1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 const struct btrfs_key *ins_key, struct btrfs_path *path,
22 int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24 struct extent_buffer *dst,
25 struct extent_buffer *src, int empty);
26 static int balance_node_right(struct btrfs_trans_handle *trans,
27 struct extent_buffer *dst_buf,
28 struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 int level, int slot);
31
32 static const struct btrfs_csums {
33 u16 size;
34 const char *name;
35 } btrfs_csums[] = {
36 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
37 };
38
btrfs_super_csum_size(const struct btrfs_super_block * s)39 int btrfs_super_csum_size(const struct btrfs_super_block *s)
40 {
41 u16 t = btrfs_super_csum_type(s);
42 /*
43 * csum type is validated at mount time
44 */
45 return btrfs_csums[t].size;
46 }
47
btrfs_super_csum_name(u16 csum_type)48 const char *btrfs_super_csum_name(u16 csum_type)
49 {
50 /* csum type is validated at mount time */
51 return btrfs_csums[csum_type].name;
52 }
53
btrfs_alloc_path(void)54 struct btrfs_path *btrfs_alloc_path(void)
55 {
56 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
57 }
58
59 /*
60 * set all locked nodes in the path to blocking locks. This should
61 * be done before scheduling
62 */
btrfs_set_path_blocking(struct btrfs_path * p)63 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64 {
65 int i;
66 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67 if (!p->nodes[i] || !p->locks[i])
68 continue;
69 /*
70 * If we currently have a spinning reader or writer lock this
71 * will bump the count of blocking holders and drop the
72 * spinlock.
73 */
74 if (p->locks[i] == BTRFS_READ_LOCK) {
75 btrfs_set_lock_blocking_read(p->nodes[i]);
76 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
77 } else if (p->locks[i] == BTRFS_WRITE_LOCK) {
78 btrfs_set_lock_blocking_write(p->nodes[i]);
79 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
80 }
81 }
82 }
83
84 /* this also releases the path */
btrfs_free_path(struct btrfs_path * p)85 void btrfs_free_path(struct btrfs_path *p)
86 {
87 if (!p)
88 return;
89 btrfs_release_path(p);
90 kmem_cache_free(btrfs_path_cachep, p);
91 }
92
93 /*
94 * path release drops references on the extent buffers in the path
95 * and it drops any locks held by this path
96 *
97 * It is safe to call this on paths that no locks or extent buffers held.
98 */
btrfs_release_path(struct btrfs_path * p)99 noinline void btrfs_release_path(struct btrfs_path *p)
100 {
101 int i;
102
103 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
104 p->slots[i] = 0;
105 if (!p->nodes[i])
106 continue;
107 if (p->locks[i]) {
108 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
109 p->locks[i] = 0;
110 }
111 free_extent_buffer(p->nodes[i]);
112 p->nodes[i] = NULL;
113 }
114 }
115
116 /*
117 * safely gets a reference on the root node of a tree. A lock
118 * is not taken, so a concurrent writer may put a different node
119 * at the root of the tree. See btrfs_lock_root_node for the
120 * looping required.
121 *
122 * The extent buffer returned by this has a reference taken, so
123 * it won't disappear. It may stop being the root of the tree
124 * at any time because there are no locks held.
125 */
btrfs_root_node(struct btrfs_root * root)126 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
127 {
128 struct extent_buffer *eb;
129
130 while (1) {
131 rcu_read_lock();
132 eb = rcu_dereference(root->node);
133
134 /*
135 * RCU really hurts here, we could free up the root node because
136 * it was COWed but we may not get the new root node yet so do
137 * the inc_not_zero dance and if it doesn't work then
138 * synchronize_rcu and try again.
139 */
140 if (atomic_inc_not_zero(&eb->refs)) {
141 rcu_read_unlock();
142 break;
143 }
144 rcu_read_unlock();
145 synchronize_rcu();
146 }
147 return eb;
148 }
149
150 /* loop around taking references on and locking the root node of the
151 * tree until you end up with a lock on the root. A locked buffer
152 * is returned, with a reference held.
153 */
btrfs_lock_root_node(struct btrfs_root * root)154 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
155 {
156 struct extent_buffer *eb;
157
158 while (1) {
159 eb = btrfs_root_node(root);
160 btrfs_tree_lock(eb);
161 if (eb == root->node)
162 break;
163 btrfs_tree_unlock(eb);
164 free_extent_buffer(eb);
165 }
166 return eb;
167 }
168
169 /* loop around taking references on and locking the root node of the
170 * tree until you end up with a lock on the root. A locked buffer
171 * is returned, with a reference held.
172 */
btrfs_read_lock_root_node(struct btrfs_root * root)173 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
174 {
175 struct extent_buffer *eb;
176
177 while (1) {
178 eb = btrfs_root_node(root);
179 btrfs_tree_read_lock(eb);
180 if (eb == root->node)
181 break;
182 btrfs_tree_read_unlock(eb);
183 free_extent_buffer(eb);
184 }
185 return eb;
186 }
187
188 /* cowonly root (everything not a reference counted cow subvolume), just get
189 * put onto a simple dirty list. transaction.c walks this to make sure they
190 * get properly updated on disk.
191 */
add_root_to_dirty_list(struct btrfs_root * root)192 static void add_root_to_dirty_list(struct btrfs_root *root)
193 {
194 struct btrfs_fs_info *fs_info = root->fs_info;
195
196 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
197 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
198 return;
199
200 spin_lock(&fs_info->trans_lock);
201 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
202 /* Want the extent tree to be the last on the list */
203 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
204 list_move_tail(&root->dirty_list,
205 &fs_info->dirty_cowonly_roots);
206 else
207 list_move(&root->dirty_list,
208 &fs_info->dirty_cowonly_roots);
209 }
210 spin_unlock(&fs_info->trans_lock);
211 }
212
213 /*
214 * used by snapshot creation to make a copy of a root for a tree with
215 * a given objectid. The buffer with the new root node is returned in
216 * cow_ret, and this func returns zero on success or a negative error code.
217 */
btrfs_copy_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer ** cow_ret,u64 new_root_objectid)218 int btrfs_copy_root(struct btrfs_trans_handle *trans,
219 struct btrfs_root *root,
220 struct extent_buffer *buf,
221 struct extent_buffer **cow_ret, u64 new_root_objectid)
222 {
223 struct btrfs_fs_info *fs_info = root->fs_info;
224 struct extent_buffer *cow;
225 int ret = 0;
226 int level;
227 struct btrfs_disk_key disk_key;
228
229 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
230 trans->transid != fs_info->running_transaction->transid);
231 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
232 trans->transid != root->last_trans);
233
234 level = btrfs_header_level(buf);
235 if (level == 0)
236 btrfs_item_key(buf, &disk_key, 0);
237 else
238 btrfs_node_key(buf, &disk_key, 0);
239
240 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
241 &disk_key, level, buf->start, 0);
242 if (IS_ERR(cow))
243 return PTR_ERR(cow);
244
245 copy_extent_buffer_full(cow, buf);
246 btrfs_set_header_bytenr(cow, cow->start);
247 btrfs_set_header_generation(cow, trans->transid);
248 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
249 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
250 BTRFS_HEADER_FLAG_RELOC);
251 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
252 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
253 else
254 btrfs_set_header_owner(cow, new_root_objectid);
255
256 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
257
258 WARN_ON(btrfs_header_generation(buf) > trans->transid);
259 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
260 ret = btrfs_inc_ref(trans, root, cow, 1);
261 else
262 ret = btrfs_inc_ref(trans, root, cow, 0);
263 if (ret) {
264 btrfs_tree_unlock(cow);
265 free_extent_buffer(cow);
266 btrfs_abort_transaction(trans, ret);
267 return ret;
268 }
269
270 btrfs_mark_buffer_dirty(cow);
271 *cow_ret = cow;
272 return 0;
273 }
274
275 enum mod_log_op {
276 MOD_LOG_KEY_REPLACE,
277 MOD_LOG_KEY_ADD,
278 MOD_LOG_KEY_REMOVE,
279 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
280 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
281 MOD_LOG_MOVE_KEYS,
282 MOD_LOG_ROOT_REPLACE,
283 };
284
285 struct tree_mod_root {
286 u64 logical;
287 u8 level;
288 };
289
290 struct tree_mod_elem {
291 struct rb_node node;
292 u64 logical;
293 u64 seq;
294 enum mod_log_op op;
295
296 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
297 int slot;
298
299 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
300 u64 generation;
301
302 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
303 struct btrfs_disk_key key;
304 u64 blockptr;
305
306 /* this is used for op == MOD_LOG_MOVE_KEYS */
307 struct {
308 int dst_slot;
309 int nr_items;
310 } move;
311
312 /* this is used for op == MOD_LOG_ROOT_REPLACE */
313 struct tree_mod_root old_root;
314 };
315
316 /*
317 * Pull a new tree mod seq number for our operation.
318 */
btrfs_inc_tree_mod_seq(struct btrfs_fs_info * fs_info)319 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
320 {
321 return atomic64_inc_return(&fs_info->tree_mod_seq);
322 }
323
324 /*
325 * This adds a new blocker to the tree mod log's blocker list if the @elem
326 * passed does not already have a sequence number set. So when a caller expects
327 * to record tree modifications, it should ensure to set elem->seq to zero
328 * before calling btrfs_get_tree_mod_seq.
329 * Returns a fresh, unused tree log modification sequence number, even if no new
330 * blocker was added.
331 */
btrfs_get_tree_mod_seq(struct btrfs_fs_info * fs_info,struct seq_list * elem)332 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
333 struct seq_list *elem)
334 {
335 write_lock(&fs_info->tree_mod_log_lock);
336 if (!elem->seq) {
337 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
338 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
339 }
340 write_unlock(&fs_info->tree_mod_log_lock);
341
342 return elem->seq;
343 }
344
btrfs_put_tree_mod_seq(struct btrfs_fs_info * fs_info,struct seq_list * elem)345 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
346 struct seq_list *elem)
347 {
348 struct rb_root *tm_root;
349 struct rb_node *node;
350 struct rb_node *next;
351 struct seq_list *cur_elem;
352 struct tree_mod_elem *tm;
353 u64 min_seq = (u64)-1;
354 u64 seq_putting = elem->seq;
355
356 if (!seq_putting)
357 return;
358
359 write_lock(&fs_info->tree_mod_log_lock);
360 list_del(&elem->list);
361 elem->seq = 0;
362
363 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
364 if (cur_elem->seq < min_seq) {
365 if (seq_putting > cur_elem->seq) {
366 /*
367 * blocker with lower sequence number exists, we
368 * cannot remove anything from the log
369 */
370 write_unlock(&fs_info->tree_mod_log_lock);
371 return;
372 }
373 min_seq = cur_elem->seq;
374 }
375 }
376
377 /*
378 * anything that's lower than the lowest existing (read: blocked)
379 * sequence number can be removed from the tree.
380 */
381 tm_root = &fs_info->tree_mod_log;
382 for (node = rb_first(tm_root); node; node = next) {
383 next = rb_next(node);
384 tm = rb_entry(node, struct tree_mod_elem, node);
385 if (tm->seq >= min_seq)
386 continue;
387 rb_erase(node, tm_root);
388 kfree(tm);
389 }
390 write_unlock(&fs_info->tree_mod_log_lock);
391 }
392
393 /*
394 * key order of the log:
395 * node/leaf start address -> sequence
396 *
397 * The 'start address' is the logical address of the *new* root node
398 * for root replace operations, or the logical address of the affected
399 * block for all other operations.
400 */
401 static noinline int
__tree_mod_log_insert(struct btrfs_fs_info * fs_info,struct tree_mod_elem * tm)402 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
403 {
404 struct rb_root *tm_root;
405 struct rb_node **new;
406 struct rb_node *parent = NULL;
407 struct tree_mod_elem *cur;
408
409 lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
410
411 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
412
413 tm_root = &fs_info->tree_mod_log;
414 new = &tm_root->rb_node;
415 while (*new) {
416 cur = rb_entry(*new, struct tree_mod_elem, node);
417 parent = *new;
418 if (cur->logical < tm->logical)
419 new = &((*new)->rb_left);
420 else if (cur->logical > tm->logical)
421 new = &((*new)->rb_right);
422 else if (cur->seq < tm->seq)
423 new = &((*new)->rb_left);
424 else if (cur->seq > tm->seq)
425 new = &((*new)->rb_right);
426 else
427 return -EEXIST;
428 }
429
430 rb_link_node(&tm->node, parent, new);
431 rb_insert_color(&tm->node, tm_root);
432 return 0;
433 }
434
435 /*
436 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
437 * returns zero with the tree_mod_log_lock acquired. The caller must hold
438 * this until all tree mod log insertions are recorded in the rb tree and then
439 * write unlock fs_info::tree_mod_log_lock.
440 */
tree_mod_dont_log(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)441 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
442 struct extent_buffer *eb) {
443 smp_mb();
444 if (list_empty(&(fs_info)->tree_mod_seq_list))
445 return 1;
446 if (eb && btrfs_header_level(eb) == 0)
447 return 1;
448
449 write_lock(&fs_info->tree_mod_log_lock);
450 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
451 write_unlock(&fs_info->tree_mod_log_lock);
452 return 1;
453 }
454
455 return 0;
456 }
457
458 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
tree_mod_need_log(const struct btrfs_fs_info * fs_info,struct extent_buffer * eb)459 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
460 struct extent_buffer *eb)
461 {
462 smp_mb();
463 if (list_empty(&(fs_info)->tree_mod_seq_list))
464 return 0;
465 if (eb && btrfs_header_level(eb) == 0)
466 return 0;
467
468 return 1;
469 }
470
471 static struct tree_mod_elem *
alloc_tree_mod_elem(struct extent_buffer * eb,int slot,enum mod_log_op op,gfp_t flags)472 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
473 enum mod_log_op op, gfp_t flags)
474 {
475 struct tree_mod_elem *tm;
476
477 tm = kzalloc(sizeof(*tm), flags);
478 if (!tm)
479 return NULL;
480
481 tm->logical = eb->start;
482 if (op != MOD_LOG_KEY_ADD) {
483 btrfs_node_key(eb, &tm->key, slot);
484 tm->blockptr = btrfs_node_blockptr(eb, slot);
485 }
486 tm->op = op;
487 tm->slot = slot;
488 tm->generation = btrfs_node_ptr_generation(eb, slot);
489 RB_CLEAR_NODE(&tm->node);
490
491 return tm;
492 }
493
tree_mod_log_insert_key(struct extent_buffer * eb,int slot,enum mod_log_op op,gfp_t flags)494 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
495 enum mod_log_op op, gfp_t flags)
496 {
497 struct tree_mod_elem *tm;
498 int ret;
499
500 if (!tree_mod_need_log(eb->fs_info, eb))
501 return 0;
502
503 tm = alloc_tree_mod_elem(eb, slot, op, flags);
504 if (!tm)
505 return -ENOMEM;
506
507 if (tree_mod_dont_log(eb->fs_info, eb)) {
508 kfree(tm);
509 return 0;
510 }
511
512 ret = __tree_mod_log_insert(eb->fs_info, tm);
513 write_unlock(&eb->fs_info->tree_mod_log_lock);
514 if (ret)
515 kfree(tm);
516
517 return ret;
518 }
519
tree_mod_log_insert_move(struct extent_buffer * eb,int dst_slot,int src_slot,int nr_items)520 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
521 int dst_slot, int src_slot, int nr_items)
522 {
523 struct tree_mod_elem *tm = NULL;
524 struct tree_mod_elem **tm_list = NULL;
525 int ret = 0;
526 int i;
527 int locked = 0;
528
529 if (!tree_mod_need_log(eb->fs_info, eb))
530 return 0;
531
532 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
533 if (!tm_list)
534 return -ENOMEM;
535
536 tm = kzalloc(sizeof(*tm), GFP_NOFS);
537 if (!tm) {
538 ret = -ENOMEM;
539 goto free_tms;
540 }
541
542 tm->logical = eb->start;
543 tm->slot = src_slot;
544 tm->move.dst_slot = dst_slot;
545 tm->move.nr_items = nr_items;
546 tm->op = MOD_LOG_MOVE_KEYS;
547
548 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
549 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
550 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
551 if (!tm_list[i]) {
552 ret = -ENOMEM;
553 goto free_tms;
554 }
555 }
556
557 if (tree_mod_dont_log(eb->fs_info, eb))
558 goto free_tms;
559 locked = 1;
560
561 /*
562 * When we override something during the move, we log these removals.
563 * This can only happen when we move towards the beginning of the
564 * buffer, i.e. dst_slot < src_slot.
565 */
566 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
567 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
568 if (ret)
569 goto free_tms;
570 }
571
572 ret = __tree_mod_log_insert(eb->fs_info, tm);
573 if (ret)
574 goto free_tms;
575 write_unlock(&eb->fs_info->tree_mod_log_lock);
576 kfree(tm_list);
577
578 return 0;
579 free_tms:
580 for (i = 0; i < nr_items; i++) {
581 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
582 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
583 kfree(tm_list[i]);
584 }
585 if (locked)
586 write_unlock(&eb->fs_info->tree_mod_log_lock);
587 kfree(tm_list);
588 kfree(tm);
589
590 return ret;
591 }
592
593 static inline int
__tree_mod_log_free_eb(struct btrfs_fs_info * fs_info,struct tree_mod_elem ** tm_list,int nritems)594 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
595 struct tree_mod_elem **tm_list,
596 int nritems)
597 {
598 int i, j;
599 int ret;
600
601 for (i = nritems - 1; i >= 0; i--) {
602 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
603 if (ret) {
604 for (j = nritems - 1; j > i; j--)
605 rb_erase(&tm_list[j]->node,
606 &fs_info->tree_mod_log);
607 return ret;
608 }
609 }
610
611 return 0;
612 }
613
tree_mod_log_insert_root(struct extent_buffer * old_root,struct extent_buffer * new_root,int log_removal)614 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
615 struct extent_buffer *new_root, int log_removal)
616 {
617 struct btrfs_fs_info *fs_info = old_root->fs_info;
618 struct tree_mod_elem *tm = NULL;
619 struct tree_mod_elem **tm_list = NULL;
620 int nritems = 0;
621 int ret = 0;
622 int i;
623
624 if (!tree_mod_need_log(fs_info, NULL))
625 return 0;
626
627 if (log_removal && btrfs_header_level(old_root) > 0) {
628 nritems = btrfs_header_nritems(old_root);
629 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
630 GFP_NOFS);
631 if (!tm_list) {
632 ret = -ENOMEM;
633 goto free_tms;
634 }
635 for (i = 0; i < nritems; i++) {
636 tm_list[i] = alloc_tree_mod_elem(old_root, i,
637 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
638 if (!tm_list[i]) {
639 ret = -ENOMEM;
640 goto free_tms;
641 }
642 }
643 }
644
645 tm = kzalloc(sizeof(*tm), GFP_NOFS);
646 if (!tm) {
647 ret = -ENOMEM;
648 goto free_tms;
649 }
650
651 tm->logical = new_root->start;
652 tm->old_root.logical = old_root->start;
653 tm->old_root.level = btrfs_header_level(old_root);
654 tm->generation = btrfs_header_generation(old_root);
655 tm->op = MOD_LOG_ROOT_REPLACE;
656
657 if (tree_mod_dont_log(fs_info, NULL))
658 goto free_tms;
659
660 if (tm_list)
661 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
662 if (!ret)
663 ret = __tree_mod_log_insert(fs_info, tm);
664
665 write_unlock(&fs_info->tree_mod_log_lock);
666 if (ret)
667 goto free_tms;
668 kfree(tm_list);
669
670 return ret;
671
672 free_tms:
673 if (tm_list) {
674 for (i = 0; i < nritems; i++)
675 kfree(tm_list[i]);
676 kfree(tm_list);
677 }
678 kfree(tm);
679
680 return ret;
681 }
682
683 static struct tree_mod_elem *
__tree_mod_log_search(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq,int smallest)684 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
685 int smallest)
686 {
687 struct rb_root *tm_root;
688 struct rb_node *node;
689 struct tree_mod_elem *cur = NULL;
690 struct tree_mod_elem *found = NULL;
691
692 read_lock(&fs_info->tree_mod_log_lock);
693 tm_root = &fs_info->tree_mod_log;
694 node = tm_root->rb_node;
695 while (node) {
696 cur = rb_entry(node, struct tree_mod_elem, node);
697 if (cur->logical < start) {
698 node = node->rb_left;
699 } else if (cur->logical > start) {
700 node = node->rb_right;
701 } else if (cur->seq < min_seq) {
702 node = node->rb_left;
703 } else if (!smallest) {
704 /* we want the node with the highest seq */
705 if (found)
706 BUG_ON(found->seq > cur->seq);
707 found = cur;
708 node = node->rb_left;
709 } else if (cur->seq > min_seq) {
710 /* we want the node with the smallest seq */
711 if (found)
712 BUG_ON(found->seq < cur->seq);
713 found = cur;
714 node = node->rb_right;
715 } else {
716 found = cur;
717 break;
718 }
719 }
720 read_unlock(&fs_info->tree_mod_log_lock);
721
722 return found;
723 }
724
725 /*
726 * this returns the element from the log with the smallest time sequence
727 * value that's in the log (the oldest log item). any element with a time
728 * sequence lower than min_seq will be ignored.
729 */
730 static struct tree_mod_elem *
tree_mod_log_search_oldest(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq)731 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
732 u64 min_seq)
733 {
734 return __tree_mod_log_search(fs_info, start, min_seq, 1);
735 }
736
737 /*
738 * this returns the element from the log with the largest time sequence
739 * value that's in the log (the most recent log item). any element with
740 * a time sequence lower than min_seq will be ignored.
741 */
742 static struct tree_mod_elem *
tree_mod_log_search(struct btrfs_fs_info * fs_info,u64 start,u64 min_seq)743 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
744 {
745 return __tree_mod_log_search(fs_info, start, min_seq, 0);
746 }
747
tree_mod_log_eb_copy(struct extent_buffer * dst,struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,int nr_items)748 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
749 struct extent_buffer *src, unsigned long dst_offset,
750 unsigned long src_offset, int nr_items)
751 {
752 struct btrfs_fs_info *fs_info = dst->fs_info;
753 int ret = 0;
754 struct tree_mod_elem **tm_list = NULL;
755 struct tree_mod_elem **tm_list_add, **tm_list_rem;
756 int i;
757 int locked = 0;
758
759 if (!tree_mod_need_log(fs_info, NULL))
760 return 0;
761
762 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
763 return 0;
764
765 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
766 GFP_NOFS);
767 if (!tm_list)
768 return -ENOMEM;
769
770 tm_list_add = tm_list;
771 tm_list_rem = tm_list + nr_items;
772 for (i = 0; i < nr_items; i++) {
773 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
774 MOD_LOG_KEY_REMOVE, GFP_NOFS);
775 if (!tm_list_rem[i]) {
776 ret = -ENOMEM;
777 goto free_tms;
778 }
779
780 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
781 MOD_LOG_KEY_ADD, GFP_NOFS);
782 if (!tm_list_add[i]) {
783 ret = -ENOMEM;
784 goto free_tms;
785 }
786 }
787
788 if (tree_mod_dont_log(fs_info, NULL))
789 goto free_tms;
790 locked = 1;
791
792 for (i = 0; i < nr_items; i++) {
793 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
794 if (ret)
795 goto free_tms;
796 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
797 if (ret)
798 goto free_tms;
799 }
800
801 write_unlock(&fs_info->tree_mod_log_lock);
802 kfree(tm_list);
803
804 return 0;
805
806 free_tms:
807 for (i = 0; i < nr_items * 2; i++) {
808 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
809 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
810 kfree(tm_list[i]);
811 }
812 if (locked)
813 write_unlock(&fs_info->tree_mod_log_lock);
814 kfree(tm_list);
815
816 return ret;
817 }
818
tree_mod_log_free_eb(struct extent_buffer * eb)819 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
820 {
821 struct tree_mod_elem **tm_list = NULL;
822 int nritems = 0;
823 int i;
824 int ret = 0;
825
826 if (btrfs_header_level(eb) == 0)
827 return 0;
828
829 if (!tree_mod_need_log(eb->fs_info, NULL))
830 return 0;
831
832 nritems = btrfs_header_nritems(eb);
833 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
834 if (!tm_list)
835 return -ENOMEM;
836
837 for (i = 0; i < nritems; i++) {
838 tm_list[i] = alloc_tree_mod_elem(eb, i,
839 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
840 if (!tm_list[i]) {
841 ret = -ENOMEM;
842 goto free_tms;
843 }
844 }
845
846 if (tree_mod_dont_log(eb->fs_info, eb))
847 goto free_tms;
848
849 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
850 write_unlock(&eb->fs_info->tree_mod_log_lock);
851 if (ret)
852 goto free_tms;
853 kfree(tm_list);
854
855 return 0;
856
857 free_tms:
858 for (i = 0; i < nritems; i++)
859 kfree(tm_list[i]);
860 kfree(tm_list);
861
862 return ret;
863 }
864
865 /*
866 * check if the tree block can be shared by multiple trees
867 */
btrfs_block_can_be_shared(struct btrfs_root * root,struct extent_buffer * buf)868 int btrfs_block_can_be_shared(struct btrfs_root *root,
869 struct extent_buffer *buf)
870 {
871 /*
872 * Tree blocks not in reference counted trees and tree roots
873 * are never shared. If a block was allocated after the last
874 * snapshot and the block was not allocated by tree relocation,
875 * we know the block is not shared.
876 */
877 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
878 buf != root->node && buf != root->commit_root &&
879 (btrfs_header_generation(buf) <=
880 btrfs_root_last_snapshot(&root->root_item) ||
881 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
882 return 1;
883
884 return 0;
885 }
886
update_ref_for_cow(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * cow,int * last_ref)887 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
888 struct btrfs_root *root,
889 struct extent_buffer *buf,
890 struct extent_buffer *cow,
891 int *last_ref)
892 {
893 struct btrfs_fs_info *fs_info = root->fs_info;
894 u64 refs;
895 u64 owner;
896 u64 flags;
897 u64 new_flags = 0;
898 int ret;
899
900 /*
901 * Backrefs update rules:
902 *
903 * Always use full backrefs for extent pointers in tree block
904 * allocated by tree relocation.
905 *
906 * If a shared tree block is no longer referenced by its owner
907 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
908 * use full backrefs for extent pointers in tree block.
909 *
910 * If a tree block is been relocating
911 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
912 * use full backrefs for extent pointers in tree block.
913 * The reason for this is some operations (such as drop tree)
914 * are only allowed for blocks use full backrefs.
915 */
916
917 if (btrfs_block_can_be_shared(root, buf)) {
918 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
919 btrfs_header_level(buf), 1,
920 &refs, &flags);
921 if (ret)
922 return ret;
923 if (refs == 0) {
924 ret = -EROFS;
925 btrfs_handle_fs_error(fs_info, ret, NULL);
926 return ret;
927 }
928 } else {
929 refs = 1;
930 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
931 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
932 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
933 else
934 flags = 0;
935 }
936
937 owner = btrfs_header_owner(buf);
938 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
939 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
940
941 if (refs > 1) {
942 if ((owner == root->root_key.objectid ||
943 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
944 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
945 ret = btrfs_inc_ref(trans, root, buf, 1);
946 if (ret)
947 return ret;
948
949 if (root->root_key.objectid ==
950 BTRFS_TREE_RELOC_OBJECTID) {
951 ret = btrfs_dec_ref(trans, root, buf, 0);
952 if (ret)
953 return ret;
954 ret = btrfs_inc_ref(trans, root, cow, 1);
955 if (ret)
956 return ret;
957 }
958 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
959 } else {
960
961 if (root->root_key.objectid ==
962 BTRFS_TREE_RELOC_OBJECTID)
963 ret = btrfs_inc_ref(trans, root, cow, 1);
964 else
965 ret = btrfs_inc_ref(trans, root, cow, 0);
966 if (ret)
967 return ret;
968 }
969 if (new_flags != 0) {
970 int level = btrfs_header_level(buf);
971
972 ret = btrfs_set_disk_extent_flags(trans,
973 buf->start,
974 buf->len,
975 new_flags, level, 0);
976 if (ret)
977 return ret;
978 }
979 } else {
980 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
981 if (root->root_key.objectid ==
982 BTRFS_TREE_RELOC_OBJECTID)
983 ret = btrfs_inc_ref(trans, root, cow, 1);
984 else
985 ret = btrfs_inc_ref(trans, root, cow, 0);
986 if (ret)
987 return ret;
988 ret = btrfs_dec_ref(trans, root, buf, 1);
989 if (ret)
990 return ret;
991 }
992 btrfs_clean_tree_block(buf);
993 *last_ref = 1;
994 }
995 return 0;
996 }
997
alloc_tree_block_no_bg_flush(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent_start,const struct btrfs_disk_key * disk_key,int level,u64 hint,u64 empty_size)998 static struct extent_buffer *alloc_tree_block_no_bg_flush(
999 struct btrfs_trans_handle *trans,
1000 struct btrfs_root *root,
1001 u64 parent_start,
1002 const struct btrfs_disk_key *disk_key,
1003 int level,
1004 u64 hint,
1005 u64 empty_size)
1006 {
1007 struct btrfs_fs_info *fs_info = root->fs_info;
1008 struct extent_buffer *ret;
1009
1010 /*
1011 * If we are COWing a node/leaf from the extent, chunk, device or free
1012 * space trees, make sure that we do not finish block group creation of
1013 * pending block groups. We do this to avoid a deadlock.
1014 * COWing can result in allocation of a new chunk, and flushing pending
1015 * block groups (btrfs_create_pending_block_groups()) can be triggered
1016 * when finishing allocation of a new chunk. Creation of a pending block
1017 * group modifies the extent, chunk, device and free space trees,
1018 * therefore we could deadlock with ourselves since we are holding a
1019 * lock on an extent buffer that btrfs_create_pending_block_groups() may
1020 * try to COW later.
1021 * For similar reasons, we also need to delay flushing pending block
1022 * groups when splitting a leaf or node, from one of those trees, since
1023 * we are holding a write lock on it and its parent or when inserting a
1024 * new root node for one of those trees.
1025 */
1026 if (root == fs_info->extent_root ||
1027 root == fs_info->chunk_root ||
1028 root == fs_info->dev_root ||
1029 root == fs_info->free_space_root)
1030 trans->can_flush_pending_bgs = false;
1031
1032 ret = btrfs_alloc_tree_block(trans, root, parent_start,
1033 root->root_key.objectid, disk_key, level,
1034 hint, empty_size);
1035 trans->can_flush_pending_bgs = true;
1036
1037 return ret;
1038 }
1039
1040 /*
1041 * does the dirty work in cow of a single block. The parent block (if
1042 * supplied) is updated to point to the new cow copy. The new buffer is marked
1043 * dirty and returned locked. If you modify the block it needs to be marked
1044 * dirty again.
1045 *
1046 * search_start -- an allocation hint for the new block
1047 *
1048 * empty_size -- a hint that you plan on doing more cow. This is the size in
1049 * bytes the allocator should try to find free next to the block it returns.
1050 * This is just a hint and may be ignored by the allocator.
1051 */
__btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret,u64 search_start,u64 empty_size)1052 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1053 struct btrfs_root *root,
1054 struct extent_buffer *buf,
1055 struct extent_buffer *parent, int parent_slot,
1056 struct extent_buffer **cow_ret,
1057 u64 search_start, u64 empty_size)
1058 {
1059 struct btrfs_fs_info *fs_info = root->fs_info;
1060 struct btrfs_disk_key disk_key;
1061 struct extent_buffer *cow;
1062 int level, ret;
1063 int last_ref = 0;
1064 int unlock_orig = 0;
1065 u64 parent_start = 0;
1066
1067 if (*cow_ret == buf)
1068 unlock_orig = 1;
1069
1070 btrfs_assert_tree_locked(buf);
1071
1072 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1073 trans->transid != fs_info->running_transaction->transid);
1074 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1075 trans->transid != root->last_trans);
1076
1077 level = btrfs_header_level(buf);
1078
1079 if (level == 0)
1080 btrfs_item_key(buf, &disk_key, 0);
1081 else
1082 btrfs_node_key(buf, &disk_key, 0);
1083
1084 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1085 parent_start = parent->start;
1086
1087 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1088 level, search_start, empty_size);
1089 if (IS_ERR(cow))
1090 return PTR_ERR(cow);
1091
1092 /* cow is set to blocking by btrfs_init_new_buffer */
1093
1094 copy_extent_buffer_full(cow, buf);
1095 btrfs_set_header_bytenr(cow, cow->start);
1096 btrfs_set_header_generation(cow, trans->transid);
1097 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1098 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1099 BTRFS_HEADER_FLAG_RELOC);
1100 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1101 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1102 else
1103 btrfs_set_header_owner(cow, root->root_key.objectid);
1104
1105 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1106
1107 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1108 if (ret) {
1109 btrfs_tree_unlock(cow);
1110 free_extent_buffer(cow);
1111 btrfs_abort_transaction(trans, ret);
1112 return ret;
1113 }
1114
1115 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1116 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1117 if (ret) {
1118 btrfs_tree_unlock(cow);
1119 free_extent_buffer(cow);
1120 btrfs_abort_transaction(trans, ret);
1121 return ret;
1122 }
1123 }
1124
1125 if (buf == root->node) {
1126 WARN_ON(parent && parent != buf);
1127 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1128 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1129 parent_start = buf->start;
1130
1131 extent_buffer_get(cow);
1132 ret = tree_mod_log_insert_root(root->node, cow, 1);
1133 BUG_ON(ret < 0);
1134 rcu_assign_pointer(root->node, cow);
1135
1136 btrfs_free_tree_block(trans, root, buf, parent_start,
1137 last_ref);
1138 free_extent_buffer(buf);
1139 add_root_to_dirty_list(root);
1140 } else {
1141 WARN_ON(trans->transid != btrfs_header_generation(parent));
1142 tree_mod_log_insert_key(parent, parent_slot,
1143 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1144 btrfs_set_node_blockptr(parent, parent_slot,
1145 cow->start);
1146 btrfs_set_node_ptr_generation(parent, parent_slot,
1147 trans->transid);
1148 btrfs_mark_buffer_dirty(parent);
1149 if (last_ref) {
1150 ret = tree_mod_log_free_eb(buf);
1151 if (ret) {
1152 btrfs_tree_unlock(cow);
1153 free_extent_buffer(cow);
1154 btrfs_abort_transaction(trans, ret);
1155 return ret;
1156 }
1157 }
1158 btrfs_free_tree_block(trans, root, buf, parent_start,
1159 last_ref);
1160 }
1161 if (unlock_orig)
1162 btrfs_tree_unlock(buf);
1163 free_extent_buffer_stale(buf);
1164 btrfs_mark_buffer_dirty(cow);
1165 *cow_ret = cow;
1166 return 0;
1167 }
1168
1169 /*
1170 * returns the logical address of the oldest predecessor of the given root.
1171 * entries older than time_seq are ignored.
1172 */
__tree_mod_log_oldest_root(struct extent_buffer * eb_root,u64 time_seq)1173 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1174 struct extent_buffer *eb_root, u64 time_seq)
1175 {
1176 struct tree_mod_elem *tm;
1177 struct tree_mod_elem *found = NULL;
1178 u64 root_logical = eb_root->start;
1179 int looped = 0;
1180
1181 if (!time_seq)
1182 return NULL;
1183
1184 /*
1185 * the very last operation that's logged for a root is the
1186 * replacement operation (if it is replaced at all). this has
1187 * the logical address of the *new* root, making it the very
1188 * first operation that's logged for this root.
1189 */
1190 while (1) {
1191 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1192 time_seq);
1193 if (!looped && !tm)
1194 return NULL;
1195 /*
1196 * if there are no tree operation for the oldest root, we simply
1197 * return it. this should only happen if that (old) root is at
1198 * level 0.
1199 */
1200 if (!tm)
1201 break;
1202
1203 /*
1204 * if there's an operation that's not a root replacement, we
1205 * found the oldest version of our root. normally, we'll find a
1206 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1207 */
1208 if (tm->op != MOD_LOG_ROOT_REPLACE)
1209 break;
1210
1211 found = tm;
1212 root_logical = tm->old_root.logical;
1213 looped = 1;
1214 }
1215
1216 /* if there's no old root to return, return what we found instead */
1217 if (!found)
1218 found = tm;
1219
1220 return found;
1221 }
1222
1223 /*
1224 * tm is a pointer to the first operation to rewind within eb. then, all
1225 * previous operations will be rewound (until we reach something older than
1226 * time_seq).
1227 */
1228 static void
__tree_mod_log_rewind(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,u64 time_seq,struct tree_mod_elem * first_tm)1229 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1230 u64 time_seq, struct tree_mod_elem *first_tm)
1231 {
1232 u32 n;
1233 struct rb_node *next;
1234 struct tree_mod_elem *tm = first_tm;
1235 unsigned long o_dst;
1236 unsigned long o_src;
1237 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1238
1239 n = btrfs_header_nritems(eb);
1240 read_lock(&fs_info->tree_mod_log_lock);
1241 while (tm && tm->seq >= time_seq) {
1242 /*
1243 * all the operations are recorded with the operator used for
1244 * the modification. as we're going backwards, we do the
1245 * opposite of each operation here.
1246 */
1247 switch (tm->op) {
1248 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1249 BUG_ON(tm->slot < n);
1250 /* Fallthrough */
1251 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1252 case MOD_LOG_KEY_REMOVE:
1253 btrfs_set_node_key(eb, &tm->key, tm->slot);
1254 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1255 btrfs_set_node_ptr_generation(eb, tm->slot,
1256 tm->generation);
1257 n++;
1258 break;
1259 case MOD_LOG_KEY_REPLACE:
1260 BUG_ON(tm->slot >= n);
1261 btrfs_set_node_key(eb, &tm->key, tm->slot);
1262 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1263 btrfs_set_node_ptr_generation(eb, tm->slot,
1264 tm->generation);
1265 break;
1266 case MOD_LOG_KEY_ADD:
1267 /* if a move operation is needed it's in the log */
1268 n--;
1269 break;
1270 case MOD_LOG_MOVE_KEYS:
1271 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1272 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1273 memmove_extent_buffer(eb, o_dst, o_src,
1274 tm->move.nr_items * p_size);
1275 break;
1276 case MOD_LOG_ROOT_REPLACE:
1277 /*
1278 * this operation is special. for roots, this must be
1279 * handled explicitly before rewinding.
1280 * for non-roots, this operation may exist if the node
1281 * was a root: root A -> child B; then A gets empty and
1282 * B is promoted to the new root. in the mod log, we'll
1283 * have a root-replace operation for B, a tree block
1284 * that is no root. we simply ignore that operation.
1285 */
1286 break;
1287 }
1288 next = rb_next(&tm->node);
1289 if (!next)
1290 break;
1291 tm = rb_entry(next, struct tree_mod_elem, node);
1292 if (tm->logical != first_tm->logical)
1293 break;
1294 }
1295 read_unlock(&fs_info->tree_mod_log_lock);
1296 btrfs_set_header_nritems(eb, n);
1297 }
1298
1299 /*
1300 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1301 * is returned. If rewind operations happen, a fresh buffer is returned. The
1302 * returned buffer is always read-locked. If the returned buffer is not the
1303 * input buffer, the lock on the input buffer is released and the input buffer
1304 * is freed (its refcount is decremented).
1305 */
1306 static struct extent_buffer *
tree_mod_log_rewind(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct extent_buffer * eb,u64 time_seq)1307 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1308 struct extent_buffer *eb, u64 time_seq)
1309 {
1310 struct extent_buffer *eb_rewin;
1311 struct tree_mod_elem *tm;
1312
1313 if (!time_seq)
1314 return eb;
1315
1316 if (btrfs_header_level(eb) == 0)
1317 return eb;
1318
1319 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1320 if (!tm)
1321 return eb;
1322
1323 btrfs_set_path_blocking(path);
1324 btrfs_set_lock_blocking_read(eb);
1325
1326 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1327 BUG_ON(tm->slot != 0);
1328 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1329 if (!eb_rewin) {
1330 btrfs_tree_read_unlock_blocking(eb);
1331 free_extent_buffer(eb);
1332 return NULL;
1333 }
1334 btrfs_set_header_bytenr(eb_rewin, eb->start);
1335 btrfs_set_header_backref_rev(eb_rewin,
1336 btrfs_header_backref_rev(eb));
1337 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1338 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1339 } else {
1340 eb_rewin = btrfs_clone_extent_buffer(eb);
1341 if (!eb_rewin) {
1342 btrfs_tree_read_unlock_blocking(eb);
1343 free_extent_buffer(eb);
1344 return NULL;
1345 }
1346 }
1347
1348 btrfs_tree_read_unlock_blocking(eb);
1349 free_extent_buffer(eb);
1350
1351 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
1352 eb_rewin, btrfs_header_level(eb_rewin));
1353 btrfs_tree_read_lock(eb_rewin);
1354 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1355 WARN_ON(btrfs_header_nritems(eb_rewin) >
1356 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1357
1358 return eb_rewin;
1359 }
1360
1361 /*
1362 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1363 * value. If there are no changes, the current root->root_node is returned. If
1364 * anything changed in between, there's a fresh buffer allocated on which the
1365 * rewind operations are done. In any case, the returned buffer is read locked.
1366 * Returns NULL on error (with no locks held).
1367 */
1368 static inline struct extent_buffer *
get_old_root(struct btrfs_root * root,u64 time_seq)1369 get_old_root(struct btrfs_root *root, u64 time_seq)
1370 {
1371 struct btrfs_fs_info *fs_info = root->fs_info;
1372 struct tree_mod_elem *tm;
1373 struct extent_buffer *eb = NULL;
1374 struct extent_buffer *eb_root;
1375 u64 eb_root_owner = 0;
1376 struct extent_buffer *old;
1377 struct tree_mod_root *old_root = NULL;
1378 u64 old_generation = 0;
1379 u64 logical;
1380 int level;
1381
1382 eb_root = btrfs_read_lock_root_node(root);
1383 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1384 if (!tm)
1385 return eb_root;
1386
1387 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1388 old_root = &tm->old_root;
1389 old_generation = tm->generation;
1390 logical = old_root->logical;
1391 level = old_root->level;
1392 } else {
1393 logical = eb_root->start;
1394 level = btrfs_header_level(eb_root);
1395 }
1396
1397 tm = tree_mod_log_search(fs_info, logical, time_seq);
1398 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1399 btrfs_tree_read_unlock(eb_root);
1400 free_extent_buffer(eb_root);
1401 old = read_tree_block(fs_info, logical, 0, level, NULL);
1402 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1403 if (!IS_ERR(old))
1404 free_extent_buffer(old);
1405 btrfs_warn(fs_info,
1406 "failed to read tree block %llu from get_old_root",
1407 logical);
1408 } else {
1409 struct tree_mod_elem *tm2;
1410
1411 btrfs_tree_read_lock(old);
1412 eb = btrfs_clone_extent_buffer(old);
1413 /*
1414 * After the lookup for the most recent tree mod operation
1415 * above and before we locked and cloned the extent buffer
1416 * 'old', a new tree mod log operation may have been added.
1417 * So lookup for a more recent one to make sure the number
1418 * of mod log operations we replay is consistent with the
1419 * number of items we have in the cloned extent buffer,
1420 * otherwise we can hit a BUG_ON when rewinding the extent
1421 * buffer.
1422 */
1423 tm2 = tree_mod_log_search(fs_info, logical, time_seq);
1424 btrfs_tree_read_unlock(old);
1425 free_extent_buffer(old);
1426 ASSERT(tm2);
1427 ASSERT(tm2 == tm || tm2->seq > tm->seq);
1428 if (!tm2 || tm2->seq < tm->seq) {
1429 free_extent_buffer(eb);
1430 return NULL;
1431 }
1432 tm = tm2;
1433 }
1434 } else if (old_root) {
1435 eb_root_owner = btrfs_header_owner(eb_root);
1436 btrfs_tree_read_unlock(eb_root);
1437 free_extent_buffer(eb_root);
1438 eb = alloc_dummy_extent_buffer(fs_info, logical);
1439 } else {
1440 btrfs_set_lock_blocking_read(eb_root);
1441 eb = btrfs_clone_extent_buffer(eb_root);
1442 btrfs_tree_read_unlock_blocking(eb_root);
1443 free_extent_buffer(eb_root);
1444 }
1445
1446 if (!eb)
1447 return NULL;
1448 if (old_root) {
1449 btrfs_set_header_bytenr(eb, eb->start);
1450 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1451 btrfs_set_header_owner(eb, eb_root_owner);
1452 btrfs_set_header_level(eb, old_root->level);
1453 btrfs_set_header_generation(eb, old_generation);
1454 }
1455 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
1456 btrfs_header_level(eb));
1457 btrfs_tree_read_lock(eb);
1458 if (tm)
1459 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1460 else
1461 WARN_ON(btrfs_header_level(eb) != 0);
1462 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1463
1464 return eb;
1465 }
1466
btrfs_old_root_level(struct btrfs_root * root,u64 time_seq)1467 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1468 {
1469 struct tree_mod_elem *tm;
1470 int level;
1471 struct extent_buffer *eb_root = btrfs_root_node(root);
1472
1473 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1474 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1475 level = tm->old_root.level;
1476 } else {
1477 level = btrfs_header_level(eb_root);
1478 }
1479 free_extent_buffer(eb_root);
1480
1481 return level;
1482 }
1483
should_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)1484 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1485 struct btrfs_root *root,
1486 struct extent_buffer *buf)
1487 {
1488 if (btrfs_is_testing(root->fs_info))
1489 return 0;
1490
1491 /* Ensure we can see the FORCE_COW bit */
1492 smp_mb__before_atomic();
1493
1494 /*
1495 * We do not need to cow a block if
1496 * 1) this block is not created or changed in this transaction;
1497 * 2) this block does not belong to TREE_RELOC tree;
1498 * 3) the root is not forced COW.
1499 *
1500 * What is forced COW:
1501 * when we create snapshot during committing the transaction,
1502 * after we've finished copying src root, we must COW the shared
1503 * block to ensure the metadata consistency.
1504 */
1505 if (btrfs_header_generation(buf) == trans->transid &&
1506 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1507 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1508 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1509 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1510 return 0;
1511 return 1;
1512 }
1513
1514 /*
1515 * cows a single block, see __btrfs_cow_block for the real work.
1516 * This version of it has extra checks so that a block isn't COWed more than
1517 * once per transaction, as long as it hasn't been written yet
1518 */
btrfs_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,struct extent_buffer * parent,int parent_slot,struct extent_buffer ** cow_ret)1519 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1520 struct btrfs_root *root, struct extent_buffer *buf,
1521 struct extent_buffer *parent, int parent_slot,
1522 struct extent_buffer **cow_ret)
1523 {
1524 struct btrfs_fs_info *fs_info = root->fs_info;
1525 u64 search_start;
1526 int ret;
1527
1528 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1529 btrfs_err(fs_info,
1530 "COW'ing blocks on a fs root that's being dropped");
1531
1532 if (trans->transaction != fs_info->running_transaction)
1533 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1534 trans->transid,
1535 fs_info->running_transaction->transid);
1536
1537 if (trans->transid != fs_info->generation)
1538 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1539 trans->transid, fs_info->generation);
1540
1541 if (!should_cow_block(trans, root, buf)) {
1542 trans->dirty = true;
1543 *cow_ret = buf;
1544 return 0;
1545 }
1546
1547 search_start = buf->start & ~((u64)SZ_1G - 1);
1548
1549 if (parent)
1550 btrfs_set_lock_blocking_write(parent);
1551 btrfs_set_lock_blocking_write(buf);
1552
1553 /*
1554 * Before CoWing this block for later modification, check if it's
1555 * the subtree root and do the delayed subtree trace if needed.
1556 *
1557 * Also We don't care about the error, as it's handled internally.
1558 */
1559 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1560 ret = __btrfs_cow_block(trans, root, buf, parent,
1561 parent_slot, cow_ret, search_start, 0);
1562
1563 trace_btrfs_cow_block(root, buf, *cow_ret);
1564
1565 return ret;
1566 }
1567
1568 /*
1569 * helper function for defrag to decide if two blocks pointed to by a
1570 * node are actually close by
1571 */
close_blocks(u64 blocknr,u64 other,u32 blocksize)1572 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1573 {
1574 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1575 return 1;
1576 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1577 return 1;
1578 return 0;
1579 }
1580
1581 /*
1582 * compare two keys in a memcmp fashion
1583 */
comp_keys(const struct btrfs_disk_key * disk,const struct btrfs_key * k2)1584 static int comp_keys(const struct btrfs_disk_key *disk,
1585 const struct btrfs_key *k2)
1586 {
1587 struct btrfs_key k1;
1588
1589 btrfs_disk_key_to_cpu(&k1, disk);
1590
1591 return btrfs_comp_cpu_keys(&k1, k2);
1592 }
1593
1594 /*
1595 * same as comp_keys only with two btrfs_key's
1596 */
btrfs_comp_cpu_keys(const struct btrfs_key * k1,const struct btrfs_key * k2)1597 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1598 {
1599 if (k1->objectid > k2->objectid)
1600 return 1;
1601 if (k1->objectid < k2->objectid)
1602 return -1;
1603 if (k1->type > k2->type)
1604 return 1;
1605 if (k1->type < k2->type)
1606 return -1;
1607 if (k1->offset > k2->offset)
1608 return 1;
1609 if (k1->offset < k2->offset)
1610 return -1;
1611 return 0;
1612 }
1613
1614 /*
1615 * this is used by the defrag code to go through all the
1616 * leaves pointed to by a node and reallocate them so that
1617 * disk order is close to key order
1618 */
btrfs_realloc_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * parent,int start_slot,u64 * last_ret,struct btrfs_key * progress)1619 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1620 struct btrfs_root *root, struct extent_buffer *parent,
1621 int start_slot, u64 *last_ret,
1622 struct btrfs_key *progress)
1623 {
1624 struct btrfs_fs_info *fs_info = root->fs_info;
1625 struct extent_buffer *cur;
1626 u64 blocknr;
1627 u64 gen;
1628 u64 search_start = *last_ret;
1629 u64 last_block = 0;
1630 u64 other;
1631 u32 parent_nritems;
1632 int end_slot;
1633 int i;
1634 int err = 0;
1635 int parent_level;
1636 int uptodate;
1637 u32 blocksize;
1638 int progress_passed = 0;
1639 struct btrfs_disk_key disk_key;
1640
1641 parent_level = btrfs_header_level(parent);
1642
1643 WARN_ON(trans->transaction != fs_info->running_transaction);
1644 WARN_ON(trans->transid != fs_info->generation);
1645
1646 parent_nritems = btrfs_header_nritems(parent);
1647 blocksize = fs_info->nodesize;
1648 end_slot = parent_nritems - 1;
1649
1650 if (parent_nritems <= 1)
1651 return 0;
1652
1653 btrfs_set_lock_blocking_write(parent);
1654
1655 for (i = start_slot; i <= end_slot; i++) {
1656 struct btrfs_key first_key;
1657 int close = 1;
1658
1659 btrfs_node_key(parent, &disk_key, i);
1660 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1661 continue;
1662
1663 progress_passed = 1;
1664 blocknr = btrfs_node_blockptr(parent, i);
1665 gen = btrfs_node_ptr_generation(parent, i);
1666 btrfs_node_key_to_cpu(parent, &first_key, i);
1667 if (last_block == 0)
1668 last_block = blocknr;
1669
1670 if (i > 0) {
1671 other = btrfs_node_blockptr(parent, i - 1);
1672 close = close_blocks(blocknr, other, blocksize);
1673 }
1674 if (!close && i < end_slot) {
1675 other = btrfs_node_blockptr(parent, i + 1);
1676 close = close_blocks(blocknr, other, blocksize);
1677 }
1678 if (close) {
1679 last_block = blocknr;
1680 continue;
1681 }
1682
1683 cur = find_extent_buffer(fs_info, blocknr);
1684 if (cur)
1685 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1686 else
1687 uptodate = 0;
1688 if (!cur || !uptodate) {
1689 if (!cur) {
1690 cur = read_tree_block(fs_info, blocknr, gen,
1691 parent_level - 1,
1692 &first_key);
1693 if (IS_ERR(cur)) {
1694 return PTR_ERR(cur);
1695 } else if (!extent_buffer_uptodate(cur)) {
1696 free_extent_buffer(cur);
1697 return -EIO;
1698 }
1699 } else if (!uptodate) {
1700 err = btrfs_read_buffer(cur, gen,
1701 parent_level - 1,&first_key);
1702 if (err) {
1703 free_extent_buffer(cur);
1704 return err;
1705 }
1706 }
1707 }
1708 if (search_start == 0)
1709 search_start = last_block;
1710
1711 btrfs_tree_lock(cur);
1712 btrfs_set_lock_blocking_write(cur);
1713 err = __btrfs_cow_block(trans, root, cur, parent, i,
1714 &cur, search_start,
1715 min(16 * blocksize,
1716 (end_slot - i) * blocksize));
1717 if (err) {
1718 btrfs_tree_unlock(cur);
1719 free_extent_buffer(cur);
1720 break;
1721 }
1722 search_start = cur->start;
1723 last_block = cur->start;
1724 *last_ret = search_start;
1725 btrfs_tree_unlock(cur);
1726 free_extent_buffer(cur);
1727 }
1728 return err;
1729 }
1730
1731 /*
1732 * search for key in the extent_buffer. The items start at offset p,
1733 * and they are item_size apart. There are 'max' items in p.
1734 *
1735 * the slot in the array is returned via slot, and it points to
1736 * the place where you would insert key if it is not found in
1737 * the array.
1738 *
1739 * slot may point to max if the key is bigger than all of the keys
1740 */
generic_bin_search(struct extent_buffer * eb,unsigned long p,int item_size,const struct btrfs_key * key,int max,int * slot)1741 static noinline int generic_bin_search(struct extent_buffer *eb,
1742 unsigned long p, int item_size,
1743 const struct btrfs_key *key,
1744 int max, int *slot)
1745 {
1746 int low = 0;
1747 int high = max;
1748 int mid;
1749 int ret;
1750 struct btrfs_disk_key *tmp = NULL;
1751 struct btrfs_disk_key unaligned;
1752 unsigned long offset;
1753 char *kaddr = NULL;
1754 unsigned long map_start = 0;
1755 unsigned long map_len = 0;
1756 int err;
1757
1758 if (low > high) {
1759 btrfs_err(eb->fs_info,
1760 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1761 __func__, low, high, eb->start,
1762 btrfs_header_owner(eb), btrfs_header_level(eb));
1763 return -EINVAL;
1764 }
1765
1766 while (low < high) {
1767 mid = (low + high) / 2;
1768 offset = p + mid * item_size;
1769
1770 if (!kaddr || offset < map_start ||
1771 (offset + sizeof(struct btrfs_disk_key)) >
1772 map_start + map_len) {
1773
1774 err = map_private_extent_buffer(eb, offset,
1775 sizeof(struct btrfs_disk_key),
1776 &kaddr, &map_start, &map_len);
1777
1778 if (!err) {
1779 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1780 map_start);
1781 } else if (err == 1) {
1782 read_extent_buffer(eb, &unaligned,
1783 offset, sizeof(unaligned));
1784 tmp = &unaligned;
1785 } else {
1786 return err;
1787 }
1788
1789 } else {
1790 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1791 map_start);
1792 }
1793 ret = comp_keys(tmp, key);
1794
1795 if (ret < 0)
1796 low = mid + 1;
1797 else if (ret > 0)
1798 high = mid;
1799 else {
1800 *slot = mid;
1801 return 0;
1802 }
1803 }
1804 *slot = low;
1805 return 1;
1806 }
1807
1808 /*
1809 * simple bin_search frontend that does the right thing for
1810 * leaves vs nodes
1811 */
btrfs_bin_search(struct extent_buffer * eb,const struct btrfs_key * key,int level,int * slot)1812 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1813 int level, int *slot)
1814 {
1815 if (level == 0)
1816 return generic_bin_search(eb,
1817 offsetof(struct btrfs_leaf, items),
1818 sizeof(struct btrfs_item),
1819 key, btrfs_header_nritems(eb),
1820 slot);
1821 else
1822 return generic_bin_search(eb,
1823 offsetof(struct btrfs_node, ptrs),
1824 sizeof(struct btrfs_key_ptr),
1825 key, btrfs_header_nritems(eb),
1826 slot);
1827 }
1828
root_add_used(struct btrfs_root * root,u32 size)1829 static void root_add_used(struct btrfs_root *root, u32 size)
1830 {
1831 spin_lock(&root->accounting_lock);
1832 btrfs_set_root_used(&root->root_item,
1833 btrfs_root_used(&root->root_item) + size);
1834 spin_unlock(&root->accounting_lock);
1835 }
1836
root_sub_used(struct btrfs_root * root,u32 size)1837 static void root_sub_used(struct btrfs_root *root, u32 size)
1838 {
1839 spin_lock(&root->accounting_lock);
1840 btrfs_set_root_used(&root->root_item,
1841 btrfs_root_used(&root->root_item) - size);
1842 spin_unlock(&root->accounting_lock);
1843 }
1844
1845 /* given a node and slot number, this reads the blocks it points to. The
1846 * extent buffer is returned with a reference taken (but unlocked).
1847 */
btrfs_read_node_slot(struct extent_buffer * parent,int slot)1848 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1849 int slot)
1850 {
1851 int level = btrfs_header_level(parent);
1852 struct extent_buffer *eb;
1853 struct btrfs_key first_key;
1854
1855 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1856 return ERR_PTR(-ENOENT);
1857
1858 BUG_ON(level == 0);
1859
1860 btrfs_node_key_to_cpu(parent, &first_key, slot);
1861 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1862 btrfs_node_ptr_generation(parent, slot),
1863 level - 1, &first_key);
1864 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1865 free_extent_buffer(eb);
1866 eb = ERR_PTR(-EIO);
1867 }
1868
1869 return eb;
1870 }
1871
1872 /*
1873 * node level balancing, used to make sure nodes are in proper order for
1874 * item deletion. We balance from the top down, so we have to make sure
1875 * that a deletion won't leave an node completely empty later on.
1876 */
balance_level(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)1877 static noinline int balance_level(struct btrfs_trans_handle *trans,
1878 struct btrfs_root *root,
1879 struct btrfs_path *path, int level)
1880 {
1881 struct btrfs_fs_info *fs_info = root->fs_info;
1882 struct extent_buffer *right = NULL;
1883 struct extent_buffer *mid;
1884 struct extent_buffer *left = NULL;
1885 struct extent_buffer *parent = NULL;
1886 int ret = 0;
1887 int wret;
1888 int pslot;
1889 int orig_slot = path->slots[level];
1890 u64 orig_ptr;
1891
1892 ASSERT(level > 0);
1893
1894 mid = path->nodes[level];
1895
1896 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1897 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1898 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1899
1900 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1901
1902 if (level < BTRFS_MAX_LEVEL - 1) {
1903 parent = path->nodes[level + 1];
1904 pslot = path->slots[level + 1];
1905 }
1906
1907 /*
1908 * deal with the case where there is only one pointer in the root
1909 * by promoting the node below to a root
1910 */
1911 if (!parent) {
1912 struct extent_buffer *child;
1913
1914 if (btrfs_header_nritems(mid) != 1)
1915 return 0;
1916
1917 /* promote the child to a root */
1918 child = btrfs_read_node_slot(mid, 0);
1919 if (IS_ERR(child)) {
1920 ret = PTR_ERR(child);
1921 btrfs_handle_fs_error(fs_info, ret, NULL);
1922 goto enospc;
1923 }
1924
1925 btrfs_tree_lock(child);
1926 btrfs_set_lock_blocking_write(child);
1927 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1928 if (ret) {
1929 btrfs_tree_unlock(child);
1930 free_extent_buffer(child);
1931 goto enospc;
1932 }
1933
1934 ret = tree_mod_log_insert_root(root->node, child, 1);
1935 BUG_ON(ret < 0);
1936 rcu_assign_pointer(root->node, child);
1937
1938 add_root_to_dirty_list(root);
1939 btrfs_tree_unlock(child);
1940
1941 path->locks[level] = 0;
1942 path->nodes[level] = NULL;
1943 btrfs_clean_tree_block(mid);
1944 btrfs_tree_unlock(mid);
1945 /* once for the path */
1946 free_extent_buffer(mid);
1947
1948 root_sub_used(root, mid->len);
1949 btrfs_free_tree_block(trans, root, mid, 0, 1);
1950 /* once for the root ptr */
1951 free_extent_buffer_stale(mid);
1952 return 0;
1953 }
1954 if (btrfs_header_nritems(mid) >
1955 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1956 return 0;
1957
1958 left = btrfs_read_node_slot(parent, pslot - 1);
1959 if (IS_ERR(left))
1960 left = NULL;
1961
1962 if (left) {
1963 btrfs_tree_lock(left);
1964 btrfs_set_lock_blocking_write(left);
1965 wret = btrfs_cow_block(trans, root, left,
1966 parent, pslot - 1, &left);
1967 if (wret) {
1968 ret = wret;
1969 goto enospc;
1970 }
1971 }
1972
1973 right = btrfs_read_node_slot(parent, pslot + 1);
1974 if (IS_ERR(right))
1975 right = NULL;
1976
1977 if (right) {
1978 btrfs_tree_lock(right);
1979 btrfs_set_lock_blocking_write(right);
1980 wret = btrfs_cow_block(trans, root, right,
1981 parent, pslot + 1, &right);
1982 if (wret) {
1983 ret = wret;
1984 goto enospc;
1985 }
1986 }
1987
1988 /* first, try to make some room in the middle buffer */
1989 if (left) {
1990 orig_slot += btrfs_header_nritems(left);
1991 wret = push_node_left(trans, left, mid, 1);
1992 if (wret < 0)
1993 ret = wret;
1994 }
1995
1996 /*
1997 * then try to empty the right most buffer into the middle
1998 */
1999 if (right) {
2000 wret = push_node_left(trans, mid, right, 1);
2001 if (wret < 0 && wret != -ENOSPC)
2002 ret = wret;
2003 if (btrfs_header_nritems(right) == 0) {
2004 btrfs_clean_tree_block(right);
2005 btrfs_tree_unlock(right);
2006 del_ptr(root, path, level + 1, pslot + 1);
2007 root_sub_used(root, right->len);
2008 btrfs_free_tree_block(trans, root, right, 0, 1);
2009 free_extent_buffer_stale(right);
2010 right = NULL;
2011 } else {
2012 struct btrfs_disk_key right_key;
2013 btrfs_node_key(right, &right_key, 0);
2014 ret = tree_mod_log_insert_key(parent, pslot + 1,
2015 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2016 BUG_ON(ret < 0);
2017 btrfs_set_node_key(parent, &right_key, pslot + 1);
2018 btrfs_mark_buffer_dirty(parent);
2019 }
2020 }
2021 if (btrfs_header_nritems(mid) == 1) {
2022 /*
2023 * we're not allowed to leave a node with one item in the
2024 * tree during a delete. A deletion from lower in the tree
2025 * could try to delete the only pointer in this node.
2026 * So, pull some keys from the left.
2027 * There has to be a left pointer at this point because
2028 * otherwise we would have pulled some pointers from the
2029 * right
2030 */
2031 if (!left) {
2032 ret = -EROFS;
2033 btrfs_handle_fs_error(fs_info, ret, NULL);
2034 goto enospc;
2035 }
2036 wret = balance_node_right(trans, mid, left);
2037 if (wret < 0) {
2038 ret = wret;
2039 goto enospc;
2040 }
2041 if (wret == 1) {
2042 wret = push_node_left(trans, left, mid, 1);
2043 if (wret < 0)
2044 ret = wret;
2045 }
2046 BUG_ON(wret == 1);
2047 }
2048 if (btrfs_header_nritems(mid) == 0) {
2049 btrfs_clean_tree_block(mid);
2050 btrfs_tree_unlock(mid);
2051 del_ptr(root, path, level + 1, pslot);
2052 root_sub_used(root, mid->len);
2053 btrfs_free_tree_block(trans, root, mid, 0, 1);
2054 free_extent_buffer_stale(mid);
2055 mid = NULL;
2056 } else {
2057 /* update the parent key to reflect our changes */
2058 struct btrfs_disk_key mid_key;
2059 btrfs_node_key(mid, &mid_key, 0);
2060 ret = tree_mod_log_insert_key(parent, pslot,
2061 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2062 BUG_ON(ret < 0);
2063 btrfs_set_node_key(parent, &mid_key, pslot);
2064 btrfs_mark_buffer_dirty(parent);
2065 }
2066
2067 /* update the path */
2068 if (left) {
2069 if (btrfs_header_nritems(left) > orig_slot) {
2070 extent_buffer_get(left);
2071 /* left was locked after cow */
2072 path->nodes[level] = left;
2073 path->slots[level + 1] -= 1;
2074 path->slots[level] = orig_slot;
2075 if (mid) {
2076 btrfs_tree_unlock(mid);
2077 free_extent_buffer(mid);
2078 }
2079 } else {
2080 orig_slot -= btrfs_header_nritems(left);
2081 path->slots[level] = orig_slot;
2082 }
2083 }
2084 /* double check we haven't messed things up */
2085 if (orig_ptr !=
2086 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2087 BUG();
2088 enospc:
2089 if (right) {
2090 btrfs_tree_unlock(right);
2091 free_extent_buffer(right);
2092 }
2093 if (left) {
2094 if (path->nodes[level] != left)
2095 btrfs_tree_unlock(left);
2096 free_extent_buffer(left);
2097 }
2098 return ret;
2099 }
2100
2101 /* Node balancing for insertion. Here we only split or push nodes around
2102 * when they are completely full. This is also done top down, so we
2103 * have to be pessimistic.
2104 */
push_nodes_for_insert(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)2105 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2106 struct btrfs_root *root,
2107 struct btrfs_path *path, int level)
2108 {
2109 struct btrfs_fs_info *fs_info = root->fs_info;
2110 struct extent_buffer *right = NULL;
2111 struct extent_buffer *mid;
2112 struct extent_buffer *left = NULL;
2113 struct extent_buffer *parent = NULL;
2114 int ret = 0;
2115 int wret;
2116 int pslot;
2117 int orig_slot = path->slots[level];
2118
2119 if (level == 0)
2120 return 1;
2121
2122 mid = path->nodes[level];
2123 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2124
2125 if (level < BTRFS_MAX_LEVEL - 1) {
2126 parent = path->nodes[level + 1];
2127 pslot = path->slots[level + 1];
2128 }
2129
2130 if (!parent)
2131 return 1;
2132
2133 left = btrfs_read_node_slot(parent, pslot - 1);
2134 if (IS_ERR(left))
2135 left = NULL;
2136
2137 /* first, try to make some room in the middle buffer */
2138 if (left) {
2139 u32 left_nr;
2140
2141 btrfs_tree_lock(left);
2142 btrfs_set_lock_blocking_write(left);
2143
2144 left_nr = btrfs_header_nritems(left);
2145 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2146 wret = 1;
2147 } else {
2148 ret = btrfs_cow_block(trans, root, left, parent,
2149 pslot - 1, &left);
2150 if (ret)
2151 wret = 1;
2152 else {
2153 wret = push_node_left(trans, left, mid, 0);
2154 }
2155 }
2156 if (wret < 0)
2157 ret = wret;
2158 if (wret == 0) {
2159 struct btrfs_disk_key disk_key;
2160 orig_slot += left_nr;
2161 btrfs_node_key(mid, &disk_key, 0);
2162 ret = tree_mod_log_insert_key(parent, pslot,
2163 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2164 BUG_ON(ret < 0);
2165 btrfs_set_node_key(parent, &disk_key, pslot);
2166 btrfs_mark_buffer_dirty(parent);
2167 if (btrfs_header_nritems(left) > orig_slot) {
2168 path->nodes[level] = left;
2169 path->slots[level + 1] -= 1;
2170 path->slots[level] = orig_slot;
2171 btrfs_tree_unlock(mid);
2172 free_extent_buffer(mid);
2173 } else {
2174 orig_slot -=
2175 btrfs_header_nritems(left);
2176 path->slots[level] = orig_slot;
2177 btrfs_tree_unlock(left);
2178 free_extent_buffer(left);
2179 }
2180 return 0;
2181 }
2182 btrfs_tree_unlock(left);
2183 free_extent_buffer(left);
2184 }
2185 right = btrfs_read_node_slot(parent, pslot + 1);
2186 if (IS_ERR(right))
2187 right = NULL;
2188
2189 /*
2190 * then try to empty the right most buffer into the middle
2191 */
2192 if (right) {
2193 u32 right_nr;
2194
2195 btrfs_tree_lock(right);
2196 btrfs_set_lock_blocking_write(right);
2197
2198 right_nr = btrfs_header_nritems(right);
2199 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2200 wret = 1;
2201 } else {
2202 ret = btrfs_cow_block(trans, root, right,
2203 parent, pslot + 1,
2204 &right);
2205 if (ret)
2206 wret = 1;
2207 else {
2208 wret = balance_node_right(trans, right, mid);
2209 }
2210 }
2211 if (wret < 0)
2212 ret = wret;
2213 if (wret == 0) {
2214 struct btrfs_disk_key disk_key;
2215
2216 btrfs_node_key(right, &disk_key, 0);
2217 ret = tree_mod_log_insert_key(parent, pslot + 1,
2218 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2219 BUG_ON(ret < 0);
2220 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2221 btrfs_mark_buffer_dirty(parent);
2222
2223 if (btrfs_header_nritems(mid) <= orig_slot) {
2224 path->nodes[level] = right;
2225 path->slots[level + 1] += 1;
2226 path->slots[level] = orig_slot -
2227 btrfs_header_nritems(mid);
2228 btrfs_tree_unlock(mid);
2229 free_extent_buffer(mid);
2230 } else {
2231 btrfs_tree_unlock(right);
2232 free_extent_buffer(right);
2233 }
2234 return 0;
2235 }
2236 btrfs_tree_unlock(right);
2237 free_extent_buffer(right);
2238 }
2239 return 1;
2240 }
2241
2242 /*
2243 * readahead one full node of leaves, finding things that are close
2244 * to the block in 'slot', and triggering ra on them.
2245 */
reada_for_search(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int level,int slot,u64 objectid)2246 static void reada_for_search(struct btrfs_fs_info *fs_info,
2247 struct btrfs_path *path,
2248 int level, int slot, u64 objectid)
2249 {
2250 struct extent_buffer *node;
2251 struct btrfs_disk_key disk_key;
2252 u32 nritems;
2253 u64 search;
2254 u64 target;
2255 u64 nread = 0;
2256 struct extent_buffer *eb;
2257 u32 nr;
2258 u32 blocksize;
2259 u32 nscan = 0;
2260
2261 if (level != 1)
2262 return;
2263
2264 if (!path->nodes[level])
2265 return;
2266
2267 node = path->nodes[level];
2268
2269 search = btrfs_node_blockptr(node, slot);
2270 blocksize = fs_info->nodesize;
2271 eb = find_extent_buffer(fs_info, search);
2272 if (eb) {
2273 free_extent_buffer(eb);
2274 return;
2275 }
2276
2277 target = search;
2278
2279 nritems = btrfs_header_nritems(node);
2280 nr = slot;
2281
2282 while (1) {
2283 if (path->reada == READA_BACK) {
2284 if (nr == 0)
2285 break;
2286 nr--;
2287 } else if (path->reada == READA_FORWARD) {
2288 nr++;
2289 if (nr >= nritems)
2290 break;
2291 }
2292 if (path->reada == READA_BACK && objectid) {
2293 btrfs_node_key(node, &disk_key, nr);
2294 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2295 break;
2296 }
2297 search = btrfs_node_blockptr(node, nr);
2298 if ((search <= target && target - search <= 65536) ||
2299 (search > target && search - target <= 65536)) {
2300 readahead_tree_block(fs_info, search);
2301 nread += blocksize;
2302 }
2303 nscan++;
2304 if ((nread > 65536 || nscan > 32))
2305 break;
2306 }
2307 }
2308
reada_for_balance(struct btrfs_fs_info * fs_info,struct btrfs_path * path,int level)2309 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2310 struct btrfs_path *path, int level)
2311 {
2312 int slot;
2313 int nritems;
2314 struct extent_buffer *parent;
2315 struct extent_buffer *eb;
2316 u64 gen;
2317 u64 block1 = 0;
2318 u64 block2 = 0;
2319
2320 parent = path->nodes[level + 1];
2321 if (!parent)
2322 return;
2323
2324 nritems = btrfs_header_nritems(parent);
2325 slot = path->slots[level + 1];
2326
2327 if (slot > 0) {
2328 block1 = btrfs_node_blockptr(parent, slot - 1);
2329 gen = btrfs_node_ptr_generation(parent, slot - 1);
2330 eb = find_extent_buffer(fs_info, block1);
2331 /*
2332 * if we get -eagain from btrfs_buffer_uptodate, we
2333 * don't want to return eagain here. That will loop
2334 * forever
2335 */
2336 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2337 block1 = 0;
2338 free_extent_buffer(eb);
2339 }
2340 if (slot + 1 < nritems) {
2341 block2 = btrfs_node_blockptr(parent, slot + 1);
2342 gen = btrfs_node_ptr_generation(parent, slot + 1);
2343 eb = find_extent_buffer(fs_info, block2);
2344 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2345 block2 = 0;
2346 free_extent_buffer(eb);
2347 }
2348
2349 if (block1)
2350 readahead_tree_block(fs_info, block1);
2351 if (block2)
2352 readahead_tree_block(fs_info, block2);
2353 }
2354
2355
2356 /*
2357 * when we walk down the tree, it is usually safe to unlock the higher layers
2358 * in the tree. The exceptions are when our path goes through slot 0, because
2359 * operations on the tree might require changing key pointers higher up in the
2360 * tree.
2361 *
2362 * callers might also have set path->keep_locks, which tells this code to keep
2363 * the lock if the path points to the last slot in the block. This is part of
2364 * walking through the tree, and selecting the next slot in the higher block.
2365 *
2366 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2367 * if lowest_unlock is 1, level 0 won't be unlocked
2368 */
unlock_up(struct btrfs_path * path,int level,int lowest_unlock,int min_write_lock_level,int * write_lock_level)2369 static noinline void unlock_up(struct btrfs_path *path, int level,
2370 int lowest_unlock, int min_write_lock_level,
2371 int *write_lock_level)
2372 {
2373 int i;
2374 int skip_level = level;
2375 int no_skips = 0;
2376 struct extent_buffer *t;
2377
2378 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2379 if (!path->nodes[i])
2380 break;
2381 if (!path->locks[i])
2382 break;
2383 if (!no_skips && path->slots[i] == 0) {
2384 skip_level = i + 1;
2385 continue;
2386 }
2387 if (!no_skips && path->keep_locks) {
2388 u32 nritems;
2389 t = path->nodes[i];
2390 nritems = btrfs_header_nritems(t);
2391 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2392 skip_level = i + 1;
2393 continue;
2394 }
2395 }
2396 if (skip_level < i && i >= lowest_unlock)
2397 no_skips = 1;
2398
2399 t = path->nodes[i];
2400 if (i >= lowest_unlock && i > skip_level) {
2401 btrfs_tree_unlock_rw(t, path->locks[i]);
2402 path->locks[i] = 0;
2403 if (write_lock_level &&
2404 i > min_write_lock_level &&
2405 i <= *write_lock_level) {
2406 *write_lock_level = i - 1;
2407 }
2408 }
2409 }
2410 }
2411
2412 /*
2413 * This releases any locks held in the path starting at level and
2414 * going all the way up to the root.
2415 *
2416 * btrfs_search_slot will keep the lock held on higher nodes in a few
2417 * corner cases, such as COW of the block at slot zero in the node. This
2418 * ignores those rules, and it should only be called when there are no
2419 * more updates to be done higher up in the tree.
2420 */
btrfs_unlock_up_safe(struct btrfs_path * path,int level)2421 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2422 {
2423 int i;
2424
2425 if (path->keep_locks)
2426 return;
2427
2428 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2429 if (!path->nodes[i])
2430 continue;
2431 if (!path->locks[i])
2432 continue;
2433 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2434 path->locks[i] = 0;
2435 }
2436 }
2437
2438 /*
2439 * helper function for btrfs_search_slot. The goal is to find a block
2440 * in cache without setting the path to blocking. If we find the block
2441 * we return zero and the path is unchanged.
2442 *
2443 * If we can't find the block, we set the path blocking and do some
2444 * reada. -EAGAIN is returned and the search must be repeated.
2445 */
2446 static int
read_block_for_search(struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer ** eb_ret,int level,int slot,const struct btrfs_key * key)2447 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2448 struct extent_buffer **eb_ret, int level, int slot,
2449 const struct btrfs_key *key)
2450 {
2451 struct btrfs_fs_info *fs_info = root->fs_info;
2452 u64 blocknr;
2453 u64 gen;
2454 struct extent_buffer *b = *eb_ret;
2455 struct extent_buffer *tmp;
2456 struct btrfs_key first_key;
2457 int ret;
2458 int parent_level;
2459
2460 blocknr = btrfs_node_blockptr(b, slot);
2461 gen = btrfs_node_ptr_generation(b, slot);
2462 parent_level = btrfs_header_level(b);
2463 btrfs_node_key_to_cpu(b, &first_key, slot);
2464
2465 tmp = find_extent_buffer(fs_info, blocknr);
2466 if (tmp) {
2467 /* first we do an atomic uptodate check */
2468 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2469 /*
2470 * Do extra check for first_key, eb can be stale due to
2471 * being cached, read from scrub, or have multiple
2472 * parents (shared tree blocks).
2473 */
2474 if (btrfs_verify_level_key(tmp,
2475 parent_level - 1, &first_key, gen)) {
2476 free_extent_buffer(tmp);
2477 return -EUCLEAN;
2478 }
2479 *eb_ret = tmp;
2480 return 0;
2481 }
2482
2483 /* the pages were up to date, but we failed
2484 * the generation number check. Do a full
2485 * read for the generation number that is correct.
2486 * We must do this without dropping locks so
2487 * we can trust our generation number
2488 */
2489 btrfs_set_path_blocking(p);
2490
2491 /* now we're allowed to do a blocking uptodate check */
2492 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2493 if (!ret) {
2494 *eb_ret = tmp;
2495 return 0;
2496 }
2497 free_extent_buffer(tmp);
2498 btrfs_release_path(p);
2499 return -EIO;
2500 }
2501
2502 /*
2503 * reduce lock contention at high levels
2504 * of the btree by dropping locks before
2505 * we read. Don't release the lock on the current
2506 * level because we need to walk this node to figure
2507 * out which blocks to read.
2508 */
2509 btrfs_unlock_up_safe(p, level + 1);
2510 btrfs_set_path_blocking(p);
2511
2512 if (p->reada != READA_NONE)
2513 reada_for_search(fs_info, p, level, slot, key->objectid);
2514
2515 ret = -EAGAIN;
2516 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2517 &first_key);
2518 if (!IS_ERR(tmp)) {
2519 /*
2520 * If the read above didn't mark this buffer up to date,
2521 * it will never end up being up to date. Set ret to EIO now
2522 * and give up so that our caller doesn't loop forever
2523 * on our EAGAINs.
2524 */
2525 if (!extent_buffer_uptodate(tmp))
2526 ret = -EIO;
2527 free_extent_buffer(tmp);
2528 } else {
2529 ret = PTR_ERR(tmp);
2530 }
2531
2532 btrfs_release_path(p);
2533 return ret;
2534 }
2535
2536 /*
2537 * helper function for btrfs_search_slot. This does all of the checks
2538 * for node-level blocks and does any balancing required based on
2539 * the ins_len.
2540 *
2541 * If no extra work was required, zero is returned. If we had to
2542 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2543 * start over
2544 */
2545 static int
setup_nodes_for_search(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * p,struct extent_buffer * b,int level,int ins_len,int * write_lock_level)2546 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2547 struct btrfs_root *root, struct btrfs_path *p,
2548 struct extent_buffer *b, int level, int ins_len,
2549 int *write_lock_level)
2550 {
2551 struct btrfs_fs_info *fs_info = root->fs_info;
2552 int ret;
2553
2554 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2555 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2556 int sret;
2557
2558 if (*write_lock_level < level + 1) {
2559 *write_lock_level = level + 1;
2560 btrfs_release_path(p);
2561 goto again;
2562 }
2563
2564 btrfs_set_path_blocking(p);
2565 reada_for_balance(fs_info, p, level);
2566 sret = split_node(trans, root, p, level);
2567
2568 BUG_ON(sret > 0);
2569 if (sret) {
2570 ret = sret;
2571 goto done;
2572 }
2573 b = p->nodes[level];
2574 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2575 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2576 int sret;
2577
2578 if (*write_lock_level < level + 1) {
2579 *write_lock_level = level + 1;
2580 btrfs_release_path(p);
2581 goto again;
2582 }
2583
2584 btrfs_set_path_blocking(p);
2585 reada_for_balance(fs_info, p, level);
2586 sret = balance_level(trans, root, p, level);
2587
2588 if (sret) {
2589 ret = sret;
2590 goto done;
2591 }
2592 b = p->nodes[level];
2593 if (!b) {
2594 btrfs_release_path(p);
2595 goto again;
2596 }
2597 BUG_ON(btrfs_header_nritems(b) == 1);
2598 }
2599 return 0;
2600
2601 again:
2602 ret = -EAGAIN;
2603 done:
2604 return ret;
2605 }
2606
key_search(struct extent_buffer * b,const struct btrfs_key * key,int level,int * prev_cmp,int * slot)2607 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2608 int level, int *prev_cmp, int *slot)
2609 {
2610 if (*prev_cmp != 0) {
2611 *prev_cmp = btrfs_bin_search(b, key, level, slot);
2612 return *prev_cmp;
2613 }
2614
2615 *slot = 0;
2616
2617 return 0;
2618 }
2619
btrfs_find_item(struct btrfs_root * fs_root,struct btrfs_path * path,u64 iobjectid,u64 ioff,u8 key_type,struct btrfs_key * found_key)2620 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2621 u64 iobjectid, u64 ioff, u8 key_type,
2622 struct btrfs_key *found_key)
2623 {
2624 int ret;
2625 struct btrfs_key key;
2626 struct extent_buffer *eb;
2627
2628 ASSERT(path);
2629 ASSERT(found_key);
2630
2631 key.type = key_type;
2632 key.objectid = iobjectid;
2633 key.offset = ioff;
2634
2635 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2636 if (ret < 0)
2637 return ret;
2638
2639 eb = path->nodes[0];
2640 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2641 ret = btrfs_next_leaf(fs_root, path);
2642 if (ret)
2643 return ret;
2644 eb = path->nodes[0];
2645 }
2646
2647 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2648 if (found_key->type != key.type ||
2649 found_key->objectid != key.objectid)
2650 return 1;
2651
2652 return 0;
2653 }
2654
btrfs_search_slot_get_root(struct btrfs_root * root,struct btrfs_path * p,int write_lock_level)2655 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2656 struct btrfs_path *p,
2657 int write_lock_level)
2658 {
2659 struct btrfs_fs_info *fs_info = root->fs_info;
2660 struct extent_buffer *b;
2661 int root_lock = 0;
2662 int level = 0;
2663
2664 if (p->search_commit_root) {
2665 /*
2666 * The commit roots are read only so we always do read locks,
2667 * and we always must hold the commit_root_sem when doing
2668 * searches on them, the only exception is send where we don't
2669 * want to block transaction commits for a long time, so
2670 * we need to clone the commit root in order to avoid races
2671 * with transaction commits that create a snapshot of one of
2672 * the roots used by a send operation.
2673 */
2674 if (p->need_commit_sem) {
2675 down_read(&fs_info->commit_root_sem);
2676 b = btrfs_clone_extent_buffer(root->commit_root);
2677 up_read(&fs_info->commit_root_sem);
2678 if (!b)
2679 return ERR_PTR(-ENOMEM);
2680
2681 } else {
2682 b = root->commit_root;
2683 extent_buffer_get(b);
2684 }
2685 level = btrfs_header_level(b);
2686 /*
2687 * Ensure that all callers have set skip_locking when
2688 * p->search_commit_root = 1.
2689 */
2690 ASSERT(p->skip_locking == 1);
2691
2692 goto out;
2693 }
2694
2695 if (p->skip_locking) {
2696 b = btrfs_root_node(root);
2697 level = btrfs_header_level(b);
2698 goto out;
2699 }
2700
2701 /* We try very hard to do read locks on the root */
2702 root_lock = BTRFS_READ_LOCK;
2703
2704 /*
2705 * If the level is set to maximum, we can skip trying to get the read
2706 * lock.
2707 */
2708 if (write_lock_level < BTRFS_MAX_LEVEL) {
2709 /*
2710 * We don't know the level of the root node until we actually
2711 * have it read locked
2712 */
2713 b = btrfs_read_lock_root_node(root);
2714 level = btrfs_header_level(b);
2715 if (level > write_lock_level)
2716 goto out;
2717
2718 /* Whoops, must trade for write lock */
2719 btrfs_tree_read_unlock(b);
2720 free_extent_buffer(b);
2721 }
2722
2723 b = btrfs_lock_root_node(root);
2724 root_lock = BTRFS_WRITE_LOCK;
2725
2726 /* The level might have changed, check again */
2727 level = btrfs_header_level(b);
2728
2729 out:
2730 /*
2731 * The root may have failed to write out at some point, and thus is no
2732 * longer valid, return an error in this case.
2733 */
2734 if (!extent_buffer_uptodate(b)) {
2735 if (root_lock)
2736 btrfs_tree_unlock_rw(b, root_lock);
2737 free_extent_buffer(b);
2738 return ERR_PTR(-EIO);
2739 }
2740
2741 p->nodes[level] = b;
2742 if (!p->skip_locking)
2743 p->locks[level] = root_lock;
2744 /*
2745 * Callers are responsible for dropping b's references.
2746 */
2747 return b;
2748 }
2749
2750
2751 /*
2752 * btrfs_search_slot - look for a key in a tree and perform necessary
2753 * modifications to preserve tree invariants.
2754 *
2755 * @trans: Handle of transaction, used when modifying the tree
2756 * @p: Holds all btree nodes along the search path
2757 * @root: The root node of the tree
2758 * @key: The key we are looking for
2759 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2760 * deletions it's -1. 0 for plain searches
2761 * @cow: boolean should CoW operations be performed. Must always be 1
2762 * when modifying the tree.
2763 *
2764 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2765 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2766 *
2767 * If @key is found, 0 is returned and you can find the item in the leaf level
2768 * of the path (level 0)
2769 *
2770 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2771 * points to the slot where it should be inserted
2772 *
2773 * If an error is encountered while searching the tree a negative error number
2774 * is returned
2775 */
btrfs_search_slot(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int ins_len,int cow)2776 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2777 const struct btrfs_key *key, struct btrfs_path *p,
2778 int ins_len, int cow)
2779 {
2780 struct extent_buffer *b;
2781 int slot;
2782 int ret;
2783 int err;
2784 int level;
2785 int lowest_unlock = 1;
2786 /* everything at write_lock_level or lower must be write locked */
2787 int write_lock_level = 0;
2788 u8 lowest_level = 0;
2789 int min_write_lock_level;
2790 int prev_cmp;
2791
2792 lowest_level = p->lowest_level;
2793 WARN_ON(lowest_level && ins_len > 0);
2794 WARN_ON(p->nodes[0] != NULL);
2795 BUG_ON(!cow && ins_len);
2796
2797 if (ins_len < 0) {
2798 lowest_unlock = 2;
2799
2800 /* when we are removing items, we might have to go up to level
2801 * two as we update tree pointers Make sure we keep write
2802 * for those levels as well
2803 */
2804 write_lock_level = 2;
2805 } else if (ins_len > 0) {
2806 /*
2807 * for inserting items, make sure we have a write lock on
2808 * level 1 so we can update keys
2809 */
2810 write_lock_level = 1;
2811 }
2812
2813 if (!cow)
2814 write_lock_level = -1;
2815
2816 if (cow && (p->keep_locks || p->lowest_level))
2817 write_lock_level = BTRFS_MAX_LEVEL;
2818
2819 min_write_lock_level = write_lock_level;
2820
2821 again:
2822 prev_cmp = -1;
2823 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2824 if (IS_ERR(b)) {
2825 ret = PTR_ERR(b);
2826 goto done;
2827 }
2828
2829 while (b) {
2830 level = btrfs_header_level(b);
2831
2832 /*
2833 * setup the path here so we can release it under lock
2834 * contention with the cow code
2835 */
2836 if (cow) {
2837 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2838
2839 /*
2840 * if we don't really need to cow this block
2841 * then we don't want to set the path blocking,
2842 * so we test it here
2843 */
2844 if (!should_cow_block(trans, root, b)) {
2845 trans->dirty = true;
2846 goto cow_done;
2847 }
2848
2849 /*
2850 * must have write locks on this node and the
2851 * parent
2852 */
2853 if (level > write_lock_level ||
2854 (level + 1 > write_lock_level &&
2855 level + 1 < BTRFS_MAX_LEVEL &&
2856 p->nodes[level + 1])) {
2857 write_lock_level = level + 1;
2858 btrfs_release_path(p);
2859 goto again;
2860 }
2861
2862 btrfs_set_path_blocking(p);
2863 if (last_level)
2864 err = btrfs_cow_block(trans, root, b, NULL, 0,
2865 &b);
2866 else
2867 err = btrfs_cow_block(trans, root, b,
2868 p->nodes[level + 1],
2869 p->slots[level + 1], &b);
2870 if (err) {
2871 ret = err;
2872 goto done;
2873 }
2874 }
2875 cow_done:
2876 p->nodes[level] = b;
2877 /*
2878 * Leave path with blocking locks to avoid massive
2879 * lock context switch, this is made on purpose.
2880 */
2881
2882 /*
2883 * we have a lock on b and as long as we aren't changing
2884 * the tree, there is no way to for the items in b to change.
2885 * It is safe to drop the lock on our parent before we
2886 * go through the expensive btree search on b.
2887 *
2888 * If we're inserting or deleting (ins_len != 0), then we might
2889 * be changing slot zero, which may require changing the parent.
2890 * So, we can't drop the lock until after we know which slot
2891 * we're operating on.
2892 */
2893 if (!ins_len && !p->keep_locks) {
2894 int u = level + 1;
2895
2896 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2897 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2898 p->locks[u] = 0;
2899 }
2900 }
2901
2902 ret = key_search(b, key, level, &prev_cmp, &slot);
2903 if (ret < 0)
2904 goto done;
2905
2906 if (level != 0) {
2907 int dec = 0;
2908 if (ret && slot > 0) {
2909 dec = 1;
2910 slot -= 1;
2911 }
2912 p->slots[level] = slot;
2913 err = setup_nodes_for_search(trans, root, p, b, level,
2914 ins_len, &write_lock_level);
2915 if (err == -EAGAIN)
2916 goto again;
2917 if (err) {
2918 ret = err;
2919 goto done;
2920 }
2921 b = p->nodes[level];
2922 slot = p->slots[level];
2923
2924 /*
2925 * slot 0 is special, if we change the key
2926 * we have to update the parent pointer
2927 * which means we must have a write lock
2928 * on the parent
2929 */
2930 if (slot == 0 && ins_len &&
2931 write_lock_level < level + 1) {
2932 write_lock_level = level + 1;
2933 btrfs_release_path(p);
2934 goto again;
2935 }
2936
2937 unlock_up(p, level, lowest_unlock,
2938 min_write_lock_level, &write_lock_level);
2939
2940 if (level == lowest_level) {
2941 if (dec)
2942 p->slots[level]++;
2943 goto done;
2944 }
2945
2946 err = read_block_for_search(root, p, &b, level,
2947 slot, key);
2948 if (err == -EAGAIN)
2949 goto again;
2950 if (err) {
2951 ret = err;
2952 goto done;
2953 }
2954
2955 if (!p->skip_locking) {
2956 level = btrfs_header_level(b);
2957 if (level <= write_lock_level) {
2958 if (!btrfs_try_tree_write_lock(b)) {
2959 btrfs_set_path_blocking(p);
2960 btrfs_tree_lock(b);
2961 }
2962 p->locks[level] = BTRFS_WRITE_LOCK;
2963 } else {
2964 if (!btrfs_tree_read_lock_atomic(b)) {
2965 btrfs_set_path_blocking(p);
2966 btrfs_tree_read_lock(b);
2967 }
2968 p->locks[level] = BTRFS_READ_LOCK;
2969 }
2970 p->nodes[level] = b;
2971 }
2972 } else {
2973 p->slots[level] = slot;
2974 if (ins_len > 0 &&
2975 btrfs_leaf_free_space(b) < ins_len) {
2976 if (write_lock_level < 1) {
2977 write_lock_level = 1;
2978 btrfs_release_path(p);
2979 goto again;
2980 }
2981
2982 btrfs_set_path_blocking(p);
2983 err = split_leaf(trans, root, key,
2984 p, ins_len, ret == 0);
2985
2986 BUG_ON(err > 0);
2987 if (err) {
2988 ret = err;
2989 goto done;
2990 }
2991 }
2992 if (!p->search_for_split)
2993 unlock_up(p, level, lowest_unlock,
2994 min_write_lock_level, NULL);
2995 goto done;
2996 }
2997 }
2998 ret = 1;
2999 done:
3000 /*
3001 * we don't really know what they plan on doing with the path
3002 * from here on, so for now just mark it as blocking
3003 */
3004 if (!p->leave_spinning)
3005 btrfs_set_path_blocking(p);
3006 if (ret < 0 && !p->skip_release_on_error)
3007 btrfs_release_path(p);
3008 return ret;
3009 }
3010
3011 /*
3012 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
3013 * current state of the tree together with the operations recorded in the tree
3014 * modification log to search for the key in a previous version of this tree, as
3015 * denoted by the time_seq parameter.
3016 *
3017 * Naturally, there is no support for insert, delete or cow operations.
3018 *
3019 * The resulting path and return value will be set up as if we called
3020 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
3021 */
btrfs_search_old_slot(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,u64 time_seq)3022 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
3023 struct btrfs_path *p, u64 time_seq)
3024 {
3025 struct btrfs_fs_info *fs_info = root->fs_info;
3026 struct extent_buffer *b;
3027 int slot;
3028 int ret;
3029 int err;
3030 int level;
3031 int lowest_unlock = 1;
3032 u8 lowest_level = 0;
3033 int prev_cmp = -1;
3034
3035 lowest_level = p->lowest_level;
3036 WARN_ON(p->nodes[0] != NULL);
3037
3038 if (p->search_commit_root) {
3039 BUG_ON(time_seq);
3040 return btrfs_search_slot(NULL, root, key, p, 0, 0);
3041 }
3042
3043 again:
3044 b = get_old_root(root, time_seq);
3045 if (!b) {
3046 ret = -EIO;
3047 goto done;
3048 }
3049 level = btrfs_header_level(b);
3050 p->locks[level] = BTRFS_READ_LOCK;
3051
3052 while (b) {
3053 level = btrfs_header_level(b);
3054 p->nodes[level] = b;
3055
3056 /*
3057 * we have a lock on b and as long as we aren't changing
3058 * the tree, there is no way to for the items in b to change.
3059 * It is safe to drop the lock on our parent before we
3060 * go through the expensive btree search on b.
3061 */
3062 btrfs_unlock_up_safe(p, level + 1);
3063
3064 /*
3065 * Since we can unwind ebs we want to do a real search every
3066 * time.
3067 */
3068 prev_cmp = -1;
3069 ret = key_search(b, key, level, &prev_cmp, &slot);
3070 if (ret < 0)
3071 goto done;
3072
3073 if (level != 0) {
3074 int dec = 0;
3075 if (ret && slot > 0) {
3076 dec = 1;
3077 slot -= 1;
3078 }
3079 p->slots[level] = slot;
3080 unlock_up(p, level, lowest_unlock, 0, NULL);
3081
3082 if (level == lowest_level) {
3083 if (dec)
3084 p->slots[level]++;
3085 goto done;
3086 }
3087
3088 err = read_block_for_search(root, p, &b, level,
3089 slot, key);
3090 if (err == -EAGAIN)
3091 goto again;
3092 if (err) {
3093 ret = err;
3094 goto done;
3095 }
3096
3097 level = btrfs_header_level(b);
3098 if (!btrfs_tree_read_lock_atomic(b)) {
3099 btrfs_set_path_blocking(p);
3100 btrfs_tree_read_lock(b);
3101 }
3102 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3103 if (!b) {
3104 ret = -ENOMEM;
3105 goto done;
3106 }
3107 p->locks[level] = BTRFS_READ_LOCK;
3108 p->nodes[level] = b;
3109 } else {
3110 p->slots[level] = slot;
3111 unlock_up(p, level, lowest_unlock, 0, NULL);
3112 goto done;
3113 }
3114 }
3115 ret = 1;
3116 done:
3117 if (!p->leave_spinning)
3118 btrfs_set_path_blocking(p);
3119 if (ret < 0)
3120 btrfs_release_path(p);
3121
3122 return ret;
3123 }
3124
3125 /*
3126 * helper to use instead of search slot if no exact match is needed but
3127 * instead the next or previous item should be returned.
3128 * When find_higher is true, the next higher item is returned, the next lower
3129 * otherwise.
3130 * When return_any and find_higher are both true, and no higher item is found,
3131 * return the next lower instead.
3132 * When return_any is true and find_higher is false, and no lower item is found,
3133 * return the next higher instead.
3134 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3135 * < 0 on error
3136 */
btrfs_search_slot_for_read(struct btrfs_root * root,const struct btrfs_key * key,struct btrfs_path * p,int find_higher,int return_any)3137 int btrfs_search_slot_for_read(struct btrfs_root *root,
3138 const struct btrfs_key *key,
3139 struct btrfs_path *p, int find_higher,
3140 int return_any)
3141 {
3142 int ret;
3143 struct extent_buffer *leaf;
3144
3145 again:
3146 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3147 if (ret <= 0)
3148 return ret;
3149 /*
3150 * a return value of 1 means the path is at the position where the
3151 * item should be inserted. Normally this is the next bigger item,
3152 * but in case the previous item is the last in a leaf, path points
3153 * to the first free slot in the previous leaf, i.e. at an invalid
3154 * item.
3155 */
3156 leaf = p->nodes[0];
3157
3158 if (find_higher) {
3159 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3160 ret = btrfs_next_leaf(root, p);
3161 if (ret <= 0)
3162 return ret;
3163 if (!return_any)
3164 return 1;
3165 /*
3166 * no higher item found, return the next
3167 * lower instead
3168 */
3169 return_any = 0;
3170 find_higher = 0;
3171 btrfs_release_path(p);
3172 goto again;
3173 }
3174 } else {
3175 if (p->slots[0] == 0) {
3176 ret = btrfs_prev_leaf(root, p);
3177 if (ret < 0)
3178 return ret;
3179 if (!ret) {
3180 leaf = p->nodes[0];
3181 if (p->slots[0] == btrfs_header_nritems(leaf))
3182 p->slots[0]--;
3183 return 0;
3184 }
3185 if (!return_any)
3186 return 1;
3187 /*
3188 * no lower item found, return the next
3189 * higher instead
3190 */
3191 return_any = 0;
3192 find_higher = 1;
3193 btrfs_release_path(p);
3194 goto again;
3195 } else {
3196 --p->slots[0];
3197 }
3198 }
3199 return 0;
3200 }
3201
3202 /*
3203 * adjust the pointers going up the tree, starting at level
3204 * making sure the right key of each node is points to 'key'.
3205 * This is used after shifting pointers to the left, so it stops
3206 * fixing up pointers when a given leaf/node is not in slot 0 of the
3207 * higher levels
3208 *
3209 */
fixup_low_keys(struct btrfs_path * path,struct btrfs_disk_key * key,int level)3210 static void fixup_low_keys(struct btrfs_path *path,
3211 struct btrfs_disk_key *key, int level)
3212 {
3213 int i;
3214 struct extent_buffer *t;
3215 int ret;
3216
3217 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3218 int tslot = path->slots[i];
3219
3220 if (!path->nodes[i])
3221 break;
3222 t = path->nodes[i];
3223 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3224 GFP_ATOMIC);
3225 BUG_ON(ret < 0);
3226 btrfs_set_node_key(t, key, tslot);
3227 btrfs_mark_buffer_dirty(path->nodes[i]);
3228 if (tslot != 0)
3229 break;
3230 }
3231 }
3232
3233 /*
3234 * update item key.
3235 *
3236 * This function isn't completely safe. It's the caller's responsibility
3237 * that the new key won't break the order
3238 */
btrfs_set_item_key_safe(struct btrfs_fs_info * fs_info,struct btrfs_path * path,const struct btrfs_key * new_key)3239 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3240 struct btrfs_path *path,
3241 const struct btrfs_key *new_key)
3242 {
3243 struct btrfs_disk_key disk_key;
3244 struct extent_buffer *eb;
3245 int slot;
3246
3247 eb = path->nodes[0];
3248 slot = path->slots[0];
3249 if (slot > 0) {
3250 btrfs_item_key(eb, &disk_key, slot - 1);
3251 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3252 btrfs_crit(fs_info,
3253 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3254 slot, btrfs_disk_key_objectid(&disk_key),
3255 btrfs_disk_key_type(&disk_key),
3256 btrfs_disk_key_offset(&disk_key),
3257 new_key->objectid, new_key->type,
3258 new_key->offset);
3259 btrfs_print_leaf(eb);
3260 BUG();
3261 }
3262 }
3263 if (slot < btrfs_header_nritems(eb) - 1) {
3264 btrfs_item_key(eb, &disk_key, slot + 1);
3265 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3266 btrfs_crit(fs_info,
3267 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3268 slot, btrfs_disk_key_objectid(&disk_key),
3269 btrfs_disk_key_type(&disk_key),
3270 btrfs_disk_key_offset(&disk_key),
3271 new_key->objectid, new_key->type,
3272 new_key->offset);
3273 btrfs_print_leaf(eb);
3274 BUG();
3275 }
3276 }
3277
3278 btrfs_cpu_key_to_disk(&disk_key, new_key);
3279 btrfs_set_item_key(eb, &disk_key, slot);
3280 btrfs_mark_buffer_dirty(eb);
3281 if (slot == 0)
3282 fixup_low_keys(path, &disk_key, 1);
3283 }
3284
3285 /*
3286 * try to push data from one node into the next node left in the
3287 * tree.
3288 *
3289 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3290 * error, and > 0 if there was no room in the left hand block.
3291 */
push_node_left(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src,int empty)3292 static int push_node_left(struct btrfs_trans_handle *trans,
3293 struct extent_buffer *dst,
3294 struct extent_buffer *src, int empty)
3295 {
3296 struct btrfs_fs_info *fs_info = trans->fs_info;
3297 int push_items = 0;
3298 int src_nritems;
3299 int dst_nritems;
3300 int ret = 0;
3301
3302 src_nritems = btrfs_header_nritems(src);
3303 dst_nritems = btrfs_header_nritems(dst);
3304 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3305 WARN_ON(btrfs_header_generation(src) != trans->transid);
3306 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3307
3308 if (!empty && src_nritems <= 8)
3309 return 1;
3310
3311 if (push_items <= 0)
3312 return 1;
3313
3314 if (empty) {
3315 push_items = min(src_nritems, push_items);
3316 if (push_items < src_nritems) {
3317 /* leave at least 8 pointers in the node if
3318 * we aren't going to empty it
3319 */
3320 if (src_nritems - push_items < 8) {
3321 if (push_items <= 8)
3322 return 1;
3323 push_items -= 8;
3324 }
3325 }
3326 } else
3327 push_items = min(src_nritems - 8, push_items);
3328
3329 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3330 if (ret) {
3331 btrfs_abort_transaction(trans, ret);
3332 return ret;
3333 }
3334 copy_extent_buffer(dst, src,
3335 btrfs_node_key_ptr_offset(dst_nritems),
3336 btrfs_node_key_ptr_offset(0),
3337 push_items * sizeof(struct btrfs_key_ptr));
3338
3339 if (push_items < src_nritems) {
3340 /*
3341 * Don't call tree_mod_log_insert_move here, key removal was
3342 * already fully logged by tree_mod_log_eb_copy above.
3343 */
3344 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3345 btrfs_node_key_ptr_offset(push_items),
3346 (src_nritems - push_items) *
3347 sizeof(struct btrfs_key_ptr));
3348 }
3349 btrfs_set_header_nritems(src, src_nritems - push_items);
3350 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3351 btrfs_mark_buffer_dirty(src);
3352 btrfs_mark_buffer_dirty(dst);
3353
3354 return ret;
3355 }
3356
3357 /*
3358 * try to push data from one node into the next node right in the
3359 * tree.
3360 *
3361 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3362 * error, and > 0 if there was no room in the right hand block.
3363 *
3364 * this will only push up to 1/2 the contents of the left node over
3365 */
balance_node_right(struct btrfs_trans_handle * trans,struct extent_buffer * dst,struct extent_buffer * src)3366 static int balance_node_right(struct btrfs_trans_handle *trans,
3367 struct extent_buffer *dst,
3368 struct extent_buffer *src)
3369 {
3370 struct btrfs_fs_info *fs_info = trans->fs_info;
3371 int push_items = 0;
3372 int max_push;
3373 int src_nritems;
3374 int dst_nritems;
3375 int ret = 0;
3376
3377 WARN_ON(btrfs_header_generation(src) != trans->transid);
3378 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3379
3380 src_nritems = btrfs_header_nritems(src);
3381 dst_nritems = btrfs_header_nritems(dst);
3382 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3383 if (push_items <= 0)
3384 return 1;
3385
3386 if (src_nritems < 4)
3387 return 1;
3388
3389 max_push = src_nritems / 2 + 1;
3390 /* don't try to empty the node */
3391 if (max_push >= src_nritems)
3392 return 1;
3393
3394 if (max_push < push_items)
3395 push_items = max_push;
3396
3397 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3398 BUG_ON(ret < 0);
3399 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3400 btrfs_node_key_ptr_offset(0),
3401 (dst_nritems) *
3402 sizeof(struct btrfs_key_ptr));
3403
3404 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3405 push_items);
3406 if (ret) {
3407 btrfs_abort_transaction(trans, ret);
3408 return ret;
3409 }
3410 copy_extent_buffer(dst, src,
3411 btrfs_node_key_ptr_offset(0),
3412 btrfs_node_key_ptr_offset(src_nritems - push_items),
3413 push_items * sizeof(struct btrfs_key_ptr));
3414
3415 btrfs_set_header_nritems(src, src_nritems - push_items);
3416 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3417
3418 btrfs_mark_buffer_dirty(src);
3419 btrfs_mark_buffer_dirty(dst);
3420
3421 return ret;
3422 }
3423
3424 /*
3425 * helper function to insert a new root level in the tree.
3426 * A new node is allocated, and a single item is inserted to
3427 * point to the existing root
3428 *
3429 * returns zero on success or < 0 on failure.
3430 */
insert_new_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)3431 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3432 struct btrfs_root *root,
3433 struct btrfs_path *path, int level)
3434 {
3435 struct btrfs_fs_info *fs_info = root->fs_info;
3436 u64 lower_gen;
3437 struct extent_buffer *lower;
3438 struct extent_buffer *c;
3439 struct extent_buffer *old;
3440 struct btrfs_disk_key lower_key;
3441 int ret;
3442
3443 BUG_ON(path->nodes[level]);
3444 BUG_ON(path->nodes[level-1] != root->node);
3445
3446 lower = path->nodes[level-1];
3447 if (level == 1)
3448 btrfs_item_key(lower, &lower_key, 0);
3449 else
3450 btrfs_node_key(lower, &lower_key, 0);
3451
3452 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3453 root->node->start, 0);
3454 if (IS_ERR(c))
3455 return PTR_ERR(c);
3456
3457 root_add_used(root, fs_info->nodesize);
3458
3459 btrfs_set_header_nritems(c, 1);
3460 btrfs_set_node_key(c, &lower_key, 0);
3461 btrfs_set_node_blockptr(c, 0, lower->start);
3462 lower_gen = btrfs_header_generation(lower);
3463 WARN_ON(lower_gen != trans->transid);
3464
3465 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3466
3467 btrfs_mark_buffer_dirty(c);
3468
3469 old = root->node;
3470 ret = tree_mod_log_insert_root(root->node, c, 0);
3471 BUG_ON(ret < 0);
3472 rcu_assign_pointer(root->node, c);
3473
3474 /* the super has an extra ref to root->node */
3475 free_extent_buffer(old);
3476
3477 add_root_to_dirty_list(root);
3478 extent_buffer_get(c);
3479 path->nodes[level] = c;
3480 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3481 path->slots[level] = 0;
3482 return 0;
3483 }
3484
3485 /*
3486 * worker function to insert a single pointer in a node.
3487 * the node should have enough room for the pointer already
3488 *
3489 * slot and level indicate where you want the key to go, and
3490 * blocknr is the block the key points to.
3491 */
insert_ptr(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_disk_key * key,u64 bytenr,int slot,int level)3492 static void insert_ptr(struct btrfs_trans_handle *trans,
3493 struct btrfs_path *path,
3494 struct btrfs_disk_key *key, u64 bytenr,
3495 int slot, int level)
3496 {
3497 struct extent_buffer *lower;
3498 int nritems;
3499 int ret;
3500
3501 BUG_ON(!path->nodes[level]);
3502 btrfs_assert_tree_locked(path->nodes[level]);
3503 lower = path->nodes[level];
3504 nritems = btrfs_header_nritems(lower);
3505 BUG_ON(slot > nritems);
3506 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3507 if (slot != nritems) {
3508 if (level) {
3509 ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3510 nritems - slot);
3511 BUG_ON(ret < 0);
3512 }
3513 memmove_extent_buffer(lower,
3514 btrfs_node_key_ptr_offset(slot + 1),
3515 btrfs_node_key_ptr_offset(slot),
3516 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3517 }
3518 if (level) {
3519 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3520 GFP_NOFS);
3521 BUG_ON(ret < 0);
3522 }
3523 btrfs_set_node_key(lower, key, slot);
3524 btrfs_set_node_blockptr(lower, slot, bytenr);
3525 WARN_ON(trans->transid == 0);
3526 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3527 btrfs_set_header_nritems(lower, nritems + 1);
3528 btrfs_mark_buffer_dirty(lower);
3529 }
3530
3531 /*
3532 * split the node at the specified level in path in two.
3533 * The path is corrected to point to the appropriate node after the split
3534 *
3535 * Before splitting this tries to make some room in the node by pushing
3536 * left and right, if either one works, it returns right away.
3537 *
3538 * returns 0 on success and < 0 on failure
3539 */
split_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int level)3540 static noinline int split_node(struct btrfs_trans_handle *trans,
3541 struct btrfs_root *root,
3542 struct btrfs_path *path, int level)
3543 {
3544 struct btrfs_fs_info *fs_info = root->fs_info;
3545 struct extent_buffer *c;
3546 struct extent_buffer *split;
3547 struct btrfs_disk_key disk_key;
3548 int mid;
3549 int ret;
3550 u32 c_nritems;
3551
3552 c = path->nodes[level];
3553 WARN_ON(btrfs_header_generation(c) != trans->transid);
3554 if (c == root->node) {
3555 /*
3556 * trying to split the root, lets make a new one
3557 *
3558 * tree mod log: We don't log_removal old root in
3559 * insert_new_root, because that root buffer will be kept as a
3560 * normal node. We are going to log removal of half of the
3561 * elements below with tree_mod_log_eb_copy. We're holding a
3562 * tree lock on the buffer, which is why we cannot race with
3563 * other tree_mod_log users.
3564 */
3565 ret = insert_new_root(trans, root, path, level + 1);
3566 if (ret)
3567 return ret;
3568 } else {
3569 ret = push_nodes_for_insert(trans, root, path, level);
3570 c = path->nodes[level];
3571 if (!ret && btrfs_header_nritems(c) <
3572 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3573 return 0;
3574 if (ret < 0)
3575 return ret;
3576 }
3577
3578 c_nritems = btrfs_header_nritems(c);
3579 mid = (c_nritems + 1) / 2;
3580 btrfs_node_key(c, &disk_key, mid);
3581
3582 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3583 c->start, 0);
3584 if (IS_ERR(split))
3585 return PTR_ERR(split);
3586
3587 root_add_used(root, fs_info->nodesize);
3588 ASSERT(btrfs_header_level(c) == level);
3589
3590 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3591 if (ret) {
3592 btrfs_tree_unlock(split);
3593 free_extent_buffer(split);
3594 btrfs_abort_transaction(trans, ret);
3595 return ret;
3596 }
3597 copy_extent_buffer(split, c,
3598 btrfs_node_key_ptr_offset(0),
3599 btrfs_node_key_ptr_offset(mid),
3600 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3601 btrfs_set_header_nritems(split, c_nritems - mid);
3602 btrfs_set_header_nritems(c, mid);
3603 ret = 0;
3604
3605 btrfs_mark_buffer_dirty(c);
3606 btrfs_mark_buffer_dirty(split);
3607
3608 insert_ptr(trans, path, &disk_key, split->start,
3609 path->slots[level + 1] + 1, level + 1);
3610
3611 if (path->slots[level] >= mid) {
3612 path->slots[level] -= mid;
3613 btrfs_tree_unlock(c);
3614 free_extent_buffer(c);
3615 path->nodes[level] = split;
3616 path->slots[level + 1] += 1;
3617 } else {
3618 btrfs_tree_unlock(split);
3619 free_extent_buffer(split);
3620 }
3621 return ret;
3622 }
3623
3624 /*
3625 * how many bytes are required to store the items in a leaf. start
3626 * and nr indicate which items in the leaf to check. This totals up the
3627 * space used both by the item structs and the item data
3628 */
leaf_space_used(struct extent_buffer * l,int start,int nr)3629 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3630 {
3631 struct btrfs_item *start_item;
3632 struct btrfs_item *end_item;
3633 struct btrfs_map_token token;
3634 int data_len;
3635 int nritems = btrfs_header_nritems(l);
3636 int end = min(nritems, start + nr) - 1;
3637
3638 if (!nr)
3639 return 0;
3640 btrfs_init_map_token(&token, l);
3641 start_item = btrfs_item_nr(start);
3642 end_item = btrfs_item_nr(end);
3643 data_len = btrfs_token_item_offset(l, start_item, &token) +
3644 btrfs_token_item_size(l, start_item, &token);
3645 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3646 data_len += sizeof(struct btrfs_item) * nr;
3647 WARN_ON(data_len < 0);
3648 return data_len;
3649 }
3650
3651 /*
3652 * The space between the end of the leaf items and
3653 * the start of the leaf data. IOW, how much room
3654 * the leaf has left for both items and data
3655 */
btrfs_leaf_free_space(struct extent_buffer * leaf)3656 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3657 {
3658 struct btrfs_fs_info *fs_info = leaf->fs_info;
3659 int nritems = btrfs_header_nritems(leaf);
3660 int ret;
3661
3662 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3663 if (ret < 0) {
3664 btrfs_crit(fs_info,
3665 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3666 ret,
3667 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3668 leaf_space_used(leaf, 0, nritems), nritems);
3669 }
3670 return ret;
3671 }
3672
3673 /*
3674 * min slot controls the lowest index we're willing to push to the
3675 * right. We'll push up to and including min_slot, but no lower
3676 */
__push_leaf_right(struct btrfs_path * path,int data_size,int empty,struct extent_buffer * right,int free_space,u32 left_nritems,u32 min_slot)3677 static noinline int __push_leaf_right(struct btrfs_path *path,
3678 int data_size, int empty,
3679 struct extent_buffer *right,
3680 int free_space, u32 left_nritems,
3681 u32 min_slot)
3682 {
3683 struct btrfs_fs_info *fs_info = right->fs_info;
3684 struct extent_buffer *left = path->nodes[0];
3685 struct extent_buffer *upper = path->nodes[1];
3686 struct btrfs_map_token token;
3687 struct btrfs_disk_key disk_key;
3688 int slot;
3689 u32 i;
3690 int push_space = 0;
3691 int push_items = 0;
3692 struct btrfs_item *item;
3693 u32 nr;
3694 u32 right_nritems;
3695 u32 data_end;
3696 u32 this_item_size;
3697
3698 if (empty)
3699 nr = 0;
3700 else
3701 nr = max_t(u32, 1, min_slot);
3702
3703 if (path->slots[0] >= left_nritems)
3704 push_space += data_size;
3705
3706 slot = path->slots[1];
3707 i = left_nritems - 1;
3708 while (i >= nr) {
3709 item = btrfs_item_nr(i);
3710
3711 if (!empty && push_items > 0) {
3712 if (path->slots[0] > i)
3713 break;
3714 if (path->slots[0] == i) {
3715 int space = btrfs_leaf_free_space(left);
3716
3717 if (space + push_space * 2 > free_space)
3718 break;
3719 }
3720 }
3721
3722 if (path->slots[0] == i)
3723 push_space += data_size;
3724
3725 this_item_size = btrfs_item_size(left, item);
3726 if (this_item_size + sizeof(*item) + push_space > free_space)
3727 break;
3728
3729 push_items++;
3730 push_space += this_item_size + sizeof(*item);
3731 if (i == 0)
3732 break;
3733 i--;
3734 }
3735
3736 if (push_items == 0)
3737 goto out_unlock;
3738
3739 WARN_ON(!empty && push_items == left_nritems);
3740
3741 /* push left to right */
3742 right_nritems = btrfs_header_nritems(right);
3743
3744 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3745 push_space -= leaf_data_end(left);
3746
3747 /* make room in the right data area */
3748 data_end = leaf_data_end(right);
3749 memmove_extent_buffer(right,
3750 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3751 BTRFS_LEAF_DATA_OFFSET + data_end,
3752 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3753
3754 /* copy from the left data area */
3755 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3756 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3757 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3758 push_space);
3759
3760 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3761 btrfs_item_nr_offset(0),
3762 right_nritems * sizeof(struct btrfs_item));
3763
3764 /* copy the items from left to right */
3765 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3766 btrfs_item_nr_offset(left_nritems - push_items),
3767 push_items * sizeof(struct btrfs_item));
3768
3769 /* update the item pointers */
3770 btrfs_init_map_token(&token, right);
3771 right_nritems += push_items;
3772 btrfs_set_header_nritems(right, right_nritems);
3773 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3774 for (i = 0; i < right_nritems; i++) {
3775 item = btrfs_item_nr(i);
3776 push_space -= btrfs_token_item_size(right, item, &token);
3777 btrfs_set_token_item_offset(right, item, push_space, &token);
3778 }
3779
3780 left_nritems -= push_items;
3781 btrfs_set_header_nritems(left, left_nritems);
3782
3783 if (left_nritems)
3784 btrfs_mark_buffer_dirty(left);
3785 else
3786 btrfs_clean_tree_block(left);
3787
3788 btrfs_mark_buffer_dirty(right);
3789
3790 btrfs_item_key(right, &disk_key, 0);
3791 btrfs_set_node_key(upper, &disk_key, slot + 1);
3792 btrfs_mark_buffer_dirty(upper);
3793
3794 /* then fixup the leaf pointer in the path */
3795 if (path->slots[0] >= left_nritems) {
3796 path->slots[0] -= left_nritems;
3797 if (btrfs_header_nritems(path->nodes[0]) == 0)
3798 btrfs_clean_tree_block(path->nodes[0]);
3799 btrfs_tree_unlock(path->nodes[0]);
3800 free_extent_buffer(path->nodes[0]);
3801 path->nodes[0] = right;
3802 path->slots[1] += 1;
3803 } else {
3804 btrfs_tree_unlock(right);
3805 free_extent_buffer(right);
3806 }
3807 return 0;
3808
3809 out_unlock:
3810 btrfs_tree_unlock(right);
3811 free_extent_buffer(right);
3812 return 1;
3813 }
3814
3815 /*
3816 * push some data in the path leaf to the right, trying to free up at
3817 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3818 *
3819 * returns 1 if the push failed because the other node didn't have enough
3820 * room, 0 if everything worked out and < 0 if there were major errors.
3821 *
3822 * this will push starting from min_slot to the end of the leaf. It won't
3823 * push any slot lower than min_slot
3824 */
push_leaf_right(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 min_slot)3825 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3826 *root, struct btrfs_path *path,
3827 int min_data_size, int data_size,
3828 int empty, u32 min_slot)
3829 {
3830 struct extent_buffer *left = path->nodes[0];
3831 struct extent_buffer *right;
3832 struct extent_buffer *upper;
3833 int slot;
3834 int free_space;
3835 u32 left_nritems;
3836 int ret;
3837
3838 if (!path->nodes[1])
3839 return 1;
3840
3841 slot = path->slots[1];
3842 upper = path->nodes[1];
3843 if (slot >= btrfs_header_nritems(upper) - 1)
3844 return 1;
3845
3846 btrfs_assert_tree_locked(path->nodes[1]);
3847
3848 right = btrfs_read_node_slot(upper, slot + 1);
3849 /*
3850 * slot + 1 is not valid or we fail to read the right node,
3851 * no big deal, just return.
3852 */
3853 if (IS_ERR(right))
3854 return 1;
3855
3856 btrfs_tree_lock(right);
3857 btrfs_set_lock_blocking_write(right);
3858
3859 free_space = btrfs_leaf_free_space(right);
3860 if (free_space < data_size)
3861 goto out_unlock;
3862
3863 /* cow and double check */
3864 ret = btrfs_cow_block(trans, root, right, upper,
3865 slot + 1, &right);
3866 if (ret)
3867 goto out_unlock;
3868
3869 free_space = btrfs_leaf_free_space(right);
3870 if (free_space < data_size)
3871 goto out_unlock;
3872
3873 left_nritems = btrfs_header_nritems(left);
3874 if (left_nritems == 0)
3875 goto out_unlock;
3876
3877 if (path->slots[0] == left_nritems && !empty) {
3878 /* Key greater than all keys in the leaf, right neighbor has
3879 * enough room for it and we're not emptying our leaf to delete
3880 * it, therefore use right neighbor to insert the new item and
3881 * no need to touch/dirty our left leaf. */
3882 btrfs_tree_unlock(left);
3883 free_extent_buffer(left);
3884 path->nodes[0] = right;
3885 path->slots[0] = 0;
3886 path->slots[1]++;
3887 return 0;
3888 }
3889
3890 return __push_leaf_right(path, min_data_size, empty,
3891 right, free_space, left_nritems, min_slot);
3892 out_unlock:
3893 btrfs_tree_unlock(right);
3894 free_extent_buffer(right);
3895 return 1;
3896 }
3897
3898 /*
3899 * push some data in the path leaf to the left, trying to free up at
3900 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3901 *
3902 * max_slot can put a limit on how far into the leaf we'll push items. The
3903 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3904 * items
3905 */
__push_leaf_left(struct btrfs_path * path,int data_size,int empty,struct extent_buffer * left,int free_space,u32 right_nritems,u32 max_slot)3906 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3907 int empty, struct extent_buffer *left,
3908 int free_space, u32 right_nritems,
3909 u32 max_slot)
3910 {
3911 struct btrfs_fs_info *fs_info = left->fs_info;
3912 struct btrfs_disk_key disk_key;
3913 struct extent_buffer *right = path->nodes[0];
3914 int i;
3915 int push_space = 0;
3916 int push_items = 0;
3917 struct btrfs_item *item;
3918 u32 old_left_nritems;
3919 u32 nr;
3920 int ret = 0;
3921 u32 this_item_size;
3922 u32 old_left_item_size;
3923 struct btrfs_map_token token;
3924
3925 if (empty)
3926 nr = min(right_nritems, max_slot);
3927 else
3928 nr = min(right_nritems - 1, max_slot);
3929
3930 for (i = 0; i < nr; i++) {
3931 item = btrfs_item_nr(i);
3932
3933 if (!empty && push_items > 0) {
3934 if (path->slots[0] < i)
3935 break;
3936 if (path->slots[0] == i) {
3937 int space = btrfs_leaf_free_space(right);
3938
3939 if (space + push_space * 2 > free_space)
3940 break;
3941 }
3942 }
3943
3944 if (path->slots[0] == i)
3945 push_space += data_size;
3946
3947 this_item_size = btrfs_item_size(right, item);
3948 if (this_item_size + sizeof(*item) + push_space > free_space)
3949 break;
3950
3951 push_items++;
3952 push_space += this_item_size + sizeof(*item);
3953 }
3954
3955 if (push_items == 0) {
3956 ret = 1;
3957 goto out;
3958 }
3959 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3960
3961 /* push data from right to left */
3962 copy_extent_buffer(left, right,
3963 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3964 btrfs_item_nr_offset(0),
3965 push_items * sizeof(struct btrfs_item));
3966
3967 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3968 btrfs_item_offset_nr(right, push_items - 1);
3969
3970 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3971 leaf_data_end(left) - push_space,
3972 BTRFS_LEAF_DATA_OFFSET +
3973 btrfs_item_offset_nr(right, push_items - 1),
3974 push_space);
3975 old_left_nritems = btrfs_header_nritems(left);
3976 BUG_ON(old_left_nritems <= 0);
3977
3978 btrfs_init_map_token(&token, left);
3979 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3980 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3981 u32 ioff;
3982
3983 item = btrfs_item_nr(i);
3984
3985 ioff = btrfs_token_item_offset(left, item, &token);
3986 btrfs_set_token_item_offset(left, item,
3987 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3988 &token);
3989 }
3990 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3991
3992 /* fixup right node */
3993 if (push_items > right_nritems)
3994 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3995 right_nritems);
3996
3997 if (push_items < right_nritems) {
3998 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3999 leaf_data_end(right);
4000 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
4001 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
4002 BTRFS_LEAF_DATA_OFFSET +
4003 leaf_data_end(right), push_space);
4004
4005 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
4006 btrfs_item_nr_offset(push_items),
4007 (btrfs_header_nritems(right) - push_items) *
4008 sizeof(struct btrfs_item));
4009 }
4010
4011 btrfs_init_map_token(&token, right);
4012 right_nritems -= push_items;
4013 btrfs_set_header_nritems(right, right_nritems);
4014 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
4015 for (i = 0; i < right_nritems; i++) {
4016 item = btrfs_item_nr(i);
4017
4018 push_space = push_space - btrfs_token_item_size(right,
4019 item, &token);
4020 btrfs_set_token_item_offset(right, item, push_space, &token);
4021 }
4022
4023 btrfs_mark_buffer_dirty(left);
4024 if (right_nritems)
4025 btrfs_mark_buffer_dirty(right);
4026 else
4027 btrfs_clean_tree_block(right);
4028
4029 btrfs_item_key(right, &disk_key, 0);
4030 fixup_low_keys(path, &disk_key, 1);
4031
4032 /* then fixup the leaf pointer in the path */
4033 if (path->slots[0] < push_items) {
4034 path->slots[0] += old_left_nritems;
4035 btrfs_tree_unlock(path->nodes[0]);
4036 free_extent_buffer(path->nodes[0]);
4037 path->nodes[0] = left;
4038 path->slots[1] -= 1;
4039 } else {
4040 btrfs_tree_unlock(left);
4041 free_extent_buffer(left);
4042 path->slots[0] -= push_items;
4043 }
4044 BUG_ON(path->slots[0] < 0);
4045 return ret;
4046 out:
4047 btrfs_tree_unlock(left);
4048 free_extent_buffer(left);
4049 return ret;
4050 }
4051
4052 /*
4053 * push some data in the path leaf to the left, trying to free up at
4054 * least data_size bytes. returns zero if the push worked, nonzero otherwise
4055 *
4056 * max_slot can put a limit on how far into the leaf we'll push items. The
4057 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
4058 * items
4059 */
push_leaf_left(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int min_data_size,int data_size,int empty,u32 max_slot)4060 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4061 *root, struct btrfs_path *path, int min_data_size,
4062 int data_size, int empty, u32 max_slot)
4063 {
4064 struct extent_buffer *right = path->nodes[0];
4065 struct extent_buffer *left;
4066 int slot;
4067 int free_space;
4068 u32 right_nritems;
4069 int ret = 0;
4070
4071 slot = path->slots[1];
4072 if (slot == 0)
4073 return 1;
4074 if (!path->nodes[1])
4075 return 1;
4076
4077 right_nritems = btrfs_header_nritems(right);
4078 if (right_nritems == 0)
4079 return 1;
4080
4081 btrfs_assert_tree_locked(path->nodes[1]);
4082
4083 left = btrfs_read_node_slot(path->nodes[1], slot - 1);
4084 /*
4085 * slot - 1 is not valid or we fail to read the left node,
4086 * no big deal, just return.
4087 */
4088 if (IS_ERR(left))
4089 return 1;
4090
4091 btrfs_tree_lock(left);
4092 btrfs_set_lock_blocking_write(left);
4093
4094 free_space = btrfs_leaf_free_space(left);
4095 if (free_space < data_size) {
4096 ret = 1;
4097 goto out;
4098 }
4099
4100 /* cow and double check */
4101 ret = btrfs_cow_block(trans, root, left,
4102 path->nodes[1], slot - 1, &left);
4103 if (ret) {
4104 /* we hit -ENOSPC, but it isn't fatal here */
4105 if (ret == -ENOSPC)
4106 ret = 1;
4107 goto out;
4108 }
4109
4110 free_space = btrfs_leaf_free_space(left);
4111 if (free_space < data_size) {
4112 ret = 1;
4113 goto out;
4114 }
4115
4116 return __push_leaf_left(path, min_data_size,
4117 empty, left, free_space, right_nritems,
4118 max_slot);
4119 out:
4120 btrfs_tree_unlock(left);
4121 free_extent_buffer(left);
4122 return ret;
4123 }
4124
4125 /*
4126 * split the path's leaf in two, making sure there is at least data_size
4127 * available for the resulting leaf level of the path.
4128 */
copy_for_split(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct extent_buffer * l,struct extent_buffer * right,int slot,int mid,int nritems)4129 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4130 struct btrfs_path *path,
4131 struct extent_buffer *l,
4132 struct extent_buffer *right,
4133 int slot, int mid, int nritems)
4134 {
4135 struct btrfs_fs_info *fs_info = trans->fs_info;
4136 int data_copy_size;
4137 int rt_data_off;
4138 int i;
4139 struct btrfs_disk_key disk_key;
4140 struct btrfs_map_token token;
4141
4142 nritems = nritems - mid;
4143 btrfs_set_header_nritems(right, nritems);
4144 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4145
4146 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4147 btrfs_item_nr_offset(mid),
4148 nritems * sizeof(struct btrfs_item));
4149
4150 copy_extent_buffer(right, l,
4151 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4152 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4153 leaf_data_end(l), data_copy_size);
4154
4155 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4156
4157 btrfs_init_map_token(&token, right);
4158 for (i = 0; i < nritems; i++) {
4159 struct btrfs_item *item = btrfs_item_nr(i);
4160 u32 ioff;
4161
4162 ioff = btrfs_token_item_offset(right, item, &token);
4163 btrfs_set_token_item_offset(right, item,
4164 ioff + rt_data_off, &token);
4165 }
4166
4167 btrfs_set_header_nritems(l, mid);
4168 btrfs_item_key(right, &disk_key, 0);
4169 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4170
4171 btrfs_mark_buffer_dirty(right);
4172 btrfs_mark_buffer_dirty(l);
4173 BUG_ON(path->slots[0] != slot);
4174
4175 if (mid <= slot) {
4176 btrfs_tree_unlock(path->nodes[0]);
4177 free_extent_buffer(path->nodes[0]);
4178 path->nodes[0] = right;
4179 path->slots[0] -= mid;
4180 path->slots[1] += 1;
4181 } else {
4182 btrfs_tree_unlock(right);
4183 free_extent_buffer(right);
4184 }
4185
4186 BUG_ON(path->slots[0] < 0);
4187 }
4188
4189 /*
4190 * double splits happen when we need to insert a big item in the middle
4191 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4192 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4193 * A B C
4194 *
4195 * We avoid this by trying to push the items on either side of our target
4196 * into the adjacent leaves. If all goes well we can avoid the double split
4197 * completely.
4198 */
push_for_double_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int data_size)4199 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4200 struct btrfs_root *root,
4201 struct btrfs_path *path,
4202 int data_size)
4203 {
4204 int ret;
4205 int progress = 0;
4206 int slot;
4207 u32 nritems;
4208 int space_needed = data_size;
4209
4210 slot = path->slots[0];
4211 if (slot < btrfs_header_nritems(path->nodes[0]))
4212 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4213
4214 /*
4215 * try to push all the items after our slot into the
4216 * right leaf
4217 */
4218 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4219 if (ret < 0)
4220 return ret;
4221
4222 if (ret == 0)
4223 progress++;
4224
4225 nritems = btrfs_header_nritems(path->nodes[0]);
4226 /*
4227 * our goal is to get our slot at the start or end of a leaf. If
4228 * we've done so we're done
4229 */
4230 if (path->slots[0] == 0 || path->slots[0] == nritems)
4231 return 0;
4232
4233 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4234 return 0;
4235
4236 /* try to push all the items before our slot into the next leaf */
4237 slot = path->slots[0];
4238 space_needed = data_size;
4239 if (slot > 0)
4240 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4241 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4242 if (ret < 0)
4243 return ret;
4244
4245 if (ret == 0)
4246 progress++;
4247
4248 if (progress)
4249 return 0;
4250 return 1;
4251 }
4252
4253 /*
4254 * split the path's leaf in two, making sure there is at least data_size
4255 * available for the resulting leaf level of the path.
4256 *
4257 * returns 0 if all went well and < 0 on failure.
4258 */
split_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * ins_key,struct btrfs_path * path,int data_size,int extend)4259 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4260 struct btrfs_root *root,
4261 const struct btrfs_key *ins_key,
4262 struct btrfs_path *path, int data_size,
4263 int extend)
4264 {
4265 struct btrfs_disk_key disk_key;
4266 struct extent_buffer *l;
4267 u32 nritems;
4268 int mid;
4269 int slot;
4270 struct extent_buffer *right;
4271 struct btrfs_fs_info *fs_info = root->fs_info;
4272 int ret = 0;
4273 int wret;
4274 int split;
4275 int num_doubles = 0;
4276 int tried_avoid_double = 0;
4277
4278 l = path->nodes[0];
4279 slot = path->slots[0];
4280 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4281 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4282 return -EOVERFLOW;
4283
4284 /* first try to make some room by pushing left and right */
4285 if (data_size && path->nodes[1]) {
4286 int space_needed = data_size;
4287
4288 if (slot < btrfs_header_nritems(l))
4289 space_needed -= btrfs_leaf_free_space(l);
4290
4291 wret = push_leaf_right(trans, root, path, space_needed,
4292 space_needed, 0, 0);
4293 if (wret < 0)
4294 return wret;
4295 if (wret) {
4296 space_needed = data_size;
4297 if (slot > 0)
4298 space_needed -= btrfs_leaf_free_space(l);
4299 wret = push_leaf_left(trans, root, path, space_needed,
4300 space_needed, 0, (u32)-1);
4301 if (wret < 0)
4302 return wret;
4303 }
4304 l = path->nodes[0];
4305
4306 /* did the pushes work? */
4307 if (btrfs_leaf_free_space(l) >= data_size)
4308 return 0;
4309 }
4310
4311 if (!path->nodes[1]) {
4312 ret = insert_new_root(trans, root, path, 1);
4313 if (ret)
4314 return ret;
4315 }
4316 again:
4317 split = 1;
4318 l = path->nodes[0];
4319 slot = path->slots[0];
4320 nritems = btrfs_header_nritems(l);
4321 mid = (nritems + 1) / 2;
4322
4323 if (mid <= slot) {
4324 if (nritems == 1 ||
4325 leaf_space_used(l, mid, nritems - mid) + data_size >
4326 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4327 if (slot >= nritems) {
4328 split = 0;
4329 } else {
4330 mid = slot;
4331 if (mid != nritems &&
4332 leaf_space_used(l, mid, nritems - mid) +
4333 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4334 if (data_size && !tried_avoid_double)
4335 goto push_for_double;
4336 split = 2;
4337 }
4338 }
4339 }
4340 } else {
4341 if (leaf_space_used(l, 0, mid) + data_size >
4342 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4343 if (!extend && data_size && slot == 0) {
4344 split = 0;
4345 } else if ((extend || !data_size) && slot == 0) {
4346 mid = 1;
4347 } else {
4348 mid = slot;
4349 if (mid != nritems &&
4350 leaf_space_used(l, mid, nritems - mid) +
4351 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4352 if (data_size && !tried_avoid_double)
4353 goto push_for_double;
4354 split = 2;
4355 }
4356 }
4357 }
4358 }
4359
4360 if (split == 0)
4361 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4362 else
4363 btrfs_item_key(l, &disk_key, mid);
4364
4365 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4366 l->start, 0);
4367 if (IS_ERR(right))
4368 return PTR_ERR(right);
4369
4370 root_add_used(root, fs_info->nodesize);
4371
4372 if (split == 0) {
4373 if (mid <= slot) {
4374 btrfs_set_header_nritems(right, 0);
4375 insert_ptr(trans, path, &disk_key,
4376 right->start, path->slots[1] + 1, 1);
4377 btrfs_tree_unlock(path->nodes[0]);
4378 free_extent_buffer(path->nodes[0]);
4379 path->nodes[0] = right;
4380 path->slots[0] = 0;
4381 path->slots[1] += 1;
4382 } else {
4383 btrfs_set_header_nritems(right, 0);
4384 insert_ptr(trans, path, &disk_key,
4385 right->start, path->slots[1], 1);
4386 btrfs_tree_unlock(path->nodes[0]);
4387 free_extent_buffer(path->nodes[0]);
4388 path->nodes[0] = right;
4389 path->slots[0] = 0;
4390 if (path->slots[1] == 0)
4391 fixup_low_keys(path, &disk_key, 1);
4392 }
4393 /*
4394 * We create a new leaf 'right' for the required ins_len and
4395 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4396 * the content of ins_len to 'right'.
4397 */
4398 return ret;
4399 }
4400
4401 copy_for_split(trans, path, l, right, slot, mid, nritems);
4402
4403 if (split == 2) {
4404 BUG_ON(num_doubles != 0);
4405 num_doubles++;
4406 goto again;
4407 }
4408
4409 return 0;
4410
4411 push_for_double:
4412 push_for_double_split(trans, root, path, data_size);
4413 tried_avoid_double = 1;
4414 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4415 return 0;
4416 goto again;
4417 }
4418
setup_leaf_for_split(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int ins_len)4419 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4420 struct btrfs_root *root,
4421 struct btrfs_path *path, int ins_len)
4422 {
4423 struct btrfs_key key;
4424 struct extent_buffer *leaf;
4425 struct btrfs_file_extent_item *fi;
4426 u64 extent_len = 0;
4427 u32 item_size;
4428 int ret;
4429
4430 leaf = path->nodes[0];
4431 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4432
4433 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4434 key.type != BTRFS_EXTENT_CSUM_KEY);
4435
4436 if (btrfs_leaf_free_space(leaf) >= ins_len)
4437 return 0;
4438
4439 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4440 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4441 fi = btrfs_item_ptr(leaf, path->slots[0],
4442 struct btrfs_file_extent_item);
4443 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4444 }
4445 btrfs_release_path(path);
4446
4447 path->keep_locks = 1;
4448 path->search_for_split = 1;
4449 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4450 path->search_for_split = 0;
4451 if (ret > 0)
4452 ret = -EAGAIN;
4453 if (ret < 0)
4454 goto err;
4455
4456 ret = -EAGAIN;
4457 leaf = path->nodes[0];
4458 /* if our item isn't there, return now */
4459 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4460 goto err;
4461
4462 /* the leaf has changed, it now has room. return now */
4463 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4464 goto err;
4465
4466 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4467 fi = btrfs_item_ptr(leaf, path->slots[0],
4468 struct btrfs_file_extent_item);
4469 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4470 goto err;
4471 }
4472
4473 btrfs_set_path_blocking(path);
4474 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4475 if (ret)
4476 goto err;
4477
4478 path->keep_locks = 0;
4479 btrfs_unlock_up_safe(path, 1);
4480 return 0;
4481 err:
4482 path->keep_locks = 0;
4483 return ret;
4484 }
4485
split_item(struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)4486 static noinline int split_item(struct btrfs_path *path,
4487 const struct btrfs_key *new_key,
4488 unsigned long split_offset)
4489 {
4490 struct extent_buffer *leaf;
4491 struct btrfs_item *item;
4492 struct btrfs_item *new_item;
4493 int slot;
4494 char *buf;
4495 u32 nritems;
4496 u32 item_size;
4497 u32 orig_offset;
4498 struct btrfs_disk_key disk_key;
4499
4500 leaf = path->nodes[0];
4501 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4502
4503 btrfs_set_path_blocking(path);
4504
4505 item = btrfs_item_nr(path->slots[0]);
4506 orig_offset = btrfs_item_offset(leaf, item);
4507 item_size = btrfs_item_size(leaf, item);
4508
4509 buf = kmalloc(item_size, GFP_NOFS);
4510 if (!buf)
4511 return -ENOMEM;
4512
4513 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4514 path->slots[0]), item_size);
4515
4516 slot = path->slots[0] + 1;
4517 nritems = btrfs_header_nritems(leaf);
4518 if (slot != nritems) {
4519 /* shift the items */
4520 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4521 btrfs_item_nr_offset(slot),
4522 (nritems - slot) * sizeof(struct btrfs_item));
4523 }
4524
4525 btrfs_cpu_key_to_disk(&disk_key, new_key);
4526 btrfs_set_item_key(leaf, &disk_key, slot);
4527
4528 new_item = btrfs_item_nr(slot);
4529
4530 btrfs_set_item_offset(leaf, new_item, orig_offset);
4531 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4532
4533 btrfs_set_item_offset(leaf, item,
4534 orig_offset + item_size - split_offset);
4535 btrfs_set_item_size(leaf, item, split_offset);
4536
4537 btrfs_set_header_nritems(leaf, nritems + 1);
4538
4539 /* write the data for the start of the original item */
4540 write_extent_buffer(leaf, buf,
4541 btrfs_item_ptr_offset(leaf, path->slots[0]),
4542 split_offset);
4543
4544 /* write the data for the new item */
4545 write_extent_buffer(leaf, buf + split_offset,
4546 btrfs_item_ptr_offset(leaf, slot),
4547 item_size - split_offset);
4548 btrfs_mark_buffer_dirty(leaf);
4549
4550 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4551 kfree(buf);
4552 return 0;
4553 }
4554
4555 /*
4556 * This function splits a single item into two items,
4557 * giving 'new_key' to the new item and splitting the
4558 * old one at split_offset (from the start of the item).
4559 *
4560 * The path may be released by this operation. After
4561 * the split, the path is pointing to the old item. The
4562 * new item is going to be in the same node as the old one.
4563 *
4564 * Note, the item being split must be smaller enough to live alone on
4565 * a tree block with room for one extra struct btrfs_item
4566 *
4567 * This allows us to split the item in place, keeping a lock on the
4568 * leaf the entire time.
4569 */
btrfs_split_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key,unsigned long split_offset)4570 int btrfs_split_item(struct btrfs_trans_handle *trans,
4571 struct btrfs_root *root,
4572 struct btrfs_path *path,
4573 const struct btrfs_key *new_key,
4574 unsigned long split_offset)
4575 {
4576 int ret;
4577 ret = setup_leaf_for_split(trans, root, path,
4578 sizeof(struct btrfs_item));
4579 if (ret)
4580 return ret;
4581
4582 ret = split_item(path, new_key, split_offset);
4583 return ret;
4584 }
4585
4586 /*
4587 * This function duplicate a item, giving 'new_key' to the new item.
4588 * It guarantees both items live in the same tree leaf and the new item
4589 * is contiguous with the original item.
4590 *
4591 * This allows us to split file extent in place, keeping a lock on the
4592 * leaf the entire time.
4593 */
btrfs_duplicate_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * new_key)4594 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4595 struct btrfs_root *root,
4596 struct btrfs_path *path,
4597 const struct btrfs_key *new_key)
4598 {
4599 struct extent_buffer *leaf;
4600 int ret;
4601 u32 item_size;
4602
4603 leaf = path->nodes[0];
4604 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4605 ret = setup_leaf_for_split(trans, root, path,
4606 item_size + sizeof(struct btrfs_item));
4607 if (ret)
4608 return ret;
4609
4610 path->slots[0]++;
4611 setup_items_for_insert(root, path, new_key, &item_size,
4612 item_size, item_size +
4613 sizeof(struct btrfs_item), 1);
4614 leaf = path->nodes[0];
4615 memcpy_extent_buffer(leaf,
4616 btrfs_item_ptr_offset(leaf, path->slots[0]),
4617 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4618 item_size);
4619 return 0;
4620 }
4621
4622 /*
4623 * make the item pointed to by the path smaller. new_size indicates
4624 * how small to make it, and from_end tells us if we just chop bytes
4625 * off the end of the item or if we shift the item to chop bytes off
4626 * the front.
4627 */
btrfs_truncate_item(struct btrfs_path * path,u32 new_size,int from_end)4628 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4629 {
4630 int slot;
4631 struct extent_buffer *leaf;
4632 struct btrfs_item *item;
4633 u32 nritems;
4634 unsigned int data_end;
4635 unsigned int old_data_start;
4636 unsigned int old_size;
4637 unsigned int size_diff;
4638 int i;
4639 struct btrfs_map_token token;
4640
4641 leaf = path->nodes[0];
4642 slot = path->slots[0];
4643
4644 old_size = btrfs_item_size_nr(leaf, slot);
4645 if (old_size == new_size)
4646 return;
4647
4648 nritems = btrfs_header_nritems(leaf);
4649 data_end = leaf_data_end(leaf);
4650
4651 old_data_start = btrfs_item_offset_nr(leaf, slot);
4652
4653 size_diff = old_size - new_size;
4654
4655 BUG_ON(slot < 0);
4656 BUG_ON(slot >= nritems);
4657
4658 /*
4659 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4660 */
4661 /* first correct the data pointers */
4662 btrfs_init_map_token(&token, leaf);
4663 for (i = slot; i < nritems; i++) {
4664 u32 ioff;
4665 item = btrfs_item_nr(i);
4666
4667 ioff = btrfs_token_item_offset(leaf, item, &token);
4668 btrfs_set_token_item_offset(leaf, item,
4669 ioff + size_diff, &token);
4670 }
4671
4672 /* shift the data */
4673 if (from_end) {
4674 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4675 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4676 data_end, old_data_start + new_size - data_end);
4677 } else {
4678 struct btrfs_disk_key disk_key;
4679 u64 offset;
4680
4681 btrfs_item_key(leaf, &disk_key, slot);
4682
4683 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4684 unsigned long ptr;
4685 struct btrfs_file_extent_item *fi;
4686
4687 fi = btrfs_item_ptr(leaf, slot,
4688 struct btrfs_file_extent_item);
4689 fi = (struct btrfs_file_extent_item *)(
4690 (unsigned long)fi - size_diff);
4691
4692 if (btrfs_file_extent_type(leaf, fi) ==
4693 BTRFS_FILE_EXTENT_INLINE) {
4694 ptr = btrfs_item_ptr_offset(leaf, slot);
4695 memmove_extent_buffer(leaf, ptr,
4696 (unsigned long)fi,
4697 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4698 }
4699 }
4700
4701 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4702 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4703 data_end, old_data_start - data_end);
4704
4705 offset = btrfs_disk_key_offset(&disk_key);
4706 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4707 btrfs_set_item_key(leaf, &disk_key, slot);
4708 if (slot == 0)
4709 fixup_low_keys(path, &disk_key, 1);
4710 }
4711
4712 item = btrfs_item_nr(slot);
4713 btrfs_set_item_size(leaf, item, new_size);
4714 btrfs_mark_buffer_dirty(leaf);
4715
4716 if (btrfs_leaf_free_space(leaf) < 0) {
4717 btrfs_print_leaf(leaf);
4718 BUG();
4719 }
4720 }
4721
4722 /*
4723 * make the item pointed to by the path bigger, data_size is the added size.
4724 */
btrfs_extend_item(struct btrfs_path * path,u32 data_size)4725 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4726 {
4727 int slot;
4728 struct extent_buffer *leaf;
4729 struct btrfs_item *item;
4730 u32 nritems;
4731 unsigned int data_end;
4732 unsigned int old_data;
4733 unsigned int old_size;
4734 int i;
4735 struct btrfs_map_token token;
4736
4737 leaf = path->nodes[0];
4738
4739 nritems = btrfs_header_nritems(leaf);
4740 data_end = leaf_data_end(leaf);
4741
4742 if (btrfs_leaf_free_space(leaf) < data_size) {
4743 btrfs_print_leaf(leaf);
4744 BUG();
4745 }
4746 slot = path->slots[0];
4747 old_data = btrfs_item_end_nr(leaf, slot);
4748
4749 BUG_ON(slot < 0);
4750 if (slot >= nritems) {
4751 btrfs_print_leaf(leaf);
4752 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4753 slot, nritems);
4754 BUG();
4755 }
4756
4757 /*
4758 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4759 */
4760 /* first correct the data pointers */
4761 btrfs_init_map_token(&token, leaf);
4762 for (i = slot; i < nritems; i++) {
4763 u32 ioff;
4764 item = btrfs_item_nr(i);
4765
4766 ioff = btrfs_token_item_offset(leaf, item, &token);
4767 btrfs_set_token_item_offset(leaf, item,
4768 ioff - data_size, &token);
4769 }
4770
4771 /* shift the data */
4772 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4773 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4774 data_end, old_data - data_end);
4775
4776 data_end = old_data;
4777 old_size = btrfs_item_size_nr(leaf, slot);
4778 item = btrfs_item_nr(slot);
4779 btrfs_set_item_size(leaf, item, old_size + data_size);
4780 btrfs_mark_buffer_dirty(leaf);
4781
4782 if (btrfs_leaf_free_space(leaf) < 0) {
4783 btrfs_print_leaf(leaf);
4784 BUG();
4785 }
4786 }
4787
4788 /*
4789 * this is a helper for btrfs_insert_empty_items, the main goal here is
4790 * to save stack depth by doing the bulk of the work in a function
4791 * that doesn't call btrfs_search_slot
4792 */
setup_items_for_insert(struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * cpu_key,u32 * data_size,u32 total_data,u32 total_size,int nr)4793 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4794 const struct btrfs_key *cpu_key, u32 *data_size,
4795 u32 total_data, u32 total_size, int nr)
4796 {
4797 struct btrfs_fs_info *fs_info = root->fs_info;
4798 struct btrfs_item *item;
4799 int i;
4800 u32 nritems;
4801 unsigned int data_end;
4802 struct btrfs_disk_key disk_key;
4803 struct extent_buffer *leaf;
4804 int slot;
4805 struct btrfs_map_token token;
4806
4807 if (path->slots[0] == 0) {
4808 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4809 fixup_low_keys(path, &disk_key, 1);
4810 }
4811 btrfs_unlock_up_safe(path, 1);
4812
4813 leaf = path->nodes[0];
4814 slot = path->slots[0];
4815
4816 nritems = btrfs_header_nritems(leaf);
4817 data_end = leaf_data_end(leaf);
4818
4819 if (btrfs_leaf_free_space(leaf) < total_size) {
4820 btrfs_print_leaf(leaf);
4821 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4822 total_size, btrfs_leaf_free_space(leaf));
4823 BUG();
4824 }
4825
4826 btrfs_init_map_token(&token, leaf);
4827 if (slot != nritems) {
4828 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4829
4830 if (old_data < data_end) {
4831 btrfs_print_leaf(leaf);
4832 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4833 slot, old_data, data_end);
4834 BUG();
4835 }
4836 /*
4837 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4838 */
4839 /* first correct the data pointers */
4840 for (i = slot; i < nritems; i++) {
4841 u32 ioff;
4842
4843 item = btrfs_item_nr(i);
4844 ioff = btrfs_token_item_offset(leaf, item, &token);
4845 btrfs_set_token_item_offset(leaf, item,
4846 ioff - total_data, &token);
4847 }
4848 /* shift the items */
4849 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4850 btrfs_item_nr_offset(slot),
4851 (nritems - slot) * sizeof(struct btrfs_item));
4852
4853 /* shift the data */
4854 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4855 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4856 data_end, old_data - data_end);
4857 data_end = old_data;
4858 }
4859
4860 /* setup the item for the new data */
4861 for (i = 0; i < nr; i++) {
4862 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4863 btrfs_set_item_key(leaf, &disk_key, slot + i);
4864 item = btrfs_item_nr(slot + i);
4865 btrfs_set_token_item_offset(leaf, item,
4866 data_end - data_size[i], &token);
4867 data_end -= data_size[i];
4868 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4869 }
4870
4871 btrfs_set_header_nritems(leaf, nritems + nr);
4872 btrfs_mark_buffer_dirty(leaf);
4873
4874 if (btrfs_leaf_free_space(leaf) < 0) {
4875 btrfs_print_leaf(leaf);
4876 BUG();
4877 }
4878 }
4879
4880 /*
4881 * Given a key and some data, insert items into the tree.
4882 * This does all the path init required, making room in the tree if needed.
4883 */
btrfs_insert_empty_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * cpu_key,u32 * data_size,int nr)4884 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4885 struct btrfs_root *root,
4886 struct btrfs_path *path,
4887 const struct btrfs_key *cpu_key, u32 *data_size,
4888 int nr)
4889 {
4890 int ret = 0;
4891 int slot;
4892 int i;
4893 u32 total_size = 0;
4894 u32 total_data = 0;
4895
4896 for (i = 0; i < nr; i++)
4897 total_data += data_size[i];
4898
4899 total_size = total_data + (nr * sizeof(struct btrfs_item));
4900 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4901 if (ret == 0)
4902 return -EEXIST;
4903 if (ret < 0)
4904 return ret;
4905
4906 slot = path->slots[0];
4907 BUG_ON(slot < 0);
4908
4909 setup_items_for_insert(root, path, cpu_key, data_size,
4910 total_data, total_size, nr);
4911 return 0;
4912 }
4913
4914 /*
4915 * Given a key and some data, insert an item into the tree.
4916 * This does all the path init required, making room in the tree if needed.
4917 */
btrfs_insert_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct btrfs_key * cpu_key,void * data,u32 data_size)4918 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4919 const struct btrfs_key *cpu_key, void *data,
4920 u32 data_size)
4921 {
4922 int ret = 0;
4923 struct btrfs_path *path;
4924 struct extent_buffer *leaf;
4925 unsigned long ptr;
4926
4927 path = btrfs_alloc_path();
4928 if (!path)
4929 return -ENOMEM;
4930 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4931 if (!ret) {
4932 leaf = path->nodes[0];
4933 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4934 write_extent_buffer(leaf, data, ptr, data_size);
4935 btrfs_mark_buffer_dirty(leaf);
4936 }
4937 btrfs_free_path(path);
4938 return ret;
4939 }
4940
4941 /*
4942 * delete the pointer from a given node.
4943 *
4944 * the tree should have been previously balanced so the deletion does not
4945 * empty a node.
4946 */
del_ptr(struct btrfs_root * root,struct btrfs_path * path,int level,int slot)4947 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4948 int level, int slot)
4949 {
4950 struct extent_buffer *parent = path->nodes[level];
4951 u32 nritems;
4952 int ret;
4953
4954 nritems = btrfs_header_nritems(parent);
4955 if (slot != nritems - 1) {
4956 if (level) {
4957 ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4958 nritems - slot - 1);
4959 BUG_ON(ret < 0);
4960 }
4961 memmove_extent_buffer(parent,
4962 btrfs_node_key_ptr_offset(slot),
4963 btrfs_node_key_ptr_offset(slot + 1),
4964 sizeof(struct btrfs_key_ptr) *
4965 (nritems - slot - 1));
4966 } else if (level) {
4967 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4968 GFP_NOFS);
4969 BUG_ON(ret < 0);
4970 }
4971
4972 nritems--;
4973 btrfs_set_header_nritems(parent, nritems);
4974 if (nritems == 0 && parent == root->node) {
4975 BUG_ON(btrfs_header_level(root->node) != 1);
4976 /* just turn the root into a leaf and break */
4977 btrfs_set_header_level(root->node, 0);
4978 } else if (slot == 0) {
4979 struct btrfs_disk_key disk_key;
4980
4981 btrfs_node_key(parent, &disk_key, 0);
4982 fixup_low_keys(path, &disk_key, level + 1);
4983 }
4984 btrfs_mark_buffer_dirty(parent);
4985 }
4986
4987 /*
4988 * a helper function to delete the leaf pointed to by path->slots[1] and
4989 * path->nodes[1].
4990 *
4991 * This deletes the pointer in path->nodes[1] and frees the leaf
4992 * block extent. zero is returned if it all worked out, < 0 otherwise.
4993 *
4994 * The path must have already been setup for deleting the leaf, including
4995 * all the proper balancing. path->nodes[1] must be locked.
4996 */
btrfs_del_leaf(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * leaf)4997 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4998 struct btrfs_root *root,
4999 struct btrfs_path *path,
5000 struct extent_buffer *leaf)
5001 {
5002 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
5003 del_ptr(root, path, 1, path->slots[1]);
5004
5005 /*
5006 * btrfs_free_extent is expensive, we want to make sure we
5007 * aren't holding any locks when we call it
5008 */
5009 btrfs_unlock_up_safe(path, 0);
5010
5011 root_sub_used(root, leaf->len);
5012
5013 extent_buffer_get(leaf);
5014 btrfs_free_tree_block(trans, root, leaf, 0, 1);
5015 free_extent_buffer_stale(leaf);
5016 }
5017 /*
5018 * delete the item at the leaf level in path. If that empties
5019 * the leaf, remove it from the tree
5020 */
btrfs_del_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int slot,int nr)5021 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5022 struct btrfs_path *path, int slot, int nr)
5023 {
5024 struct btrfs_fs_info *fs_info = root->fs_info;
5025 struct extent_buffer *leaf;
5026 struct btrfs_item *item;
5027 u32 last_off;
5028 u32 dsize = 0;
5029 int ret = 0;
5030 int wret;
5031 int i;
5032 u32 nritems;
5033
5034 leaf = path->nodes[0];
5035 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
5036
5037 for (i = 0; i < nr; i++)
5038 dsize += btrfs_item_size_nr(leaf, slot + i);
5039
5040 nritems = btrfs_header_nritems(leaf);
5041
5042 if (slot + nr != nritems) {
5043 int data_end = leaf_data_end(leaf);
5044 struct btrfs_map_token token;
5045
5046 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
5047 data_end + dsize,
5048 BTRFS_LEAF_DATA_OFFSET + data_end,
5049 last_off - data_end);
5050
5051 btrfs_init_map_token(&token, leaf);
5052 for (i = slot + nr; i < nritems; i++) {
5053 u32 ioff;
5054
5055 item = btrfs_item_nr(i);
5056 ioff = btrfs_token_item_offset(leaf, item, &token);
5057 btrfs_set_token_item_offset(leaf, item,
5058 ioff + dsize, &token);
5059 }
5060
5061 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5062 btrfs_item_nr_offset(slot + nr),
5063 sizeof(struct btrfs_item) *
5064 (nritems - slot - nr));
5065 }
5066 btrfs_set_header_nritems(leaf, nritems - nr);
5067 nritems -= nr;
5068
5069 /* delete the leaf if we've emptied it */
5070 if (nritems == 0) {
5071 if (leaf == root->node) {
5072 btrfs_set_header_level(leaf, 0);
5073 } else {
5074 btrfs_set_path_blocking(path);
5075 btrfs_clean_tree_block(leaf);
5076 btrfs_del_leaf(trans, root, path, leaf);
5077 }
5078 } else {
5079 int used = leaf_space_used(leaf, 0, nritems);
5080 if (slot == 0) {
5081 struct btrfs_disk_key disk_key;
5082
5083 btrfs_item_key(leaf, &disk_key, 0);
5084 fixup_low_keys(path, &disk_key, 1);
5085 }
5086
5087 /* delete the leaf if it is mostly empty */
5088 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5089 /* push_leaf_left fixes the path.
5090 * make sure the path still points to our leaf
5091 * for possible call to del_ptr below
5092 */
5093 slot = path->slots[1];
5094 extent_buffer_get(leaf);
5095
5096 btrfs_set_path_blocking(path);
5097 wret = push_leaf_left(trans, root, path, 1, 1,
5098 1, (u32)-1);
5099 if (wret < 0 && wret != -ENOSPC)
5100 ret = wret;
5101
5102 if (path->nodes[0] == leaf &&
5103 btrfs_header_nritems(leaf)) {
5104 wret = push_leaf_right(trans, root, path, 1,
5105 1, 1, 0);
5106 if (wret < 0 && wret != -ENOSPC)
5107 ret = wret;
5108 }
5109
5110 if (btrfs_header_nritems(leaf) == 0) {
5111 path->slots[1] = slot;
5112 btrfs_del_leaf(trans, root, path, leaf);
5113 free_extent_buffer(leaf);
5114 ret = 0;
5115 } else {
5116 /* if we're still in the path, make sure
5117 * we're dirty. Otherwise, one of the
5118 * push_leaf functions must have already
5119 * dirtied this buffer
5120 */
5121 if (path->nodes[0] == leaf)
5122 btrfs_mark_buffer_dirty(leaf);
5123 free_extent_buffer(leaf);
5124 }
5125 } else {
5126 btrfs_mark_buffer_dirty(leaf);
5127 }
5128 }
5129 return ret;
5130 }
5131
5132 /*
5133 * search the tree again to find a leaf with lesser keys
5134 * returns 0 if it found something or 1 if there are no lesser leaves.
5135 * returns < 0 on io errors.
5136 *
5137 * This may release the path, and so you may lose any locks held at the
5138 * time you call it.
5139 */
btrfs_prev_leaf(struct btrfs_root * root,struct btrfs_path * path)5140 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5141 {
5142 struct btrfs_key key;
5143 struct btrfs_key orig_key;
5144 struct btrfs_disk_key found_key;
5145 int ret;
5146
5147 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5148 orig_key = key;
5149
5150 if (key.offset > 0) {
5151 key.offset--;
5152 } else if (key.type > 0) {
5153 key.type--;
5154 key.offset = (u64)-1;
5155 } else if (key.objectid > 0) {
5156 key.objectid--;
5157 key.type = (u8)-1;
5158 key.offset = (u64)-1;
5159 } else {
5160 return 1;
5161 }
5162
5163 btrfs_release_path(path);
5164 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5165 if (ret <= 0)
5166 return ret;
5167
5168 /*
5169 * Previous key not found. Even if we were at slot 0 of the leaf we had
5170 * before releasing the path and calling btrfs_search_slot(), we now may
5171 * be in a slot pointing to the same original key - this can happen if
5172 * after we released the path, one of more items were moved from a
5173 * sibling leaf into the front of the leaf we had due to an insertion
5174 * (see push_leaf_right()).
5175 * If we hit this case and our slot is > 0 and just decrement the slot
5176 * so that the caller does not process the same key again, which may or
5177 * may not break the caller, depending on its logic.
5178 */
5179 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5180 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
5181 ret = comp_keys(&found_key, &orig_key);
5182 if (ret == 0) {
5183 if (path->slots[0] > 0) {
5184 path->slots[0]--;
5185 return 0;
5186 }
5187 /*
5188 * At slot 0, same key as before, it means orig_key is
5189 * the lowest, leftmost, key in the tree. We're done.
5190 */
5191 return 1;
5192 }
5193 }
5194
5195 btrfs_item_key(path->nodes[0], &found_key, 0);
5196 ret = comp_keys(&found_key, &key);
5197 /*
5198 * We might have had an item with the previous key in the tree right
5199 * before we released our path. And after we released our path, that
5200 * item might have been pushed to the first slot (0) of the leaf we
5201 * were holding due to a tree balance. Alternatively, an item with the
5202 * previous key can exist as the only element of a leaf (big fat item).
5203 * Therefore account for these 2 cases, so that our callers (like
5204 * btrfs_previous_item) don't miss an existing item with a key matching
5205 * the previous key we computed above.
5206 */
5207 if (ret <= 0)
5208 return 0;
5209 return 1;
5210 }
5211
5212 /*
5213 * A helper function to walk down the tree starting at min_key, and looking
5214 * for nodes or leaves that are have a minimum transaction id.
5215 * This is used by the btree defrag code, and tree logging
5216 *
5217 * This does not cow, but it does stuff the starting key it finds back
5218 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5219 * key and get a writable path.
5220 *
5221 * This honors path->lowest_level to prevent descent past a given level
5222 * of the tree.
5223 *
5224 * min_trans indicates the oldest transaction that you are interested
5225 * in walking through. Any nodes or leaves older than min_trans are
5226 * skipped over (without reading them).
5227 *
5228 * returns zero if something useful was found, < 0 on error and 1 if there
5229 * was nothing in the tree that matched the search criteria.
5230 */
btrfs_search_forward(struct btrfs_root * root,struct btrfs_key * min_key,struct btrfs_path * path,u64 min_trans)5231 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5232 struct btrfs_path *path,
5233 u64 min_trans)
5234 {
5235 struct extent_buffer *cur;
5236 struct btrfs_key found_key;
5237 int slot;
5238 int sret;
5239 u32 nritems;
5240 int level;
5241 int ret = 1;
5242 int keep_locks = path->keep_locks;
5243
5244 path->keep_locks = 1;
5245 again:
5246 cur = btrfs_read_lock_root_node(root);
5247 level = btrfs_header_level(cur);
5248 WARN_ON(path->nodes[level]);
5249 path->nodes[level] = cur;
5250 path->locks[level] = BTRFS_READ_LOCK;
5251
5252 if (btrfs_header_generation(cur) < min_trans) {
5253 ret = 1;
5254 goto out;
5255 }
5256 while (1) {
5257 nritems = btrfs_header_nritems(cur);
5258 level = btrfs_header_level(cur);
5259 sret = btrfs_bin_search(cur, min_key, level, &slot);
5260 if (sret < 0) {
5261 ret = sret;
5262 goto out;
5263 }
5264
5265 /* at the lowest level, we're done, setup the path and exit */
5266 if (level == path->lowest_level) {
5267 if (slot >= nritems)
5268 goto find_next_key;
5269 ret = 0;
5270 path->slots[level] = slot;
5271 btrfs_item_key_to_cpu(cur, &found_key, slot);
5272 goto out;
5273 }
5274 if (sret && slot > 0)
5275 slot--;
5276 /*
5277 * check this node pointer against the min_trans parameters.
5278 * If it is too old, skip to the next one.
5279 */
5280 while (slot < nritems) {
5281 u64 gen;
5282
5283 gen = btrfs_node_ptr_generation(cur, slot);
5284 if (gen < min_trans) {
5285 slot++;
5286 continue;
5287 }
5288 break;
5289 }
5290 find_next_key:
5291 /*
5292 * we didn't find a candidate key in this node, walk forward
5293 * and find another one
5294 */
5295 if (slot >= nritems) {
5296 path->slots[level] = slot;
5297 btrfs_set_path_blocking(path);
5298 sret = btrfs_find_next_key(root, path, min_key, level,
5299 min_trans);
5300 if (sret == 0) {
5301 btrfs_release_path(path);
5302 goto again;
5303 } else {
5304 goto out;
5305 }
5306 }
5307 /* save our key for returning back */
5308 btrfs_node_key_to_cpu(cur, &found_key, slot);
5309 path->slots[level] = slot;
5310 if (level == path->lowest_level) {
5311 ret = 0;
5312 goto out;
5313 }
5314 btrfs_set_path_blocking(path);
5315 cur = btrfs_read_node_slot(cur, slot);
5316 if (IS_ERR(cur)) {
5317 ret = PTR_ERR(cur);
5318 goto out;
5319 }
5320
5321 btrfs_tree_read_lock(cur);
5322
5323 path->locks[level - 1] = BTRFS_READ_LOCK;
5324 path->nodes[level - 1] = cur;
5325 unlock_up(path, level, 1, 0, NULL);
5326 }
5327 out:
5328 path->keep_locks = keep_locks;
5329 if (ret == 0) {
5330 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5331 btrfs_set_path_blocking(path);
5332 memcpy(min_key, &found_key, sizeof(found_key));
5333 }
5334 return ret;
5335 }
5336
5337 /*
5338 * this is similar to btrfs_next_leaf, but does not try to preserve
5339 * and fixup the path. It looks for and returns the next key in the
5340 * tree based on the current path and the min_trans parameters.
5341 *
5342 * 0 is returned if another key is found, < 0 if there are any errors
5343 * and 1 is returned if there are no higher keys in the tree
5344 *
5345 * path->keep_locks should be set to 1 on the search made before
5346 * calling this function.
5347 */
btrfs_find_next_key(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,int level,u64 min_trans)5348 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5349 struct btrfs_key *key, int level, u64 min_trans)
5350 {
5351 int slot;
5352 struct extent_buffer *c;
5353
5354 WARN_ON(!path->keep_locks && !path->skip_locking);
5355 while (level < BTRFS_MAX_LEVEL) {
5356 if (!path->nodes[level])
5357 return 1;
5358
5359 slot = path->slots[level] + 1;
5360 c = path->nodes[level];
5361 next:
5362 if (slot >= btrfs_header_nritems(c)) {
5363 int ret;
5364 int orig_lowest;
5365 struct btrfs_key cur_key;
5366 if (level + 1 >= BTRFS_MAX_LEVEL ||
5367 !path->nodes[level + 1])
5368 return 1;
5369
5370 if (path->locks[level + 1] || path->skip_locking) {
5371 level++;
5372 continue;
5373 }
5374
5375 slot = btrfs_header_nritems(c) - 1;
5376 if (level == 0)
5377 btrfs_item_key_to_cpu(c, &cur_key, slot);
5378 else
5379 btrfs_node_key_to_cpu(c, &cur_key, slot);
5380
5381 orig_lowest = path->lowest_level;
5382 btrfs_release_path(path);
5383 path->lowest_level = level;
5384 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5385 0, 0);
5386 path->lowest_level = orig_lowest;
5387 if (ret < 0)
5388 return ret;
5389
5390 c = path->nodes[level];
5391 slot = path->slots[level];
5392 if (ret == 0)
5393 slot++;
5394 goto next;
5395 }
5396
5397 if (level == 0)
5398 btrfs_item_key_to_cpu(c, key, slot);
5399 else {
5400 u64 gen = btrfs_node_ptr_generation(c, slot);
5401
5402 if (gen < min_trans) {
5403 slot++;
5404 goto next;
5405 }
5406 btrfs_node_key_to_cpu(c, key, slot);
5407 }
5408 return 0;
5409 }
5410 return 1;
5411 }
5412
5413 /*
5414 * search the tree again to find a leaf with greater keys
5415 * returns 0 if it found something or 1 if there are no greater leaves.
5416 * returns < 0 on io errors.
5417 */
btrfs_next_leaf(struct btrfs_root * root,struct btrfs_path * path)5418 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5419 {
5420 return btrfs_next_old_leaf(root, path, 0);
5421 }
5422
btrfs_next_old_leaf(struct btrfs_root * root,struct btrfs_path * path,u64 time_seq)5423 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5424 u64 time_seq)
5425 {
5426 int slot;
5427 int level;
5428 struct extent_buffer *c;
5429 struct extent_buffer *next;
5430 struct btrfs_key key;
5431 u32 nritems;
5432 int ret;
5433 int old_spinning = path->leave_spinning;
5434 int next_rw_lock = 0;
5435
5436 nritems = btrfs_header_nritems(path->nodes[0]);
5437 if (nritems == 0)
5438 return 1;
5439
5440 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5441 again:
5442 level = 1;
5443 next = NULL;
5444 next_rw_lock = 0;
5445 btrfs_release_path(path);
5446
5447 path->keep_locks = 1;
5448 path->leave_spinning = 1;
5449
5450 if (time_seq)
5451 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5452 else
5453 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5454 path->keep_locks = 0;
5455
5456 if (ret < 0)
5457 return ret;
5458
5459 nritems = btrfs_header_nritems(path->nodes[0]);
5460 /*
5461 * by releasing the path above we dropped all our locks. A balance
5462 * could have added more items next to the key that used to be
5463 * at the very end of the block. So, check again here and
5464 * advance the path if there are now more items available.
5465 */
5466 if (nritems > 0 && path->slots[0] < nritems - 1) {
5467 if (ret == 0)
5468 path->slots[0]++;
5469 ret = 0;
5470 goto done;
5471 }
5472 /*
5473 * So the above check misses one case:
5474 * - after releasing the path above, someone has removed the item that
5475 * used to be at the very end of the block, and balance between leafs
5476 * gets another one with bigger key.offset to replace it.
5477 *
5478 * This one should be returned as well, or we can get leaf corruption
5479 * later(esp. in __btrfs_drop_extents()).
5480 *
5481 * And a bit more explanation about this check,
5482 * with ret > 0, the key isn't found, the path points to the slot
5483 * where it should be inserted, so the path->slots[0] item must be the
5484 * bigger one.
5485 */
5486 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5487 ret = 0;
5488 goto done;
5489 }
5490
5491 while (level < BTRFS_MAX_LEVEL) {
5492 if (!path->nodes[level]) {
5493 ret = 1;
5494 goto done;
5495 }
5496
5497 slot = path->slots[level] + 1;
5498 c = path->nodes[level];
5499 if (slot >= btrfs_header_nritems(c)) {
5500 level++;
5501 if (level == BTRFS_MAX_LEVEL) {
5502 ret = 1;
5503 goto done;
5504 }
5505 continue;
5506 }
5507
5508 if (next) {
5509 btrfs_tree_unlock_rw(next, next_rw_lock);
5510 free_extent_buffer(next);
5511 }
5512
5513 next = c;
5514 next_rw_lock = path->locks[level];
5515 ret = read_block_for_search(root, path, &next, level,
5516 slot, &key);
5517 if (ret == -EAGAIN)
5518 goto again;
5519
5520 if (ret < 0) {
5521 btrfs_release_path(path);
5522 goto done;
5523 }
5524
5525 if (!path->skip_locking) {
5526 ret = btrfs_try_tree_read_lock(next);
5527 if (!ret && time_seq) {
5528 /*
5529 * If we don't get the lock, we may be racing
5530 * with push_leaf_left, holding that lock while
5531 * itself waiting for the leaf we've currently
5532 * locked. To solve this situation, we give up
5533 * on our lock and cycle.
5534 */
5535 free_extent_buffer(next);
5536 btrfs_release_path(path);
5537 cond_resched();
5538 goto again;
5539 }
5540 if (!ret) {
5541 btrfs_set_path_blocking(path);
5542 btrfs_tree_read_lock(next);
5543 }
5544 next_rw_lock = BTRFS_READ_LOCK;
5545 }
5546 break;
5547 }
5548 path->slots[level] = slot;
5549 while (1) {
5550 level--;
5551 c = path->nodes[level];
5552 if (path->locks[level])
5553 btrfs_tree_unlock_rw(c, path->locks[level]);
5554
5555 free_extent_buffer(c);
5556 path->nodes[level] = next;
5557 path->slots[level] = 0;
5558 if (!path->skip_locking)
5559 path->locks[level] = next_rw_lock;
5560 if (!level)
5561 break;
5562
5563 ret = read_block_for_search(root, path, &next, level,
5564 0, &key);
5565 if (ret == -EAGAIN)
5566 goto again;
5567
5568 if (ret < 0) {
5569 btrfs_release_path(path);
5570 goto done;
5571 }
5572
5573 if (!path->skip_locking) {
5574 ret = btrfs_try_tree_read_lock(next);
5575 if (!ret) {
5576 btrfs_set_path_blocking(path);
5577 btrfs_tree_read_lock(next);
5578 }
5579 next_rw_lock = BTRFS_READ_LOCK;
5580 }
5581 }
5582 ret = 0;
5583 done:
5584 unlock_up(path, 0, 1, 0, NULL);
5585 path->leave_spinning = old_spinning;
5586 if (!old_spinning)
5587 btrfs_set_path_blocking(path);
5588
5589 return ret;
5590 }
5591
5592 /*
5593 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5594 * searching until it gets past min_objectid or finds an item of 'type'
5595 *
5596 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5597 */
btrfs_previous_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid,int type)5598 int btrfs_previous_item(struct btrfs_root *root,
5599 struct btrfs_path *path, u64 min_objectid,
5600 int type)
5601 {
5602 struct btrfs_key found_key;
5603 struct extent_buffer *leaf;
5604 u32 nritems;
5605 int ret;
5606
5607 while (1) {
5608 if (path->slots[0] == 0) {
5609 btrfs_set_path_blocking(path);
5610 ret = btrfs_prev_leaf(root, path);
5611 if (ret != 0)
5612 return ret;
5613 } else {
5614 path->slots[0]--;
5615 }
5616 leaf = path->nodes[0];
5617 nritems = btrfs_header_nritems(leaf);
5618 if (nritems == 0)
5619 return 1;
5620 if (path->slots[0] == nritems)
5621 path->slots[0]--;
5622
5623 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5624 if (found_key.objectid < min_objectid)
5625 break;
5626 if (found_key.type == type)
5627 return 0;
5628 if (found_key.objectid == min_objectid &&
5629 found_key.type < type)
5630 break;
5631 }
5632 return 1;
5633 }
5634
5635 /*
5636 * search in extent tree to find a previous Metadata/Data extent item with
5637 * min objecitd.
5638 *
5639 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5640 */
btrfs_previous_extent_item(struct btrfs_root * root,struct btrfs_path * path,u64 min_objectid)5641 int btrfs_previous_extent_item(struct btrfs_root *root,
5642 struct btrfs_path *path, u64 min_objectid)
5643 {
5644 struct btrfs_key found_key;
5645 struct extent_buffer *leaf;
5646 u32 nritems;
5647 int ret;
5648
5649 while (1) {
5650 if (path->slots[0] == 0) {
5651 btrfs_set_path_blocking(path);
5652 ret = btrfs_prev_leaf(root, path);
5653 if (ret != 0)
5654 return ret;
5655 } else {
5656 path->slots[0]--;
5657 }
5658 leaf = path->nodes[0];
5659 nritems = btrfs_header_nritems(leaf);
5660 if (nritems == 0)
5661 return 1;
5662 if (path->slots[0] == nritems)
5663 path->slots[0]--;
5664
5665 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5666 if (found_key.objectid < min_objectid)
5667 break;
5668 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5669 found_key.type == BTRFS_METADATA_ITEM_KEY)
5670 return 0;
5671 if (found_key.objectid == min_objectid &&
5672 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5673 break;
5674 }
5675 return 1;
5676 }
5677