blk_status_t ret;
884 
885 	if (bio_op(bio) != REQ_OP_WRITE) {
886 		/*
887 		 * called for a read, do the setup so that checksum validation
888 		 * can happen in the async kernel threads
889 		 */
890 		ret = btrfs_bio_wq_end_io(fs_info, bio,
891 					  BTRFS_WQ_ENDIO_METADATA);
892 		if (ret)
893 			goto out_w_error;
894 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
895 	} else if (!async) {
896 		ret = btree_csum_one_bio(bio);
897 		if (ret)
898 			goto out_w_error;
899 		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
900 	} else {
901 		/*
902 		 * kthread helpers are used to submit writes so that
903 		 * checksumming can happen in parallel across all CPUs
904 		 */
905 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
906 					  0, inode, btree_submit_bio_start);
907 	}
908 
909 	if (ret)
910 		goto out_w_error;
911 	return 0;
912 
913 out_w_error:
914 	bio->bi_status = ret;
915 	bio_endio(bio);
916 	return ret;
917 }
918 
919 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)920 static int btree_migratepage(struct address_space *mapping,
921 			struct page *newpage, struct page *page,
922 			enum migrate_mode mode)
923 {
924 	/*
925 	 * we can't safely write a btree page from here,
926 	 * we haven't done the locking hook
927 	 */
928 	if (PageDirty(page))
929 		return -EAGAIN;
930 	/*
931 	 * Buffers may be managed in a filesystem specific way.
932 	 * We must have no buffers or drop them.
933 	 */
934 	if (page_has_private(page) &&
935 	    !try_to_release_page(page, GFP_KERNEL))
936 		return -EAGAIN;
937 	return migrate_page(mapping, newpage, page, mode);
938 }
939 #endif
940 
941 
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)942 static int btree_writepages(struct address_space *mapping,
943 			    struct writeback_control *wbc)
944 {
945 	struct btrfs_fs_info *fs_info;
946 	int ret;
947 
948 	if (wbc->sync_mode == WB_SYNC_NONE) {
949 
950 		if (wbc->for_kupdate)
951 			return 0;
952 
953 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
954 		/* this is a bit racy, but that's ok */
955 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
956 					     BTRFS_DIRTY_METADATA_THRESH,
957 					     fs_info->dirty_metadata_batch);
958 		if (ret < 0)
959 			return 0;
960 	}
961 	return btree_write_cache_pages(mapping, wbc);
962 }
963 
btree_readpage(struct file * file,struct page * page)964 static int btree_readpage(struct file *file, struct page *page)
965 {
966 	struct extent_io_tree *tree;
967 	tree = &BTRFS_I(page->mapping->host)->io_tree;
968 	return extent_read_full_page(tree, page, btree_get_extent, 0);
969 }
970 
btree_releasepage(struct page * page,gfp_t gfp_flags)971 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
972 {
973 	if (PageWriteback(page) || PageDirty(page))
974 		return 0;
975 
976 	return try_release_extent_buffer(page);
977 }
978 
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)979 static void btree_invalidatepage(struct page *page, unsigned int offset,
980 				 unsigned int length)
981 {
982 	struct extent_io_tree *tree;
983 	tree = &BTRFS_I(page->mapping->host)->io_tree;
984 	extent_invalidatepage(tree, page, offset);
985 	btree_releasepage(page, GFP_NOFS);
986 	if (PagePrivate(page)) {
987 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
988 			   "page private not zero on page %llu",
989 			   (unsigned long long)page_offset(page));
990 		ClearPagePrivate(page);
991 		set_page_private(page, 0);
992 		put_page(page);
993 	}
994 }
995 
btree_set_page_dirty(struct page * page)996 static int btree_set_page_dirty(struct page *page)
997 {
998 #ifdef DEBUG
999 	struct extent_buffer *eb;
1000 
1001 	BUG_ON(!PagePrivate(page));
1002 	eb = (struct extent_buffer *)page->private;
1003 	BUG_ON(!eb);
1004 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1005 	BUG_ON(!atomic_read(&eb->refs));
1006 	btrfs_assert_tree_locked(eb);
1007 #endif
1008 	return __set_page_dirty_nobuffers(page);
1009 }
1010 
1011 static const struct address_space_operations btree_aops = {
1012 	.readpage	= btree_readpage,
1013 	.writepages	= btree_writepages,
1014 	.releasepage	= btree_releasepage,
1015 	.invalidatepage = btree_invalidatepage,
1016 #ifdef CONFIG_MIGRATION
1017 	.migratepage	= btree_migratepage,
1018 #endif
1019 	.set_page_dirty = btree_set_page_dirty,
1020 };
1021 
readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)1022 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1023 {
1024 	struct extent_buffer *buf = NULL;
1025 	int ret;
1026 
1027 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1028 	if (IS_ERR(buf))
1029 		return;
1030 
1031 	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1032 	if (ret < 0)
1033 		free_extent_buffer_stale(buf);
1034 	else
1035 		free_extent_buffer(buf);
1036 }
1037 
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)1038 struct extent_buffer *btrfs_find_create_tree_block(
1039 						struct btrfs_fs_info *fs_info,
1040 						u64 bytenr)
1041 {
1042 	if (btrfs_is_testing(fs_info))
1043 		return alloc_test_extent_buffer(fs_info, bytenr);
1044 	return alloc_extent_buffer(fs_info, bytenr);
1045 }
1046 
1047 /*
1048  * Read tree block at logical address @bytenr and do variant basic but critical
1049  * verification.
1050  *
1051  * @parent_transid:	expected transid of this tree block, skip check if 0
1052  * @level:		expected level, mandatory check
1053  * @first_key:		expected key in slot 0, skip check if NULL
1054  */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 parent_transid,int level,struct btrfs_key * first_key)1055 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1056 				      u64 parent_transid, int level,
1057 				      struct btrfs_key *first_key)
1058 {
1059 	struct extent_buffer *buf = NULL;
1060 	int ret;
1061 
1062 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1063 	if (IS_ERR(buf))
1064 		return buf;
1065 
1066 	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1067 					     level, first_key);
1068 	if (ret) {
1069 		free_extent_buffer_stale(buf);
1070 		return ERR_PTR(ret);
1071 	}
1072 	return buf;
1073 
1074 }
1075 
btrfs_clean_tree_block(struct extent_buffer * buf)1076 void btrfs_clean_tree_block(struct extent_buffer *buf)
1077 {
1078 	struct btrfs_fs_info *fs_info = buf->fs_info;
1079 	if (btrfs_header_generation(buf) ==
1080 	    fs_info->running_transaction->transid) {
1081 		btrfs_assert_tree_locked(buf);
1082 
1083 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1084 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1085 						 -buf->len,
1086 						 fs_info->dirty_metadata_batch);
1087 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1088 			btrfs_set_lock_blocking_write(buf);
1089 			clear_extent_buffer_dirty(buf);
1090 		}
1091 	}
1092 }
1093 
btrfs_alloc_subvolume_writers(void)1094 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1095 {
1096 	struct btrfs_subvolume_writers *writers;
1097 	int ret;
1098 
1099 	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1100 	if (!writers)
1101 		return ERR_PTR(-ENOMEM);
1102 
1103 	ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1104 	if (ret < 0) {
1105 		kfree(writers);
1106 		return ERR_PTR(ret);
1107 	}
1108 
1109 	init_waitqueue_head(&writers->wait);
1110 	return writers;
1111 }
1112 
1113 static void
btrfs_free_subvolume_writers(struct btrfs_subvolume_writers * writers)1114 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1115 {
1116 	percpu_counter_destroy(&writers->counter);
1117 	kfree(writers);
1118 }
1119 
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1120 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1121 			 u64 objectid)
1122 {
1123 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1124 	root->node = NULL;
1125 	root->commit_root = NULL;
1126 	root->state = 0;
1127 	root->orphan_cleanup_state = 0;
1128 
1129 	root->last_trans = 0;
1130 	root->highest_objectid = 0;
1131 	root->nr_delalloc_inodes = 0;
1132 	root->nr_ordered_extents = 0;
1133 	root->inode_tree = RB_ROOT;
1134 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1135 	root->block_rsv = NULL;
1136 
1137 	INIT_LIST_HEAD(&root->dirty_list);
1138 	INIT_LIST_HEAD(&root->root_list);
1139 	INIT_LIST_HEAD(&root->delalloc_inodes);
1140 	INIT_LIST_HEAD(&root->delalloc_root);
1141 	INIT_LIST_HEAD(&root->ordered_extents);
1142 	INIT_LIST_HEAD(&root->ordered_root);
1143 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1144 	INIT_LIST_HEAD(&root->logged_list[0]);
1145 	INIT_LIST_HEAD(&root->logged_list[1]);
1146 	spin_lock_init(&root->inode_lock);
1147 	spin_lock_init(&root->delalloc_lock);
1148 	spin_lock_init(&root->ordered_extent_lock);
1149 	spin_lock_init(&root->accounting_lock);
1150 	spin_lock_init(&root->log_extents_lock[0]);
1151 	spin_lock_init(&root->log_extents_lock[1]);
1152 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1153 	mutex_init(&root->objectid_mutex);
1154 	mutex_init(&root->log_mutex);
1155 	mutex_init(&root->ordered_extent_mutex);
1156 	mutex_init(&root->delalloc_mutex);
1157 	init_waitqueue_head(&root->qgroup_flush_wait);
1158 	init_waitqueue_head(&root->log_writer_wait);
1159 	init_waitqueue_head(&root->log_commit_wait[0]);
1160 	init_waitqueue_head(&root->log_commit_wait[1]);
1161 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1162 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1163 	atomic_set(&root->log_commit[0], 0);
1164 	atomic_set(&root->log_commit[1], 0);
1165 	atomic_set(&root->log_writers, 0);
1166 	atomic_set(&root->log_batch, 0);
1167 	refcount_set(&root->refs, 1);
1168 	atomic_set(&root->will_be_snapshotted, 0);
1169 	atomic_set(&root->snapshot_force_cow, 0);
1170 	atomic_set(&root->nr_swapfiles, 0);
1171 	root->log_transid = 0;
1172 	root->log_transid_committed = -1;
1173 	root->last_log_commit = 0;
1174 	if (!dummy)
1175 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1176 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1177 
1178 	memset(&root->root_key, 0, sizeof(root->root_key));
1179 	memset(&root->root_item, 0, sizeof(root->root_item));
1180 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1181 	if (!dummy)
1182 		root->defrag_trans_start = fs_info->generation;
1183 	else
1184 		root->defrag_trans_start = 0;
1185 	root->root_key.objectid = objectid;
1186 	root->anon_dev = 0;
1187 
1188 	spin_lock_init(&root->root_item_lock);
1189 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1190 }
1191 
btrfs_alloc_root(struct btrfs_fs_info * fs_info,gfp_t flags)1192 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1193 		gfp_t flags)
1194 {
1195 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1196 	if (root)
1197 		root->fs_info = fs_info;
1198 	return root;
1199 }
1200 
1201 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1202 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1203 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1204 {
1205 	struct btrfs_root *root;
1206 
1207 	if (!fs_info)
1208 		return ERR_PTR(-EINVAL);
1209 
1210 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1211 	if (!root)
1212 		return ERR_PTR(-ENOMEM);
1213 
1214 	/* We don't use the stripesize in selftest, set it as sectorsize */
1215 	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1216 	root->alloc_bytenr = 0;
1217 
1218 	return root;
1219 }
1220 #endif
1221 
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)1222 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1223 				     u64 objectid)
1224 {
1225 	struct btrfs_fs_info *fs_info = trans->fs_info;
1226 	struct extent_buffer *leaf;
1227 	struct btrfs_root *tree_root = fs_info->tree_root;
1228 	struct btrfs_root *root;
1229 	struct btrfs_key key;
1230 	unsigned int nofs_flag;
1231 	int ret = 0;
1232 	uuid_le uuid = NULL_UUID_LE;
1233 
1234 	/*
1235 	 * We're holding a transaction handle, so use a NOFS memory allocation
1236 	 * context to avoid deadlock if reclaim happens.
1237 	 */
1238 	nofs_flag = memalloc_nofs_save();
1239 	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1240 	memalloc_nofs_restore(nofs_flag);
1241 	if (!root)
1242 		return ERR_PTR(-ENOMEM);
1243 
1244 	__setup_root(root, fs_info, objectid);
1245 	root->root_key.objectid = objectid;
1246 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1247 	root->root_key.offset = 0;
1248 
1249 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1250 	if (IS_ERR(leaf)) {
1251 		ret = PTR_ERR(leaf);
1252 		leaf = NULL;
1253 		goto fail;
1254 	}
1255 
1256 	root->node = leaf;
1257 	btrfs_mark_buffer_dirty(leaf);
1258 
1259 	root->commit_root = btrfs_root_node(root);
1260 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1261 
1262 	root->root_item.flags = 0;
1263 	root->root_item.byte_limit = 0;
1264 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1265 	btrfs_set_root_generation(&root->root_item, trans->transid);
1266 	btrfs_set_root_level(&root->root_item, 0);
1267 	btrfs_set_root_refs(&root->root_item, 1);
1268 	btrfs_set_root_used(&root->root_item, leaf->len);
1269 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1270 	btrfs_set_root_dirid(&root->root_item, 0);
1271 	if (is_fstree(objectid))
1272 		uuid_le_gen(&uuid);
1273 	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1274 	root->root_item.drop_level = 0;
1275 
1276 	key.objectid = objectid;
1277 	key.type = BTRFS_ROOT_ITEM_KEY;
1278 	key.offset = 0;
1279 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1280 	if (ret)
1281 		goto fail;
1282 
1283 	btrfs_tree_unlock(leaf);
1284 
1285 	return root;
1286 
1287 fail:
1288 	if (leaf) {
1289 		btrfs_tree_unlock(leaf);
1290 		free_extent_buffer(root->commit_root);
1291 		free_extent_buffer(leaf);
1292 	}
1293 	kfree(root);
1294 
1295 	return ERR_PTR(ret);
1296 }
1297 
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1298 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1299 					 struct btrfs_fs_info *fs_info)
1300 {
1301 	struct btrfs_root *root;
1302 	struct extent_buffer *leaf;
1303 
1304 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1305 	if (!root)
1306 		return ERR_PTR(-ENOMEM);
1307 
1308 	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1309 
1310 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1311 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1312 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1313 
1314 	/*
1315 	 * DON'T set REF_COWS for log trees
1316 	 *
1317 	 * log trees do not get reference counted because they go away
1318 	 * before a real commit is actually done.  They do store pointers
1319 	 * to file data extents, and those reference counts still get
1320 	 * updated (along with back refs to the log tree).
1321 	 */
1322 
1323 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1324 			NULL, 0, 0, 0);
1325 	if (IS_ERR(leaf)) {
1326 		kfree(root);
1327 		return ERR_CAST(leaf);
1328 	}
1329 
1330 	root->node = leaf;
1331 
1332 	btrfs_mark_buffer_dirty(root->node);
1333 	btrfs_tree_unlock(root->node);
1334 	return root;
1335 }
1336 
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1337 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1338 			     struct btrfs_fs_info *fs_info)
1339 {
1340 	struct btrfs_root *log_root;
1341 
1342 	log_root = alloc_log_tree(trans, fs_info);
1343 	if (IS_ERR(log_root))
1344 		return PTR_ERR(log_root);
1345 	WARN_ON(fs_info->log_root_tree);
1346 	fs_info->log_root_tree = log_root;
1347 	return 0;
1348 }
1349 
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1350 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1351 		       struct btrfs_root *root)
1352 {
1353 	struct btrfs_fs_info *fs_info = root->fs_info;
1354 	struct btrfs_root *log_root;
1355 	struct btrfs_inode_item *inode_item;
1356 
1357 	log_root = alloc_log_tree(trans, fs_info);
1358 	if (IS_ERR(log_root))
1359 		return PTR_ERR(log_root);
1360 
1361 	log_root->last_trans = trans->transid;
1362 	log_root->root_key.offset = root->root_key.objectid;
1363 
1364 	inode_item = &log_root->root_item.inode;
1365 	btrfs_set_stack_inode_generation(inode_item, 1);
1366 	btrfs_set_stack_inode_size(inode_item, 3);
1367 	btrfs_set_stack_inode_nlink(inode_item, 1);
1368 	btrfs_set_stack_inode_nbytes(inode_item,
1369 				     fs_info->nodesize);
1370 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1371 
1372 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1373 
1374 	WARN_ON(root->log_root);
1375 	root->log_root = log_root;
1376 	root->log_transid = 0;
1377 	root->log_transid_committed = -1;
1378 	root->last_log_commit = 0;
1379 	return 0;
1380 }
1381 
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1382 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1383 					       struct btrfs_key *key)
1384 {
1385 	struct btrfs_root *root;
1386 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1387 	struct btrfs_path *path;
1388 	u64 generation;
1389 	int ret;
1390 	int level;
1391 
1392 	path = btrfs_alloc_path();
1393 	if (!path)
1394 		return ERR_PTR(-ENOMEM);
1395 
1396 	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1397 	if (!root) {
1398 		ret = -ENOMEM;
1399 		goto alloc_fail;
1400 	}
1401 
1402 	__setup_root(root, fs_info, key->objectid);
1403 
1404 	ret = btrfs_find_root(tree_root, key, path,
1405 			      &root->root_item, &root->root_key);
1406 	if (ret) {
1407 		if (ret > 0)
1408 			ret = -ENOENT;
1409 		goto find_fail;
1410 	}
1411 
1412 	generation = btrfs_root_generation(&root->root_item);
1413 	level = btrfs_root_level(&root->root_item);
1414 	root->node = read_tree_block(fs_info,
1415 				     btrfs_root_bytenr(&root->root_item),
1416 				     generation, level, NULL);
1417 	if (IS_ERR(root->node)) {
1418 		ret = PTR_ERR(root->node);
1419 		goto find_fail;
1420 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1421 		ret = -EIO;
1422 		free_extent_buffer(root->node);
1423 		goto find_fail;
1424 	}
1425 	root->commit_root = btrfs_root_node(root);
1426 out:
1427 	btrfs_free_path(path);
1428 	return root;
1429 
1430 find_fail:
1431 	kfree(root);
1432 alloc_fail:
1433 	root = ERR_PTR(ret);
1434 	goto out;
1435 }
1436 
btrfs_read_fs_root(struct btrfs_root * tree_root,struct btrfs_key * location)1437 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1438 				      struct btrfs_key *location)
1439 {
1440 	struct btrfs_root *root;
1441 
1442 	root = btrfs_read_tree_root(tree_root, location);
1443 	if (IS_ERR(root))
1444 		return root;
1445 
1446 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1447 		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1448 		btrfs_check_and_init_root_item(&root->root_item);
1449 	}
1450 
1451 	return root;
1452 }
1453 
btrfs_init_fs_root(struct btrfs_root * root)1454 int btrfs_init_fs_root(struct btrfs_root *root)
1455 {
1456 	int ret;
1457 	struct btrfs_subvolume_writers *writers;
1458 
1459 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1460 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1461 					GFP_NOFS);
1462 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1463 		ret = -ENOMEM;
1464 		goto fail;
1465 	}
1466 
1467 	writers = btrfs_alloc_subvolume_writers();
1468 	if (IS_ERR(writers)) {
1469 		ret = PTR_ERR(writers);
1470 		goto fail;
1471 	}
1472 	root->subv_writers = writers;
1473 
1474 	btrfs_init_free_ino_ctl(root);
1475 	spin_lock_init(&root->ino_cache_lock);
1476 	init_waitqueue_head(&root->ino_cache_wait);
1477 
1478 	/*
1479 	 * Don't assign anonymous block device to roots that are not exposed to
1480 	 * userspace, the id pool is limited to 1M
1481 	 */
1482 	if (is_fstree(root->root_key.objectid) &&
1483 	    btrfs_root_refs(&root->root_item) > 0) {
1484 		ret = get_anon_bdev(&root->anon_dev);
1485 		if (ret)
1486 			goto fail;
1487 	}
1488 
1489 	mutex_lock(&root->objectid_mutex);
1490 	ret = btrfs_find_highest_objectid(root,
1491 					&root->highest_objectid);
1492 	if (ret) {
1493 		mutex_unlock(&root->objectid_mutex);
1494 		goto fail;
1495 	}
1496 
1497 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1498 
1499 	mutex_unlock(&root->objectid_mutex);
1500 
1501 	return 0;
1502 fail:
1503 	/* The caller is responsible to call btrfs_free_fs_root */
1504 	return ret;
1505 }
1506 
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1507 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1508 					u64 root_id)
1509 {
1510 	struct btrfs_root *root;
1511 
1512 	spin_lock(&fs_info->fs_roots_radix_lock);
1513 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1514 				 (unsigned long)root_id);
1515 	spin_unlock(&fs_info->fs_roots_radix_lock);
1516 	return root;
1517 }
1518 
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1519 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1520 			 struct btrfs_root *root)
1521 {
1522 	int ret;
1523 
1524 	ret = radix_tree_preload(GFP_NOFS);
1525 	if (ret)
1526 		return ret;
1527 
1528 	spin_lock(&fs_info->fs_roots_radix_lock);
1529 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1530 				(unsigned long)root->root_key.objectid,
1531 				root);
1532 	if (ret == 0)
1533 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1534 	spin_unlock(&fs_info->fs_roots_radix_lock);
1535 	radix_tree_preload_end();
1536 
1537 	return ret;
1538 }
1539 
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_key * location,bool check_ref)1540 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1541 				     struct btrfs_key *location,
1542 				     bool check_ref)
1543 {
1544 	struct btrfs_root *root;
1545 	struct btrfs_path *path;
1546 	struct btrfs_key key;
1547 	int ret;
1548 
1549 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1550 		return fs_info->tree_root;
1551 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1552 		return fs_info->extent_root;
1553 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1554 		return fs_info->chunk_root;
1555 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1556 		return fs_info->dev_root;
1557 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1558 		return fs_info->csum_root;
1559 	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1560 		return fs_info->quota_root ? fs_info->quota_root :
1561 					     ERR_PTR(-ENOENT);
1562 	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1563 		return fs_info->uuid_root ? fs_info->uuid_root :
1564 					    ERR_PTR(-ENOENT);
1565 	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1566 		return fs_info->free_space_root ? fs_info->free_space_root :
1567 						  ERR_PTR(-ENOENT);
1568 again:
1569 	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1570 	if (root) {
1571 		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1572 			return ERR_PTR(-ENOENT);
1573 		return root;
1574 	}
1575 
1576 	root = btrfs_read_fs_root(fs_info->tree_root, location);
1577 	if (IS_ERR(root))
1578 		return root;
1579 
1580 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1581 		ret = -ENOENT;
1582 		goto fail;
1583 	}
1584 
1585 	ret = btrfs_init_fs_root(root);
1586 	if (ret)
1587 		goto fail;
1588 
1589 	path = btrfs_alloc_path();
1590 	if (!path) {
1591 		ret = -ENOMEM;
1592 		goto fail;
1593 	}
1594 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1595 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1596 	key.offset = location->objectid;
1597 
1598 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1599 	btrfs_free_path(path);
1600 	if (ret < 0)
1601 		goto fail;
1602 	if (ret == 0)
1603 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1604 
1605 	ret = btrfs_insert_fs_root(fs_info, root);
1606 	if (ret) {
1607 		if (ret == -EEXIST) {
1608 			btrfs_free_fs_root(root);
1609 			goto again;
1610 		}
1611 		goto fail;
1612 	}
1613 	return root;
1614 fail:
1615 	btrfs_free_fs_root(root);
1616 	return ERR_PTR(ret);
1617 }
1618 
btrfs_congested_fn(void * congested_data,int bdi_bits)1619 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1620 {
1621 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1622 	int ret = 0;
1623 	struct btrfs_device *device;
1624 	struct backing_dev_info *bdi;
1625 
1626 	rcu_read_lock();
1627 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1628 		if (!device->bdev)
1629 			continue;
1630 		bdi = device->bdev->bd_bdi;
1631 		if (bdi_congested(bdi, bdi_bits)) {
1632 			ret = 1;
1633 			break;
1634 		}
1635 	}
1636 	rcu_read_unlock();
1637 	return ret;
1638 }
1639 
1640 /*
1641  * called by the kthread helper functions to finally call the bio end_io
1642  * functions.  This is where read checksum verification actually happens
1643  */
end_workqueue_fn(struct btrfs_work * work)1644 static void end_workqueue_fn(struct btrfs_work *work)
1645 {
1646 	struct bio *bio;
1647 	struct btrfs_end_io_wq *end_io_wq;
1648 
1649 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1650 	bio = end_io_wq->bio;
1651 
1652 	bio->bi_status = end_io_wq->status;
1653 	bio->bi_private = end_io_wq->private;
1654 	bio->bi_end_io = end_io_wq->end_io;
1655 	bio_endio(bio);
1656 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1657 }
1658 
cleaner_kthread(void * arg)1659 static int cleaner_kthread(void *arg)
1660 {
1661 	struct btrfs_root *root = arg;
1662 	struct btrfs_fs_info *fs_info = root->fs_info;
1663 	int again;
1664 
1665 	while (1) {
1666 		again = 0;
1667 
1668 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1669 
1670 		/* Make the cleaner go to sleep early. */
1671 		if (btrfs_need_cleaner_sleep(fs_info))
1672 			goto sleep;
1673 
1674 		/*
1675 		 * Do not do anything if we might cause open_ctree() to block
1676 		 * before we have finished mounting the filesystem.
1677 		 */
1678 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1679 			goto sleep;
1680 
1681 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1682 			goto sleep;
1683 
1684 		/*
1685 		 * Avoid the problem that we change the status of the fs
1686 		 * during the above check and trylock.
1687 		 */
1688 		if (btrfs_need_cleaner_sleep(fs_info)) {
1689 			mutex_unlock(&fs_info->cleaner_mutex);
1690 			goto sleep;
1691 		}
1692 
1693 		btrfs_run_delayed_iputs(fs_info);
1694 
1695 		again = btrfs_clean_one_deleted_snapshot(root);
1696 		mutex_unlock(&fs_info->cleaner_mutex);
1697 
1698 		/*
1699 		 * The defragger has dealt with the R/O remount and umount,
1700 		 * needn't do anything special here.
1701 		 */
1702 		btrfs_run_defrag_inodes(fs_info);
1703 
1704 		/*
1705 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1706 		 * with relocation (btrfs_relocate_chunk) and relocation
1707 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1708 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1709 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1710 		 * unused block groups.
1711 		 */
1712 		btrfs_delete_unused_bgs(fs_info);
1713 sleep:
1714 		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1715 		if (kthread_should_park())
1716 			kthread_parkme();
1717 		if (kthread_should_stop())
1718 			return 0;
1719 		if (!again) {
1720 			set_current_state(TASK_INTERRUPTIBLE);
1721 			schedule();
1722 			__set_current_state(TASK_RUNNING);
1723 		}
1724 	}
1725 }
1726 
transaction_kthread(void * arg)1727 static int transaction_kthread(void *arg)
1728 {
1729 	struct btrfs_root *root = arg;
1730 	struct btrfs_fs_info *fs_info = root->fs_info;
1731 	struct btrfs_trans_handle *trans;
1732 	struct btrfs_transaction *cur;
1733 	u64 transid;
1734 	time64_t now;
1735 	unsigned long delay;
1736 	bool cannot_commit;
1737 
1738 	do {
1739 		cannot_commit = false;
1740 		delay = HZ * fs_info->commit_interval;
1741 		mutex_lock(&fs_info->transaction_kthread_mutex);
1742 
1743 		spin_lock(&fs_info->trans_lock);
1744 		cur = fs_info->running_transaction;
1745 		if (!cur) {
1746 			spin_unlock(&fs_info->trans_lock);
1747 			goto sleep;
1748 		}
1749 
1750 		now = ktime_get_seconds();
1751 		if (cur->state < TRANS_STATE_COMMIT_START &&
1752 		    (now < cur->start_time ||
1753 		     now - cur->start_time < fs_info->commit_interval)) {
1754 			spin_unlock(&fs_info->trans_lock);
1755 			delay = HZ * 5;
1756 			goto sleep;
1757 		}
1758 		transid = cur->transid;
1759 		spin_unlock(&fs_info->trans_lock);
1760 
1761 		/* If the file system is aborted, this will always fail. */
1762 		trans = btrfs_attach_transaction(root);
1763 		if (IS_ERR(trans)) {
1764 			if (PTR_ERR(trans) != -ENOENT)
1765 				cannot_commit = true;
1766 			goto sleep;
1767 		}
1768 		if (transid == trans->transid) {
1769 			btrfs_commit_transaction(trans);
1770 		} else {
1771 			btrfs_end_transaction(trans);
1772 		}
1773 sleep:
1774 		wake_up_process(fs_info->cleaner_kthread);
1775 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1776 
1777 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1778 				      &fs_info->fs_state)))
1779 			btrfs_cleanup_transaction(fs_info);
1780 		if (!kthread_should_stop() &&
1781 				(!btrfs_transaction_blocked(fs_info) ||
1782 				 cannot_commit))
1783 			schedule_timeout_interruptible(delay);
1784 	} while (!kthread_should_stop());
1785 	return 0;
1786 }
1787 
1788 /*
1789  * this will find the highest generation in the array of
1790  * root backups.  The index of the highest array is returned,
1791  * or -1 if we can't find anything.
1792  *
1793  * We check to make sure the array is valid by comparing the
1794  * generation of the latest  root in the array with the generation
1795  * in the super block.  If they don't match we pitch it.
1796  */
find_newest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1797 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1798 {
1799 	u64 cur;
1800 	int newest_index = -1;
1801 	struct btrfs_root_backup *root_backup;
1802 	int i;
1803 
1804 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1805 		root_backup = info->super_copy->super_roots + i;
1806 		cur = btrfs_backup_tree_root_gen(root_backup);
1807 		if (cur == newest_gen)
1808 			newest_index = i;
1809 	}
1810 
1811 	/* check to see if we actually wrapped around */
1812 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1813 		root_backup = info->super_copy->super_roots;
1814 		cur = btrfs_backup_tree_root_gen(root_backup);
1815 		if (cur == newest_gen)
1816 			newest_index = 0;
1817 	}
1818 	return newest_index;
1819 }
1820 
1821 
1822 /*
1823  * find the oldest backup so we know where to store new entries
1824  * in the backup array.  This will set the backup_root_index
1825  * field in the fs_info struct
1826  */
find_oldest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1827 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1828 				     u64 newest_gen)
1829 {
1830 	int newest_index = -1;
1831 
1832 	newest_index = find_newest_super_backup(info, newest_gen);
1833 	/* if there was garbage in there, just move along */
1834 	if (newest_index == -1) {
1835 		info->backup_root_index = 0;
1836 	} else {
1837 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1838 	}
1839 }
1840 
1841 /*
1842  * copy all the root pointers into the super backup array.
1843  * this will bump the backup pointer by one when it is
1844  * done
1845  */
backup_super_roots(struct btrfs_fs_info * info)1846 static void backup_super_roots(struct btrfs_fs_info *info)
1847 {
1848 	int next_backup;
1849 	struct btrfs_root_backup *root_backup;
1850 	int last_backup;
1851 
1852 	next_backup = info->backup_root_index;
1853 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1854 		BTRFS_NUM_BACKUP_ROOTS;
1855 
1856 	/*
1857 	 * just overwrite the last backup if we're at the same generation
1858 	 * this happens only at umount
1859 	 */
1860 	root_backup = info->super_for_commit->super_roots + last_backup;
1861 	if (btrfs_backup_tree_root_gen(root_backup) ==
1862 	    btrfs_header_generation(info->tree_root->node))
1863 		next_backup = last_backup;
1864 
1865 	root_backup = info->super_for_commit->super_roots + next_backup;
1866 
1867 	/*
1868 	 * make sure all of our padding and empty slots get zero filled
1869 	 * regardless of which ones we use today
1870 	 */
1871 	memset(root_backup, 0, sizeof(*root_backup));
1872 
1873 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1874 
1875 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1876 	btrfs_set_backup_tree_root_gen(root_backup,
1877 			       btrfs_header_generation(info->tree_root->node));
1878 
1879 	btrfs_set_backup_tree_root_level(root_backup,
1880 			       btrfs_header_level(info->tree_root->node));
1881 
1882 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1883 	btrfs_set_backup_chunk_root_gen(root_backup,
1884 			       btrfs_header_generation(info->chunk_root->node));
1885 	btrfs_set_backup_chunk_root_level(root_backup,
1886 			       btrfs_header_level(info->chunk_root->node));
1887 
1888 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1889 	btrfs_set_backup_extent_root_gen(root_backup,
1890 			       btrfs_header_generation(info->extent_root->node));
1891 	btrfs_set_backup_extent_root_level(root_backup,
1892 			       btrfs_header_level(info->extent_root->node));
1893 
1894 	/*
1895 	 * we might commit during log recovery, which happens before we set
1896 	 * the fs_root.  Make sure it is valid before we fill it in.
1897 	 */
1898 	if (info->fs_root && info->fs_root->node) {
1899 		btrfs_set_backup_fs_root(root_backup,
1900 					 info->fs_root->node->start);
1901 		btrfs_set_backup_fs_root_gen(root_backup,
1902 			       btrfs_header_generation(info->fs_root->node));
1903 		btrfs_set_backup_fs_root_level(root_backup,
1904 			       btrfs_header_level(info->fs_root->node));
1905 	}
1906 
1907 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1908 	btrfs_set_backup_dev_root_gen(root_backup,
1909 			       btrfs_header_generation(info->dev_root->node));
1910 	btrfs_set_backup_dev_root_level(root_backup,
1911 				       btrfs_header_level(info->dev_root->node));
1912 
1913 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1914 	btrfs_set_backup_csum_root_gen(root_backup,
1915 			       btrfs_header_generation(info->csum_root->node));
1916 	btrfs_set_backup_csum_root_level(root_backup,
1917 			       btrfs_header_level(info->csum_root->node));
1918 
1919 	btrfs_set_backup_total_bytes(root_backup,
1920 			     btrfs_super_total_bytes(info->super_copy));
1921 	btrfs_set_backup_bytes_used(root_backup,
1922 			     btrfs_super_bytes_used(info->super_copy));
1923 	btrfs_set_backup_num_devices(root_backup,
1924 			     btrfs_super_num_devices(info->super_copy));
1925 
1926 	/*
1927 	 * if we don't copy this out to the super_copy, it won't get remembered
1928 	 * for the next commit
1929 	 */
1930 	memcpy(&info->super_copy->super_roots,
1931 	       &info->super_for_commit->super_roots,
1932 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1933 }
1934 
1935 /*
1936  * this copies info out of the root backup array and back into
1937  * the in-memory super block.  It is meant to help iterate through
1938  * the array, so you send it the number of backups you've already
1939  * tried and the last backup index you used.
1940  *
1941  * this returns -1 when it has tried all the backups
1942  */
next_root_backup(struct btrfs_fs_info * info,struct btrfs_super_block * super,int * num_backups_tried,int * backup_index)1943 static noinline int next_root_backup(struct btrfs_fs_info *info,
1944 				     struct btrfs_super_block *super,
1945 				     int *num_backups_tried, int *backup_index)
1946 {
1947 	struct btrfs_root_backup *root_backup;
1948 	int newest = *backup_index;
1949 
1950 	if (*num_backups_tried == 0) {
1951 		u64 gen = btrfs_super_generation(super);
1952 
1953 		newest = find_newest_super_backup(info, gen);
1954 		if (newest == -1)
1955 			return -1;
1956 
1957 		*backup_index = newest;
1958 		*num_backups_tried = 1;
1959 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1960 		/* we've tried all the backups, all done */
1961 		return -1;
1962 	} else {
1963 		/* jump to the next oldest backup */
1964 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1965 			BTRFS_NUM_BACKUP_ROOTS;
1966 		*backup_index = newest;
1967 		*num_backups_tried += 1;
1968 	}
1969 	root_backup = super->super_roots + newest;
1970 
1971 	btrfs_set_super_generation(super,
1972 				   btrfs_backup_tree_root_gen(root_backup));
1973 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1974 	btrfs_set_super_root_level(super,
1975 				   btrfs_backup_tree_root_level(root_backup));
1976 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1977 
1978 	/*
1979 	 * fixme: the total bytes and num_devices need to match or we should
1980 	 * need a fsck
1981 	 */
1982 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1983 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1984 	return 0;
1985 }
1986 
1987 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)1988 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1989 {
1990 	btrfs_destroy_workqueue(fs_info->fixup_workers);
1991 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1992 	btrfs_destroy_workqueue(fs_info->workers);
1993 	btrfs_destroy_workqueue(fs_info->endio_workers);
1994 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1995 	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1996 	btrfs_destroy_workqueue(fs_info->rmw_workers);
1997 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1998 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1999 	btrfs_destroy_workqueue(fs_info->submit_workers);
2000 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2001 	btrfs_destroy_workqueue(fs_info->caching_workers);
2002 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2003 	btrfs_destroy_workqueue(fs_info->flush_workers);
2004 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2005 	/*
2006 	 * Now that all other work queues are destroyed, we can safely destroy
2007 	 * the queues used for metadata I/O, since tasks from those other work
2008 	 * queues can do metadata I/O operations.
2009 	 */
2010 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2011 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2012 }
2013 
free_root_extent_buffers(struct btrfs_root * root)2014 static void free_root_extent_buffers(struct btrfs_root *root)
2015 {
2016 	if (root) {
2017 		free_extent_buffer(root->node);
2018 		free_extent_buffer(root->commit_root);
2019 		root->node = NULL;
2020 		root->commit_root = NULL;
2021 	}
2022 }
2023 
2024 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)2025 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2026 {
2027 	free_root_extent_buffers(info->tree_root);
2028 
2029 	free_root_extent_buffers(info->dev_root);
2030 	free_root_extent_buffers(info->extent_root);
2031 	free_root_extent_buffers(info->csum_root);
2032 	free_root_extent_buffers(info->quota_root);
2033 	free_root_extent_buffers(info->uuid_root);
2034 	if (free_chunk_root)
2035 		free_root_extent_buffers(info->chunk_root);
2036 	free_root_extent_buffers(info->free_space_root);
2037 }
2038 
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2039 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2040 {
2041 	int ret;
2042 	struct btrfs_root *gang[8];
2043 	int i;
2044 
2045 	while (!list_empty(&fs_info->dead_roots)) {
2046 		gang[0] = list_entry(fs_info->dead_roots.next,
2047 				     struct btrfs_root, root_list);
2048 		list_del(&gang[0]->root_list);
2049 
2050 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2051 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2052 		} else {
2053 			free_extent_buffer(gang[0]->node);
2054 			free_extent_buffer(gang[0]->commit_root);
2055 			btrfs_put_fs_root(gang[0]);
2056 		}
2057 	}
2058 
2059 	while (1) {
2060 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2061 					     (void **)gang, 0,
2062 					     ARRAY_SIZE(gang));
2063 		if (!ret)
2064 			break;
2065 		for (i = 0; i < ret; i++)
2066 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2067 	}
2068 
2069 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2070 		btrfs_free_log_root_tree(NULL, fs_info);
2071 		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2072 	}
2073 }
2074 
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2075 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2076 {
2077 	mutex_init(&fs_info->scrub_lock);
2078 	atomic_set(&fs_info->scrubs_running, 0);
2079 	atomic_set(&fs_info->scrub_pause_req, 0);
2080 	atomic_set(&fs_info->scrubs_paused, 0);
2081 	atomic_set(&fs_info->scrub_cancel_req, 0);
2082 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2083 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2084 }
2085 
btrfs_init_balance(struct btrfs_fs_info * fs_info)2086 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2087 {
2088 	spin_lock_init(&fs_info->balance_lock);
2089 	mutex_init(&fs_info->balance_mutex);
2090 	atomic_set(&fs_info->balance_pause_req, 0);
2091 	atomic_set(&fs_info->balance_cancel_req, 0);
2092 	fs_info->balance_ctl = NULL;
2093 	init_waitqueue_head(&fs_info->balance_wait_q);
2094 }
2095 
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2096 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2097 {
2098 	struct inode *inode = fs_info->btree_inode;
2099 
2100 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2101 	set_nlink(inode, 1);
2102 	/*
2103 	 * we set the i_size on the btree inode to the max possible int.
2104 	 * the real end of the address space is determined by all of
2105 	 * the devices in the system
2106 	 */
2107 	inode->i_size = OFFSET_MAX;
2108 	inode->i_mapping->a_ops = &btree_aops;
2109 
2110 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2111 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2112 			    IO_TREE_INODE_IO, inode);
2113 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2114 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2115 
2116 	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2117 
2118 	BTRFS_I(inode)->root = fs_info->tree_root;
2119 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2120 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2121 	btrfs_insert_inode_hash(inode);
2122 }
2123 
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2124 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2125 {
2126 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2127 	init_rwsem(&fs_info->dev_replace.rwsem);
2128 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2129 }
2130 
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2131 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2132 {
2133 	spin_lock_init(&fs_info->qgroup_lock);
2134 	mutex_init(&fs_info->qgroup_ioctl_lock);
2135 	fs_info->qgroup_tree = RB_ROOT;
2136 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2137 	fs_info->qgroup_seq = 1;
2138 	fs_info->qgroup_ulist = NULL;
2139 	fs_info->qgroup_rescan_running = false;
2140 	mutex_init(&fs_info->qgroup_rescan_lock);
2141 }
2142 
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2143 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2144 		struct btrfs_fs_devices *fs_devices)
2145 {
2146 	u32 max_active = fs_info->thread_pool_size;
2147 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2148 
2149 	fs_info->workers =
2150 		btrfs_alloc_workqueue(fs_info, "worker",
2151 				      flags | WQ_HIGHPRI, max_active, 16);
2152 
2153 	fs_info->delalloc_workers =
2154 		btrfs_alloc_workqueue(fs_info, "delalloc",
2155 				      flags, max_active, 2);
2156 
2157 	fs_info->flush_workers =
2158 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2159 				      flags, max_active, 0);
2160 
2161 	fs_info->caching_workers =
2162 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2163 
2164 	/*
2165 	 * a higher idle thresh on the submit workers makes it much more
2166 	 * likely that bios will be send down in a sane order to the
2167 	 * devices
2168 	 */
2169 	fs_info->submit_workers =
2170 		btrfs_alloc_workqueue(fs_info, "submit", flags,
2171 				      min_t(u64, fs_devices->num_devices,
2172 					    max_active), 64);
2173 
2174 	fs_info->fixup_workers =
2175 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2176 
2177 	/*
2178 	 * endios are largely parallel and should have a very
2179 	 * low idle thresh
2180 	 */
2181 	fs_info->endio_workers =
2182 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2183 	fs_info->endio_meta_workers =
2184 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2185 				      max_active, 4);
2186 	fs_info->endio_meta_write_workers =
2187 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2188 				      max_active, 2);
2189 	fs_info->endio_raid56_workers =
2190 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2191 				      max_active, 4);
2192 	fs_info->endio_repair_workers =
2193 		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2194 	fs_info->rmw_workers =
2195 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2196 	fs_info->endio_write_workers =
2197 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2198 				      max_active, 2);
2199 	fs_info->endio_freespace_worker =
2200 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2201 				      max_active, 0);
2202 	fs_info->delayed_workers =
2203 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2204 				      max_active, 0);
2205 	fs_info->readahead_workers =
2206 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2207 				      max_active, 2);
2208 	fs_info->qgroup_rescan_workers =
2209 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2210 
2211 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2212 	      fs_info->submit_workers && fs_info->flush_workers &&
2213 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2214 	      fs_info->endio_meta_write_workers &&
2215 	      fs_info->endio_repair_workers &&
2216 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2217 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2218 	      fs_info->caching_workers && fs_info->readahead_workers &&
2219 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2220 	      fs_info->qgroup_rescan_workers)) {
2221 		return -ENOMEM;
2222 	}
2223 
2224 	return 0;
2225 }
2226 
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2227 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2228 {
2229 	struct crypto_shash *csum_shash;
2230 	const char *csum_name = btrfs_super_csum_name(csum_type);
2231 
2232 	csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2233 
2234 	if (IS_ERR(csum_shash)) {
2235 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2236 			  csum_name);
2237 		return PTR_ERR(csum_shash);
2238 	}
2239 
2240 	fs_info->csum_shash = csum_shash;
2241 
2242 	/*
2243 	 * Check if the checksum implementation is a fast accelerated one.
2244 	 * As-is this is a bit of a hack and should be replaced once the csum
2245 	 * implementations provide that information themselves.
2246 	 */
2247 	switch (csum_type) {
2248 	case BTRFS_CSUM_TYPE_CRC32:
2249 		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2250 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2251 		break;
2252 	default:
2253 		break;
2254 	}
2255 
2256 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2257 			btrfs_super_csum_name(csum_type),
2258 			crypto_shash_driver_name(csum_shash));
2259 	return 0;
2260 }
2261 
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)2262 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2263 {
2264 	crypto_free_shash(fs_info->csum_shash);
2265 }
2266 
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2267 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2268 			    struct btrfs_fs_devices *fs_devices)
2269 {
2270 	int ret;
2271 	struct btrfs_root *log_tree_root;
2272 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2273 	u64 bytenr = btrfs_super_log_root(disk_super);
2274 	int level = btrfs_super_log_root_level(disk_super);
2275 
2276 	if (fs_devices->rw_devices == 0) {
2277 		btrfs_warn(fs_info, "log replay required on RO media");
2278 		return -EIO;
2279 	}
2280 
2281 	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2282 	if (!log_tree_root)
2283 		return -ENOMEM;
2284 
2285 	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2286 
2287 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2288 					      fs_info->generation + 1,
2289 					      level, NULL);
2290 	if (IS_ERR(log_tree_root->node)) {
2291 		btrfs_warn(fs_info, "failed to read log tree");
2292 		ret = PTR_ERR(log_tree_root->node);
2293 		kfree(log_tree_root);
2294 		return ret;
2295 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2296 		btrfs_err(fs_info, "failed to read log tree");
2297 		free_extent_buffer(log_tree_root->node);
2298 		kfree(log_tree_root);
2299 		return -EIO;
2300 	}
2301 	/* returns with log_tree_root freed on success */
2302 	ret = btrfs_recover_log_trees(log_tree_root);
2303 	if (ret) {
2304 		btrfs_handle_fs_error(fs_info, ret,
2305 				      "Failed to recover log tree");
2306 		free_extent_buffer(log_tree_root->node);
2307 		kfree(log_tree_root);
2308 		return ret;
2309 	}
2310 
2311 	if (sb_rdonly(fs_info->sb)) {
2312 		ret = btrfs_commit_super(fs_info);
2313 		if (ret)
2314 			return ret;
2315 	}
2316 
2317 	return 0;
2318 }
2319 
btrfs_read_roots(struct btrfs_fs_info * fs_info)2320 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2321 {
2322 	struct btrfs_root *tree_root = fs_info->tree_root;
2323 	struct btrfs_root *root;
2324 	struct btrfs_key location;
2325 	int ret;
2326 
2327 	BUG_ON(!fs_info->tree_root);
2328 
2329 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2330 	location.type = BTRFS_ROOT_ITEM_KEY;
2331 	location.offset = 0;
2332 
2333 	root = btrfs_read_tree_root(tree_root, &location);
2334 	if (IS_ERR(root)) {
2335 		ret = PTR_ERR(root);
2336 		goto out;
2337 	}
2338 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2339 	fs_info->extent_root = root;
2340 
2341 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2342 	root = btrfs_read_tree_root(tree_root, &location);
2343 	if (IS_ERR(root)) {
2344 		ret = PTR_ERR(root);
2345 		goto out;
2346 	}
2347 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2348 	fs_info->dev_root = root;
2349 	btrfs_init_devices_late(fs_info);
2350 
2351 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2352 	root = btrfs_read_tree_root(tree_root, &location);
2353 	if (IS_ERR(root)) {
2354 		ret = PTR_ERR(root);
2355 		goto out;
2356 	}
2357 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2358 	fs_info->csum_root = root;
2359 
2360 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2361 	root = btrfs_read_tree_root(tree_root, &location);
2362 	if (!IS_ERR(root)) {
2363 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2364 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2365 		fs_info->quota_root = root;
2366 	}
2367 
2368 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2369 	root = btrfs_read_tree_root(tree_root, &location);
2370 	if (IS_ERR(root)) {
2371 		ret = PTR_ERR(root);
2372 		if (ret != -ENOENT)
2373 			goto out;
2374 	} else {
2375 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2376 		fs_info->uuid_root = root;
2377 	}
2378 
2379 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2380 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2381 		root = btrfs_read_tree_root(tree_root, &location);
2382 		if (IS_ERR(root)) {
2383 			ret = PTR_ERR(root);
2384 			goto out;
2385 		}
2386 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2387 		fs_info->free_space_root = root;
2388 	}
2389 
2390 	return 0;
2391 out:
2392 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2393 		   location.objectid, ret);
2394 	return ret;
2395 }
2396 
2397 /*
2398  * Real super block validation
2399  * NOTE: super csum type and incompat features will not be checked here.
2400  *
2401  * @sb:		super block to check
2402  * @mirror_num:	the super block number to check its bytenr:
2403  * 		0	the primary (1st) sb
2404  * 		1, 2	2nd and 3rd backup copy
2405  * 	       -1	skip bytenr check
2406  */
validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2407 static int validate_super(struct btrfs_fs_info *fs_info,
2408 			    struct btrfs_super_block *sb, int mirror_num)
2409 {
2410 	u64 nodesize = btrfs_super_nodesize(sb);
2411 	u64 sectorsize = btrfs_super_sectorsize(sb);
2412 	int ret = 0;
2413 
2414 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2415 		btrfs_err(fs_info, "no valid FS found");
2416 		ret = -EINVAL;
2417 	}
2418 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2419 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2420 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2421 		ret = -EINVAL;
2422 	}
2423 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2424 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2425 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2426 		ret = -EINVAL;
2427 	}
2428 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2429 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2430 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2431 		ret = -EINVAL;
2432 	}
2433 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2434 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2435 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2436 		ret = -EINVAL;
2437 	}
2438 
2439 	/*
2440 	 * Check sectorsize and nodesize first, other check will need it.
2441 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2442 	 */
2443 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2444 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2445 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2446 		ret = -EINVAL;
2447 	}
2448 	/* Only PAGE SIZE is supported yet */
2449 	if (sectorsize != PAGE_SIZE) {
2450 		btrfs_err(fs_info,
2451 			"sectorsize %llu not supported yet, only support %lu",
2452 			sectorsize, PAGE_SIZE);
2453 		ret = -EINVAL;
2454 	}
2455 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2456 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2457 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2458 		ret = -EINVAL;
2459 	}
2460 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2461 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2462 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2463 		ret = -EINVAL;
2464 	}
2465 
2466 	/* Root alignment check */
2467 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2468 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2469 			   btrfs_super_root(sb));
2470 		ret = -EINVAL;
2471 	}
2472 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2473 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2474 			   btrfs_super_chunk_root(sb));
2475 		ret = -EINVAL;
2476 	}
2477 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2478 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2479 			   btrfs_super_log_root(sb));
2480 		ret = -EINVAL;
2481 	}
2482 
2483 	if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2484 		btrfs_err(fs_info,
2485 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2486 			  sb->fsid, fs_info->fs_devices->fsid);
2487 		ret = -EINVAL;
2488 	}
2489 
2490 	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2491 		   BTRFS_FSID_SIZE) != 0) {
2492 		btrfs_err(fs_info,
2493 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2494 			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2495 		ret = -EINVAL;
2496 	}
2497 
2498 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2499 		   BTRFS_FSID_SIZE) != 0) {
2500 		btrfs_err(fs_info,
2501 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2502 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2503 		ret = -EINVAL;
2504 	}
2505 
2506 	/*
2507 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2508 	 * done later
2509 	 */
2510 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2511 		btrfs_err(fs_info, "bytes_used is too small %llu",
2512 			  btrfs_super_bytes_used(sb));
2513 		ret = -EINVAL;
2514 	}
2515 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2516 		btrfs_err(fs_info, "invalid stripesize %u",
2517 			  btrfs_super_stripesize(sb));
2518 		ret = -EINVAL;
2519 	}
2520 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2521 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2522 			   btrfs_super_num_devices(sb));
2523 	if (btrfs_super_num_devices(sb) == 0) {
2524 		btrfs_err(fs_info, "number of devices is 0");
2525 		ret = -EINVAL;
2526 	}
2527 
2528 	if (mirror_num >= 0 &&
2529 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2530 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2531 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2532 		ret = -EINVAL;
2533 	}
2534 
2535 	/*
2536 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2537 	 * and one chunk
2538 	 */
2539 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2540 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2541 			  btrfs_super_sys_array_size(sb),
2542 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2543 		ret = -EINVAL;
2544 	}
2545 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2546 			+ sizeof(struct btrfs_chunk)) {
2547 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2548 			  btrfs_super_sys_array_size(sb),
2549 			  sizeof(struct btrfs_disk_key)
2550 			  + sizeof(struct btrfs_chunk));
2551 		ret = -EINVAL;
2552 	}
2553 
2554 	/*
2555 	 * The generation is a global counter, we'll trust it more than the others
2556 	 * but it's still possible that it's the one that's wrong.
2557 	 */
2558 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2559 		btrfs_warn(fs_info,
2560 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2561 			btrfs_super_generation(sb),
2562 			btrfs_super_chunk_root_generation(sb));
2563 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2564 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2565 		btrfs_warn(fs_info,
2566 			"suspicious: generation < cache_generation: %llu < %llu",
2567 			btrfs_super_generation(sb),
2568 			btrfs_super_cache_generation(sb));
2569 
2570 	return ret;
2571 }
2572 
2573 /*
2574  * Validation of super block at mount time.
2575  * Some checks already done early at mount time, like csum type and incompat
2576  * flags will be skipped.
2577  */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2578 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2579 {
2580 	return validate_super(fs_info, fs_info->super_copy, 0);
2581 }
2582 
2583 /*
2584  * Validation of super block at write time.
2585  * Some checks like bytenr check will be skipped as their values will be
2586  * overwritten soon.
2587  * Extra checks like csum type and incompat flags will be done here.
2588  */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2589 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2590 				      struct btrfs_super_block *sb)
2591 {
2592 	int ret;
2593 
2594 	ret = validate_super(fs_info, sb, -1);
2595 	if (ret < 0)
2596 		goto out;
2597 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2598 		ret = -EUCLEAN;
2599 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2600 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2601 		goto out;
2602 	}
2603 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2604 		ret = -EUCLEAN;
2605 		btrfs_err(fs_info,
2606 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2607 			  btrfs_super_incompat_flags(sb),
2608 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2609 		goto out;
2610 	}
2611 out:
2612 	if (ret < 0)
2613 		btrfs_err(fs_info,
2614 		"super block corruption detected before writing it to disk");
2615 	return ret;
2616 }
2617 
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)2618 int open_ctree(struct super_block *sb,
2619 	       struct btrfs_fs_devices *fs_devices,
2620 	       char *options)
2621 {
2622 	u32 sectorsize;
2623 	u32 nodesize;
2624 	u32 stripesize;
2625 	u64 generation;
2626 	u64 features;
2627 	u16 csum_type;
2628 	struct btrfs_key location;
2629 	struct buffer_head *bh;
2630 	struct btrfs_super_block *disk_super;
2631 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2632 	struct btrfs_root *tree_root;
2633 	struct btrfs_root *chunk_root;
2634 	int ret;
2635 	int err = -EINVAL;
2636 	int num_backups_tried = 0;
2637 	int backup_index = 0;
2638 	int clear_free_space_tree = 0;
2639 	int level;
2640 
2641 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2642 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2643 	if (!tree_root || !chunk_root) {
2644 		err = -ENOMEM;
2645 		goto fail;
2646 	}
2647 
2648 	ret = init_srcu_struct(&fs_info->subvol_srcu);
2649 	if (ret) {
2650 		err = ret;
2651 		goto fail;
2652 	}
2653 
2654 	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2655 	if (ret) {
2656 		err = ret;
2657 		goto fail_srcu;
2658 	}
2659 
2660 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2661 	if (ret) {
2662 		err = ret;
2663 		goto fail_dio_bytes;
2664 	}
2665 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2666 					(1 + ilog2(nr_cpu_ids));
2667 
2668 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2669 	if (ret) {
2670 		err = ret;
2671 		goto fail_dirty_metadata_bytes;
2672 	}
2673 
2674 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2675 			GFP_KERNEL);
2676 	if (ret) {
2677 		err = ret;
2678 		goto fail_delalloc_bytes;
2679 	}
2680 
2681 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2682 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2683 	INIT_LIST_HEAD(&fs_info->trans_list);
2684 	INIT_LIST_HEAD(&fs_info->dead_roots);
2685 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2686 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2687 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2688 	spin_lock_init(&fs_info->delalloc_root_lock);
2689 	spin_lock_init(&fs_info->trans_lock);
2690 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2691 	spin_lock_init(&fs_info->delayed_iput_lock);
2692 	spin_lock_init(&fs_info->defrag_inodes_lock);
2693 	spin_lock_init(&fs_info->super_lock);
2694 	spin_lock_init(&fs_info->buffer_lock);
2695 	spin_lock_init(&fs_info->unused_bgs_lock);
2696 	rwlock_init(&fs_info->tree_mod_log_lock);
2697 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2698 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2699 	mutex_init(&fs_info->reloc_mutex);
2700 	mutex_init(&fs_info->delalloc_root_mutex);
2701 	seqlock_init(&fs_info->profiles_lock);
2702 
2703 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2704 	INIT_LIST_HEAD(&fs_info->space_info);
2705 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2706 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2707 	extent_map_tree_init(&fs_info->mapping_tree);
2708 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2709 			     BTRFS_BLOCK_RSV_GLOBAL);
2710 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2711 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2712 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2713 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2714 			     BTRFS_BLOCK_RSV_DELOPS);
2715 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2716 			     BTRFS_BLOCK_RSV_DELREFS);
2717 
2718 	atomic_set(&fs_info->async_delalloc_pages, 0);
2719 	atomic_set(&fs_info->defrag_running, 0);
2720 	atomic_set(&fs_info->reada_works_cnt, 0);
2721 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2722 	atomic64_set(&fs_info->tree_mod_seq, 0);
2723 	fs_info->sb = sb;
2724 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2725 	fs_info->metadata_ratio = 0;
2726 	fs_info->defrag_inodes = RB_ROOT;
2727 	atomic64_set(&fs_info->free_chunk_space, 0);
2728 	fs_info->tree_mod_log = RB_ROOT;
2729 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2730 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2731 	/* readahead state */
2732 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2733 	spin_lock_init(&fs_info->reada_lock);
2734 	btrfs_init_ref_verify(fs_info);
2735 
2736 	fs_info->thread_pool_size = min_t(unsigned long,
2737 					  num_online_cpus() + 2, 8);
2738 
2739 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2740 	spin_lock_init(&fs_info->ordered_root_lock);
2741 
2742 	fs_info->btree_inode = new_inode(sb);
2743 	if (!fs_info->btree_inode) {
2744 		err = -ENOMEM;
2745 		goto fail_bio_counter;
2746 	}
2747 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2748 
2749 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2750 					GFP_KERNEL);
2751 	if (!fs_info->delayed_root) {
2752 		err = -ENOMEM;
2753 		goto fail_iput;
2754 	}
2755 	btrfs_init_delayed_root(fs_info->delayed_root);
2756 
2757 	btrfs_init_scrub(fs_info);
2758 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2759 	fs_info->check_integrity_print_mask = 0;
2760 #endif
2761 	btrfs_init_balance(fs_info);
2762 	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2763 
2764 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2765 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2766 
2767 	btrfs_init_btree_inode(fs_info);
2768 
2769 	spin_lock_init(&fs_info->block_group_cache_lock);
2770 	fs_info->block_group_cache_tree = RB_ROOT;
2771 	fs_info->first_logical_byte = (u64)-1;
2772 
2773 	extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2774 			    IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2775 	extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2776 			    IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2777 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2778 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2779 
2780 	mutex_init(&fs_info->ordered_operations_mutex);
2781 	mutex_init(&fs_info->tree_log_mutex);
2782 	mutex_init(&fs_info->chunk_mutex);
2783 	mutex_init(&fs_info->transaction_kthread_mutex);
2784 	mutex_init(&fs_info->cleaner_mutex);
2785 	mutex_init(&fs_info->ro_block_group_mutex);
2786 	init_rwsem(&fs_info->commit_root_sem);
2787 	init_rwsem(&fs_info->cleanup_work_sem);
2788 	init_rwsem(&fs_info->subvol_sem);
2789 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2790 
2791 	btrfs_init_dev_replace_locks(fs_info);
2792 	btrfs_init_qgroup(fs_info);
2793 
2794 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2795 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2796 
2797 	init_waitqueue_head(&fs_info->transaction_throttle);
2798 	init_waitqueue_head(&fs_info->transaction_wait);
2799 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2800 	init_waitqueue_head(&fs_info->async_submit_wait);
2801 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2802 
2803 	/* Usable values until the real ones are cached from the superblock */
2804 	fs_info->nodesize = 4096;
2805 	fs_info->sectorsize = 4096;
2806 	fs_info->stripesize = 4096;
2807 
2808 	spin_lock_init(&fs_info->swapfile_pins_lock);
2809 	fs_info->swapfile_pins = RB_ROOT;
2810 
2811 	fs_info->send_in_progress = 0;
2812 
2813 	ret = btrfs_alloc_stripe_hash_table(fs_info);
2814 	if (ret) {
2815 		err = ret;
2816 		goto fail_alloc;
2817 	}
2818 
2819 	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2820 
2821 	invalidate_bdev(fs_devices->latest_bdev);
2822 
2823 	/*
2824 	 * Read super block and check the signature bytes only
2825 	 */
2826 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2827 	if (IS_ERR(bh)) {
2828 		err = PTR_ERR(bh);
2829 		goto fail_alloc;
2830 	}
2831 
2832 	/*
2833 	 * Verify the type first, if that or the checksum value are
2834 	 * corrupted, we'll find out
2835 	 */
2836 	csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2837 	if (!btrfs_supported_super_csum(csum_type)) {
2838 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2839 			  csum_type);
2840 		err = -EINVAL;
2841 		brelse(bh);
2842 		goto fail_alloc;
2843 	}
2844 
2845 	ret = btrfs_init_csum_hash(fs_info, csum_type);
2846 	if (ret) {
2847 		err = ret;
2848 		goto fail_alloc;
2849 	}
2850 
2851 	/*
2852 	 * We want to check superblock checksum, the type is stored inside.
2853 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2854 	 */
2855 	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2856 		btrfs_err(fs_info, "superblock checksum mismatch");
2857 		err = -EINVAL;
2858 		brelse(bh);
2859 		goto fail_csum;
2860 	}
2861 
2862 	/*
2863 	 * super_copy is zeroed at allocation time and we never touch the
2864 	 * following bytes up to INFO_SIZE, the checksum is calculated from
2865 	 * the whole block of INFO_SIZE
2866 	 */
2867 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2868 	brelse(bh);
2869 
2870 	disk_super = fs_info->super_copy;
2871 
2872 
2873 	features = btrfs_super_flags(disk_super);
2874 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2875 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2876 		btrfs_set_super_flags(disk_super, features);
2877 		btrfs_info(fs_info,
2878 			"found metadata UUID change in progress flag, clearing");
2879 	}
2880 
2881 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2882 	       sizeof(*fs_info->super_for_commit));
2883 
2884 	ret = btrfs_validate_mount_super(fs_info);
2885 	if (ret) {
2886 		btrfs_err(fs_info, "superblock contains fatal errors");
2887 		err = -EINVAL;
2888 		goto fail_csum;
2889 	}
2890 
2891 	if (!btrfs_super_root(disk_super))
2892 		goto fail_csum;
2893 
2894 	/* check FS state, whether FS is broken. */
2895 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2896 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2897 
2898 	/*
2899 	 * run through our array of backup supers and setup
2900 	 * our ring pointer to the oldest one
2901 	 */
2902 	generation = btrfs_super_generation(disk_super);
2903 	find_oldest_super_backup(fs_info, generation);
2904 
2905 	/*
2906 	 * In the long term, we'll store the compression type in the super
2907 	 * block, and it'll be used for per file compression control.
2908 	 */
2909 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2910 
2911 	/*
2912 	 * Flag our filesystem as having big metadata blocks if they are bigger
2913 	 * than the page size
2914 	 */
2915 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2916 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2917 			btrfs_info(fs_info,
2918 				"flagging fs with big metadata feature");
2919 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2920 	}
2921 
2922 	/* Set up fs_info before parsing mount options */
2923 	nodesize = btrfs_super_nodesize(disk_super);
2924 	sectorsize = btrfs_super_sectorsize(disk_super);
2925 	stripesize = sectorsize;
2926 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2927 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2928 
2929 	/* Cache block sizes */
2930 	fs_info->nodesize = nodesize;
2931 	fs_info->sectorsize = sectorsize;
2932 	fs_info->stripesize = stripesize;
2933 
2934 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2935 	if (ret) {
2936 		err = ret;
2937 		goto fail_csum;
2938 	}
2939 
2940 	features = btrfs_super_incompat_flags(disk_super) &
2941 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2942 	if (features) {
2943 		btrfs_err(fs_info,
2944 		    "cannot mount because of unsupported optional features (0x%llx)",
2945 		    features);
2946 		err = -EINVAL;
2947 		goto fail_csum;
2948 	}
2949 
2950 	features = btrfs_super_incompat_flags(disk_super);
2951 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2952 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2953 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2954 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2955 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2956 
2957 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2958 		btrfs_info(fs_info, "has skinny extents");
2959 
2960 	/*
2961 	 * mixed block groups end up with duplicate but slightly offset
2962 	 * extent buffers for the same range.  It leads to corruptions
2963 	 */
2964 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2965 	    (sectorsize != nodesize)) {
2966 		btrfs_err(fs_info,
2967 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2968 			nodesize, sectorsize);
2969 		goto fail_csum;
2970 	}
2971 
2972 	/*
2973 	 * Needn't use the lock because there is no other task which will
2974 	 * update the flag.
2975 	 */
2976 	btrfs_set_super_incompat_flags(disk_super, features);
2977 
2978 	features = btrfs_super_compat_ro_flags(disk_super) &
2979 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2980 	if (!sb_rdonly(sb) && features) {
2981 		btrfs_err(fs_info,
2982 	"cannot mount read-write because of unsupported optional features (0x%llx)",
2983 		       features);
2984 		err = -EINVAL;
2985 		goto fail_csum;
2986 	}
2987 	/*
2988 	 * We have unsupported RO compat features, although RO mounted, we
2989 	 * should not cause any metadata write, including log replay.
2990 	 * Or we could screw up whatever the new feature requires.
2991 	 */
2992 	if (unlikely(features && btrfs_super_log_root(disk_super) &&
2993 		     !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
2994 		btrfs_err(fs_info,
2995 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
2996 			  features);
2997 		err = -EINVAL;
2998 		goto fail_alloc;
2999 	}
3000 
3001 
3002 	ret = btrfs_init_workqueues(fs_info, fs_devices);
3003 	if (ret) {
3004 		err = ret;
3005 		goto fail_sb_buffer;
3006 	}
3007 
3008 	sb->s_bdi->congested_fn = btrfs_congested_fn;
3009 	sb->s_bdi->congested_data = fs_info;
3010 	sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3011 	sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3012 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3013 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3014 
3015 	sb->s_blocksize = sectorsize;
3016 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3017 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3018 
3019 	mutex_lock(&fs_info->chunk_mutex);
3020 	ret = btrfs_read_sys_array(fs_info);
3021 	mutex_unlock(&fs_info->chunk_mutex);
3022 	if (ret) {
3023 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3024 		goto fail_sb_buffer;
3025 	}
3026 
3027 	generation = btrfs_super_chunk_root_generation(disk_super);
3028 	level = btrfs_super_chunk_root_level(disk_super);
3029 
3030 	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
3031 
3032 	chunk_root->node = read_tree_block(fs_info,
3033 					   btrfs_super_chunk_root(disk_super),
3034 					   generation, level, NULL);
3035 	if (IS_ERR(chunk_root->node) ||
3036 	    !extent_buffer_uptodate(chunk_root->node)) {
3037 		btrfs_err(fs_info, "failed to read chunk root");
3038 		if (!IS_ERR(chunk_root->node))
3039 			free_extent_buffer(chunk_root->node);
3040 		chunk_root->node = NULL;
3041 		goto fail_tree_roots;
3042 	}
3043 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3044 	chunk_root->commit_root = btrfs_root_node(chunk_root);
3045 
3046 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3047 	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3048 
3049 	ret = btrfs_read_chunk_tree(fs_info);
3050 	if (ret) {
3051 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3052 		goto fail_tree_roots;
3053 	}
3054 
3055 	/*
3056 	 * Keep the devid that is marked to be the target device for the
3057 	 * device replace procedure
3058 	 */
3059 	btrfs_free_extra_devids(fs_devices, 0);
3060 
3061 	if (!fs_devices->latest_bdev) {
3062 		btrfs_err(fs_info, "failed to read devices");
3063 		goto fail_tree_roots;
3064 	}
3065 
3066 retry_root_backup:
3067 	generation = btrfs_super_generation(disk_super);
3068 	level = btrfs_super_root_level(disk_super);
3069 
3070 	tree_root->node = read_tree_block(fs_info,
3071 					  btrfs_super_root(disk_super),
3072 					  generation, level, NULL);
3073 	if (IS_ERR(tree_root->node) ||
3074 	    !extent_buffer_uptodate(tree_root->node)) {
3075 		btrfs_warn(fs_info, "failed to read tree root");
3076 		if (!IS_ERR(tree_root->node))
3077 			free_extent_buffer(tree_root->node);
3078 		tree_root->node = NULL;
3079 		goto recovery_tree_root;
3080 	}
3081 
3082 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3083 	tree_root->commit_root = btrfs_root_node(tree_root);
3084 	btrfs_set_root_refs(&tree_root->root_item, 1);
3085 
3086 	mutex_lock(&tree_root->objectid_mutex);
3087 	ret = btrfs_find_highest_objectid(tree_root,
3088 					&tree_root->highest_objectid);
3089 	if (ret) {
3090 		mutex_unlock(&tree_root->objectid_mutex);
3091 		goto recovery_tree_root;
3092 	}
3093 
3094 	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3095 
3096 	mutex_unlock(&tree_root->objectid_mutex);
3097 
3098 	ret = btrfs_read_roots(fs_info);
3099 	if (ret)
3100 		goto recovery_tree_root;
3101 
3102 	fs_info->generation = generation;
3103 	fs_info->last_trans_committed = generation;
3104 
3105 	/*
3106 	 * If we have a uuid root and we're not being told to rescan we need to
3107 	 * check the generation here so we can set the
3108 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3109 	 * transaction during a balance or the log replay without updating the
3110 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3111 	 * even though it was perfectly fine.
3112 	 */
3113 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3114 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3115 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3116 
3117 	ret = btrfs_verify_dev_extents(fs_info);
3118 	if (ret) {
3119 		btrfs_err(fs_info,
3120 			  "failed to verify dev extents against chunks: %d",
3121 			  ret);
3122 		goto fail_block_groups;
3123 	}
3124 	ret = btrfs_recover_balance(fs_info);
3125 	if (ret) {
3126 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3127 		goto fail_block_groups;
3128 	}
3129 
3130 	ret = btrfs_init_dev_stats(fs_info);
3131 	if (ret) {
3132 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3133 		goto fail_block_groups;
3134 	}
3135 
3136 	ret = btrfs_init_dev_replace(fs_info);
3137 	if (ret) {
3138 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3139 		goto fail_block_groups;
3140 	}
3141 
3142 	btrfs_free_extra_devids(fs_devices, 1);
3143 
3144 	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3145 	if (ret) {
3146 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3147 				ret);
3148 		goto fail_block_groups;
3149 	}
3150 
3151 	ret = btrfs_sysfs_add_device(fs_devices);
3152 	if (ret) {
3153 		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3154 				ret);
3155 		goto fail_fsdev_sysfs;
3156 	}
3157 
3158 	ret = btrfs_sysfs_add_mounted(fs_info);
3159 	if (ret) {
3160 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3161 		goto fail_fsdev_sysfs;
3162 	}
3163 
3164 	ret = btrfs_init_space_info(fs_info);
3165 	if (ret) {
3166 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3167 		goto fail_sysfs;
3168 	}
3169 
3170 	ret = btrfs_read_block_groups(fs_info);
3171 	if (ret) {
3172 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3173 		goto fail_sysfs;
3174 	}
3175 
3176 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3177 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3178 		btrfs_warn(fs_info,
3179 		"writable mount is not allowed due to too many missing devices");
3180 		goto fail_sysfs;
3181 	}
3182 
3183 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3184 					       "btrfs-cleaner");
3185 	if (IS_ERR(fs_info->cleaner_kthread))
3186 		goto fail_sysfs;
3187 
3188 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3189 						   tree_root,
3190 						   "btrfs-transaction");
3191 	if (IS_ERR(fs_info->transaction_kthread))
3192 		goto fail_cleaner;
3193 
3194 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3195 	    !fs_info->fs_devices->rotating) {
3196 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3197 	}
3198 
3199 	/*
3200 	 * Mount does not set all options immediately, we can do it now and do
3201 	 * not have to wait for transaction commit
3202 	 */
3203 	btrfs_apply_pending_changes(fs_info);
3204 
3205 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3206 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3207 		ret = btrfsic_mount(fs_info, fs_devices,
3208 				    btrfs_test_opt(fs_info,
3209 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3210 				    1 : 0,
3211 				    fs_info->check_integrity_print_mask);
3212 		if (ret)
3213 			btrfs_warn(fs_info,
3214 				"failed to initialize integrity check module: %d",
3215 				ret);
3216 	}
3217 #endif
3218 	ret = btrfs_read_qgroup_config(fs_info);
3219 	if (ret)
3220 		goto fail_trans_kthread;
3221 
3222 	if (btrfs_build_ref_tree(fs_info))
3223 		btrfs_err(fs_info, "couldn't build ref tree");
3224 
3225 	/* do not make disk changes in broken FS or nologreplay is given */
3226 	if (btrfs_super_log_root(disk_super) != 0 &&
3227 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3228 		btrfs_info(fs_info, "start tree-log replay");
3229 		ret = btrfs_replay_log(fs_info, fs_devices);
3230 		if (ret) {
3231 			err = ret;
3232 			goto fail_qgroup;
3233 		}
3234 	}
3235 
3236 	ret = btrfs_find_orphan_roots(fs_info);
3237 	if (ret)
3238 		goto fail_qgroup;
3239 
3240 	if (!sb_rdonly(sb)) {
3241 		ret = btrfs_cleanup_fs_roots(fs_info);
3242 		if (ret)
3243 			goto fail_qgroup;
3244 
3245 		mutex_lock(&fs_info->cleaner_mutex);
3246 		ret = btrfs_recover_relocation(tree_root);
3247 		mutex_unlock(&fs_info->cleaner_mutex);
3248 		if (ret < 0) {
3249 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3250 					ret);
3251 			err = -EINVAL;
3252 			goto fail_qgroup;
3253 		}
3254 	}
3255 
3256 	location.objectid = BTRFS_FS_TREE_OBJECTID;
3257 	location.type = BTRFS_ROOT_ITEM_KEY;
3258 	location.offset = 0;
3259 
3260 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3261 	if (IS_ERR(fs_info->fs_root)) {
3262 		err = PTR_ERR(fs_info->fs_root);
3263 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3264 		fs_info->fs_root = NULL;
3265 		goto fail_qgroup;
3266 	}
3267 
3268 	if (sb_rdonly(sb))
3269 		return 0;
3270 
3271 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3272 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3273 		clear_free_space_tree = 1;
3274 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3275 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3276 		btrfs_warn(fs_info, "free space tree is invalid");
3277 		clear_free_space_tree = 1;
3278 	}
3279 
3280 	if (clear_free_space_tree) {
3281 		btrfs_info(fs_info, "clearing free space tree");
3282 		ret = btrfs_clear_free_space_tree(fs_info);
3283 		if (ret) {
3284 			btrfs_warn(fs_info,
3285 				   "failed to clear free space tree: %d", ret);
3286 			close_ctree(fs_info);
3287 			return ret;
3288 		}
3289 	}
3290 
3291 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3292 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3293 		btrfs_info(fs_info, "creating free space tree");
3294 		ret = btrfs_create_free_space_tree(fs_info);
3295 		if (ret) {
3296 			btrfs_warn(fs_info,
3297 				"failed to create free space tree: %d", ret);
3298 			close_ctree(fs_info);
3299 			return ret;
3300 		}
3301 	}
3302 
3303 	down_read(&fs_info->cleanup_work_sem);
3304 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3305 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3306 		up_read(&fs_info->cleanup_work_sem);
3307 		close_ctree(fs_info);
3308 		return ret;
3309 	}
3310 	up_read(&fs_info->cleanup_work_sem);
3311 
3312 	ret = btrfs_resume_balance_async(fs_info);
3313 	if (ret) {
3314 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3315 		close_ctree(fs_info);
3316 		return ret;
3317 	}
3318 
3319 	ret = btrfs_resume_dev_replace_async(fs_info);
3320 	if (ret) {
3321 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3322 		close_ctree(fs_info);
3323 		return ret;
3324 	}
3325 
3326 	btrfs_qgroup_rescan_resume(fs_info);
3327 
3328 	if (!fs_info->uuid_root) {
3329 		btrfs_info(fs_info, "creating UUID tree");
3330 		ret = btrfs_create_uuid_tree(fs_info);
3331 		if (ret) {
3332 			btrfs_warn(fs_info,
3333 				"failed to create the UUID tree: %d", ret);
3334 			close_ctree(fs_info);
3335 			return ret;
3336 		}
3337 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3338 		   fs_info->generation !=
3339 				btrfs_super_uuid_tree_generation(disk_super)) {
3340 		btrfs_info(fs_info, "checking UUID tree");
3341 		ret = btrfs_check_uuid_tree(fs_info);
3342 		if (ret) {
3343 			btrfs_warn(fs_info,
3344 				"failed to check the UUID tree: %d", ret);
3345 			close_ctree(fs_info);
3346 			return ret;
3347 		}
3348 	}
3349 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3350 
3351 	/*
3352 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3353 	 * no need to keep the flag
3354 	 */
3355 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3356 
3357 	return 0;
3358 
3359 fail_qgroup:
3360 	btrfs_free_qgroup_config(fs_info);
3361 fail_trans_kthread:
3362 	kthread_stop(fs_info->transaction_kthread);
3363 	btrfs_cleanup_transaction(fs_info);
3364 	btrfs_free_fs_roots(fs_info);
3365 fail_cleaner:
3366 	kthread_stop(fs_info->cleaner_kthread);
3367 
3368 	/*
3369 	 * make sure we're done with the btree inode before we stop our
3370 	 * kthreads
3371 	 */
3372 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3373 
3374 fail_sysfs:
3375 	btrfs_sysfs_remove_mounted(fs_info);
3376 
3377 fail_fsdev_sysfs:
3378 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3379 
3380 fail_block_groups:
3381 	btrfs_put_block_group_cache(fs_info);
3382 
3383 fail_tree_roots:
3384 	free_root_pointers(fs_info, true);
3385 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3386 
3387 fail_sb_buffer:
3388 	btrfs_stop_all_workers(fs_info);
3389 	btrfs_free_block_groups(fs_info);
3390 fail_csum:
3391 	btrfs_free_csum_hash(fs_info);
3392 fail_alloc:
3393 fail_iput:
3394 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3395 
3396 	iput(fs_info->btree_inode);
3397 fail_bio_counter:
3398 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3399 fail_delalloc_bytes:
3400 	percpu_counter_destroy(&fs_info->delalloc_bytes);
3401 fail_dirty_metadata_bytes:
3402 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3403 fail_dio_bytes:
3404 	percpu_counter_destroy(&fs_info->dio_bytes);
3405 fail_srcu:
3406 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3407 fail:
3408 	btrfs_free_stripe_hash_table(fs_info);
3409 	btrfs_close_devices(fs_info->fs_devices);
3410 	return err;
3411 
3412 recovery_tree_root:
3413 	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3414 		goto fail_tree_roots;
3415 
3416 	free_root_pointers(fs_info, false);
3417 
3418 	/* don't use the log in recovery mode, it won't be valid */
3419 	btrfs_set_super_log_root(disk_super, 0);
3420 
3421 	/* we can't trust the free space cache either */
3422 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3423 
3424 	ret = next_root_backup(fs_info, fs_info->super_copy,
3425 			       &num_backups_tried, &backup_index);
3426 	if (ret == -1)
3427 		goto fail_block_groups;
3428 	goto retry_root_backup;
3429 }
3430 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3431 
btrfs_end_buffer_write_sync(struct buffer_head * bh,int uptodate)3432 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3433 {
3434 	if (uptodate) {
3435 		set_buffer_uptodate(bh);
3436 	} else {
3437 		struct btrfs_device *device = (struct btrfs_device *)
3438 			bh->b_private;
3439 
3440 		btrfs_warn_rl_in_rcu(device->fs_info,
3441 				"lost page write due to IO error on %s",
3442 					  rcu_str_deref(device->name));
3443 		/* note, we don't set_buffer_write_io_error because we have
3444 		 * our own ways of dealing with the IO errors
3445 		 */
3446 		clear_buffer_uptodate(bh);
3447 		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3448 	}
3449 	unlock_buffer(bh);
3450 	put_bh(bh);
3451 }
3452 
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,struct buffer_head ** bh_ret)3453 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3454 			struct buffer_head **bh_ret)
3455 {
3456 	struct buffer_head *bh;
3457 	struct btrfs_super_block *super;
3458 	u64 bytenr;
3459 
3460 	bytenr = btrfs_sb_offset(copy_num);
3461 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3462 		return -EINVAL;
3463 
3464 	bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3465 	/*
3466 	 * If we fail to read from the underlying devices, as of now
3467 	 * the best option we have is to mark it EIO.
3468 	 */
3469 	if (!bh)
3470 		return -EIO;
3471 
3472 	super = (struct btrfs_super_block *)bh->b_data;
3473 	if (btrfs_super_bytenr(super) != bytenr ||
3474 		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3475 		brelse(bh);
3476 		return -EINVAL;
3477 	}
3478 
3479 	*bh_ret = bh;
3480 	return 0;
3481 }
3482 
3483 
btrfs_read_dev_super(struct block_device * bdev)3484 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3485 {
3486 	struct buffer_head *bh;
3487 	struct buffer_head *latest = NULL;
3488 	struct btrfs_super_block *super;
3489 	int i;
3490 	u64 transid = 0;
3491 	int ret = -EINVAL;
3492 
3493 	/* we would like to check all the supers, but that would make
3494 	 * a btrfs mount succeed after a mkfs from a different FS.
3495 	 * So, we need to add a special mount option to scan for
3496 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3497 	 */
3498 	for (i = 0; i < 1; i++) {
3499 		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3500 		if (ret)
3501 			continue;
3502 
3503 		super = (struct btrfs_super_block *)bh->b_data;
3504 
3505 		if (!latest || btrfs_super_generation(super) > transid) {
3506 			brelse(latest);
3507 			latest = bh;
3508 			transid = btrfs_super_generation(super);
3509 		} else {
3510 			brelse(bh);
3511 		}
3512 	}
3513 
3514 	if (!latest)
3515 		return ERR_PTR(ret);
3516 
3517 	return latest;
3518 }
3519 
3520 /*
3521  * Write superblock @sb to the @device. Do not wait for completion, all the
3522  * buffer heads we write are pinned.
3523  *
3524  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3525  * the expected device size at commit time. Note that max_mirrors must be
3526  * same for write and wait phases.
3527  *
3528  * Return number of errors when buffer head is not found or submission fails.
3529  */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3530 static int write_dev_supers(struct btrfs_device *device,
3531 			    struct btrfs_super_block *sb, int max_mirrors)
3532 {
3533 	struct btrfs_fs_info *fs_info = device->fs_info;
3534 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3535 	struct buffer_head *bh;
3536 	int i;
3537 	int ret;
3538 	int errors = 0;
3539 	u64 bytenr;
3540 	int op_flags;
3541 
3542 	if (max_mirrors == 0)
3543 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3544 
3545 	shash->tfm = fs_info->csum_shash;
3546 
3547 	for (i = 0; i < max_mirrors; i++) {
3548 		bytenr = btrfs_sb_offset(i);
3549 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3550 		    device->commit_total_bytes)
3551 			break;
3552 
3553 		btrfs_set_super_bytenr(sb, bytenr);
3554 
3555 		crypto_shash_init(shash);
3556 		crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3557 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3558 		crypto_shash_final(shash, sb->csum);
3559 
3560 		/* One reference for us, and we leave it for the caller */
3561 		bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3562 			      BTRFS_SUPER_INFO_SIZE);
3563 		if (!bh) {
3564 			btrfs_err(device->fs_info,
3565 			    "couldn't get super buffer head for bytenr %llu",
3566 			    bytenr);
3567 			errors++;
3568 			continue;
3569 		}
3570 
3571 		memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3572 
3573 		/* one reference for submit_bh */
3574 		get_bh(bh);
3575 
3576 		set_buffer_uptodate(bh);
3577 		lock_buffer(bh);
3578 		bh->b_end_io = btrfs_end_buffer_write_sync;
3579 		bh->b_private = device;
3580 
3581 		/*
3582 		 * we fua the first super.  The others we allow
3583 		 * to go down lazy.
3584 		 */
3585 		op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3586 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3587 			op_flags |= REQ_FUA;
3588 		ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3589 		if (ret)
3590 			errors++;
3591 	}
3592 	return errors < i ? 0 : -1;
3593 }
3594 
3595 /*
3596  * Wait for write completion of superblocks done by write_dev_supers,
3597  * @max_mirrors same for write and wait phases.
3598  *
3599  * Return number of errors when buffer head is not found or not marked up to
3600  * date.
3601  */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3602 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3603 {
3604 	struct buffer_head *bh;
3605 	int i;
3606 	int errors = 0;
3607 	bool primary_failed = false;
3608 	u64 bytenr;
3609 
3610 	if (max_mirrors == 0)
3611 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3612 
3613 	for (i = 0; i < max_mirrors; i++) {
3614 		bytenr = btrfs_sb_offset(i);
3615 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3616 		    device->commit_total_bytes)
3617 			break;
3618 
3619 		bh = __find_get_block(device->bdev,
3620 				      bytenr / BTRFS_BDEV_BLOCKSIZE,
3621 				      BTRFS_SUPER_INFO_SIZE);
3622 		if (!bh) {
3623 			errors++;
3624 			if (i == 0)
3625 				primary_failed = true;
3626 			continue;
3627 		}
3628 		wait_on_buffer(bh);
3629 		if (!buffer_uptodate(bh)) {
3630 			errors++;
3631 			if (i == 0)
3632 				primary_failed = true;
3633 		}
3634 
3635 		/* drop our reference */
3636 		brelse(bh);
3637 
3638 		/* drop the reference from the writing run */
3639 		brelse(bh);
3640 	}
3641 
3642 	/* log error, force error return */
3643 	if (primary_failed) {
3644 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3645 			  device->devid);
3646 		return -1;
3647 	}
3648 
3649 	return errors < i ? 0 : -1;
3650 }
3651 
3652 /*
3653  * endio for the write_dev_flush, this will wake anyone waiting
3654  * for the barrier when it is done
3655  */
btrfs_end_empty_barrier(struct bio * bio)3656 static void btrfs_end_empty_barrier(struct bio *bio)
3657 {
3658 	complete(bio->bi_private);
3659 }
3660 
3661 /*
3662  * Submit a flush request to the device if it supports it. Error handling is
3663  * done in the waiting counterpart.
3664  */
write_dev_flush(struct btrfs_device * device)3665 static void write_dev_flush(struct btrfs_device *device)
3666 {
3667 	struct bio *bio = device->flush_bio;
3668 
3669 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3670 	/*
3671 	 * When a disk has write caching disabled, we skip submission of a bio
3672 	 * with flush and sync requests before writing the superblock, since
3673 	 * it's not needed. However when the integrity checker is enabled, this
3674 	 * results in reports that there are metadata blocks referred by a
3675 	 * superblock that were not properly flushed. So don't skip the bio
3676 	 * submission only when the integrity checker is enabled for the sake
3677 	 * of simplicity, since this is a debug tool and not meant for use in
3678 	 * non-debug builds.
3679 	 */
3680 	struct request_queue *q = bdev_get_queue(device->bdev);
3681 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3682 		return;
3683 #endif
3684 
3685 	bio_reset(bio);
3686 	bio->bi_end_io = btrfs_end_empty_barrier;
3687 	bio_set_dev(bio, device->bdev);
3688 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3689 	init_completion(&device->flush_wait);
3690 	bio->bi_private = &device->flush_wait;
3691 
3692 	btrfsic_submit_bio(bio);
3693 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3694 }
3695 
3696 /*
3697  * If the flush bio has been submitted by write_dev_flush, wait for it.
3698  */
wait_dev_flush(struct btrfs_device * device)3699 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3700 {
3701 	struct bio *bio = device->flush_bio;
3702 
3703 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3704 		return BLK_STS_OK;
3705 
3706 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3707 	wait_for_completion_io(&device->flush_wait);
3708 
3709 	return bio->bi_status;
3710 }
3711 
check_barrier_error(struct btrfs_fs_info * fs_info)3712 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3713 {
3714 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3715 		return -EIO;
3716 	return 0;
3717 }
3718 
3719 /*
3720  * send an empty flush down to each device in parallel,
3721  * then wait for them
3722  */
barrier_all_devices(struct btrfs_fs_info * info)3723 static int barrier_all_devices(struct btrfs_fs_info *info)
3724 {
3725 	struct list_head *head;
3726 	struct btrfs_device *dev;
3727 	int errors_wait = 0;
3728 	blk_status_t ret;
3729 
3730 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3731 	/* send down all the barriers */
3732 	head = &info->fs_devices->devices;
3733 	list_for_each_entry(dev, head, dev_list) {
3734 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3735 			continue;
3736 		if (!dev->bdev)
3737 			continue;
3738 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3739 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3740 			continue;
3741 
3742 		write_dev_flush(dev);
3743 		dev->last_flush_error = BLK_STS_OK;
3744 	}
3745 
3746 	/* wait for all the barriers */
3747 	list_for_each_entry(dev, head, dev_list) {
3748 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3749 			continue;
3750 		if (!dev->bdev) {
3751 			errors_wait++;
3752 			continue;
3753 		}
3754 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3755 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3756 			continue;
3757 
3758 		ret = wait_dev_flush(dev);
3759 		if (ret) {
3760 			dev->last_flush_error = ret;
3761 			btrfs_dev_stat_inc_and_print(dev,
3762 					BTRFS_DEV_STAT_FLUSH_ERRS);
3763 			errors_wait++;
3764 		}
3765 	}
3766 
3767 	if (errors_wait) {
3768 		/*
3769 		 * At some point we need the status of all disks
3770 		 * to arrive at the volume status. So error checking
3771 		 * is being pushed to a separate loop.
3772 		 */
3773 		return check_barrier_error(info);
3774 	}
3775 	return 0;
3776 }
3777 
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3778 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3779 {
3780 	int raid_type;
3781 	int min_tolerated = INT_MAX;
3782 
3783 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3784 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3785 		min_tolerated = min_t(int, min_tolerated,
3786 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3787 				    tolerated_failures);
3788 
3789 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3790 		if (raid_type == BTRFS_RAID_SINGLE)
3791 			continue;
3792 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3793 			continue;
3794 		min_tolerated = min_t(int, min_tolerated,
3795 				    btrfs_raid_array[raid_type].
3796 				    tolerated_failures);
3797 	}
3798 
3799 	if (min_tolerated == INT_MAX) {
3800 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3801 		min_tolerated = 0;
3802 	}
3803 
3804 	return min_tolerated;
3805 }
3806 
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)3807 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3808 {
3809 	struct list_head *head;
3810 	struct btrfs_device *dev;
3811 	struct btrfs_super_block *sb;
3812 	struct btrfs_dev_item *dev_item;
3813 	int ret;
3814 	int do_barriers;
3815 	int max_errors;
3816 	int total_errors = 0;
3817 	u64 flags;
3818 
3819 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3820 
3821 	/*
3822 	 * max_mirrors == 0 indicates we're from commit_transaction,
3823 	 * not from fsync where the tree roots in fs_info have not
3824 	 * been consistent on disk.
3825 	 */
3826 	if (max_mirrors == 0)
3827 		backup_super_roots(fs_info);
3828 
3829 	sb = fs_info->super_for_commit;
3830 	dev_item = &sb->dev_item;
3831 
3832 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3833 	head = &fs_info->fs_devices->devices;
3834 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3835 
3836 	if (do_barriers) {
3837 		ret = barrier_all_devices(fs_info);
3838 		if (ret) {
3839 			mutex_unlock(
3840 				&fs_info->fs_devices->device_list_mutex);
3841 			btrfs_handle_fs_error(fs_info, ret,
3842 					      "errors while submitting device barriers.");
3843 			return ret;
3844 		}
3845 	}
3846 
3847 	list_for_each_entry(dev, head, dev_list) {
3848 		if (!dev->bdev) {
3849 			total_errors++;
3850 			continue;
3851 		}
3852 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3853 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3854 			continue;
3855 
3856 		btrfs_set_stack_device_generation(dev_item, 0);
3857 		btrfs_set_stack_device_type(dev_item, dev->type);
3858 		btrfs_set_stack_device_id(dev_item, dev->devid);
3859 		btrfs_set_stack_device_total_bytes(dev_item,
3860 						   dev->commit_total_bytes);
3861 		btrfs_set_stack_device_bytes_used(dev_item,
3862 						  dev->commit_bytes_used);
3863 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3864 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3865 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3866 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3867 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3868 		       BTRFS_FSID_SIZE);
3869 
3870 		flags = btrfs_super_flags(sb);
3871 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3872 
3873 		ret = btrfs_validate_write_super(fs_info, sb);
3874 		if (ret < 0) {
3875 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3876 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3877 				"unexpected superblock corruption detected");
3878 			return -EUCLEAN;
3879 		}
3880 
3881 		ret = write_dev_supers(dev, sb, max_mirrors);
3882 		if (ret)
3883 			total_errors++;
3884 	}
3885 	if (total_errors > max_errors) {
3886 		btrfs_err(fs_info, "%d errors while writing supers",
3887 			  total_errors);
3888 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3889 
3890 		/* FUA is masked off if unsupported and can't be the reason */
3891 		btrfs_handle_fs_error(fs_info, -EIO,
3892 				      "%d errors while writing supers",
3893 				      total_errors);
3894 		return -EIO;
3895 	}
3896 
3897 	total_errors = 0;
3898 	list_for_each_entry(dev, head, dev_list) {
3899 		if (!dev->bdev)
3900 			continue;
3901 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3902 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3903 			continue;
3904 
3905 		ret = wait_dev_supers(dev, max_mirrors);
3906 		if (ret)
3907 			total_errors++;
3908 	}
3909 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3910 	if (total_errors > max_errors) {
3911 		btrfs_handle_fs_error(fs_info, -EIO,
3912 				      "%d errors while writing supers",
3913 				      total_errors);
3914 		return -EIO;
3915 	}
3916 	return 0;
3917 }
3918 
3919 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3920 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3921 				  struct btrfs_root *root)
3922 {
3923 	spin_lock(&fs_info->fs_roots_radix_lock);
3924 	radix_tree_delete(&fs_info->fs_roots_radix,
3925 			  (unsigned long)root->root_key.objectid);
3926 	spin_unlock(&fs_info->fs_roots_radix_lock);
3927 
3928 	if (btrfs_root_refs(&root->root_item) == 0)
3929 		synchronize_srcu(&fs_info->subvol_srcu);
3930 
3931 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3932 		btrfs_free_log(NULL, root);
3933 		if (root->reloc_root) {
3934 			free_extent_buffer(root->reloc_root->node);
3935 			free_extent_buffer(root->reloc_root->commit_root);
3936 			btrfs_put_fs_root(root->reloc_root);
3937 			root->reloc_root = NULL;
3938 		}
3939 	}
3940 
3941 	if (root->free_ino_pinned)
3942 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3943 	if (root->free_ino_ctl)
3944 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3945 	btrfs_free_fs_root(root);
3946 }
3947 
btrfs_free_fs_root(struct btrfs_root * root)3948 void btrfs_free_fs_root(struct btrfs_root *root)
3949 {
3950 	iput(root->ino_cache_inode);
3951 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3952 	if (root->anon_dev)
3953 		free_anon_bdev(root->anon_dev);
3954 	if (root->subv_writers)
3955 		btrfs_free_subvolume_writers(root->subv_writers);
3956 	free_extent_buffer(root->node);
3957 	free_extent_buffer(root->commit_root);
3958 	kfree(root->free_ino_ctl);
3959 	kfree(root->free_ino_pinned);
3960 	btrfs_put_fs_root(root);
3961 }
3962 
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)3963 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3964 {
3965 	u64 root_objectid = 0;
3966 	struct btrfs_root *gang[8];
3967 	int i = 0;
3968 	int err = 0;
3969 	unsigned int ret = 0;
3970 	int index;
3971 
3972 	while (1) {
3973 		index = srcu_read_lock(&fs_info->subvol_srcu);
3974 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3975 					     (void **)gang, root_objectid,
3976 					     ARRAY_SIZE(gang));
3977 		if (!ret) {
3978 			srcu_read_unlock(&fs_info->subvol_srcu, index);
3979 			break;
3980 		}
3981 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3982 
3983 		for (i = 0; i < ret; i++) {
3984 			/* Avoid to grab roots in dead_roots */
3985 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3986 				gang[i] = NULL;
3987 				continue;
3988 			}
3989 			/* grab all the search result for later use */
3990 			gang[i] = btrfs_grab_fs_root(gang[i]);
3991 		}
3992 		srcu_read_unlock(&fs_info->subvol_srcu, index);
3993 
3994 		for (i = 0; i < ret; i++) {
3995 			if (!gang[i])
3996 				continue;
3997 			root_objectid = gang[i]->root_key.objectid;
3998 			err = btrfs_orphan_cleanup(gang[i]);
3999 			if (err)
4000 				break;
4001 			btrfs_put_fs_root(gang[i]);
4002 		}
4003 		root_objectid++;
4004 	}
4005 
4006 	/* release the uncleaned roots due to error */
4007 	for (; i < ret; i++) {
4008 		if (gang[i])
4009 			btrfs_put_fs_root(gang[i]);
4010 	}
4011 	return err;
4012 }
4013 
btrfs_commit_super(struct btrfs_fs_info * fs_info)4014 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4015 {
4016 	struct btrfs_root *root = fs_info->tree_root;
4017 	struct btrfs_trans_handle *trans;
4018 
4019 	mutex_lock(&fs_info->cleaner_mutex);
4020 	btrfs_run_delayed_iputs(fs_info);
4021 	mutex_unlock(&fs_info->cleaner_mutex);
4022 	wake_up_process(fs_info->cleaner_kthread);
4023 
4024 	/* wait until ongoing cleanup work done */
4025 	down_write(&fs_info->cleanup_work_sem);
4026 	up_write(&fs_info->cleanup_work_sem);
4027 
4028 	trans = btrfs_join_transaction(root);
4029 	if (IS_ERR(trans))
4030 		return PTR_ERR(trans);
4031 	return btrfs_commit_transaction(trans);
4032 }
4033 
close_ctree(struct btrfs_fs_info * fs_info)4034 void close_ctree(struct btrfs_fs_info *fs_info)
4035 {
4036 	int ret;
4037 
4038 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4039 	/*
4040 	 * We don't want the cleaner to start new transactions, add more delayed
4041 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4042 	 * because that frees the task_struct, and the transaction kthread might
4043 	 * still try to wake up the cleaner.
4044 	 */
4045 	kthread_park(fs_info->cleaner_kthread);
4046 
4047 	/* wait for the qgroup rescan worker to stop */
4048 	btrfs_qgroup_wait_for_completion(fs_info, false);
4049 
4050 	/* wait for the uuid_scan task to finish */
4051 	down(&fs_info->uuid_tree_rescan_sem);
4052 	/* avoid complains from lockdep et al., set sem back to initial state */
4053 	up(&fs_info->uuid_tree_rescan_sem);
4054 
4055 	/* pause restriper - we want to resume on mount */
4056 	btrfs_pause_balance(fs_info);
4057 
4058 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4059 
4060 	btrfs_scrub_cancel(fs_info);
4061 
4062 	/* wait for any defraggers to finish */
4063 	wait_event(fs_info->transaction_wait,
4064 		   (atomic_read(&fs_info->defrag_running) == 0));
4065 
4066 	/* clear out the rbtree of defraggable inodes */
4067 	btrfs_cleanup_defrag_inodes(fs_info);
4068 
4069 	cancel_work_sync(&fs_info->async_reclaim_work);
4070 
4071 	if (!sb_rdonly(fs_info->sb)) {
4072 		/*
4073 		 * The cleaner kthread is stopped, so do one final pass over
4074 		 * unused block groups.
4075 		 */
4076 		btrfs_delete_unused_bgs(fs_info);
4077 
4078 		/*
4079 		 * There might be existing delayed inode workers still running
4080 		 * and holding an empty delayed inode item. We must wait for
4081 		 * them to complete first because they can create a transaction.
4082 		 * This happens when someone calls btrfs_balance_delayed_items()
4083 		 * and then a transaction commit runs the same delayed nodes
4084 		 * before any delayed worker has done something with the nodes.
4085 		 * We must wait for any worker here and not at transaction
4086 		 * commit time since that could cause a deadlock.
4087 		 * This is a very rare case.
4088 		 */
4089 		btrfs_flush_workqueue(fs_info->delayed_workers);
4090 
4091 		ret = btrfs_commit_super(fs_info);
4092 		if (ret)
4093 			btrfs_err(fs_info, "commit super ret %d", ret);
4094 	}
4095 
4096 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4097 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4098 		btrfs_error_commit_super(fs_info);
4099 
4100 	kthread_stop(fs_info->transaction_kthread);
4101 	kthread_stop(fs_info->cleaner_kthread);
4102 
4103 	ASSERT(list_empty(&fs_info->delayed_iputs));
4104 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4105 
4106 	if (btrfs_check_quota_leak(fs_info)) {
4107 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4108 		btrfs_err(fs_info, "qgroup reserved space leaked");
4109 	}
4110 
4111 	btrfs_free_qgroup_config(fs_info);
4112 	ASSERT(list_empty(&fs_info->delalloc_roots));
4113 
4114 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4115 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4116 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4117 	}
4118 
4119 	if (percpu_counter_sum(&fs_info->dio_bytes))
4120 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4121 			   percpu_counter_sum(&fs_info->dio_bytes));
4122 
4123 	btrfs_sysfs_remove_mounted(fs_info);
4124 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4125 
4126 	btrfs_free_fs_roots(fs_info);
4127 
4128 	btrfs_put_block_group_cache(fs_info);
4129 
4130 	/*
4131 	 * we must make sure there is not any read request to
4132 	 * submit after we stopping all workers.
4133 	 */
4134 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4135 	btrfs_stop_all_workers(fs_info);
4136 
4137 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4138 	free_root_pointers(fs_info, true);
4139 
4140 	/*
4141 	 * We must free the block groups after dropping the fs_roots as we could
4142 	 * have had an IO error and have left over tree log blocks that aren't
4143 	 * cleaned up until the fs roots are freed.  This makes the block group
4144 	 * accounting appear to be wrong because there's pending reserved bytes,
4145 	 * so make sure we do the block group cleanup afterwards.
4146 	 */
4147 	btrfs_free_block_groups(fs_info);
4148 
4149 	iput(fs_info->btree_inode);
4150 
4151 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4152 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4153 		btrfsic_unmount(fs_info->fs_devices);
4154 #endif
4155 
4156 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4157 	btrfs_close_devices(fs_info->fs_devices);
4158 
4159 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4160 	percpu_counter_destroy(&fs_info->delalloc_bytes);
4161 	percpu_counter_destroy(&fs_info->dio_bytes);
4162 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4163 	cleanup_srcu_struct(&fs_info->subvol_srcu);
4164 
4165 	btrfs_free_csum_hash(fs_info);
4166 	btrfs_free_stripe_hash_table(fs_info);
4167 	btrfs_free_ref_cache(fs_info);
4168 }
4169 
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4170 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4171 			  int atomic)
4172 {
4173 	int ret;
4174 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4175 
4176 	ret = extent_buffer_uptodate(buf);
4177 	if (!ret)
4178 		return ret;
4179 
4180 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4181 				    parent_transid, atomic);
4182 	if (ret == -EAGAIN)
4183 		return ret;
4184 	return !ret;
4185 }
4186 
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4187 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4188 {
4189 	struct btrfs_fs_info *fs_info;
4190 	struct btrfs_root *root;
4191 	u64 transid = btrfs_header_generation(buf);
4192 	int was_dirty;
4193 
4194 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4195 	/*
4196 	 * This is a fast path so only do this check if we have sanity tests
4197 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4198 	 * outside of the sanity tests.
4199 	 */
4200 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4201 		return;
4202 #endif
4203 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4204 	fs_info = root->fs_info;
4205 	btrfs_assert_tree_locked(buf);
4206 	if (transid != fs_info->generation)
4207 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4208 			buf->start, transid, fs_info->generation);
4209 	was_dirty = set_extent_buffer_dirty(buf);
4210 	if (!was_dirty)
4211 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4212 					 buf->len,
4213 					 fs_info->dirty_metadata_batch);
4214 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4215 	/*
4216 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4217 	 * but item data not updated.
4218 	 * So here we should only check item pointers, not item data.
4219 	 */
4220 	if (btrfs_header_level(buf) == 0 &&
4221 	    btrfs_check_leaf_relaxed(buf)) {
4222 		btrfs_print_leaf(buf);
4223 		ASSERT(0);
4224 	}
4225 #endif
4226 }
4227 
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4228 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4229 					int flush_delayed)
4230 {
4231 	/*
4232 	 * looks as though older kernels can get into trouble with
4233 	 * this code, they end up stuck in balance_dirty_pages forever
4234 	 */
4235 	int ret;
4236 
4237 	if (current->flags & PF_MEMALLOC)
4238 		return;
4239 
4240 	if (flush_delayed)
4241 		btrfs_balance_delayed_items(fs_info);
4242 
4243 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4244 				     BTRFS_DIRTY_METADATA_THRESH,
4245 				     fs_info->dirty_metadata_batch);
4246 	if (ret > 0) {
4247 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4248 	}
4249 }
4250 
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4251 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4252 {
4253 	__btrfs_btree_balance_dirty(fs_info, 1);
4254 }
4255 
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4256 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4257 {
4258 	__btrfs_btree_balance_dirty(fs_info, 0);
4259 }
4260 
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid,int level,struct btrfs_key * first_key)4261 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4262 		      struct btrfs_key *first_key)
4263 {
4264 	return btree_read_extent_buffer_pages(buf, parent_transid,
4265 					      level, first_key);
4266 }
4267 
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4268 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4269 {
4270 	/* cleanup FS via transaction */
4271 	btrfs_cleanup_transaction(fs_info);
4272 
4273 	mutex_lock(&fs_info->cleaner_mutex);
4274 	btrfs_run_delayed_iputs(fs_info);
4275 	mutex_unlock(&fs_info->cleaner_mutex);
4276 
4277 	down_write(&fs_info->cleanup_work_sem);
4278 	up_write(&fs_info->cleanup_work_sem);
4279 }
4280 
btrfs_destroy_ordered_extents(struct btrfs_root * root)4281 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4282 {
4283 	struct btrfs_ordered_extent *ordered;
4284 
4285 	spin_lock(&root->ordered_extent_lock);
4286 	/*
4287 	 * This will just short circuit the ordered completion stuff which will
4288 	 * make sure the ordered extent gets properly cleaned up.
4289 	 */
4290 	list_for_each_entry(ordered, &root->ordered_extents,
4291 			    root_extent_list)
4292 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4293 	spin_unlock(&root->ordered_extent_lock);
4294 }
4295 
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4296 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4297 {
4298 	struct btrfs_root *root;
4299 	struct list_head splice;
4300 
4301 	INIT_LIST_HEAD(&splice);
4302 
4303 	spin_lock(&fs_info->ordered_root_lock);
4304 	list_splice_init(&fs_info->ordered_roots, &splice);
4305 	while (!list_empty(&splice)) {
4306 		root = list_first_entry(&splice, struct btrfs_root,
4307 					ordered_root);
4308 		list_move_tail(&root->ordered_root,
4309 			       &fs_info->ordered_roots);
4310 
4311 		spin_unlock(&fs_info->ordered_root_lock);
4312 		btrfs_destroy_ordered_extents(root);
4313 
4314 		cond_resched();
4315 		spin_lock(&fs_info->ordered_root_lock);
4316 	}
4317 	spin_unlock(&fs_info->ordered_root_lock);
4318 
4319 	/*
4320 	 * We need this here because if we've been flipped read-only we won't
4321 	 * get sync() from the umount, so we need to make sure any ordered
4322 	 * extents that haven't had their dirty pages IO start writeout yet
4323 	 * actually get run and error out properly.
4324 	 */
4325 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4326 }
4327 
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4328 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4329 				      struct btrfs_fs_info *fs_info)
4330 {
4331 	struct rb_node *node;
4332 	struct btrfs_delayed_ref_root *delayed_refs;
4333 	struct btrfs_delayed_ref_node *ref;
4334 	int ret = 0;
4335 
4336 	delayed_refs = &trans->delayed_refs;
4337 
4338 	spin_lock(&delayed_refs->lock);
4339 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4340 		spin_unlock(&delayed_refs->lock);
4341 		btrfs_info(fs_info, "delayed_refs has NO entry");
4342 		return ret;
4343 	}
4344 
4345 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4346 		struct btrfs_delayed_ref_head *head;
4347 		struct rb_node *n;
4348 		bool pin_bytes = false;
4349 
4350 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4351 				href_node);
4352 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4353 			continue;
4354 
4355 		spin_lock(&head->lock);
4356 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4357 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4358 				       ref_node);
4359 			ref->in_tree = 0;
4360 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4361 			RB_CLEAR_NODE(&ref->ref_node);
4362 			if (!list_empty(&ref->add_list))
4363 				list_del(&ref->add_list);
4364 			atomic_dec(&delayed_refs->num_entries);
4365 			btrfs_put_delayed_ref(ref);
4366 		}
4367 		if (head->must_insert_reserved)
4368 			pin_bytes = true;
4369 		btrfs_free_delayed_extent_op(head->extent_op);
4370 		btrfs_delete_ref_head(delayed_refs, head);
4371 		spin_unlock(&head->lock);
4372 		spin_unlock(&delayed_refs->lock);
4373 		mutex_unlock(&head->mutex);
4374 
4375 		if (pin_bytes)
4376 			btrfs_pin_extent(fs_info, head->bytenr,
4377 					 head->num_bytes, 1);
4378 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4379 		btrfs_put_delayed_ref_head(head);
4380 		cond_resched();
4381 		spin_lock(&delayed_refs->lock);
4382 	}
4383 	btrfs_qgroup_destroy_extent_records(trans);
4384 
4385 	spin_unlock(&delayed_refs->lock);
4386 
4387 	return ret;
4388 }
4389 
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4390 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4391 {
4392 	struct btrfs_inode *btrfs_inode;
4393 	struct list_head splice;
4394 
4395 	INIT_LIST_HEAD(&splice);
4396 
4397 	spin_lock(&root->delalloc_lock);
4398 	list_splice_init(&root->delalloc_inodes, &splice);
4399 
4400 	while (!list_empty(&splice)) {
4401 		struct inode *inode = NULL;
4402 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4403 					       delalloc_inodes);
4404 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4405 		spin_unlock(&root->delalloc_lock);
4406 
4407 		/*
4408 		 * Make sure we get a live inode and that it'll not disappear
4409 		 * meanwhile.
4410 		 */
4411 		inode = igrab(&btrfs_inode->vfs_inode);
4412 		if (inode) {
4413 			unsigned int nofs_flag;
4414 
4415 			nofs_flag = memalloc_nofs_save();
4416 			invalidate_inode_pages2(inode->i_mapping);
4417 			memalloc_nofs_restore(nofs_flag);
4418 			iput(inode);
4419 		}
4420 		spin_lock(&root->delalloc_lock);
4421 	}
4422 	spin_unlock(&root->delalloc_lock);
4423 }
4424 
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4425 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4426 {
4427 	struct btrfs_root *root;
4428 	struct list_head splice;
4429 
4430 	INIT_LIST_HEAD(&splice);
4431 
4432 	spin_lock(&fs_info->delalloc_root_lock);
4433 	list_splice_init(&fs_info->delalloc_roots, &splice);
4434 	while (!list_empty(&splice)) {
4435 		root = list_first_entry(&splice, struct btrfs_root,
4436 					 delalloc_root);
4437 		root = btrfs_grab_fs_root(root);
4438 		BUG_ON(!root);
4439 		spin_unlock(&fs_info->delalloc_root_lock);
4440 
4441 		btrfs_destroy_delalloc_inodes(root);
4442 		btrfs_put_fs_root(root);
4443 
4444 		spin_lock(&fs_info->delalloc_root_lock);
4445 	}
4446 	spin_unlock(&fs_info->delalloc_root_lock);
4447 }
4448 
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4449 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4450 					struct extent_io_tree *dirty_pages,
4451 					int mark)
4452 {
4453 	int ret;
4454 	struct extent_buffer *eb;
4455 	u64 start = 0;
4456 	u64 end;
4457 
4458 	while (1) {
4459 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4460 					    mark, NULL);
4461 		if (ret)
4462 			break;
4463 
4464 		clear_extent_bits(dirty_pages, start, end, mark);
4465 		while (start <= end) {
4466 			eb = find_extent_buffer(fs_info, start);
4467 			start += fs_info->nodesize;
4468 			if (!eb)
4469 				continue;
4470 			wait_on_extent_buffer_writeback(eb);
4471 
4472 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4473 					       &eb->bflags))
4474 				clear_extent_buffer_dirty(eb);
4475 			free_extent_buffer_stale(eb);
4476 		}
4477 	}
4478 
4479 	return ret;
4480 }
4481 
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * pinned_extents)4482 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4483 				       struct extent_io_tree *pinned_extents)
4484 {
4485 	struct extent_io_tree *unpin;
4486 	u64 start;
4487 	u64 end;
4488 	int ret;
4489 	bool loop = true;
4490 
4491 	unpin = pinned_extents;
4492 again:
4493 	while (1) {
4494 		struct extent_state *cached_state = NULL;
4495 
4496 		/*
4497 		 * The btrfs_finish_extent_commit() may get the same range as
4498 		 * ours between find_first_extent_bit and clear_extent_dirty.
4499 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4500 		 * the same extent range.
4501 		 */
4502 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4503 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4504 					    EXTENT_DIRTY, &cached_state);
4505 		if (ret) {
4506 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4507 			break;
4508 		}
4509 
4510 		clear_extent_dirty(unpin, start, end, &cached_state);
4511 		free_extent_state(cached_state);
4512 		btrfs_error_unpin_extent_range(fs_info, start, end);
4513 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4514 		cond_resched();
4515 	}
4516 
4517 	if (loop) {
4518 		if (unpin == &fs_info->freed_extents[0])
4519 			unpin = &fs_info->freed_extents[1];
4520 		else
4521 			unpin = &fs_info->freed_extents[0];
4522 		loop = false;
4523 		goto again;
4524 	}
4525 
4526 	return 0;
4527 }
4528 
btrfs_cleanup_bg_io(struct btrfs_block_group_cache * cache)4529 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4530 {
4531 	struct inode *inode;
4532 
4533 	inode = cache->io_ctl.inode;
4534 	if (inode) {
4535 		unsigned int nofs_flag;
4536 
4537 		nofs_flag = memalloc_nofs_save();
4538 		invalidate_inode_pages2(inode->i_mapping);
4539 		memalloc_nofs_restore(nofs_flag);
4540 
4541 		BTRFS_I(inode)->generation = 0;
4542 		cache->io_ctl.inode = NULL;
4543 		iput(inode);
4544 	}
4545 	ASSERT(cache->io_ctl.pages == NULL);
4546 	btrfs_put_block_group(cache);
4547 }
4548 
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4549 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4550 			     struct btrfs_fs_info *fs_info)
4551 {
4552 	struct btrfs_block_group_cache *cache;
4553 
4554 	spin_lock(&cur_trans->dirty_bgs_lock);
4555 	while (!list_empty(&cur_trans->dirty_bgs)) {
4556 		cache = list_first_entry(&cur_trans->dirty_bgs,
4557 					 struct btrfs_block_group_cache,
4558 					 dirty_list);
4559 
4560 		if (!list_empty(&cache->io_list)) {
4561 			spin_unlock(&cur_trans->dirty_bgs_lock);
4562 			list_del_init(&cache->io_list);
4563 			btrfs_cleanup_bg_io(cache);
4564 			spin_lock(&cur_trans->dirty_bgs_lock);
4565 		}
4566 
4567 		list_del_init(&cache->dirty_list);
4568 		spin_lock(&cache->lock);
4569 		cache->disk_cache_state = BTRFS_DC_ERROR;
4570 		spin_unlock(&cache->lock);
4571 
4572 		spin_unlock(&cur_trans->dirty_bgs_lock);
4573 		btrfs_put_block_group(cache);
4574 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4575 		spin_lock(&cur_trans->dirty_bgs_lock);
4576 	}
4577 	spin_unlock(&cur_trans->dirty_bgs_lock);
4578 
4579 	/*
4580 	 * Refer to the definition of io_bgs member for details why it's safe
4581 	 * to use it without any locking
4582 	 */
4583 	while (!list_empty(&cur_trans->io_bgs)) {
4584 		cache = list_first_entry(&cur_trans->io_bgs,
4585 					 struct btrfs_block_group_cache,
4586 					 io_list);
4587 
4588 		list_del_init(&cache->io_list);
4589 		spin_lock(&cache->lock);
4590 		cache->disk_cache_state = BTRFS_DC_ERROR;
4591 		spin_unlock(&cache->lock);
4592 		btrfs_cleanup_bg_io(cache);
4593 	}
4594 }
4595 
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4596 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4597 				   struct btrfs_fs_info *fs_info)
4598 {
4599 	struct btrfs_device *dev, *tmp;
4600 
4601 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4602 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4603 	ASSERT(list_empty(&cur_trans->io_bgs));
4604 
4605 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4606 				 post_commit_list) {
4607 		list_del_init(&dev->post_commit_list);
4608 	}
4609 
4610 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4611 
4612 	cur_trans->state = TRANS_STATE_COMMIT_START;
4613 	wake_up(&fs_info->transaction_blocked_wait);
4614 
4615 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4616 	wake_up(&fs_info->transaction_wait);
4617 
4618 	btrfs_destroy_delayed_inodes(fs_info);
4619 
4620 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4621 				     EXTENT_DIRTY);
4622 	btrfs_destroy_pinned_extent(fs_info,
4623 				    fs_info->pinned_extents);
4624 
4625 	cur_trans->state =TRANS_STATE_COMPLETED;
4626 	wake_up(&cur_trans->commit_wait);
4627 }
4628 
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4629 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4630 {
4631 	struct btrfs_transaction *t;
4632 
4633 	mutex_lock(&fs_info->transaction_kthread_mutex);
4634 
4635 	spin_lock(&fs_info->trans_lock);
4636 	while (!list_empty(&fs_info->trans_list)) {
4637 		t = list_first_entry(&fs_info->trans_list,
4638 				     struct btrfs_transaction, list);
4639 		if (t->state >= TRANS_STATE_COMMIT_START) {
4640 			refcount_inc(&t->use_count);
4641 			spin_unlock(&fs_info->trans_lock);
4642 			btrfs_wait_for_commit(fs_info, t->transid);
4643 			btrfs_put_transaction(t);
4644 			spin_lock(&fs_info->trans_lock);
4645 			continue;
4646 		}
4647 		if (t == fs_info->running_transaction) {
4648 			t->state = TRANS_STATE_COMMIT_DOING;
4649 			spin_unlock(&fs_info->trans_lock);
4650 			/*
4651 			 * We wait for 0 num_writers since we don't hold a trans
4652 			 * handle open currently for this transaction.
4653 			 */
4654 			wait_event(t->writer_wait,
4655 				   atomic_read(&t->num_writers) == 0);
4656 		} else {
4657 			spin_unlock(&fs_info->trans_lock);
4658 		}
4659 		btrfs_cleanup_one_transaction(t, fs_info);
4660 
4661 		spin_lock(&fs_info->trans_lock);
4662 		if (t == fs_info->running_transaction)
4663 			fs_info->running_transaction = NULL;
4664 		list_del_init(&t->list);
4665 		spin_unlock(&fs_info->trans_lock);
4666 
4667 		btrfs_put_transaction(t);
4668 		trace_btrfs_transaction_commit(fs_info->tree_root);
4669 		spin_lock(&fs_info->trans_lock);
4670 	}
4671 	spin_unlock(&fs_info->trans_lock);
4672 	btrfs_destroy_all_ordered_extents(fs_info);
4673 	btrfs_destroy_delayed_inodes(fs_info);
4674 	btrfs_assert_delayed_root_empty(fs_info);
4675 	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4676 	btrfs_destroy_all_delalloc_inodes(fs_info);
4677 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4678 
4679 	return 0;
4680 }
4681 
4682 static const struct extent_io_ops btree_extent_io_ops = {
4683 	/* mandatory callbacks */
4684 	.submit_bio_hook = btree_submit_bio_hook,
4685 	.readpage_end_io_hook = btree_readpage_end_io_hook,
4686 };
4687