1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "disk-io.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17
18 /*
19 * Return target flags in extended format or 0 if restripe for this chunk_type
20 * is not in progress
21 *
22 * Should be called with balance_lock held
23 */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)24 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
25 {
26 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
27 u64 target = 0;
28
29 if (!bctl)
30 return 0;
31
32 if (flags & BTRFS_BLOCK_GROUP_DATA &&
33 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
34 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
35 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
36 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
38 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
39 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
41 }
42
43 return target;
44 }
45
46 /*
47 * @flags: available profiles in extended format (see ctree.h)
48 *
49 * Return reduced profile in chunk format. If profile changing is in progress
50 * (either running or paused) picks the target profile (if it's already
51 * available), otherwise falls back to plain reducing.
52 */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)53 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
54 {
55 u64 num_devices = fs_info->fs_devices->rw_devices;
56 u64 target;
57 u64 raid_type;
58 u64 allowed = 0;
59
60 /*
61 * See if restripe for this chunk_type is in progress, if so try to
62 * reduce to the target profile
63 */
64 spin_lock(&fs_info->balance_lock);
65 target = get_restripe_target(fs_info, flags);
66 if (target) {
67 /* Pick target profile only if it's already available */
68 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
69 spin_unlock(&fs_info->balance_lock);
70 return extended_to_chunk(target);
71 }
72 }
73 spin_unlock(&fs_info->balance_lock);
74
75 /* First, mask out the RAID levels which aren't possible */
76 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 allowed |= btrfs_raid_array[raid_type].bg_flag;
79 }
80 allowed &= flags;
81
82 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 allowed = BTRFS_BLOCK_GROUP_RAID6;
84 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 allowed = BTRFS_BLOCK_GROUP_RAID5;
86 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 allowed = BTRFS_BLOCK_GROUP_RAID10;
88 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 allowed = BTRFS_BLOCK_GROUP_RAID1;
90 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 allowed = BTRFS_BLOCK_GROUP_RAID0;
92
93 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94
95 return extended_to_chunk(flags | allowed);
96 }
97
get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)98 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
99 {
100 unsigned seq;
101 u64 flags;
102
103 do {
104 flags = orig_flags;
105 seq = read_seqbegin(&fs_info->profiles_lock);
106
107 if (flags & BTRFS_BLOCK_GROUP_DATA)
108 flags |= fs_info->avail_data_alloc_bits;
109 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 flags |= fs_info->avail_system_alloc_bits;
111 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 flags |= fs_info->avail_metadata_alloc_bits;
113 } while (read_seqretry(&fs_info->profiles_lock, seq));
114
115 return btrfs_reduce_alloc_profile(fs_info, flags);
116 }
117
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)118 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
119 {
120 return get_alloc_profile(fs_info, orig_flags);
121 }
122
btrfs_get_block_group(struct btrfs_block_group_cache * cache)123 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
124 {
125 atomic_inc(&cache->count);
126 }
127
btrfs_put_block_group(struct btrfs_block_group_cache * cache)128 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
129 {
130 if (atomic_dec_and_test(&cache->count)) {
131 WARN_ON(cache->pinned > 0);
132 WARN_ON(cache->reserved > 0);
133
134 /*
135 * If not empty, someone is still holding mutex of
136 * full_stripe_lock, which can only be released by caller.
137 * And it will definitely cause use-after-free when caller
138 * tries to release full stripe lock.
139 *
140 * No better way to resolve, but only to warn.
141 */
142 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
143 kfree(cache->free_space_ctl);
144 kfree(cache);
145 }
146 }
147
148 /*
149 * This adds the block group to the fs_info rb tree for the block group cache
150 */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group_cache * block_group)151 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
152 struct btrfs_block_group_cache *block_group)
153 {
154 struct rb_node **p;
155 struct rb_node *parent = NULL;
156 struct btrfs_block_group_cache *cache;
157
158 spin_lock(&info->block_group_cache_lock);
159 p = &info->block_group_cache_tree.rb_node;
160
161 while (*p) {
162 parent = *p;
163 cache = rb_entry(parent, struct btrfs_block_group_cache,
164 cache_node);
165 if (block_group->key.objectid < cache->key.objectid) {
166 p = &(*p)->rb_left;
167 } else if (block_group->key.objectid > cache->key.objectid) {
168 p = &(*p)->rb_right;
169 } else {
170 spin_unlock(&info->block_group_cache_lock);
171 return -EEXIST;
172 }
173 }
174
175 rb_link_node(&block_group->cache_node, parent, p);
176 rb_insert_color(&block_group->cache_node,
177 &info->block_group_cache_tree);
178
179 if (info->first_logical_byte > block_group->key.objectid)
180 info->first_logical_byte = block_group->key.objectid;
181
182 spin_unlock(&info->block_group_cache_lock);
183
184 return 0;
185 }
186
187 /*
188 * This will return the block group at or after bytenr if contains is 0, else
189 * it will return the block group that contains the bytenr
190 */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)191 static struct btrfs_block_group_cache *block_group_cache_tree_search(
192 struct btrfs_fs_info *info, u64 bytenr, int contains)
193 {
194 struct btrfs_block_group_cache *cache, *ret = NULL;
195 struct rb_node *n;
196 u64 end, start;
197
198 spin_lock(&info->block_group_cache_lock);
199 n = info->block_group_cache_tree.rb_node;
200
201 while (n) {
202 cache = rb_entry(n, struct btrfs_block_group_cache,
203 cache_node);
204 end = cache->key.objectid + cache->key.offset - 1;
205 start = cache->key.objectid;
206
207 if (bytenr < start) {
208 if (!contains && (!ret || start < ret->key.objectid))
209 ret = cache;
210 n = n->rb_left;
211 } else if (bytenr > start) {
212 if (contains && bytenr <= end) {
213 ret = cache;
214 break;
215 }
216 n = n->rb_right;
217 } else {
218 ret = cache;
219 break;
220 }
221 }
222 if (ret) {
223 btrfs_get_block_group(ret);
224 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
225 info->first_logical_byte = ret->key.objectid;
226 }
227 spin_unlock(&info->block_group_cache_lock);
228
229 return ret;
230 }
231
232 /*
233 * Return the block group that starts at or after bytenr
234 */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)235 struct btrfs_block_group_cache *btrfs_lookup_first_block_group(
236 struct btrfs_fs_info *info, u64 bytenr)
237 {
238 return block_group_cache_tree_search(info, bytenr, 0);
239 }
240
241 /*
242 * Return the block group that contains the given bytenr
243 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)244 struct btrfs_block_group_cache *btrfs_lookup_block_group(
245 struct btrfs_fs_info *info, u64 bytenr)
246 {
247 return block_group_cache_tree_search(info, bytenr, 1);
248 }
249
btrfs_next_block_group(struct btrfs_block_group_cache * cache)250 struct btrfs_block_group_cache *btrfs_next_block_group(
251 struct btrfs_block_group_cache *cache)
252 {
253 struct btrfs_fs_info *fs_info = cache->fs_info;
254 struct rb_node *node;
255
256 spin_lock(&fs_info->block_group_cache_lock);
257
258 /* If our block group was removed, we need a full search. */
259 if (RB_EMPTY_NODE(&cache->cache_node)) {
260 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
261
262 spin_unlock(&fs_info->block_group_cache_lock);
263 btrfs_put_block_group(cache);
264 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
265 }
266 node = rb_next(&cache->cache_node);
267 btrfs_put_block_group(cache);
268 if (node) {
269 cache = rb_entry(node, struct btrfs_block_group_cache,
270 cache_node);
271 btrfs_get_block_group(cache);
272 } else
273 cache = NULL;
274 spin_unlock(&fs_info->block_group_cache_lock);
275 return cache;
276 }
277
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)278 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
279 {
280 struct btrfs_block_group_cache *bg;
281 bool ret = true;
282
283 bg = btrfs_lookup_block_group(fs_info, bytenr);
284 if (!bg)
285 return false;
286
287 spin_lock(&bg->lock);
288 if (bg->ro)
289 ret = false;
290 else
291 atomic_inc(&bg->nocow_writers);
292 spin_unlock(&bg->lock);
293
294 /* No put on block group, done by btrfs_dec_nocow_writers */
295 if (!ret)
296 btrfs_put_block_group(bg);
297
298 return ret;
299 }
300
btrfs_dec_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)301 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
302 {
303 struct btrfs_block_group_cache *bg;
304
305 bg = btrfs_lookup_block_group(fs_info, bytenr);
306 ASSERT(bg);
307 if (atomic_dec_and_test(&bg->nocow_writers))
308 wake_up_var(&bg->nocow_writers);
309 /*
310 * Once for our lookup and once for the lookup done by a previous call
311 * to btrfs_inc_nocow_writers()
312 */
313 btrfs_put_block_group(bg);
314 btrfs_put_block_group(bg);
315 }
316
btrfs_wait_nocow_writers(struct btrfs_block_group_cache * bg)317 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
318 {
319 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
320 }
321
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)322 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
323 const u64 start)
324 {
325 struct btrfs_block_group_cache *bg;
326
327 bg = btrfs_lookup_block_group(fs_info, start);
328 ASSERT(bg);
329 if (atomic_dec_and_test(&bg->reservations))
330 wake_up_var(&bg->reservations);
331 btrfs_put_block_group(bg);
332 }
333
btrfs_wait_block_group_reservations(struct btrfs_block_group_cache * bg)334 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
335 {
336 struct btrfs_space_info *space_info = bg->space_info;
337
338 ASSERT(bg->ro);
339
340 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
341 return;
342
343 /*
344 * Our block group is read only but before we set it to read only,
345 * some task might have had allocated an extent from it already, but it
346 * has not yet created a respective ordered extent (and added it to a
347 * root's list of ordered extents).
348 * Therefore wait for any task currently allocating extents, since the
349 * block group's reservations counter is incremented while a read lock
350 * on the groups' semaphore is held and decremented after releasing
351 * the read access on that semaphore and creating the ordered extent.
352 */
353 down_write(&space_info->groups_sem);
354 up_write(&space_info->groups_sem);
355
356 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
357 }
358
btrfs_get_caching_control(struct btrfs_block_group_cache * cache)359 struct btrfs_caching_control *btrfs_get_caching_control(
360 struct btrfs_block_group_cache *cache)
361 {
362 struct btrfs_caching_control *ctl;
363
364 spin_lock(&cache->lock);
365 if (!cache->caching_ctl) {
366 spin_unlock(&cache->lock);
367 return NULL;
368 }
369
370 ctl = cache->caching_ctl;
371 refcount_inc(&ctl->count);
372 spin_unlock(&cache->lock);
373 return ctl;
374 }
375
btrfs_put_caching_control(struct btrfs_caching_control * ctl)376 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
377 {
378 if (refcount_dec_and_test(&ctl->count))
379 kfree(ctl);
380 }
381
382 /*
383 * When we wait for progress in the block group caching, its because our
384 * allocation attempt failed at least once. So, we must sleep and let some
385 * progress happen before we try again.
386 *
387 * This function will sleep at least once waiting for new free space to show
388 * up, and then it will check the block group free space numbers for our min
389 * num_bytes. Another option is to have it go ahead and look in the rbtree for
390 * a free extent of a given size, but this is a good start.
391 *
392 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
393 * any of the information in this block group.
394 */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group_cache * cache,u64 num_bytes)395 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
396 u64 num_bytes)
397 {
398 struct btrfs_caching_control *caching_ctl;
399
400 caching_ctl = btrfs_get_caching_control(cache);
401 if (!caching_ctl)
402 return;
403
404 wait_event(caching_ctl->wait, btrfs_block_group_cache_done(cache) ||
405 (cache->free_space_ctl->free_space >= num_bytes));
406
407 btrfs_put_caching_control(caching_ctl);
408 }
409
btrfs_wait_block_group_cache_done(struct btrfs_block_group_cache * cache)410 int btrfs_wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
411 {
412 struct btrfs_caching_control *caching_ctl;
413 int ret = 0;
414
415 caching_ctl = btrfs_get_caching_control(cache);
416 if (!caching_ctl)
417 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
418
419 wait_event(caching_ctl->wait, btrfs_block_group_cache_done(cache));
420 if (cache->cached == BTRFS_CACHE_ERROR)
421 ret = -EIO;
422 btrfs_put_caching_control(caching_ctl);
423 return ret;
424 }
425
426 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group_cache * block_group)427 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
428 {
429 struct btrfs_fs_info *fs_info = block_group->fs_info;
430 u64 start = block_group->key.objectid;
431 u64 len = block_group->key.offset;
432 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
433 fs_info->nodesize : fs_info->sectorsize;
434 u64 step = chunk << 1;
435
436 while (len > chunk) {
437 btrfs_remove_free_space(block_group, start, chunk);
438 start += step;
439 if (len < step)
440 len = 0;
441 else
442 len -= step;
443 }
444 }
445 #endif
446
447 /*
448 * This is only called by btrfs_cache_block_group, since we could have freed
449 * extents we need to check the pinned_extents for any extents that can't be
450 * used yet since their free space will be released as soon as the transaction
451 * commits.
452 */
add_new_free_space(struct btrfs_block_group_cache * block_group,u64 start,u64 end)453 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
454 u64 start, u64 end)
455 {
456 struct btrfs_fs_info *info = block_group->fs_info;
457 u64 extent_start, extent_end, size, total_added = 0;
458 int ret;
459
460 while (start < end) {
461 ret = find_first_extent_bit(info->pinned_extents, start,
462 &extent_start, &extent_end,
463 EXTENT_DIRTY | EXTENT_UPTODATE,
464 NULL);
465 if (ret)
466 break;
467
468 if (extent_start <= start) {
469 start = extent_end + 1;
470 } else if (extent_start > start && extent_start < end) {
471 size = extent_start - start;
472 total_added += size;
473 ret = btrfs_add_free_space(block_group, start,
474 size);
475 BUG_ON(ret); /* -ENOMEM or logic error */
476 start = extent_end + 1;
477 } else {
478 break;
479 }
480 }
481
482 if (start < end) {
483 size = end - start;
484 total_added += size;
485 ret = btrfs_add_free_space(block_group, start, size);
486 BUG_ON(ret); /* -ENOMEM or logic error */
487 }
488
489 return total_added;
490 }
491
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)492 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
493 {
494 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
495 struct btrfs_fs_info *fs_info = block_group->fs_info;
496 struct btrfs_root *extent_root = fs_info->extent_root;
497 struct btrfs_path *path;
498 struct extent_buffer *leaf;
499 struct btrfs_key key;
500 u64 total_found = 0;
501 u64 last = 0;
502 u32 nritems;
503 int ret;
504 bool wakeup = true;
505
506 path = btrfs_alloc_path();
507 if (!path)
508 return -ENOMEM;
509
510 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
511
512 #ifdef CONFIG_BTRFS_DEBUG
513 /*
514 * If we're fragmenting we don't want to make anybody think we can
515 * allocate from this block group until we've had a chance to fragment
516 * the free space.
517 */
518 if (btrfs_should_fragment_free_space(block_group))
519 wakeup = false;
520 #endif
521 /*
522 * We don't want to deadlock with somebody trying to allocate a new
523 * extent for the extent root while also trying to search the extent
524 * root to add free space. So we skip locking and search the commit
525 * root, since its read-only
526 */
527 path->skip_locking = 1;
528 path->search_commit_root = 1;
529 path->reada = READA_FORWARD;
530
531 key.objectid = last;
532 key.offset = 0;
533 key.type = BTRFS_EXTENT_ITEM_KEY;
534
535 next:
536 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
537 if (ret < 0)
538 goto out;
539
540 leaf = path->nodes[0];
541 nritems = btrfs_header_nritems(leaf);
542
543 while (1) {
544 if (btrfs_fs_closing(fs_info) > 1) {
545 last = (u64)-1;
546 break;
547 }
548
549 if (path->slots[0] < nritems) {
550 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
551 } else {
552 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
553 if (ret)
554 break;
555
556 if (need_resched() ||
557 rwsem_is_contended(&fs_info->commit_root_sem)) {
558 if (wakeup)
559 caching_ctl->progress = last;
560 btrfs_release_path(path);
561 up_read(&fs_info->commit_root_sem);
562 mutex_unlock(&caching_ctl->mutex);
563 cond_resched();
564 mutex_lock(&caching_ctl->mutex);
565 down_read(&fs_info->commit_root_sem);
566 goto next;
567 }
568
569 ret = btrfs_next_leaf(extent_root, path);
570 if (ret < 0)
571 goto out;
572 if (ret)
573 break;
574 leaf = path->nodes[0];
575 nritems = btrfs_header_nritems(leaf);
576 continue;
577 }
578
579 if (key.objectid < last) {
580 key.objectid = last;
581 key.offset = 0;
582 key.type = BTRFS_EXTENT_ITEM_KEY;
583
584 if (wakeup)
585 caching_ctl->progress = last;
586 btrfs_release_path(path);
587 goto next;
588 }
589
590 if (key.objectid < block_group->key.objectid) {
591 path->slots[0]++;
592 continue;
593 }
594
595 if (key.objectid >= block_group->key.objectid +
596 block_group->key.offset)
597 break;
598
599 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
600 key.type == BTRFS_METADATA_ITEM_KEY) {
601 total_found += add_new_free_space(block_group, last,
602 key.objectid);
603 if (key.type == BTRFS_METADATA_ITEM_KEY)
604 last = key.objectid +
605 fs_info->nodesize;
606 else
607 last = key.objectid + key.offset;
608
609 if (total_found > CACHING_CTL_WAKE_UP) {
610 total_found = 0;
611 if (wakeup)
612 wake_up(&caching_ctl->wait);
613 }
614 }
615 path->slots[0]++;
616 }
617 ret = 0;
618
619 total_found += add_new_free_space(block_group, last,
620 block_group->key.objectid +
621 block_group->key.offset);
622 caching_ctl->progress = (u64)-1;
623
624 out:
625 btrfs_free_path(path);
626 return ret;
627 }
628
caching_thread(struct btrfs_work * work)629 static noinline void caching_thread(struct btrfs_work *work)
630 {
631 struct btrfs_block_group_cache *block_group;
632 struct btrfs_fs_info *fs_info;
633 struct btrfs_caching_control *caching_ctl;
634 int ret;
635
636 caching_ctl = container_of(work, struct btrfs_caching_control, work);
637 block_group = caching_ctl->block_group;
638 fs_info = block_group->fs_info;
639
640 mutex_lock(&caching_ctl->mutex);
641 down_read(&fs_info->commit_root_sem);
642
643 /*
644 * If we are in the transaction that populated the free space tree we
645 * can't actually cache from the free space tree as our commit root and
646 * real root are the same, so we could change the contents of the blocks
647 * while caching. Instead do the slow caching in this case, and after
648 * the transaction has committed we will be safe.
649 */
650 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
651 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
652 ret = load_free_space_tree(caching_ctl);
653 else
654 ret = load_extent_tree_free(caching_ctl);
655
656 spin_lock(&block_group->lock);
657 block_group->caching_ctl = NULL;
658 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
659 spin_unlock(&block_group->lock);
660
661 #ifdef CONFIG_BTRFS_DEBUG
662 if (btrfs_should_fragment_free_space(block_group)) {
663 u64 bytes_used;
664
665 spin_lock(&block_group->space_info->lock);
666 spin_lock(&block_group->lock);
667 bytes_used = block_group->key.offset -
668 btrfs_block_group_used(&block_group->item);
669 block_group->space_info->bytes_used += bytes_used >> 1;
670 spin_unlock(&block_group->lock);
671 spin_unlock(&block_group->space_info->lock);
672 fragment_free_space(block_group);
673 }
674 #endif
675
676 caching_ctl->progress = (u64)-1;
677
678 up_read(&fs_info->commit_root_sem);
679 btrfs_free_excluded_extents(block_group);
680 mutex_unlock(&caching_ctl->mutex);
681
682 wake_up(&caching_ctl->wait);
683
684 btrfs_put_caching_control(caching_ctl);
685 btrfs_put_block_group(block_group);
686 }
687
btrfs_cache_block_group(struct btrfs_block_group_cache * cache,int load_cache_only)688 int btrfs_cache_block_group(struct btrfs_block_group_cache *cache,
689 int load_cache_only)
690 {
691 DEFINE_WAIT(wait);
692 struct btrfs_fs_info *fs_info = cache->fs_info;
693 struct btrfs_caching_control *caching_ctl;
694 int ret = 0;
695
696 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
697 if (!caching_ctl)
698 return -ENOMEM;
699
700 INIT_LIST_HEAD(&caching_ctl->list);
701 mutex_init(&caching_ctl->mutex);
702 init_waitqueue_head(&caching_ctl->wait);
703 caching_ctl->block_group = cache;
704 caching_ctl->progress = cache->key.objectid;
705 refcount_set(&caching_ctl->count, 1);
706 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
707
708 spin_lock(&cache->lock);
709 /*
710 * This should be a rare occasion, but this could happen I think in the
711 * case where one thread starts to load the space cache info, and then
712 * some other thread starts a transaction commit which tries to do an
713 * allocation while the other thread is still loading the space cache
714 * info. The previous loop should have kept us from choosing this block
715 * group, but if we've moved to the state where we will wait on caching
716 * block groups we need to first check if we're doing a fast load here,
717 * so we can wait for it to finish, otherwise we could end up allocating
718 * from a block group who's cache gets evicted for one reason or
719 * another.
720 */
721 while (cache->cached == BTRFS_CACHE_FAST) {
722 struct btrfs_caching_control *ctl;
723
724 ctl = cache->caching_ctl;
725 refcount_inc(&ctl->count);
726 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
727 spin_unlock(&cache->lock);
728
729 schedule();
730
731 finish_wait(&ctl->wait, &wait);
732 btrfs_put_caching_control(ctl);
733 spin_lock(&cache->lock);
734 }
735
736 if (cache->cached != BTRFS_CACHE_NO) {
737 spin_unlock(&cache->lock);
738 kfree(caching_ctl);
739 return 0;
740 }
741 WARN_ON(cache->caching_ctl);
742 cache->caching_ctl = caching_ctl;
743 cache->cached = BTRFS_CACHE_FAST;
744 spin_unlock(&cache->lock);
745
746 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
747 mutex_lock(&caching_ctl->mutex);
748 ret = load_free_space_cache(cache);
749
750 spin_lock(&cache->lock);
751 if (ret == 1) {
752 cache->caching_ctl = NULL;
753 cache->cached = BTRFS_CACHE_FINISHED;
754 cache->last_byte_to_unpin = (u64)-1;
755 caching_ctl->progress = (u64)-1;
756 } else {
757 if (load_cache_only) {
758 cache->caching_ctl = NULL;
759 cache->cached = BTRFS_CACHE_NO;
760 } else {
761 cache->cached = BTRFS_CACHE_STARTED;
762 cache->has_caching_ctl = 1;
763 }
764 }
765 spin_unlock(&cache->lock);
766 #ifdef CONFIG_BTRFS_DEBUG
767 if (ret == 1 &&
768 btrfs_should_fragment_free_space(cache)) {
769 u64 bytes_used;
770
771 spin_lock(&cache->space_info->lock);
772 spin_lock(&cache->lock);
773 bytes_used = cache->key.offset -
774 btrfs_block_group_used(&cache->item);
775 cache->space_info->bytes_used += bytes_used >> 1;
776 spin_unlock(&cache->lock);
777 spin_unlock(&cache->space_info->lock);
778 fragment_free_space(cache);
779 }
780 #endif
781 mutex_unlock(&caching_ctl->mutex);
782
783 wake_up(&caching_ctl->wait);
784 if (ret == 1) {
785 btrfs_put_caching_control(caching_ctl);
786 btrfs_free_excluded_extents(cache);
787 return 0;
788 }
789 } else {
790 /*
791 * We're either using the free space tree or no caching at all.
792 * Set cached to the appropriate value and wakeup any waiters.
793 */
794 spin_lock(&cache->lock);
795 if (load_cache_only) {
796 cache->caching_ctl = NULL;
797 cache->cached = BTRFS_CACHE_NO;
798 } else {
799 cache->cached = BTRFS_CACHE_STARTED;
800 cache->has_caching_ctl = 1;
801 }
802 spin_unlock(&cache->lock);
803 wake_up(&caching_ctl->wait);
804 }
805
806 if (load_cache_only) {
807 btrfs_put_caching_control(caching_ctl);
808 return 0;
809 }
810
811 down_write(&fs_info->commit_root_sem);
812 refcount_inc(&caching_ctl->count);
813 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
814 up_write(&fs_info->commit_root_sem);
815
816 btrfs_get_block_group(cache);
817
818 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
819
820 return ret;
821 }
822
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)823 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
824 {
825 u64 extra_flags = chunk_to_extended(flags) &
826 BTRFS_EXTENDED_PROFILE_MASK;
827
828 write_seqlock(&fs_info->profiles_lock);
829 if (flags & BTRFS_BLOCK_GROUP_DATA)
830 fs_info->avail_data_alloc_bits &= ~extra_flags;
831 if (flags & BTRFS_BLOCK_GROUP_METADATA)
832 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
833 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
834 fs_info->avail_system_alloc_bits &= ~extra_flags;
835 write_sequnlock(&fs_info->profiles_lock);
836 }
837
838 /*
839 * Clear incompat bits for the following feature(s):
840 *
841 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
842 * in the whole filesystem
843 */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)844 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
845 {
846 if (flags & BTRFS_BLOCK_GROUP_RAID56_MASK) {
847 struct list_head *head = &fs_info->space_info;
848 struct btrfs_space_info *sinfo;
849
850 list_for_each_entry_rcu(sinfo, head, list) {
851 bool found = false;
852
853 down_read(&sinfo->groups_sem);
854 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
855 found = true;
856 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
857 found = true;
858 up_read(&sinfo->groups_sem);
859
860 if (found)
861 return;
862 }
863 btrfs_clear_fs_incompat(fs_info, RAID56);
864 }
865 }
866
btrfs_remove_block_group(struct btrfs_trans_handle * trans,u64 group_start,struct extent_map * em)867 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
868 u64 group_start, struct extent_map *em)
869 {
870 struct btrfs_fs_info *fs_info = trans->fs_info;
871 struct btrfs_root *root = fs_info->extent_root;
872 struct btrfs_path *path;
873 struct btrfs_block_group_cache *block_group;
874 struct btrfs_free_cluster *cluster;
875 struct btrfs_root *tree_root = fs_info->tree_root;
876 struct btrfs_key key;
877 struct inode *inode;
878 struct kobject *kobj = NULL;
879 int ret;
880 int index;
881 int factor;
882 struct btrfs_caching_control *caching_ctl = NULL;
883 bool remove_em;
884 bool remove_rsv = false;
885
886 block_group = btrfs_lookup_block_group(fs_info, group_start);
887 BUG_ON(!block_group);
888 BUG_ON(!block_group->ro);
889
890 trace_btrfs_remove_block_group(block_group);
891 /*
892 * Free the reserved super bytes from this block group before
893 * remove it.
894 */
895 btrfs_free_excluded_extents(block_group);
896 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
897 block_group->key.offset);
898
899 memcpy(&key, &block_group->key, sizeof(key));
900 index = btrfs_bg_flags_to_raid_index(block_group->flags);
901 factor = btrfs_bg_type_to_factor(block_group->flags);
902
903 /* make sure this block group isn't part of an allocation cluster */
904 cluster = &fs_info->data_alloc_cluster;
905 spin_lock(&cluster->refill_lock);
906 btrfs_return_cluster_to_free_space(block_group, cluster);
907 spin_unlock(&cluster->refill_lock);
908
909 /*
910 * make sure this block group isn't part of a metadata
911 * allocation cluster
912 */
913 cluster = &fs_info->meta_alloc_cluster;
914 spin_lock(&cluster->refill_lock);
915 btrfs_return_cluster_to_free_space(block_group, cluster);
916 spin_unlock(&cluster->refill_lock);
917
918 path = btrfs_alloc_path();
919 if (!path) {
920 ret = -ENOMEM;
921 goto out;
922 }
923
924 /*
925 * get the inode first so any iput calls done for the io_list
926 * aren't the final iput (no unlinks allowed now)
927 */
928 inode = lookup_free_space_inode(block_group, path);
929
930 mutex_lock(&trans->transaction->cache_write_mutex);
931 /*
932 * Make sure our free space cache IO is done before removing the
933 * free space inode
934 */
935 spin_lock(&trans->transaction->dirty_bgs_lock);
936 if (!list_empty(&block_group->io_list)) {
937 list_del_init(&block_group->io_list);
938
939 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
940
941 spin_unlock(&trans->transaction->dirty_bgs_lock);
942 btrfs_wait_cache_io(trans, block_group, path);
943 btrfs_put_block_group(block_group);
944 spin_lock(&trans->transaction->dirty_bgs_lock);
945 }
946
947 if (!list_empty(&block_group->dirty_list)) {
948 list_del_init(&block_group->dirty_list);
949 remove_rsv = true;
950 btrfs_put_block_group(block_group);
951 }
952 spin_unlock(&trans->transaction->dirty_bgs_lock);
953 mutex_unlock(&trans->transaction->cache_write_mutex);
954
955 if (!IS_ERR(inode)) {
956 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
957 if (ret) {
958 btrfs_add_delayed_iput(inode);
959 goto out;
960 }
961 clear_nlink(inode);
962 /* One for the block groups ref */
963 spin_lock(&block_group->lock);
964 if (block_group->iref) {
965 block_group->iref = 0;
966 block_group->inode = NULL;
967 spin_unlock(&block_group->lock);
968 iput(inode);
969 } else {
970 spin_unlock(&block_group->lock);
971 }
972 /* One for our lookup ref */
973 btrfs_add_delayed_iput(inode);
974 }
975
976 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
977 key.offset = block_group->key.objectid;
978 key.type = 0;
979
980 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
981 if (ret < 0)
982 goto out;
983 if (ret > 0)
984 btrfs_release_path(path);
985 if (ret == 0) {
986 ret = btrfs_del_item(trans, tree_root, path);
987 if (ret)
988 goto out;
989 btrfs_release_path(path);
990 }
991
992 spin_lock(&fs_info->block_group_cache_lock);
993 rb_erase(&block_group->cache_node,
994 &fs_info->block_group_cache_tree);
995 RB_CLEAR_NODE(&block_group->cache_node);
996
997 /* Once for the block groups rbtree */
998 btrfs_put_block_group(block_group);
999
1000 if (fs_info->first_logical_byte == block_group->key.objectid)
1001 fs_info->first_logical_byte = (u64)-1;
1002 spin_unlock(&fs_info->block_group_cache_lock);
1003
1004 down_write(&block_group->space_info->groups_sem);
1005 /*
1006 * we must use list_del_init so people can check to see if they
1007 * are still on the list after taking the semaphore
1008 */
1009 list_del_init(&block_group->list);
1010 if (list_empty(&block_group->space_info->block_groups[index])) {
1011 kobj = block_group->space_info->block_group_kobjs[index];
1012 block_group->space_info->block_group_kobjs[index] = NULL;
1013 clear_avail_alloc_bits(fs_info, block_group->flags);
1014 }
1015 up_write(&block_group->space_info->groups_sem);
1016 clear_incompat_bg_bits(fs_info, block_group->flags);
1017 if (kobj) {
1018 kobject_del(kobj);
1019 kobject_put(kobj);
1020 }
1021
1022 if (block_group->has_caching_ctl)
1023 caching_ctl = btrfs_get_caching_control(block_group);
1024 if (block_group->cached == BTRFS_CACHE_STARTED)
1025 btrfs_wait_block_group_cache_done(block_group);
1026 if (block_group->has_caching_ctl) {
1027 down_write(&fs_info->commit_root_sem);
1028 if (!caching_ctl) {
1029 struct btrfs_caching_control *ctl;
1030
1031 list_for_each_entry(ctl,
1032 &fs_info->caching_block_groups, list)
1033 if (ctl->block_group == block_group) {
1034 caching_ctl = ctl;
1035 refcount_inc(&caching_ctl->count);
1036 break;
1037 }
1038 }
1039 if (caching_ctl)
1040 list_del_init(&caching_ctl->list);
1041 up_write(&fs_info->commit_root_sem);
1042 if (caching_ctl) {
1043 /* Once for the caching bgs list and once for us. */
1044 btrfs_put_caching_control(caching_ctl);
1045 btrfs_put_caching_control(caching_ctl);
1046 }
1047 }
1048
1049 spin_lock(&trans->transaction->dirty_bgs_lock);
1050 WARN_ON(!list_empty(&block_group->dirty_list));
1051 WARN_ON(!list_empty(&block_group->io_list));
1052 spin_unlock(&trans->transaction->dirty_bgs_lock);
1053
1054 btrfs_remove_free_space_cache(block_group);
1055
1056 spin_lock(&block_group->space_info->lock);
1057 list_del_init(&block_group->ro_list);
1058
1059 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1060 WARN_ON(block_group->space_info->total_bytes
1061 < block_group->key.offset);
1062 WARN_ON(block_group->space_info->bytes_readonly
1063 < block_group->key.offset);
1064 WARN_ON(block_group->space_info->disk_total
1065 < block_group->key.offset * factor);
1066 }
1067 block_group->space_info->total_bytes -= block_group->key.offset;
1068 block_group->space_info->bytes_readonly -= block_group->key.offset;
1069 block_group->space_info->disk_total -= block_group->key.offset * factor;
1070
1071 spin_unlock(&block_group->space_info->lock);
1072
1073 memcpy(&key, &block_group->key, sizeof(key));
1074
1075 mutex_lock(&fs_info->chunk_mutex);
1076 spin_lock(&block_group->lock);
1077 block_group->removed = 1;
1078 /*
1079 * At this point trimming can't start on this block group, because we
1080 * removed the block group from the tree fs_info->block_group_cache_tree
1081 * so no one can't find it anymore and even if someone already got this
1082 * block group before we removed it from the rbtree, they have already
1083 * incremented block_group->trimming - if they didn't, they won't find
1084 * any free space entries because we already removed them all when we
1085 * called btrfs_remove_free_space_cache().
1086 *
1087 * And we must not remove the extent map from the fs_info->mapping_tree
1088 * to prevent the same logical address range and physical device space
1089 * ranges from being reused for a new block group. This is because our
1090 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1091 * completely transactionless, so while it is trimming a range the
1092 * currently running transaction might finish and a new one start,
1093 * allowing for new block groups to be created that can reuse the same
1094 * physical device locations unless we take this special care.
1095 *
1096 * There may also be an implicit trim operation if the file system
1097 * is mounted with -odiscard. The same protections must remain
1098 * in place until the extents have been discarded completely when
1099 * the transaction commit has completed.
1100 */
1101 remove_em = (atomic_read(&block_group->trimming) == 0);
1102 spin_unlock(&block_group->lock);
1103
1104 mutex_unlock(&fs_info->chunk_mutex);
1105
1106 ret = remove_block_group_free_space(trans, block_group);
1107 if (ret)
1108 goto out;
1109
1110 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1111 if (ret > 0)
1112 ret = -EIO;
1113 if (ret < 0)
1114 goto out;
1115
1116 ret = btrfs_del_item(trans, root, path);
1117 if (ret)
1118 goto out;
1119
1120 if (remove_em) {
1121 struct extent_map_tree *em_tree;
1122
1123 em_tree = &fs_info->mapping_tree;
1124 write_lock(&em_tree->lock);
1125 remove_extent_mapping(em_tree, em);
1126 write_unlock(&em_tree->lock);
1127 /* once for the tree */
1128 free_extent_map(em);
1129 }
1130
1131 out:
1132 /* Once for the lookup reference */
1133 btrfs_put_block_group(block_group);
1134 if (remove_rsv)
1135 btrfs_delayed_refs_rsv_release(fs_info, 1);
1136 btrfs_free_path(path);
1137 return ret;
1138 }
1139
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1140 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1141 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1142 {
1143 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1144 struct extent_map *em;
1145 struct map_lookup *map;
1146 unsigned int num_items;
1147
1148 read_lock(&em_tree->lock);
1149 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1150 read_unlock(&em_tree->lock);
1151 ASSERT(em && em->start == chunk_offset);
1152
1153 /*
1154 * We need to reserve 3 + N units from the metadata space info in order
1155 * to remove a block group (done at btrfs_remove_chunk() and at
1156 * btrfs_remove_block_group()), which are used for:
1157 *
1158 * 1 unit for adding the free space inode's orphan (located in the tree
1159 * of tree roots).
1160 * 1 unit for deleting the block group item (located in the extent
1161 * tree).
1162 * 1 unit for deleting the free space item (located in tree of tree
1163 * roots).
1164 * N units for deleting N device extent items corresponding to each
1165 * stripe (located in the device tree).
1166 *
1167 * In order to remove a block group we also need to reserve units in the
1168 * system space info in order to update the chunk tree (update one or
1169 * more device items and remove one chunk item), but this is done at
1170 * btrfs_remove_chunk() through a call to check_system_chunk().
1171 */
1172 map = em->map_lookup;
1173 num_items = 3 + map->num_stripes;
1174 free_extent_map(em);
1175
1176 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1177 num_items);
1178 }
1179
1180 /*
1181 * Mark block group @cache read-only, so later write won't happen to block
1182 * group @cache.
1183 *
1184 * If @force is not set, this function will only mark the block group readonly
1185 * if we have enough free space (1M) in other metadata/system block groups.
1186 * If @force is not set, this function will mark the block group readonly
1187 * without checking free space.
1188 *
1189 * NOTE: This function doesn't care if other block groups can contain all the
1190 * data in this block group. That check should be done by relocation routine,
1191 * not this function.
1192 */
inc_block_group_ro(struct btrfs_block_group_cache * cache,int force)1193 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
1194 {
1195 struct btrfs_space_info *sinfo = cache->space_info;
1196 u64 num_bytes;
1197 u64 min_allocable_bytes;
1198 int ret = -ENOSPC;
1199
1200 /*
1201 * We need some metadata space and system metadata space for
1202 * allocating chunks in some corner cases until we force to set
1203 * it to be readonly.
1204 */
1205 if ((sinfo->flags &
1206 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
1207 !force)
1208 min_allocable_bytes = SZ_1M;
1209 else
1210 min_allocable_bytes = 0;
1211
1212 spin_lock(&sinfo->lock);
1213 spin_lock(&cache->lock);
1214
1215 if (cache->ro) {
1216 cache->ro++;
1217 ret = 0;
1218 goto out;
1219 }
1220
1221 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
1222 cache->bytes_super - btrfs_block_group_used(&cache->item);
1223
1224 /*
1225 * Data never overcommits, even in mixed mode, so do just the straight
1226 * check of left over space in how much we have allocated.
1227 */
1228 if (force) {
1229 ret = 0;
1230 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1231 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1232
1233 /*
1234 * Here we make sure if we mark this bg RO, we still have enough
1235 * free space as buffer.
1236 */
1237 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1238 ret = 0;
1239 } else {
1240 /*
1241 * We overcommit metadata, so we need to do the
1242 * btrfs_can_overcommit check here, and we need to pass in
1243 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1244 * leeway to allow us to mark this block group as read only.
1245 */
1246 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1247 BTRFS_RESERVE_NO_FLUSH))
1248 ret = 0;
1249 }
1250
1251 if (!ret) {
1252 sinfo->bytes_readonly += num_bytes;
1253 cache->ro++;
1254 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1255 }
1256 out:
1257 spin_unlock(&cache->lock);
1258 spin_unlock(&sinfo->lock);
1259 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1260 btrfs_info(cache->fs_info,
1261 "unable to make block group %llu ro",
1262 cache->key.objectid);
1263 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1264 }
1265 return ret;
1266 }
1267
1268 /*
1269 * Process the unused_bgs list and remove any that don't have any allocated
1270 * space inside of them.
1271 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1272 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1273 {
1274 struct btrfs_block_group_cache *block_group;
1275 struct btrfs_space_info *space_info;
1276 struct btrfs_trans_handle *trans;
1277 int ret = 0;
1278
1279 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1280 return;
1281
1282 spin_lock(&fs_info->unused_bgs_lock);
1283 while (!list_empty(&fs_info->unused_bgs)) {
1284 u64 start, end;
1285 int trimming;
1286
1287 block_group = list_first_entry(&fs_info->unused_bgs,
1288 struct btrfs_block_group_cache,
1289 bg_list);
1290 list_del_init(&block_group->bg_list);
1291
1292 space_info = block_group->space_info;
1293
1294 if (ret || btrfs_mixed_space_info(space_info)) {
1295 btrfs_put_block_group(block_group);
1296 continue;
1297 }
1298 spin_unlock(&fs_info->unused_bgs_lock);
1299
1300 mutex_lock(&fs_info->delete_unused_bgs_mutex);
1301
1302 /* Don't want to race with allocators so take the groups_sem */
1303 down_write(&space_info->groups_sem);
1304 spin_lock(&block_group->lock);
1305 if (block_group->reserved || block_group->pinned ||
1306 btrfs_block_group_used(&block_group->item) ||
1307 block_group->ro ||
1308 list_is_singular(&block_group->list)) {
1309 /*
1310 * We want to bail if we made new allocations or have
1311 * outstanding allocations in this block group. We do
1312 * the ro check in case balance is currently acting on
1313 * this block group.
1314 */
1315 trace_btrfs_skip_unused_block_group(block_group);
1316 spin_unlock(&block_group->lock);
1317 up_write(&space_info->groups_sem);
1318 goto next;
1319 }
1320 spin_unlock(&block_group->lock);
1321
1322 /* We don't want to force the issue, only flip if it's ok. */
1323 ret = inc_block_group_ro(block_group, 0);
1324 up_write(&space_info->groups_sem);
1325 if (ret < 0) {
1326 ret = 0;
1327 goto next;
1328 }
1329
1330 /*
1331 * Want to do this before we do anything else so we can recover
1332 * properly if we fail to join the transaction.
1333 */
1334 trans = btrfs_start_trans_remove_block_group(fs_info,
1335 block_group->key.objectid);
1336 if (IS_ERR(trans)) {
1337 btrfs_dec_block_group_ro(block_group);
1338 ret = PTR_ERR(trans);
1339 goto next;
1340 }
1341
1342 /*
1343 * We could have pending pinned extents for this block group,
1344 * just delete them, we don't care about them anymore.
1345 */
1346 start = block_group->key.objectid;
1347 end = start + block_group->key.offset - 1;
1348 /*
1349 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1350 * btrfs_finish_extent_commit(). If we are at transaction N,
1351 * another task might be running finish_extent_commit() for the
1352 * previous transaction N - 1, and have seen a range belonging
1353 * to the block group in freed_extents[] before we were able to
1354 * clear the whole block group range from freed_extents[]. This
1355 * means that task can lookup for the block group after we
1356 * unpinned it from freed_extents[] and removed it, leading to
1357 * a BUG_ON() at btrfs_unpin_extent_range().
1358 */
1359 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1360 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
1361 EXTENT_DIRTY);
1362 if (ret) {
1363 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1364 btrfs_dec_block_group_ro(block_group);
1365 goto end_trans;
1366 }
1367 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
1368 EXTENT_DIRTY);
1369 if (ret) {
1370 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1371 btrfs_dec_block_group_ro(block_group);
1372 goto end_trans;
1373 }
1374 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1375
1376 /* Reset pinned so btrfs_put_block_group doesn't complain */
1377 spin_lock(&space_info->lock);
1378 spin_lock(&block_group->lock);
1379
1380 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1381 -block_group->pinned);
1382 space_info->bytes_readonly += block_group->pinned;
1383 percpu_counter_add_batch(&space_info->total_bytes_pinned,
1384 -block_group->pinned,
1385 BTRFS_TOTAL_BYTES_PINNED_BATCH);
1386 block_group->pinned = 0;
1387
1388 spin_unlock(&block_group->lock);
1389 spin_unlock(&space_info->lock);
1390
1391 /* DISCARD can flip during remount */
1392 trimming = btrfs_test_opt(fs_info, DISCARD);
1393
1394 /* Implicit trim during transaction commit. */
1395 if (trimming)
1396 btrfs_get_block_group_trimming(block_group);
1397
1398 /*
1399 * Btrfs_remove_chunk will abort the transaction if things go
1400 * horribly wrong.
1401 */
1402 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
1403
1404 if (ret) {
1405 if (trimming)
1406 btrfs_put_block_group_trimming(block_group);
1407 goto end_trans;
1408 }
1409
1410 /*
1411 * If we're not mounted with -odiscard, we can just forget
1412 * about this block group. Otherwise we'll need to wait
1413 * until transaction commit to do the actual discard.
1414 */
1415 if (trimming) {
1416 spin_lock(&fs_info->unused_bgs_lock);
1417 /*
1418 * A concurrent scrub might have added us to the list
1419 * fs_info->unused_bgs, so use a list_move operation
1420 * to add the block group to the deleted_bgs list.
1421 */
1422 list_move(&block_group->bg_list,
1423 &trans->transaction->deleted_bgs);
1424 spin_unlock(&fs_info->unused_bgs_lock);
1425 btrfs_get_block_group(block_group);
1426 }
1427 end_trans:
1428 btrfs_end_transaction(trans);
1429 next:
1430 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1431 btrfs_put_block_group(block_group);
1432 spin_lock(&fs_info->unused_bgs_lock);
1433 }
1434 spin_unlock(&fs_info->unused_bgs_lock);
1435 }
1436
btrfs_mark_bg_unused(struct btrfs_block_group_cache * bg)1437 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
1438 {
1439 struct btrfs_fs_info *fs_info = bg->fs_info;
1440
1441 spin_lock(&fs_info->unused_bgs_lock);
1442 if (list_empty(&bg->bg_list)) {
1443 btrfs_get_block_group(bg);
1444 trace_btrfs_add_unused_block_group(bg);
1445 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1446 }
1447 spin_unlock(&fs_info->unused_bgs_lock);
1448 }
1449
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)1450 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1451 struct btrfs_path *path,
1452 struct btrfs_key *key)
1453 {
1454 struct btrfs_root *root = fs_info->extent_root;
1455 int ret = 0;
1456 struct btrfs_key found_key;
1457 struct extent_buffer *leaf;
1458 struct btrfs_block_group_item bg;
1459 u64 flags;
1460 int slot;
1461
1462 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1463 if (ret < 0)
1464 goto out;
1465
1466 while (1) {
1467 slot = path->slots[0];
1468 leaf = path->nodes[0];
1469 if (slot >= btrfs_header_nritems(leaf)) {
1470 ret = btrfs_next_leaf(root, path);
1471 if (ret == 0)
1472 continue;
1473 if (ret < 0)
1474 goto out;
1475 break;
1476 }
1477 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1478
1479 if (found_key.objectid >= key->objectid &&
1480 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1481 struct extent_map_tree *em_tree;
1482 struct extent_map *em;
1483
1484 em_tree = &root->fs_info->mapping_tree;
1485 read_lock(&em_tree->lock);
1486 em = lookup_extent_mapping(em_tree, found_key.objectid,
1487 found_key.offset);
1488 read_unlock(&em_tree->lock);
1489 if (!em) {
1490 btrfs_err(fs_info,
1491 "logical %llu len %llu found bg but no related chunk",
1492 found_key.objectid, found_key.offset);
1493 ret = -ENOENT;
1494 } else if (em->start != found_key.objectid ||
1495 em->len != found_key.offset) {
1496 btrfs_err(fs_info,
1497 "block group %llu len %llu mismatch with chunk %llu len %llu",
1498 found_key.objectid, found_key.offset,
1499 em->start, em->len);
1500 ret = -EUCLEAN;
1501 } else {
1502 read_extent_buffer(leaf, &bg,
1503 btrfs_item_ptr_offset(leaf, slot),
1504 sizeof(bg));
1505 flags = btrfs_block_group_flags(&bg) &
1506 BTRFS_BLOCK_GROUP_TYPE_MASK;
1507
1508 if (flags != (em->map_lookup->type &
1509 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1510 btrfs_err(fs_info,
1511 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1512 found_key.objectid,
1513 found_key.offset, flags,
1514 (BTRFS_BLOCK_GROUP_TYPE_MASK &
1515 em->map_lookup->type));
1516 ret = -EUCLEAN;
1517 } else {
1518 ret = 0;
1519 }
1520 }
1521 free_extent_map(em);
1522 goto out;
1523 }
1524 path->slots[0]++;
1525 }
1526 out:
1527 return ret;
1528 }
1529
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)1530 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1531 {
1532 u64 extra_flags = chunk_to_extended(flags) &
1533 BTRFS_EXTENDED_PROFILE_MASK;
1534
1535 write_seqlock(&fs_info->profiles_lock);
1536 if (flags & BTRFS_BLOCK_GROUP_DATA)
1537 fs_info->avail_data_alloc_bits |= extra_flags;
1538 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1539 fs_info->avail_metadata_alloc_bits |= extra_flags;
1540 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1541 fs_info->avail_system_alloc_bits |= extra_flags;
1542 write_sequnlock(&fs_info->profiles_lock);
1543 }
1544
exclude_super_stripes(struct btrfs_block_group_cache * cache)1545 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
1546 {
1547 struct btrfs_fs_info *fs_info = cache->fs_info;
1548 u64 bytenr;
1549 u64 *logical;
1550 int stripe_len;
1551 int i, nr, ret;
1552
1553 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
1554 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
1555 cache->bytes_super += stripe_len;
1556 ret = btrfs_add_excluded_extent(fs_info, cache->key.objectid,
1557 stripe_len);
1558 if (ret)
1559 return ret;
1560 }
1561
1562 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1563 bytenr = btrfs_sb_offset(i);
1564 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
1565 bytenr, &logical, &nr, &stripe_len);
1566 if (ret)
1567 return ret;
1568
1569 while (nr--) {
1570 u64 start, len;
1571
1572 if (logical[nr] > cache->key.objectid +
1573 cache->key.offset)
1574 continue;
1575
1576 if (logical[nr] + stripe_len <= cache->key.objectid)
1577 continue;
1578
1579 start = logical[nr];
1580 if (start < cache->key.objectid) {
1581 start = cache->key.objectid;
1582 len = (logical[nr] + stripe_len) - start;
1583 } else {
1584 len = min_t(u64, stripe_len,
1585 cache->key.objectid +
1586 cache->key.offset - start);
1587 }
1588
1589 cache->bytes_super += len;
1590 ret = btrfs_add_excluded_extent(fs_info, start, len);
1591 if (ret) {
1592 kfree(logical);
1593 return ret;
1594 }
1595 }
1596
1597 kfree(logical);
1598 }
1599 return 0;
1600 }
1601
link_block_group(struct btrfs_block_group_cache * cache)1602 static void link_block_group(struct btrfs_block_group_cache *cache)
1603 {
1604 struct btrfs_space_info *space_info = cache->space_info;
1605 int index = btrfs_bg_flags_to_raid_index(cache->flags);
1606 bool first = false;
1607
1608 down_write(&space_info->groups_sem);
1609 if (list_empty(&space_info->block_groups[index]))
1610 first = true;
1611 list_add_tail(&cache->list, &space_info->block_groups[index]);
1612 up_write(&space_info->groups_sem);
1613
1614 if (first)
1615 btrfs_sysfs_add_block_group_type(cache);
1616 }
1617
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start,u64 size)1618 static struct btrfs_block_group_cache *btrfs_create_block_group_cache(
1619 struct btrfs_fs_info *fs_info, u64 start, u64 size)
1620 {
1621 struct btrfs_block_group_cache *cache;
1622
1623 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1624 if (!cache)
1625 return NULL;
1626
1627 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1628 GFP_NOFS);
1629 if (!cache->free_space_ctl) {
1630 kfree(cache);
1631 return NULL;
1632 }
1633
1634 cache->key.objectid = start;
1635 cache->key.offset = size;
1636 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1637
1638 cache->fs_info = fs_info;
1639 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1640 set_free_space_tree_thresholds(cache);
1641
1642 atomic_set(&cache->count, 1);
1643 spin_lock_init(&cache->lock);
1644 init_rwsem(&cache->data_rwsem);
1645 INIT_LIST_HEAD(&cache->list);
1646 INIT_LIST_HEAD(&cache->cluster_list);
1647 INIT_LIST_HEAD(&cache->bg_list);
1648 INIT_LIST_HEAD(&cache->ro_list);
1649 INIT_LIST_HEAD(&cache->dirty_list);
1650 INIT_LIST_HEAD(&cache->io_list);
1651 btrfs_init_free_space_ctl(cache);
1652 atomic_set(&cache->trimming, 0);
1653 mutex_init(&cache->free_space_lock);
1654 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1655
1656 return cache;
1657 }
1658
1659 /*
1660 * Iterate all chunks and verify that each of them has the corresponding block
1661 * group
1662 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)1663 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1664 {
1665 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1666 struct extent_map *em;
1667 struct btrfs_block_group_cache *bg;
1668 u64 start = 0;
1669 int ret = 0;
1670
1671 while (1) {
1672 read_lock(&map_tree->lock);
1673 /*
1674 * lookup_extent_mapping will return the first extent map
1675 * intersecting the range, so setting @len to 1 is enough to
1676 * get the first chunk.
1677 */
1678 em = lookup_extent_mapping(map_tree, start, 1);
1679 read_unlock(&map_tree->lock);
1680 if (!em)
1681 break;
1682
1683 bg = btrfs_lookup_block_group(fs_info, em->start);
1684 if (!bg) {
1685 btrfs_err(fs_info,
1686 "chunk start=%llu len=%llu doesn't have corresponding block group",
1687 em->start, em->len);
1688 ret = -EUCLEAN;
1689 free_extent_map(em);
1690 break;
1691 }
1692 if (bg->key.objectid != em->start ||
1693 bg->key.offset != em->len ||
1694 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1695 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1696 btrfs_err(fs_info,
1697 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1698 em->start, em->len,
1699 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1700 bg->key.objectid, bg->key.offset,
1701 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1702 ret = -EUCLEAN;
1703 free_extent_map(em);
1704 btrfs_put_block_group(bg);
1705 break;
1706 }
1707 start = em->start + em->len;
1708 free_extent_map(em);
1709 btrfs_put_block_group(bg);
1710 }
1711 return ret;
1712 }
1713
btrfs_read_block_groups(struct btrfs_fs_info * info)1714 int btrfs_read_block_groups(struct btrfs_fs_info *info)
1715 {
1716 struct btrfs_path *path;
1717 int ret;
1718 struct btrfs_block_group_cache *cache;
1719 struct btrfs_space_info *space_info;
1720 struct btrfs_key key;
1721 struct btrfs_key found_key;
1722 struct extent_buffer *leaf;
1723 int need_clear = 0;
1724 u64 cache_gen;
1725 u64 feature;
1726 int mixed;
1727
1728 feature = btrfs_super_incompat_flags(info->super_copy);
1729 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
1730
1731 key.objectid = 0;
1732 key.offset = 0;
1733 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1734 path = btrfs_alloc_path();
1735 if (!path)
1736 return -ENOMEM;
1737 path->reada = READA_FORWARD;
1738
1739 cache_gen = btrfs_super_cache_generation(info->super_copy);
1740 if (btrfs_test_opt(info, SPACE_CACHE) &&
1741 btrfs_super_generation(info->super_copy) != cache_gen)
1742 need_clear = 1;
1743 if (btrfs_test_opt(info, CLEAR_CACHE))
1744 need_clear = 1;
1745
1746 while (1) {
1747 ret = find_first_block_group(info, path, &key);
1748 if (ret > 0)
1749 break;
1750 if (ret != 0)
1751 goto error;
1752
1753 leaf = path->nodes[0];
1754 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1755
1756 cache = btrfs_create_block_group_cache(info, found_key.objectid,
1757 found_key.offset);
1758 if (!cache) {
1759 ret = -ENOMEM;
1760 goto error;
1761 }
1762
1763 if (need_clear) {
1764 /*
1765 * When we mount with old space cache, we need to
1766 * set BTRFS_DC_CLEAR and set dirty flag.
1767 *
1768 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1769 * truncate the old free space cache inode and
1770 * setup a new one.
1771 * b) Setting 'dirty flag' makes sure that we flush
1772 * the new space cache info onto disk.
1773 */
1774 if (btrfs_test_opt(info, SPACE_CACHE))
1775 cache->disk_cache_state = BTRFS_DC_CLEAR;
1776 }
1777
1778 read_extent_buffer(leaf, &cache->item,
1779 btrfs_item_ptr_offset(leaf, path->slots[0]),
1780 sizeof(cache->item));
1781 cache->flags = btrfs_block_group_flags(&cache->item);
1782 if (!mixed &&
1783 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1784 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1785 btrfs_err(info,
1786 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1787 cache->key.objectid);
1788 btrfs_put_block_group(cache);
1789 ret = -EINVAL;
1790 goto error;
1791 }
1792
1793 key.objectid = found_key.objectid + found_key.offset;
1794 btrfs_release_path(path);
1795
1796 /*
1797 * We need to exclude the super stripes now so that the space
1798 * info has super bytes accounted for, otherwise we'll think
1799 * we have more space than we actually do.
1800 */
1801 ret = exclude_super_stripes(cache);
1802 if (ret) {
1803 /*
1804 * We may have excluded something, so call this just in
1805 * case.
1806 */
1807 btrfs_free_excluded_extents(cache);
1808 btrfs_put_block_group(cache);
1809 goto error;
1810 }
1811
1812 /*
1813 * Check for two cases, either we are full, and therefore
1814 * don't need to bother with the caching work since we won't
1815 * find any space, or we are empty, and we can just add all
1816 * the space in and be done with it. This saves us _a_lot_ of
1817 * time, particularly in the full case.
1818 */
1819 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
1820 cache->last_byte_to_unpin = (u64)-1;
1821 cache->cached = BTRFS_CACHE_FINISHED;
1822 btrfs_free_excluded_extents(cache);
1823 } else if (btrfs_block_group_used(&cache->item) == 0) {
1824 cache->last_byte_to_unpin = (u64)-1;
1825 cache->cached = BTRFS_CACHE_FINISHED;
1826 add_new_free_space(cache, found_key.objectid,
1827 found_key.objectid +
1828 found_key.offset);
1829 btrfs_free_excluded_extents(cache);
1830 }
1831
1832 ret = btrfs_add_block_group_cache(info, cache);
1833 if (ret) {
1834 btrfs_remove_free_space_cache(cache);
1835 btrfs_put_block_group(cache);
1836 goto error;
1837 }
1838
1839 trace_btrfs_add_block_group(info, cache, 0);
1840 btrfs_update_space_info(info, cache->flags, found_key.offset,
1841 btrfs_block_group_used(&cache->item),
1842 cache->bytes_super, &space_info);
1843
1844 cache->space_info = space_info;
1845
1846 link_block_group(cache);
1847
1848 set_avail_alloc_bits(info, cache->flags);
1849 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
1850 inc_block_group_ro(cache, 1);
1851 } else if (btrfs_block_group_used(&cache->item) == 0) {
1852 ASSERT(list_empty(&cache->bg_list));
1853 btrfs_mark_bg_unused(cache);
1854 }
1855 }
1856
1857 rcu_read_lock();
1858 list_for_each_entry_rcu(space_info, &info->space_info, list) {
1859 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
1860 (BTRFS_BLOCK_GROUP_RAID10 |
1861 BTRFS_BLOCK_GROUP_RAID1_MASK |
1862 BTRFS_BLOCK_GROUP_RAID56_MASK |
1863 BTRFS_BLOCK_GROUP_DUP)))
1864 continue;
1865 /*
1866 * Avoid allocating from un-mirrored block group if there are
1867 * mirrored block groups.
1868 */
1869 list_for_each_entry(cache,
1870 &space_info->block_groups[BTRFS_RAID_RAID0],
1871 list)
1872 inc_block_group_ro(cache, 1);
1873 list_for_each_entry(cache,
1874 &space_info->block_groups[BTRFS_RAID_SINGLE],
1875 list)
1876 inc_block_group_ro(cache, 1);
1877 }
1878 rcu_read_unlock();
1879
1880 btrfs_init_global_block_rsv(info);
1881 ret = check_chunk_block_group_mappings(info);
1882 error:
1883 btrfs_free_path(path);
1884 return ret;
1885 }
1886
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)1887 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
1888 {
1889 struct btrfs_fs_info *fs_info = trans->fs_info;
1890 struct btrfs_block_group_cache *block_group;
1891 struct btrfs_root *extent_root = fs_info->extent_root;
1892 struct btrfs_block_group_item item;
1893 struct btrfs_key key;
1894 int ret = 0;
1895
1896 if (!trans->can_flush_pending_bgs)
1897 return;
1898
1899 while (!list_empty(&trans->new_bgs)) {
1900 block_group = list_first_entry(&trans->new_bgs,
1901 struct btrfs_block_group_cache,
1902 bg_list);
1903 if (ret)
1904 goto next;
1905
1906 spin_lock(&block_group->lock);
1907 memcpy(&item, &block_group->item, sizeof(item));
1908 memcpy(&key, &block_group->key, sizeof(key));
1909 spin_unlock(&block_group->lock);
1910
1911 ret = btrfs_insert_item(trans, extent_root, &key, &item,
1912 sizeof(item));
1913 if (ret)
1914 btrfs_abort_transaction(trans, ret);
1915 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
1916 if (ret)
1917 btrfs_abort_transaction(trans, ret);
1918 add_block_group_free_space(trans, block_group);
1919 /* Already aborted the transaction if it failed. */
1920 next:
1921 btrfs_delayed_refs_rsv_release(fs_info, 1);
1922 list_del_init(&block_group->bg_list);
1923 }
1924 btrfs_trans_release_chunk_metadata(trans);
1925 }
1926
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 bytes_used,u64 type,u64 chunk_offset,u64 size)1927 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
1928 u64 type, u64 chunk_offset, u64 size)
1929 {
1930 struct btrfs_fs_info *fs_info = trans->fs_info;
1931 struct btrfs_block_group_cache *cache;
1932 int ret;
1933
1934 btrfs_set_log_full_commit(trans);
1935
1936 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
1937 if (!cache)
1938 return -ENOMEM;
1939
1940 btrfs_set_block_group_used(&cache->item, bytes_used);
1941 btrfs_set_block_group_chunk_objectid(&cache->item,
1942 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1943 btrfs_set_block_group_flags(&cache->item, type);
1944
1945 cache->flags = type;
1946 cache->last_byte_to_unpin = (u64)-1;
1947 cache->cached = BTRFS_CACHE_FINISHED;
1948 cache->needs_free_space = 1;
1949 ret = exclude_super_stripes(cache);
1950 if (ret) {
1951 /* We may have excluded something, so call this just in case */
1952 btrfs_free_excluded_extents(cache);
1953 btrfs_put_block_group(cache);
1954 return ret;
1955 }
1956
1957 add_new_free_space(cache, chunk_offset, chunk_offset + size);
1958
1959 btrfs_free_excluded_extents(cache);
1960
1961 #ifdef CONFIG_BTRFS_DEBUG
1962 if (btrfs_should_fragment_free_space(cache)) {
1963 u64 new_bytes_used = size - bytes_used;
1964
1965 bytes_used += new_bytes_used >> 1;
1966 fragment_free_space(cache);
1967 }
1968 #endif
1969 /*
1970 * Ensure the corresponding space_info object is created and
1971 * assigned to our block group. We want our bg to be added to the rbtree
1972 * with its ->space_info set.
1973 */
1974 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
1975 ASSERT(cache->space_info);
1976
1977 ret = btrfs_add_block_group_cache(fs_info, cache);
1978 if (ret) {
1979 btrfs_remove_free_space_cache(cache);
1980 btrfs_put_block_group(cache);
1981 return ret;
1982 }
1983
1984 /*
1985 * Now that our block group has its ->space_info set and is inserted in
1986 * the rbtree, update the space info's counters.
1987 */
1988 trace_btrfs_add_block_group(fs_info, cache, 1);
1989 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
1990 cache->bytes_super, &cache->space_info);
1991 btrfs_update_global_block_rsv(fs_info);
1992
1993 link_block_group(cache);
1994
1995 list_add_tail(&cache->bg_list, &trans->new_bgs);
1996 trans->delayed_ref_updates++;
1997 btrfs_update_delayed_refs_rsv(trans);
1998
1999 set_avail_alloc_bits(fs_info, type);
2000 return 0;
2001 }
2002
update_block_group_flags(struct btrfs_fs_info * fs_info,u64 flags)2003 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
2004 {
2005 u64 num_devices;
2006 u64 stripped;
2007
2008 /*
2009 * if restripe for this chunk_type is on pick target profile and
2010 * return, otherwise do the usual balance
2011 */
2012 stripped = get_restripe_target(fs_info, flags);
2013 if (stripped)
2014 return extended_to_chunk(stripped);
2015
2016 num_devices = fs_info->fs_devices->rw_devices;
2017
2018 stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK |
2019 BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10;
2020
2021 if (num_devices == 1) {
2022 stripped |= BTRFS_BLOCK_GROUP_DUP;
2023 stripped = flags & ~stripped;
2024
2025 /* turn raid0 into single device chunks */
2026 if (flags & BTRFS_BLOCK_GROUP_RAID0)
2027 return stripped;
2028
2029 /* turn mirroring into duplication */
2030 if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK |
2031 BTRFS_BLOCK_GROUP_RAID10))
2032 return stripped | BTRFS_BLOCK_GROUP_DUP;
2033 } else {
2034 /* they already had raid on here, just return */
2035 if (flags & stripped)
2036 return flags;
2037
2038 stripped |= BTRFS_BLOCK_GROUP_DUP;
2039 stripped = flags & ~stripped;
2040
2041 /* switch duplicated blocks with raid1 */
2042 if (flags & BTRFS_BLOCK_GROUP_DUP)
2043 return stripped | BTRFS_BLOCK_GROUP_RAID1;
2044
2045 /* this is drive concat, leave it alone */
2046 }
2047
2048 return flags;
2049 }
2050
2051 /*
2052 * Mark one block group RO, can be called several times for the same block
2053 * group.
2054 *
2055 * @cache: the destination block group
2056 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2057 * ensure we still have some free space after marking this
2058 * block group RO.
2059 */
btrfs_inc_block_group_ro(struct btrfs_block_group_cache * cache,bool do_chunk_alloc)2060 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache,
2061 bool do_chunk_alloc)
2062 {
2063 struct btrfs_fs_info *fs_info = cache->fs_info;
2064 struct btrfs_trans_handle *trans;
2065 u64 alloc_flags;
2066 int ret;
2067
2068 again:
2069 trans = btrfs_join_transaction(fs_info->extent_root);
2070 if (IS_ERR(trans))
2071 return PTR_ERR(trans);
2072
2073 /*
2074 * we're not allowed to set block groups readonly after the dirty
2075 * block groups cache has started writing. If it already started,
2076 * back off and let this transaction commit
2077 */
2078 mutex_lock(&fs_info->ro_block_group_mutex);
2079 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2080 u64 transid = trans->transid;
2081
2082 mutex_unlock(&fs_info->ro_block_group_mutex);
2083 btrfs_end_transaction(trans);
2084
2085 ret = btrfs_wait_for_commit(fs_info, transid);
2086 if (ret)
2087 return ret;
2088 goto again;
2089 }
2090
2091 if (do_chunk_alloc) {
2092 /*
2093 * If we are changing raid levels, try to allocate a
2094 * corresponding block group with the new raid level.
2095 */
2096 alloc_flags = update_block_group_flags(fs_info, cache->flags);
2097 if (alloc_flags != cache->flags) {
2098 ret = btrfs_chunk_alloc(trans, alloc_flags,
2099 CHUNK_ALLOC_FORCE);
2100 /*
2101 * ENOSPC is allowed here, we may have enough space
2102 * already allocated at the new raid level to carry on
2103 */
2104 if (ret == -ENOSPC)
2105 ret = 0;
2106 if (ret < 0)
2107 goto out;
2108 }
2109 }
2110
2111 ret = inc_block_group_ro(cache, !do_chunk_alloc);
2112 if (!do_chunk_alloc)
2113 goto unlock_out;
2114 if (!ret)
2115 goto out;
2116 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2117 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2118 if (ret < 0)
2119 goto out;
2120 ret = inc_block_group_ro(cache, 0);
2121 out:
2122 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2123 alloc_flags = update_block_group_flags(fs_info, cache->flags);
2124 mutex_lock(&fs_info->chunk_mutex);
2125 check_system_chunk(trans, alloc_flags);
2126 mutex_unlock(&fs_info->chunk_mutex);
2127 }
2128 unlock_out:
2129 mutex_unlock(&fs_info->ro_block_group_mutex);
2130
2131 btrfs_end_transaction(trans);
2132 return ret;
2133 }
2134
btrfs_dec_block_group_ro(struct btrfs_block_group_cache * cache)2135 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
2136 {
2137 struct btrfs_space_info *sinfo = cache->space_info;
2138 u64 num_bytes;
2139
2140 BUG_ON(!cache->ro);
2141
2142 spin_lock(&sinfo->lock);
2143 spin_lock(&cache->lock);
2144 if (!--cache->ro) {
2145 num_bytes = cache->key.offset - cache->reserved -
2146 cache->pinned - cache->bytes_super -
2147 btrfs_block_group_used(&cache->item);
2148 sinfo->bytes_readonly -= num_bytes;
2149 list_del_init(&cache->ro_list);
2150 }
2151 spin_unlock(&cache->lock);
2152 spin_unlock(&sinfo->lock);
2153 }
2154
write_one_cache_group(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group_cache * cache)2155 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2156 struct btrfs_path *path,
2157 struct btrfs_block_group_cache *cache)
2158 {
2159 struct btrfs_fs_info *fs_info = trans->fs_info;
2160 int ret;
2161 struct btrfs_root *extent_root = fs_info->extent_root;
2162 unsigned long bi;
2163 struct extent_buffer *leaf;
2164
2165 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2166 if (ret) {
2167 if (ret > 0)
2168 ret = -ENOENT;
2169 goto fail;
2170 }
2171
2172 leaf = path->nodes[0];
2173 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2174 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2175 btrfs_mark_buffer_dirty(leaf);
2176 fail:
2177 btrfs_release_path(path);
2178 return ret;
2179
2180 }
2181
cache_save_setup(struct btrfs_block_group_cache * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)2182 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2183 struct btrfs_trans_handle *trans,
2184 struct btrfs_path *path)
2185 {
2186 struct btrfs_fs_info *fs_info = block_group->fs_info;
2187 struct btrfs_root *root = fs_info->tree_root;
2188 struct inode *inode = NULL;
2189 struct extent_changeset *data_reserved = NULL;
2190 u64 alloc_hint = 0;
2191 int dcs = BTRFS_DC_ERROR;
2192 u64 num_pages = 0;
2193 int retries = 0;
2194 int ret = 0;
2195
2196 /*
2197 * If this block group is smaller than 100 megs don't bother caching the
2198 * block group.
2199 */
2200 if (block_group->key.offset < (100 * SZ_1M)) {
2201 spin_lock(&block_group->lock);
2202 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2203 spin_unlock(&block_group->lock);
2204 return 0;
2205 }
2206
2207 if (TRANS_ABORTED(trans))
2208 return 0;
2209 again:
2210 inode = lookup_free_space_inode(block_group, path);
2211 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2212 ret = PTR_ERR(inode);
2213 btrfs_release_path(path);
2214 goto out;
2215 }
2216
2217 if (IS_ERR(inode)) {
2218 BUG_ON(retries);
2219 retries++;
2220
2221 if (block_group->ro)
2222 goto out_free;
2223
2224 ret = create_free_space_inode(trans, block_group, path);
2225 if (ret)
2226 goto out_free;
2227 goto again;
2228 }
2229
2230 /*
2231 * We want to set the generation to 0, that way if anything goes wrong
2232 * from here on out we know not to trust this cache when we load up next
2233 * time.
2234 */
2235 BTRFS_I(inode)->generation = 0;
2236 ret = btrfs_update_inode(trans, root, inode);
2237 if (ret) {
2238 /*
2239 * So theoretically we could recover from this, simply set the
2240 * super cache generation to 0 so we know to invalidate the
2241 * cache, but then we'd have to keep track of the block groups
2242 * that fail this way so we know we _have_ to reset this cache
2243 * before the next commit or risk reading stale cache. So to
2244 * limit our exposure to horrible edge cases lets just abort the
2245 * transaction, this only happens in really bad situations
2246 * anyway.
2247 */
2248 btrfs_abort_transaction(trans, ret);
2249 goto out_put;
2250 }
2251 WARN_ON(ret);
2252
2253 /* We've already setup this transaction, go ahead and exit */
2254 if (block_group->cache_generation == trans->transid &&
2255 i_size_read(inode)) {
2256 dcs = BTRFS_DC_SETUP;
2257 goto out_put;
2258 }
2259
2260 if (i_size_read(inode) > 0) {
2261 ret = btrfs_check_trunc_cache_free_space(fs_info,
2262 &fs_info->global_block_rsv);
2263 if (ret)
2264 goto out_put;
2265
2266 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2267 if (ret)
2268 goto out_put;
2269 }
2270
2271 spin_lock(&block_group->lock);
2272 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2273 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2274 /*
2275 * don't bother trying to write stuff out _if_
2276 * a) we're not cached,
2277 * b) we're with nospace_cache mount option,
2278 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2279 */
2280 dcs = BTRFS_DC_WRITTEN;
2281 spin_unlock(&block_group->lock);
2282 goto out_put;
2283 }
2284 spin_unlock(&block_group->lock);
2285
2286 /*
2287 * We hit an ENOSPC when setting up the cache in this transaction, just
2288 * skip doing the setup, we've already cleared the cache so we're safe.
2289 */
2290 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2291 ret = -ENOSPC;
2292 goto out_put;
2293 }
2294
2295 /*
2296 * Try to preallocate enough space based on how big the block group is.
2297 * Keep in mind this has to include any pinned space which could end up
2298 * taking up quite a bit since it's not folded into the other space
2299 * cache.
2300 */
2301 num_pages = div_u64(block_group->key.offset, SZ_256M);
2302 if (!num_pages)
2303 num_pages = 1;
2304
2305 num_pages *= 16;
2306 num_pages *= PAGE_SIZE;
2307
2308 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
2309 if (ret)
2310 goto out_put;
2311
2312 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2313 num_pages, num_pages,
2314 &alloc_hint);
2315 /*
2316 * Our cache requires contiguous chunks so that we don't modify a bunch
2317 * of metadata or split extents when writing the cache out, which means
2318 * we can enospc if we are heavily fragmented in addition to just normal
2319 * out of space conditions. So if we hit this just skip setting up any
2320 * other block groups for this transaction, maybe we'll unpin enough
2321 * space the next time around.
2322 */
2323 if (!ret)
2324 dcs = BTRFS_DC_SETUP;
2325 else if (ret == -ENOSPC)
2326 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2327
2328 out_put:
2329 iput(inode);
2330 out_free:
2331 btrfs_release_path(path);
2332 out:
2333 spin_lock(&block_group->lock);
2334 if (!ret && dcs == BTRFS_DC_SETUP)
2335 block_group->cache_generation = trans->transid;
2336 block_group->disk_cache_state = dcs;
2337 spin_unlock(&block_group->lock);
2338
2339 extent_changeset_free(data_reserved);
2340 return ret;
2341 }
2342
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)2343 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2344 {
2345 struct btrfs_fs_info *fs_info = trans->fs_info;
2346 struct btrfs_block_group_cache *cache, *tmp;
2347 struct btrfs_transaction *cur_trans = trans->transaction;
2348 struct btrfs_path *path;
2349
2350 if (list_empty(&cur_trans->dirty_bgs) ||
2351 !btrfs_test_opt(fs_info, SPACE_CACHE))
2352 return 0;
2353
2354 path = btrfs_alloc_path();
2355 if (!path)
2356 return -ENOMEM;
2357
2358 /* Could add new block groups, use _safe just in case */
2359 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2360 dirty_list) {
2361 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2362 cache_save_setup(cache, trans, path);
2363 }
2364
2365 btrfs_free_path(path);
2366 return 0;
2367 }
2368
2369 /*
2370 * Transaction commit does final block group cache writeback during a critical
2371 * section where nothing is allowed to change the FS. This is required in
2372 * order for the cache to actually match the block group, but can introduce a
2373 * lot of latency into the commit.
2374 *
2375 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2376 * There's a chance we'll have to redo some of it if the block group changes
2377 * again during the commit, but it greatly reduces the commit latency by
2378 * getting rid of the easy block groups while we're still allowing others to
2379 * join the commit.
2380 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)2381 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2382 {
2383 struct btrfs_fs_info *fs_info = trans->fs_info;
2384 struct btrfs_block_group_cache *cache;
2385 struct btrfs_transaction *cur_trans = trans->transaction;
2386 int ret = 0;
2387 int should_put;
2388 struct btrfs_path *path = NULL;
2389 LIST_HEAD(dirty);
2390 struct list_head *io = &cur_trans->io_bgs;
2391 int loops = 0;
2392
2393 spin_lock(&cur_trans->dirty_bgs_lock);
2394 if (list_empty(&cur_trans->dirty_bgs)) {
2395 spin_unlock(&cur_trans->dirty_bgs_lock);
2396 return 0;
2397 }
2398 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2399 spin_unlock(&cur_trans->dirty_bgs_lock);
2400
2401 again:
2402 /* Make sure all the block groups on our dirty list actually exist */
2403 btrfs_create_pending_block_groups(trans);
2404
2405 if (!path) {
2406 path = btrfs_alloc_path();
2407 if (!path) {
2408 ret = -ENOMEM;
2409 goto out;
2410 }
2411 }
2412
2413 /*
2414 * cache_write_mutex is here only to save us from balance or automatic
2415 * removal of empty block groups deleting this block group while we are
2416 * writing out the cache
2417 */
2418 mutex_lock(&trans->transaction->cache_write_mutex);
2419 while (!list_empty(&dirty)) {
2420 bool drop_reserve = true;
2421
2422 cache = list_first_entry(&dirty,
2423 struct btrfs_block_group_cache,
2424 dirty_list);
2425 /*
2426 * This can happen if something re-dirties a block group that
2427 * is already under IO. Just wait for it to finish and then do
2428 * it all again
2429 */
2430 if (!list_empty(&cache->io_list)) {
2431 list_del_init(&cache->io_list);
2432 btrfs_wait_cache_io(trans, cache, path);
2433 btrfs_put_block_group(cache);
2434 }
2435
2436
2437 /*
2438 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2439 * it should update the cache_state. Don't delete until after
2440 * we wait.
2441 *
2442 * Since we're not running in the commit critical section
2443 * we need the dirty_bgs_lock to protect from update_block_group
2444 */
2445 spin_lock(&cur_trans->dirty_bgs_lock);
2446 list_del_init(&cache->dirty_list);
2447 spin_unlock(&cur_trans->dirty_bgs_lock);
2448
2449 should_put = 1;
2450
2451 cache_save_setup(cache, trans, path);
2452
2453 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2454 cache->io_ctl.inode = NULL;
2455 ret = btrfs_write_out_cache(trans, cache, path);
2456 if (ret == 0 && cache->io_ctl.inode) {
2457 should_put = 0;
2458
2459 /*
2460 * The cache_write_mutex is protecting the
2461 * io_list, also refer to the definition of
2462 * btrfs_transaction::io_bgs for more details
2463 */
2464 list_add_tail(&cache->io_list, io);
2465 } else {
2466 /*
2467 * If we failed to write the cache, the
2468 * generation will be bad and life goes on
2469 */
2470 ret = 0;
2471 }
2472 }
2473 if (!ret) {
2474 ret = write_one_cache_group(trans, path, cache);
2475 /*
2476 * Our block group might still be attached to the list
2477 * of new block groups in the transaction handle of some
2478 * other task (struct btrfs_trans_handle->new_bgs). This
2479 * means its block group item isn't yet in the extent
2480 * tree. If this happens ignore the error, as we will
2481 * try again later in the critical section of the
2482 * transaction commit.
2483 */
2484 if (ret == -ENOENT) {
2485 ret = 0;
2486 spin_lock(&cur_trans->dirty_bgs_lock);
2487 if (list_empty(&cache->dirty_list)) {
2488 list_add_tail(&cache->dirty_list,
2489 &cur_trans->dirty_bgs);
2490 btrfs_get_block_group(cache);
2491 drop_reserve = false;
2492 }
2493 spin_unlock(&cur_trans->dirty_bgs_lock);
2494 } else if (ret) {
2495 btrfs_abort_transaction(trans, ret);
2496 }
2497 }
2498
2499 /* If it's not on the io list, we need to put the block group */
2500 if (should_put)
2501 btrfs_put_block_group(cache);
2502 if (drop_reserve)
2503 btrfs_delayed_refs_rsv_release(fs_info, 1);
2504 /*
2505 * Avoid blocking other tasks for too long. It might even save
2506 * us from writing caches for block groups that are going to be
2507 * removed.
2508 */
2509 mutex_unlock(&trans->transaction->cache_write_mutex);
2510 if (ret)
2511 goto out;
2512 mutex_lock(&trans->transaction->cache_write_mutex);
2513 }
2514 mutex_unlock(&trans->transaction->cache_write_mutex);
2515
2516 /*
2517 * Go through delayed refs for all the stuff we've just kicked off
2518 * and then loop back (just once)
2519 */
2520 if (!ret)
2521 ret = btrfs_run_delayed_refs(trans, 0);
2522 if (!ret && loops == 0) {
2523 loops++;
2524 spin_lock(&cur_trans->dirty_bgs_lock);
2525 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2526 /*
2527 * dirty_bgs_lock protects us from concurrent block group
2528 * deletes too (not just cache_write_mutex).
2529 */
2530 if (!list_empty(&dirty)) {
2531 spin_unlock(&cur_trans->dirty_bgs_lock);
2532 goto again;
2533 }
2534 spin_unlock(&cur_trans->dirty_bgs_lock);
2535 }
2536 out:
2537 if (ret < 0) {
2538 spin_lock(&cur_trans->dirty_bgs_lock);
2539 list_splice_init(&dirty, &cur_trans->dirty_bgs);
2540 spin_unlock(&cur_trans->dirty_bgs_lock);
2541 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2542 }
2543
2544 btrfs_free_path(path);
2545 return ret;
2546 }
2547
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)2548 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2549 {
2550 struct btrfs_fs_info *fs_info = trans->fs_info;
2551 struct btrfs_block_group_cache *cache;
2552 struct btrfs_transaction *cur_trans = trans->transaction;
2553 int ret = 0;
2554 int should_put;
2555 struct btrfs_path *path;
2556 struct list_head *io = &cur_trans->io_bgs;
2557
2558 path = btrfs_alloc_path();
2559 if (!path)
2560 return -ENOMEM;
2561
2562 /*
2563 * Even though we are in the critical section of the transaction commit,
2564 * we can still have concurrent tasks adding elements to this
2565 * transaction's list of dirty block groups. These tasks correspond to
2566 * endio free space workers started when writeback finishes for a
2567 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2568 * allocate new block groups as a result of COWing nodes of the root
2569 * tree when updating the free space inode. The writeback for the space
2570 * caches is triggered by an earlier call to
2571 * btrfs_start_dirty_block_groups() and iterations of the following
2572 * loop.
2573 * Also we want to do the cache_save_setup first and then run the
2574 * delayed refs to make sure we have the best chance at doing this all
2575 * in one shot.
2576 */
2577 spin_lock(&cur_trans->dirty_bgs_lock);
2578 while (!list_empty(&cur_trans->dirty_bgs)) {
2579 cache = list_first_entry(&cur_trans->dirty_bgs,
2580 struct btrfs_block_group_cache,
2581 dirty_list);
2582
2583 /*
2584 * This can happen if cache_save_setup re-dirties a block group
2585 * that is already under IO. Just wait for it to finish and
2586 * then do it all again
2587 */
2588 if (!list_empty(&cache->io_list)) {
2589 spin_unlock(&cur_trans->dirty_bgs_lock);
2590 list_del_init(&cache->io_list);
2591 btrfs_wait_cache_io(trans, cache, path);
2592 btrfs_put_block_group(cache);
2593 spin_lock(&cur_trans->dirty_bgs_lock);
2594 }
2595
2596 /*
2597 * Don't remove from the dirty list until after we've waited on
2598 * any pending IO
2599 */
2600 list_del_init(&cache->dirty_list);
2601 spin_unlock(&cur_trans->dirty_bgs_lock);
2602 should_put = 1;
2603
2604 cache_save_setup(cache, trans, path);
2605
2606 if (!ret)
2607 ret = btrfs_run_delayed_refs(trans,
2608 (unsigned long) -1);
2609
2610 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2611 cache->io_ctl.inode = NULL;
2612 ret = btrfs_write_out_cache(trans, cache, path);
2613 if (ret == 0 && cache->io_ctl.inode) {
2614 should_put = 0;
2615 list_add_tail(&cache->io_list, io);
2616 } else {
2617 /*
2618 * If we failed to write the cache, the
2619 * generation will be bad and life goes on
2620 */
2621 ret = 0;
2622 }
2623 }
2624 if (!ret) {
2625 ret = write_one_cache_group(trans, path, cache);
2626 /*
2627 * One of the free space endio workers might have
2628 * created a new block group while updating a free space
2629 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2630 * and hasn't released its transaction handle yet, in
2631 * which case the new block group is still attached to
2632 * its transaction handle and its creation has not
2633 * finished yet (no block group item in the extent tree
2634 * yet, etc). If this is the case, wait for all free
2635 * space endio workers to finish and retry. This is a
2636 * very rare case so no need for a more efficient and
2637 * complex approach.
2638 */
2639 if (ret == -ENOENT) {
2640 wait_event(cur_trans->writer_wait,
2641 atomic_read(&cur_trans->num_writers) == 1);
2642 ret = write_one_cache_group(trans, path, cache);
2643 }
2644 if (ret)
2645 btrfs_abort_transaction(trans, ret);
2646 }
2647
2648 /* If its not on the io list, we need to put the block group */
2649 if (should_put)
2650 btrfs_put_block_group(cache);
2651 btrfs_delayed_refs_rsv_release(fs_info, 1);
2652 spin_lock(&cur_trans->dirty_bgs_lock);
2653 }
2654 spin_unlock(&cur_trans->dirty_bgs_lock);
2655
2656 /*
2657 * Refer to the definition of io_bgs member for details why it's safe
2658 * to use it without any locking
2659 */
2660 while (!list_empty(io)) {
2661 cache = list_first_entry(io, struct btrfs_block_group_cache,
2662 io_list);
2663 list_del_init(&cache->io_list);
2664 btrfs_wait_cache_io(trans, cache, path);
2665 btrfs_put_block_group(cache);
2666 }
2667
2668 btrfs_free_path(path);
2669 return ret;
2670 }
2671
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int alloc)2672 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2673 u64 bytenr, u64 num_bytes, int alloc)
2674 {
2675 struct btrfs_fs_info *info = trans->fs_info;
2676 struct btrfs_block_group_cache *cache = NULL;
2677 u64 total = num_bytes;
2678 u64 old_val;
2679 u64 byte_in_group;
2680 int factor;
2681 int ret = 0;
2682
2683 /* Block accounting for super block */
2684 spin_lock(&info->delalloc_root_lock);
2685 old_val = btrfs_super_bytes_used(info->super_copy);
2686 if (alloc)
2687 old_val += num_bytes;
2688 else
2689 old_val -= num_bytes;
2690 btrfs_set_super_bytes_used(info->super_copy, old_val);
2691 spin_unlock(&info->delalloc_root_lock);
2692
2693 while (total) {
2694 cache = btrfs_lookup_block_group(info, bytenr);
2695 if (!cache) {
2696 ret = -ENOENT;
2697 break;
2698 }
2699 factor = btrfs_bg_type_to_factor(cache->flags);
2700
2701 /*
2702 * If this block group has free space cache written out, we
2703 * need to make sure to load it if we are removing space. This
2704 * is because we need the unpinning stage to actually add the
2705 * space back to the block group, otherwise we will leak space.
2706 */
2707 if (!alloc && !btrfs_block_group_cache_done(cache))
2708 btrfs_cache_block_group(cache, 1);
2709
2710 byte_in_group = bytenr - cache->key.objectid;
2711 WARN_ON(byte_in_group > cache->key.offset);
2712
2713 spin_lock(&cache->space_info->lock);
2714 spin_lock(&cache->lock);
2715
2716 if (btrfs_test_opt(info, SPACE_CACHE) &&
2717 cache->disk_cache_state < BTRFS_DC_CLEAR)
2718 cache->disk_cache_state = BTRFS_DC_CLEAR;
2719
2720 old_val = btrfs_block_group_used(&cache->item);
2721 num_bytes = min(total, cache->key.offset - byte_in_group);
2722 if (alloc) {
2723 old_val += num_bytes;
2724 btrfs_set_block_group_used(&cache->item, old_val);
2725 cache->reserved -= num_bytes;
2726 cache->space_info->bytes_reserved -= num_bytes;
2727 cache->space_info->bytes_used += num_bytes;
2728 cache->space_info->disk_used += num_bytes * factor;
2729 spin_unlock(&cache->lock);
2730 spin_unlock(&cache->space_info->lock);
2731 } else {
2732 old_val -= num_bytes;
2733 btrfs_set_block_group_used(&cache->item, old_val);
2734 cache->pinned += num_bytes;
2735 btrfs_space_info_update_bytes_pinned(info,
2736 cache->space_info, num_bytes);
2737 cache->space_info->bytes_used -= num_bytes;
2738 cache->space_info->disk_used -= num_bytes * factor;
2739 spin_unlock(&cache->lock);
2740 spin_unlock(&cache->space_info->lock);
2741
2742 percpu_counter_add_batch(
2743 &cache->space_info->total_bytes_pinned,
2744 num_bytes,
2745 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2746 set_extent_dirty(info->pinned_extents,
2747 bytenr, bytenr + num_bytes - 1,
2748 GFP_NOFS | __GFP_NOFAIL);
2749 }
2750
2751 spin_lock(&trans->transaction->dirty_bgs_lock);
2752 if (list_empty(&cache->dirty_list)) {
2753 list_add_tail(&cache->dirty_list,
2754 &trans->transaction->dirty_bgs);
2755 trans->delayed_ref_updates++;
2756 btrfs_get_block_group(cache);
2757 }
2758 spin_unlock(&trans->transaction->dirty_bgs_lock);
2759
2760 /*
2761 * No longer have used bytes in this block group, queue it for
2762 * deletion. We do this after adding the block group to the
2763 * dirty list to avoid races between cleaner kthread and space
2764 * cache writeout.
2765 */
2766 if (!alloc && old_val == 0)
2767 btrfs_mark_bg_unused(cache);
2768
2769 btrfs_put_block_group(cache);
2770 total -= num_bytes;
2771 bytenr += num_bytes;
2772 }
2773
2774 /* Modified block groups are accounted for in the delayed_refs_rsv. */
2775 btrfs_update_delayed_refs_rsv(trans);
2776 return ret;
2777 }
2778
2779 /**
2780 * btrfs_add_reserved_bytes - update the block_group and space info counters
2781 * @cache: The cache we are manipulating
2782 * @ram_bytes: The number of bytes of file content, and will be same to
2783 * @num_bytes except for the compress path.
2784 * @num_bytes: The number of bytes in question
2785 * @delalloc: The blocks are allocated for the delalloc write
2786 *
2787 * This is called by the allocator when it reserves space. If this is a
2788 * reservation and the block group has become read only we cannot make the
2789 * reservation and return -EAGAIN, otherwise this function always succeeds.
2790 */
btrfs_add_reserved_bytes(struct btrfs_block_group_cache * cache,u64 ram_bytes,u64 num_bytes,int delalloc)2791 int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
2792 u64 ram_bytes, u64 num_bytes, int delalloc)
2793 {
2794 struct btrfs_space_info *space_info = cache->space_info;
2795 int ret = 0;
2796
2797 spin_lock(&space_info->lock);
2798 spin_lock(&cache->lock);
2799 if (cache->ro) {
2800 ret = -EAGAIN;
2801 } else {
2802 cache->reserved += num_bytes;
2803 space_info->bytes_reserved += num_bytes;
2804 trace_btrfs_space_reservation(cache->fs_info, "space_info",
2805 space_info->flags, num_bytes, 1);
2806 btrfs_space_info_update_bytes_may_use(cache->fs_info,
2807 space_info, -ram_bytes);
2808 if (delalloc)
2809 cache->delalloc_bytes += num_bytes;
2810 }
2811 spin_unlock(&cache->lock);
2812 spin_unlock(&space_info->lock);
2813 return ret;
2814 }
2815
2816 /**
2817 * btrfs_free_reserved_bytes - update the block_group and space info counters
2818 * @cache: The cache we are manipulating
2819 * @num_bytes: The number of bytes in question
2820 * @delalloc: The blocks are allocated for the delalloc write
2821 *
2822 * This is called by somebody who is freeing space that was never actually used
2823 * on disk. For example if you reserve some space for a new leaf in transaction
2824 * A and before transaction A commits you free that leaf, you call this with
2825 * reserve set to 0 in order to clear the reservation.
2826 */
btrfs_free_reserved_bytes(struct btrfs_block_group_cache * cache,u64 num_bytes,int delalloc)2827 void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
2828 u64 num_bytes, int delalloc)
2829 {
2830 struct btrfs_space_info *space_info = cache->space_info;
2831
2832 spin_lock(&space_info->lock);
2833 spin_lock(&cache->lock);
2834 if (cache->ro)
2835 space_info->bytes_readonly += num_bytes;
2836 cache->reserved -= num_bytes;
2837 space_info->bytes_reserved -= num_bytes;
2838 space_info->max_extent_size = 0;
2839
2840 if (delalloc)
2841 cache->delalloc_bytes -= num_bytes;
2842 spin_unlock(&cache->lock);
2843 spin_unlock(&space_info->lock);
2844 }
2845
force_metadata_allocation(struct btrfs_fs_info * info)2846 static void force_metadata_allocation(struct btrfs_fs_info *info)
2847 {
2848 struct list_head *head = &info->space_info;
2849 struct btrfs_space_info *found;
2850
2851 rcu_read_lock();
2852 list_for_each_entry_rcu(found, head, list) {
2853 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
2854 found->force_alloc = CHUNK_ALLOC_FORCE;
2855 }
2856 rcu_read_unlock();
2857 }
2858
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)2859 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
2860 struct btrfs_space_info *sinfo, int force)
2861 {
2862 u64 bytes_used = btrfs_space_info_used(sinfo, false);
2863 u64 thresh;
2864
2865 if (force == CHUNK_ALLOC_FORCE)
2866 return 1;
2867
2868 /*
2869 * in limited mode, we want to have some free space up to
2870 * about 1% of the FS size.
2871 */
2872 if (force == CHUNK_ALLOC_LIMITED) {
2873 thresh = btrfs_super_total_bytes(fs_info->super_copy);
2874 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
2875
2876 if (sinfo->total_bytes - bytes_used < thresh)
2877 return 1;
2878 }
2879
2880 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
2881 return 0;
2882 return 1;
2883 }
2884
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)2885 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
2886 {
2887 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
2888
2889 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2890 }
2891
2892 /*
2893 * If force is CHUNK_ALLOC_FORCE:
2894 * - return 1 if it successfully allocates a chunk,
2895 * - return errors including -ENOSPC otherwise.
2896 * If force is NOT CHUNK_ALLOC_FORCE:
2897 * - return 0 if it doesn't need to allocate a new chunk,
2898 * - return 1 if it successfully allocates a chunk,
2899 * - return errors including -ENOSPC otherwise.
2900 */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,enum btrfs_chunk_alloc_enum force)2901 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
2902 enum btrfs_chunk_alloc_enum force)
2903 {
2904 struct btrfs_fs_info *fs_info = trans->fs_info;
2905 struct btrfs_space_info *space_info;
2906 bool wait_for_alloc = false;
2907 bool should_alloc = false;
2908 int ret = 0;
2909
2910 /* Don't re-enter if we're already allocating a chunk */
2911 if (trans->allocating_chunk)
2912 return -ENOSPC;
2913
2914 space_info = btrfs_find_space_info(fs_info, flags);
2915 ASSERT(space_info);
2916
2917 do {
2918 spin_lock(&space_info->lock);
2919 if (force < space_info->force_alloc)
2920 force = space_info->force_alloc;
2921 should_alloc = should_alloc_chunk(fs_info, space_info, force);
2922 if (space_info->full) {
2923 /* No more free physical space */
2924 if (should_alloc)
2925 ret = -ENOSPC;
2926 else
2927 ret = 0;
2928 spin_unlock(&space_info->lock);
2929 return ret;
2930 } else if (!should_alloc) {
2931 spin_unlock(&space_info->lock);
2932 return 0;
2933 } else if (space_info->chunk_alloc) {
2934 /*
2935 * Someone is already allocating, so we need to block
2936 * until this someone is finished and then loop to
2937 * recheck if we should continue with our allocation
2938 * attempt.
2939 */
2940 wait_for_alloc = true;
2941 force = CHUNK_ALLOC_NO_FORCE;
2942 spin_unlock(&space_info->lock);
2943 mutex_lock(&fs_info->chunk_mutex);
2944 mutex_unlock(&fs_info->chunk_mutex);
2945 } else {
2946 /* Proceed with allocation */
2947 space_info->chunk_alloc = 1;
2948 wait_for_alloc = false;
2949 spin_unlock(&space_info->lock);
2950 }
2951
2952 cond_resched();
2953 } while (wait_for_alloc);
2954
2955 mutex_lock(&fs_info->chunk_mutex);
2956 trans->allocating_chunk = true;
2957
2958 /*
2959 * If we have mixed data/metadata chunks we want to make sure we keep
2960 * allocating mixed chunks instead of individual chunks.
2961 */
2962 if (btrfs_mixed_space_info(space_info))
2963 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
2964
2965 /*
2966 * if we're doing a data chunk, go ahead and make sure that
2967 * we keep a reasonable number of metadata chunks allocated in the
2968 * FS as well.
2969 */
2970 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
2971 fs_info->data_chunk_allocations++;
2972 if (!(fs_info->data_chunk_allocations %
2973 fs_info->metadata_ratio))
2974 force_metadata_allocation(fs_info);
2975 }
2976
2977 /*
2978 * Check if we have enough space in SYSTEM chunk because we may need
2979 * to update devices.
2980 */
2981 check_system_chunk(trans, flags);
2982
2983 ret = btrfs_alloc_chunk(trans, flags);
2984 trans->allocating_chunk = false;
2985
2986 spin_lock(&space_info->lock);
2987 if (ret < 0) {
2988 if (ret == -ENOSPC)
2989 space_info->full = 1;
2990 else
2991 goto out;
2992 } else {
2993 ret = 1;
2994 space_info->max_extent_size = 0;
2995 }
2996
2997 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
2998 out:
2999 space_info->chunk_alloc = 0;
3000 spin_unlock(&space_info->lock);
3001 mutex_unlock(&fs_info->chunk_mutex);
3002 /*
3003 * When we allocate a new chunk we reserve space in the chunk block
3004 * reserve to make sure we can COW nodes/leafs in the chunk tree or
3005 * add new nodes/leafs to it if we end up needing to do it when
3006 * inserting the chunk item and updating device items as part of the
3007 * second phase of chunk allocation, performed by
3008 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3009 * large number of new block groups to create in our transaction
3010 * handle's new_bgs list to avoid exhausting the chunk block reserve
3011 * in extreme cases - like having a single transaction create many new
3012 * block groups when starting to write out the free space caches of all
3013 * the block groups that were made dirty during the lifetime of the
3014 * transaction.
3015 */
3016 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3017 btrfs_create_pending_block_groups(trans);
3018
3019 return ret;
3020 }
3021
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)3022 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3023 {
3024 u64 num_dev;
3025
3026 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3027 if (!num_dev)
3028 num_dev = fs_info->fs_devices->rw_devices;
3029
3030 return num_dev;
3031 }
3032
3033 /*
3034 * If @is_allocation is true, reserve space in the system space info necessary
3035 * for allocating a chunk, otherwise if it's false, reserve space necessary for
3036 * removing a chunk.
3037 */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)3038 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3039 {
3040 struct btrfs_fs_info *fs_info = trans->fs_info;
3041 struct btrfs_space_info *info;
3042 u64 left;
3043 u64 thresh;
3044 int ret = 0;
3045 u64 num_devs;
3046
3047 /*
3048 * Needed because we can end up allocating a system chunk and for an
3049 * atomic and race free space reservation in the chunk block reserve.
3050 */
3051 lockdep_assert_held(&fs_info->chunk_mutex);
3052
3053 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3054 spin_lock(&info->lock);
3055 left = info->total_bytes - btrfs_space_info_used(info, true);
3056 spin_unlock(&info->lock);
3057
3058 num_devs = get_profile_num_devs(fs_info, type);
3059
3060 /* num_devs device items to update and 1 chunk item to add or remove */
3061 thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3062 btrfs_calc_insert_metadata_size(fs_info, 1);
3063
3064 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3065 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3066 left, thresh, type);
3067 btrfs_dump_space_info(fs_info, info, 0, 0);
3068 }
3069
3070 if (left < thresh) {
3071 u64 flags = btrfs_system_alloc_profile(fs_info);
3072
3073 /*
3074 * Ignore failure to create system chunk. We might end up not
3075 * needing it, as we might not need to COW all nodes/leafs from
3076 * the paths we visit in the chunk tree (they were already COWed
3077 * or created in the current transaction for example).
3078 */
3079 ret = btrfs_alloc_chunk(trans, flags);
3080 }
3081
3082 if (!ret) {
3083 ret = btrfs_block_rsv_add(fs_info->chunk_root,
3084 &fs_info->chunk_block_rsv,
3085 thresh, BTRFS_RESERVE_NO_FLUSH);
3086 if (!ret)
3087 trans->chunk_bytes_reserved += thresh;
3088 }
3089 }
3090
btrfs_put_block_group_cache(struct btrfs_fs_info * info)3091 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3092 {
3093 struct btrfs_block_group_cache *block_group;
3094 u64 last = 0;
3095
3096 while (1) {
3097 struct inode *inode;
3098
3099 block_group = btrfs_lookup_first_block_group(info, last);
3100 while (block_group) {
3101 btrfs_wait_block_group_cache_done(block_group);
3102 spin_lock(&block_group->lock);
3103 if (block_group->iref)
3104 break;
3105 spin_unlock(&block_group->lock);
3106 block_group = btrfs_next_block_group(block_group);
3107 }
3108 if (!block_group) {
3109 if (last == 0)
3110 break;
3111 last = 0;
3112 continue;
3113 }
3114
3115 inode = block_group->inode;
3116 block_group->iref = 0;
3117 block_group->inode = NULL;
3118 spin_unlock(&block_group->lock);
3119 ASSERT(block_group->io_ctl.inode == NULL);
3120 iput(inode);
3121 last = block_group->key.objectid + block_group->key.offset;
3122 btrfs_put_block_group(block_group);
3123 }
3124 }
3125
3126 /*
3127 * Must be called only after stopping all workers, since we could have block
3128 * group caching kthreads running, and therefore they could race with us if we
3129 * freed the block groups before stopping them.
3130 */
btrfs_free_block_groups(struct btrfs_fs_info * info)3131 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3132 {
3133 struct btrfs_block_group_cache *block_group;
3134 struct btrfs_space_info *space_info;
3135 struct btrfs_caching_control *caching_ctl;
3136 struct rb_node *n;
3137
3138 down_write(&info->commit_root_sem);
3139 while (!list_empty(&info->caching_block_groups)) {
3140 caching_ctl = list_entry(info->caching_block_groups.next,
3141 struct btrfs_caching_control, list);
3142 list_del(&caching_ctl->list);
3143 btrfs_put_caching_control(caching_ctl);
3144 }
3145 up_write(&info->commit_root_sem);
3146
3147 spin_lock(&info->unused_bgs_lock);
3148 while (!list_empty(&info->unused_bgs)) {
3149 block_group = list_first_entry(&info->unused_bgs,
3150 struct btrfs_block_group_cache,
3151 bg_list);
3152 list_del_init(&block_group->bg_list);
3153 btrfs_put_block_group(block_group);
3154 }
3155 spin_unlock(&info->unused_bgs_lock);
3156
3157 spin_lock(&info->block_group_cache_lock);
3158 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3159 block_group = rb_entry(n, struct btrfs_block_group_cache,
3160 cache_node);
3161 rb_erase(&block_group->cache_node,
3162 &info->block_group_cache_tree);
3163 RB_CLEAR_NODE(&block_group->cache_node);
3164 spin_unlock(&info->block_group_cache_lock);
3165
3166 down_write(&block_group->space_info->groups_sem);
3167 list_del(&block_group->list);
3168 up_write(&block_group->space_info->groups_sem);
3169
3170 /*
3171 * We haven't cached this block group, which means we could
3172 * possibly have excluded extents on this block group.
3173 */
3174 if (block_group->cached == BTRFS_CACHE_NO ||
3175 block_group->cached == BTRFS_CACHE_ERROR)
3176 btrfs_free_excluded_extents(block_group);
3177
3178 btrfs_remove_free_space_cache(block_group);
3179 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3180 ASSERT(list_empty(&block_group->dirty_list));
3181 ASSERT(list_empty(&block_group->io_list));
3182 ASSERT(list_empty(&block_group->bg_list));
3183 ASSERT(atomic_read(&block_group->count) == 1);
3184 btrfs_put_block_group(block_group);
3185
3186 spin_lock(&info->block_group_cache_lock);
3187 }
3188 spin_unlock(&info->block_group_cache_lock);
3189
3190 /*
3191 * Now that all the block groups are freed, go through and free all the
3192 * space_info structs. This is only called during the final stages of
3193 * unmount, and so we know nobody is using them. We call
3194 * synchronize_rcu() once before we start, just to be on the safe side.
3195 */
3196 synchronize_rcu();
3197
3198 btrfs_release_global_block_rsv(info);
3199
3200 while (!list_empty(&info->space_info)) {
3201 space_info = list_entry(info->space_info.next,
3202 struct btrfs_space_info,
3203 list);
3204
3205 /*
3206 * Do not hide this behind enospc_debug, this is actually
3207 * important and indicates a real bug if this happens.
3208 */
3209 if (WARN_ON(space_info->bytes_pinned > 0 ||
3210 space_info->bytes_reserved > 0 ||
3211 space_info->bytes_may_use > 0))
3212 btrfs_dump_space_info(info, space_info, 0, 0);
3213 list_del(&space_info->list);
3214 btrfs_sysfs_remove_space_info(space_info);
3215 }
3216 return 0;
3217 }
3218