• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "delayed-inode.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "ctree.h"
15 #include "qgroup.h"
16 
17 #define BTRFS_DELAYED_WRITEBACK		512
18 #define BTRFS_DELAYED_BACKGROUND	128
19 #define BTRFS_DELAYED_BATCH		16
20 
21 static struct kmem_cache *delayed_node_cache;
22 
btrfs_delayed_inode_init(void)23 int __init btrfs_delayed_inode_init(void)
24 {
25 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
26 					sizeof(struct btrfs_delayed_node),
27 					0,
28 					SLAB_MEM_SPREAD,
29 					NULL);
30 	if (!delayed_node_cache)
31 		return -ENOMEM;
32 	return 0;
33 }
34 
btrfs_delayed_inode_exit(void)35 void __cold btrfs_delayed_inode_exit(void)
36 {
37 	kmem_cache_destroy(delayed_node_cache);
38 }
39 
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)40 static inline void btrfs_init_delayed_node(
41 				struct btrfs_delayed_node *delayed_node,
42 				struct btrfs_root *root, u64 inode_id)
43 {
44 	delayed_node->root = root;
45 	delayed_node->inode_id = inode_id;
46 	refcount_set(&delayed_node->refs, 0);
47 	delayed_node->ins_root = RB_ROOT_CACHED;
48 	delayed_node->del_root = RB_ROOT_CACHED;
49 	mutex_init(&delayed_node->mutex);
50 	INIT_LIST_HEAD(&delayed_node->n_list);
51 	INIT_LIST_HEAD(&delayed_node->p_list);
52 }
53 
btrfs_is_continuous_delayed_item(struct btrfs_delayed_item * item1,struct btrfs_delayed_item * item2)54 static inline int btrfs_is_continuous_delayed_item(
55 					struct btrfs_delayed_item *item1,
56 					struct btrfs_delayed_item *item2)
57 {
58 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
59 	    item1->key.objectid == item2->key.objectid &&
60 	    item1->key.type == item2->key.type &&
61 	    item1->key.offset + 1 == item2->key.offset)
62 		return 1;
63 	return 0;
64 }
65 
btrfs_get_delayed_node(struct btrfs_inode * btrfs_inode)66 static struct btrfs_delayed_node *btrfs_get_delayed_node(
67 		struct btrfs_inode *btrfs_inode)
68 {
69 	struct btrfs_root *root = btrfs_inode->root;
70 	u64 ino = btrfs_ino(btrfs_inode);
71 	struct btrfs_delayed_node *node;
72 
73 	node = READ_ONCE(btrfs_inode->delayed_node);
74 	if (node) {
75 		refcount_inc(&node->refs);
76 		return node;
77 	}
78 
79 	spin_lock(&root->inode_lock);
80 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
81 
82 	if (node) {
83 		if (btrfs_inode->delayed_node) {
84 			refcount_inc(&node->refs);	/* can be accessed */
85 			BUG_ON(btrfs_inode->delayed_node != node);
86 			spin_unlock(&root->inode_lock);
87 			return node;
88 		}
89 
90 		/*
91 		 * It's possible that we're racing into the middle of removing
92 		 * this node from the radix tree.  In this case, the refcount
93 		 * was zero and it should never go back to one.  Just return
94 		 * NULL like it was never in the radix at all; our release
95 		 * function is in the process of removing it.
96 		 *
97 		 * Some implementations of refcount_inc refuse to bump the
98 		 * refcount once it has hit zero.  If we don't do this dance
99 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
100 		 * of actually bumping the refcount.
101 		 *
102 		 * If this node is properly in the radix, we want to bump the
103 		 * refcount twice, once for the inode and once for this get
104 		 * operation.
105 		 */
106 		if (refcount_inc_not_zero(&node->refs)) {
107 			refcount_inc(&node->refs);
108 			btrfs_inode->delayed_node = node;
109 		} else {
110 			node = NULL;
111 		}
112 
113 		spin_unlock(&root->inode_lock);
114 		return node;
115 	}
116 	spin_unlock(&root->inode_lock);
117 
118 	return NULL;
119 }
120 
121 /* Will return either the node or PTR_ERR(-ENOMEM) */
btrfs_get_or_create_delayed_node(struct btrfs_inode * btrfs_inode)122 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
123 		struct btrfs_inode *btrfs_inode)
124 {
125 	struct btrfs_delayed_node *node;
126 	struct btrfs_root *root = btrfs_inode->root;
127 	u64 ino = btrfs_ino(btrfs_inode);
128 	int ret;
129 
130 again:
131 	node = btrfs_get_delayed_node(btrfs_inode);
132 	if (node)
133 		return node;
134 
135 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
136 	if (!node)
137 		return ERR_PTR(-ENOMEM);
138 	btrfs_init_delayed_node(node, root, ino);
139 
140 	/* cached in the btrfs inode and can be accessed */
141 	refcount_set(&node->refs, 2);
142 
143 	ret = radix_tree_preload(GFP_NOFS);
144 	if (ret) {
145 		kmem_cache_free(delayed_node_cache, node);
146 		return ERR_PTR(ret);
147 	}
148 
149 	spin_lock(&root->inode_lock);
150 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
151 	if (ret == -EEXIST) {
152 		spin_unlock(&root->inode_lock);
153 		kmem_cache_free(delayed_node_cache, node);
154 		radix_tree_preload_end();
155 		goto again;
156 	}
157 	btrfs_inode->delayed_node = node;
158 	spin_unlock(&root->inode_lock);
159 	radix_tree_preload_end();
160 
161 	return node;
162 }
163 
164 /*
165  * Call it when holding delayed_node->mutex
166  *
167  * If mod = 1, add this node into the prepared list.
168  */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
170 				     struct btrfs_delayed_node *node,
171 				     int mod)
172 {
173 	spin_lock(&root->lock);
174 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
175 		if (!list_empty(&node->p_list))
176 			list_move_tail(&node->p_list, &root->prepare_list);
177 		else if (mod)
178 			list_add_tail(&node->p_list, &root->prepare_list);
179 	} else {
180 		list_add_tail(&node->n_list, &root->node_list);
181 		list_add_tail(&node->p_list, &root->prepare_list);
182 		refcount_inc(&node->refs);	/* inserted into list */
183 		root->nodes++;
184 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
185 	}
186 	spin_unlock(&root->lock);
187 }
188 
189 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
191 				       struct btrfs_delayed_node *node)
192 {
193 	spin_lock(&root->lock);
194 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
195 		root->nodes--;
196 		refcount_dec(&node->refs);	/* not in the list */
197 		list_del_init(&node->n_list);
198 		if (!list_empty(&node->p_list))
199 			list_del_init(&node->p_list);
200 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
201 	}
202 	spin_unlock(&root->lock);
203 }
204 
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root)205 static struct btrfs_delayed_node *btrfs_first_delayed_node(
206 			struct btrfs_delayed_root *delayed_root)
207 {
208 	struct list_head *p;
209 	struct btrfs_delayed_node *node = NULL;
210 
211 	spin_lock(&delayed_root->lock);
212 	if (list_empty(&delayed_root->node_list))
213 		goto out;
214 
215 	p = delayed_root->node_list.next;
216 	node = list_entry(p, struct btrfs_delayed_node, n_list);
217 	refcount_inc(&node->refs);
218 out:
219 	spin_unlock(&delayed_root->lock);
220 
221 	return node;
222 }
223 
btrfs_next_delayed_node(struct btrfs_delayed_node * node)224 static struct btrfs_delayed_node *btrfs_next_delayed_node(
225 						struct btrfs_delayed_node *node)
226 {
227 	struct btrfs_delayed_root *delayed_root;
228 	struct list_head *p;
229 	struct btrfs_delayed_node *next = NULL;
230 
231 	delayed_root = node->root->fs_info->delayed_root;
232 	spin_lock(&delayed_root->lock);
233 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
234 		/* not in the list */
235 		if (list_empty(&delayed_root->node_list))
236 			goto out;
237 		p = delayed_root->node_list.next;
238 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
239 		goto out;
240 	else
241 		p = node->n_list.next;
242 
243 	next = list_entry(p, struct btrfs_delayed_node, n_list);
244 	refcount_inc(&next->refs);
245 out:
246 	spin_unlock(&delayed_root->lock);
247 
248 	return next;
249 }
250 
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod)251 static void __btrfs_release_delayed_node(
252 				struct btrfs_delayed_node *delayed_node,
253 				int mod)
254 {
255 	struct btrfs_delayed_root *delayed_root;
256 
257 	if (!delayed_node)
258 		return;
259 
260 	delayed_root = delayed_node->root->fs_info->delayed_root;
261 
262 	mutex_lock(&delayed_node->mutex);
263 	if (delayed_node->count)
264 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
265 	else
266 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
267 	mutex_unlock(&delayed_node->mutex);
268 
269 	if (refcount_dec_and_test(&delayed_node->refs)) {
270 		struct btrfs_root *root = delayed_node->root;
271 
272 		spin_lock(&root->inode_lock);
273 		/*
274 		 * Once our refcount goes to zero, nobody is allowed to bump it
275 		 * back up.  We can delete it now.
276 		 */
277 		ASSERT(refcount_read(&delayed_node->refs) == 0);
278 		radix_tree_delete(&root->delayed_nodes_tree,
279 				  delayed_node->inode_id);
280 		spin_unlock(&root->inode_lock);
281 		kmem_cache_free(delayed_node_cache, delayed_node);
282 	}
283 }
284 
btrfs_release_delayed_node(struct btrfs_delayed_node * node)285 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
286 {
287 	__btrfs_release_delayed_node(node, 0);
288 }
289 
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root)290 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
291 					struct btrfs_delayed_root *delayed_root)
292 {
293 	struct list_head *p;
294 	struct btrfs_delayed_node *node = NULL;
295 
296 	spin_lock(&delayed_root->lock);
297 	if (list_empty(&delayed_root->prepare_list))
298 		goto out;
299 
300 	p = delayed_root->prepare_list.next;
301 	list_del_init(p);
302 	node = list_entry(p, struct btrfs_delayed_node, p_list);
303 	refcount_inc(&node->refs);
304 out:
305 	spin_unlock(&delayed_root->lock);
306 
307 	return node;
308 }
309 
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node)310 static inline void btrfs_release_prepared_delayed_node(
311 					struct btrfs_delayed_node *node)
312 {
313 	__btrfs_release_delayed_node(node, 1);
314 }
315 
btrfs_alloc_delayed_item(u32 data_len)316 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
317 {
318 	struct btrfs_delayed_item *item;
319 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
320 	if (item) {
321 		item->data_len = data_len;
322 		item->ins_or_del = 0;
323 		item->bytes_reserved = 0;
324 		item->delayed_node = NULL;
325 		refcount_set(&item->refs, 1);
326 	}
327 	return item;
328 }
329 
330 /*
331  * __btrfs_lookup_delayed_item - look up the delayed item by key
332  * @delayed_node: pointer to the delayed node
333  * @key:	  the key to look up
334  * @prev:	  used to store the prev item if the right item isn't found
335  * @next:	  used to store the next item if the right item isn't found
336  *
337  * Note: if we don't find the right item, we will return the prev item and
338  * the next item.
339  */
__btrfs_lookup_delayed_item(struct rb_root * root,struct btrfs_key * key,struct btrfs_delayed_item ** prev,struct btrfs_delayed_item ** next)340 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
341 				struct rb_root *root,
342 				struct btrfs_key *key,
343 				struct btrfs_delayed_item **prev,
344 				struct btrfs_delayed_item **next)
345 {
346 	struct rb_node *node, *prev_node = NULL;
347 	struct btrfs_delayed_item *delayed_item = NULL;
348 	int ret = 0;
349 
350 	node = root->rb_node;
351 
352 	while (node) {
353 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
354 					rb_node);
355 		prev_node = node;
356 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
357 		if (ret < 0)
358 			node = node->rb_right;
359 		else if (ret > 0)
360 			node = node->rb_left;
361 		else
362 			return delayed_item;
363 	}
364 
365 	if (prev) {
366 		if (!prev_node)
367 			*prev = NULL;
368 		else if (ret < 0)
369 			*prev = delayed_item;
370 		else if ((node = rb_prev(prev_node)) != NULL) {
371 			*prev = rb_entry(node, struct btrfs_delayed_item,
372 					 rb_node);
373 		} else
374 			*prev = NULL;
375 	}
376 
377 	if (next) {
378 		if (!prev_node)
379 			*next = NULL;
380 		else if (ret > 0)
381 			*next = delayed_item;
382 		else if ((node = rb_next(prev_node)) != NULL) {
383 			*next = rb_entry(node, struct btrfs_delayed_item,
384 					 rb_node);
385 		} else
386 			*next = NULL;
387 	}
388 	return NULL;
389 }
390 
__btrfs_lookup_delayed_insertion_item(struct btrfs_delayed_node * delayed_node,struct btrfs_key * key)391 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
392 					struct btrfs_delayed_node *delayed_node,
393 					struct btrfs_key *key)
394 {
395 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
396 					   NULL, NULL);
397 }
398 
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins,int action)399 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
400 				    struct btrfs_delayed_item *ins,
401 				    int action)
402 {
403 	struct rb_node **p, *node;
404 	struct rb_node *parent_node = NULL;
405 	struct rb_root_cached *root;
406 	struct btrfs_delayed_item *item;
407 	int cmp;
408 	bool leftmost = true;
409 
410 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
411 		root = &delayed_node->ins_root;
412 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
413 		root = &delayed_node->del_root;
414 	else
415 		BUG();
416 	p = &root->rb_root.rb_node;
417 	node = &ins->rb_node;
418 
419 	while (*p) {
420 		parent_node = *p;
421 		item = rb_entry(parent_node, struct btrfs_delayed_item,
422 				 rb_node);
423 
424 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
425 		if (cmp < 0) {
426 			p = &(*p)->rb_right;
427 			leftmost = false;
428 		} else if (cmp > 0) {
429 			p = &(*p)->rb_left;
430 		} else {
431 			return -EEXIST;
432 		}
433 	}
434 
435 	rb_link_node(node, parent_node, p);
436 	rb_insert_color_cached(node, root, leftmost);
437 	ins->delayed_node = delayed_node;
438 	ins->ins_or_del = action;
439 
440 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
441 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
442 	    ins->key.offset >= delayed_node->index_cnt)
443 			delayed_node->index_cnt = ins->key.offset + 1;
444 
445 	delayed_node->count++;
446 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
447 	return 0;
448 }
449 
__btrfs_add_delayed_insertion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)450 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
451 					      struct btrfs_delayed_item *item)
452 {
453 	return __btrfs_add_delayed_item(node, item,
454 					BTRFS_DELAYED_INSERTION_ITEM);
455 }
456 
__btrfs_add_delayed_deletion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)457 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
458 					     struct btrfs_delayed_item *item)
459 {
460 	return __btrfs_add_delayed_item(node, item,
461 					BTRFS_DELAYED_DELETION_ITEM);
462 }
463 
finish_one_item(struct btrfs_delayed_root * delayed_root)464 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
465 {
466 	int seq = atomic_inc_return(&delayed_root->items_seq);
467 
468 	/* atomic_dec_return implies a barrier */
469 	if ((atomic_dec_return(&delayed_root->items) <
470 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
471 		cond_wake_up_nomb(&delayed_root->wait);
472 }
473 
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)474 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
475 {
476 	struct rb_root_cached *root;
477 	struct btrfs_delayed_root *delayed_root;
478 
479 	/* Not associated with any delayed_node */
480 	if (!delayed_item->delayed_node)
481 		return;
482 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
483 
484 	BUG_ON(!delayed_root);
485 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
486 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
487 
488 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
489 		root = &delayed_item->delayed_node->ins_root;
490 	else
491 		root = &delayed_item->delayed_node->del_root;
492 
493 	rb_erase_cached(&delayed_item->rb_node, root);
494 	delayed_item->delayed_node->count--;
495 
496 	finish_one_item(delayed_root);
497 }
498 
btrfs_release_delayed_item(struct btrfs_delayed_item * item)499 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
500 {
501 	if (item) {
502 		__btrfs_remove_delayed_item(item);
503 		if (refcount_dec_and_test(&item->refs))
504 			kfree(item);
505 	}
506 }
507 
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)508 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
509 					struct btrfs_delayed_node *delayed_node)
510 {
511 	struct rb_node *p;
512 	struct btrfs_delayed_item *item = NULL;
513 
514 	p = rb_first_cached(&delayed_node->ins_root);
515 	if (p)
516 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
517 
518 	return item;
519 }
520 
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)521 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
522 					struct btrfs_delayed_node *delayed_node)
523 {
524 	struct rb_node *p;
525 	struct btrfs_delayed_item *item = NULL;
526 
527 	p = rb_first_cached(&delayed_node->del_root);
528 	if (p)
529 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
530 
531 	return item;
532 }
533 
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)534 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
535 						struct btrfs_delayed_item *item)
536 {
537 	struct rb_node *p;
538 	struct btrfs_delayed_item *next = NULL;
539 
540 	p = rb_next(&item->rb_node);
541 	if (p)
542 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
543 
544 	return next;
545 }
546 
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_item * item)547 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
548 					       struct btrfs_root *root,
549 					       struct btrfs_delayed_item *item)
550 {
551 	struct btrfs_block_rsv *src_rsv;
552 	struct btrfs_block_rsv *dst_rsv;
553 	struct btrfs_fs_info *fs_info = root->fs_info;
554 	u64 num_bytes;
555 	int ret;
556 
557 	if (!trans->bytes_reserved)
558 		return 0;
559 
560 	src_rsv = trans->block_rsv;
561 	dst_rsv = &fs_info->delayed_block_rsv;
562 
563 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
564 
565 	/*
566 	 * Here we migrate space rsv from transaction rsv, since have already
567 	 * reserved space when starting a transaction.  So no need to reserve
568 	 * qgroup space here.
569 	 */
570 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
571 	if (!ret) {
572 		trace_btrfs_space_reservation(fs_info, "delayed_item",
573 					      item->key.objectid,
574 					      num_bytes, 1);
575 		item->bytes_reserved = num_bytes;
576 	}
577 
578 	return ret;
579 }
580 
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)581 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
582 						struct btrfs_delayed_item *item)
583 {
584 	struct btrfs_block_rsv *rsv;
585 	struct btrfs_fs_info *fs_info = root->fs_info;
586 
587 	if (!item->bytes_reserved)
588 		return;
589 
590 	rsv = &fs_info->delayed_block_rsv;
591 	/*
592 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
593 	 * to release/reserve qgroup space.
594 	 */
595 	trace_btrfs_space_reservation(fs_info, "delayed_item",
596 				      item->key.objectid, item->bytes_reserved,
597 				      0);
598 	btrfs_block_rsv_release(fs_info, rsv,
599 				item->bytes_reserved);
600 }
601 
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_delayed_node * node)602 static int btrfs_delayed_inode_reserve_metadata(
603 					struct btrfs_trans_handle *trans,
604 					struct btrfs_root *root,
605 					struct btrfs_inode *inode,
606 					struct btrfs_delayed_node *node)
607 {
608 	struct btrfs_fs_info *fs_info = root->fs_info;
609 	struct btrfs_block_rsv *src_rsv;
610 	struct btrfs_block_rsv *dst_rsv;
611 	u64 num_bytes;
612 	int ret;
613 
614 	src_rsv = trans->block_rsv;
615 	dst_rsv = &fs_info->delayed_block_rsv;
616 
617 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
618 
619 	/*
620 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
621 	 * which doesn't reserve space for speed.  This is a problem since we
622 	 * still need to reserve space for this update, so try to reserve the
623 	 * space.
624 	 *
625 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
626 	 * we always reserve enough to update the inode item.
627 	 */
628 	if (!src_rsv || (!trans->bytes_reserved &&
629 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
630 		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
631 					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
632 		if (ret < 0)
633 			return ret;
634 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
635 					  BTRFS_RESERVE_NO_FLUSH);
636 		/*
637 		 * Since we're under a transaction reserve_metadata_bytes could
638 		 * try to commit the transaction which will make it return
639 		 * EAGAIN to make us stop the transaction we have, so return
640 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
641 		 */
642 		if (ret == -EAGAIN) {
643 			ret = -ENOSPC;
644 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
645 		}
646 		if (!ret) {
647 			node->bytes_reserved = num_bytes;
648 			trace_btrfs_space_reservation(fs_info,
649 						      "delayed_inode",
650 						      btrfs_ino(inode),
651 						      num_bytes, 1);
652 		} else {
653 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
654 		}
655 		return ret;
656 	}
657 
658 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
659 	if (!ret) {
660 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
661 					      btrfs_ino(inode), num_bytes, 1);
662 		node->bytes_reserved = num_bytes;
663 	}
664 
665 	return ret;
666 }
667 
btrfs_delayed_inode_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,bool qgroup_free)668 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
669 						struct btrfs_delayed_node *node,
670 						bool qgroup_free)
671 {
672 	struct btrfs_block_rsv *rsv;
673 
674 	if (!node->bytes_reserved)
675 		return;
676 
677 	rsv = &fs_info->delayed_block_rsv;
678 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
679 				      node->inode_id, node->bytes_reserved, 0);
680 	btrfs_block_rsv_release(fs_info, rsv,
681 				node->bytes_reserved);
682 	if (qgroup_free)
683 		btrfs_qgroup_free_meta_prealloc(node->root,
684 				node->bytes_reserved);
685 	else
686 		btrfs_qgroup_convert_reserved_meta(node->root,
687 				node->bytes_reserved);
688 	node->bytes_reserved = 0;
689 }
690 
691 /*
692  * This helper will insert some continuous items into the same leaf according
693  * to the free space of the leaf.
694  */
btrfs_batch_insert_items(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)695 static int btrfs_batch_insert_items(struct btrfs_root *root,
696 				    struct btrfs_path *path,
697 				    struct btrfs_delayed_item *item)
698 {
699 	struct btrfs_delayed_item *curr, *next;
700 	int free_space;
701 	int total_data_size = 0, total_size = 0;
702 	struct extent_buffer *leaf;
703 	char *data_ptr;
704 	struct btrfs_key *keys;
705 	u32 *data_size;
706 	struct list_head head;
707 	int slot;
708 	int nitems;
709 	int i;
710 	int ret = 0;
711 
712 	BUG_ON(!path->nodes[0]);
713 
714 	leaf = path->nodes[0];
715 	free_space = btrfs_leaf_free_space(leaf);
716 	INIT_LIST_HEAD(&head);
717 
718 	next = item;
719 	nitems = 0;
720 
721 	/*
722 	 * count the number of the continuous items that we can insert in batch
723 	 */
724 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
725 	       free_space) {
726 		total_data_size += next->data_len;
727 		total_size += next->data_len + sizeof(struct btrfs_item);
728 		list_add_tail(&next->tree_list, &head);
729 		nitems++;
730 
731 		curr = next;
732 		next = __btrfs_next_delayed_item(curr);
733 		if (!next)
734 			break;
735 
736 		if (!btrfs_is_continuous_delayed_item(curr, next))
737 			break;
738 	}
739 
740 	if (!nitems) {
741 		ret = 0;
742 		goto out;
743 	}
744 
745 	/*
746 	 * we need allocate some memory space, but it might cause the task
747 	 * to sleep, so we set all locked nodes in the path to blocking locks
748 	 * first.
749 	 */
750 	btrfs_set_path_blocking(path);
751 
752 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
753 	if (!keys) {
754 		ret = -ENOMEM;
755 		goto out;
756 	}
757 
758 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
759 	if (!data_size) {
760 		ret = -ENOMEM;
761 		goto error;
762 	}
763 
764 	/* get keys of all the delayed items */
765 	i = 0;
766 	list_for_each_entry(next, &head, tree_list) {
767 		keys[i] = next->key;
768 		data_size[i] = next->data_len;
769 		i++;
770 	}
771 
772 	/* insert the keys of the items */
773 	setup_items_for_insert(root, path, keys, data_size,
774 			       total_data_size, total_size, nitems);
775 
776 	/* insert the dir index items */
777 	slot = path->slots[0];
778 	list_for_each_entry_safe(curr, next, &head, tree_list) {
779 		data_ptr = btrfs_item_ptr(leaf, slot, char);
780 		write_extent_buffer(leaf, &curr->data,
781 				    (unsigned long)data_ptr,
782 				    curr->data_len);
783 		slot++;
784 
785 		btrfs_delayed_item_release_metadata(root, curr);
786 
787 		list_del(&curr->tree_list);
788 		btrfs_release_delayed_item(curr);
789 	}
790 
791 error:
792 	kfree(data_size);
793 	kfree(keys);
794 out:
795 	return ret;
796 }
797 
798 /*
799  * This helper can just do simple insertion that needn't extend item for new
800  * data, such as directory name index insertion, inode insertion.
801  */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * delayed_item)802 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
803 				     struct btrfs_root *root,
804 				     struct btrfs_path *path,
805 				     struct btrfs_delayed_item *delayed_item)
806 {
807 	struct extent_buffer *leaf;
808 	unsigned int nofs_flag;
809 	char *ptr;
810 	int ret;
811 
812 	nofs_flag = memalloc_nofs_save();
813 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
814 				      delayed_item->data_len);
815 	memalloc_nofs_restore(nofs_flag);
816 	if (ret < 0 && ret != -EEXIST)
817 		return ret;
818 
819 	leaf = path->nodes[0];
820 
821 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
822 
823 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
824 			    delayed_item->data_len);
825 	btrfs_mark_buffer_dirty(leaf);
826 
827 	btrfs_delayed_item_release_metadata(root, delayed_item);
828 	return 0;
829 }
830 
831 /*
832  * we insert an item first, then if there are some continuous items, we try
833  * to insert those items into the same leaf.
834  */
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)835 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
836 				      struct btrfs_path *path,
837 				      struct btrfs_root *root,
838 				      struct btrfs_delayed_node *node)
839 {
840 	struct btrfs_delayed_item *curr, *prev;
841 	int ret = 0;
842 
843 do_again:
844 	mutex_lock(&node->mutex);
845 	curr = __btrfs_first_delayed_insertion_item(node);
846 	if (!curr)
847 		goto insert_end;
848 
849 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
850 	if (ret < 0) {
851 		btrfs_release_path(path);
852 		goto insert_end;
853 	}
854 
855 	prev = curr;
856 	curr = __btrfs_next_delayed_item(prev);
857 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
858 		/* insert the continuous items into the same leaf */
859 		path->slots[0]++;
860 		btrfs_batch_insert_items(root, path, curr);
861 	}
862 	btrfs_release_delayed_item(prev);
863 	btrfs_mark_buffer_dirty(path->nodes[0]);
864 
865 	btrfs_release_path(path);
866 	mutex_unlock(&node->mutex);
867 	goto do_again;
868 
869 insert_end:
870 	mutex_unlock(&node->mutex);
871 	return ret;
872 }
873 
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)874 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
875 				    struct btrfs_root *root,
876 				    struct btrfs_path *path,
877 				    struct btrfs_delayed_item *item)
878 {
879 	struct btrfs_delayed_item *curr, *next;
880 	struct extent_buffer *leaf;
881 	struct btrfs_key key;
882 	struct list_head head;
883 	int nitems, i, last_item;
884 	int ret = 0;
885 
886 	BUG_ON(!path->nodes[0]);
887 
888 	leaf = path->nodes[0];
889 
890 	i = path->slots[0];
891 	last_item = btrfs_header_nritems(leaf) - 1;
892 	if (i > last_item)
893 		return -ENOENT;	/* FIXME: Is errno suitable? */
894 
895 	next = item;
896 	INIT_LIST_HEAD(&head);
897 	btrfs_item_key_to_cpu(leaf, &key, i);
898 	nitems = 0;
899 	/*
900 	 * count the number of the dir index items that we can delete in batch
901 	 */
902 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
903 		list_add_tail(&next->tree_list, &head);
904 		nitems++;
905 
906 		curr = next;
907 		next = __btrfs_next_delayed_item(curr);
908 		if (!next)
909 			break;
910 
911 		if (!btrfs_is_continuous_delayed_item(curr, next))
912 			break;
913 
914 		i++;
915 		if (i > last_item)
916 			break;
917 		btrfs_item_key_to_cpu(leaf, &key, i);
918 	}
919 
920 	if (!nitems)
921 		return 0;
922 
923 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
924 	if (ret)
925 		goto out;
926 
927 	list_for_each_entry_safe(curr, next, &head, tree_list) {
928 		btrfs_delayed_item_release_metadata(root, curr);
929 		list_del(&curr->tree_list);
930 		btrfs_release_delayed_item(curr);
931 	}
932 
933 out:
934 	return ret;
935 }
936 
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)937 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
938 				      struct btrfs_path *path,
939 				      struct btrfs_root *root,
940 				      struct btrfs_delayed_node *node)
941 {
942 	struct btrfs_delayed_item *curr, *prev;
943 	unsigned int nofs_flag;
944 	int ret = 0;
945 
946 do_again:
947 	mutex_lock(&node->mutex);
948 	curr = __btrfs_first_delayed_deletion_item(node);
949 	if (!curr)
950 		goto delete_fail;
951 
952 	nofs_flag = memalloc_nofs_save();
953 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
954 	memalloc_nofs_restore(nofs_flag);
955 	if (ret < 0)
956 		goto delete_fail;
957 	else if (ret > 0) {
958 		/*
959 		 * can't find the item which the node points to, so this node
960 		 * is invalid, just drop it.
961 		 */
962 		prev = curr;
963 		curr = __btrfs_next_delayed_item(prev);
964 		btrfs_release_delayed_item(prev);
965 		ret = 0;
966 		btrfs_release_path(path);
967 		if (curr) {
968 			mutex_unlock(&node->mutex);
969 			goto do_again;
970 		} else
971 			goto delete_fail;
972 	}
973 
974 	btrfs_batch_delete_items(trans, root, path, curr);
975 	btrfs_release_path(path);
976 	mutex_unlock(&node->mutex);
977 	goto do_again;
978 
979 delete_fail:
980 	btrfs_release_path(path);
981 	mutex_unlock(&node->mutex);
982 	return ret;
983 }
984 
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)985 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
986 {
987 	struct btrfs_delayed_root *delayed_root;
988 
989 	if (delayed_node &&
990 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
991 		BUG_ON(!delayed_node->root);
992 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
993 		delayed_node->count--;
994 
995 		delayed_root = delayed_node->root->fs_info->delayed_root;
996 		finish_one_item(delayed_root);
997 	}
998 }
999 
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)1000 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1001 {
1002 	struct btrfs_delayed_root *delayed_root;
1003 
1004 	ASSERT(delayed_node->root);
1005 	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1006 	delayed_node->count--;
1007 
1008 	delayed_root = delayed_node->root->fs_info->delayed_root;
1009 	finish_one_item(delayed_root);
1010 }
1011 
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1012 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1013 					struct btrfs_root *root,
1014 					struct btrfs_path *path,
1015 					struct btrfs_delayed_node *node)
1016 {
1017 	struct btrfs_fs_info *fs_info = root->fs_info;
1018 	struct btrfs_key key;
1019 	struct btrfs_inode_item *inode_item;
1020 	struct extent_buffer *leaf;
1021 	unsigned int nofs_flag;
1022 	int mod;
1023 	int ret;
1024 
1025 	key.objectid = node->inode_id;
1026 	key.type = BTRFS_INODE_ITEM_KEY;
1027 	key.offset = 0;
1028 
1029 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1030 		mod = -1;
1031 	else
1032 		mod = 1;
1033 
1034 	nofs_flag = memalloc_nofs_save();
1035 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1036 	memalloc_nofs_restore(nofs_flag);
1037 	if (ret > 0)
1038 		ret = -ENOENT;
1039 	if (ret < 0)
1040 		goto out;
1041 
1042 	leaf = path->nodes[0];
1043 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1044 				    struct btrfs_inode_item);
1045 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1046 			    sizeof(struct btrfs_inode_item));
1047 	btrfs_mark_buffer_dirty(leaf);
1048 
1049 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1050 		goto no_iref;
1051 
1052 	path->slots[0]++;
1053 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1054 		goto search;
1055 again:
1056 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1057 	if (key.objectid != node->inode_id)
1058 		goto out;
1059 
1060 	if (key.type != BTRFS_INODE_REF_KEY &&
1061 	    key.type != BTRFS_INODE_EXTREF_KEY)
1062 		goto out;
1063 
1064 	/*
1065 	 * Delayed iref deletion is for the inode who has only one link,
1066 	 * so there is only one iref. The case that several irefs are
1067 	 * in the same item doesn't exist.
1068 	 */
1069 	btrfs_del_item(trans, root, path);
1070 out:
1071 	btrfs_release_delayed_iref(node);
1072 no_iref:
1073 	btrfs_release_path(path);
1074 err_out:
1075 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1076 	btrfs_release_delayed_inode(node);
1077 
1078 	/*
1079 	 * If we fail to update the delayed inode we need to abort the
1080 	 * transaction, because we could leave the inode with the improper
1081 	 * counts behind.
1082 	 */
1083 	if (ret && ret != -ENOENT)
1084 		btrfs_abort_transaction(trans, ret);
1085 
1086 	return ret;
1087 
1088 search:
1089 	btrfs_release_path(path);
1090 
1091 	key.type = BTRFS_INODE_EXTREF_KEY;
1092 	key.offset = -1;
1093 
1094 	nofs_flag = memalloc_nofs_save();
1095 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1096 	memalloc_nofs_restore(nofs_flag);
1097 	if (ret < 0)
1098 		goto err_out;
1099 	ASSERT(ret);
1100 
1101 	ret = 0;
1102 	leaf = path->nodes[0];
1103 	path->slots[0]--;
1104 	goto again;
1105 }
1106 
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1107 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1108 					     struct btrfs_root *root,
1109 					     struct btrfs_path *path,
1110 					     struct btrfs_delayed_node *node)
1111 {
1112 	int ret;
1113 
1114 	mutex_lock(&node->mutex);
1115 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1116 		mutex_unlock(&node->mutex);
1117 		return 0;
1118 	}
1119 
1120 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1121 	mutex_unlock(&node->mutex);
1122 	return ret;
1123 }
1124 
1125 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1126 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1127 				   struct btrfs_path *path,
1128 				   struct btrfs_delayed_node *node)
1129 {
1130 	int ret;
1131 
1132 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1133 	if (ret)
1134 		return ret;
1135 
1136 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1137 	if (ret)
1138 		return ret;
1139 
1140 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1141 	return ret;
1142 }
1143 
1144 /*
1145  * Called when committing the transaction.
1146  * Returns 0 on success.
1147  * Returns < 0 on error and returns with an aborted transaction with any
1148  * outstanding delayed items cleaned up.
1149  */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,int nr)1150 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1151 {
1152 	struct btrfs_fs_info *fs_info = trans->fs_info;
1153 	struct btrfs_delayed_root *delayed_root;
1154 	struct btrfs_delayed_node *curr_node, *prev_node;
1155 	struct btrfs_path *path;
1156 	struct btrfs_block_rsv *block_rsv;
1157 	int ret = 0;
1158 	bool count = (nr > 0);
1159 
1160 	if (TRANS_ABORTED(trans))
1161 		return -EIO;
1162 
1163 	path = btrfs_alloc_path();
1164 	if (!path)
1165 		return -ENOMEM;
1166 	path->leave_spinning = 1;
1167 
1168 	block_rsv = trans->block_rsv;
1169 	trans->block_rsv = &fs_info->delayed_block_rsv;
1170 
1171 	delayed_root = fs_info->delayed_root;
1172 
1173 	curr_node = btrfs_first_delayed_node(delayed_root);
1174 	while (curr_node && (!count || (count && nr--))) {
1175 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1176 							 curr_node);
1177 		if (ret) {
1178 			btrfs_abort_transaction(trans, ret);
1179 			break;
1180 		}
1181 
1182 		prev_node = curr_node;
1183 		curr_node = btrfs_next_delayed_node(curr_node);
1184 		/*
1185 		 * See the comment below about releasing path before releasing
1186 		 * node. If the commit of delayed items was successful the path
1187 		 * should always be released, but in case of an error, it may
1188 		 * point to locked extent buffers (a leaf at the very least).
1189 		 */
1190 		ASSERT(path->nodes[0] == NULL);
1191 		btrfs_release_delayed_node(prev_node);
1192 	}
1193 
1194 	/*
1195 	 * Release the path to avoid a potential deadlock and lockdep splat when
1196 	 * releasing the delayed node, as that requires taking the delayed node's
1197 	 * mutex. If another task starts running delayed items before we take
1198 	 * the mutex, it will first lock the mutex and then it may try to lock
1199 	 * the same btree path (leaf).
1200 	 */
1201 	btrfs_free_path(path);
1202 
1203 	if (curr_node)
1204 		btrfs_release_delayed_node(curr_node);
1205 	trans->block_rsv = block_rsv;
1206 
1207 	return ret;
1208 }
1209 
btrfs_run_delayed_items(struct btrfs_trans_handle * trans)1210 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1211 {
1212 	return __btrfs_run_delayed_items(trans, -1);
1213 }
1214 
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,int nr)1215 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1216 {
1217 	return __btrfs_run_delayed_items(trans, nr);
1218 }
1219 
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1220 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1221 				     struct btrfs_inode *inode)
1222 {
1223 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1224 	struct btrfs_path *path;
1225 	struct btrfs_block_rsv *block_rsv;
1226 	int ret;
1227 
1228 	if (!delayed_node)
1229 		return 0;
1230 
1231 	mutex_lock(&delayed_node->mutex);
1232 	if (!delayed_node->count) {
1233 		mutex_unlock(&delayed_node->mutex);
1234 		btrfs_release_delayed_node(delayed_node);
1235 		return 0;
1236 	}
1237 	mutex_unlock(&delayed_node->mutex);
1238 
1239 	path = btrfs_alloc_path();
1240 	if (!path) {
1241 		btrfs_release_delayed_node(delayed_node);
1242 		return -ENOMEM;
1243 	}
1244 	path->leave_spinning = 1;
1245 
1246 	block_rsv = trans->block_rsv;
1247 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1248 
1249 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1250 
1251 	btrfs_release_delayed_node(delayed_node);
1252 	btrfs_free_path(path);
1253 	trans->block_rsv = block_rsv;
1254 
1255 	return ret;
1256 }
1257 
btrfs_commit_inode_delayed_inode(struct btrfs_inode * inode)1258 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1259 {
1260 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1261 	struct btrfs_trans_handle *trans;
1262 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1263 	struct btrfs_path *path;
1264 	struct btrfs_block_rsv *block_rsv;
1265 	int ret;
1266 
1267 	if (!delayed_node)
1268 		return 0;
1269 
1270 	mutex_lock(&delayed_node->mutex);
1271 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1272 		mutex_unlock(&delayed_node->mutex);
1273 		btrfs_release_delayed_node(delayed_node);
1274 		return 0;
1275 	}
1276 	mutex_unlock(&delayed_node->mutex);
1277 
1278 	trans = btrfs_join_transaction(delayed_node->root);
1279 	if (IS_ERR(trans)) {
1280 		ret = PTR_ERR(trans);
1281 		goto out;
1282 	}
1283 
1284 	path = btrfs_alloc_path();
1285 	if (!path) {
1286 		ret = -ENOMEM;
1287 		goto trans_out;
1288 	}
1289 	path->leave_spinning = 1;
1290 
1291 	block_rsv = trans->block_rsv;
1292 	trans->block_rsv = &fs_info->delayed_block_rsv;
1293 
1294 	mutex_lock(&delayed_node->mutex);
1295 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1296 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1297 						   path, delayed_node);
1298 	else
1299 		ret = 0;
1300 	mutex_unlock(&delayed_node->mutex);
1301 
1302 	btrfs_free_path(path);
1303 	trans->block_rsv = block_rsv;
1304 trans_out:
1305 	btrfs_end_transaction(trans);
1306 	btrfs_btree_balance_dirty(fs_info);
1307 out:
1308 	btrfs_release_delayed_node(delayed_node);
1309 
1310 	return ret;
1311 }
1312 
btrfs_remove_delayed_node(struct btrfs_inode * inode)1313 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1314 {
1315 	struct btrfs_delayed_node *delayed_node;
1316 
1317 	delayed_node = READ_ONCE(inode->delayed_node);
1318 	if (!delayed_node)
1319 		return;
1320 
1321 	inode->delayed_node = NULL;
1322 	btrfs_release_delayed_node(delayed_node);
1323 }
1324 
1325 struct btrfs_async_delayed_work {
1326 	struct btrfs_delayed_root *delayed_root;
1327 	int nr;
1328 	struct btrfs_work work;
1329 };
1330 
btrfs_async_run_delayed_root(struct btrfs_work * work)1331 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1332 {
1333 	struct btrfs_async_delayed_work *async_work;
1334 	struct btrfs_delayed_root *delayed_root;
1335 	struct btrfs_trans_handle *trans;
1336 	struct btrfs_path *path;
1337 	struct btrfs_delayed_node *delayed_node = NULL;
1338 	struct btrfs_root *root;
1339 	struct btrfs_block_rsv *block_rsv;
1340 	int total_done = 0;
1341 
1342 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1343 	delayed_root = async_work->delayed_root;
1344 
1345 	path = btrfs_alloc_path();
1346 	if (!path)
1347 		goto out;
1348 
1349 	do {
1350 		if (atomic_read(&delayed_root->items) <
1351 		    BTRFS_DELAYED_BACKGROUND / 2)
1352 			break;
1353 
1354 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1355 		if (!delayed_node)
1356 			break;
1357 
1358 		path->leave_spinning = 1;
1359 		root = delayed_node->root;
1360 
1361 		trans = btrfs_join_transaction(root);
1362 		if (IS_ERR(trans)) {
1363 			btrfs_release_path(path);
1364 			btrfs_release_prepared_delayed_node(delayed_node);
1365 			total_done++;
1366 			continue;
1367 		}
1368 
1369 		block_rsv = trans->block_rsv;
1370 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1371 
1372 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1373 
1374 		trans->block_rsv = block_rsv;
1375 		btrfs_end_transaction(trans);
1376 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1377 
1378 		btrfs_release_path(path);
1379 		btrfs_release_prepared_delayed_node(delayed_node);
1380 		total_done++;
1381 
1382 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1383 		 || total_done < async_work->nr);
1384 
1385 	btrfs_free_path(path);
1386 out:
1387 	wake_up(&delayed_root->wait);
1388 	kfree(async_work);
1389 }
1390 
1391 
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1392 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1393 				     struct btrfs_fs_info *fs_info, int nr)
1394 {
1395 	struct btrfs_async_delayed_work *async_work;
1396 
1397 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1398 	if (!async_work)
1399 		return -ENOMEM;
1400 
1401 	async_work->delayed_root = delayed_root;
1402 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1403 			NULL);
1404 	async_work->nr = nr;
1405 
1406 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1407 	return 0;
1408 }
1409 
btrfs_assert_delayed_root_empty(struct btrfs_fs_info * fs_info)1410 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1411 {
1412 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1413 }
1414 
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1415 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1416 {
1417 	int val = atomic_read(&delayed_root->items_seq);
1418 
1419 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1420 		return 1;
1421 
1422 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1423 		return 1;
1424 
1425 	return 0;
1426 }
1427 
btrfs_balance_delayed_items(struct btrfs_fs_info * fs_info)1428 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1429 {
1430 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1431 
1432 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1433 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1434 		return;
1435 
1436 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1437 		int seq;
1438 		int ret;
1439 
1440 		seq = atomic_read(&delayed_root->items_seq);
1441 
1442 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1443 		if (ret)
1444 			return;
1445 
1446 		wait_event_interruptible(delayed_root->wait,
1447 					 could_end_wait(delayed_root, seq));
1448 		return;
1449 	}
1450 
1451 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1452 }
1453 
1454 /* Will return 0 or -ENOMEM */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,const char * name,int name_len,struct btrfs_inode * dir,struct btrfs_disk_key * disk_key,u8 type,u64 index)1455 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1456 				   const char *name, int name_len,
1457 				   struct btrfs_inode *dir,
1458 				   struct btrfs_disk_key *disk_key, u8 type,
1459 				   u64 index)
1460 {
1461 	struct btrfs_delayed_node *delayed_node;
1462 	struct btrfs_delayed_item *delayed_item;
1463 	struct btrfs_dir_item *dir_item;
1464 	int ret;
1465 
1466 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1467 	if (IS_ERR(delayed_node))
1468 		return PTR_ERR(delayed_node);
1469 
1470 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1471 	if (!delayed_item) {
1472 		ret = -ENOMEM;
1473 		goto release_node;
1474 	}
1475 
1476 	delayed_item->key.objectid = btrfs_ino(dir);
1477 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1478 	delayed_item->key.offset = index;
1479 
1480 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1481 	dir_item->location = *disk_key;
1482 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1483 	btrfs_set_stack_dir_data_len(dir_item, 0);
1484 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1485 	btrfs_set_stack_dir_type(dir_item, type);
1486 	memcpy((char *)(dir_item + 1), name, name_len);
1487 
1488 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1489 	/*
1490 	 * we have reserved enough space when we start a new transaction,
1491 	 * so reserving metadata failure is impossible
1492 	 */
1493 	BUG_ON(ret);
1494 
1495 	mutex_lock(&delayed_node->mutex);
1496 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1497 	if (unlikely(ret)) {
1498 		btrfs_err(trans->fs_info,
1499 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1500 			  name_len, name, delayed_node->root->root_key.objectid,
1501 			  delayed_node->inode_id, ret);
1502 		BUG();
1503 	}
1504 	mutex_unlock(&delayed_node->mutex);
1505 
1506 release_node:
1507 	btrfs_release_delayed_node(delayed_node);
1508 	return ret;
1509 }
1510 
btrfs_delete_delayed_insertion_item(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,struct btrfs_key * key)1511 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1512 					       struct btrfs_delayed_node *node,
1513 					       struct btrfs_key *key)
1514 {
1515 	struct btrfs_delayed_item *item;
1516 
1517 	mutex_lock(&node->mutex);
1518 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1519 	if (!item) {
1520 		mutex_unlock(&node->mutex);
1521 		return 1;
1522 	}
1523 
1524 	btrfs_delayed_item_release_metadata(node->root, item);
1525 	btrfs_release_delayed_item(item);
1526 	mutex_unlock(&node->mutex);
1527 	return 0;
1528 }
1529 
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,u64 index)1530 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1531 				   struct btrfs_inode *dir, u64 index)
1532 {
1533 	struct btrfs_delayed_node *node;
1534 	struct btrfs_delayed_item *item;
1535 	struct btrfs_key item_key;
1536 	int ret;
1537 
1538 	node = btrfs_get_or_create_delayed_node(dir);
1539 	if (IS_ERR(node))
1540 		return PTR_ERR(node);
1541 
1542 	item_key.objectid = btrfs_ino(dir);
1543 	item_key.type = BTRFS_DIR_INDEX_KEY;
1544 	item_key.offset = index;
1545 
1546 	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1547 						  &item_key);
1548 	if (!ret)
1549 		goto end;
1550 
1551 	item = btrfs_alloc_delayed_item(0);
1552 	if (!item) {
1553 		ret = -ENOMEM;
1554 		goto end;
1555 	}
1556 
1557 	item->key = item_key;
1558 
1559 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1560 	/*
1561 	 * we have reserved enough space when we start a new transaction,
1562 	 * so reserving metadata failure is impossible.
1563 	 */
1564 	if (ret < 0) {
1565 		btrfs_err(trans->fs_info,
1566 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1567 		btrfs_release_delayed_item(item);
1568 		goto end;
1569 	}
1570 
1571 	mutex_lock(&node->mutex);
1572 	ret = __btrfs_add_delayed_deletion_item(node, item);
1573 	if (unlikely(ret)) {
1574 		btrfs_err(trans->fs_info,
1575 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1576 			  index, node->root->root_key.objectid,
1577 			  node->inode_id, ret);
1578 		btrfs_delayed_item_release_metadata(dir->root, item);
1579 		btrfs_release_delayed_item(item);
1580 	}
1581 	mutex_unlock(&node->mutex);
1582 end:
1583 	btrfs_release_delayed_node(node);
1584 	return ret;
1585 }
1586 
btrfs_inode_delayed_dir_index_count(struct btrfs_inode * inode)1587 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1588 {
1589 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1590 
1591 	if (!delayed_node)
1592 		return -ENOENT;
1593 
1594 	/*
1595 	 * Since we have held i_mutex of this directory, it is impossible that
1596 	 * a new directory index is added into the delayed node and index_cnt
1597 	 * is updated now. So we needn't lock the delayed node.
1598 	 */
1599 	if (!delayed_node->index_cnt) {
1600 		btrfs_release_delayed_node(delayed_node);
1601 		return -EINVAL;
1602 	}
1603 
1604 	inode->index_cnt = delayed_node->index_cnt;
1605 	btrfs_release_delayed_node(delayed_node);
1606 	return 0;
1607 }
1608 
btrfs_readdir_get_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1609 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1610 				     struct list_head *ins_list,
1611 				     struct list_head *del_list)
1612 {
1613 	struct btrfs_delayed_node *delayed_node;
1614 	struct btrfs_delayed_item *item;
1615 
1616 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1617 	if (!delayed_node)
1618 		return false;
1619 
1620 	/*
1621 	 * We can only do one readdir with delayed items at a time because of
1622 	 * item->readdir_list.
1623 	 */
1624 	inode_unlock_shared(inode);
1625 	inode_lock(inode);
1626 
1627 	mutex_lock(&delayed_node->mutex);
1628 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1629 	while (item) {
1630 		refcount_inc(&item->refs);
1631 		list_add_tail(&item->readdir_list, ins_list);
1632 		item = __btrfs_next_delayed_item(item);
1633 	}
1634 
1635 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1636 	while (item) {
1637 		refcount_inc(&item->refs);
1638 		list_add_tail(&item->readdir_list, del_list);
1639 		item = __btrfs_next_delayed_item(item);
1640 	}
1641 	mutex_unlock(&delayed_node->mutex);
1642 	/*
1643 	 * This delayed node is still cached in the btrfs inode, so refs
1644 	 * must be > 1 now, and we needn't check it is going to be freed
1645 	 * or not.
1646 	 *
1647 	 * Besides that, this function is used to read dir, we do not
1648 	 * insert/delete delayed items in this period. So we also needn't
1649 	 * requeue or dequeue this delayed node.
1650 	 */
1651 	refcount_dec(&delayed_node->refs);
1652 
1653 	return true;
1654 }
1655 
btrfs_readdir_put_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1656 void btrfs_readdir_put_delayed_items(struct inode *inode,
1657 				     struct list_head *ins_list,
1658 				     struct list_head *del_list)
1659 {
1660 	struct btrfs_delayed_item *curr, *next;
1661 
1662 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1663 		list_del(&curr->readdir_list);
1664 		if (refcount_dec_and_test(&curr->refs))
1665 			kfree(curr);
1666 	}
1667 
1668 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1669 		list_del(&curr->readdir_list);
1670 		if (refcount_dec_and_test(&curr->refs))
1671 			kfree(curr);
1672 	}
1673 
1674 	/*
1675 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1676 	 * read lock.
1677 	 */
1678 	downgrade_write(&inode->i_rwsem);
1679 }
1680 
btrfs_should_delete_dir_index(struct list_head * del_list,u64 index)1681 int btrfs_should_delete_dir_index(struct list_head *del_list,
1682 				  u64 index)
1683 {
1684 	struct btrfs_delayed_item *curr;
1685 	int ret = 0;
1686 
1687 	list_for_each_entry(curr, del_list, readdir_list) {
1688 		if (curr->key.offset > index)
1689 			break;
1690 		if (curr->key.offset == index) {
1691 			ret = 1;
1692 			break;
1693 		}
1694 	}
1695 	return ret;
1696 }
1697 
1698 /*
1699  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1700  *
1701  */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,struct list_head * ins_list)1702 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1703 				    struct list_head *ins_list)
1704 {
1705 	struct btrfs_dir_item *di;
1706 	struct btrfs_delayed_item *curr, *next;
1707 	struct btrfs_key location;
1708 	char *name;
1709 	int name_len;
1710 	int over = 0;
1711 	unsigned char d_type;
1712 
1713 	if (list_empty(ins_list))
1714 		return 0;
1715 
1716 	/*
1717 	 * Changing the data of the delayed item is impossible. So
1718 	 * we needn't lock them. And we have held i_mutex of the
1719 	 * directory, nobody can delete any directory indexes now.
1720 	 */
1721 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1722 		list_del(&curr->readdir_list);
1723 
1724 		if (curr->key.offset < ctx->pos) {
1725 			if (refcount_dec_and_test(&curr->refs))
1726 				kfree(curr);
1727 			continue;
1728 		}
1729 
1730 		ctx->pos = curr->key.offset;
1731 
1732 		di = (struct btrfs_dir_item *)curr->data;
1733 		name = (char *)(di + 1);
1734 		name_len = btrfs_stack_dir_name_len(di);
1735 
1736 		d_type = fs_ftype_to_dtype(di->type);
1737 		btrfs_disk_key_to_cpu(&location, &di->location);
1738 
1739 		over = !dir_emit(ctx, name, name_len,
1740 			       location.objectid, d_type);
1741 
1742 		if (refcount_dec_and_test(&curr->refs))
1743 			kfree(curr);
1744 
1745 		if (over)
1746 			return 1;
1747 		ctx->pos++;
1748 	}
1749 	return 0;
1750 }
1751 
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct inode * inode)1752 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1753 				  struct btrfs_inode_item *inode_item,
1754 				  struct inode *inode)
1755 {
1756 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1757 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1758 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1759 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1760 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1761 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1762 	btrfs_set_stack_inode_generation(inode_item,
1763 					 BTRFS_I(inode)->generation);
1764 	btrfs_set_stack_inode_sequence(inode_item,
1765 				       inode_peek_iversion(inode));
1766 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1767 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1768 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1769 	btrfs_set_stack_inode_block_group(inode_item, 0);
1770 
1771 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1772 				     inode->i_atime.tv_sec);
1773 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1774 				      inode->i_atime.tv_nsec);
1775 
1776 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1777 				     inode->i_mtime.tv_sec);
1778 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1779 				      inode->i_mtime.tv_nsec);
1780 
1781 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1782 				     inode->i_ctime.tv_sec);
1783 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1784 				      inode->i_ctime.tv_nsec);
1785 
1786 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1787 				     BTRFS_I(inode)->i_otime.tv_sec);
1788 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1789 				     BTRFS_I(inode)->i_otime.tv_nsec);
1790 }
1791 
btrfs_fill_inode(struct inode * inode,u32 * rdev)1792 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1793 {
1794 	struct btrfs_delayed_node *delayed_node;
1795 	struct btrfs_inode_item *inode_item;
1796 
1797 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1798 	if (!delayed_node)
1799 		return -ENOENT;
1800 
1801 	mutex_lock(&delayed_node->mutex);
1802 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1803 		mutex_unlock(&delayed_node->mutex);
1804 		btrfs_release_delayed_node(delayed_node);
1805 		return -ENOENT;
1806 	}
1807 
1808 	inode_item = &delayed_node->inode_item;
1809 
1810 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1811 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1812 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1813 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1814 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1815 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1816 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1817         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1818 
1819 	inode_set_iversion_queried(inode,
1820 				   btrfs_stack_inode_sequence(inode_item));
1821 	inode->i_rdev = 0;
1822 	*rdev = btrfs_stack_inode_rdev(inode_item);
1823 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1824 
1825 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1826 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1827 
1828 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1829 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1830 
1831 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1832 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1833 
1834 	BTRFS_I(inode)->i_otime.tv_sec =
1835 		btrfs_stack_timespec_sec(&inode_item->otime);
1836 	BTRFS_I(inode)->i_otime.tv_nsec =
1837 		btrfs_stack_timespec_nsec(&inode_item->otime);
1838 
1839 	inode->i_generation = BTRFS_I(inode)->generation;
1840 	BTRFS_I(inode)->index_cnt = (u64)-1;
1841 
1842 	mutex_unlock(&delayed_node->mutex);
1843 	btrfs_release_delayed_node(delayed_node);
1844 	return 0;
1845 }
1846 
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1847 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1848 			       struct btrfs_root *root, struct inode *inode)
1849 {
1850 	struct btrfs_delayed_node *delayed_node;
1851 	int ret = 0;
1852 
1853 	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1854 	if (IS_ERR(delayed_node))
1855 		return PTR_ERR(delayed_node);
1856 
1857 	mutex_lock(&delayed_node->mutex);
1858 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1859 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1860 		goto release_node;
1861 	}
1862 
1863 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1864 						   delayed_node);
1865 	if (ret)
1866 		goto release_node;
1867 
1868 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1869 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1870 	delayed_node->count++;
1871 	atomic_inc(&root->fs_info->delayed_root->items);
1872 release_node:
1873 	mutex_unlock(&delayed_node->mutex);
1874 	btrfs_release_delayed_node(delayed_node);
1875 	return ret;
1876 }
1877 
btrfs_delayed_delete_inode_ref(struct btrfs_inode * inode)1878 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1879 {
1880 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1881 	struct btrfs_delayed_node *delayed_node;
1882 
1883 	/*
1884 	 * we don't do delayed inode updates during log recovery because it
1885 	 * leads to enospc problems.  This means we also can't do
1886 	 * delayed inode refs
1887 	 */
1888 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1889 		return -EAGAIN;
1890 
1891 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1892 	if (IS_ERR(delayed_node))
1893 		return PTR_ERR(delayed_node);
1894 
1895 	/*
1896 	 * We don't reserve space for inode ref deletion is because:
1897 	 * - We ONLY do async inode ref deletion for the inode who has only
1898 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1899 	 *   And in most case, the inode ref and the inode item are in the
1900 	 *   same leaf, and we will deal with them at the same time.
1901 	 *   Since we are sure we will reserve the space for the inode item,
1902 	 *   it is unnecessary to reserve space for inode ref deletion.
1903 	 * - If the inode ref and the inode item are not in the same leaf,
1904 	 *   We also needn't worry about enospc problem, because we reserve
1905 	 *   much more space for the inode update than it needs.
1906 	 * - At the worst, we can steal some space from the global reservation.
1907 	 *   It is very rare.
1908 	 */
1909 	mutex_lock(&delayed_node->mutex);
1910 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1911 		goto release_node;
1912 
1913 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1914 	delayed_node->count++;
1915 	atomic_inc(&fs_info->delayed_root->items);
1916 release_node:
1917 	mutex_unlock(&delayed_node->mutex);
1918 	btrfs_release_delayed_node(delayed_node);
1919 	return 0;
1920 }
1921 
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)1922 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1923 {
1924 	struct btrfs_root *root = delayed_node->root;
1925 	struct btrfs_fs_info *fs_info = root->fs_info;
1926 	struct btrfs_delayed_item *curr_item, *prev_item;
1927 
1928 	mutex_lock(&delayed_node->mutex);
1929 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1930 	while (curr_item) {
1931 		btrfs_delayed_item_release_metadata(root, curr_item);
1932 		prev_item = curr_item;
1933 		curr_item = __btrfs_next_delayed_item(prev_item);
1934 		btrfs_release_delayed_item(prev_item);
1935 	}
1936 
1937 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1938 	while (curr_item) {
1939 		btrfs_delayed_item_release_metadata(root, curr_item);
1940 		prev_item = curr_item;
1941 		curr_item = __btrfs_next_delayed_item(prev_item);
1942 		btrfs_release_delayed_item(prev_item);
1943 	}
1944 
1945 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1946 		btrfs_release_delayed_iref(delayed_node);
1947 
1948 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1949 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1950 		btrfs_release_delayed_inode(delayed_node);
1951 	}
1952 	mutex_unlock(&delayed_node->mutex);
1953 }
1954 
btrfs_kill_delayed_inode_items(struct btrfs_inode * inode)1955 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1956 {
1957 	struct btrfs_delayed_node *delayed_node;
1958 
1959 	delayed_node = btrfs_get_delayed_node(inode);
1960 	if (!delayed_node)
1961 		return;
1962 
1963 	__btrfs_kill_delayed_node(delayed_node);
1964 	btrfs_release_delayed_node(delayed_node);
1965 }
1966 
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)1967 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1968 {
1969 	u64 inode_id = 0;
1970 	struct btrfs_delayed_node *delayed_nodes[8];
1971 	int i, n;
1972 
1973 	while (1) {
1974 		spin_lock(&root->inode_lock);
1975 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1976 					   (void **)delayed_nodes, inode_id,
1977 					   ARRAY_SIZE(delayed_nodes));
1978 		if (!n) {
1979 			spin_unlock(&root->inode_lock);
1980 			break;
1981 		}
1982 
1983 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1984 		for (i = 0; i < n; i++) {
1985 			/*
1986 			 * Don't increase refs in case the node is dead and
1987 			 * about to be removed from the tree in the loop below
1988 			 */
1989 			if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1990 				delayed_nodes[i] = NULL;
1991 		}
1992 		spin_unlock(&root->inode_lock);
1993 
1994 		for (i = 0; i < n; i++) {
1995 			if (!delayed_nodes[i])
1996 				continue;
1997 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1998 			btrfs_release_delayed_node(delayed_nodes[i]);
1999 		}
2000 	}
2001 }
2002 
btrfs_destroy_delayed_inodes(struct btrfs_fs_info * fs_info)2003 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2004 {
2005 	struct btrfs_delayed_node *curr_node, *prev_node;
2006 
2007 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2008 	while (curr_node) {
2009 		__btrfs_kill_delayed_node(curr_node);
2010 
2011 		prev_node = curr_node;
2012 		curr_node = btrfs_next_delayed_node(curr_node);
2013 		btrfs_release_delayed_node(prev_node);
2014 	}
2015 }
2016 
2017