• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30 
extent_state_in_tree(const struct extent_state * state)31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33 	return !RB_EMPTY_NODE(&state->rb_node);
34 }
35 
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39 
40 static DEFINE_SPINLOCK(leak_lock);
41 
42 static inline
btrfs_leak_debug_add(struct list_head * new,struct list_head * head)43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45 	unsigned long flags;
46 
47 	spin_lock_irqsave(&leak_lock, flags);
48 	list_add(new, head);
49 	spin_unlock_irqrestore(&leak_lock, flags);
50 }
51 
52 static inline
btrfs_leak_debug_del(struct list_head * entry)53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55 	unsigned long flags;
56 
57 	spin_lock_irqsave(&leak_lock, flags);
58 	list_del(entry);
59 	spin_unlock_irqrestore(&leak_lock, flags);
60 }
61 
62 static inline
btrfs_leak_debug_check(void)63 void btrfs_leak_debug_check(void)
64 {
65 	struct extent_state *state;
66 	struct extent_buffer *eb;
67 
68 	while (!list_empty(&states)) {
69 		state = list_entry(states.next, struct extent_state, leak_list);
70 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 		       state->start, state->end, state->state,
72 		       extent_state_in_tree(state),
73 		       refcount_read(&state->refs));
74 		list_del(&state->leak_list);
75 		kmem_cache_free(extent_state_cache, state);
76 	}
77 
78 	while (!list_empty(&buffers)) {
79 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 		list_del(&eb->leak_list);
83 		kmem_cache_free(extent_buffer_cache, eb);
84 	}
85 }
86 
87 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
88 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
__btrfs_debug_check_extent_io_range(const char * caller,struct extent_io_tree * tree,u64 start,u64 end)89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 		struct extent_io_tree *tree, u64 start, u64 end)
91 {
92 	struct inode *inode = tree->private_data;
93 	u64 isize;
94 
95 	if (!inode || !is_data_inode(inode))
96 		return;
97 
98 	isize = i_size_read(inode);
99 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103 	}
104 }
105 #else
106 #define btrfs_leak_debug_add(new, head)	do {} while (0)
107 #define btrfs_leak_debug_del(entry)	do {} while (0)
108 #define btrfs_leak_debug_check()	do {} while (0)
109 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
110 #endif
111 
112 struct tree_entry {
113 	u64 start;
114 	u64 end;
115 	struct rb_node rb_node;
116 };
117 
118 struct extent_page_data {
119 	struct bio *bio;
120 	struct extent_io_tree *tree;
121 	/* tells writepage not to lock the state bits for this range
122 	 * it still does the unlocking
123 	 */
124 	unsigned int extent_locked:1;
125 
126 	/* tells the submit_bio code to use REQ_SYNC */
127 	unsigned int sync_io:1;
128 };
129 
add_extent_changeset(struct extent_state * state,unsigned bits,struct extent_changeset * changeset,int set)130 static int add_extent_changeset(struct extent_state *state, unsigned bits,
131 				 struct extent_changeset *changeset,
132 				 int set)
133 {
134 	int ret;
135 
136 	if (!changeset)
137 		return 0;
138 	if (set && (state->state & bits) == bits)
139 		return 0;
140 	if (!set && (state->state & bits) == 0)
141 		return 0;
142 	changeset->bytes_changed += state->end - state->start + 1;
143 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
144 			GFP_ATOMIC);
145 	return ret;
146 }
147 
submit_one_bio(struct bio * bio,int mirror_num,unsigned long bio_flags)148 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
149 				       unsigned long bio_flags)
150 {
151 	blk_status_t ret = 0;
152 	struct extent_io_tree *tree = bio->bi_private;
153 
154 	bio->bi_private = NULL;
155 
156 	if (tree->ops)
157 		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
158 						 mirror_num, bio_flags);
159 	else
160 		btrfsic_submit_bio(bio);
161 
162 	return blk_status_to_errno(ret);
163 }
164 
165 /* Cleanup unsubmitted bios */
end_write_bio(struct extent_page_data * epd,int ret)166 static void end_write_bio(struct extent_page_data *epd, int ret)
167 {
168 	if (epd->bio) {
169 		epd->bio->bi_status = errno_to_blk_status(ret);
170 		bio_endio(epd->bio);
171 		epd->bio = NULL;
172 	}
173 }
174 
175 /*
176  * Submit bio from extent page data via submit_one_bio
177  *
178  * Return 0 if everything is OK.
179  * Return <0 for error.
180  */
flush_write_bio(struct extent_page_data * epd)181 static int __must_check flush_write_bio(struct extent_page_data *epd)
182 {
183 	int ret = 0;
184 
185 	if (epd->bio) {
186 		ret = submit_one_bio(epd->bio, 0, 0);
187 		/*
188 		 * Clean up of epd->bio is handled by its endio function.
189 		 * And endio is either triggered by successful bio execution
190 		 * or the error handler of submit bio hook.
191 		 * So at this point, no matter what happened, we don't need
192 		 * to clean up epd->bio.
193 		 */
194 		epd->bio = NULL;
195 	}
196 	return ret;
197 }
198 
extent_io_init(void)199 int __init extent_io_init(void)
200 {
201 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
202 			sizeof(struct extent_state), 0,
203 			SLAB_MEM_SPREAD, NULL);
204 	if (!extent_state_cache)
205 		return -ENOMEM;
206 
207 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
208 			sizeof(struct extent_buffer), 0,
209 			SLAB_MEM_SPREAD, NULL);
210 	if (!extent_buffer_cache)
211 		goto free_state_cache;
212 
213 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
214 			offsetof(struct btrfs_io_bio, bio),
215 			BIOSET_NEED_BVECS))
216 		goto free_buffer_cache;
217 
218 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
219 		goto free_bioset;
220 
221 	return 0;
222 
223 free_bioset:
224 	bioset_exit(&btrfs_bioset);
225 
226 free_buffer_cache:
227 	kmem_cache_destroy(extent_buffer_cache);
228 	extent_buffer_cache = NULL;
229 
230 free_state_cache:
231 	kmem_cache_destroy(extent_state_cache);
232 	extent_state_cache = NULL;
233 	return -ENOMEM;
234 }
235 
extent_io_exit(void)236 void __cold extent_io_exit(void)
237 {
238 	btrfs_leak_debug_check();
239 
240 	/*
241 	 * Make sure all delayed rcu free are flushed before we
242 	 * destroy caches.
243 	 */
244 	rcu_barrier();
245 	kmem_cache_destroy(extent_state_cache);
246 	kmem_cache_destroy(extent_buffer_cache);
247 	bioset_exit(&btrfs_bioset);
248 }
249 
extent_io_tree_init(struct btrfs_fs_info * fs_info,struct extent_io_tree * tree,unsigned int owner,void * private_data)250 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
251 			 struct extent_io_tree *tree, unsigned int owner,
252 			 void *private_data)
253 {
254 	tree->fs_info = fs_info;
255 	tree->state = RB_ROOT;
256 	tree->ops = NULL;
257 	tree->dirty_bytes = 0;
258 	spin_lock_init(&tree->lock);
259 	tree->private_data = private_data;
260 	tree->owner = owner;
261 }
262 
extent_io_tree_release(struct extent_io_tree * tree)263 void extent_io_tree_release(struct extent_io_tree *tree)
264 {
265 	spin_lock(&tree->lock);
266 	/*
267 	 * Do a single barrier for the waitqueue_active check here, the state
268 	 * of the waitqueue should not change once extent_io_tree_release is
269 	 * called.
270 	 */
271 	smp_mb();
272 	while (!RB_EMPTY_ROOT(&tree->state)) {
273 		struct rb_node *node;
274 		struct extent_state *state;
275 
276 		node = rb_first(&tree->state);
277 		state = rb_entry(node, struct extent_state, rb_node);
278 		rb_erase(&state->rb_node, &tree->state);
279 		RB_CLEAR_NODE(&state->rb_node);
280 		/*
281 		 * btree io trees aren't supposed to have tasks waiting for
282 		 * changes in the flags of extent states ever.
283 		 */
284 		ASSERT(!waitqueue_active(&state->wq));
285 		free_extent_state(state);
286 
287 		cond_resched_lock(&tree->lock);
288 	}
289 	spin_unlock(&tree->lock);
290 }
291 
alloc_extent_state(gfp_t mask)292 static struct extent_state *alloc_extent_state(gfp_t mask)
293 {
294 	struct extent_state *state;
295 
296 	/*
297 	 * The given mask might be not appropriate for the slab allocator,
298 	 * drop the unsupported bits
299 	 */
300 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
301 	state = kmem_cache_alloc(extent_state_cache, mask);
302 	if (!state)
303 		return state;
304 	state->state = 0;
305 	state->failrec = NULL;
306 	RB_CLEAR_NODE(&state->rb_node);
307 	btrfs_leak_debug_add(&state->leak_list, &states);
308 	refcount_set(&state->refs, 1);
309 	init_waitqueue_head(&state->wq);
310 	trace_alloc_extent_state(state, mask, _RET_IP_);
311 	return state;
312 }
313 
free_extent_state(struct extent_state * state)314 void free_extent_state(struct extent_state *state)
315 {
316 	if (!state)
317 		return;
318 	if (refcount_dec_and_test(&state->refs)) {
319 		WARN_ON(extent_state_in_tree(state));
320 		btrfs_leak_debug_del(&state->leak_list);
321 		trace_free_extent_state(state, _RET_IP_);
322 		kmem_cache_free(extent_state_cache, state);
323 	}
324 }
325 
tree_insert(struct rb_root * root,struct rb_node * search_start,u64 offset,struct rb_node * node,struct rb_node *** p_in,struct rb_node ** parent_in)326 static struct rb_node *tree_insert(struct rb_root *root,
327 				   struct rb_node *search_start,
328 				   u64 offset,
329 				   struct rb_node *node,
330 				   struct rb_node ***p_in,
331 				   struct rb_node **parent_in)
332 {
333 	struct rb_node **p;
334 	struct rb_node *parent = NULL;
335 	struct tree_entry *entry;
336 
337 	if (p_in && parent_in) {
338 		p = *p_in;
339 		parent = *parent_in;
340 		goto do_insert;
341 	}
342 
343 	p = search_start ? &search_start : &root->rb_node;
344 	while (*p) {
345 		parent = *p;
346 		entry = rb_entry(parent, struct tree_entry, rb_node);
347 
348 		if (offset < entry->start)
349 			p = &(*p)->rb_left;
350 		else if (offset > entry->end)
351 			p = &(*p)->rb_right;
352 		else
353 			return parent;
354 	}
355 
356 do_insert:
357 	rb_link_node(node, parent, p);
358 	rb_insert_color(node, root);
359 	return NULL;
360 }
361 
362 /**
363  * __etree_search - searche @tree for an entry that contains @offset. Such
364  * entry would have entry->start <= offset && entry->end >= offset.
365  *
366  * @tree - the tree to search
367  * @offset - offset that should fall within an entry in @tree
368  * @next_ret - pointer to the first entry whose range ends after @offset
369  * @prev - pointer to the first entry whose range begins before @offset
370  * @p_ret - pointer where new node should be anchored (used when inserting an
371  *	    entry in the tree)
372  * @parent_ret - points to entry which would have been the parent of the entry,
373  *               containing @offset
374  *
375  * This function returns a pointer to the entry that contains @offset byte
376  * address. If no such entry exists, then NULL is returned and the other
377  * pointer arguments to the function are filled, otherwise the found entry is
378  * returned and other pointers are left untouched.
379  */
__etree_search(struct extent_io_tree * tree,u64 offset,struct rb_node ** next_ret,struct rb_node ** prev_ret,struct rb_node *** p_ret,struct rb_node ** parent_ret)380 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
381 				      struct rb_node **next_ret,
382 				      struct rb_node **prev_ret,
383 				      struct rb_node ***p_ret,
384 				      struct rb_node **parent_ret)
385 {
386 	struct rb_root *root = &tree->state;
387 	struct rb_node **n = &root->rb_node;
388 	struct rb_node *prev = NULL;
389 	struct rb_node *orig_prev = NULL;
390 	struct tree_entry *entry;
391 	struct tree_entry *prev_entry = NULL;
392 
393 	while (*n) {
394 		prev = *n;
395 		entry = rb_entry(prev, struct tree_entry, rb_node);
396 		prev_entry = entry;
397 
398 		if (offset < entry->start)
399 			n = &(*n)->rb_left;
400 		else if (offset > entry->end)
401 			n = &(*n)->rb_right;
402 		else
403 			return *n;
404 	}
405 
406 	if (p_ret)
407 		*p_ret = n;
408 	if (parent_ret)
409 		*parent_ret = prev;
410 
411 	if (next_ret) {
412 		orig_prev = prev;
413 		while (prev && offset > prev_entry->end) {
414 			prev = rb_next(prev);
415 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
416 		}
417 		*next_ret = prev;
418 		prev = orig_prev;
419 	}
420 
421 	if (prev_ret) {
422 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
423 		while (prev && offset < prev_entry->start) {
424 			prev = rb_prev(prev);
425 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
426 		}
427 		*prev_ret = prev;
428 	}
429 	return NULL;
430 }
431 
432 static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree * tree,u64 offset,struct rb_node *** p_ret,struct rb_node ** parent_ret)433 tree_search_for_insert(struct extent_io_tree *tree,
434 		       u64 offset,
435 		       struct rb_node ***p_ret,
436 		       struct rb_node **parent_ret)
437 {
438 	struct rb_node *next= NULL;
439 	struct rb_node *ret;
440 
441 	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
442 	if (!ret)
443 		return next;
444 	return ret;
445 }
446 
tree_search(struct extent_io_tree * tree,u64 offset)447 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
448 					  u64 offset)
449 {
450 	return tree_search_for_insert(tree, offset, NULL, NULL);
451 }
452 
453 /*
454  * utility function to look for merge candidates inside a given range.
455  * Any extents with matching state are merged together into a single
456  * extent in the tree.  Extents with EXTENT_IO in their state field
457  * are not merged because the end_io handlers need to be able to do
458  * operations on them without sleeping (or doing allocations/splits).
459  *
460  * This should be called with the tree lock held.
461  */
merge_state(struct extent_io_tree * tree,struct extent_state * state)462 static void merge_state(struct extent_io_tree *tree,
463 		        struct extent_state *state)
464 {
465 	struct extent_state *other;
466 	struct rb_node *other_node;
467 
468 	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
469 		return;
470 
471 	other_node = rb_prev(&state->rb_node);
472 	if (other_node) {
473 		other = rb_entry(other_node, struct extent_state, rb_node);
474 		if (other->end == state->start - 1 &&
475 		    other->state == state->state) {
476 			if (tree->private_data &&
477 			    is_data_inode(tree->private_data))
478 				btrfs_merge_delalloc_extent(tree->private_data,
479 							    state, other);
480 			state->start = other->start;
481 			rb_erase(&other->rb_node, &tree->state);
482 			RB_CLEAR_NODE(&other->rb_node);
483 			free_extent_state(other);
484 		}
485 	}
486 	other_node = rb_next(&state->rb_node);
487 	if (other_node) {
488 		other = rb_entry(other_node, struct extent_state, rb_node);
489 		if (other->start == state->end + 1 &&
490 		    other->state == state->state) {
491 			if (tree->private_data &&
492 			    is_data_inode(tree->private_data))
493 				btrfs_merge_delalloc_extent(tree->private_data,
494 							    state, other);
495 			state->end = other->end;
496 			rb_erase(&other->rb_node, &tree->state);
497 			RB_CLEAR_NODE(&other->rb_node);
498 			free_extent_state(other);
499 		}
500 	}
501 }
502 
503 static void set_state_bits(struct extent_io_tree *tree,
504 			   struct extent_state *state, unsigned *bits,
505 			   struct extent_changeset *changeset);
506 
507 /*
508  * insert an extent_state struct into the tree.  'bits' are set on the
509  * struct before it is inserted.
510  *
511  * This may return -EEXIST if the extent is already there, in which case the
512  * state struct is freed.
513  *
514  * The tree lock is not taken internally.  This is a utility function and
515  * probably isn't what you want to call (see set/clear_extent_bit).
516  */
insert_state(struct extent_io_tree * tree,struct extent_state * state,u64 start,u64 end,struct rb_node *** p,struct rb_node ** parent,unsigned * bits,struct extent_changeset * changeset)517 static int insert_state(struct extent_io_tree *tree,
518 			struct extent_state *state, u64 start, u64 end,
519 			struct rb_node ***p,
520 			struct rb_node **parent,
521 			unsigned *bits, struct extent_changeset *changeset)
522 {
523 	struct rb_node *node;
524 
525 	if (end < start) {
526 		btrfs_err(tree->fs_info,
527 			"insert state: end < start %llu %llu", end, start);
528 		WARN_ON(1);
529 	}
530 	state->start = start;
531 	state->end = end;
532 
533 	set_state_bits(tree, state, bits, changeset);
534 
535 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
536 	if (node) {
537 		struct extent_state *found;
538 		found = rb_entry(node, struct extent_state, rb_node);
539 		btrfs_err(tree->fs_info,
540 		       "found node %llu %llu on insert of %llu %llu",
541 		       found->start, found->end, start, end);
542 		return -EEXIST;
543 	}
544 	merge_state(tree, state);
545 	return 0;
546 }
547 
548 /*
549  * split a given extent state struct in two, inserting the preallocated
550  * struct 'prealloc' as the newly created second half.  'split' indicates an
551  * offset inside 'orig' where it should be split.
552  *
553  * Before calling,
554  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
555  * are two extent state structs in the tree:
556  * prealloc: [orig->start, split - 1]
557  * orig: [ split, orig->end ]
558  *
559  * The tree locks are not taken by this function. They need to be held
560  * by the caller.
561  */
split_state(struct extent_io_tree * tree,struct extent_state * orig,struct extent_state * prealloc,u64 split)562 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
563 		       struct extent_state *prealloc, u64 split)
564 {
565 	struct rb_node *node;
566 
567 	if (tree->private_data && is_data_inode(tree->private_data))
568 		btrfs_split_delalloc_extent(tree->private_data, orig, split);
569 
570 	prealloc->start = orig->start;
571 	prealloc->end = split - 1;
572 	prealloc->state = orig->state;
573 	orig->start = split;
574 
575 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
576 			   &prealloc->rb_node, NULL, NULL);
577 	if (node) {
578 		free_extent_state(prealloc);
579 		return -EEXIST;
580 	}
581 	return 0;
582 }
583 
next_state(struct extent_state * state)584 static struct extent_state *next_state(struct extent_state *state)
585 {
586 	struct rb_node *next = rb_next(&state->rb_node);
587 	if (next)
588 		return rb_entry(next, struct extent_state, rb_node);
589 	else
590 		return NULL;
591 }
592 
593 /*
594  * utility function to clear some bits in an extent state struct.
595  * it will optionally wake up anyone waiting on this state (wake == 1).
596  *
597  * If no bits are set on the state struct after clearing things, the
598  * struct is freed and removed from the tree
599  */
clear_state_bit(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits,int wake,struct extent_changeset * changeset)600 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
601 					    struct extent_state *state,
602 					    unsigned *bits, int wake,
603 					    struct extent_changeset *changeset)
604 {
605 	struct extent_state *next;
606 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
607 	int ret;
608 
609 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
610 		u64 range = state->end - state->start + 1;
611 		WARN_ON(range > tree->dirty_bytes);
612 		tree->dirty_bytes -= range;
613 	}
614 
615 	if (tree->private_data && is_data_inode(tree->private_data))
616 		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
617 
618 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
619 	BUG_ON(ret < 0);
620 	state->state &= ~bits_to_clear;
621 	if (wake)
622 		wake_up(&state->wq);
623 	if (state->state == 0) {
624 		next = next_state(state);
625 		if (extent_state_in_tree(state)) {
626 			rb_erase(&state->rb_node, &tree->state);
627 			RB_CLEAR_NODE(&state->rb_node);
628 			free_extent_state(state);
629 		} else {
630 			WARN_ON(1);
631 		}
632 	} else {
633 		merge_state(tree, state);
634 		next = next_state(state);
635 	}
636 	return next;
637 }
638 
639 static struct extent_state *
alloc_extent_state_atomic(struct extent_state * prealloc)640 alloc_extent_state_atomic(struct extent_state *prealloc)
641 {
642 	if (!prealloc)
643 		prealloc = alloc_extent_state(GFP_ATOMIC);
644 
645 	return prealloc;
646 }
647 
extent_io_tree_panic(struct extent_io_tree * tree,int err)648 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
649 {
650 	btrfs_panic(tree->fs_info, err,
651 	"locking error: extent tree was modified by another thread while locked");
652 }
653 
654 /*
655  * clear some bits on a range in the tree.  This may require splitting
656  * or inserting elements in the tree, so the gfp mask is used to
657  * indicate which allocations or sleeping are allowed.
658  *
659  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
660  * the given range from the tree regardless of state (ie for truncate).
661  *
662  * the range [start, end] is inclusive.
663  *
664  * This takes the tree lock, and returns 0 on success and < 0 on error.
665  */
__clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int wake,int delete,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)666 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
667 			      unsigned bits, int wake, int delete,
668 			      struct extent_state **cached_state,
669 			      gfp_t mask, struct extent_changeset *changeset)
670 {
671 	struct extent_state *state;
672 	struct extent_state *cached;
673 	struct extent_state *prealloc = NULL;
674 	struct rb_node *node;
675 	u64 last_end;
676 	int err;
677 	int clear = 0;
678 
679 	btrfs_debug_check_extent_io_range(tree, start, end);
680 	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
681 
682 	if (bits & EXTENT_DELALLOC)
683 		bits |= EXTENT_NORESERVE;
684 
685 	if (delete)
686 		bits |= ~EXTENT_CTLBITS;
687 
688 	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
689 		clear = 1;
690 again:
691 	if (!prealloc && gfpflags_allow_blocking(mask)) {
692 		/*
693 		 * Don't care for allocation failure here because we might end
694 		 * up not needing the pre-allocated extent state at all, which
695 		 * is the case if we only have in the tree extent states that
696 		 * cover our input range and don't cover too any other range.
697 		 * If we end up needing a new extent state we allocate it later.
698 		 */
699 		prealloc = alloc_extent_state(mask);
700 	}
701 
702 	spin_lock(&tree->lock);
703 	if (cached_state) {
704 		cached = *cached_state;
705 
706 		if (clear) {
707 			*cached_state = NULL;
708 			cached_state = NULL;
709 		}
710 
711 		if (cached && extent_state_in_tree(cached) &&
712 		    cached->start <= start && cached->end > start) {
713 			if (clear)
714 				refcount_dec(&cached->refs);
715 			state = cached;
716 			goto hit_next;
717 		}
718 		if (clear)
719 			free_extent_state(cached);
720 	}
721 	/*
722 	 * this search will find the extents that end after
723 	 * our range starts
724 	 */
725 	node = tree_search(tree, start);
726 	if (!node)
727 		goto out;
728 	state = rb_entry(node, struct extent_state, rb_node);
729 hit_next:
730 	if (state->start > end)
731 		goto out;
732 	WARN_ON(state->end < start);
733 	last_end = state->end;
734 
735 	/* the state doesn't have the wanted bits, go ahead */
736 	if (!(state->state & bits)) {
737 		state = next_state(state);
738 		goto next;
739 	}
740 
741 	/*
742 	 *     | ---- desired range ---- |
743 	 *  | state | or
744 	 *  | ------------- state -------------- |
745 	 *
746 	 * We need to split the extent we found, and may flip
747 	 * bits on second half.
748 	 *
749 	 * If the extent we found extends past our range, we
750 	 * just split and search again.  It'll get split again
751 	 * the next time though.
752 	 *
753 	 * If the extent we found is inside our range, we clear
754 	 * the desired bit on it.
755 	 */
756 
757 	if (state->start < start) {
758 		prealloc = alloc_extent_state_atomic(prealloc);
759 		BUG_ON(!prealloc);
760 		err = split_state(tree, state, prealloc, start);
761 		if (err)
762 			extent_io_tree_panic(tree, err);
763 
764 		prealloc = NULL;
765 		if (err)
766 			goto out;
767 		if (state->end <= end) {
768 			state = clear_state_bit(tree, state, &bits, wake,
769 						changeset);
770 			goto next;
771 		}
772 		goto search_again;
773 	}
774 	/*
775 	 * | ---- desired range ---- |
776 	 *                        | state |
777 	 * We need to split the extent, and clear the bit
778 	 * on the first half
779 	 */
780 	if (state->start <= end && state->end > end) {
781 		prealloc = alloc_extent_state_atomic(prealloc);
782 		BUG_ON(!prealloc);
783 		err = split_state(tree, state, prealloc, end + 1);
784 		if (err)
785 			extent_io_tree_panic(tree, err);
786 
787 		if (wake)
788 			wake_up(&state->wq);
789 
790 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
791 
792 		prealloc = NULL;
793 		goto out;
794 	}
795 
796 	state = clear_state_bit(tree, state, &bits, wake, changeset);
797 next:
798 	if (last_end == (u64)-1)
799 		goto out;
800 	start = last_end + 1;
801 	if (start <= end && state && !need_resched())
802 		goto hit_next;
803 
804 search_again:
805 	if (start > end)
806 		goto out;
807 	spin_unlock(&tree->lock);
808 	if (gfpflags_allow_blocking(mask))
809 		cond_resched();
810 	goto again;
811 
812 out:
813 	spin_unlock(&tree->lock);
814 	if (prealloc)
815 		free_extent_state(prealloc);
816 
817 	return 0;
818 
819 }
820 
wait_on_state(struct extent_io_tree * tree,struct extent_state * state)821 static void wait_on_state(struct extent_io_tree *tree,
822 			  struct extent_state *state)
823 		__releases(tree->lock)
824 		__acquires(tree->lock)
825 {
826 	DEFINE_WAIT(wait);
827 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
828 	spin_unlock(&tree->lock);
829 	schedule();
830 	spin_lock(&tree->lock);
831 	finish_wait(&state->wq, &wait);
832 }
833 
834 /*
835  * waits for one or more bits to clear on a range in the state tree.
836  * The range [start, end] is inclusive.
837  * The tree lock is taken by this function
838  */
wait_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned long bits)839 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
840 			    unsigned long bits)
841 {
842 	struct extent_state *state;
843 	struct rb_node *node;
844 
845 	btrfs_debug_check_extent_io_range(tree, start, end);
846 
847 	spin_lock(&tree->lock);
848 again:
849 	while (1) {
850 		/*
851 		 * this search will find all the extents that end after
852 		 * our range starts
853 		 */
854 		node = tree_search(tree, start);
855 process_node:
856 		if (!node)
857 			break;
858 
859 		state = rb_entry(node, struct extent_state, rb_node);
860 
861 		if (state->start > end)
862 			goto out;
863 
864 		if (state->state & bits) {
865 			start = state->start;
866 			refcount_inc(&state->refs);
867 			wait_on_state(tree, state);
868 			free_extent_state(state);
869 			goto again;
870 		}
871 		start = state->end + 1;
872 
873 		if (start > end)
874 			break;
875 
876 		if (!cond_resched_lock(&tree->lock)) {
877 			node = rb_next(node);
878 			goto process_node;
879 		}
880 	}
881 out:
882 	spin_unlock(&tree->lock);
883 }
884 
set_state_bits(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits,struct extent_changeset * changeset)885 static void set_state_bits(struct extent_io_tree *tree,
886 			   struct extent_state *state,
887 			   unsigned *bits, struct extent_changeset *changeset)
888 {
889 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
890 	int ret;
891 
892 	if (tree->private_data && is_data_inode(tree->private_data))
893 		btrfs_set_delalloc_extent(tree->private_data, state, bits);
894 
895 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
896 		u64 range = state->end - state->start + 1;
897 		tree->dirty_bytes += range;
898 	}
899 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
900 	BUG_ON(ret < 0);
901 	state->state |= bits_to_set;
902 }
903 
cache_state_if_flags(struct extent_state * state,struct extent_state ** cached_ptr,unsigned flags)904 static void cache_state_if_flags(struct extent_state *state,
905 				 struct extent_state **cached_ptr,
906 				 unsigned flags)
907 {
908 	if (cached_ptr && !(*cached_ptr)) {
909 		if (!flags || (state->state & flags)) {
910 			*cached_ptr = state;
911 			refcount_inc(&state->refs);
912 		}
913 	}
914 }
915 
cache_state(struct extent_state * state,struct extent_state ** cached_ptr)916 static void cache_state(struct extent_state *state,
917 			struct extent_state **cached_ptr)
918 {
919 	return cache_state_if_flags(state, cached_ptr,
920 				    EXTENT_LOCKED | EXTENT_BOUNDARY);
921 }
922 
923 /*
924  * set some bits on a range in the tree.  This may require allocations or
925  * sleeping, so the gfp mask is used to indicate what is allowed.
926  *
927  * If any of the exclusive bits are set, this will fail with -EEXIST if some
928  * part of the range already has the desired bits set.  The start of the
929  * existing range is returned in failed_start in this case.
930  *
931  * [start, end] is inclusive This takes the tree lock.
932  */
933 
934 static int __must_check
__set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,unsigned exclusive_bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)935 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
936 		 unsigned bits, unsigned exclusive_bits,
937 		 u64 *failed_start, struct extent_state **cached_state,
938 		 gfp_t mask, struct extent_changeset *changeset)
939 {
940 	struct extent_state *state;
941 	struct extent_state *prealloc = NULL;
942 	struct rb_node *node;
943 	struct rb_node **p;
944 	struct rb_node *parent;
945 	int err = 0;
946 	u64 last_start;
947 	u64 last_end;
948 
949 	btrfs_debug_check_extent_io_range(tree, start, end);
950 	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
951 
952 again:
953 	if (!prealloc && gfpflags_allow_blocking(mask)) {
954 		/*
955 		 * Don't care for allocation failure here because we might end
956 		 * up not needing the pre-allocated extent state at all, which
957 		 * is the case if we only have in the tree extent states that
958 		 * cover our input range and don't cover too any other range.
959 		 * If we end up needing a new extent state we allocate it later.
960 		 */
961 		prealloc = alloc_extent_state(mask);
962 	}
963 
964 	spin_lock(&tree->lock);
965 	if (cached_state && *cached_state) {
966 		state = *cached_state;
967 		if (state->start <= start && state->end > start &&
968 		    extent_state_in_tree(state)) {
969 			node = &state->rb_node;
970 			goto hit_next;
971 		}
972 	}
973 	/*
974 	 * this search will find all the extents that end after
975 	 * our range starts.
976 	 */
977 	node = tree_search_for_insert(tree, start, &p, &parent);
978 	if (!node) {
979 		prealloc = alloc_extent_state_atomic(prealloc);
980 		BUG_ON(!prealloc);
981 		err = insert_state(tree, prealloc, start, end,
982 				   &p, &parent, &bits, changeset);
983 		if (err)
984 			extent_io_tree_panic(tree, err);
985 
986 		cache_state(prealloc, cached_state);
987 		prealloc = NULL;
988 		goto out;
989 	}
990 	state = rb_entry(node, struct extent_state, rb_node);
991 hit_next:
992 	last_start = state->start;
993 	last_end = state->end;
994 
995 	/*
996 	 * | ---- desired range ---- |
997 	 * | state |
998 	 *
999 	 * Just lock what we found and keep going
1000 	 */
1001 	if (state->start == start && state->end <= end) {
1002 		if (state->state & exclusive_bits) {
1003 			*failed_start = state->start;
1004 			err = -EEXIST;
1005 			goto out;
1006 		}
1007 
1008 		set_state_bits(tree, state, &bits, changeset);
1009 		cache_state(state, cached_state);
1010 		merge_state(tree, state);
1011 		if (last_end == (u64)-1)
1012 			goto out;
1013 		start = last_end + 1;
1014 		state = next_state(state);
1015 		if (start < end && state && state->start == start &&
1016 		    !need_resched())
1017 			goto hit_next;
1018 		goto search_again;
1019 	}
1020 
1021 	/*
1022 	 *     | ---- desired range ---- |
1023 	 * | state |
1024 	 *   or
1025 	 * | ------------- state -------------- |
1026 	 *
1027 	 * We need to split the extent we found, and may flip bits on
1028 	 * second half.
1029 	 *
1030 	 * If the extent we found extends past our
1031 	 * range, we just split and search again.  It'll get split
1032 	 * again the next time though.
1033 	 *
1034 	 * If the extent we found is inside our range, we set the
1035 	 * desired bit on it.
1036 	 */
1037 	if (state->start < start) {
1038 		if (state->state & exclusive_bits) {
1039 			*failed_start = start;
1040 			err = -EEXIST;
1041 			goto out;
1042 		}
1043 
1044 		prealloc = alloc_extent_state_atomic(prealloc);
1045 		BUG_ON(!prealloc);
1046 		err = split_state(tree, state, prealloc, start);
1047 		if (err)
1048 			extent_io_tree_panic(tree, err);
1049 
1050 		prealloc = NULL;
1051 		if (err)
1052 			goto out;
1053 		if (state->end <= end) {
1054 			set_state_bits(tree, state, &bits, changeset);
1055 			cache_state(state, cached_state);
1056 			merge_state(tree, state);
1057 			if (last_end == (u64)-1)
1058 				goto out;
1059 			start = last_end + 1;
1060 			state = next_state(state);
1061 			if (start < end && state && state->start == start &&
1062 			    !need_resched())
1063 				goto hit_next;
1064 		}
1065 		goto search_again;
1066 	}
1067 	/*
1068 	 * | ---- desired range ---- |
1069 	 *     | state | or               | state |
1070 	 *
1071 	 * There's a hole, we need to insert something in it and
1072 	 * ignore the extent we found.
1073 	 */
1074 	if (state->start > start) {
1075 		u64 this_end;
1076 		if (end < last_start)
1077 			this_end = end;
1078 		else
1079 			this_end = last_start - 1;
1080 
1081 		prealloc = alloc_extent_state_atomic(prealloc);
1082 		BUG_ON(!prealloc);
1083 
1084 		/*
1085 		 * Avoid to free 'prealloc' if it can be merged with
1086 		 * the later extent.
1087 		 */
1088 		err = insert_state(tree, prealloc, start, this_end,
1089 				   NULL, NULL, &bits, changeset);
1090 		if (err)
1091 			extent_io_tree_panic(tree, err);
1092 
1093 		cache_state(prealloc, cached_state);
1094 		prealloc = NULL;
1095 		start = this_end + 1;
1096 		goto search_again;
1097 	}
1098 	/*
1099 	 * | ---- desired range ---- |
1100 	 *                        | state |
1101 	 * We need to split the extent, and set the bit
1102 	 * on the first half
1103 	 */
1104 	if (state->start <= end && state->end > end) {
1105 		if (state->state & exclusive_bits) {
1106 			*failed_start = start;
1107 			err = -EEXIST;
1108 			goto out;
1109 		}
1110 
1111 		prealloc = alloc_extent_state_atomic(prealloc);
1112 		BUG_ON(!prealloc);
1113 		err = split_state(tree, state, prealloc, end + 1);
1114 		if (err)
1115 			extent_io_tree_panic(tree, err);
1116 
1117 		set_state_bits(tree, prealloc, &bits, changeset);
1118 		cache_state(prealloc, cached_state);
1119 		merge_state(tree, prealloc);
1120 		prealloc = NULL;
1121 		goto out;
1122 	}
1123 
1124 search_again:
1125 	if (start > end)
1126 		goto out;
1127 	spin_unlock(&tree->lock);
1128 	if (gfpflags_allow_blocking(mask))
1129 		cond_resched();
1130 	goto again;
1131 
1132 out:
1133 	spin_unlock(&tree->lock);
1134 	if (prealloc)
1135 		free_extent_state(prealloc);
1136 
1137 	return err;
1138 
1139 }
1140 
set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask)1141 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1142 		   unsigned bits, u64 * failed_start,
1143 		   struct extent_state **cached_state, gfp_t mask)
1144 {
1145 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1146 				cached_state, mask, NULL);
1147 }
1148 
1149 
1150 /**
1151  * convert_extent_bit - convert all bits in a given range from one bit to
1152  * 			another
1153  * @tree:	the io tree to search
1154  * @start:	the start offset in bytes
1155  * @end:	the end offset in bytes (inclusive)
1156  * @bits:	the bits to set in this range
1157  * @clear_bits:	the bits to clear in this range
1158  * @cached_state:	state that we're going to cache
1159  *
1160  * This will go through and set bits for the given range.  If any states exist
1161  * already in this range they are set with the given bit and cleared of the
1162  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1163  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1164  * boundary bits like LOCK.
1165  *
1166  * All allocations are done with GFP_NOFS.
1167  */
convert_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,unsigned clear_bits,struct extent_state ** cached_state)1168 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1169 		       unsigned bits, unsigned clear_bits,
1170 		       struct extent_state **cached_state)
1171 {
1172 	struct extent_state *state;
1173 	struct extent_state *prealloc = NULL;
1174 	struct rb_node *node;
1175 	struct rb_node **p;
1176 	struct rb_node *parent;
1177 	int err = 0;
1178 	u64 last_start;
1179 	u64 last_end;
1180 	bool first_iteration = true;
1181 
1182 	btrfs_debug_check_extent_io_range(tree, start, end);
1183 	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1184 				       clear_bits);
1185 
1186 again:
1187 	if (!prealloc) {
1188 		/*
1189 		 * Best effort, don't worry if extent state allocation fails
1190 		 * here for the first iteration. We might have a cached state
1191 		 * that matches exactly the target range, in which case no
1192 		 * extent state allocations are needed. We'll only know this
1193 		 * after locking the tree.
1194 		 */
1195 		prealloc = alloc_extent_state(GFP_NOFS);
1196 		if (!prealloc && !first_iteration)
1197 			return -ENOMEM;
1198 	}
1199 
1200 	spin_lock(&tree->lock);
1201 	if (cached_state && *cached_state) {
1202 		state = *cached_state;
1203 		if (state->start <= start && state->end > start &&
1204 		    extent_state_in_tree(state)) {
1205 			node = &state->rb_node;
1206 			goto hit_next;
1207 		}
1208 	}
1209 
1210 	/*
1211 	 * this search will find all the extents that end after
1212 	 * our range starts.
1213 	 */
1214 	node = tree_search_for_insert(tree, start, &p, &parent);
1215 	if (!node) {
1216 		prealloc = alloc_extent_state_atomic(prealloc);
1217 		if (!prealloc) {
1218 			err = -ENOMEM;
1219 			goto out;
1220 		}
1221 		err = insert_state(tree, prealloc, start, end,
1222 				   &p, &parent, &bits, NULL);
1223 		if (err)
1224 			extent_io_tree_panic(tree, err);
1225 		cache_state(prealloc, cached_state);
1226 		prealloc = NULL;
1227 		goto out;
1228 	}
1229 	state = rb_entry(node, struct extent_state, rb_node);
1230 hit_next:
1231 	last_start = state->start;
1232 	last_end = state->end;
1233 
1234 	/*
1235 	 * | ---- desired range ---- |
1236 	 * | state |
1237 	 *
1238 	 * Just lock what we found and keep going
1239 	 */
1240 	if (state->start == start && state->end <= end) {
1241 		set_state_bits(tree, state, &bits, NULL);
1242 		cache_state(state, cached_state);
1243 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1244 		if (last_end == (u64)-1)
1245 			goto out;
1246 		start = last_end + 1;
1247 		if (start < end && state && state->start == start &&
1248 		    !need_resched())
1249 			goto hit_next;
1250 		goto search_again;
1251 	}
1252 
1253 	/*
1254 	 *     | ---- desired range ---- |
1255 	 * | state |
1256 	 *   or
1257 	 * | ------------- state -------------- |
1258 	 *
1259 	 * We need to split the extent we found, and may flip bits on
1260 	 * second half.
1261 	 *
1262 	 * If the extent we found extends past our
1263 	 * range, we just split and search again.  It'll get split
1264 	 * again the next time though.
1265 	 *
1266 	 * If the extent we found is inside our range, we set the
1267 	 * desired bit on it.
1268 	 */
1269 	if (state->start < start) {
1270 		prealloc = alloc_extent_state_atomic(prealloc);
1271 		if (!prealloc) {
1272 			err = -ENOMEM;
1273 			goto out;
1274 		}
1275 		err = split_state(tree, state, prealloc, start);
1276 		if (err)
1277 			extent_io_tree_panic(tree, err);
1278 		prealloc = NULL;
1279 		if (err)
1280 			goto out;
1281 		if (state->end <= end) {
1282 			set_state_bits(tree, state, &bits, NULL);
1283 			cache_state(state, cached_state);
1284 			state = clear_state_bit(tree, state, &clear_bits, 0,
1285 						NULL);
1286 			if (last_end == (u64)-1)
1287 				goto out;
1288 			start = last_end + 1;
1289 			if (start < end && state && state->start == start &&
1290 			    !need_resched())
1291 				goto hit_next;
1292 		}
1293 		goto search_again;
1294 	}
1295 	/*
1296 	 * | ---- desired range ---- |
1297 	 *     | state | or               | state |
1298 	 *
1299 	 * There's a hole, we need to insert something in it and
1300 	 * ignore the extent we found.
1301 	 */
1302 	if (state->start > start) {
1303 		u64 this_end;
1304 		if (end < last_start)
1305 			this_end = end;
1306 		else
1307 			this_end = last_start - 1;
1308 
1309 		prealloc = alloc_extent_state_atomic(prealloc);
1310 		if (!prealloc) {
1311 			err = -ENOMEM;
1312 			goto out;
1313 		}
1314 
1315 		/*
1316 		 * Avoid to free 'prealloc' if it can be merged with
1317 		 * the later extent.
1318 		 */
1319 		err = insert_state(tree, prealloc, start, this_end,
1320 				   NULL, NULL, &bits, NULL);
1321 		if (err)
1322 			extent_io_tree_panic(tree, err);
1323 		cache_state(prealloc, cached_state);
1324 		prealloc = NULL;
1325 		start = this_end + 1;
1326 		goto search_again;
1327 	}
1328 	/*
1329 	 * | ---- desired range ---- |
1330 	 *                        | state |
1331 	 * We need to split the extent, and set the bit
1332 	 * on the first half
1333 	 */
1334 	if (state->start <= end && state->end > end) {
1335 		prealloc = alloc_extent_state_atomic(prealloc);
1336 		if (!prealloc) {
1337 			err = -ENOMEM;
1338 			goto out;
1339 		}
1340 
1341 		err = split_state(tree, state, prealloc, end + 1);
1342 		if (err)
1343 			extent_io_tree_panic(tree, err);
1344 
1345 		set_state_bits(tree, prealloc, &bits, NULL);
1346 		cache_state(prealloc, cached_state);
1347 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1348 		prealloc = NULL;
1349 		goto out;
1350 	}
1351 
1352 search_again:
1353 	if (start > end)
1354 		goto out;
1355 	spin_unlock(&tree->lock);
1356 	cond_resched();
1357 	first_iteration = false;
1358 	goto again;
1359 
1360 out:
1361 	spin_unlock(&tree->lock);
1362 	if (prealloc)
1363 		free_extent_state(prealloc);
1364 
1365 	return err;
1366 }
1367 
1368 /* wrappers around set/clear extent bit */
set_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,struct extent_changeset * changeset)1369 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1370 			   unsigned bits, struct extent_changeset *changeset)
1371 {
1372 	/*
1373 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1374 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1375 	 * either fail with -EEXIST or changeset will record the whole
1376 	 * range.
1377 	 */
1378 	BUG_ON(bits & EXTENT_LOCKED);
1379 
1380 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1381 				changeset);
1382 }
1383 
set_extent_bits_nowait(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits)1384 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1385 			   unsigned bits)
1386 {
1387 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1388 				GFP_NOWAIT, NULL);
1389 }
1390 
clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int wake,int delete,struct extent_state ** cached)1391 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1392 		     unsigned bits, int wake, int delete,
1393 		     struct extent_state **cached)
1394 {
1395 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1396 				  cached, GFP_NOFS, NULL);
1397 }
1398 
clear_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,struct extent_changeset * changeset)1399 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1400 		unsigned bits, struct extent_changeset *changeset)
1401 {
1402 	/*
1403 	 * Don't support EXTENT_LOCKED case, same reason as
1404 	 * set_record_extent_bits().
1405 	 */
1406 	BUG_ON(bits & EXTENT_LOCKED);
1407 
1408 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1409 				  changeset);
1410 }
1411 
1412 /*
1413  * either insert or lock state struct between start and end use mask to tell
1414  * us if waiting is desired.
1415  */
lock_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached_state)1416 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1417 		     struct extent_state **cached_state)
1418 {
1419 	int err;
1420 	u64 failed_start;
1421 
1422 	while (1) {
1423 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1424 				       EXTENT_LOCKED, &failed_start,
1425 				       cached_state, GFP_NOFS, NULL);
1426 		if (err == -EEXIST) {
1427 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1428 			start = failed_start;
1429 		} else
1430 			break;
1431 		WARN_ON(start > end);
1432 	}
1433 	return err;
1434 }
1435 
try_lock_extent(struct extent_io_tree * tree,u64 start,u64 end)1436 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1437 {
1438 	int err;
1439 	u64 failed_start;
1440 
1441 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1442 			       &failed_start, NULL, GFP_NOFS, NULL);
1443 	if (err == -EEXIST) {
1444 		if (failed_start > start)
1445 			clear_extent_bit(tree, start, failed_start - 1,
1446 					 EXTENT_LOCKED, 1, 0, NULL);
1447 		return 0;
1448 	}
1449 	return 1;
1450 }
1451 
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)1452 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1453 {
1454 	unsigned long index = start >> PAGE_SHIFT;
1455 	unsigned long end_index = end >> PAGE_SHIFT;
1456 	struct page *page;
1457 
1458 	while (index <= end_index) {
1459 		page = find_get_page(inode->i_mapping, index);
1460 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1461 		clear_page_dirty_for_io(page);
1462 		put_page(page);
1463 		index++;
1464 	}
1465 }
1466 
extent_range_redirty_for_io(struct inode * inode,u64 start,u64 end)1467 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1468 {
1469 	unsigned long index = start >> PAGE_SHIFT;
1470 	unsigned long end_index = end >> PAGE_SHIFT;
1471 	struct page *page;
1472 
1473 	while (index <= end_index) {
1474 		page = find_get_page(inode->i_mapping, index);
1475 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1476 		__set_page_dirty_nobuffers(page);
1477 		account_page_redirty(page);
1478 		put_page(page);
1479 		index++;
1480 	}
1481 }
1482 
1483 /* find the first state struct with 'bits' set after 'start', and
1484  * return it.  tree->lock must be held.  NULL will returned if
1485  * nothing was found after 'start'
1486  */
1487 static struct extent_state *
find_first_extent_bit_state(struct extent_io_tree * tree,u64 start,unsigned bits)1488 find_first_extent_bit_state(struct extent_io_tree *tree,
1489 			    u64 start, unsigned bits)
1490 {
1491 	struct rb_node *node;
1492 	struct extent_state *state;
1493 
1494 	/*
1495 	 * this search will find all the extents that end after
1496 	 * our range starts.
1497 	 */
1498 	node = tree_search(tree, start);
1499 	if (!node)
1500 		goto out;
1501 
1502 	while (1) {
1503 		state = rb_entry(node, struct extent_state, rb_node);
1504 		if (state->end >= start && (state->state & bits))
1505 			return state;
1506 
1507 		node = rb_next(node);
1508 		if (!node)
1509 			break;
1510 	}
1511 out:
1512 	return NULL;
1513 }
1514 
1515 /*
1516  * find the first offset in the io tree with 'bits' set. zero is
1517  * returned if we find something, and *start_ret and *end_ret are
1518  * set to reflect the state struct that was found.
1519  *
1520  * If nothing was found, 1 is returned. If found something, return 0.
1521  */
find_first_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,unsigned bits,struct extent_state ** cached_state)1522 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1523 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1524 			  struct extent_state **cached_state)
1525 {
1526 	struct extent_state *state;
1527 	int ret = 1;
1528 
1529 	spin_lock(&tree->lock);
1530 	if (cached_state && *cached_state) {
1531 		state = *cached_state;
1532 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1533 			while ((state = next_state(state)) != NULL) {
1534 				if (state->state & bits)
1535 					goto got_it;
1536 			}
1537 			free_extent_state(*cached_state);
1538 			*cached_state = NULL;
1539 			goto out;
1540 		}
1541 		free_extent_state(*cached_state);
1542 		*cached_state = NULL;
1543 	}
1544 
1545 	state = find_first_extent_bit_state(tree, start, bits);
1546 got_it:
1547 	if (state) {
1548 		cache_state_if_flags(state, cached_state, 0);
1549 		*start_ret = state->start;
1550 		*end_ret = state->end;
1551 		ret = 0;
1552 	}
1553 out:
1554 	spin_unlock(&tree->lock);
1555 	return ret;
1556 }
1557 
1558 /**
1559  * find_first_clear_extent_bit - find the first range that has @bits not set.
1560  * This range could start before @start.
1561  *
1562  * @tree - the tree to search
1563  * @start - the offset at/after which the found extent should start
1564  * @start_ret - records the beginning of the range
1565  * @end_ret - records the end of the range (inclusive)
1566  * @bits - the set of bits which must be unset
1567  *
1568  * Since unallocated range is also considered one which doesn't have the bits
1569  * set it's possible that @end_ret contains -1, this happens in case the range
1570  * spans (last_range_end, end of device]. In this case it's up to the caller to
1571  * trim @end_ret to the appropriate size.
1572  */
find_first_clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,unsigned bits)1573 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1574 				 u64 *start_ret, u64 *end_ret, unsigned bits)
1575 {
1576 	struct extent_state *state;
1577 	struct rb_node *node, *prev = NULL, *next;
1578 
1579 	spin_lock(&tree->lock);
1580 
1581 	/* Find first extent with bits cleared */
1582 	while (1) {
1583 		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1584 		if (!node && !next && !prev) {
1585 			/*
1586 			 * Tree is completely empty, send full range and let
1587 			 * caller deal with it
1588 			 */
1589 			*start_ret = 0;
1590 			*end_ret = -1;
1591 			goto out;
1592 		} else if (!node && !next) {
1593 			/*
1594 			 * We are past the last allocated chunk, set start at
1595 			 * the end of the last extent.
1596 			 */
1597 			state = rb_entry(prev, struct extent_state, rb_node);
1598 			*start_ret = state->end + 1;
1599 			*end_ret = -1;
1600 			goto out;
1601 		} else if (!node) {
1602 			node = next;
1603 		}
1604 		/*
1605 		 * At this point 'node' either contains 'start' or start is
1606 		 * before 'node'
1607 		 */
1608 		state = rb_entry(node, struct extent_state, rb_node);
1609 
1610 		if (in_range(start, state->start, state->end - state->start + 1)) {
1611 			if (state->state & bits) {
1612 				/*
1613 				 * |--range with bits sets--|
1614 				 *    |
1615 				 *    start
1616 				 */
1617 				start = state->end + 1;
1618 			} else {
1619 				/*
1620 				 * 'start' falls within a range that doesn't
1621 				 * have the bits set, so take its start as
1622 				 * the beginning of the desired range
1623 				 *
1624 				 * |--range with bits cleared----|
1625 				 *      |
1626 				 *      start
1627 				 */
1628 				*start_ret = state->start;
1629 				break;
1630 			}
1631 		} else {
1632 			/*
1633 			 * |---prev range---|---hole/unset---|---node range---|
1634 			 *                          |
1635 			 *                        start
1636 			 *
1637 			 *                        or
1638 			 *
1639 			 * |---hole/unset--||--first node--|
1640 			 * 0   |
1641 			 *    start
1642 			 */
1643 			if (prev) {
1644 				state = rb_entry(prev, struct extent_state,
1645 						 rb_node);
1646 				*start_ret = state->end + 1;
1647 			} else {
1648 				*start_ret = 0;
1649 			}
1650 			break;
1651 		}
1652 	}
1653 
1654 	/*
1655 	 * Find the longest stretch from start until an entry which has the
1656 	 * bits set
1657 	 */
1658 	while (1) {
1659 		state = rb_entry(node, struct extent_state, rb_node);
1660 		if (state->end >= start && !(state->state & bits)) {
1661 			*end_ret = state->end;
1662 		} else {
1663 			*end_ret = state->start - 1;
1664 			break;
1665 		}
1666 
1667 		node = rb_next(node);
1668 		if (!node)
1669 			break;
1670 	}
1671 out:
1672 	spin_unlock(&tree->lock);
1673 }
1674 
1675 /*
1676  * find a contiguous range of bytes in the file marked as delalloc, not
1677  * more than 'max_bytes'.  start and end are used to return the range,
1678  *
1679  * true is returned if we find something, false if nothing was in the tree
1680  */
find_delalloc_range(struct extent_io_tree * tree,u64 * start,u64 * end,u64 max_bytes,struct extent_state ** cached_state)1681 static noinline bool find_delalloc_range(struct extent_io_tree *tree,
1682 					u64 *start, u64 *end, u64 max_bytes,
1683 					struct extent_state **cached_state)
1684 {
1685 	struct rb_node *node;
1686 	struct extent_state *state;
1687 	u64 cur_start = *start;
1688 	bool found = false;
1689 	u64 total_bytes = 0;
1690 
1691 	spin_lock(&tree->lock);
1692 
1693 	/*
1694 	 * this search will find all the extents that end after
1695 	 * our range starts.
1696 	 */
1697 	node = tree_search(tree, cur_start);
1698 	if (!node) {
1699 		*end = (u64)-1;
1700 		goto out;
1701 	}
1702 
1703 	while (1) {
1704 		state = rb_entry(node, struct extent_state, rb_node);
1705 		if (found && (state->start != cur_start ||
1706 			      (state->state & EXTENT_BOUNDARY))) {
1707 			goto out;
1708 		}
1709 		if (!(state->state & EXTENT_DELALLOC)) {
1710 			if (!found)
1711 				*end = state->end;
1712 			goto out;
1713 		}
1714 		if (!found) {
1715 			*start = state->start;
1716 			*cached_state = state;
1717 			refcount_inc(&state->refs);
1718 		}
1719 		found = true;
1720 		*end = state->end;
1721 		cur_start = state->end + 1;
1722 		node = rb_next(node);
1723 		total_bytes += state->end - state->start + 1;
1724 		if (total_bytes >= max_bytes)
1725 			break;
1726 		if (!node)
1727 			break;
1728 	}
1729 out:
1730 	spin_unlock(&tree->lock);
1731 	return found;
1732 }
1733 
1734 static int __process_pages_contig(struct address_space *mapping,
1735 				  struct page *locked_page,
1736 				  pgoff_t start_index, pgoff_t end_index,
1737 				  unsigned long page_ops, pgoff_t *index_ret);
1738 
__unlock_for_delalloc(struct inode * inode,struct page * locked_page,u64 start,u64 end)1739 static noinline void __unlock_for_delalloc(struct inode *inode,
1740 					   struct page *locked_page,
1741 					   u64 start, u64 end)
1742 {
1743 	unsigned long index = start >> PAGE_SHIFT;
1744 	unsigned long end_index = end >> PAGE_SHIFT;
1745 
1746 	ASSERT(locked_page);
1747 	if (index == locked_page->index && end_index == index)
1748 		return;
1749 
1750 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1751 			       PAGE_UNLOCK, NULL);
1752 }
1753 
lock_delalloc_pages(struct inode * inode,struct page * locked_page,u64 delalloc_start,u64 delalloc_end)1754 static noinline int lock_delalloc_pages(struct inode *inode,
1755 					struct page *locked_page,
1756 					u64 delalloc_start,
1757 					u64 delalloc_end)
1758 {
1759 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1760 	unsigned long index_ret = index;
1761 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1762 	int ret;
1763 
1764 	ASSERT(locked_page);
1765 	if (index == locked_page->index && index == end_index)
1766 		return 0;
1767 
1768 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1769 				     end_index, PAGE_LOCK, &index_ret);
1770 	if (ret == -EAGAIN)
1771 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1772 				      (u64)index_ret << PAGE_SHIFT);
1773 	return ret;
1774 }
1775 
1776 /*
1777  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1778  * more than @max_bytes.  @Start and @end are used to return the range,
1779  *
1780  * Return: true if we find something
1781  *         false if nothing was in the tree
1782  */
1783 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct page * locked_page,u64 * start,u64 * end)1784 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1785 				    struct page *locked_page, u64 *start,
1786 				    u64 *end)
1787 {
1788 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1789 	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1790 	u64 delalloc_start;
1791 	u64 delalloc_end;
1792 	bool found;
1793 	struct extent_state *cached_state = NULL;
1794 	int ret;
1795 	int loops = 0;
1796 
1797 again:
1798 	/* step one, find a bunch of delalloc bytes starting at start */
1799 	delalloc_start = *start;
1800 	delalloc_end = 0;
1801 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1802 				    max_bytes, &cached_state);
1803 	if (!found || delalloc_end <= *start) {
1804 		*start = delalloc_start;
1805 		*end = delalloc_end;
1806 		free_extent_state(cached_state);
1807 		return false;
1808 	}
1809 
1810 	/*
1811 	 * start comes from the offset of locked_page.  We have to lock
1812 	 * pages in order, so we can't process delalloc bytes before
1813 	 * locked_page
1814 	 */
1815 	if (delalloc_start < *start)
1816 		delalloc_start = *start;
1817 
1818 	/*
1819 	 * make sure to limit the number of pages we try to lock down
1820 	 */
1821 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1822 		delalloc_end = delalloc_start + max_bytes - 1;
1823 
1824 	/* step two, lock all the pages after the page that has start */
1825 	ret = lock_delalloc_pages(inode, locked_page,
1826 				  delalloc_start, delalloc_end);
1827 	ASSERT(!ret || ret == -EAGAIN);
1828 	if (ret == -EAGAIN) {
1829 		/* some of the pages are gone, lets avoid looping by
1830 		 * shortening the size of the delalloc range we're searching
1831 		 */
1832 		free_extent_state(cached_state);
1833 		cached_state = NULL;
1834 		if (!loops) {
1835 			max_bytes = PAGE_SIZE;
1836 			loops = 1;
1837 			goto again;
1838 		} else {
1839 			found = false;
1840 			goto out_failed;
1841 		}
1842 	}
1843 
1844 	/* step three, lock the state bits for the whole range */
1845 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1846 
1847 	/* then test to make sure it is all still delalloc */
1848 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1849 			     EXTENT_DELALLOC, 1, cached_state);
1850 	if (!ret) {
1851 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1852 				     &cached_state);
1853 		__unlock_for_delalloc(inode, locked_page,
1854 			      delalloc_start, delalloc_end);
1855 		cond_resched();
1856 		goto again;
1857 	}
1858 	free_extent_state(cached_state);
1859 	*start = delalloc_start;
1860 	*end = delalloc_end;
1861 out_failed:
1862 	return found;
1863 }
1864 
__process_pages_contig(struct address_space * mapping,struct page * locked_page,pgoff_t start_index,pgoff_t end_index,unsigned long page_ops,pgoff_t * index_ret)1865 static int __process_pages_contig(struct address_space *mapping,
1866 				  struct page *locked_page,
1867 				  pgoff_t start_index, pgoff_t end_index,
1868 				  unsigned long page_ops, pgoff_t *index_ret)
1869 {
1870 	unsigned long nr_pages = end_index - start_index + 1;
1871 	unsigned long pages_locked = 0;
1872 	pgoff_t index = start_index;
1873 	struct page *pages[16];
1874 	unsigned ret;
1875 	int err = 0;
1876 	int i;
1877 
1878 	if (page_ops & PAGE_LOCK) {
1879 		ASSERT(page_ops == PAGE_LOCK);
1880 		ASSERT(index_ret && *index_ret == start_index);
1881 	}
1882 
1883 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1884 		mapping_set_error(mapping, -EIO);
1885 
1886 	while (nr_pages > 0) {
1887 		ret = find_get_pages_contig(mapping, index,
1888 				     min_t(unsigned long,
1889 				     nr_pages, ARRAY_SIZE(pages)), pages);
1890 		if (ret == 0) {
1891 			/*
1892 			 * Only if we're going to lock these pages,
1893 			 * can we find nothing at @index.
1894 			 */
1895 			ASSERT(page_ops & PAGE_LOCK);
1896 			err = -EAGAIN;
1897 			goto out;
1898 		}
1899 
1900 		for (i = 0; i < ret; i++) {
1901 			if (page_ops & PAGE_SET_PRIVATE2)
1902 				SetPagePrivate2(pages[i]);
1903 
1904 			if (locked_page && pages[i] == locked_page) {
1905 				put_page(pages[i]);
1906 				pages_locked++;
1907 				continue;
1908 			}
1909 			if (page_ops & PAGE_CLEAR_DIRTY)
1910 				clear_page_dirty_for_io(pages[i]);
1911 			if (page_ops & PAGE_SET_WRITEBACK)
1912 				set_page_writeback(pages[i]);
1913 			if (page_ops & PAGE_SET_ERROR)
1914 				SetPageError(pages[i]);
1915 			if (page_ops & PAGE_END_WRITEBACK)
1916 				end_page_writeback(pages[i]);
1917 			if (page_ops & PAGE_UNLOCK)
1918 				unlock_page(pages[i]);
1919 			if (page_ops & PAGE_LOCK) {
1920 				lock_page(pages[i]);
1921 				if (!PageDirty(pages[i]) ||
1922 				    pages[i]->mapping != mapping) {
1923 					unlock_page(pages[i]);
1924 					for (; i < ret; i++)
1925 						put_page(pages[i]);
1926 					err = -EAGAIN;
1927 					goto out;
1928 				}
1929 			}
1930 			put_page(pages[i]);
1931 			pages_locked++;
1932 		}
1933 		nr_pages -= ret;
1934 		index += ret;
1935 		cond_resched();
1936 	}
1937 out:
1938 	if (err && index_ret)
1939 		*index_ret = start_index + pages_locked - 1;
1940 	return err;
1941 }
1942 
extent_clear_unlock_delalloc(struct inode * inode,u64 start,u64 end,struct page * locked_page,unsigned clear_bits,unsigned long page_ops)1943 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1944 				  struct page *locked_page,
1945 				  unsigned clear_bits,
1946 				  unsigned long page_ops)
1947 {
1948 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1949 			 NULL);
1950 
1951 	__process_pages_contig(inode->i_mapping, locked_page,
1952 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1953 			       page_ops, NULL);
1954 }
1955 
1956 /*
1957  * count the number of bytes in the tree that have a given bit(s)
1958  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1959  * cached.  The total number found is returned.
1960  */
count_range_bits(struct extent_io_tree * tree,u64 * start,u64 search_end,u64 max_bytes,unsigned bits,int contig)1961 u64 count_range_bits(struct extent_io_tree *tree,
1962 		     u64 *start, u64 search_end, u64 max_bytes,
1963 		     unsigned bits, int contig)
1964 {
1965 	struct rb_node *node;
1966 	struct extent_state *state;
1967 	u64 cur_start = *start;
1968 	u64 total_bytes = 0;
1969 	u64 last = 0;
1970 	int found = 0;
1971 
1972 	if (WARN_ON(search_end <= cur_start))
1973 		return 0;
1974 
1975 	spin_lock(&tree->lock);
1976 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1977 		total_bytes = tree->dirty_bytes;
1978 		goto out;
1979 	}
1980 	/*
1981 	 * this search will find all the extents that end after
1982 	 * our range starts.
1983 	 */
1984 	node = tree_search(tree, cur_start);
1985 	if (!node)
1986 		goto out;
1987 
1988 	while (1) {
1989 		state = rb_entry(node, struct extent_state, rb_node);
1990 		if (state->start > search_end)
1991 			break;
1992 		if (contig && found && state->start > last + 1)
1993 			break;
1994 		if (state->end >= cur_start && (state->state & bits) == bits) {
1995 			total_bytes += min(search_end, state->end) + 1 -
1996 				       max(cur_start, state->start);
1997 			if (total_bytes >= max_bytes)
1998 				break;
1999 			if (!found) {
2000 				*start = max(cur_start, state->start);
2001 				found = 1;
2002 			}
2003 			last = state->end;
2004 		} else if (contig && found) {
2005 			break;
2006 		}
2007 		node = rb_next(node);
2008 		if (!node)
2009 			break;
2010 	}
2011 out:
2012 	spin_unlock(&tree->lock);
2013 	return total_bytes;
2014 }
2015 
2016 /*
2017  * set the private field for a given byte offset in the tree.  If there isn't
2018  * an extent_state there already, this does nothing.
2019  */
set_state_failrec(struct extent_io_tree * tree,u64 start,struct io_failure_record * failrec)2020 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
2021 		struct io_failure_record *failrec)
2022 {
2023 	struct rb_node *node;
2024 	struct extent_state *state;
2025 	int ret = 0;
2026 
2027 	spin_lock(&tree->lock);
2028 	/*
2029 	 * this search will find all the extents that end after
2030 	 * our range starts.
2031 	 */
2032 	node = tree_search(tree, start);
2033 	if (!node) {
2034 		ret = -ENOENT;
2035 		goto out;
2036 	}
2037 	state = rb_entry(node, struct extent_state, rb_node);
2038 	if (state->start != start) {
2039 		ret = -ENOENT;
2040 		goto out;
2041 	}
2042 	state->failrec = failrec;
2043 out:
2044 	spin_unlock(&tree->lock);
2045 	return ret;
2046 }
2047 
get_state_failrec(struct extent_io_tree * tree,u64 start,struct io_failure_record ** failrec)2048 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
2049 		struct io_failure_record **failrec)
2050 {
2051 	struct rb_node *node;
2052 	struct extent_state *state;
2053 	int ret = 0;
2054 
2055 	spin_lock(&tree->lock);
2056 	/*
2057 	 * this search will find all the extents that end after
2058 	 * our range starts.
2059 	 */
2060 	node = tree_search(tree, start);
2061 	if (!node) {
2062 		ret = -ENOENT;
2063 		goto out;
2064 	}
2065 	state = rb_entry(node, struct extent_state, rb_node);
2066 	if (state->start != start) {
2067 		ret = -ENOENT;
2068 		goto out;
2069 	}
2070 	*failrec = state->failrec;
2071 out:
2072 	spin_unlock(&tree->lock);
2073 	return ret;
2074 }
2075 
2076 /*
2077  * searches a range in the state tree for a given mask.
2078  * If 'filled' == 1, this returns 1 only if every extent in the tree
2079  * has the bits set.  Otherwise, 1 is returned if any bit in the
2080  * range is found set.
2081  */
test_range_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int filled,struct extent_state * cached)2082 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2083 		   unsigned bits, int filled, struct extent_state *cached)
2084 {
2085 	struct extent_state *state = NULL;
2086 	struct rb_node *node;
2087 	int bitset = 0;
2088 
2089 	spin_lock(&tree->lock);
2090 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2091 	    cached->end > start)
2092 		node = &cached->rb_node;
2093 	else
2094 		node = tree_search(tree, start);
2095 	while (node && start <= end) {
2096 		state = rb_entry(node, struct extent_state, rb_node);
2097 
2098 		if (filled && state->start > start) {
2099 			bitset = 0;
2100 			break;
2101 		}
2102 
2103 		if (state->start > end)
2104 			break;
2105 
2106 		if (state->state & bits) {
2107 			bitset = 1;
2108 			if (!filled)
2109 				break;
2110 		} else if (filled) {
2111 			bitset = 0;
2112 			break;
2113 		}
2114 
2115 		if (state->end == (u64)-1)
2116 			break;
2117 
2118 		start = state->end + 1;
2119 		if (start > end)
2120 			break;
2121 		node = rb_next(node);
2122 		if (!node) {
2123 			if (filled)
2124 				bitset = 0;
2125 			break;
2126 		}
2127 	}
2128 	spin_unlock(&tree->lock);
2129 	return bitset;
2130 }
2131 
2132 /*
2133  * helper function to set a given page up to date if all the
2134  * extents in the tree for that page are up to date
2135  */
check_page_uptodate(struct extent_io_tree * tree,struct page * page)2136 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2137 {
2138 	u64 start = page_offset(page);
2139 	u64 end = start + PAGE_SIZE - 1;
2140 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2141 		SetPageUptodate(page);
2142 }
2143 
free_io_failure(struct extent_io_tree * failure_tree,struct extent_io_tree * io_tree,struct io_failure_record * rec)2144 int free_io_failure(struct extent_io_tree *failure_tree,
2145 		    struct extent_io_tree *io_tree,
2146 		    struct io_failure_record *rec)
2147 {
2148 	int ret;
2149 	int err = 0;
2150 
2151 	set_state_failrec(failure_tree, rec->start, NULL);
2152 	ret = clear_extent_bits(failure_tree, rec->start,
2153 				rec->start + rec->len - 1,
2154 				EXTENT_LOCKED | EXTENT_DIRTY);
2155 	if (ret)
2156 		err = ret;
2157 
2158 	ret = clear_extent_bits(io_tree, rec->start,
2159 				rec->start + rec->len - 1,
2160 				EXTENT_DAMAGED);
2161 	if (ret && !err)
2162 		err = ret;
2163 
2164 	kfree(rec);
2165 	return err;
2166 }
2167 
2168 /*
2169  * this bypasses the standard btrfs submit functions deliberately, as
2170  * the standard behavior is to write all copies in a raid setup. here we only
2171  * want to write the one bad copy. so we do the mapping for ourselves and issue
2172  * submit_bio directly.
2173  * to avoid any synchronization issues, wait for the data after writing, which
2174  * actually prevents the read that triggered the error from finishing.
2175  * currently, there can be no more than two copies of every data bit. thus,
2176  * exactly one rewrite is required.
2177  */
repair_io_failure(struct btrfs_fs_info * fs_info,u64 ino,u64 start,u64 length,u64 logical,struct page * page,unsigned int pg_offset,int mirror_num)2178 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2179 		      u64 length, u64 logical, struct page *page,
2180 		      unsigned int pg_offset, int mirror_num)
2181 {
2182 	struct bio *bio;
2183 	struct btrfs_device *dev;
2184 	u64 map_length = 0;
2185 	u64 sector;
2186 	struct btrfs_bio *bbio = NULL;
2187 	int ret;
2188 
2189 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2190 	BUG_ON(!mirror_num);
2191 
2192 	bio = btrfs_io_bio_alloc(1);
2193 	bio->bi_iter.bi_size = 0;
2194 	map_length = length;
2195 
2196 	/*
2197 	 * Avoid races with device replace and make sure our bbio has devices
2198 	 * associated to its stripes that don't go away while we are doing the
2199 	 * read repair operation.
2200 	 */
2201 	btrfs_bio_counter_inc_blocked(fs_info);
2202 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2203 		/*
2204 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2205 		 * to update all raid stripes, but here we just want to correct
2206 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2207 		 * stripe's dev and sector.
2208 		 */
2209 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2210 				      &map_length, &bbio, 0);
2211 		if (ret) {
2212 			btrfs_bio_counter_dec(fs_info);
2213 			bio_put(bio);
2214 			return -EIO;
2215 		}
2216 		ASSERT(bbio->mirror_num == 1);
2217 	} else {
2218 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2219 				      &map_length, &bbio, mirror_num);
2220 		if (ret) {
2221 			btrfs_bio_counter_dec(fs_info);
2222 			bio_put(bio);
2223 			return -EIO;
2224 		}
2225 		BUG_ON(mirror_num != bbio->mirror_num);
2226 	}
2227 
2228 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2229 	bio->bi_iter.bi_sector = sector;
2230 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2231 	btrfs_put_bbio(bbio);
2232 	if (!dev || !dev->bdev ||
2233 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2234 		btrfs_bio_counter_dec(fs_info);
2235 		bio_put(bio);
2236 		return -EIO;
2237 	}
2238 	bio_set_dev(bio, dev->bdev);
2239 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2240 	bio_add_page(bio, page, length, pg_offset);
2241 
2242 	if (btrfsic_submit_bio_wait(bio)) {
2243 		/* try to remap that extent elsewhere? */
2244 		btrfs_bio_counter_dec(fs_info);
2245 		bio_put(bio);
2246 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2247 		return -EIO;
2248 	}
2249 
2250 	btrfs_info_rl_in_rcu(fs_info,
2251 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2252 				  ino, start,
2253 				  rcu_str_deref(dev->name), sector);
2254 	btrfs_bio_counter_dec(fs_info);
2255 	bio_put(bio);
2256 	return 0;
2257 }
2258 
btrfs_repair_eb_io_failure(struct extent_buffer * eb,int mirror_num)2259 int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
2260 {
2261 	struct btrfs_fs_info *fs_info = eb->fs_info;
2262 	u64 start = eb->start;
2263 	int i, num_pages = num_extent_pages(eb);
2264 	int ret = 0;
2265 
2266 	if (sb_rdonly(fs_info->sb))
2267 		return -EROFS;
2268 
2269 	for (i = 0; i < num_pages; i++) {
2270 		struct page *p = eb->pages[i];
2271 
2272 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2273 					start - page_offset(p), mirror_num);
2274 		if (ret)
2275 			break;
2276 		start += PAGE_SIZE;
2277 	}
2278 
2279 	return ret;
2280 }
2281 
2282 /*
2283  * each time an IO finishes, we do a fast check in the IO failure tree
2284  * to see if we need to process or clean up an io_failure_record
2285  */
clean_io_failure(struct btrfs_fs_info * fs_info,struct extent_io_tree * failure_tree,struct extent_io_tree * io_tree,u64 start,struct page * page,u64 ino,unsigned int pg_offset)2286 int clean_io_failure(struct btrfs_fs_info *fs_info,
2287 		     struct extent_io_tree *failure_tree,
2288 		     struct extent_io_tree *io_tree, u64 start,
2289 		     struct page *page, u64 ino, unsigned int pg_offset)
2290 {
2291 	u64 private;
2292 	struct io_failure_record *failrec;
2293 	struct extent_state *state;
2294 	int num_copies;
2295 	int ret;
2296 
2297 	private = 0;
2298 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2299 			       EXTENT_DIRTY, 0);
2300 	if (!ret)
2301 		return 0;
2302 
2303 	ret = get_state_failrec(failure_tree, start, &failrec);
2304 	if (ret)
2305 		return 0;
2306 
2307 	BUG_ON(!failrec->this_mirror);
2308 
2309 	if (failrec->in_validation) {
2310 		/* there was no real error, just free the record */
2311 		btrfs_debug(fs_info,
2312 			"clean_io_failure: freeing dummy error at %llu",
2313 			failrec->start);
2314 		goto out;
2315 	}
2316 	if (sb_rdonly(fs_info->sb))
2317 		goto out;
2318 
2319 	spin_lock(&io_tree->lock);
2320 	state = find_first_extent_bit_state(io_tree,
2321 					    failrec->start,
2322 					    EXTENT_LOCKED);
2323 	spin_unlock(&io_tree->lock);
2324 
2325 	if (state && state->start <= failrec->start &&
2326 	    state->end >= failrec->start + failrec->len - 1) {
2327 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2328 					      failrec->len);
2329 		if (num_copies > 1)  {
2330 			repair_io_failure(fs_info, ino, start, failrec->len,
2331 					  failrec->logical, page, pg_offset,
2332 					  failrec->failed_mirror);
2333 		}
2334 	}
2335 
2336 out:
2337 	free_io_failure(failure_tree, io_tree, failrec);
2338 
2339 	return 0;
2340 }
2341 
2342 /*
2343  * Can be called when
2344  * - hold extent lock
2345  * - under ordered extent
2346  * - the inode is freeing
2347  */
btrfs_free_io_failure_record(struct btrfs_inode * inode,u64 start,u64 end)2348 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2349 {
2350 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2351 	struct io_failure_record *failrec;
2352 	struct extent_state *state, *next;
2353 
2354 	if (RB_EMPTY_ROOT(&failure_tree->state))
2355 		return;
2356 
2357 	spin_lock(&failure_tree->lock);
2358 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2359 	while (state) {
2360 		if (state->start > end)
2361 			break;
2362 
2363 		ASSERT(state->end <= end);
2364 
2365 		next = next_state(state);
2366 
2367 		failrec = state->failrec;
2368 		free_extent_state(state);
2369 		kfree(failrec);
2370 
2371 		state = next;
2372 	}
2373 	spin_unlock(&failure_tree->lock);
2374 }
2375 
btrfs_get_io_failure_record(struct inode * inode,u64 start,u64 end,struct io_failure_record ** failrec_ret)2376 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2377 		struct io_failure_record **failrec_ret)
2378 {
2379 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2380 	struct io_failure_record *failrec;
2381 	struct extent_map *em;
2382 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2383 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2384 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2385 	int ret;
2386 	u64 logical;
2387 
2388 	ret = get_state_failrec(failure_tree, start, &failrec);
2389 	if (ret) {
2390 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2391 		if (!failrec)
2392 			return -ENOMEM;
2393 
2394 		failrec->start = start;
2395 		failrec->len = end - start + 1;
2396 		failrec->this_mirror = 0;
2397 		failrec->bio_flags = 0;
2398 		failrec->in_validation = 0;
2399 
2400 		read_lock(&em_tree->lock);
2401 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2402 		if (!em) {
2403 			read_unlock(&em_tree->lock);
2404 			kfree(failrec);
2405 			return -EIO;
2406 		}
2407 
2408 		if (em->start > start || em->start + em->len <= start) {
2409 			free_extent_map(em);
2410 			em = NULL;
2411 		}
2412 		read_unlock(&em_tree->lock);
2413 		if (!em) {
2414 			kfree(failrec);
2415 			return -EIO;
2416 		}
2417 
2418 		logical = start - em->start;
2419 		logical = em->block_start + logical;
2420 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2421 			logical = em->block_start;
2422 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2423 			extent_set_compress_type(&failrec->bio_flags,
2424 						 em->compress_type);
2425 		}
2426 
2427 		btrfs_debug(fs_info,
2428 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2429 			logical, start, failrec->len);
2430 
2431 		failrec->logical = logical;
2432 		free_extent_map(em);
2433 
2434 		/* set the bits in the private failure tree */
2435 		ret = set_extent_bits(failure_tree, start, end,
2436 					EXTENT_LOCKED | EXTENT_DIRTY);
2437 		if (ret >= 0)
2438 			ret = set_state_failrec(failure_tree, start, failrec);
2439 		/* set the bits in the inode's tree */
2440 		if (ret >= 0)
2441 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2442 		if (ret < 0) {
2443 			kfree(failrec);
2444 			return ret;
2445 		}
2446 	} else {
2447 		btrfs_debug(fs_info,
2448 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2449 			failrec->logical, failrec->start, failrec->len,
2450 			failrec->in_validation);
2451 		/*
2452 		 * when data can be on disk more than twice, add to failrec here
2453 		 * (e.g. with a list for failed_mirror) to make
2454 		 * clean_io_failure() clean all those errors at once.
2455 		 */
2456 	}
2457 
2458 	*failrec_ret = failrec;
2459 
2460 	return 0;
2461 }
2462 
btrfs_check_repairable(struct inode * inode,unsigned failed_bio_pages,struct io_failure_record * failrec,int failed_mirror)2463 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2464 			   struct io_failure_record *failrec, int failed_mirror)
2465 {
2466 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2467 	int num_copies;
2468 
2469 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2470 	if (num_copies == 1) {
2471 		/*
2472 		 * we only have a single copy of the data, so don't bother with
2473 		 * all the retry and error correction code that follows. no
2474 		 * matter what the error is, it is very likely to persist.
2475 		 */
2476 		btrfs_debug(fs_info,
2477 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2478 			num_copies, failrec->this_mirror, failed_mirror);
2479 		return false;
2480 	}
2481 
2482 	/*
2483 	 * there are two premises:
2484 	 *	a) deliver good data to the caller
2485 	 *	b) correct the bad sectors on disk
2486 	 */
2487 	if (failed_bio_pages > 1) {
2488 		/*
2489 		 * to fulfill b), we need to know the exact failing sectors, as
2490 		 * we don't want to rewrite any more than the failed ones. thus,
2491 		 * we need separate read requests for the failed bio
2492 		 *
2493 		 * if the following BUG_ON triggers, our validation request got
2494 		 * merged. we need separate requests for our algorithm to work.
2495 		 */
2496 		BUG_ON(failrec->in_validation);
2497 		failrec->in_validation = 1;
2498 		failrec->this_mirror = failed_mirror;
2499 	} else {
2500 		/*
2501 		 * we're ready to fulfill a) and b) alongside. get a good copy
2502 		 * of the failed sector and if we succeed, we have setup
2503 		 * everything for repair_io_failure to do the rest for us.
2504 		 */
2505 		if (failrec->in_validation) {
2506 			BUG_ON(failrec->this_mirror != failed_mirror);
2507 			failrec->in_validation = 0;
2508 			failrec->this_mirror = 0;
2509 		}
2510 		failrec->failed_mirror = failed_mirror;
2511 		failrec->this_mirror++;
2512 		if (failrec->this_mirror == failed_mirror)
2513 			failrec->this_mirror++;
2514 	}
2515 
2516 	if (failrec->this_mirror > num_copies) {
2517 		btrfs_debug(fs_info,
2518 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2519 			num_copies, failrec->this_mirror, failed_mirror);
2520 		return false;
2521 	}
2522 
2523 	return true;
2524 }
2525 
2526 
btrfs_create_repair_bio(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,struct page * page,int pg_offset,int icsum,bio_end_io_t * endio_func,void * data)2527 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2528 				    struct io_failure_record *failrec,
2529 				    struct page *page, int pg_offset, int icsum,
2530 				    bio_end_io_t *endio_func, void *data)
2531 {
2532 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2533 	struct bio *bio;
2534 	struct btrfs_io_bio *btrfs_failed_bio;
2535 	struct btrfs_io_bio *btrfs_bio;
2536 
2537 	bio = btrfs_io_bio_alloc(1);
2538 	bio->bi_end_io = endio_func;
2539 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2540 	bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2541 	bio->bi_iter.bi_size = 0;
2542 	bio->bi_private = data;
2543 
2544 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2545 	if (btrfs_failed_bio->csum) {
2546 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2547 
2548 		btrfs_bio = btrfs_io_bio(bio);
2549 		btrfs_bio->csum = btrfs_bio->csum_inline;
2550 		icsum *= csum_size;
2551 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2552 		       csum_size);
2553 	}
2554 
2555 	bio_add_page(bio, page, failrec->len, pg_offset);
2556 
2557 	return bio;
2558 }
2559 
2560 /*
2561  * This is a generic handler for readpage errors. If other copies exist, read
2562  * those and write back good data to the failed position. Does not investigate
2563  * in remapping the failed extent elsewhere, hoping the device will be smart
2564  * enough to do this as needed
2565  */
bio_readpage_error(struct bio * failed_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int failed_mirror)2566 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2567 			      struct page *page, u64 start, u64 end,
2568 			      int failed_mirror)
2569 {
2570 	struct io_failure_record *failrec;
2571 	struct inode *inode = page->mapping->host;
2572 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2573 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2574 	struct bio *bio;
2575 	int read_mode = 0;
2576 	blk_status_t status;
2577 	int ret;
2578 	unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2579 
2580 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2581 
2582 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2583 	if (ret)
2584 		return ret;
2585 
2586 	if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2587 				    failed_mirror)) {
2588 		free_io_failure(failure_tree, tree, failrec);
2589 		return -EIO;
2590 	}
2591 
2592 	if (failed_bio_pages > 1)
2593 		read_mode |= REQ_FAILFAST_DEV;
2594 
2595 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2596 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2597 				      start - page_offset(page),
2598 				      (int)phy_offset, failed_bio->bi_end_io,
2599 				      NULL);
2600 	bio->bi_opf = REQ_OP_READ | read_mode;
2601 
2602 	btrfs_debug(btrfs_sb(inode->i_sb),
2603 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2604 		read_mode, failrec->this_mirror, failrec->in_validation);
2605 
2606 	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2607 					 failrec->bio_flags);
2608 	if (status) {
2609 		free_io_failure(failure_tree, tree, failrec);
2610 		bio_put(bio);
2611 		ret = blk_status_to_errno(status);
2612 	}
2613 
2614 	return ret;
2615 }
2616 
2617 /* lots and lots of room for performance fixes in the end_bio funcs */
2618 
end_extent_writepage(struct page * page,int err,u64 start,u64 end)2619 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2620 {
2621 	int uptodate = (err == 0);
2622 	int ret = 0;
2623 
2624 	btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2625 
2626 	if (!uptodate) {
2627 		ClearPageUptodate(page);
2628 		SetPageError(page);
2629 		ret = err < 0 ? err : -EIO;
2630 		mapping_set_error(page->mapping, ret);
2631 	}
2632 }
2633 
2634 /*
2635  * after a writepage IO is done, we need to:
2636  * clear the uptodate bits on error
2637  * clear the writeback bits in the extent tree for this IO
2638  * end_page_writeback if the page has no more pending IO
2639  *
2640  * Scheduling is not allowed, so the extent state tree is expected
2641  * to have one and only one object corresponding to this IO.
2642  */
end_bio_extent_writepage(struct bio * bio)2643 static void end_bio_extent_writepage(struct bio *bio)
2644 {
2645 	int error = blk_status_to_errno(bio->bi_status);
2646 	struct bio_vec *bvec;
2647 	u64 start;
2648 	u64 end;
2649 	struct bvec_iter_all iter_all;
2650 
2651 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2652 	bio_for_each_segment_all(bvec, bio, iter_all) {
2653 		struct page *page = bvec->bv_page;
2654 		struct inode *inode = page->mapping->host;
2655 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2656 
2657 		/* We always issue full-page reads, but if some block
2658 		 * in a page fails to read, blk_update_request() will
2659 		 * advance bv_offset and adjust bv_len to compensate.
2660 		 * Print a warning for nonzero offsets, and an error
2661 		 * if they don't add up to a full page.  */
2662 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2663 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2664 				btrfs_err(fs_info,
2665 				   "partial page write in btrfs with offset %u and length %u",
2666 					bvec->bv_offset, bvec->bv_len);
2667 			else
2668 				btrfs_info(fs_info,
2669 				   "incomplete page write in btrfs with offset %u and length %u",
2670 					bvec->bv_offset, bvec->bv_len);
2671 		}
2672 
2673 		start = page_offset(page);
2674 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2675 
2676 		end_extent_writepage(page, error, start, end);
2677 		end_page_writeback(page);
2678 	}
2679 
2680 	bio_put(bio);
2681 }
2682 
2683 static void
endio_readpage_release_extent(struct extent_io_tree * tree,u64 start,u64 len,int uptodate)2684 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2685 			      int uptodate)
2686 {
2687 	struct extent_state *cached = NULL;
2688 	u64 end = start + len - 1;
2689 
2690 	if (uptodate && tree->track_uptodate)
2691 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2692 	unlock_extent_cached_atomic(tree, start, end, &cached);
2693 }
2694 
2695 /*
2696  * after a readpage IO is done, we need to:
2697  * clear the uptodate bits on error
2698  * set the uptodate bits if things worked
2699  * set the page up to date if all extents in the tree are uptodate
2700  * clear the lock bit in the extent tree
2701  * unlock the page if there are no other extents locked for it
2702  *
2703  * Scheduling is not allowed, so the extent state tree is expected
2704  * to have one and only one object corresponding to this IO.
2705  */
end_bio_extent_readpage(struct bio * bio)2706 static void end_bio_extent_readpage(struct bio *bio)
2707 {
2708 	struct bio_vec *bvec;
2709 	int uptodate = !bio->bi_status;
2710 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2711 	struct extent_io_tree *tree, *failure_tree;
2712 	u64 offset = 0;
2713 	u64 start;
2714 	u64 end;
2715 	u64 len;
2716 	u64 extent_start = 0;
2717 	u64 extent_len = 0;
2718 	int mirror;
2719 	int ret;
2720 	struct bvec_iter_all iter_all;
2721 
2722 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2723 	bio_for_each_segment_all(bvec, bio, iter_all) {
2724 		struct page *page = bvec->bv_page;
2725 		struct inode *inode = page->mapping->host;
2726 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2727 		bool data_inode = btrfs_ino(BTRFS_I(inode))
2728 			!= BTRFS_BTREE_INODE_OBJECTID;
2729 
2730 		btrfs_debug(fs_info,
2731 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2732 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2733 			io_bio->mirror_num);
2734 		tree = &BTRFS_I(inode)->io_tree;
2735 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2736 
2737 		/* We always issue full-page reads, but if some block
2738 		 * in a page fails to read, blk_update_request() will
2739 		 * advance bv_offset and adjust bv_len to compensate.
2740 		 * Print a warning for nonzero offsets, and an error
2741 		 * if they don't add up to a full page.  */
2742 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2743 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2744 				btrfs_err(fs_info,
2745 					"partial page read in btrfs with offset %u and length %u",
2746 					bvec->bv_offset, bvec->bv_len);
2747 			else
2748 				btrfs_info(fs_info,
2749 					"incomplete page read in btrfs with offset %u and length %u",
2750 					bvec->bv_offset, bvec->bv_len);
2751 		}
2752 
2753 		start = page_offset(page);
2754 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2755 		len = bvec->bv_len;
2756 
2757 		mirror = io_bio->mirror_num;
2758 		if (likely(uptodate)) {
2759 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2760 							      page, start, end,
2761 							      mirror);
2762 			if (ret)
2763 				uptodate = 0;
2764 			else
2765 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2766 						 failure_tree, tree, start,
2767 						 page,
2768 						 btrfs_ino(BTRFS_I(inode)), 0);
2769 		}
2770 
2771 		if (likely(uptodate))
2772 			goto readpage_ok;
2773 
2774 		if (data_inode) {
2775 
2776 			/*
2777 			 * The generic bio_readpage_error handles errors the
2778 			 * following way: If possible, new read requests are
2779 			 * created and submitted and will end up in
2780 			 * end_bio_extent_readpage as well (if we're lucky,
2781 			 * not in the !uptodate case). In that case it returns
2782 			 * 0 and we just go on with the next page in our bio.
2783 			 * If it can't handle the error it will return -EIO and
2784 			 * we remain responsible for that page.
2785 			 */
2786 			ret = bio_readpage_error(bio, offset, page, start, end,
2787 						 mirror);
2788 			if (ret == 0) {
2789 				uptodate = !bio->bi_status;
2790 				offset += len;
2791 				continue;
2792 			}
2793 		} else {
2794 			struct extent_buffer *eb;
2795 
2796 			eb = (struct extent_buffer *)page->private;
2797 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2798 			eb->read_mirror = mirror;
2799 			atomic_dec(&eb->io_pages);
2800 			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2801 					       &eb->bflags))
2802 				btree_readahead_hook(eb, -EIO);
2803 		}
2804 readpage_ok:
2805 		if (likely(uptodate)) {
2806 			loff_t i_size = i_size_read(inode);
2807 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2808 			unsigned off;
2809 
2810 			/* Zero out the end if this page straddles i_size */
2811 			off = offset_in_page(i_size);
2812 			if (page->index == end_index && off)
2813 				zero_user_segment(page, off, PAGE_SIZE);
2814 			SetPageUptodate(page);
2815 		} else {
2816 			ClearPageUptodate(page);
2817 			SetPageError(page);
2818 		}
2819 		unlock_page(page);
2820 		offset += len;
2821 
2822 		if (unlikely(!uptodate)) {
2823 			if (extent_len) {
2824 				endio_readpage_release_extent(tree,
2825 							      extent_start,
2826 							      extent_len, 1);
2827 				extent_start = 0;
2828 				extent_len = 0;
2829 			}
2830 			endio_readpage_release_extent(tree, start,
2831 						      end - start + 1, 0);
2832 		} else if (!extent_len) {
2833 			extent_start = start;
2834 			extent_len = end + 1 - start;
2835 		} else if (extent_start + extent_len == start) {
2836 			extent_len += end + 1 - start;
2837 		} else {
2838 			endio_readpage_release_extent(tree, extent_start,
2839 						      extent_len, uptodate);
2840 			extent_start = start;
2841 			extent_len = end + 1 - start;
2842 		}
2843 	}
2844 
2845 	if (extent_len)
2846 		endio_readpage_release_extent(tree, extent_start, extent_len,
2847 					      uptodate);
2848 	btrfs_io_bio_free_csum(io_bio);
2849 	bio_put(bio);
2850 }
2851 
2852 /*
2853  * Initialize the members up to but not including 'bio'. Use after allocating a
2854  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2855  * 'bio' because use of __GFP_ZERO is not supported.
2856  */
btrfs_io_bio_init(struct btrfs_io_bio * btrfs_bio)2857 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2858 {
2859 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2860 }
2861 
2862 /*
2863  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2864  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2865  * for the appropriate container_of magic
2866  */
btrfs_bio_alloc(u64 first_byte)2867 struct bio *btrfs_bio_alloc(u64 first_byte)
2868 {
2869 	struct bio *bio;
2870 
2871 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2872 	bio->bi_iter.bi_sector = first_byte >> 9;
2873 	btrfs_io_bio_init(btrfs_io_bio(bio));
2874 	return bio;
2875 }
2876 
btrfs_bio_clone(struct bio * bio)2877 struct bio *btrfs_bio_clone(struct bio *bio)
2878 {
2879 	struct btrfs_io_bio *btrfs_bio;
2880 	struct bio *new;
2881 
2882 	/* Bio allocation backed by a bioset does not fail */
2883 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2884 	btrfs_bio = btrfs_io_bio(new);
2885 	btrfs_io_bio_init(btrfs_bio);
2886 	btrfs_bio->iter = bio->bi_iter;
2887 	return new;
2888 }
2889 
btrfs_io_bio_alloc(unsigned int nr_iovecs)2890 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2891 {
2892 	struct bio *bio;
2893 
2894 	/* Bio allocation backed by a bioset does not fail */
2895 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2896 	btrfs_io_bio_init(btrfs_io_bio(bio));
2897 	return bio;
2898 }
2899 
btrfs_bio_clone_partial(struct bio * orig,int offset,int size)2900 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2901 {
2902 	struct bio *bio;
2903 	struct btrfs_io_bio *btrfs_bio;
2904 
2905 	/* this will never fail when it's backed by a bioset */
2906 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2907 	ASSERT(bio);
2908 
2909 	btrfs_bio = btrfs_io_bio(bio);
2910 	btrfs_io_bio_init(btrfs_bio);
2911 
2912 	bio_trim(bio, offset >> 9, size >> 9);
2913 	btrfs_bio->iter = bio->bi_iter;
2914 	return bio;
2915 }
2916 
2917 /*
2918  * @opf:	bio REQ_OP_* and REQ_* flags as one value
2919  * @tree:	tree so we can call our merge_bio hook
2920  * @wbc:	optional writeback control for io accounting
2921  * @page:	page to add to the bio
2922  * @pg_offset:	offset of the new bio or to check whether we are adding
2923  *              a contiguous page to the previous one
2924  * @size:	portion of page that we want to write
2925  * @offset:	starting offset in the page
2926  * @bdev:	attach newly created bios to this bdev
2927  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
2928  * @end_io_func:     end_io callback for new bio
2929  * @mirror_num:	     desired mirror to read/write
2930  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2931  * @bio_flags:	flags of the current bio to see if we can merge them
2932  */
submit_extent_page(unsigned int opf,struct extent_io_tree * tree,struct writeback_control * wbc,struct page * page,u64 offset,size_t size,unsigned long pg_offset,struct block_device * bdev,struct bio ** bio_ret,bio_end_io_t end_io_func,int mirror_num,unsigned long prev_bio_flags,unsigned long bio_flags,bool force_bio_submit)2933 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2934 			      struct writeback_control *wbc,
2935 			      struct page *page, u64 offset,
2936 			      size_t size, unsigned long pg_offset,
2937 			      struct block_device *bdev,
2938 			      struct bio **bio_ret,
2939 			      bio_end_io_t end_io_func,
2940 			      int mirror_num,
2941 			      unsigned long prev_bio_flags,
2942 			      unsigned long bio_flags,
2943 			      bool force_bio_submit)
2944 {
2945 	int ret = 0;
2946 	struct bio *bio;
2947 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2948 	sector_t sector = offset >> 9;
2949 
2950 	ASSERT(bio_ret);
2951 
2952 	if (*bio_ret) {
2953 		bool contig;
2954 		bool can_merge = true;
2955 
2956 		bio = *bio_ret;
2957 		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2958 			contig = bio->bi_iter.bi_sector == sector;
2959 		else
2960 			contig = bio_end_sector(bio) == sector;
2961 
2962 		ASSERT(tree->ops);
2963 		if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
2964 			can_merge = false;
2965 
2966 		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2967 		    force_bio_submit ||
2968 		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2969 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2970 			if (ret < 0) {
2971 				*bio_ret = NULL;
2972 				return ret;
2973 			}
2974 			bio = NULL;
2975 		} else {
2976 			if (wbc)
2977 				wbc_account_cgroup_owner(wbc, page, page_size);
2978 			return 0;
2979 		}
2980 	}
2981 
2982 	bio = btrfs_bio_alloc(offset);
2983 	bio_set_dev(bio, bdev);
2984 	bio_add_page(bio, page, page_size, pg_offset);
2985 	bio->bi_end_io = end_io_func;
2986 	bio->bi_private = tree;
2987 	bio->bi_write_hint = page->mapping->host->i_write_hint;
2988 	bio->bi_opf = opf;
2989 	if (wbc) {
2990 		wbc_init_bio(wbc, bio);
2991 		wbc_account_cgroup_owner(wbc, page, page_size);
2992 	}
2993 
2994 	*bio_ret = bio;
2995 
2996 	return ret;
2997 }
2998 
attach_extent_buffer_page(struct extent_buffer * eb,struct page * page)2999 static void attach_extent_buffer_page(struct extent_buffer *eb,
3000 				      struct page *page)
3001 {
3002 	if (!PagePrivate(page)) {
3003 		SetPagePrivate(page);
3004 		get_page(page);
3005 		set_page_private(page, (unsigned long)eb);
3006 	} else {
3007 		WARN_ON(page->private != (unsigned long)eb);
3008 	}
3009 }
3010 
set_page_extent_mapped(struct page * page)3011 void set_page_extent_mapped(struct page *page)
3012 {
3013 	if (!PagePrivate(page)) {
3014 		SetPagePrivate(page);
3015 		get_page(page);
3016 		set_page_private(page, EXTENT_PAGE_PRIVATE);
3017 	}
3018 }
3019 
3020 static struct extent_map *
__get_extent_map(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,get_extent_t * get_extent,struct extent_map ** em_cached)3021 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3022 		 u64 start, u64 len, get_extent_t *get_extent,
3023 		 struct extent_map **em_cached)
3024 {
3025 	struct extent_map *em;
3026 
3027 	if (em_cached && *em_cached) {
3028 		em = *em_cached;
3029 		if (extent_map_in_tree(em) && start >= em->start &&
3030 		    start < extent_map_end(em)) {
3031 			refcount_inc(&em->refs);
3032 			return em;
3033 		}
3034 
3035 		free_extent_map(em);
3036 		*em_cached = NULL;
3037 	}
3038 
3039 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
3040 	if (em_cached && !IS_ERR_OR_NULL(em)) {
3041 		BUG_ON(*em_cached);
3042 		refcount_inc(&em->refs);
3043 		*em_cached = em;
3044 	}
3045 	return em;
3046 }
3047 /*
3048  * basic readpage implementation.  Locked extent state structs are inserted
3049  * into the tree that are removed when the IO is done (by the end_io
3050  * handlers)
3051  * XXX JDM: This needs looking at to ensure proper page locking
3052  * return 0 on success, otherwise return error
3053  */
__do_readpage(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,struct extent_map ** em_cached,struct bio ** bio,int mirror_num,unsigned long * bio_flags,unsigned int read_flags,u64 * prev_em_start)3054 static int __do_readpage(struct extent_io_tree *tree,
3055 			 struct page *page,
3056 			 get_extent_t *get_extent,
3057 			 struct extent_map **em_cached,
3058 			 struct bio **bio, int mirror_num,
3059 			 unsigned long *bio_flags, unsigned int read_flags,
3060 			 u64 *prev_em_start)
3061 {
3062 	struct inode *inode = page->mapping->host;
3063 	u64 start = page_offset(page);
3064 	const u64 end = start + PAGE_SIZE - 1;
3065 	u64 cur = start;
3066 	u64 extent_offset;
3067 	u64 last_byte = i_size_read(inode);
3068 	u64 block_start;
3069 	u64 cur_end;
3070 	struct extent_map *em;
3071 	struct block_device *bdev;
3072 	int ret = 0;
3073 	int nr = 0;
3074 	size_t pg_offset = 0;
3075 	size_t iosize;
3076 	size_t disk_io_size;
3077 	size_t blocksize = inode->i_sb->s_blocksize;
3078 	unsigned long this_bio_flag = 0;
3079 
3080 	set_page_extent_mapped(page);
3081 
3082 	if (!PageUptodate(page)) {
3083 		if (cleancache_get_page(page) == 0) {
3084 			BUG_ON(blocksize != PAGE_SIZE);
3085 			unlock_extent(tree, start, end);
3086 			goto out;
3087 		}
3088 	}
3089 
3090 	if (page->index == last_byte >> PAGE_SHIFT) {
3091 		char *userpage;
3092 		size_t zero_offset = offset_in_page(last_byte);
3093 
3094 		if (zero_offset) {
3095 			iosize = PAGE_SIZE - zero_offset;
3096 			userpage = kmap_atomic(page);
3097 			memset(userpage + zero_offset, 0, iosize);
3098 			flush_dcache_page(page);
3099 			kunmap_atomic(userpage);
3100 		}
3101 	}
3102 	while (cur <= end) {
3103 		bool force_bio_submit = false;
3104 		u64 offset;
3105 
3106 		if (cur >= last_byte) {
3107 			char *userpage;
3108 			struct extent_state *cached = NULL;
3109 
3110 			iosize = PAGE_SIZE - pg_offset;
3111 			userpage = kmap_atomic(page);
3112 			memset(userpage + pg_offset, 0, iosize);
3113 			flush_dcache_page(page);
3114 			kunmap_atomic(userpage);
3115 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3116 					    &cached, GFP_NOFS);
3117 			unlock_extent_cached(tree, cur,
3118 					     cur + iosize - 1, &cached);
3119 			break;
3120 		}
3121 		em = __get_extent_map(inode, page, pg_offset, cur,
3122 				      end - cur + 1, get_extent, em_cached);
3123 		if (IS_ERR_OR_NULL(em)) {
3124 			SetPageError(page);
3125 			unlock_extent(tree, cur, end);
3126 			break;
3127 		}
3128 		extent_offset = cur - em->start;
3129 		BUG_ON(extent_map_end(em) <= cur);
3130 		BUG_ON(end < cur);
3131 
3132 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3133 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3134 			extent_set_compress_type(&this_bio_flag,
3135 						 em->compress_type);
3136 		}
3137 
3138 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3139 		cur_end = min(extent_map_end(em) - 1, end);
3140 		iosize = ALIGN(iosize, blocksize);
3141 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3142 			disk_io_size = em->block_len;
3143 			offset = em->block_start;
3144 		} else {
3145 			offset = em->block_start + extent_offset;
3146 			disk_io_size = iosize;
3147 		}
3148 		bdev = em->bdev;
3149 		block_start = em->block_start;
3150 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3151 			block_start = EXTENT_MAP_HOLE;
3152 
3153 		/*
3154 		 * If we have a file range that points to a compressed extent
3155 		 * and it's followed by a consecutive file range that points
3156 		 * to the same compressed extent (possibly with a different
3157 		 * offset and/or length, so it either points to the whole extent
3158 		 * or only part of it), we must make sure we do not submit a
3159 		 * single bio to populate the pages for the 2 ranges because
3160 		 * this makes the compressed extent read zero out the pages
3161 		 * belonging to the 2nd range. Imagine the following scenario:
3162 		 *
3163 		 *  File layout
3164 		 *  [0 - 8K]                     [8K - 24K]
3165 		 *    |                               |
3166 		 *    |                               |
3167 		 * points to extent X,         points to extent X,
3168 		 * offset 4K, length of 8K     offset 0, length 16K
3169 		 *
3170 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3171 		 *
3172 		 * If the bio to read the compressed extent covers both ranges,
3173 		 * it will decompress extent X into the pages belonging to the
3174 		 * first range and then it will stop, zeroing out the remaining
3175 		 * pages that belong to the other range that points to extent X.
3176 		 * So here we make sure we submit 2 bios, one for the first
3177 		 * range and another one for the third range. Both will target
3178 		 * the same physical extent from disk, but we can't currently
3179 		 * make the compressed bio endio callback populate the pages
3180 		 * for both ranges because each compressed bio is tightly
3181 		 * coupled with a single extent map, and each range can have
3182 		 * an extent map with a different offset value relative to the
3183 		 * uncompressed data of our extent and different lengths. This
3184 		 * is a corner case so we prioritize correctness over
3185 		 * non-optimal behavior (submitting 2 bios for the same extent).
3186 		 */
3187 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3188 		    prev_em_start && *prev_em_start != (u64)-1 &&
3189 		    *prev_em_start != em->start)
3190 			force_bio_submit = true;
3191 
3192 		if (prev_em_start)
3193 			*prev_em_start = em->start;
3194 
3195 		free_extent_map(em);
3196 		em = NULL;
3197 
3198 		/* we've found a hole, just zero and go on */
3199 		if (block_start == EXTENT_MAP_HOLE) {
3200 			char *userpage;
3201 			struct extent_state *cached = NULL;
3202 
3203 			userpage = kmap_atomic(page);
3204 			memset(userpage + pg_offset, 0, iosize);
3205 			flush_dcache_page(page);
3206 			kunmap_atomic(userpage);
3207 
3208 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3209 					    &cached, GFP_NOFS);
3210 			unlock_extent_cached(tree, cur,
3211 					     cur + iosize - 1, &cached);
3212 			cur = cur + iosize;
3213 			pg_offset += iosize;
3214 			continue;
3215 		}
3216 		/* the get_extent function already copied into the page */
3217 		if (test_range_bit(tree, cur, cur_end,
3218 				   EXTENT_UPTODATE, 1, NULL)) {
3219 			check_page_uptodate(tree, page);
3220 			unlock_extent(tree, cur, cur + iosize - 1);
3221 			cur = cur + iosize;
3222 			pg_offset += iosize;
3223 			continue;
3224 		}
3225 		/* we have an inline extent but it didn't get marked up
3226 		 * to date.  Error out
3227 		 */
3228 		if (block_start == EXTENT_MAP_INLINE) {
3229 			SetPageError(page);
3230 			unlock_extent(tree, cur, cur + iosize - 1);
3231 			cur = cur + iosize;
3232 			pg_offset += iosize;
3233 			continue;
3234 		}
3235 
3236 		ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3237 					 page, offset, disk_io_size,
3238 					 pg_offset, bdev, bio,
3239 					 end_bio_extent_readpage, mirror_num,
3240 					 *bio_flags,
3241 					 this_bio_flag,
3242 					 force_bio_submit);
3243 		if (!ret) {
3244 			nr++;
3245 			*bio_flags = this_bio_flag;
3246 		} else {
3247 			SetPageError(page);
3248 			unlock_extent(tree, cur, cur + iosize - 1);
3249 			goto out;
3250 		}
3251 		cur = cur + iosize;
3252 		pg_offset += iosize;
3253 	}
3254 out:
3255 	if (!nr) {
3256 		if (!PageError(page))
3257 			SetPageUptodate(page);
3258 		unlock_page(page);
3259 	}
3260 	return ret;
3261 }
3262 
contiguous_readpages(struct extent_io_tree * tree,struct page * pages[],int nr_pages,u64 start,u64 end,struct extent_map ** em_cached,struct bio ** bio,unsigned long * bio_flags,u64 * prev_em_start)3263 static inline void contiguous_readpages(struct extent_io_tree *tree,
3264 					     struct page *pages[], int nr_pages,
3265 					     u64 start, u64 end,
3266 					     struct extent_map **em_cached,
3267 					     struct bio **bio,
3268 					     unsigned long *bio_flags,
3269 					     u64 *prev_em_start)
3270 {
3271 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3272 	int index;
3273 
3274 	btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3275 
3276 	for (index = 0; index < nr_pages; index++) {
3277 		__do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3278 				bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3279 		put_page(pages[index]);
3280 	}
3281 }
3282 
__extent_read_full_page(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,struct bio ** bio,int mirror_num,unsigned long * bio_flags,unsigned int read_flags)3283 static int __extent_read_full_page(struct extent_io_tree *tree,
3284 				   struct page *page,
3285 				   get_extent_t *get_extent,
3286 				   struct bio **bio, int mirror_num,
3287 				   unsigned long *bio_flags,
3288 				   unsigned int read_flags)
3289 {
3290 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3291 	u64 start = page_offset(page);
3292 	u64 end = start + PAGE_SIZE - 1;
3293 	int ret;
3294 
3295 	btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
3296 
3297 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3298 			    bio_flags, read_flags, NULL);
3299 	return ret;
3300 }
3301 
extent_read_full_page(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,int mirror_num)3302 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3303 			    get_extent_t *get_extent, int mirror_num)
3304 {
3305 	struct bio *bio = NULL;
3306 	unsigned long bio_flags = 0;
3307 	int ret;
3308 
3309 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3310 				      &bio_flags, 0);
3311 	if (bio)
3312 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3313 	return ret;
3314 }
3315 
update_nr_written(struct writeback_control * wbc,unsigned long nr_written)3316 static void update_nr_written(struct writeback_control *wbc,
3317 			      unsigned long nr_written)
3318 {
3319 	wbc->nr_to_write -= nr_written;
3320 }
3321 
3322 /*
3323  * helper for __extent_writepage, doing all of the delayed allocation setup.
3324  *
3325  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3326  * to write the page (copy into inline extent).  In this case the IO has
3327  * been started and the page is already unlocked.
3328  *
3329  * This returns 0 if all went well (page still locked)
3330  * This returns < 0 if there were errors (page still locked)
3331  */
writepage_delalloc(struct inode * inode,struct page * page,struct writeback_control * wbc,u64 delalloc_start,unsigned long * nr_written)3332 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3333 		struct page *page, struct writeback_control *wbc,
3334 		u64 delalloc_start, unsigned long *nr_written)
3335 {
3336 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3337 	bool found;
3338 	u64 delalloc_to_write = 0;
3339 	u64 delalloc_end = 0;
3340 	int ret;
3341 	int page_started = 0;
3342 
3343 
3344 	while (delalloc_end < page_end) {
3345 		found = find_lock_delalloc_range(inode, page,
3346 					       &delalloc_start,
3347 					       &delalloc_end);
3348 		if (!found) {
3349 			delalloc_start = delalloc_end + 1;
3350 			continue;
3351 		}
3352 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3353 				delalloc_end, &page_started, nr_written, wbc);
3354 		if (ret) {
3355 			SetPageError(page);
3356 			/*
3357 			 * btrfs_run_delalloc_range should return < 0 for error
3358 			 * but just in case, we use > 0 here meaning the IO is
3359 			 * started, so we don't want to return > 0 unless
3360 			 * things are going well.
3361 			 */
3362 			ret = ret < 0 ? ret : -EIO;
3363 			goto done;
3364 		}
3365 		/*
3366 		 * delalloc_end is already one less than the total length, so
3367 		 * we don't subtract one from PAGE_SIZE
3368 		 */
3369 		delalloc_to_write += (delalloc_end - delalloc_start +
3370 				      PAGE_SIZE) >> PAGE_SHIFT;
3371 		delalloc_start = delalloc_end + 1;
3372 	}
3373 	if (wbc->nr_to_write < delalloc_to_write) {
3374 		int thresh = 8192;
3375 
3376 		if (delalloc_to_write < thresh * 2)
3377 			thresh = delalloc_to_write;
3378 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3379 					 thresh);
3380 	}
3381 
3382 	/* did the fill delalloc function already unlock and start
3383 	 * the IO?
3384 	 */
3385 	if (page_started) {
3386 		/*
3387 		 * we've unlocked the page, so we can't update
3388 		 * the mapping's writeback index, just update
3389 		 * nr_to_write.
3390 		 */
3391 		wbc->nr_to_write -= *nr_written;
3392 		return 1;
3393 	}
3394 
3395 	ret = 0;
3396 
3397 done:
3398 	return ret;
3399 }
3400 
3401 /*
3402  * helper for __extent_writepage.  This calls the writepage start hooks,
3403  * and does the loop to map the page into extents and bios.
3404  *
3405  * We return 1 if the IO is started and the page is unlocked,
3406  * 0 if all went well (page still locked)
3407  * < 0 if there were errors (page still locked)
3408  */
__extent_writepage_io(struct inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,loff_t i_size,unsigned long nr_written,unsigned int write_flags,int * nr_ret)3409 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3410 				 struct page *page,
3411 				 struct writeback_control *wbc,
3412 				 struct extent_page_data *epd,
3413 				 loff_t i_size,
3414 				 unsigned long nr_written,
3415 				 unsigned int write_flags, int *nr_ret)
3416 {
3417 	struct extent_io_tree *tree = epd->tree;
3418 	u64 start = page_offset(page);
3419 	u64 page_end = start + PAGE_SIZE - 1;
3420 	u64 end;
3421 	u64 cur = start;
3422 	u64 extent_offset;
3423 	u64 block_start;
3424 	u64 iosize;
3425 	struct extent_map *em;
3426 	struct block_device *bdev;
3427 	size_t pg_offset = 0;
3428 	size_t blocksize;
3429 	int ret = 0;
3430 	int nr = 0;
3431 	bool compressed;
3432 
3433 	ret = btrfs_writepage_cow_fixup(page, start, page_end);
3434 	if (ret) {
3435 		/* Fixup worker will requeue */
3436 		if (ret == -EBUSY)
3437 			wbc->pages_skipped++;
3438 		else
3439 			redirty_page_for_writepage(wbc, page);
3440 
3441 		update_nr_written(wbc, nr_written);
3442 		unlock_page(page);
3443 		return 1;
3444 	}
3445 
3446 	/*
3447 	 * we don't want to touch the inode after unlocking the page,
3448 	 * so we update the mapping writeback index now
3449 	 */
3450 	update_nr_written(wbc, nr_written + 1);
3451 
3452 	end = page_end;
3453 	if (i_size <= start) {
3454 		btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
3455 		goto done;
3456 	}
3457 
3458 	blocksize = inode->i_sb->s_blocksize;
3459 
3460 	while (cur <= end) {
3461 		u64 em_end;
3462 		u64 offset;
3463 
3464 		if (cur >= i_size) {
3465 			btrfs_writepage_endio_finish_ordered(page, cur,
3466 							     page_end, 1);
3467 			break;
3468 		}
3469 		em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3470 				     end - cur + 1, 1);
3471 		if (IS_ERR_OR_NULL(em)) {
3472 			SetPageError(page);
3473 			ret = PTR_ERR_OR_ZERO(em);
3474 			break;
3475 		}
3476 
3477 		extent_offset = cur - em->start;
3478 		em_end = extent_map_end(em);
3479 		BUG_ON(em_end <= cur);
3480 		BUG_ON(end < cur);
3481 		iosize = min(em_end - cur, end - cur + 1);
3482 		iosize = ALIGN(iosize, blocksize);
3483 		offset = em->block_start + extent_offset;
3484 		bdev = em->bdev;
3485 		block_start = em->block_start;
3486 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3487 		free_extent_map(em);
3488 		em = NULL;
3489 
3490 		/*
3491 		 * compressed and inline extents are written through other
3492 		 * paths in the FS
3493 		 */
3494 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3495 		    block_start == EXTENT_MAP_INLINE) {
3496 			/*
3497 			 * end_io notification does not happen here for
3498 			 * compressed extents
3499 			 */
3500 			if (!compressed)
3501 				btrfs_writepage_endio_finish_ordered(page, cur,
3502 							    cur + iosize - 1,
3503 							    1);
3504 			else if (compressed) {
3505 				/* we don't want to end_page_writeback on
3506 				 * a compressed extent.  this happens
3507 				 * elsewhere
3508 				 */
3509 				nr++;
3510 			}
3511 
3512 			cur += iosize;
3513 			pg_offset += iosize;
3514 			continue;
3515 		}
3516 
3517 		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3518 		if (!PageWriteback(page)) {
3519 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3520 				   "page %lu not writeback, cur %llu end %llu",
3521 			       page->index, cur, end);
3522 		}
3523 
3524 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3525 					 page, offset, iosize, pg_offset,
3526 					 bdev, &epd->bio,
3527 					 end_bio_extent_writepage,
3528 					 0, 0, 0, false);
3529 		if (ret) {
3530 			SetPageError(page);
3531 			if (PageWriteback(page))
3532 				end_page_writeback(page);
3533 		}
3534 
3535 		cur = cur + iosize;
3536 		pg_offset += iosize;
3537 		nr++;
3538 	}
3539 done:
3540 	*nr_ret = nr;
3541 	return ret;
3542 }
3543 
3544 /*
3545  * the writepage semantics are similar to regular writepage.  extent
3546  * records are inserted to lock ranges in the tree, and as dirty areas
3547  * are found, they are marked writeback.  Then the lock bits are removed
3548  * and the end_io handler clears the writeback ranges
3549  *
3550  * Return 0 if everything goes well.
3551  * Return <0 for error.
3552  */
__extent_writepage(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd)3553 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3554 			      struct extent_page_data *epd)
3555 {
3556 	struct inode *inode = page->mapping->host;
3557 	u64 start = page_offset(page);
3558 	u64 page_end = start + PAGE_SIZE - 1;
3559 	int ret;
3560 	int nr = 0;
3561 	size_t pg_offset = 0;
3562 	loff_t i_size = i_size_read(inode);
3563 	unsigned long end_index = i_size >> PAGE_SHIFT;
3564 	unsigned int write_flags = 0;
3565 	unsigned long nr_written = 0;
3566 
3567 	write_flags = wbc_to_write_flags(wbc);
3568 
3569 	trace___extent_writepage(page, inode, wbc);
3570 
3571 	WARN_ON(!PageLocked(page));
3572 
3573 	ClearPageError(page);
3574 
3575 	pg_offset = offset_in_page(i_size);
3576 	if (page->index > end_index ||
3577 	   (page->index == end_index && !pg_offset)) {
3578 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3579 		unlock_page(page);
3580 		return 0;
3581 	}
3582 
3583 	if (page->index == end_index) {
3584 		char *userpage;
3585 
3586 		userpage = kmap_atomic(page);
3587 		memset(userpage + pg_offset, 0,
3588 		       PAGE_SIZE - pg_offset);
3589 		kunmap_atomic(userpage);
3590 		flush_dcache_page(page);
3591 	}
3592 
3593 	pg_offset = 0;
3594 
3595 	set_page_extent_mapped(page);
3596 
3597 	if (!epd->extent_locked) {
3598 		ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3599 		if (ret == 1)
3600 			goto done_unlocked;
3601 		if (ret)
3602 			goto done;
3603 	}
3604 
3605 	ret = __extent_writepage_io(inode, page, wbc, epd,
3606 				    i_size, nr_written, write_flags, &nr);
3607 	if (ret == 1)
3608 		goto done_unlocked;
3609 
3610 done:
3611 	if (nr == 0) {
3612 		/* make sure the mapping tag for page dirty gets cleared */
3613 		set_page_writeback(page);
3614 		end_page_writeback(page);
3615 	}
3616 	if (PageError(page)) {
3617 		ret = ret < 0 ? ret : -EIO;
3618 		end_extent_writepage(page, ret, start, page_end);
3619 	}
3620 	unlock_page(page);
3621 	ASSERT(ret <= 0);
3622 	return ret;
3623 
3624 done_unlocked:
3625 	return 0;
3626 }
3627 
wait_on_extent_buffer_writeback(struct extent_buffer * eb)3628 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3629 {
3630 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3631 		       TASK_UNINTERRUPTIBLE);
3632 }
3633 
end_extent_buffer_writeback(struct extent_buffer * eb)3634 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3635 {
3636 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3637 	smp_mb__after_atomic();
3638 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3639 }
3640 
3641 /*
3642  * Lock eb pages and flush the bio if we can't the locks
3643  *
3644  * Return  0 if nothing went wrong
3645  * Return >0 is same as 0, except bio is not submitted
3646  * Return <0 if something went wrong, no page is locked
3647  */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct extent_page_data * epd)3648 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3649 			  struct extent_page_data *epd)
3650 {
3651 	struct btrfs_fs_info *fs_info = eb->fs_info;
3652 	int i, num_pages, failed_page_nr;
3653 	int flush = 0;
3654 	int ret = 0;
3655 
3656 	if (!btrfs_try_tree_write_lock(eb)) {
3657 		ret = flush_write_bio(epd);
3658 		if (ret < 0)
3659 			return ret;
3660 		flush = 1;
3661 		btrfs_tree_lock(eb);
3662 	}
3663 
3664 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3665 		btrfs_tree_unlock(eb);
3666 		if (!epd->sync_io)
3667 			return 0;
3668 		if (!flush) {
3669 			ret = flush_write_bio(epd);
3670 			if (ret < 0)
3671 				return ret;
3672 			flush = 1;
3673 		}
3674 		while (1) {
3675 			wait_on_extent_buffer_writeback(eb);
3676 			btrfs_tree_lock(eb);
3677 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3678 				break;
3679 			btrfs_tree_unlock(eb);
3680 		}
3681 	}
3682 
3683 	/*
3684 	 * We need to do this to prevent races in people who check if the eb is
3685 	 * under IO since we can end up having no IO bits set for a short period
3686 	 * of time.
3687 	 */
3688 	spin_lock(&eb->refs_lock);
3689 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3690 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3691 		spin_unlock(&eb->refs_lock);
3692 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3693 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3694 					 -eb->len,
3695 					 fs_info->dirty_metadata_batch);
3696 		ret = 1;
3697 	} else {
3698 		spin_unlock(&eb->refs_lock);
3699 	}
3700 
3701 	btrfs_tree_unlock(eb);
3702 
3703 	if (!ret)
3704 		return ret;
3705 
3706 	num_pages = num_extent_pages(eb);
3707 	for (i = 0; i < num_pages; i++) {
3708 		struct page *p = eb->pages[i];
3709 
3710 		if (!trylock_page(p)) {
3711 			if (!flush) {
3712 				int err;
3713 
3714 				err = flush_write_bio(epd);
3715 				if (err < 0) {
3716 					ret = err;
3717 					failed_page_nr = i;
3718 					goto err_unlock;
3719 				}
3720 				flush = 1;
3721 			}
3722 			lock_page(p);
3723 		}
3724 	}
3725 
3726 	return ret;
3727 err_unlock:
3728 	/* Unlock already locked pages */
3729 	for (i = 0; i < failed_page_nr; i++)
3730 		unlock_page(eb->pages[i]);
3731 	/*
3732 	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3733 	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3734 	 * be made and undo everything done before.
3735 	 */
3736 	btrfs_tree_lock(eb);
3737 	spin_lock(&eb->refs_lock);
3738 	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3739 	end_extent_buffer_writeback(eb);
3740 	spin_unlock(&eb->refs_lock);
3741 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3742 				 fs_info->dirty_metadata_batch);
3743 	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3744 	btrfs_tree_unlock(eb);
3745 	return ret;
3746 }
3747 
set_btree_ioerr(struct page * page)3748 static void set_btree_ioerr(struct page *page)
3749 {
3750 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3751 	struct btrfs_fs_info *fs_info;
3752 
3753 	SetPageError(page);
3754 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3755 		return;
3756 
3757 	/*
3758 	 * A read may stumble upon this buffer later, make sure that it gets an
3759 	 * error and knows there was an error.
3760 	 */
3761 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3762 
3763 	/*
3764 	 * If we error out, we should add back the dirty_metadata_bytes
3765 	 * to make it consistent.
3766 	 */
3767 	fs_info = eb->fs_info;
3768 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3769 				 eb->len, fs_info->dirty_metadata_batch);
3770 
3771 	/*
3772 	 * If writeback for a btree extent that doesn't belong to a log tree
3773 	 * failed, increment the counter transaction->eb_write_errors.
3774 	 * We do this because while the transaction is running and before it's
3775 	 * committing (when we call filemap_fdata[write|wait]_range against
3776 	 * the btree inode), we might have
3777 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3778 	 * returns an error or an error happens during writeback, when we're
3779 	 * committing the transaction we wouldn't know about it, since the pages
3780 	 * can be no longer dirty nor marked anymore for writeback (if a
3781 	 * subsequent modification to the extent buffer didn't happen before the
3782 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3783 	 * able to find the pages tagged with SetPageError at transaction
3784 	 * commit time. So if this happens we must abort the transaction,
3785 	 * otherwise we commit a super block with btree roots that point to
3786 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3787 	 * or the content of some node/leaf from a past generation that got
3788 	 * cowed or deleted and is no longer valid.
3789 	 *
3790 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3791 	 * not be enough - we need to distinguish between log tree extents vs
3792 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3793 	 * will catch and clear such errors in the mapping - and that call might
3794 	 * be from a log sync and not from a transaction commit. Also, checking
3795 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3796 	 * not done and would not be reliable - the eb might have been released
3797 	 * from memory and reading it back again means that flag would not be
3798 	 * set (since it's a runtime flag, not persisted on disk).
3799 	 *
3800 	 * Using the flags below in the btree inode also makes us achieve the
3801 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3802 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3803 	 * is called, the writeback for all dirty pages had already finished
3804 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3805 	 * filemap_fdatawait_range() would return success, as it could not know
3806 	 * that writeback errors happened (the pages were no longer tagged for
3807 	 * writeback).
3808 	 */
3809 	switch (eb->log_index) {
3810 	case -1:
3811 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3812 		break;
3813 	case 0:
3814 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3815 		break;
3816 	case 1:
3817 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3818 		break;
3819 	default:
3820 		BUG(); /* unexpected, logic error */
3821 	}
3822 }
3823 
end_bio_extent_buffer_writepage(struct bio * bio)3824 static void end_bio_extent_buffer_writepage(struct bio *bio)
3825 {
3826 	struct bio_vec *bvec;
3827 	struct extent_buffer *eb;
3828 	int done;
3829 	struct bvec_iter_all iter_all;
3830 
3831 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3832 	bio_for_each_segment_all(bvec, bio, iter_all) {
3833 		struct page *page = bvec->bv_page;
3834 
3835 		eb = (struct extent_buffer *)page->private;
3836 		BUG_ON(!eb);
3837 		done = atomic_dec_and_test(&eb->io_pages);
3838 
3839 		if (bio->bi_status ||
3840 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3841 			ClearPageUptodate(page);
3842 			set_btree_ioerr(page);
3843 		}
3844 
3845 		end_page_writeback(page);
3846 
3847 		if (!done)
3848 			continue;
3849 
3850 		end_extent_buffer_writeback(eb);
3851 	}
3852 
3853 	bio_put(bio);
3854 }
3855 
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc,struct extent_page_data * epd)3856 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3857 			struct writeback_control *wbc,
3858 			struct extent_page_data *epd)
3859 {
3860 	struct btrfs_fs_info *fs_info = eb->fs_info;
3861 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3862 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3863 	u64 offset = eb->start;
3864 	u32 nritems;
3865 	int i, num_pages;
3866 	unsigned long start, end;
3867 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3868 	int ret = 0;
3869 
3870 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3871 	num_pages = num_extent_pages(eb);
3872 	atomic_set(&eb->io_pages, num_pages);
3873 
3874 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3875 	nritems = btrfs_header_nritems(eb);
3876 	if (btrfs_header_level(eb) > 0) {
3877 		end = btrfs_node_key_ptr_offset(nritems);
3878 
3879 		memzero_extent_buffer(eb, end, eb->len - end);
3880 	} else {
3881 		/*
3882 		 * leaf:
3883 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3884 		 */
3885 		start = btrfs_item_nr_offset(nritems);
3886 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3887 		memzero_extent_buffer(eb, start, end - start);
3888 	}
3889 
3890 	for (i = 0; i < num_pages; i++) {
3891 		struct page *p = eb->pages[i];
3892 
3893 		clear_page_dirty_for_io(p);
3894 		set_page_writeback(p);
3895 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3896 					 p, offset, PAGE_SIZE, 0, bdev,
3897 					 &epd->bio,
3898 					 end_bio_extent_buffer_writepage,
3899 					 0, 0, 0, false);
3900 		if (ret) {
3901 			set_btree_ioerr(p);
3902 			if (PageWriteback(p))
3903 				end_page_writeback(p);
3904 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3905 				end_extent_buffer_writeback(eb);
3906 			ret = -EIO;
3907 			break;
3908 		}
3909 		offset += PAGE_SIZE;
3910 		update_nr_written(wbc, 1);
3911 		unlock_page(p);
3912 	}
3913 
3914 	if (unlikely(ret)) {
3915 		for (; i < num_pages; i++) {
3916 			struct page *p = eb->pages[i];
3917 			clear_page_dirty_for_io(p);
3918 			unlock_page(p);
3919 		}
3920 	}
3921 
3922 	return ret;
3923 }
3924 
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)3925 int btree_write_cache_pages(struct address_space *mapping,
3926 				   struct writeback_control *wbc)
3927 {
3928 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3929 	struct extent_buffer *eb, *prev_eb = NULL;
3930 	struct extent_page_data epd = {
3931 		.bio = NULL,
3932 		.tree = tree,
3933 		.extent_locked = 0,
3934 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3935 	};
3936 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3937 	int ret = 0;
3938 	int done = 0;
3939 	int nr_to_write_done = 0;
3940 	struct pagevec pvec;
3941 	int nr_pages;
3942 	pgoff_t index;
3943 	pgoff_t end;		/* Inclusive */
3944 	int scanned = 0;
3945 	xa_mark_t tag;
3946 
3947 	pagevec_init(&pvec);
3948 	if (wbc->range_cyclic) {
3949 		index = mapping->writeback_index; /* Start from prev offset */
3950 		end = -1;
3951 		/*
3952 		 * Start from the beginning does not need to cycle over the
3953 		 * range, mark it as scanned.
3954 		 */
3955 		scanned = (index == 0);
3956 	} else {
3957 		index = wbc->range_start >> PAGE_SHIFT;
3958 		end = wbc->range_end >> PAGE_SHIFT;
3959 		scanned = 1;
3960 	}
3961 	if (wbc->sync_mode == WB_SYNC_ALL)
3962 		tag = PAGECACHE_TAG_TOWRITE;
3963 	else
3964 		tag = PAGECACHE_TAG_DIRTY;
3965 retry:
3966 	if (wbc->sync_mode == WB_SYNC_ALL)
3967 		tag_pages_for_writeback(mapping, index, end);
3968 	while (!done && !nr_to_write_done && (index <= end) &&
3969 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3970 			tag))) {
3971 		unsigned i;
3972 
3973 		for (i = 0; i < nr_pages; i++) {
3974 			struct page *page = pvec.pages[i];
3975 
3976 			if (!PagePrivate(page))
3977 				continue;
3978 
3979 			spin_lock(&mapping->private_lock);
3980 			if (!PagePrivate(page)) {
3981 				spin_unlock(&mapping->private_lock);
3982 				continue;
3983 			}
3984 
3985 			eb = (struct extent_buffer *)page->private;
3986 
3987 			/*
3988 			 * Shouldn't happen and normally this would be a BUG_ON
3989 			 * but no sense in crashing the users box for something
3990 			 * we can survive anyway.
3991 			 */
3992 			if (WARN_ON(!eb)) {
3993 				spin_unlock(&mapping->private_lock);
3994 				continue;
3995 			}
3996 
3997 			if (eb == prev_eb) {
3998 				spin_unlock(&mapping->private_lock);
3999 				continue;
4000 			}
4001 
4002 			ret = atomic_inc_not_zero(&eb->refs);
4003 			spin_unlock(&mapping->private_lock);
4004 			if (!ret)
4005 				continue;
4006 
4007 			prev_eb = eb;
4008 			ret = lock_extent_buffer_for_io(eb, &epd);
4009 			if (!ret) {
4010 				free_extent_buffer(eb);
4011 				continue;
4012 			} else if (ret < 0) {
4013 				done = 1;
4014 				free_extent_buffer(eb);
4015 				break;
4016 			}
4017 
4018 			ret = write_one_eb(eb, wbc, &epd);
4019 			if (ret) {
4020 				done = 1;
4021 				free_extent_buffer(eb);
4022 				break;
4023 			}
4024 			free_extent_buffer(eb);
4025 
4026 			/*
4027 			 * The filesystem may choose to bump up nr_to_write.
4028 			 * We have to make sure to honor the new nr_to_write
4029 			 * at any time.
4030 			 */
4031 			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
4032 					    wbc->nr_to_write <= 0);
4033 		}
4034 		pagevec_release(&pvec);
4035 		cond_resched();
4036 	}
4037 	if (!scanned && !done) {
4038 		/*
4039 		 * We hit the last page and there is more work to be done: wrap
4040 		 * back to the start of the file
4041 		 */
4042 		scanned = 1;
4043 		index = 0;
4044 		goto retry;
4045 	}
4046 	ASSERT(ret <= 0);
4047 	if (ret < 0) {
4048 		end_write_bio(&epd, ret);
4049 		return ret;
4050 	}
4051 	/*
4052 	 * If something went wrong, don't allow any metadata write bio to be
4053 	 * submitted.
4054 	 *
4055 	 * This would prevent use-after-free if we had dirty pages not
4056 	 * cleaned up, which can still happen by fuzzed images.
4057 	 *
4058 	 * - Bad extent tree
4059 	 *   Allowing existing tree block to be allocated for other trees.
4060 	 *
4061 	 * - Log tree operations
4062 	 *   Exiting tree blocks get allocated to log tree, bumps its
4063 	 *   generation, then get cleaned in tree re-balance.
4064 	 *   Such tree block will not be written back, since it's clean,
4065 	 *   thus no WRITTEN flag set.
4066 	 *   And after log writes back, this tree block is not traced by
4067 	 *   any dirty extent_io_tree.
4068 	 *
4069 	 * - Offending tree block gets re-dirtied from its original owner
4070 	 *   Since it has bumped generation, no WRITTEN flag, it can be
4071 	 *   reused without COWing. This tree block will not be traced
4072 	 *   by btrfs_transaction::dirty_pages.
4073 	 *
4074 	 *   Now such dirty tree block will not be cleaned by any dirty
4075 	 *   extent io tree. Thus we don't want to submit such wild eb
4076 	 *   if the fs already has error.
4077 	 */
4078 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4079 		ret = flush_write_bio(&epd);
4080 	} else {
4081 		ret = -EROFS;
4082 		end_write_bio(&epd, ret);
4083 	}
4084 	return ret;
4085 }
4086 
4087 /**
4088  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4089  * @mapping: address space structure to write
4090  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4091  * @data: data passed to __extent_writepage function
4092  *
4093  * If a page is already under I/O, write_cache_pages() skips it, even
4094  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4095  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4096  * and msync() need to guarantee that all the data which was dirty at the time
4097  * the call was made get new I/O started against them.  If wbc->sync_mode is
4098  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4099  * existing IO to complete.
4100  */
extent_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,struct extent_page_data * epd)4101 static int extent_write_cache_pages(struct address_space *mapping,
4102 			     struct writeback_control *wbc,
4103 			     struct extent_page_data *epd)
4104 {
4105 	struct inode *inode = mapping->host;
4106 	int ret = 0;
4107 	int done = 0;
4108 	int nr_to_write_done = 0;
4109 	struct pagevec pvec;
4110 	int nr_pages;
4111 	pgoff_t index;
4112 	pgoff_t end;		/* Inclusive */
4113 	pgoff_t done_index;
4114 	int range_whole = 0;
4115 	int scanned = 0;
4116 	xa_mark_t tag;
4117 
4118 	/*
4119 	 * We have to hold onto the inode so that ordered extents can do their
4120 	 * work when the IO finishes.  The alternative to this is failing to add
4121 	 * an ordered extent if the igrab() fails there and that is a huge pain
4122 	 * to deal with, so instead just hold onto the inode throughout the
4123 	 * writepages operation.  If it fails here we are freeing up the inode
4124 	 * anyway and we'd rather not waste our time writing out stuff that is
4125 	 * going to be truncated anyway.
4126 	 */
4127 	if (!igrab(inode))
4128 		return 0;
4129 
4130 	pagevec_init(&pvec);
4131 	if (wbc->range_cyclic) {
4132 		index = mapping->writeback_index; /* Start from prev offset */
4133 		end = -1;
4134 		/*
4135 		 * Start from the beginning does not need to cycle over the
4136 		 * range, mark it as scanned.
4137 		 */
4138 		scanned = (index == 0);
4139 	} else {
4140 		index = wbc->range_start >> PAGE_SHIFT;
4141 		end = wbc->range_end >> PAGE_SHIFT;
4142 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4143 			range_whole = 1;
4144 		scanned = 1;
4145 	}
4146 
4147 	/*
4148 	 * We do the tagged writepage as long as the snapshot flush bit is set
4149 	 * and we are the first one who do the filemap_flush() on this inode.
4150 	 *
4151 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4152 	 * not race in and drop the bit.
4153 	 */
4154 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4155 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4156 			       &BTRFS_I(inode)->runtime_flags))
4157 		wbc->tagged_writepages = 1;
4158 
4159 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4160 		tag = PAGECACHE_TAG_TOWRITE;
4161 	else
4162 		tag = PAGECACHE_TAG_DIRTY;
4163 retry:
4164 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4165 		tag_pages_for_writeback(mapping, index, end);
4166 	done_index = index;
4167 	while (!done && !nr_to_write_done && (index <= end) &&
4168 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4169 						&index, end, tag))) {
4170 		unsigned i;
4171 
4172 		for (i = 0; i < nr_pages; i++) {
4173 			struct page *page = pvec.pages[i];
4174 
4175 			done_index = page->index + 1;
4176 			/*
4177 			 * At this point we hold neither the i_pages lock nor
4178 			 * the page lock: the page may be truncated or
4179 			 * invalidated (changing page->mapping to NULL),
4180 			 * or even swizzled back from swapper_space to
4181 			 * tmpfs file mapping
4182 			 */
4183 			if (!trylock_page(page)) {
4184 				ret = flush_write_bio(epd);
4185 				BUG_ON(ret < 0);
4186 				lock_page(page);
4187 			}
4188 
4189 			if (unlikely(page->mapping != mapping)) {
4190 				unlock_page(page);
4191 				continue;
4192 			}
4193 
4194 			if (wbc->sync_mode != WB_SYNC_NONE) {
4195 				if (PageWriteback(page)) {
4196 					ret = flush_write_bio(epd);
4197 					BUG_ON(ret < 0);
4198 				}
4199 				wait_on_page_writeback(page);
4200 			}
4201 
4202 			if (PageWriteback(page) ||
4203 			    !clear_page_dirty_for_io(page)) {
4204 				unlock_page(page);
4205 				continue;
4206 			}
4207 
4208 			ret = __extent_writepage(page, wbc, epd);
4209 			if (ret < 0) {
4210 				done = 1;
4211 				break;
4212 			}
4213 
4214 			/*
4215 			 * the filesystem may choose to bump up nr_to_write.
4216 			 * We have to make sure to honor the new nr_to_write
4217 			 * at any time
4218 			 */
4219 			nr_to_write_done = wbc->nr_to_write <= 0;
4220 		}
4221 		pagevec_release(&pvec);
4222 		cond_resched();
4223 	}
4224 	if (!scanned && !done) {
4225 		/*
4226 		 * We hit the last page and there is more work to be done: wrap
4227 		 * back to the start of the file
4228 		 */
4229 		scanned = 1;
4230 		index = 0;
4231 
4232 		/*
4233 		 * If we're looping we could run into a page that is locked by a
4234 		 * writer and that writer could be waiting on writeback for a
4235 		 * page in our current bio, and thus deadlock, so flush the
4236 		 * write bio here.
4237 		 */
4238 		ret = flush_write_bio(epd);
4239 		if (!ret)
4240 			goto retry;
4241 	}
4242 
4243 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4244 		mapping->writeback_index = done_index;
4245 
4246 	btrfs_add_delayed_iput(inode);
4247 	return ret;
4248 }
4249 
extent_write_full_page(struct page * page,struct writeback_control * wbc)4250 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4251 {
4252 	int ret;
4253 	struct extent_page_data epd = {
4254 		.bio = NULL,
4255 		.tree = &BTRFS_I(page->mapping->host)->io_tree,
4256 		.extent_locked = 0,
4257 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4258 	};
4259 
4260 	ret = __extent_writepage(page, wbc, &epd);
4261 	ASSERT(ret <= 0);
4262 	if (ret < 0) {
4263 		end_write_bio(&epd, ret);
4264 		return ret;
4265 	}
4266 
4267 	ret = flush_write_bio(&epd);
4268 	ASSERT(ret <= 0);
4269 	return ret;
4270 }
4271 
extent_write_locked_range(struct inode * inode,u64 start,u64 end,int mode)4272 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4273 			      int mode)
4274 {
4275 	int ret = 0;
4276 	struct address_space *mapping = inode->i_mapping;
4277 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4278 	struct page *page;
4279 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4280 		PAGE_SHIFT;
4281 
4282 	struct extent_page_data epd = {
4283 		.bio = NULL,
4284 		.tree = tree,
4285 		.extent_locked = 1,
4286 		.sync_io = mode == WB_SYNC_ALL,
4287 	};
4288 	struct writeback_control wbc_writepages = {
4289 		.sync_mode	= mode,
4290 		.nr_to_write	= nr_pages * 2,
4291 		.range_start	= start,
4292 		.range_end	= end + 1,
4293 	};
4294 
4295 	while (start <= end) {
4296 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4297 		if (clear_page_dirty_for_io(page))
4298 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4299 		else {
4300 			btrfs_writepage_endio_finish_ordered(page, start,
4301 						    start + PAGE_SIZE - 1, 1);
4302 			unlock_page(page);
4303 		}
4304 		put_page(page);
4305 		start += PAGE_SIZE;
4306 	}
4307 
4308 	ASSERT(ret <= 0);
4309 	if (ret < 0) {
4310 		end_write_bio(&epd, ret);
4311 		return ret;
4312 	}
4313 	ret = flush_write_bio(&epd);
4314 	return ret;
4315 }
4316 
extent_writepages(struct address_space * mapping,struct writeback_control * wbc)4317 int extent_writepages(struct address_space *mapping,
4318 		      struct writeback_control *wbc)
4319 {
4320 	int ret = 0;
4321 	struct extent_page_data epd = {
4322 		.bio = NULL,
4323 		.tree = &BTRFS_I(mapping->host)->io_tree,
4324 		.extent_locked = 0,
4325 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4326 	};
4327 
4328 	ret = extent_write_cache_pages(mapping, wbc, &epd);
4329 	ASSERT(ret <= 0);
4330 	if (ret < 0) {
4331 		end_write_bio(&epd, ret);
4332 		return ret;
4333 	}
4334 	ret = flush_write_bio(&epd);
4335 	return ret;
4336 }
4337 
extent_readpages(struct address_space * mapping,struct list_head * pages,unsigned nr_pages)4338 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4339 		     unsigned nr_pages)
4340 {
4341 	struct bio *bio = NULL;
4342 	unsigned long bio_flags = 0;
4343 	struct page *pagepool[16];
4344 	struct extent_map *em_cached = NULL;
4345 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4346 	int nr = 0;
4347 	u64 prev_em_start = (u64)-1;
4348 
4349 	while (!list_empty(pages)) {
4350 		u64 contig_end = 0;
4351 
4352 		for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4353 			struct page *page = lru_to_page(pages);
4354 
4355 			prefetchw(&page->flags);
4356 			list_del(&page->lru);
4357 			if (add_to_page_cache_lru(page, mapping, page->index,
4358 						readahead_gfp_mask(mapping))) {
4359 				put_page(page);
4360 				break;
4361 			}
4362 
4363 			pagepool[nr++] = page;
4364 			contig_end = page_offset(page) + PAGE_SIZE - 1;
4365 		}
4366 
4367 		if (nr) {
4368 			u64 contig_start = page_offset(pagepool[0]);
4369 
4370 			ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4371 
4372 			contiguous_readpages(tree, pagepool, nr, contig_start,
4373 				     contig_end, &em_cached, &bio, &bio_flags,
4374 				     &prev_em_start);
4375 		}
4376 	}
4377 
4378 	if (em_cached)
4379 		free_extent_map(em_cached);
4380 
4381 	if (bio)
4382 		return submit_one_bio(bio, 0, bio_flags);
4383 	return 0;
4384 }
4385 
4386 /*
4387  * basic invalidatepage code, this waits on any locked or writeback
4388  * ranges corresponding to the page, and then deletes any extent state
4389  * records from the tree
4390  */
extent_invalidatepage(struct extent_io_tree * tree,struct page * page,unsigned long offset)4391 int extent_invalidatepage(struct extent_io_tree *tree,
4392 			  struct page *page, unsigned long offset)
4393 {
4394 	struct extent_state *cached_state = NULL;
4395 	u64 start = page_offset(page);
4396 	u64 end = start + PAGE_SIZE - 1;
4397 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4398 
4399 	start += ALIGN(offset, blocksize);
4400 	if (start > end)
4401 		return 0;
4402 
4403 	lock_extent_bits(tree, start, end, &cached_state);
4404 	wait_on_page_writeback(page);
4405 	clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4406 			 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4407 	return 0;
4408 }
4409 
4410 /*
4411  * a helper for releasepage, this tests for areas of the page that
4412  * are locked or under IO and drops the related state bits if it is safe
4413  * to drop the page.
4414  */
try_release_extent_state(struct extent_io_tree * tree,struct page * page,gfp_t mask)4415 static int try_release_extent_state(struct extent_io_tree *tree,
4416 				    struct page *page, gfp_t mask)
4417 {
4418 	u64 start = page_offset(page);
4419 	u64 end = start + PAGE_SIZE - 1;
4420 	int ret = 1;
4421 
4422 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4423 		ret = 0;
4424 	} else {
4425 		/*
4426 		 * at this point we can safely clear everything except the
4427 		 * locked bit and the nodatasum bit
4428 		 */
4429 		ret = __clear_extent_bit(tree, start, end,
4430 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4431 				 0, 0, NULL, mask, NULL);
4432 
4433 		/* if clear_extent_bit failed for enomem reasons,
4434 		 * we can't allow the release to continue.
4435 		 */
4436 		if (ret < 0)
4437 			ret = 0;
4438 		else
4439 			ret = 1;
4440 	}
4441 	return ret;
4442 }
4443 
4444 /*
4445  * a helper for releasepage.  As long as there are no locked extents
4446  * in the range corresponding to the page, both state records and extent
4447  * map records are removed
4448  */
try_release_extent_mapping(struct page * page,gfp_t mask)4449 int try_release_extent_mapping(struct page *page, gfp_t mask)
4450 {
4451 	struct extent_map *em;
4452 	u64 start = page_offset(page);
4453 	u64 end = start + PAGE_SIZE - 1;
4454 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4455 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4456 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4457 
4458 	if (gfpflags_allow_blocking(mask) &&
4459 	    page->mapping->host->i_size > SZ_16M) {
4460 		u64 len;
4461 		while (start <= end) {
4462 			len = end - start + 1;
4463 			write_lock(&map->lock);
4464 			em = lookup_extent_mapping(map, start, len);
4465 			if (!em) {
4466 				write_unlock(&map->lock);
4467 				break;
4468 			}
4469 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4470 			    em->start != start) {
4471 				write_unlock(&map->lock);
4472 				free_extent_map(em);
4473 				break;
4474 			}
4475 			if (test_range_bit(tree, em->start,
4476 					   extent_map_end(em) - 1,
4477 					   EXTENT_LOCKED, 0, NULL))
4478 				goto next;
4479 			/*
4480 			 * If it's not in the list of modified extents, used
4481 			 * by a fast fsync, we can remove it. If it's being
4482 			 * logged we can safely remove it since fsync took an
4483 			 * extra reference on the em.
4484 			 */
4485 			if (list_empty(&em->list) ||
4486 			    test_bit(EXTENT_FLAG_LOGGING, &em->flags)) {
4487 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4488 					&btrfs_inode->runtime_flags);
4489 				remove_extent_mapping(map, em);
4490 				/* once for the rb tree */
4491 				free_extent_map(em);
4492 			}
4493 next:
4494 			start = extent_map_end(em);
4495 			write_unlock(&map->lock);
4496 
4497 			/* once for us */
4498 			free_extent_map(em);
4499 
4500 			cond_resched(); /* Allow large-extent preemption. */
4501 		}
4502 	}
4503 	return try_release_extent_state(tree, page, mask);
4504 }
4505 
4506 /*
4507  * helper function for fiemap, which doesn't want to see any holes.
4508  * This maps until we find something past 'last'
4509  */
get_extent_skip_holes(struct inode * inode,u64 offset,u64 last)4510 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4511 						u64 offset, u64 last)
4512 {
4513 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4514 	struct extent_map *em;
4515 	u64 len;
4516 
4517 	if (offset >= last)
4518 		return NULL;
4519 
4520 	while (1) {
4521 		len = last - offset;
4522 		if (len == 0)
4523 			break;
4524 		len = ALIGN(len, sectorsize);
4525 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4526 		if (IS_ERR_OR_NULL(em))
4527 			return em;
4528 
4529 		/* if this isn't a hole return it */
4530 		if (em->block_start != EXTENT_MAP_HOLE)
4531 			return em;
4532 
4533 		/* this is a hole, advance to the next extent */
4534 		offset = extent_map_end(em);
4535 		free_extent_map(em);
4536 		if (offset >= last)
4537 			break;
4538 	}
4539 	return NULL;
4540 }
4541 
4542 /*
4543  * To cache previous fiemap extent
4544  *
4545  * Will be used for merging fiemap extent
4546  */
4547 struct fiemap_cache {
4548 	u64 offset;
4549 	u64 phys;
4550 	u64 len;
4551 	u32 flags;
4552 	bool cached;
4553 };
4554 
4555 /*
4556  * Helper to submit fiemap extent.
4557  *
4558  * Will try to merge current fiemap extent specified by @offset, @phys,
4559  * @len and @flags with cached one.
4560  * And only when we fails to merge, cached one will be submitted as
4561  * fiemap extent.
4562  *
4563  * Return value is the same as fiemap_fill_next_extent().
4564  */
emit_fiemap_extent(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,u64 offset,u64 phys,u64 len,u32 flags)4565 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4566 				struct fiemap_cache *cache,
4567 				u64 offset, u64 phys, u64 len, u32 flags)
4568 {
4569 	int ret = 0;
4570 
4571 	if (!cache->cached)
4572 		goto assign;
4573 
4574 	/*
4575 	 * Sanity check, extent_fiemap() should have ensured that new
4576 	 * fiemap extent won't overlap with cached one.
4577 	 * Not recoverable.
4578 	 *
4579 	 * NOTE: Physical address can overlap, due to compression
4580 	 */
4581 	if (cache->offset + cache->len > offset) {
4582 		WARN_ON(1);
4583 		return -EINVAL;
4584 	}
4585 
4586 	/*
4587 	 * Only merges fiemap extents if
4588 	 * 1) Their logical addresses are continuous
4589 	 *
4590 	 * 2) Their physical addresses are continuous
4591 	 *    So truly compressed (physical size smaller than logical size)
4592 	 *    extents won't get merged with each other
4593 	 *
4594 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4595 	 *    So regular extent won't get merged with prealloc extent
4596 	 */
4597 	if (cache->offset + cache->len  == offset &&
4598 	    cache->phys + cache->len == phys  &&
4599 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4600 			(flags & ~FIEMAP_EXTENT_LAST)) {
4601 		cache->len += len;
4602 		cache->flags |= flags;
4603 		goto try_submit_last;
4604 	}
4605 
4606 	/* Not mergeable, need to submit cached one */
4607 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4608 				      cache->len, cache->flags);
4609 	cache->cached = false;
4610 	if (ret)
4611 		return ret;
4612 assign:
4613 	cache->cached = true;
4614 	cache->offset = offset;
4615 	cache->phys = phys;
4616 	cache->len = len;
4617 	cache->flags = flags;
4618 try_submit_last:
4619 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4620 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4621 				cache->phys, cache->len, cache->flags);
4622 		cache->cached = false;
4623 	}
4624 	return ret;
4625 }
4626 
4627 /*
4628  * Emit last fiemap cache
4629  *
4630  * The last fiemap cache may still be cached in the following case:
4631  * 0		      4k		    8k
4632  * |<- Fiemap range ->|
4633  * |<------------  First extent ----------->|
4634  *
4635  * In this case, the first extent range will be cached but not emitted.
4636  * So we must emit it before ending extent_fiemap().
4637  */
emit_last_fiemap_cache(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache)4638 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4639 				  struct fiemap_cache *cache)
4640 {
4641 	int ret;
4642 
4643 	if (!cache->cached)
4644 		return 0;
4645 
4646 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4647 				      cache->len, cache->flags);
4648 	cache->cached = false;
4649 	if (ret > 0)
4650 		ret = 0;
4651 	return ret;
4652 }
4653 
extent_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)4654 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4655 		__u64 start, __u64 len)
4656 {
4657 	int ret = 0;
4658 	u64 off;
4659 	u64 max = start + len;
4660 	u32 flags = 0;
4661 	u32 found_type;
4662 	u64 last;
4663 	u64 last_for_get_extent = 0;
4664 	u64 disko = 0;
4665 	u64 isize = i_size_read(inode);
4666 	struct btrfs_key found_key;
4667 	struct extent_map *em = NULL;
4668 	struct extent_state *cached_state = NULL;
4669 	struct btrfs_path *path;
4670 	struct btrfs_root *root = BTRFS_I(inode)->root;
4671 	struct fiemap_cache cache = { 0 };
4672 	struct ulist *roots;
4673 	struct ulist *tmp_ulist;
4674 	int end = 0;
4675 	u64 em_start = 0;
4676 	u64 em_len = 0;
4677 	u64 em_end = 0;
4678 
4679 	if (len == 0)
4680 		return -EINVAL;
4681 
4682 	path = btrfs_alloc_path();
4683 	if (!path)
4684 		return -ENOMEM;
4685 	path->leave_spinning = 1;
4686 
4687 	roots = ulist_alloc(GFP_KERNEL);
4688 	tmp_ulist = ulist_alloc(GFP_KERNEL);
4689 	if (!roots || !tmp_ulist) {
4690 		ret = -ENOMEM;
4691 		goto out_free_ulist;
4692 	}
4693 
4694 	/*
4695 	 * We can't initialize that to 'start' as this could miss extents due
4696 	 * to extent item merging
4697 	 */
4698 	off = 0;
4699 	start = round_down(start, btrfs_inode_sectorsize(inode));
4700 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4701 
4702 	/*
4703 	 * lookup the last file extent.  We're not using i_size here
4704 	 * because there might be preallocation past i_size
4705 	 */
4706 	ret = btrfs_lookup_file_extent(NULL, root, path,
4707 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4708 	if (ret < 0) {
4709 		goto out_free_ulist;
4710 	} else {
4711 		WARN_ON(!ret);
4712 		if (ret == 1)
4713 			ret = 0;
4714 	}
4715 
4716 	path->slots[0]--;
4717 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4718 	found_type = found_key.type;
4719 
4720 	/* No extents, but there might be delalloc bits */
4721 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4722 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4723 		/* have to trust i_size as the end */
4724 		last = (u64)-1;
4725 		last_for_get_extent = isize;
4726 	} else {
4727 		/*
4728 		 * remember the start of the last extent.  There are a
4729 		 * bunch of different factors that go into the length of the
4730 		 * extent, so its much less complex to remember where it started
4731 		 */
4732 		last = found_key.offset;
4733 		last_for_get_extent = last + 1;
4734 	}
4735 	btrfs_release_path(path);
4736 
4737 	/*
4738 	 * we might have some extents allocated but more delalloc past those
4739 	 * extents.  so, we trust isize unless the start of the last extent is
4740 	 * beyond isize
4741 	 */
4742 	if (last < isize) {
4743 		last = (u64)-1;
4744 		last_for_get_extent = isize;
4745 	}
4746 
4747 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4748 			 &cached_state);
4749 
4750 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4751 	if (!em)
4752 		goto out;
4753 	if (IS_ERR(em)) {
4754 		ret = PTR_ERR(em);
4755 		goto out;
4756 	}
4757 
4758 	while (!end) {
4759 		u64 offset_in_extent = 0;
4760 
4761 		/* break if the extent we found is outside the range */
4762 		if (em->start >= max || extent_map_end(em) < off)
4763 			break;
4764 
4765 		/*
4766 		 * get_extent may return an extent that starts before our
4767 		 * requested range.  We have to make sure the ranges
4768 		 * we return to fiemap always move forward and don't
4769 		 * overlap, so adjust the offsets here
4770 		 */
4771 		em_start = max(em->start, off);
4772 
4773 		/*
4774 		 * record the offset from the start of the extent
4775 		 * for adjusting the disk offset below.  Only do this if the
4776 		 * extent isn't compressed since our in ram offset may be past
4777 		 * what we have actually allocated on disk.
4778 		 */
4779 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4780 			offset_in_extent = em_start - em->start;
4781 		em_end = extent_map_end(em);
4782 		em_len = em_end - em_start;
4783 		flags = 0;
4784 		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4785 			disko = em->block_start + offset_in_extent;
4786 		else
4787 			disko = 0;
4788 
4789 		/*
4790 		 * bump off for our next call to get_extent
4791 		 */
4792 		off = extent_map_end(em);
4793 		if (off >= max)
4794 			end = 1;
4795 
4796 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4797 			end = 1;
4798 			flags |= FIEMAP_EXTENT_LAST;
4799 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4800 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4801 				  FIEMAP_EXTENT_NOT_ALIGNED);
4802 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4803 			flags |= (FIEMAP_EXTENT_DELALLOC |
4804 				  FIEMAP_EXTENT_UNKNOWN);
4805 		} else if (fieinfo->fi_extents_max) {
4806 			u64 bytenr = em->block_start -
4807 				(em->start - em->orig_start);
4808 
4809 			/*
4810 			 * As btrfs supports shared space, this information
4811 			 * can be exported to userspace tools via
4812 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4813 			 * then we're just getting a count and we can skip the
4814 			 * lookup stuff.
4815 			 */
4816 			ret = btrfs_check_shared(root,
4817 						 btrfs_ino(BTRFS_I(inode)),
4818 						 bytenr, roots, tmp_ulist);
4819 			if (ret < 0)
4820 				goto out_free;
4821 			if (ret)
4822 				flags |= FIEMAP_EXTENT_SHARED;
4823 			ret = 0;
4824 		}
4825 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4826 			flags |= FIEMAP_EXTENT_ENCODED;
4827 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4828 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4829 
4830 		free_extent_map(em);
4831 		em = NULL;
4832 		if ((em_start >= last) || em_len == (u64)-1 ||
4833 		   (last == (u64)-1 && isize <= em_end)) {
4834 			flags |= FIEMAP_EXTENT_LAST;
4835 			end = 1;
4836 		}
4837 
4838 		/* now scan forward to see if this is really the last extent. */
4839 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4840 		if (IS_ERR(em)) {
4841 			ret = PTR_ERR(em);
4842 			goto out;
4843 		}
4844 		if (!em) {
4845 			flags |= FIEMAP_EXTENT_LAST;
4846 			end = 1;
4847 		}
4848 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4849 					   em_len, flags);
4850 		if (ret) {
4851 			if (ret == 1)
4852 				ret = 0;
4853 			goto out_free;
4854 		}
4855 	}
4856 out_free:
4857 	if (!ret)
4858 		ret = emit_last_fiemap_cache(fieinfo, &cache);
4859 	free_extent_map(em);
4860 out:
4861 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4862 			     &cached_state);
4863 
4864 out_free_ulist:
4865 	btrfs_free_path(path);
4866 	ulist_free(roots);
4867 	ulist_free(tmp_ulist);
4868 	return ret;
4869 }
4870 
__free_extent_buffer(struct extent_buffer * eb)4871 static void __free_extent_buffer(struct extent_buffer *eb)
4872 {
4873 	btrfs_leak_debug_del(&eb->leak_list);
4874 	kmem_cache_free(extent_buffer_cache, eb);
4875 }
4876 
extent_buffer_under_io(struct extent_buffer * eb)4877 int extent_buffer_under_io(struct extent_buffer *eb)
4878 {
4879 	return (atomic_read(&eb->io_pages) ||
4880 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4881 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4882 }
4883 
4884 /*
4885  * Release all pages attached to the extent buffer.
4886  */
btrfs_release_extent_buffer_pages(struct extent_buffer * eb)4887 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4888 {
4889 	int i;
4890 	int num_pages;
4891 	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4892 
4893 	BUG_ON(extent_buffer_under_io(eb));
4894 
4895 	num_pages = num_extent_pages(eb);
4896 	for (i = 0; i < num_pages; i++) {
4897 		struct page *page = eb->pages[i];
4898 
4899 		if (!page)
4900 			continue;
4901 		if (mapped)
4902 			spin_lock(&page->mapping->private_lock);
4903 		/*
4904 		 * We do this since we'll remove the pages after we've
4905 		 * removed the eb from the radix tree, so we could race
4906 		 * and have this page now attached to the new eb.  So
4907 		 * only clear page_private if it's still connected to
4908 		 * this eb.
4909 		 */
4910 		if (PagePrivate(page) &&
4911 		    page->private == (unsigned long)eb) {
4912 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4913 			BUG_ON(PageDirty(page));
4914 			BUG_ON(PageWriteback(page));
4915 			/*
4916 			 * We need to make sure we haven't be attached
4917 			 * to a new eb.
4918 			 */
4919 			ClearPagePrivate(page);
4920 			set_page_private(page, 0);
4921 			/* One for the page private */
4922 			put_page(page);
4923 		}
4924 
4925 		if (mapped)
4926 			spin_unlock(&page->mapping->private_lock);
4927 
4928 		/* One for when we allocated the page */
4929 		put_page(page);
4930 	}
4931 }
4932 
4933 /*
4934  * Helper for releasing the extent buffer.
4935  */
btrfs_release_extent_buffer(struct extent_buffer * eb)4936 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4937 {
4938 	btrfs_release_extent_buffer_pages(eb);
4939 	__free_extent_buffer(eb);
4940 }
4941 
4942 static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)4943 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4944 		      unsigned long len)
4945 {
4946 	struct extent_buffer *eb = NULL;
4947 
4948 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4949 	eb->start = start;
4950 	eb->len = len;
4951 	eb->fs_info = fs_info;
4952 	eb->bflags = 0;
4953 	rwlock_init(&eb->lock);
4954 	atomic_set(&eb->blocking_readers, 0);
4955 	eb->blocking_writers = 0;
4956 	eb->lock_nested = false;
4957 	init_waitqueue_head(&eb->write_lock_wq);
4958 	init_waitqueue_head(&eb->read_lock_wq);
4959 
4960 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4961 
4962 	spin_lock_init(&eb->refs_lock);
4963 	atomic_set(&eb->refs, 1);
4964 	atomic_set(&eb->io_pages, 0);
4965 
4966 	/*
4967 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4968 	 */
4969 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4970 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4971 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4972 
4973 #ifdef CONFIG_BTRFS_DEBUG
4974 	eb->spinning_writers = 0;
4975 	atomic_set(&eb->spinning_readers, 0);
4976 	atomic_set(&eb->read_locks, 0);
4977 	eb->write_locks = 0;
4978 #endif
4979 
4980 	return eb;
4981 }
4982 
btrfs_clone_extent_buffer(struct extent_buffer * src)4983 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4984 {
4985 	int i;
4986 	struct page *p;
4987 	struct extent_buffer *new;
4988 	int num_pages = num_extent_pages(src);
4989 
4990 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4991 	if (new == NULL)
4992 		return NULL;
4993 
4994 	for (i = 0; i < num_pages; i++) {
4995 		p = alloc_page(GFP_NOFS);
4996 		if (!p) {
4997 			btrfs_release_extent_buffer(new);
4998 			return NULL;
4999 		}
5000 		attach_extent_buffer_page(new, p);
5001 		WARN_ON(PageDirty(p));
5002 		SetPageUptodate(p);
5003 		new->pages[i] = p;
5004 		copy_page(page_address(p), page_address(src->pages[i]));
5005 	}
5006 
5007 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5008 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5009 
5010 	return new;
5011 }
5012 
__alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)5013 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5014 						  u64 start, unsigned long len)
5015 {
5016 	struct extent_buffer *eb;
5017 	int num_pages;
5018 	int i;
5019 
5020 	eb = __alloc_extent_buffer(fs_info, start, len);
5021 	if (!eb)
5022 		return NULL;
5023 
5024 	num_pages = num_extent_pages(eb);
5025 	for (i = 0; i < num_pages; i++) {
5026 		eb->pages[i] = alloc_page(GFP_NOFS);
5027 		if (!eb->pages[i])
5028 			goto err;
5029 	}
5030 	set_extent_buffer_uptodate(eb);
5031 	btrfs_set_header_nritems(eb, 0);
5032 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5033 
5034 	return eb;
5035 err:
5036 	for (; i > 0; i--)
5037 		__free_page(eb->pages[i - 1]);
5038 	__free_extent_buffer(eb);
5039 	return NULL;
5040 }
5041 
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5042 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5043 						u64 start)
5044 {
5045 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5046 }
5047 
check_buffer_tree_ref(struct extent_buffer * eb)5048 static void check_buffer_tree_ref(struct extent_buffer *eb)
5049 {
5050 	int refs;
5051 	/*
5052 	 * The TREE_REF bit is first set when the extent_buffer is added
5053 	 * to the radix tree. It is also reset, if unset, when a new reference
5054 	 * is created by find_extent_buffer.
5055 	 *
5056 	 * It is only cleared in two cases: freeing the last non-tree
5057 	 * reference to the extent_buffer when its STALE bit is set or
5058 	 * calling releasepage when the tree reference is the only reference.
5059 	 *
5060 	 * In both cases, care is taken to ensure that the extent_buffer's
5061 	 * pages are not under io. However, releasepage can be concurrently
5062 	 * called with creating new references, which is prone to race
5063 	 * conditions between the calls to check_buffer_tree_ref in those
5064 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5065 	 *
5066 	 * The actual lifetime of the extent_buffer in the radix tree is
5067 	 * adequately protected by the refcount, but the TREE_REF bit and
5068 	 * its corresponding reference are not. To protect against this
5069 	 * class of races, we call check_buffer_tree_ref from the codepaths
5070 	 * which trigger io after they set eb->io_pages. Note that once io is
5071 	 * initiated, TREE_REF can no longer be cleared, so that is the
5072 	 * moment at which any such race is best fixed.
5073 	 */
5074 	refs = atomic_read(&eb->refs);
5075 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5076 		return;
5077 
5078 	spin_lock(&eb->refs_lock);
5079 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5080 		atomic_inc(&eb->refs);
5081 	spin_unlock(&eb->refs_lock);
5082 }
5083 
mark_extent_buffer_accessed(struct extent_buffer * eb,struct page * accessed)5084 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5085 		struct page *accessed)
5086 {
5087 	int num_pages, i;
5088 
5089 	check_buffer_tree_ref(eb);
5090 
5091 	num_pages = num_extent_pages(eb);
5092 	for (i = 0; i < num_pages; i++) {
5093 		struct page *p = eb->pages[i];
5094 
5095 		if (p != accessed)
5096 			mark_page_accessed(p);
5097 	}
5098 }
5099 
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5100 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5101 					 u64 start)
5102 {
5103 	struct extent_buffer *eb;
5104 
5105 	rcu_read_lock();
5106 	eb = radix_tree_lookup(&fs_info->buffer_radix,
5107 			       start >> PAGE_SHIFT);
5108 	if (eb && atomic_inc_not_zero(&eb->refs)) {
5109 		rcu_read_unlock();
5110 		/*
5111 		 * Lock our eb's refs_lock to avoid races with
5112 		 * free_extent_buffer. When we get our eb it might be flagged
5113 		 * with EXTENT_BUFFER_STALE and another task running
5114 		 * free_extent_buffer might have seen that flag set,
5115 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
5116 		 * writeback flags not set) and it's still in the tree (flag
5117 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5118 		 * of decrementing the extent buffer's reference count twice.
5119 		 * So here we could race and increment the eb's reference count,
5120 		 * clear its stale flag, mark it as dirty and drop our reference
5121 		 * before the other task finishes executing free_extent_buffer,
5122 		 * which would later result in an attempt to free an extent
5123 		 * buffer that is dirty.
5124 		 */
5125 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5126 			spin_lock(&eb->refs_lock);
5127 			spin_unlock(&eb->refs_lock);
5128 		}
5129 		mark_extent_buffer_accessed(eb, NULL);
5130 		return eb;
5131 	}
5132 	rcu_read_unlock();
5133 
5134 	return NULL;
5135 }
5136 
5137 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5138 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5139 					u64 start)
5140 {
5141 	struct extent_buffer *eb, *exists = NULL;
5142 	int ret;
5143 
5144 	eb = find_extent_buffer(fs_info, start);
5145 	if (eb)
5146 		return eb;
5147 	eb = alloc_dummy_extent_buffer(fs_info, start);
5148 	if (!eb)
5149 		return ERR_PTR(-ENOMEM);
5150 	eb->fs_info = fs_info;
5151 again:
5152 	ret = radix_tree_preload(GFP_NOFS);
5153 	if (ret) {
5154 		exists = ERR_PTR(ret);
5155 		goto free_eb;
5156 	}
5157 	spin_lock(&fs_info->buffer_lock);
5158 	ret = radix_tree_insert(&fs_info->buffer_radix,
5159 				start >> PAGE_SHIFT, eb);
5160 	spin_unlock(&fs_info->buffer_lock);
5161 	radix_tree_preload_end();
5162 	if (ret == -EEXIST) {
5163 		exists = find_extent_buffer(fs_info, start);
5164 		if (exists)
5165 			goto free_eb;
5166 		else
5167 			goto again;
5168 	}
5169 	check_buffer_tree_ref(eb);
5170 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5171 
5172 	return eb;
5173 free_eb:
5174 	btrfs_release_extent_buffer(eb);
5175 	return exists;
5176 }
5177 #endif
5178 
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5179 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5180 					  u64 start)
5181 {
5182 	unsigned long len = fs_info->nodesize;
5183 	int num_pages;
5184 	int i;
5185 	unsigned long index = start >> PAGE_SHIFT;
5186 	struct extent_buffer *eb;
5187 	struct extent_buffer *exists = NULL;
5188 	struct page *p;
5189 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
5190 	int uptodate = 1;
5191 	int ret;
5192 
5193 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5194 		btrfs_err(fs_info, "bad tree block start %llu", start);
5195 		return ERR_PTR(-EINVAL);
5196 	}
5197 
5198 	eb = find_extent_buffer(fs_info, start);
5199 	if (eb)
5200 		return eb;
5201 
5202 	eb = __alloc_extent_buffer(fs_info, start, len);
5203 	if (!eb)
5204 		return ERR_PTR(-ENOMEM);
5205 
5206 	num_pages = num_extent_pages(eb);
5207 	for (i = 0; i < num_pages; i++, index++) {
5208 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5209 		if (!p) {
5210 			exists = ERR_PTR(-ENOMEM);
5211 			goto free_eb;
5212 		}
5213 
5214 		spin_lock(&mapping->private_lock);
5215 		if (PagePrivate(p)) {
5216 			/*
5217 			 * We could have already allocated an eb for this page
5218 			 * and attached one so lets see if we can get a ref on
5219 			 * the existing eb, and if we can we know it's good and
5220 			 * we can just return that one, else we know we can just
5221 			 * overwrite page->private.
5222 			 */
5223 			exists = (struct extent_buffer *)p->private;
5224 			if (atomic_inc_not_zero(&exists->refs)) {
5225 				spin_unlock(&mapping->private_lock);
5226 				unlock_page(p);
5227 				put_page(p);
5228 				mark_extent_buffer_accessed(exists, p);
5229 				goto free_eb;
5230 			}
5231 			exists = NULL;
5232 
5233 			/*
5234 			 * Do this so attach doesn't complain and we need to
5235 			 * drop the ref the old guy had.
5236 			 */
5237 			ClearPagePrivate(p);
5238 			WARN_ON(PageDirty(p));
5239 			put_page(p);
5240 		}
5241 		attach_extent_buffer_page(eb, p);
5242 		spin_unlock(&mapping->private_lock);
5243 		WARN_ON(PageDirty(p));
5244 		eb->pages[i] = p;
5245 		if (!PageUptodate(p))
5246 			uptodate = 0;
5247 
5248 		/*
5249 		 * We can't unlock the pages just yet since the extent buffer
5250 		 * hasn't been properly inserted in the radix tree, this
5251 		 * opens a race with btree_releasepage which can free a page
5252 		 * while we are still filling in all pages for the buffer and
5253 		 * we could crash.
5254 		 */
5255 	}
5256 	if (uptodate)
5257 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5258 again:
5259 	ret = radix_tree_preload(GFP_NOFS);
5260 	if (ret) {
5261 		exists = ERR_PTR(ret);
5262 		goto free_eb;
5263 	}
5264 
5265 	spin_lock(&fs_info->buffer_lock);
5266 	ret = radix_tree_insert(&fs_info->buffer_radix,
5267 				start >> PAGE_SHIFT, eb);
5268 	spin_unlock(&fs_info->buffer_lock);
5269 	radix_tree_preload_end();
5270 	if (ret == -EEXIST) {
5271 		exists = find_extent_buffer(fs_info, start);
5272 		if (exists)
5273 			goto free_eb;
5274 		else
5275 			goto again;
5276 	}
5277 	/* add one reference for the tree */
5278 	check_buffer_tree_ref(eb);
5279 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5280 
5281 	/*
5282 	 * Now it's safe to unlock the pages because any calls to
5283 	 * btree_releasepage will correctly detect that a page belongs to a
5284 	 * live buffer and won't free them prematurely.
5285 	 */
5286 	for (i = 0; i < num_pages; i++)
5287 		unlock_page(eb->pages[i]);
5288 	return eb;
5289 
5290 free_eb:
5291 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5292 	for (i = 0; i < num_pages; i++) {
5293 		if (eb->pages[i])
5294 			unlock_page(eb->pages[i]);
5295 	}
5296 
5297 	btrfs_release_extent_buffer(eb);
5298 	return exists;
5299 }
5300 
btrfs_release_extent_buffer_rcu(struct rcu_head * head)5301 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5302 {
5303 	struct extent_buffer *eb =
5304 			container_of(head, struct extent_buffer, rcu_head);
5305 
5306 	__free_extent_buffer(eb);
5307 }
5308 
release_extent_buffer(struct extent_buffer * eb)5309 static int release_extent_buffer(struct extent_buffer *eb)
5310 {
5311 	lockdep_assert_held(&eb->refs_lock);
5312 
5313 	WARN_ON(atomic_read(&eb->refs) == 0);
5314 	if (atomic_dec_and_test(&eb->refs)) {
5315 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5316 			struct btrfs_fs_info *fs_info = eb->fs_info;
5317 
5318 			spin_unlock(&eb->refs_lock);
5319 
5320 			spin_lock(&fs_info->buffer_lock);
5321 			radix_tree_delete(&fs_info->buffer_radix,
5322 					  eb->start >> PAGE_SHIFT);
5323 			spin_unlock(&fs_info->buffer_lock);
5324 		} else {
5325 			spin_unlock(&eb->refs_lock);
5326 		}
5327 
5328 		/* Should be safe to release our pages at this point */
5329 		btrfs_release_extent_buffer_pages(eb);
5330 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5331 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5332 			__free_extent_buffer(eb);
5333 			return 1;
5334 		}
5335 #endif
5336 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5337 		return 1;
5338 	}
5339 	spin_unlock(&eb->refs_lock);
5340 
5341 	return 0;
5342 }
5343 
free_extent_buffer(struct extent_buffer * eb)5344 void free_extent_buffer(struct extent_buffer *eb)
5345 {
5346 	int refs;
5347 	int old;
5348 	if (!eb)
5349 		return;
5350 
5351 	while (1) {
5352 		refs = atomic_read(&eb->refs);
5353 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5354 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5355 			refs == 1))
5356 			break;
5357 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5358 		if (old == refs)
5359 			return;
5360 	}
5361 
5362 	spin_lock(&eb->refs_lock);
5363 	if (atomic_read(&eb->refs) == 2 &&
5364 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5365 	    !extent_buffer_under_io(eb) &&
5366 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5367 		atomic_dec(&eb->refs);
5368 
5369 	/*
5370 	 * I know this is terrible, but it's temporary until we stop tracking
5371 	 * the uptodate bits and such for the extent buffers.
5372 	 */
5373 	release_extent_buffer(eb);
5374 }
5375 
free_extent_buffer_stale(struct extent_buffer * eb)5376 void free_extent_buffer_stale(struct extent_buffer *eb)
5377 {
5378 	if (!eb)
5379 		return;
5380 
5381 	spin_lock(&eb->refs_lock);
5382 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5383 
5384 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5385 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5386 		atomic_dec(&eb->refs);
5387 	release_extent_buffer(eb);
5388 }
5389 
clear_extent_buffer_dirty(struct extent_buffer * eb)5390 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5391 {
5392 	int i;
5393 	int num_pages;
5394 	struct page *page;
5395 
5396 	num_pages = num_extent_pages(eb);
5397 
5398 	for (i = 0; i < num_pages; i++) {
5399 		page = eb->pages[i];
5400 		if (!PageDirty(page))
5401 			continue;
5402 
5403 		lock_page(page);
5404 		WARN_ON(!PagePrivate(page));
5405 
5406 		clear_page_dirty_for_io(page);
5407 		xa_lock_irq(&page->mapping->i_pages);
5408 		if (!PageDirty(page))
5409 			__xa_clear_mark(&page->mapping->i_pages,
5410 					page_index(page), PAGECACHE_TAG_DIRTY);
5411 		xa_unlock_irq(&page->mapping->i_pages);
5412 		ClearPageError(page);
5413 		unlock_page(page);
5414 	}
5415 	WARN_ON(atomic_read(&eb->refs) == 0);
5416 }
5417 
set_extent_buffer_dirty(struct extent_buffer * eb)5418 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5419 {
5420 	int i;
5421 	int num_pages;
5422 	bool was_dirty;
5423 
5424 	check_buffer_tree_ref(eb);
5425 
5426 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5427 
5428 	num_pages = num_extent_pages(eb);
5429 	WARN_ON(atomic_read(&eb->refs) == 0);
5430 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5431 
5432 	if (!was_dirty)
5433 		for (i = 0; i < num_pages; i++)
5434 			set_page_dirty(eb->pages[i]);
5435 
5436 #ifdef CONFIG_BTRFS_DEBUG
5437 	for (i = 0; i < num_pages; i++)
5438 		ASSERT(PageDirty(eb->pages[i]));
5439 #endif
5440 
5441 	return was_dirty;
5442 }
5443 
clear_extent_buffer_uptodate(struct extent_buffer * eb)5444 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5445 {
5446 	int i;
5447 	struct page *page;
5448 	int num_pages;
5449 
5450 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5451 	num_pages = num_extent_pages(eb);
5452 	for (i = 0; i < num_pages; i++) {
5453 		page = eb->pages[i];
5454 		if (page)
5455 			ClearPageUptodate(page);
5456 	}
5457 }
5458 
set_extent_buffer_uptodate(struct extent_buffer * eb)5459 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5460 {
5461 	int i;
5462 	struct page *page;
5463 	int num_pages;
5464 
5465 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5466 	num_pages = num_extent_pages(eb);
5467 	for (i = 0; i < num_pages; i++) {
5468 		page = eb->pages[i];
5469 		SetPageUptodate(page);
5470 	}
5471 }
5472 
read_extent_buffer_pages(struct extent_buffer * eb,int wait,int mirror_num)5473 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5474 {
5475 	int i;
5476 	struct page *page;
5477 	int err;
5478 	int ret = 0;
5479 	int locked_pages = 0;
5480 	int all_uptodate = 1;
5481 	int num_pages;
5482 	unsigned long num_reads = 0;
5483 	struct bio *bio = NULL;
5484 	unsigned long bio_flags = 0;
5485 	struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
5486 
5487 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5488 		return 0;
5489 
5490 	num_pages = num_extent_pages(eb);
5491 	for (i = 0; i < num_pages; i++) {
5492 		page = eb->pages[i];
5493 		if (wait == WAIT_NONE) {
5494 			if (!trylock_page(page))
5495 				goto unlock_exit;
5496 		} else {
5497 			lock_page(page);
5498 		}
5499 		locked_pages++;
5500 	}
5501 	/*
5502 	 * We need to firstly lock all pages to make sure that
5503 	 * the uptodate bit of our pages won't be affected by
5504 	 * clear_extent_buffer_uptodate().
5505 	 */
5506 	for (i = 0; i < num_pages; i++) {
5507 		page = eb->pages[i];
5508 		if (!PageUptodate(page)) {
5509 			num_reads++;
5510 			all_uptodate = 0;
5511 		}
5512 	}
5513 
5514 	if (all_uptodate) {
5515 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5516 		goto unlock_exit;
5517 	}
5518 
5519 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5520 	eb->read_mirror = 0;
5521 	atomic_set(&eb->io_pages, num_reads);
5522 	/*
5523 	 * It is possible for releasepage to clear the TREE_REF bit before we
5524 	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5525 	 */
5526 	check_buffer_tree_ref(eb);
5527 	for (i = 0; i < num_pages; i++) {
5528 		page = eb->pages[i];
5529 
5530 		if (!PageUptodate(page)) {
5531 			if (ret) {
5532 				atomic_dec(&eb->io_pages);
5533 				unlock_page(page);
5534 				continue;
5535 			}
5536 
5537 			ClearPageError(page);
5538 			err = __extent_read_full_page(tree, page,
5539 						      btree_get_extent, &bio,
5540 						      mirror_num, &bio_flags,
5541 						      REQ_META);
5542 			if (err) {
5543 				ret = err;
5544 				/*
5545 				 * We use &bio in above __extent_read_full_page,
5546 				 * so we ensure that if it returns error, the
5547 				 * current page fails to add itself to bio and
5548 				 * it's been unlocked.
5549 				 *
5550 				 * We must dec io_pages by ourselves.
5551 				 */
5552 				atomic_dec(&eb->io_pages);
5553 			}
5554 		} else {
5555 			unlock_page(page);
5556 		}
5557 	}
5558 
5559 	if (bio) {
5560 		err = submit_one_bio(bio, mirror_num, bio_flags);
5561 		if (err)
5562 			return err;
5563 	}
5564 
5565 	if (ret || wait != WAIT_COMPLETE)
5566 		return ret;
5567 
5568 	for (i = 0; i < num_pages; i++) {
5569 		page = eb->pages[i];
5570 		wait_on_page_locked(page);
5571 		if (!PageUptodate(page))
5572 			ret = -EIO;
5573 	}
5574 
5575 	return ret;
5576 
5577 unlock_exit:
5578 	while (locked_pages > 0) {
5579 		locked_pages--;
5580 		page = eb->pages[locked_pages];
5581 		unlock_page(page);
5582 	}
5583 	return ret;
5584 }
5585 
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)5586 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5587 			unsigned long start, unsigned long len)
5588 {
5589 	size_t cur;
5590 	size_t offset;
5591 	struct page *page;
5592 	char *kaddr;
5593 	char *dst = (char *)dstv;
5594 	size_t start_offset = offset_in_page(eb->start);
5595 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5596 
5597 	if (start + len > eb->len) {
5598 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5599 		     eb->start, eb->len, start, len);
5600 		memset(dst, 0, len);
5601 		return;
5602 	}
5603 
5604 	offset = offset_in_page(start_offset + start);
5605 
5606 	while (len > 0) {
5607 		page = eb->pages[i];
5608 
5609 		cur = min(len, (PAGE_SIZE - offset));
5610 		kaddr = page_address(page);
5611 		memcpy(dst, kaddr + offset, cur);
5612 
5613 		dst += cur;
5614 		len -= cur;
5615 		offset = 0;
5616 		i++;
5617 	}
5618 }
5619 
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)5620 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5621 				       void __user *dstv,
5622 				       unsigned long start, unsigned long len)
5623 {
5624 	size_t cur;
5625 	size_t offset;
5626 	struct page *page;
5627 	char *kaddr;
5628 	char __user *dst = (char __user *)dstv;
5629 	size_t start_offset = offset_in_page(eb->start);
5630 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5631 	int ret = 0;
5632 
5633 	WARN_ON(start > eb->len);
5634 	WARN_ON(start + len > eb->start + eb->len);
5635 
5636 	offset = offset_in_page(start_offset + start);
5637 
5638 	while (len > 0) {
5639 		page = eb->pages[i];
5640 
5641 		cur = min(len, (PAGE_SIZE - offset));
5642 		kaddr = page_address(page);
5643 		if (probe_user_write(dst, kaddr + offset, cur)) {
5644 			ret = -EFAULT;
5645 			break;
5646 		}
5647 
5648 		dst += cur;
5649 		len -= cur;
5650 		offset = 0;
5651 		i++;
5652 	}
5653 
5654 	return ret;
5655 }
5656 
5657 /*
5658  * return 0 if the item is found within a page.
5659  * return 1 if the item spans two pages.
5660  * return -EINVAL otherwise.
5661  */
map_private_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long min_len,char ** map,unsigned long * map_start,unsigned long * map_len)5662 int map_private_extent_buffer(const struct extent_buffer *eb,
5663 			      unsigned long start, unsigned long min_len,
5664 			      char **map, unsigned long *map_start,
5665 			      unsigned long *map_len)
5666 {
5667 	size_t offset;
5668 	char *kaddr;
5669 	struct page *p;
5670 	size_t start_offset = offset_in_page(eb->start);
5671 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5672 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5673 		PAGE_SHIFT;
5674 
5675 	if (start + min_len > eb->len) {
5676 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5677 		       eb->start, eb->len, start, min_len);
5678 		return -EINVAL;
5679 	}
5680 
5681 	if (i != end_i)
5682 		return 1;
5683 
5684 	if (i == 0) {
5685 		offset = start_offset;
5686 		*map_start = 0;
5687 	} else {
5688 		offset = 0;
5689 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5690 	}
5691 
5692 	p = eb->pages[i];
5693 	kaddr = page_address(p);
5694 	*map = kaddr + offset;
5695 	*map_len = PAGE_SIZE - offset;
5696 	return 0;
5697 }
5698 
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)5699 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5700 			 unsigned long start, unsigned long len)
5701 {
5702 	size_t cur;
5703 	size_t offset;
5704 	struct page *page;
5705 	char *kaddr;
5706 	char *ptr = (char *)ptrv;
5707 	size_t start_offset = offset_in_page(eb->start);
5708 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5709 	int ret = 0;
5710 
5711 	WARN_ON(start > eb->len);
5712 	WARN_ON(start + len > eb->start + eb->len);
5713 
5714 	offset = offset_in_page(start_offset + start);
5715 
5716 	while (len > 0) {
5717 		page = eb->pages[i];
5718 
5719 		cur = min(len, (PAGE_SIZE - offset));
5720 
5721 		kaddr = page_address(page);
5722 		ret = memcmp(ptr, kaddr + offset, cur);
5723 		if (ret)
5724 			break;
5725 
5726 		ptr += cur;
5727 		len -= cur;
5728 		offset = 0;
5729 		i++;
5730 	}
5731 	return ret;
5732 }
5733 
write_extent_buffer_chunk_tree_uuid(struct extent_buffer * eb,const void * srcv)5734 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5735 		const void *srcv)
5736 {
5737 	char *kaddr;
5738 
5739 	WARN_ON(!PageUptodate(eb->pages[0]));
5740 	kaddr = page_address(eb->pages[0]);
5741 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5742 			BTRFS_FSID_SIZE);
5743 }
5744 
write_extent_buffer_fsid(struct extent_buffer * eb,const void * srcv)5745 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5746 {
5747 	char *kaddr;
5748 
5749 	WARN_ON(!PageUptodate(eb->pages[0]));
5750 	kaddr = page_address(eb->pages[0]);
5751 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5752 			BTRFS_FSID_SIZE);
5753 }
5754 
write_extent_buffer(struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)5755 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5756 			 unsigned long start, unsigned long len)
5757 {
5758 	size_t cur;
5759 	size_t offset;
5760 	struct page *page;
5761 	char *kaddr;
5762 	char *src = (char *)srcv;
5763 	size_t start_offset = offset_in_page(eb->start);
5764 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5765 
5766 	WARN_ON(start > eb->len);
5767 	WARN_ON(start + len > eb->start + eb->len);
5768 
5769 	offset = offset_in_page(start_offset + start);
5770 
5771 	while (len > 0) {
5772 		page = eb->pages[i];
5773 		WARN_ON(!PageUptodate(page));
5774 
5775 		cur = min(len, PAGE_SIZE - offset);
5776 		kaddr = page_address(page);
5777 		memcpy(kaddr + offset, src, cur);
5778 
5779 		src += cur;
5780 		len -= cur;
5781 		offset = 0;
5782 		i++;
5783 	}
5784 }
5785 
memzero_extent_buffer(struct extent_buffer * eb,unsigned long start,unsigned long len)5786 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5787 		unsigned long len)
5788 {
5789 	size_t cur;
5790 	size_t offset;
5791 	struct page *page;
5792 	char *kaddr;
5793 	size_t start_offset = offset_in_page(eb->start);
5794 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5795 
5796 	WARN_ON(start > eb->len);
5797 	WARN_ON(start + len > eb->start + eb->len);
5798 
5799 	offset = offset_in_page(start_offset + start);
5800 
5801 	while (len > 0) {
5802 		page = eb->pages[i];
5803 		WARN_ON(!PageUptodate(page));
5804 
5805 		cur = min(len, PAGE_SIZE - offset);
5806 		kaddr = page_address(page);
5807 		memset(kaddr + offset, 0, cur);
5808 
5809 		len -= cur;
5810 		offset = 0;
5811 		i++;
5812 	}
5813 }
5814 
copy_extent_buffer_full(struct extent_buffer * dst,struct extent_buffer * src)5815 void copy_extent_buffer_full(struct extent_buffer *dst,
5816 			     struct extent_buffer *src)
5817 {
5818 	int i;
5819 	int num_pages;
5820 
5821 	ASSERT(dst->len == src->len);
5822 
5823 	num_pages = num_extent_pages(dst);
5824 	for (i = 0; i < num_pages; i++)
5825 		copy_page(page_address(dst->pages[i]),
5826 				page_address(src->pages[i]));
5827 }
5828 
copy_extent_buffer(struct extent_buffer * dst,struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5829 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5830 			unsigned long dst_offset, unsigned long src_offset,
5831 			unsigned long len)
5832 {
5833 	u64 dst_len = dst->len;
5834 	size_t cur;
5835 	size_t offset;
5836 	struct page *page;
5837 	char *kaddr;
5838 	size_t start_offset = offset_in_page(dst->start);
5839 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5840 
5841 	WARN_ON(src->len != dst_len);
5842 
5843 	offset = offset_in_page(start_offset + dst_offset);
5844 
5845 	while (len > 0) {
5846 		page = dst->pages[i];
5847 		WARN_ON(!PageUptodate(page));
5848 
5849 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5850 
5851 		kaddr = page_address(page);
5852 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5853 
5854 		src_offset += cur;
5855 		len -= cur;
5856 		offset = 0;
5857 		i++;
5858 	}
5859 }
5860 
5861 /*
5862  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5863  * given bit number
5864  * @eb: the extent buffer
5865  * @start: offset of the bitmap item in the extent buffer
5866  * @nr: bit number
5867  * @page_index: return index of the page in the extent buffer that contains the
5868  * given bit number
5869  * @page_offset: return offset into the page given by page_index
5870  *
5871  * This helper hides the ugliness of finding the byte in an extent buffer which
5872  * contains a given bit.
5873  */
eb_bitmap_offset(struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * page_index,size_t * page_offset)5874 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5875 				    unsigned long start, unsigned long nr,
5876 				    unsigned long *page_index,
5877 				    size_t *page_offset)
5878 {
5879 	size_t start_offset = offset_in_page(eb->start);
5880 	size_t byte_offset = BIT_BYTE(nr);
5881 	size_t offset;
5882 
5883 	/*
5884 	 * The byte we want is the offset of the extent buffer + the offset of
5885 	 * the bitmap item in the extent buffer + the offset of the byte in the
5886 	 * bitmap item.
5887 	 */
5888 	offset = start_offset + start + byte_offset;
5889 
5890 	*page_index = offset >> PAGE_SHIFT;
5891 	*page_offset = offset_in_page(offset);
5892 }
5893 
5894 /**
5895  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5896  * @eb: the extent buffer
5897  * @start: offset of the bitmap item in the extent buffer
5898  * @nr: bit number to test
5899  */
extent_buffer_test_bit(struct extent_buffer * eb,unsigned long start,unsigned long nr)5900 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5901 			   unsigned long nr)
5902 {
5903 	u8 *kaddr;
5904 	struct page *page;
5905 	unsigned long i;
5906 	size_t offset;
5907 
5908 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5909 	page = eb->pages[i];
5910 	WARN_ON(!PageUptodate(page));
5911 	kaddr = page_address(page);
5912 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5913 }
5914 
5915 /**
5916  * extent_buffer_bitmap_set - set an area of a bitmap
5917  * @eb: the extent buffer
5918  * @start: offset of the bitmap item in the extent buffer
5919  * @pos: bit number of the first bit
5920  * @len: number of bits to set
5921  */
extent_buffer_bitmap_set(struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)5922 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5923 			      unsigned long pos, unsigned long len)
5924 {
5925 	u8 *kaddr;
5926 	struct page *page;
5927 	unsigned long i;
5928 	size_t offset;
5929 	const unsigned int size = pos + len;
5930 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5931 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5932 
5933 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5934 	page = eb->pages[i];
5935 	WARN_ON(!PageUptodate(page));
5936 	kaddr = page_address(page);
5937 
5938 	while (len >= bits_to_set) {
5939 		kaddr[offset] |= mask_to_set;
5940 		len -= bits_to_set;
5941 		bits_to_set = BITS_PER_BYTE;
5942 		mask_to_set = ~0;
5943 		if (++offset >= PAGE_SIZE && len > 0) {
5944 			offset = 0;
5945 			page = eb->pages[++i];
5946 			WARN_ON(!PageUptodate(page));
5947 			kaddr = page_address(page);
5948 		}
5949 	}
5950 	if (len) {
5951 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5952 		kaddr[offset] |= mask_to_set;
5953 	}
5954 }
5955 
5956 
5957 /**
5958  * extent_buffer_bitmap_clear - clear an area of a bitmap
5959  * @eb: the extent buffer
5960  * @start: offset of the bitmap item in the extent buffer
5961  * @pos: bit number of the first bit
5962  * @len: number of bits to clear
5963  */
extent_buffer_bitmap_clear(struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)5964 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5965 				unsigned long pos, unsigned long len)
5966 {
5967 	u8 *kaddr;
5968 	struct page *page;
5969 	unsigned long i;
5970 	size_t offset;
5971 	const unsigned int size = pos + len;
5972 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5973 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5974 
5975 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5976 	page = eb->pages[i];
5977 	WARN_ON(!PageUptodate(page));
5978 	kaddr = page_address(page);
5979 
5980 	while (len >= bits_to_clear) {
5981 		kaddr[offset] &= ~mask_to_clear;
5982 		len -= bits_to_clear;
5983 		bits_to_clear = BITS_PER_BYTE;
5984 		mask_to_clear = ~0;
5985 		if (++offset >= PAGE_SIZE && len > 0) {
5986 			offset = 0;
5987 			page = eb->pages[++i];
5988 			WARN_ON(!PageUptodate(page));
5989 			kaddr = page_address(page);
5990 		}
5991 	}
5992 	if (len) {
5993 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5994 		kaddr[offset] &= ~mask_to_clear;
5995 	}
5996 }
5997 
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)5998 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5999 {
6000 	unsigned long distance = (src > dst) ? src - dst : dst - src;
6001 	return distance < len;
6002 }
6003 
copy_pages(struct page * dst_page,struct page * src_page,unsigned long dst_off,unsigned long src_off,unsigned long len)6004 static void copy_pages(struct page *dst_page, struct page *src_page,
6005 		       unsigned long dst_off, unsigned long src_off,
6006 		       unsigned long len)
6007 {
6008 	char *dst_kaddr = page_address(dst_page);
6009 	char *src_kaddr;
6010 	int must_memmove = 0;
6011 
6012 	if (dst_page != src_page) {
6013 		src_kaddr = page_address(src_page);
6014 	} else {
6015 		src_kaddr = dst_kaddr;
6016 		if (areas_overlap(src_off, dst_off, len))
6017 			must_memmove = 1;
6018 	}
6019 
6020 	if (must_memmove)
6021 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6022 	else
6023 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6024 }
6025 
memcpy_extent_buffer(struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)6026 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
6027 			   unsigned long src_offset, unsigned long len)
6028 {
6029 	struct btrfs_fs_info *fs_info = dst->fs_info;
6030 	size_t cur;
6031 	size_t dst_off_in_page;
6032 	size_t src_off_in_page;
6033 	size_t start_offset = offset_in_page(dst->start);
6034 	unsigned long dst_i;
6035 	unsigned long src_i;
6036 
6037 	if (src_offset + len > dst->len) {
6038 		btrfs_err(fs_info,
6039 			"memmove bogus src_offset %lu move len %lu dst len %lu",
6040 			 src_offset, len, dst->len);
6041 		BUG();
6042 	}
6043 	if (dst_offset + len > dst->len) {
6044 		btrfs_err(fs_info,
6045 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
6046 			 dst_offset, len, dst->len);
6047 		BUG();
6048 	}
6049 
6050 	while (len > 0) {
6051 		dst_off_in_page = offset_in_page(start_offset + dst_offset);
6052 		src_off_in_page = offset_in_page(start_offset + src_offset);
6053 
6054 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
6055 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
6056 
6057 		cur = min(len, (unsigned long)(PAGE_SIZE -
6058 					       src_off_in_page));
6059 		cur = min_t(unsigned long, cur,
6060 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
6061 
6062 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6063 			   dst_off_in_page, src_off_in_page, cur);
6064 
6065 		src_offset += cur;
6066 		dst_offset += cur;
6067 		len -= cur;
6068 	}
6069 }
6070 
memmove_extent_buffer(struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)6071 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
6072 			   unsigned long src_offset, unsigned long len)
6073 {
6074 	struct btrfs_fs_info *fs_info = dst->fs_info;
6075 	size_t cur;
6076 	size_t dst_off_in_page;
6077 	size_t src_off_in_page;
6078 	unsigned long dst_end = dst_offset + len - 1;
6079 	unsigned long src_end = src_offset + len - 1;
6080 	size_t start_offset = offset_in_page(dst->start);
6081 	unsigned long dst_i;
6082 	unsigned long src_i;
6083 
6084 	if (src_offset + len > dst->len) {
6085 		btrfs_err(fs_info,
6086 			  "memmove bogus src_offset %lu move len %lu len %lu",
6087 			  src_offset, len, dst->len);
6088 		BUG();
6089 	}
6090 	if (dst_offset + len > dst->len) {
6091 		btrfs_err(fs_info,
6092 			  "memmove bogus dst_offset %lu move len %lu len %lu",
6093 			  dst_offset, len, dst->len);
6094 		BUG();
6095 	}
6096 	if (dst_offset < src_offset) {
6097 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6098 		return;
6099 	}
6100 	while (len > 0) {
6101 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6102 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
6103 
6104 		dst_off_in_page = offset_in_page(start_offset + dst_end);
6105 		src_off_in_page = offset_in_page(start_offset + src_end);
6106 
6107 		cur = min_t(unsigned long, len, src_off_in_page + 1);
6108 		cur = min(cur, dst_off_in_page + 1);
6109 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
6110 			   dst_off_in_page - cur + 1,
6111 			   src_off_in_page - cur + 1, cur);
6112 
6113 		dst_end -= cur;
6114 		src_end -= cur;
6115 		len -= cur;
6116 	}
6117 }
6118 
try_release_extent_buffer(struct page * page)6119 int try_release_extent_buffer(struct page *page)
6120 {
6121 	struct extent_buffer *eb;
6122 
6123 	/*
6124 	 * We need to make sure nobody is attaching this page to an eb right
6125 	 * now.
6126 	 */
6127 	spin_lock(&page->mapping->private_lock);
6128 	if (!PagePrivate(page)) {
6129 		spin_unlock(&page->mapping->private_lock);
6130 		return 1;
6131 	}
6132 
6133 	eb = (struct extent_buffer *)page->private;
6134 	BUG_ON(!eb);
6135 
6136 	/*
6137 	 * This is a little awful but should be ok, we need to make sure that
6138 	 * the eb doesn't disappear out from under us while we're looking at
6139 	 * this page.
6140 	 */
6141 	spin_lock(&eb->refs_lock);
6142 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6143 		spin_unlock(&eb->refs_lock);
6144 		spin_unlock(&page->mapping->private_lock);
6145 		return 0;
6146 	}
6147 	spin_unlock(&page->mapping->private_lock);
6148 
6149 	/*
6150 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
6151 	 * so just return, this page will likely be freed soon anyway.
6152 	 */
6153 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6154 		spin_unlock(&eb->refs_lock);
6155 		return 0;
6156 	}
6157 
6158 	return release_extent_buffer(eb);
6159 }
6160