1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "delayed-inode.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "ctree.h"
15 #include "qgroup.h"
16
17 #define BTRFS_DELAYED_WRITEBACK 512
18 #define BTRFS_DELAYED_BACKGROUND 128
19 #define BTRFS_DELAYED_BATCH 16
20
21 static struct kmem_cache *delayed_node_cache;
22
btrfs_delayed_inode_init(void)23 int __init btrfs_delayed_inode_init(void)
24 {
25 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
26 sizeof(struct btrfs_delayed_node),
27 0,
28 SLAB_MEM_SPREAD,
29 NULL);
30 if (!delayed_node_cache)
31 return -ENOMEM;
32 return 0;
33 }
34
btrfs_delayed_inode_exit(void)35 void __cold btrfs_delayed_inode_exit(void)
36 {
37 kmem_cache_destroy(delayed_node_cache);
38 }
39
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)40 static inline void btrfs_init_delayed_node(
41 struct btrfs_delayed_node *delayed_node,
42 struct btrfs_root *root, u64 inode_id)
43 {
44 delayed_node->root = root;
45 delayed_node->inode_id = inode_id;
46 refcount_set(&delayed_node->refs, 0);
47 delayed_node->ins_root = RB_ROOT_CACHED;
48 delayed_node->del_root = RB_ROOT_CACHED;
49 mutex_init(&delayed_node->mutex);
50 INIT_LIST_HEAD(&delayed_node->n_list);
51 INIT_LIST_HEAD(&delayed_node->p_list);
52 }
53
btrfs_is_continuous_delayed_item(struct btrfs_delayed_item * item1,struct btrfs_delayed_item * item2)54 static inline int btrfs_is_continuous_delayed_item(
55 struct btrfs_delayed_item *item1,
56 struct btrfs_delayed_item *item2)
57 {
58 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
59 item1->key.objectid == item2->key.objectid &&
60 item1->key.type == item2->key.type &&
61 item1->key.offset + 1 == item2->key.offset)
62 return 1;
63 return 0;
64 }
65
btrfs_get_delayed_node(struct btrfs_inode * btrfs_inode)66 static struct btrfs_delayed_node *btrfs_get_delayed_node(
67 struct btrfs_inode *btrfs_inode)
68 {
69 struct btrfs_root *root = btrfs_inode->root;
70 u64 ino = btrfs_ino(btrfs_inode);
71 struct btrfs_delayed_node *node;
72
73 node = READ_ONCE(btrfs_inode->delayed_node);
74 if (node) {
75 refcount_inc(&node->refs);
76 return node;
77 }
78
79 spin_lock(&root->inode_lock);
80 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
81
82 if (node) {
83 if (btrfs_inode->delayed_node) {
84 refcount_inc(&node->refs); /* can be accessed */
85 BUG_ON(btrfs_inode->delayed_node != node);
86 spin_unlock(&root->inode_lock);
87 return node;
88 }
89
90 /*
91 * It's possible that we're racing into the middle of removing
92 * this node from the radix tree. In this case, the refcount
93 * was zero and it should never go back to one. Just return
94 * NULL like it was never in the radix at all; our release
95 * function is in the process of removing it.
96 *
97 * Some implementations of refcount_inc refuse to bump the
98 * refcount once it has hit zero. If we don't do this dance
99 * here, refcount_inc() may decide to just WARN_ONCE() instead
100 * of actually bumping the refcount.
101 *
102 * If this node is properly in the radix, we want to bump the
103 * refcount twice, once for the inode and once for this get
104 * operation.
105 */
106 if (refcount_inc_not_zero(&node->refs)) {
107 refcount_inc(&node->refs);
108 btrfs_inode->delayed_node = node;
109 } else {
110 node = NULL;
111 }
112
113 spin_unlock(&root->inode_lock);
114 return node;
115 }
116 spin_unlock(&root->inode_lock);
117
118 return NULL;
119 }
120
121 /* Will return either the node or PTR_ERR(-ENOMEM) */
btrfs_get_or_create_delayed_node(struct btrfs_inode * btrfs_inode)122 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
123 struct btrfs_inode *btrfs_inode)
124 {
125 struct btrfs_delayed_node *node;
126 struct btrfs_root *root = btrfs_inode->root;
127 u64 ino = btrfs_ino(btrfs_inode);
128 int ret;
129
130 again:
131 node = btrfs_get_delayed_node(btrfs_inode);
132 if (node)
133 return node;
134
135 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
136 if (!node)
137 return ERR_PTR(-ENOMEM);
138 btrfs_init_delayed_node(node, root, ino);
139
140 /* cached in the btrfs inode and can be accessed */
141 refcount_set(&node->refs, 2);
142
143 ret = radix_tree_preload(GFP_NOFS);
144 if (ret) {
145 kmem_cache_free(delayed_node_cache, node);
146 return ERR_PTR(ret);
147 }
148
149 spin_lock(&root->inode_lock);
150 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
151 if (ret == -EEXIST) {
152 spin_unlock(&root->inode_lock);
153 kmem_cache_free(delayed_node_cache, node);
154 radix_tree_preload_end();
155 goto again;
156 }
157 btrfs_inode->delayed_node = node;
158 spin_unlock(&root->inode_lock);
159 radix_tree_preload_end();
160
161 return node;
162 }
163
164 /*
165 * Call it when holding delayed_node->mutex
166 *
167 * If mod = 1, add this node into the prepared list.
168 */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
170 struct btrfs_delayed_node *node,
171 int mod)
172 {
173 spin_lock(&root->lock);
174 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
175 if (!list_empty(&node->p_list))
176 list_move_tail(&node->p_list, &root->prepare_list);
177 else if (mod)
178 list_add_tail(&node->p_list, &root->prepare_list);
179 } else {
180 list_add_tail(&node->n_list, &root->node_list);
181 list_add_tail(&node->p_list, &root->prepare_list);
182 refcount_inc(&node->refs); /* inserted into list */
183 root->nodes++;
184 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
185 }
186 spin_unlock(&root->lock);
187 }
188
189 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
191 struct btrfs_delayed_node *node)
192 {
193 spin_lock(&root->lock);
194 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
195 root->nodes--;
196 refcount_dec(&node->refs); /* not in the list */
197 list_del_init(&node->n_list);
198 if (!list_empty(&node->p_list))
199 list_del_init(&node->p_list);
200 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
201 }
202 spin_unlock(&root->lock);
203 }
204
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root)205 static struct btrfs_delayed_node *btrfs_first_delayed_node(
206 struct btrfs_delayed_root *delayed_root)
207 {
208 struct list_head *p;
209 struct btrfs_delayed_node *node = NULL;
210
211 spin_lock(&delayed_root->lock);
212 if (list_empty(&delayed_root->node_list))
213 goto out;
214
215 p = delayed_root->node_list.next;
216 node = list_entry(p, struct btrfs_delayed_node, n_list);
217 refcount_inc(&node->refs);
218 out:
219 spin_unlock(&delayed_root->lock);
220
221 return node;
222 }
223
btrfs_next_delayed_node(struct btrfs_delayed_node * node)224 static struct btrfs_delayed_node *btrfs_next_delayed_node(
225 struct btrfs_delayed_node *node)
226 {
227 struct btrfs_delayed_root *delayed_root;
228 struct list_head *p;
229 struct btrfs_delayed_node *next = NULL;
230
231 delayed_root = node->root->fs_info->delayed_root;
232 spin_lock(&delayed_root->lock);
233 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
234 /* not in the list */
235 if (list_empty(&delayed_root->node_list))
236 goto out;
237 p = delayed_root->node_list.next;
238 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
239 goto out;
240 else
241 p = node->n_list.next;
242
243 next = list_entry(p, struct btrfs_delayed_node, n_list);
244 refcount_inc(&next->refs);
245 out:
246 spin_unlock(&delayed_root->lock);
247
248 return next;
249 }
250
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod)251 static void __btrfs_release_delayed_node(
252 struct btrfs_delayed_node *delayed_node,
253 int mod)
254 {
255 struct btrfs_delayed_root *delayed_root;
256
257 if (!delayed_node)
258 return;
259
260 delayed_root = delayed_node->root->fs_info->delayed_root;
261
262 mutex_lock(&delayed_node->mutex);
263 if (delayed_node->count)
264 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
265 else
266 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
267 mutex_unlock(&delayed_node->mutex);
268
269 if (refcount_dec_and_test(&delayed_node->refs)) {
270 struct btrfs_root *root = delayed_node->root;
271
272 spin_lock(&root->inode_lock);
273 /*
274 * Once our refcount goes to zero, nobody is allowed to bump it
275 * back up. We can delete it now.
276 */
277 ASSERT(refcount_read(&delayed_node->refs) == 0);
278 radix_tree_delete(&root->delayed_nodes_tree,
279 delayed_node->inode_id);
280 spin_unlock(&root->inode_lock);
281 kmem_cache_free(delayed_node_cache, delayed_node);
282 }
283 }
284
btrfs_release_delayed_node(struct btrfs_delayed_node * node)285 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
286 {
287 __btrfs_release_delayed_node(node, 0);
288 }
289
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root)290 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
291 struct btrfs_delayed_root *delayed_root)
292 {
293 struct list_head *p;
294 struct btrfs_delayed_node *node = NULL;
295
296 spin_lock(&delayed_root->lock);
297 if (list_empty(&delayed_root->prepare_list))
298 goto out;
299
300 p = delayed_root->prepare_list.next;
301 list_del_init(p);
302 node = list_entry(p, struct btrfs_delayed_node, p_list);
303 refcount_inc(&node->refs);
304 out:
305 spin_unlock(&delayed_root->lock);
306
307 return node;
308 }
309
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node)310 static inline void btrfs_release_prepared_delayed_node(
311 struct btrfs_delayed_node *node)
312 {
313 __btrfs_release_delayed_node(node, 1);
314 }
315
btrfs_alloc_delayed_item(u32 data_len)316 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
317 {
318 struct btrfs_delayed_item *item;
319 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
320 if (item) {
321 item->data_len = data_len;
322 item->ins_or_del = 0;
323 item->bytes_reserved = 0;
324 item->delayed_node = NULL;
325 refcount_set(&item->refs, 1);
326 }
327 return item;
328 }
329
330 /*
331 * __btrfs_lookup_delayed_item - look up the delayed item by key
332 * @delayed_node: pointer to the delayed node
333 * @key: the key to look up
334 * @prev: used to store the prev item if the right item isn't found
335 * @next: used to store the next item if the right item isn't found
336 *
337 * Note: if we don't find the right item, we will return the prev item and
338 * the next item.
339 */
__btrfs_lookup_delayed_item(struct rb_root * root,struct btrfs_key * key,struct btrfs_delayed_item ** prev,struct btrfs_delayed_item ** next)340 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
341 struct rb_root *root,
342 struct btrfs_key *key,
343 struct btrfs_delayed_item **prev,
344 struct btrfs_delayed_item **next)
345 {
346 struct rb_node *node, *prev_node = NULL;
347 struct btrfs_delayed_item *delayed_item = NULL;
348 int ret = 0;
349
350 node = root->rb_node;
351
352 while (node) {
353 delayed_item = rb_entry(node, struct btrfs_delayed_item,
354 rb_node);
355 prev_node = node;
356 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
357 if (ret < 0)
358 node = node->rb_right;
359 else if (ret > 0)
360 node = node->rb_left;
361 else
362 return delayed_item;
363 }
364
365 if (prev) {
366 if (!prev_node)
367 *prev = NULL;
368 else if (ret < 0)
369 *prev = delayed_item;
370 else if ((node = rb_prev(prev_node)) != NULL) {
371 *prev = rb_entry(node, struct btrfs_delayed_item,
372 rb_node);
373 } else
374 *prev = NULL;
375 }
376
377 if (next) {
378 if (!prev_node)
379 *next = NULL;
380 else if (ret > 0)
381 *next = delayed_item;
382 else if ((node = rb_next(prev_node)) != NULL) {
383 *next = rb_entry(node, struct btrfs_delayed_item,
384 rb_node);
385 } else
386 *next = NULL;
387 }
388 return NULL;
389 }
390
__btrfs_lookup_delayed_insertion_item(struct btrfs_delayed_node * delayed_node,struct btrfs_key * key)391 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
392 struct btrfs_delayed_node *delayed_node,
393 struct btrfs_key *key)
394 {
395 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
396 NULL, NULL);
397 }
398
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins,int action)399 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
400 struct btrfs_delayed_item *ins,
401 int action)
402 {
403 struct rb_node **p, *node;
404 struct rb_node *parent_node = NULL;
405 struct rb_root_cached *root;
406 struct btrfs_delayed_item *item;
407 int cmp;
408 bool leftmost = true;
409
410 if (action == BTRFS_DELAYED_INSERTION_ITEM)
411 root = &delayed_node->ins_root;
412 else if (action == BTRFS_DELAYED_DELETION_ITEM)
413 root = &delayed_node->del_root;
414 else
415 BUG();
416 p = &root->rb_root.rb_node;
417 node = &ins->rb_node;
418
419 while (*p) {
420 parent_node = *p;
421 item = rb_entry(parent_node, struct btrfs_delayed_item,
422 rb_node);
423
424 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
425 if (cmp < 0) {
426 p = &(*p)->rb_right;
427 leftmost = false;
428 } else if (cmp > 0) {
429 p = &(*p)->rb_left;
430 } else {
431 return -EEXIST;
432 }
433 }
434
435 rb_link_node(node, parent_node, p);
436 rb_insert_color_cached(node, root, leftmost);
437 ins->delayed_node = delayed_node;
438 ins->ins_or_del = action;
439
440 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
441 action == BTRFS_DELAYED_INSERTION_ITEM &&
442 ins->key.offset >= delayed_node->index_cnt)
443 delayed_node->index_cnt = ins->key.offset + 1;
444
445 delayed_node->count++;
446 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
447 return 0;
448 }
449
__btrfs_add_delayed_insertion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)450 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
451 struct btrfs_delayed_item *item)
452 {
453 return __btrfs_add_delayed_item(node, item,
454 BTRFS_DELAYED_INSERTION_ITEM);
455 }
456
__btrfs_add_delayed_deletion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)457 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
458 struct btrfs_delayed_item *item)
459 {
460 return __btrfs_add_delayed_item(node, item,
461 BTRFS_DELAYED_DELETION_ITEM);
462 }
463
finish_one_item(struct btrfs_delayed_root * delayed_root)464 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
465 {
466 int seq = atomic_inc_return(&delayed_root->items_seq);
467
468 /* atomic_dec_return implies a barrier */
469 if ((atomic_dec_return(&delayed_root->items) <
470 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
471 cond_wake_up_nomb(&delayed_root->wait);
472 }
473
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)474 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
475 {
476 struct rb_root_cached *root;
477 struct btrfs_delayed_root *delayed_root;
478
479 /* Not associated with any delayed_node */
480 if (!delayed_item->delayed_node)
481 return;
482 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
483
484 BUG_ON(!delayed_root);
485 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
486 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
487
488 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
489 root = &delayed_item->delayed_node->ins_root;
490 else
491 root = &delayed_item->delayed_node->del_root;
492
493 rb_erase_cached(&delayed_item->rb_node, root);
494 delayed_item->delayed_node->count--;
495
496 finish_one_item(delayed_root);
497 }
498
btrfs_release_delayed_item(struct btrfs_delayed_item * item)499 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
500 {
501 if (item) {
502 __btrfs_remove_delayed_item(item);
503 if (refcount_dec_and_test(&item->refs))
504 kfree(item);
505 }
506 }
507
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)508 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
509 struct btrfs_delayed_node *delayed_node)
510 {
511 struct rb_node *p;
512 struct btrfs_delayed_item *item = NULL;
513
514 p = rb_first_cached(&delayed_node->ins_root);
515 if (p)
516 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
517
518 return item;
519 }
520
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)521 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
522 struct btrfs_delayed_node *delayed_node)
523 {
524 struct rb_node *p;
525 struct btrfs_delayed_item *item = NULL;
526
527 p = rb_first_cached(&delayed_node->del_root);
528 if (p)
529 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
530
531 return item;
532 }
533
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)534 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
535 struct btrfs_delayed_item *item)
536 {
537 struct rb_node *p;
538 struct btrfs_delayed_item *next = NULL;
539
540 p = rb_next(&item->rb_node);
541 if (p)
542 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
543
544 return next;
545 }
546
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_item * item)547 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
548 struct btrfs_root *root,
549 struct btrfs_delayed_item *item)
550 {
551 struct btrfs_block_rsv *src_rsv;
552 struct btrfs_block_rsv *dst_rsv;
553 struct btrfs_fs_info *fs_info = root->fs_info;
554 u64 num_bytes;
555 int ret;
556
557 if (!trans->bytes_reserved)
558 return 0;
559
560 src_rsv = trans->block_rsv;
561 dst_rsv = &fs_info->delayed_block_rsv;
562
563 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
564
565 /*
566 * Here we migrate space rsv from transaction rsv, since have already
567 * reserved space when starting a transaction. So no need to reserve
568 * qgroup space here.
569 */
570 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
571 if (!ret) {
572 trace_btrfs_space_reservation(fs_info, "delayed_item",
573 item->key.objectid,
574 num_bytes, 1);
575 item->bytes_reserved = num_bytes;
576 }
577
578 return ret;
579 }
580
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)581 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
582 struct btrfs_delayed_item *item)
583 {
584 struct btrfs_block_rsv *rsv;
585 struct btrfs_fs_info *fs_info = root->fs_info;
586
587 if (!item->bytes_reserved)
588 return;
589
590 rsv = &fs_info->delayed_block_rsv;
591 /*
592 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
593 * to release/reserve qgroup space.
594 */
595 trace_btrfs_space_reservation(fs_info, "delayed_item",
596 item->key.objectid, item->bytes_reserved,
597 0);
598 btrfs_block_rsv_release(fs_info, rsv,
599 item->bytes_reserved);
600 }
601
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * inode,struct btrfs_delayed_node * node)602 static int btrfs_delayed_inode_reserve_metadata(
603 struct btrfs_trans_handle *trans,
604 struct btrfs_root *root,
605 struct btrfs_inode *inode,
606 struct btrfs_delayed_node *node)
607 {
608 struct btrfs_fs_info *fs_info = root->fs_info;
609 struct btrfs_block_rsv *src_rsv;
610 struct btrfs_block_rsv *dst_rsv;
611 u64 num_bytes;
612 int ret;
613
614 src_rsv = trans->block_rsv;
615 dst_rsv = &fs_info->delayed_block_rsv;
616
617 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
618
619 /*
620 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
621 * which doesn't reserve space for speed. This is a problem since we
622 * still need to reserve space for this update, so try to reserve the
623 * space.
624 *
625 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
626 * we always reserve enough to update the inode item.
627 */
628 if (!src_rsv || (!trans->bytes_reserved &&
629 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
630 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
631 BTRFS_QGROUP_RSV_META_PREALLOC, true);
632 if (ret < 0)
633 return ret;
634 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
635 BTRFS_RESERVE_NO_FLUSH);
636 /*
637 * Since we're under a transaction reserve_metadata_bytes could
638 * try to commit the transaction which will make it return
639 * EAGAIN to make us stop the transaction we have, so return
640 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
641 */
642 if (ret == -EAGAIN) {
643 ret = -ENOSPC;
644 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
645 }
646 if (!ret) {
647 node->bytes_reserved = num_bytes;
648 trace_btrfs_space_reservation(fs_info,
649 "delayed_inode",
650 btrfs_ino(inode),
651 num_bytes, 1);
652 } else {
653 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
654 }
655 return ret;
656 }
657
658 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
659 if (!ret) {
660 trace_btrfs_space_reservation(fs_info, "delayed_inode",
661 btrfs_ino(inode), num_bytes, 1);
662 node->bytes_reserved = num_bytes;
663 }
664
665 return ret;
666 }
667
btrfs_delayed_inode_release_metadata(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,bool qgroup_free)668 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
669 struct btrfs_delayed_node *node,
670 bool qgroup_free)
671 {
672 struct btrfs_block_rsv *rsv;
673
674 if (!node->bytes_reserved)
675 return;
676
677 rsv = &fs_info->delayed_block_rsv;
678 trace_btrfs_space_reservation(fs_info, "delayed_inode",
679 node->inode_id, node->bytes_reserved, 0);
680 btrfs_block_rsv_release(fs_info, rsv,
681 node->bytes_reserved);
682 if (qgroup_free)
683 btrfs_qgroup_free_meta_prealloc(node->root,
684 node->bytes_reserved);
685 else
686 btrfs_qgroup_convert_reserved_meta(node->root,
687 node->bytes_reserved);
688 node->bytes_reserved = 0;
689 }
690
691 /*
692 * This helper will insert some continuous items into the same leaf according
693 * to the free space of the leaf.
694 */
btrfs_batch_insert_items(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)695 static int btrfs_batch_insert_items(struct btrfs_root *root,
696 struct btrfs_path *path,
697 struct btrfs_delayed_item *item)
698 {
699 struct btrfs_delayed_item *curr, *next;
700 int free_space;
701 int total_data_size = 0, total_size = 0;
702 struct extent_buffer *leaf;
703 char *data_ptr;
704 struct btrfs_key *keys;
705 u32 *data_size;
706 struct list_head head;
707 int slot;
708 int nitems;
709 int i;
710 int ret = 0;
711
712 BUG_ON(!path->nodes[0]);
713
714 leaf = path->nodes[0];
715 free_space = btrfs_leaf_free_space(leaf);
716 INIT_LIST_HEAD(&head);
717
718 next = item;
719 nitems = 0;
720
721 /*
722 * count the number of the continuous items that we can insert in batch
723 */
724 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
725 free_space) {
726 total_data_size += next->data_len;
727 total_size += next->data_len + sizeof(struct btrfs_item);
728 list_add_tail(&next->tree_list, &head);
729 nitems++;
730
731 curr = next;
732 next = __btrfs_next_delayed_item(curr);
733 if (!next)
734 break;
735
736 if (!btrfs_is_continuous_delayed_item(curr, next))
737 break;
738 }
739
740 if (!nitems) {
741 ret = 0;
742 goto out;
743 }
744
745 /*
746 * we need allocate some memory space, but it might cause the task
747 * to sleep, so we set all locked nodes in the path to blocking locks
748 * first.
749 */
750 btrfs_set_path_blocking(path);
751
752 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
753 if (!keys) {
754 ret = -ENOMEM;
755 goto out;
756 }
757
758 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
759 if (!data_size) {
760 ret = -ENOMEM;
761 goto error;
762 }
763
764 /* get keys of all the delayed items */
765 i = 0;
766 list_for_each_entry(next, &head, tree_list) {
767 keys[i] = next->key;
768 data_size[i] = next->data_len;
769 i++;
770 }
771
772 /* insert the keys of the items */
773 setup_items_for_insert(root, path, keys, data_size,
774 total_data_size, total_size, nitems);
775
776 /* insert the dir index items */
777 slot = path->slots[0];
778 list_for_each_entry_safe(curr, next, &head, tree_list) {
779 data_ptr = btrfs_item_ptr(leaf, slot, char);
780 write_extent_buffer(leaf, &curr->data,
781 (unsigned long)data_ptr,
782 curr->data_len);
783 slot++;
784
785 btrfs_delayed_item_release_metadata(root, curr);
786
787 list_del(&curr->tree_list);
788 btrfs_release_delayed_item(curr);
789 }
790
791 error:
792 kfree(data_size);
793 kfree(keys);
794 out:
795 return ret;
796 }
797
798 /*
799 * This helper can just do simple insertion that needn't extend item for new
800 * data, such as directory name index insertion, inode insertion.
801 */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * delayed_item)802 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
803 struct btrfs_root *root,
804 struct btrfs_path *path,
805 struct btrfs_delayed_item *delayed_item)
806 {
807 struct extent_buffer *leaf;
808 unsigned int nofs_flag;
809 char *ptr;
810 int ret;
811
812 nofs_flag = memalloc_nofs_save();
813 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
814 delayed_item->data_len);
815 memalloc_nofs_restore(nofs_flag);
816 if (ret < 0 && ret != -EEXIST)
817 return ret;
818
819 leaf = path->nodes[0];
820
821 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
822
823 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
824 delayed_item->data_len);
825 btrfs_mark_buffer_dirty(leaf);
826
827 btrfs_delayed_item_release_metadata(root, delayed_item);
828 return 0;
829 }
830
831 /*
832 * we insert an item first, then if there are some continuous items, we try
833 * to insert those items into the same leaf.
834 */
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)835 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
836 struct btrfs_path *path,
837 struct btrfs_root *root,
838 struct btrfs_delayed_node *node)
839 {
840 struct btrfs_delayed_item *curr, *prev;
841 int ret = 0;
842
843 do_again:
844 mutex_lock(&node->mutex);
845 curr = __btrfs_first_delayed_insertion_item(node);
846 if (!curr)
847 goto insert_end;
848
849 ret = btrfs_insert_delayed_item(trans, root, path, curr);
850 if (ret < 0) {
851 btrfs_release_path(path);
852 goto insert_end;
853 }
854
855 prev = curr;
856 curr = __btrfs_next_delayed_item(prev);
857 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
858 /* insert the continuous items into the same leaf */
859 path->slots[0]++;
860 btrfs_batch_insert_items(root, path, curr);
861 }
862 btrfs_release_delayed_item(prev);
863 btrfs_mark_buffer_dirty(path->nodes[0]);
864
865 btrfs_release_path(path);
866 mutex_unlock(&node->mutex);
867 goto do_again;
868
869 insert_end:
870 mutex_unlock(&node->mutex);
871 return ret;
872 }
873
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)874 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
875 struct btrfs_root *root,
876 struct btrfs_path *path,
877 struct btrfs_delayed_item *item)
878 {
879 struct btrfs_delayed_item *curr, *next;
880 struct extent_buffer *leaf;
881 struct btrfs_key key;
882 struct list_head head;
883 int nitems, i, last_item;
884 int ret = 0;
885
886 BUG_ON(!path->nodes[0]);
887
888 leaf = path->nodes[0];
889
890 i = path->slots[0];
891 last_item = btrfs_header_nritems(leaf) - 1;
892 if (i > last_item)
893 return -ENOENT; /* FIXME: Is errno suitable? */
894
895 next = item;
896 INIT_LIST_HEAD(&head);
897 btrfs_item_key_to_cpu(leaf, &key, i);
898 nitems = 0;
899 /*
900 * count the number of the dir index items that we can delete in batch
901 */
902 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
903 list_add_tail(&next->tree_list, &head);
904 nitems++;
905
906 curr = next;
907 next = __btrfs_next_delayed_item(curr);
908 if (!next)
909 break;
910
911 if (!btrfs_is_continuous_delayed_item(curr, next))
912 break;
913
914 i++;
915 if (i > last_item)
916 break;
917 btrfs_item_key_to_cpu(leaf, &key, i);
918 }
919
920 if (!nitems)
921 return 0;
922
923 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
924 if (ret)
925 goto out;
926
927 list_for_each_entry_safe(curr, next, &head, tree_list) {
928 btrfs_delayed_item_release_metadata(root, curr);
929 list_del(&curr->tree_list);
930 btrfs_release_delayed_item(curr);
931 }
932
933 out:
934 return ret;
935 }
936
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)937 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
938 struct btrfs_path *path,
939 struct btrfs_root *root,
940 struct btrfs_delayed_node *node)
941 {
942 struct btrfs_delayed_item *curr, *prev;
943 unsigned int nofs_flag;
944 int ret = 0;
945
946 do_again:
947 mutex_lock(&node->mutex);
948 curr = __btrfs_first_delayed_deletion_item(node);
949 if (!curr)
950 goto delete_fail;
951
952 nofs_flag = memalloc_nofs_save();
953 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
954 memalloc_nofs_restore(nofs_flag);
955 if (ret < 0)
956 goto delete_fail;
957 else if (ret > 0) {
958 /*
959 * can't find the item which the node points to, so this node
960 * is invalid, just drop it.
961 */
962 prev = curr;
963 curr = __btrfs_next_delayed_item(prev);
964 btrfs_release_delayed_item(prev);
965 ret = 0;
966 btrfs_release_path(path);
967 if (curr) {
968 mutex_unlock(&node->mutex);
969 goto do_again;
970 } else
971 goto delete_fail;
972 }
973
974 btrfs_batch_delete_items(trans, root, path, curr);
975 btrfs_release_path(path);
976 mutex_unlock(&node->mutex);
977 goto do_again;
978
979 delete_fail:
980 btrfs_release_path(path);
981 mutex_unlock(&node->mutex);
982 return ret;
983 }
984
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)985 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
986 {
987 struct btrfs_delayed_root *delayed_root;
988
989 if (delayed_node &&
990 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
991 BUG_ON(!delayed_node->root);
992 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
993 delayed_node->count--;
994
995 delayed_root = delayed_node->root->fs_info->delayed_root;
996 finish_one_item(delayed_root);
997 }
998 }
999
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)1000 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1001 {
1002 struct btrfs_delayed_root *delayed_root;
1003
1004 ASSERT(delayed_node->root);
1005 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1006 delayed_node->count--;
1007
1008 delayed_root = delayed_node->root->fs_info->delayed_root;
1009 finish_one_item(delayed_root);
1010 }
1011
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1012 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1013 struct btrfs_root *root,
1014 struct btrfs_path *path,
1015 struct btrfs_delayed_node *node)
1016 {
1017 struct btrfs_fs_info *fs_info = root->fs_info;
1018 struct btrfs_key key;
1019 struct btrfs_inode_item *inode_item;
1020 struct extent_buffer *leaf;
1021 unsigned int nofs_flag;
1022 int mod;
1023 int ret;
1024
1025 key.objectid = node->inode_id;
1026 key.type = BTRFS_INODE_ITEM_KEY;
1027 key.offset = 0;
1028
1029 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1030 mod = -1;
1031 else
1032 mod = 1;
1033
1034 nofs_flag = memalloc_nofs_save();
1035 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1036 memalloc_nofs_restore(nofs_flag);
1037 if (ret > 0)
1038 ret = -ENOENT;
1039 if (ret < 0)
1040 goto out;
1041
1042 leaf = path->nodes[0];
1043 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1044 struct btrfs_inode_item);
1045 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1046 sizeof(struct btrfs_inode_item));
1047 btrfs_mark_buffer_dirty(leaf);
1048
1049 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1050 goto no_iref;
1051
1052 path->slots[0]++;
1053 if (path->slots[0] >= btrfs_header_nritems(leaf))
1054 goto search;
1055 again:
1056 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1057 if (key.objectid != node->inode_id)
1058 goto out;
1059
1060 if (key.type != BTRFS_INODE_REF_KEY &&
1061 key.type != BTRFS_INODE_EXTREF_KEY)
1062 goto out;
1063
1064 /*
1065 * Delayed iref deletion is for the inode who has only one link,
1066 * so there is only one iref. The case that several irefs are
1067 * in the same item doesn't exist.
1068 */
1069 btrfs_del_item(trans, root, path);
1070 out:
1071 btrfs_release_delayed_iref(node);
1072 no_iref:
1073 btrfs_release_path(path);
1074 err_out:
1075 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1076 btrfs_release_delayed_inode(node);
1077
1078 /*
1079 * If we fail to update the delayed inode we need to abort the
1080 * transaction, because we could leave the inode with the improper
1081 * counts behind.
1082 */
1083 if (ret && ret != -ENOENT)
1084 btrfs_abort_transaction(trans, ret);
1085
1086 return ret;
1087
1088 search:
1089 btrfs_release_path(path);
1090
1091 key.type = BTRFS_INODE_EXTREF_KEY;
1092 key.offset = -1;
1093
1094 nofs_flag = memalloc_nofs_save();
1095 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1096 memalloc_nofs_restore(nofs_flag);
1097 if (ret < 0)
1098 goto err_out;
1099 ASSERT(ret);
1100
1101 ret = 0;
1102 leaf = path->nodes[0];
1103 path->slots[0]--;
1104 goto again;
1105 }
1106
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1107 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1108 struct btrfs_root *root,
1109 struct btrfs_path *path,
1110 struct btrfs_delayed_node *node)
1111 {
1112 int ret;
1113
1114 mutex_lock(&node->mutex);
1115 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1116 mutex_unlock(&node->mutex);
1117 return 0;
1118 }
1119
1120 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1121 mutex_unlock(&node->mutex);
1122 return ret;
1123 }
1124
1125 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1126 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1127 struct btrfs_path *path,
1128 struct btrfs_delayed_node *node)
1129 {
1130 int ret;
1131
1132 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1133 if (ret)
1134 return ret;
1135
1136 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1137 if (ret)
1138 return ret;
1139
1140 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1141 return ret;
1142 }
1143
1144 /*
1145 * Called when committing the transaction.
1146 * Returns 0 on success.
1147 * Returns < 0 on error and returns with an aborted transaction with any
1148 * outstanding delayed items cleaned up.
1149 */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,int nr)1150 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1151 {
1152 struct btrfs_fs_info *fs_info = trans->fs_info;
1153 struct btrfs_delayed_root *delayed_root;
1154 struct btrfs_delayed_node *curr_node, *prev_node;
1155 struct btrfs_path *path;
1156 struct btrfs_block_rsv *block_rsv;
1157 int ret = 0;
1158 bool count = (nr > 0);
1159
1160 if (TRANS_ABORTED(trans))
1161 return -EIO;
1162
1163 path = btrfs_alloc_path();
1164 if (!path)
1165 return -ENOMEM;
1166 path->leave_spinning = 1;
1167
1168 block_rsv = trans->block_rsv;
1169 trans->block_rsv = &fs_info->delayed_block_rsv;
1170
1171 delayed_root = fs_info->delayed_root;
1172
1173 curr_node = btrfs_first_delayed_node(delayed_root);
1174 while (curr_node && (!count || (count && nr--))) {
1175 ret = __btrfs_commit_inode_delayed_items(trans, path,
1176 curr_node);
1177 if (ret) {
1178 btrfs_abort_transaction(trans, ret);
1179 break;
1180 }
1181
1182 prev_node = curr_node;
1183 curr_node = btrfs_next_delayed_node(curr_node);
1184 /*
1185 * See the comment below about releasing path before releasing
1186 * node. If the commit of delayed items was successful the path
1187 * should always be released, but in case of an error, it may
1188 * point to locked extent buffers (a leaf at the very least).
1189 */
1190 ASSERT(path->nodes[0] == NULL);
1191 btrfs_release_delayed_node(prev_node);
1192 }
1193
1194 /*
1195 * Release the path to avoid a potential deadlock and lockdep splat when
1196 * releasing the delayed node, as that requires taking the delayed node's
1197 * mutex. If another task starts running delayed items before we take
1198 * the mutex, it will first lock the mutex and then it may try to lock
1199 * the same btree path (leaf).
1200 */
1201 btrfs_free_path(path);
1202
1203 if (curr_node)
1204 btrfs_release_delayed_node(curr_node);
1205 trans->block_rsv = block_rsv;
1206
1207 return ret;
1208 }
1209
btrfs_run_delayed_items(struct btrfs_trans_handle * trans)1210 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1211 {
1212 return __btrfs_run_delayed_items(trans, -1);
1213 }
1214
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,int nr)1215 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1216 {
1217 return __btrfs_run_delayed_items(trans, nr);
1218 }
1219
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)1220 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1221 struct btrfs_inode *inode)
1222 {
1223 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1224 struct btrfs_path *path;
1225 struct btrfs_block_rsv *block_rsv;
1226 int ret;
1227
1228 if (!delayed_node)
1229 return 0;
1230
1231 mutex_lock(&delayed_node->mutex);
1232 if (!delayed_node->count) {
1233 mutex_unlock(&delayed_node->mutex);
1234 btrfs_release_delayed_node(delayed_node);
1235 return 0;
1236 }
1237 mutex_unlock(&delayed_node->mutex);
1238
1239 path = btrfs_alloc_path();
1240 if (!path) {
1241 btrfs_release_delayed_node(delayed_node);
1242 return -ENOMEM;
1243 }
1244 path->leave_spinning = 1;
1245
1246 block_rsv = trans->block_rsv;
1247 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1248
1249 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1250
1251 btrfs_release_delayed_node(delayed_node);
1252 btrfs_free_path(path);
1253 trans->block_rsv = block_rsv;
1254
1255 return ret;
1256 }
1257
btrfs_commit_inode_delayed_inode(struct btrfs_inode * inode)1258 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1259 {
1260 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1261 struct btrfs_trans_handle *trans;
1262 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1263 struct btrfs_path *path;
1264 struct btrfs_block_rsv *block_rsv;
1265 int ret;
1266
1267 if (!delayed_node)
1268 return 0;
1269
1270 mutex_lock(&delayed_node->mutex);
1271 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1272 mutex_unlock(&delayed_node->mutex);
1273 btrfs_release_delayed_node(delayed_node);
1274 return 0;
1275 }
1276 mutex_unlock(&delayed_node->mutex);
1277
1278 trans = btrfs_join_transaction(delayed_node->root);
1279 if (IS_ERR(trans)) {
1280 ret = PTR_ERR(trans);
1281 goto out;
1282 }
1283
1284 path = btrfs_alloc_path();
1285 if (!path) {
1286 ret = -ENOMEM;
1287 goto trans_out;
1288 }
1289 path->leave_spinning = 1;
1290
1291 block_rsv = trans->block_rsv;
1292 trans->block_rsv = &fs_info->delayed_block_rsv;
1293
1294 mutex_lock(&delayed_node->mutex);
1295 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1296 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1297 path, delayed_node);
1298 else
1299 ret = 0;
1300 mutex_unlock(&delayed_node->mutex);
1301
1302 btrfs_free_path(path);
1303 trans->block_rsv = block_rsv;
1304 trans_out:
1305 btrfs_end_transaction(trans);
1306 btrfs_btree_balance_dirty(fs_info);
1307 out:
1308 btrfs_release_delayed_node(delayed_node);
1309
1310 return ret;
1311 }
1312
btrfs_remove_delayed_node(struct btrfs_inode * inode)1313 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1314 {
1315 struct btrfs_delayed_node *delayed_node;
1316
1317 delayed_node = READ_ONCE(inode->delayed_node);
1318 if (!delayed_node)
1319 return;
1320
1321 inode->delayed_node = NULL;
1322 btrfs_release_delayed_node(delayed_node);
1323 }
1324
1325 struct btrfs_async_delayed_work {
1326 struct btrfs_delayed_root *delayed_root;
1327 int nr;
1328 struct btrfs_work work;
1329 };
1330
btrfs_async_run_delayed_root(struct btrfs_work * work)1331 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1332 {
1333 struct btrfs_async_delayed_work *async_work;
1334 struct btrfs_delayed_root *delayed_root;
1335 struct btrfs_trans_handle *trans;
1336 struct btrfs_path *path;
1337 struct btrfs_delayed_node *delayed_node = NULL;
1338 struct btrfs_root *root;
1339 struct btrfs_block_rsv *block_rsv;
1340 int total_done = 0;
1341
1342 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1343 delayed_root = async_work->delayed_root;
1344
1345 path = btrfs_alloc_path();
1346 if (!path)
1347 goto out;
1348
1349 do {
1350 if (atomic_read(&delayed_root->items) <
1351 BTRFS_DELAYED_BACKGROUND / 2)
1352 break;
1353
1354 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1355 if (!delayed_node)
1356 break;
1357
1358 path->leave_spinning = 1;
1359 root = delayed_node->root;
1360
1361 trans = btrfs_join_transaction(root);
1362 if (IS_ERR(trans)) {
1363 btrfs_release_path(path);
1364 btrfs_release_prepared_delayed_node(delayed_node);
1365 total_done++;
1366 continue;
1367 }
1368
1369 block_rsv = trans->block_rsv;
1370 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1371
1372 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1373
1374 trans->block_rsv = block_rsv;
1375 btrfs_end_transaction(trans);
1376 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1377
1378 btrfs_release_path(path);
1379 btrfs_release_prepared_delayed_node(delayed_node);
1380 total_done++;
1381
1382 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1383 || total_done < async_work->nr);
1384
1385 btrfs_free_path(path);
1386 out:
1387 wake_up(&delayed_root->wait);
1388 kfree(async_work);
1389 }
1390
1391
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1392 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1393 struct btrfs_fs_info *fs_info, int nr)
1394 {
1395 struct btrfs_async_delayed_work *async_work;
1396
1397 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1398 if (!async_work)
1399 return -ENOMEM;
1400
1401 async_work->delayed_root = delayed_root;
1402 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1403 NULL);
1404 async_work->nr = nr;
1405
1406 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1407 return 0;
1408 }
1409
btrfs_assert_delayed_root_empty(struct btrfs_fs_info * fs_info)1410 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1411 {
1412 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1413 }
1414
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1415 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1416 {
1417 int val = atomic_read(&delayed_root->items_seq);
1418
1419 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1420 return 1;
1421
1422 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1423 return 1;
1424
1425 return 0;
1426 }
1427
btrfs_balance_delayed_items(struct btrfs_fs_info * fs_info)1428 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1429 {
1430 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1431
1432 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1433 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1434 return;
1435
1436 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1437 int seq;
1438 int ret;
1439
1440 seq = atomic_read(&delayed_root->items_seq);
1441
1442 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1443 if (ret)
1444 return;
1445
1446 wait_event_interruptible(delayed_root->wait,
1447 could_end_wait(delayed_root, seq));
1448 return;
1449 }
1450
1451 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1452 }
1453
1454 /* Will return 0 or -ENOMEM */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,const char * name,int name_len,struct btrfs_inode * dir,struct btrfs_disk_key * disk_key,u8 type,u64 index)1455 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1456 const char *name, int name_len,
1457 struct btrfs_inode *dir,
1458 struct btrfs_disk_key *disk_key, u8 type,
1459 u64 index)
1460 {
1461 struct btrfs_delayed_node *delayed_node;
1462 struct btrfs_delayed_item *delayed_item;
1463 struct btrfs_dir_item *dir_item;
1464 int ret;
1465
1466 delayed_node = btrfs_get_or_create_delayed_node(dir);
1467 if (IS_ERR(delayed_node))
1468 return PTR_ERR(delayed_node);
1469
1470 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1471 if (!delayed_item) {
1472 ret = -ENOMEM;
1473 goto release_node;
1474 }
1475
1476 delayed_item->key.objectid = btrfs_ino(dir);
1477 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1478 delayed_item->key.offset = index;
1479
1480 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1481 dir_item->location = *disk_key;
1482 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1483 btrfs_set_stack_dir_data_len(dir_item, 0);
1484 btrfs_set_stack_dir_name_len(dir_item, name_len);
1485 btrfs_set_stack_dir_type(dir_item, type);
1486 memcpy((char *)(dir_item + 1), name, name_len);
1487
1488 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1489 /*
1490 * we have reserved enough space when we start a new transaction,
1491 * so reserving metadata failure is impossible
1492 */
1493 BUG_ON(ret);
1494
1495 mutex_lock(&delayed_node->mutex);
1496 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1497 if (unlikely(ret)) {
1498 btrfs_err(trans->fs_info,
1499 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1500 name_len, name, delayed_node->root->root_key.objectid,
1501 delayed_node->inode_id, ret);
1502 BUG();
1503 }
1504 mutex_unlock(&delayed_node->mutex);
1505
1506 release_node:
1507 btrfs_release_delayed_node(delayed_node);
1508 return ret;
1509 }
1510
btrfs_delete_delayed_insertion_item(struct btrfs_fs_info * fs_info,struct btrfs_delayed_node * node,struct btrfs_key * key)1511 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1512 struct btrfs_delayed_node *node,
1513 struct btrfs_key *key)
1514 {
1515 struct btrfs_delayed_item *item;
1516
1517 mutex_lock(&node->mutex);
1518 item = __btrfs_lookup_delayed_insertion_item(node, key);
1519 if (!item) {
1520 mutex_unlock(&node->mutex);
1521 return 1;
1522 }
1523
1524 btrfs_delayed_item_release_metadata(node->root, item);
1525 btrfs_release_delayed_item(item);
1526 mutex_unlock(&node->mutex);
1527 return 0;
1528 }
1529
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,u64 index)1530 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1531 struct btrfs_inode *dir, u64 index)
1532 {
1533 struct btrfs_delayed_node *node;
1534 struct btrfs_delayed_item *item;
1535 struct btrfs_key item_key;
1536 int ret;
1537
1538 node = btrfs_get_or_create_delayed_node(dir);
1539 if (IS_ERR(node))
1540 return PTR_ERR(node);
1541
1542 item_key.objectid = btrfs_ino(dir);
1543 item_key.type = BTRFS_DIR_INDEX_KEY;
1544 item_key.offset = index;
1545
1546 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1547 &item_key);
1548 if (!ret)
1549 goto end;
1550
1551 item = btrfs_alloc_delayed_item(0);
1552 if (!item) {
1553 ret = -ENOMEM;
1554 goto end;
1555 }
1556
1557 item->key = item_key;
1558
1559 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1560 /*
1561 * we have reserved enough space when we start a new transaction,
1562 * so reserving metadata failure is impossible.
1563 */
1564 if (ret < 0) {
1565 btrfs_err(trans->fs_info,
1566 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1567 btrfs_release_delayed_item(item);
1568 goto end;
1569 }
1570
1571 mutex_lock(&node->mutex);
1572 ret = __btrfs_add_delayed_deletion_item(node, item);
1573 if (unlikely(ret)) {
1574 btrfs_err(trans->fs_info,
1575 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1576 index, node->root->root_key.objectid,
1577 node->inode_id, ret);
1578 btrfs_delayed_item_release_metadata(dir->root, item);
1579 btrfs_release_delayed_item(item);
1580 }
1581 mutex_unlock(&node->mutex);
1582 end:
1583 btrfs_release_delayed_node(node);
1584 return ret;
1585 }
1586
btrfs_inode_delayed_dir_index_count(struct btrfs_inode * inode)1587 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1588 {
1589 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1590
1591 if (!delayed_node)
1592 return -ENOENT;
1593
1594 /*
1595 * Since we have held i_mutex of this directory, it is impossible that
1596 * a new directory index is added into the delayed node and index_cnt
1597 * is updated now. So we needn't lock the delayed node.
1598 */
1599 if (!delayed_node->index_cnt) {
1600 btrfs_release_delayed_node(delayed_node);
1601 return -EINVAL;
1602 }
1603
1604 inode->index_cnt = delayed_node->index_cnt;
1605 btrfs_release_delayed_node(delayed_node);
1606 return 0;
1607 }
1608
btrfs_readdir_get_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1609 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1610 struct list_head *ins_list,
1611 struct list_head *del_list)
1612 {
1613 struct btrfs_delayed_node *delayed_node;
1614 struct btrfs_delayed_item *item;
1615
1616 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1617 if (!delayed_node)
1618 return false;
1619
1620 /*
1621 * We can only do one readdir with delayed items at a time because of
1622 * item->readdir_list.
1623 */
1624 inode_unlock_shared(inode);
1625 inode_lock(inode);
1626
1627 mutex_lock(&delayed_node->mutex);
1628 item = __btrfs_first_delayed_insertion_item(delayed_node);
1629 while (item) {
1630 refcount_inc(&item->refs);
1631 list_add_tail(&item->readdir_list, ins_list);
1632 item = __btrfs_next_delayed_item(item);
1633 }
1634
1635 item = __btrfs_first_delayed_deletion_item(delayed_node);
1636 while (item) {
1637 refcount_inc(&item->refs);
1638 list_add_tail(&item->readdir_list, del_list);
1639 item = __btrfs_next_delayed_item(item);
1640 }
1641 mutex_unlock(&delayed_node->mutex);
1642 /*
1643 * This delayed node is still cached in the btrfs inode, so refs
1644 * must be > 1 now, and we needn't check it is going to be freed
1645 * or not.
1646 *
1647 * Besides that, this function is used to read dir, we do not
1648 * insert/delete delayed items in this period. So we also needn't
1649 * requeue or dequeue this delayed node.
1650 */
1651 refcount_dec(&delayed_node->refs);
1652
1653 return true;
1654 }
1655
btrfs_readdir_put_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1656 void btrfs_readdir_put_delayed_items(struct inode *inode,
1657 struct list_head *ins_list,
1658 struct list_head *del_list)
1659 {
1660 struct btrfs_delayed_item *curr, *next;
1661
1662 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1663 list_del(&curr->readdir_list);
1664 if (refcount_dec_and_test(&curr->refs))
1665 kfree(curr);
1666 }
1667
1668 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1669 list_del(&curr->readdir_list);
1670 if (refcount_dec_and_test(&curr->refs))
1671 kfree(curr);
1672 }
1673
1674 /*
1675 * The VFS is going to do up_read(), so we need to downgrade back to a
1676 * read lock.
1677 */
1678 downgrade_write(&inode->i_rwsem);
1679 }
1680
btrfs_should_delete_dir_index(struct list_head * del_list,u64 index)1681 int btrfs_should_delete_dir_index(struct list_head *del_list,
1682 u64 index)
1683 {
1684 struct btrfs_delayed_item *curr;
1685 int ret = 0;
1686
1687 list_for_each_entry(curr, del_list, readdir_list) {
1688 if (curr->key.offset > index)
1689 break;
1690 if (curr->key.offset == index) {
1691 ret = 1;
1692 break;
1693 }
1694 }
1695 return ret;
1696 }
1697
1698 /*
1699 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1700 *
1701 */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,struct list_head * ins_list)1702 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1703 struct list_head *ins_list)
1704 {
1705 struct btrfs_dir_item *di;
1706 struct btrfs_delayed_item *curr, *next;
1707 struct btrfs_key location;
1708 char *name;
1709 int name_len;
1710 int over = 0;
1711 unsigned char d_type;
1712
1713 if (list_empty(ins_list))
1714 return 0;
1715
1716 /*
1717 * Changing the data of the delayed item is impossible. So
1718 * we needn't lock them. And we have held i_mutex of the
1719 * directory, nobody can delete any directory indexes now.
1720 */
1721 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1722 list_del(&curr->readdir_list);
1723
1724 if (curr->key.offset < ctx->pos) {
1725 if (refcount_dec_and_test(&curr->refs))
1726 kfree(curr);
1727 continue;
1728 }
1729
1730 ctx->pos = curr->key.offset;
1731
1732 di = (struct btrfs_dir_item *)curr->data;
1733 name = (char *)(di + 1);
1734 name_len = btrfs_stack_dir_name_len(di);
1735
1736 d_type = fs_ftype_to_dtype(di->type);
1737 btrfs_disk_key_to_cpu(&location, &di->location);
1738
1739 over = !dir_emit(ctx, name, name_len,
1740 location.objectid, d_type);
1741
1742 if (refcount_dec_and_test(&curr->refs))
1743 kfree(curr);
1744
1745 if (over)
1746 return 1;
1747 ctx->pos++;
1748 }
1749 return 0;
1750 }
1751
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct inode * inode)1752 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1753 struct btrfs_inode_item *inode_item,
1754 struct inode *inode)
1755 {
1756 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1757 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1758 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1759 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1760 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1761 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1762 btrfs_set_stack_inode_generation(inode_item,
1763 BTRFS_I(inode)->generation);
1764 btrfs_set_stack_inode_sequence(inode_item,
1765 inode_peek_iversion(inode));
1766 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1767 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1768 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1769 btrfs_set_stack_inode_block_group(inode_item, 0);
1770
1771 btrfs_set_stack_timespec_sec(&inode_item->atime,
1772 inode->i_atime.tv_sec);
1773 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1774 inode->i_atime.tv_nsec);
1775
1776 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1777 inode->i_mtime.tv_sec);
1778 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1779 inode->i_mtime.tv_nsec);
1780
1781 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1782 inode->i_ctime.tv_sec);
1783 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1784 inode->i_ctime.tv_nsec);
1785
1786 btrfs_set_stack_timespec_sec(&inode_item->otime,
1787 BTRFS_I(inode)->i_otime.tv_sec);
1788 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1789 BTRFS_I(inode)->i_otime.tv_nsec);
1790 }
1791
btrfs_fill_inode(struct inode * inode,u32 * rdev)1792 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1793 {
1794 struct btrfs_delayed_node *delayed_node;
1795 struct btrfs_inode_item *inode_item;
1796
1797 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1798 if (!delayed_node)
1799 return -ENOENT;
1800
1801 mutex_lock(&delayed_node->mutex);
1802 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1803 mutex_unlock(&delayed_node->mutex);
1804 btrfs_release_delayed_node(delayed_node);
1805 return -ENOENT;
1806 }
1807
1808 inode_item = &delayed_node->inode_item;
1809
1810 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1811 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1812 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1813 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1814 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1815 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1816 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1817 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1818
1819 inode_set_iversion_queried(inode,
1820 btrfs_stack_inode_sequence(inode_item));
1821 inode->i_rdev = 0;
1822 *rdev = btrfs_stack_inode_rdev(inode_item);
1823 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1824
1825 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1826 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1827
1828 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1829 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1830
1831 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1832 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1833
1834 BTRFS_I(inode)->i_otime.tv_sec =
1835 btrfs_stack_timespec_sec(&inode_item->otime);
1836 BTRFS_I(inode)->i_otime.tv_nsec =
1837 btrfs_stack_timespec_nsec(&inode_item->otime);
1838
1839 inode->i_generation = BTRFS_I(inode)->generation;
1840 BTRFS_I(inode)->index_cnt = (u64)-1;
1841
1842 mutex_unlock(&delayed_node->mutex);
1843 btrfs_release_delayed_node(delayed_node);
1844 return 0;
1845 }
1846
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1847 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1848 struct btrfs_root *root, struct inode *inode)
1849 {
1850 struct btrfs_delayed_node *delayed_node;
1851 int ret = 0;
1852
1853 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1854 if (IS_ERR(delayed_node))
1855 return PTR_ERR(delayed_node);
1856
1857 mutex_lock(&delayed_node->mutex);
1858 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1859 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1860 goto release_node;
1861 }
1862
1863 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1864 delayed_node);
1865 if (ret)
1866 goto release_node;
1867
1868 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1869 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1870 delayed_node->count++;
1871 atomic_inc(&root->fs_info->delayed_root->items);
1872 release_node:
1873 mutex_unlock(&delayed_node->mutex);
1874 btrfs_release_delayed_node(delayed_node);
1875 return ret;
1876 }
1877
btrfs_delayed_delete_inode_ref(struct btrfs_inode * inode)1878 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1879 {
1880 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1881 struct btrfs_delayed_node *delayed_node;
1882
1883 /*
1884 * we don't do delayed inode updates during log recovery because it
1885 * leads to enospc problems. This means we also can't do
1886 * delayed inode refs
1887 */
1888 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1889 return -EAGAIN;
1890
1891 delayed_node = btrfs_get_or_create_delayed_node(inode);
1892 if (IS_ERR(delayed_node))
1893 return PTR_ERR(delayed_node);
1894
1895 /*
1896 * We don't reserve space for inode ref deletion is because:
1897 * - We ONLY do async inode ref deletion for the inode who has only
1898 * one link(i_nlink == 1), it means there is only one inode ref.
1899 * And in most case, the inode ref and the inode item are in the
1900 * same leaf, and we will deal with them at the same time.
1901 * Since we are sure we will reserve the space for the inode item,
1902 * it is unnecessary to reserve space for inode ref deletion.
1903 * - If the inode ref and the inode item are not in the same leaf,
1904 * We also needn't worry about enospc problem, because we reserve
1905 * much more space for the inode update than it needs.
1906 * - At the worst, we can steal some space from the global reservation.
1907 * It is very rare.
1908 */
1909 mutex_lock(&delayed_node->mutex);
1910 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1911 goto release_node;
1912
1913 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1914 delayed_node->count++;
1915 atomic_inc(&fs_info->delayed_root->items);
1916 release_node:
1917 mutex_unlock(&delayed_node->mutex);
1918 btrfs_release_delayed_node(delayed_node);
1919 return 0;
1920 }
1921
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)1922 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1923 {
1924 struct btrfs_root *root = delayed_node->root;
1925 struct btrfs_fs_info *fs_info = root->fs_info;
1926 struct btrfs_delayed_item *curr_item, *prev_item;
1927
1928 mutex_lock(&delayed_node->mutex);
1929 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1930 while (curr_item) {
1931 btrfs_delayed_item_release_metadata(root, curr_item);
1932 prev_item = curr_item;
1933 curr_item = __btrfs_next_delayed_item(prev_item);
1934 btrfs_release_delayed_item(prev_item);
1935 }
1936
1937 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1938 while (curr_item) {
1939 btrfs_delayed_item_release_metadata(root, curr_item);
1940 prev_item = curr_item;
1941 curr_item = __btrfs_next_delayed_item(prev_item);
1942 btrfs_release_delayed_item(prev_item);
1943 }
1944
1945 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1946 btrfs_release_delayed_iref(delayed_node);
1947
1948 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1949 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1950 btrfs_release_delayed_inode(delayed_node);
1951 }
1952 mutex_unlock(&delayed_node->mutex);
1953 }
1954
btrfs_kill_delayed_inode_items(struct btrfs_inode * inode)1955 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1956 {
1957 struct btrfs_delayed_node *delayed_node;
1958
1959 delayed_node = btrfs_get_delayed_node(inode);
1960 if (!delayed_node)
1961 return;
1962
1963 __btrfs_kill_delayed_node(delayed_node);
1964 btrfs_release_delayed_node(delayed_node);
1965 }
1966
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)1967 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1968 {
1969 u64 inode_id = 0;
1970 struct btrfs_delayed_node *delayed_nodes[8];
1971 int i, n;
1972
1973 while (1) {
1974 spin_lock(&root->inode_lock);
1975 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1976 (void **)delayed_nodes, inode_id,
1977 ARRAY_SIZE(delayed_nodes));
1978 if (!n) {
1979 spin_unlock(&root->inode_lock);
1980 break;
1981 }
1982
1983 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1984 for (i = 0; i < n; i++) {
1985 /*
1986 * Don't increase refs in case the node is dead and
1987 * about to be removed from the tree in the loop below
1988 */
1989 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1990 delayed_nodes[i] = NULL;
1991 }
1992 spin_unlock(&root->inode_lock);
1993
1994 for (i = 0; i < n; i++) {
1995 if (!delayed_nodes[i])
1996 continue;
1997 __btrfs_kill_delayed_node(delayed_nodes[i]);
1998 btrfs_release_delayed_node(delayed_nodes[i]);
1999 }
2000 }
2001 }
2002
btrfs_destroy_delayed_inodes(struct btrfs_fs_info * fs_info)2003 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2004 {
2005 struct btrfs_delayed_node *curr_node, *prev_node;
2006
2007 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2008 while (curr_node) {
2009 __btrfs_kill_delayed_node(curr_node);
2010
2011 prev_node = curr_node;
2012 curr_node = btrfs_next_delayed_node(curr_node);
2013 btrfs_release_delayed_node(prev_node);
2014 }
2015 }
2016
2017