• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kthread.h>
7 #include <linux/pagemap.h>
8 
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "free-space-cache.h"
12 #include "inode-map.h"
13 #include "transaction.h"
14 #include "delalloc-space.h"
15 
fail_caching_thread(struct btrfs_root * root)16 static void fail_caching_thread(struct btrfs_root *root)
17 {
18 	struct btrfs_fs_info *fs_info = root->fs_info;
19 
20 	btrfs_warn(fs_info, "failed to start inode caching task");
21 	btrfs_clear_pending_and_info(fs_info, INODE_MAP_CACHE,
22 				     "disabling inode map caching");
23 	spin_lock(&root->ino_cache_lock);
24 	root->ino_cache_state = BTRFS_CACHE_ERROR;
25 	spin_unlock(&root->ino_cache_lock);
26 	wake_up(&root->ino_cache_wait);
27 }
28 
caching_kthread(void * data)29 static int caching_kthread(void *data)
30 {
31 	struct btrfs_root *root = data;
32 	struct btrfs_fs_info *fs_info = root->fs_info;
33 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
34 	struct btrfs_key key;
35 	struct btrfs_path *path;
36 	struct extent_buffer *leaf;
37 	u64 last = (u64)-1;
38 	int slot;
39 	int ret;
40 
41 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
42 		return 0;
43 
44 	path = btrfs_alloc_path();
45 	if (!path) {
46 		fail_caching_thread(root);
47 		return -ENOMEM;
48 	}
49 
50 	/* Since the commit root is read-only, we can safely skip locking. */
51 	path->skip_locking = 1;
52 	path->search_commit_root = 1;
53 	path->reada = READA_FORWARD;
54 
55 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
56 	key.offset = 0;
57 	key.type = BTRFS_INODE_ITEM_KEY;
58 again:
59 	/* need to make sure the commit_root doesn't disappear */
60 	down_read(&fs_info->commit_root_sem);
61 
62 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
63 	if (ret < 0)
64 		goto out;
65 
66 	while (1) {
67 		if (btrfs_fs_closing(fs_info))
68 			goto out;
69 
70 		leaf = path->nodes[0];
71 		slot = path->slots[0];
72 		if (slot >= btrfs_header_nritems(leaf)) {
73 			ret = btrfs_next_leaf(root, path);
74 			if (ret < 0)
75 				goto out;
76 			else if (ret > 0)
77 				break;
78 
79 			if (need_resched() ||
80 			    btrfs_transaction_in_commit(fs_info)) {
81 				leaf = path->nodes[0];
82 
83 				if (WARN_ON(btrfs_header_nritems(leaf) == 0))
84 					break;
85 
86 				/*
87 				 * Save the key so we can advances forward
88 				 * in the next search.
89 				 */
90 				btrfs_item_key_to_cpu(leaf, &key, 0);
91 				btrfs_release_path(path);
92 				root->ino_cache_progress = last;
93 				up_read(&fs_info->commit_root_sem);
94 				schedule_timeout(1);
95 				goto again;
96 			} else
97 				continue;
98 		}
99 
100 		btrfs_item_key_to_cpu(leaf, &key, slot);
101 
102 		if (key.type != BTRFS_INODE_ITEM_KEY)
103 			goto next;
104 
105 		if (key.objectid >= root->highest_objectid)
106 			break;
107 
108 		if (last != (u64)-1 && last + 1 != key.objectid) {
109 			__btrfs_add_free_space(fs_info, ctl, last + 1,
110 					       key.objectid - last - 1);
111 			wake_up(&root->ino_cache_wait);
112 		}
113 
114 		last = key.objectid;
115 next:
116 		path->slots[0]++;
117 	}
118 
119 	if (last < root->highest_objectid - 1) {
120 		__btrfs_add_free_space(fs_info, ctl, last + 1,
121 				       root->highest_objectid - last - 1);
122 	}
123 
124 	spin_lock(&root->ino_cache_lock);
125 	root->ino_cache_state = BTRFS_CACHE_FINISHED;
126 	spin_unlock(&root->ino_cache_lock);
127 
128 	root->ino_cache_progress = (u64)-1;
129 	btrfs_unpin_free_ino(root);
130 out:
131 	wake_up(&root->ino_cache_wait);
132 	up_read(&fs_info->commit_root_sem);
133 
134 	btrfs_free_path(path);
135 
136 	return ret;
137 }
138 
start_caching(struct btrfs_root * root)139 static void start_caching(struct btrfs_root *root)
140 {
141 	struct btrfs_fs_info *fs_info = root->fs_info;
142 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
143 	struct task_struct *tsk;
144 	int ret;
145 	u64 objectid;
146 
147 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
148 		return;
149 
150 	spin_lock(&root->ino_cache_lock);
151 	if (root->ino_cache_state != BTRFS_CACHE_NO) {
152 		spin_unlock(&root->ino_cache_lock);
153 		return;
154 	}
155 
156 	root->ino_cache_state = BTRFS_CACHE_STARTED;
157 	spin_unlock(&root->ino_cache_lock);
158 
159 	ret = load_free_ino_cache(fs_info, root);
160 	if (ret == 1) {
161 		spin_lock(&root->ino_cache_lock);
162 		root->ino_cache_state = BTRFS_CACHE_FINISHED;
163 		spin_unlock(&root->ino_cache_lock);
164 		wake_up(&root->ino_cache_wait);
165 		return;
166 	}
167 
168 	/*
169 	 * It can be quite time-consuming to fill the cache by searching
170 	 * through the extent tree, and this can keep ino allocation path
171 	 * waiting. Therefore at start we quickly find out the highest
172 	 * inode number and we know we can use inode numbers which fall in
173 	 * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
174 	 */
175 	ret = btrfs_find_free_objectid(root, &objectid);
176 	if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
177 		__btrfs_add_free_space(fs_info, ctl, objectid,
178 				       BTRFS_LAST_FREE_OBJECTID - objectid + 1);
179 		wake_up(&root->ino_cache_wait);
180 	}
181 
182 	tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu",
183 			  root->root_key.objectid);
184 	if (IS_ERR(tsk))
185 		fail_caching_thread(root);
186 }
187 
btrfs_find_free_ino(struct btrfs_root * root,u64 * objectid)188 int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
189 {
190 	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
191 		return btrfs_find_free_objectid(root, objectid);
192 
193 again:
194 	*objectid = btrfs_find_ino_for_alloc(root);
195 
196 	if (*objectid != 0)
197 		return 0;
198 
199 	start_caching(root);
200 
201 	wait_event(root->ino_cache_wait,
202 		   root->ino_cache_state == BTRFS_CACHE_FINISHED ||
203 		   root->ino_cache_state == BTRFS_CACHE_ERROR ||
204 		   root->free_ino_ctl->free_space > 0);
205 
206 	if (root->ino_cache_state == BTRFS_CACHE_FINISHED &&
207 	    root->free_ino_ctl->free_space == 0)
208 		return -ENOSPC;
209 	else if (root->ino_cache_state == BTRFS_CACHE_ERROR)
210 		return btrfs_find_free_objectid(root, objectid);
211 	else
212 		goto again;
213 }
214 
btrfs_return_ino(struct btrfs_root * root,u64 objectid)215 void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
216 {
217 	struct btrfs_fs_info *fs_info = root->fs_info;
218 	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
219 
220 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
221 		return;
222 again:
223 	if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
224 		__btrfs_add_free_space(fs_info, pinned, objectid, 1);
225 	} else {
226 		down_write(&fs_info->commit_root_sem);
227 		spin_lock(&root->ino_cache_lock);
228 		if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
229 			spin_unlock(&root->ino_cache_lock);
230 			up_write(&fs_info->commit_root_sem);
231 			goto again;
232 		}
233 		spin_unlock(&root->ino_cache_lock);
234 
235 		start_caching(root);
236 
237 		__btrfs_add_free_space(fs_info, pinned, objectid, 1);
238 
239 		up_write(&fs_info->commit_root_sem);
240 	}
241 }
242 
243 /*
244  * When a transaction is committed, we'll move those inode numbers which are
245  * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
246  * others will just be dropped, because the commit root we were searching has
247  * changed.
248  *
249  * Must be called with root->fs_info->commit_root_sem held
250  */
btrfs_unpin_free_ino(struct btrfs_root * root)251 void btrfs_unpin_free_ino(struct btrfs_root *root)
252 {
253 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
254 	struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
255 	spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock;
256 	struct btrfs_free_space *info;
257 	struct rb_node *n;
258 	u64 count;
259 
260 	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
261 		return;
262 
263 	while (1) {
264 		spin_lock(rbroot_lock);
265 		n = rb_first(rbroot);
266 		if (!n) {
267 			spin_unlock(rbroot_lock);
268 			break;
269 		}
270 
271 		info = rb_entry(n, struct btrfs_free_space, offset_index);
272 		BUG_ON(info->bitmap); /* Logic error */
273 
274 		if (info->offset > root->ino_cache_progress)
275 			count = 0;
276 		else
277 			count = min(root->ino_cache_progress - info->offset + 1,
278 				    info->bytes);
279 
280 		rb_erase(&info->offset_index, rbroot);
281 		spin_unlock(rbroot_lock);
282 		if (count)
283 			__btrfs_add_free_space(root->fs_info, ctl,
284 					       info->offset, count);
285 		kmem_cache_free(btrfs_free_space_cachep, info);
286 	}
287 }
288 
289 #define INIT_THRESHOLD	((SZ_32K / 2) / sizeof(struct btrfs_free_space))
290 #define INODES_PER_BITMAP (PAGE_SIZE * 8)
291 
292 /*
293  * The goal is to keep the memory used by the free_ino tree won't
294  * exceed the memory if we use bitmaps only.
295  */
recalculate_thresholds(struct btrfs_free_space_ctl * ctl)296 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
297 {
298 	struct btrfs_free_space *info;
299 	struct rb_node *n;
300 	int max_ino;
301 	int max_bitmaps;
302 
303 	n = rb_last(&ctl->free_space_offset);
304 	if (!n) {
305 		ctl->extents_thresh = INIT_THRESHOLD;
306 		return;
307 	}
308 	info = rb_entry(n, struct btrfs_free_space, offset_index);
309 
310 	/*
311 	 * Find the maximum inode number in the filesystem. Note we
312 	 * ignore the fact that this can be a bitmap, because we are
313 	 * not doing precise calculation.
314 	 */
315 	max_ino = info->bytes - 1;
316 
317 	max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
318 	if (max_bitmaps <= ctl->total_bitmaps) {
319 		ctl->extents_thresh = 0;
320 		return;
321 	}
322 
323 	ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
324 				PAGE_SIZE / sizeof(*info);
325 }
326 
327 /*
328  * We don't fall back to bitmap, if we are below the extents threshold
329  * or this chunk of inode numbers is a big one.
330  */
use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)331 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
332 		       struct btrfs_free_space *info)
333 {
334 	if (ctl->free_extents < ctl->extents_thresh ||
335 	    info->bytes > INODES_PER_BITMAP / 10)
336 		return false;
337 
338 	return true;
339 }
340 
341 static const struct btrfs_free_space_op free_ino_op = {
342 	.recalc_thresholds	= recalculate_thresholds,
343 	.use_bitmap		= use_bitmap,
344 };
345 
pinned_recalc_thresholds(struct btrfs_free_space_ctl * ctl)346 static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
347 {
348 }
349 
pinned_use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)350 static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
351 			      struct btrfs_free_space *info)
352 {
353 	/*
354 	 * We always use extents for two reasons:
355 	 *
356 	 * - The pinned tree is only used during the process of caching
357 	 *   work.
358 	 * - Make code simpler. See btrfs_unpin_free_ino().
359 	 */
360 	return false;
361 }
362 
363 static const struct btrfs_free_space_op pinned_free_ino_op = {
364 	.recalc_thresholds	= pinned_recalc_thresholds,
365 	.use_bitmap		= pinned_use_bitmap,
366 };
367 
btrfs_init_free_ino_ctl(struct btrfs_root * root)368 void btrfs_init_free_ino_ctl(struct btrfs_root *root)
369 {
370 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
371 	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
372 
373 	spin_lock_init(&ctl->tree_lock);
374 	ctl->unit = 1;
375 	ctl->start = 0;
376 	ctl->private = NULL;
377 	ctl->op = &free_ino_op;
378 	INIT_LIST_HEAD(&ctl->trimming_ranges);
379 	mutex_init(&ctl->cache_writeout_mutex);
380 
381 	/*
382 	 * Initially we allow to use 16K of ram to cache chunks of
383 	 * inode numbers before we resort to bitmaps. This is somewhat
384 	 * arbitrary, but it will be adjusted in runtime.
385 	 */
386 	ctl->extents_thresh = INIT_THRESHOLD;
387 
388 	spin_lock_init(&pinned->tree_lock);
389 	pinned->unit = 1;
390 	pinned->start = 0;
391 	pinned->private = NULL;
392 	pinned->extents_thresh = 0;
393 	pinned->op = &pinned_free_ino_op;
394 }
395 
btrfs_save_ino_cache(struct btrfs_root * root,struct btrfs_trans_handle * trans)396 int btrfs_save_ino_cache(struct btrfs_root *root,
397 			 struct btrfs_trans_handle *trans)
398 {
399 	struct btrfs_fs_info *fs_info = root->fs_info;
400 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
401 	struct btrfs_path *path;
402 	struct inode *inode;
403 	struct btrfs_block_rsv *rsv;
404 	struct extent_changeset *data_reserved = NULL;
405 	u64 num_bytes;
406 	u64 alloc_hint = 0;
407 	int ret;
408 	int prealloc;
409 	bool retry = false;
410 
411 	/* only fs tree and subvol/snap needs ino cache */
412 	if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
413 	    (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
414 	     root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
415 		return 0;
416 
417 	/* Don't save inode cache if we are deleting this root */
418 	if (btrfs_root_refs(&root->root_item) == 0)
419 		return 0;
420 
421 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
422 		return 0;
423 
424 	path = btrfs_alloc_path();
425 	if (!path)
426 		return -ENOMEM;
427 
428 	rsv = trans->block_rsv;
429 	trans->block_rsv = &fs_info->trans_block_rsv;
430 
431 	num_bytes = trans->bytes_reserved;
432 	/*
433 	 * 1 item for inode item insertion if need
434 	 * 4 items for inode item update (in the worst case)
435 	 * 1 items for slack space if we need do truncation
436 	 * 1 item for free space object
437 	 * 3 items for pre-allocation
438 	 */
439 	trans->bytes_reserved = btrfs_calc_insert_metadata_size(fs_info, 10);
440 	ret = btrfs_block_rsv_add(root, trans->block_rsv,
441 				  trans->bytes_reserved,
442 				  BTRFS_RESERVE_NO_FLUSH);
443 	if (ret)
444 		goto out;
445 	trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
446 				      trans->bytes_reserved, 1);
447 again:
448 	inode = lookup_free_ino_inode(root, path);
449 	if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
450 		ret = PTR_ERR(inode);
451 		goto out_release;
452 	}
453 
454 	if (IS_ERR(inode)) {
455 		BUG_ON(retry); /* Logic error */
456 		retry = true;
457 
458 		ret = create_free_ino_inode(root, trans, path);
459 		if (ret)
460 			goto out_release;
461 		goto again;
462 	}
463 
464 	BTRFS_I(inode)->generation = 0;
465 	ret = btrfs_update_inode(trans, root, inode);
466 	if (ret) {
467 		btrfs_abort_transaction(trans, ret);
468 		goto out_put;
469 	}
470 
471 	if (i_size_read(inode) > 0) {
472 		ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
473 		if (ret) {
474 			if (ret != -ENOSPC)
475 				btrfs_abort_transaction(trans, ret);
476 			goto out_put;
477 		}
478 	}
479 
480 	spin_lock(&root->ino_cache_lock);
481 	if (root->ino_cache_state != BTRFS_CACHE_FINISHED) {
482 		ret = -1;
483 		spin_unlock(&root->ino_cache_lock);
484 		goto out_put;
485 	}
486 	spin_unlock(&root->ino_cache_lock);
487 
488 	spin_lock(&ctl->tree_lock);
489 	prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
490 	prealloc = ALIGN(prealloc, PAGE_SIZE);
491 	prealloc += ctl->total_bitmaps * PAGE_SIZE;
492 	spin_unlock(&ctl->tree_lock);
493 
494 	/* Just to make sure we have enough space */
495 	prealloc += 8 * PAGE_SIZE;
496 
497 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 0, prealloc);
498 	if (ret)
499 		goto out_put;
500 
501 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
502 					      prealloc, prealloc, &alloc_hint);
503 	if (ret) {
504 		btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc);
505 		btrfs_delalloc_release_metadata(BTRFS_I(inode), prealloc, true);
506 		goto out_put;
507 	}
508 
509 	ret = btrfs_write_out_ino_cache(root, trans, path, inode);
510 	btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc);
511 out_put:
512 	iput(inode);
513 out_release:
514 	trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
515 				      trans->bytes_reserved, 0);
516 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
517 				trans->bytes_reserved);
518 out:
519 	trans->block_rsv = rsv;
520 	trans->bytes_reserved = num_bytes;
521 
522 	btrfs_free_path(path);
523 	extent_changeset_free(data_reserved);
524 	return ret;
525 }
526 
btrfs_find_highest_objectid(struct btrfs_root * root,u64 * objectid)527 int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
528 {
529 	struct btrfs_path *path;
530 	int ret;
531 	struct extent_buffer *l;
532 	struct btrfs_key search_key;
533 	struct btrfs_key found_key;
534 	int slot;
535 
536 	path = btrfs_alloc_path();
537 	if (!path)
538 		return -ENOMEM;
539 
540 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
541 	search_key.type = -1;
542 	search_key.offset = (u64)-1;
543 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
544 	if (ret < 0)
545 		goto error;
546 	BUG_ON(ret == 0); /* Corruption */
547 	if (path->slots[0] > 0) {
548 		slot = path->slots[0] - 1;
549 		l = path->nodes[0];
550 		btrfs_item_key_to_cpu(l, &found_key, slot);
551 		*objectid = max_t(u64, found_key.objectid,
552 				  BTRFS_FIRST_FREE_OBJECTID - 1);
553 	} else {
554 		*objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
555 	}
556 	ret = 0;
557 error:
558 	btrfs_free_path(path);
559 	return ret;
560 }
561 
btrfs_find_free_objectid(struct btrfs_root * root,u64 * objectid)562 int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
563 {
564 	int ret;
565 	mutex_lock(&root->objectid_mutex);
566 
567 	if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
568 		btrfs_warn(root->fs_info,
569 			   "the objectid of root %llu reaches its highest value",
570 			   root->root_key.objectid);
571 		ret = -ENOSPC;
572 		goto out;
573 	}
574 
575 	*objectid = ++root->highest_objectid;
576 	ret = 0;
577 out:
578 	mutex_unlock(&root->objectid_mutex);
579 	return ret;
580 }
581