1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/buffer_head.h>
11 #include <linux/blkdev.h>
12 #include <linux/ratelimit.h>
13 #include <linux/kthread.h>
14 #include <linux/raid/pq.h>
15 #include <linux/semaphore.h>
16 #include <linux/uuid.h>
17 #include <linux/list_sort.h>
18 #include "misc.h"
19 #include "ctree.h"
20 #include "extent_map.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "async-thread.h"
27 #include "check-integrity.h"
28 #include "rcu-string.h"
29 #include "dev-replace.h"
30 #include "sysfs.h"
31 #include "tree-checker.h"
32 #include "space-info.h"
33 #include "block-group.h"
34
35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
36 [BTRFS_RAID_RAID10] = {
37 .sub_stripes = 2,
38 .dev_stripes = 1,
39 .devs_max = 0, /* 0 == as many as possible */
40 .devs_min = 4,
41 .tolerated_failures = 1,
42 .devs_increment = 2,
43 .ncopies = 2,
44 .nparity = 0,
45 .raid_name = "raid10",
46 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
47 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
48 },
49 [BTRFS_RAID_RAID1] = {
50 .sub_stripes = 1,
51 .dev_stripes = 1,
52 .devs_max = 2,
53 .devs_min = 2,
54 .tolerated_failures = 1,
55 .devs_increment = 2,
56 .ncopies = 2,
57 .nparity = 0,
58 .raid_name = "raid1",
59 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
60 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
61 },
62 [BTRFS_RAID_DUP] = {
63 .sub_stripes = 1,
64 .dev_stripes = 2,
65 .devs_max = 1,
66 .devs_min = 1,
67 .tolerated_failures = 0,
68 .devs_increment = 1,
69 .ncopies = 2,
70 .nparity = 0,
71 .raid_name = "dup",
72 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
73 .mindev_error = 0,
74 },
75 [BTRFS_RAID_RAID0] = {
76 .sub_stripes = 1,
77 .dev_stripes = 1,
78 .devs_max = 0,
79 .devs_min = 2,
80 .tolerated_failures = 0,
81 .devs_increment = 1,
82 .ncopies = 1,
83 .nparity = 0,
84 .raid_name = "raid0",
85 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
86 .mindev_error = 0,
87 },
88 [BTRFS_RAID_SINGLE] = {
89 .sub_stripes = 1,
90 .dev_stripes = 1,
91 .devs_max = 1,
92 .devs_min = 1,
93 .tolerated_failures = 0,
94 .devs_increment = 1,
95 .ncopies = 1,
96 .nparity = 0,
97 .raid_name = "single",
98 .bg_flag = 0,
99 .mindev_error = 0,
100 },
101 [BTRFS_RAID_RAID5] = {
102 .sub_stripes = 1,
103 .dev_stripes = 1,
104 .devs_max = 0,
105 .devs_min = 2,
106 .tolerated_failures = 1,
107 .devs_increment = 1,
108 .ncopies = 1,
109 .nparity = 1,
110 .raid_name = "raid5",
111 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
112 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
113 },
114 [BTRFS_RAID_RAID6] = {
115 .sub_stripes = 1,
116 .dev_stripes = 1,
117 .devs_max = 0,
118 .devs_min = 3,
119 .tolerated_failures = 2,
120 .devs_increment = 1,
121 .ncopies = 1,
122 .nparity = 2,
123 .raid_name = "raid6",
124 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
125 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
126 },
127 };
128
btrfs_bg_type_to_raid_name(u64 flags)129 const char *btrfs_bg_type_to_raid_name(u64 flags)
130 {
131 const int index = btrfs_bg_flags_to_raid_index(flags);
132
133 if (index >= BTRFS_NR_RAID_TYPES)
134 return NULL;
135
136 return btrfs_raid_array[index].raid_name;
137 }
138
139 /*
140 * Fill @buf with textual description of @bg_flags, no more than @size_buf
141 * bytes including terminating null byte.
142 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)143 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
144 {
145 int i;
146 int ret;
147 char *bp = buf;
148 u64 flags = bg_flags;
149 u32 size_bp = size_buf;
150
151 if (!flags) {
152 strcpy(bp, "NONE");
153 return;
154 }
155
156 #define DESCRIBE_FLAG(flag, desc) \
157 do { \
158 if (flags & (flag)) { \
159 ret = snprintf(bp, size_bp, "%s|", (desc)); \
160 if (ret < 0 || ret >= size_bp) \
161 goto out_overflow; \
162 size_bp -= ret; \
163 bp += ret; \
164 flags &= ~(flag); \
165 } \
166 } while (0)
167
168 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
169 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
170 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
171
172 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
173 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
174 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
175 btrfs_raid_array[i].raid_name);
176 #undef DESCRIBE_FLAG
177
178 if (flags) {
179 ret = snprintf(bp, size_bp, "0x%llx|", flags);
180 size_bp -= ret;
181 }
182
183 if (size_bp < size_buf)
184 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
185
186 /*
187 * The text is trimmed, it's up to the caller to provide sufficiently
188 * large buffer
189 */
190 out_overflow:;
191 }
192
193 static int init_first_rw_device(struct btrfs_trans_handle *trans);
194 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
195 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
196 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
197 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
198 enum btrfs_map_op op,
199 u64 logical, u64 *length,
200 struct btrfs_bio **bbio_ret,
201 int mirror_num, int need_raid_map);
202
203 /*
204 * Device locking
205 * ==============
206 *
207 * There are several mutexes that protect manipulation of devices and low-level
208 * structures like chunks but not block groups, extents or files
209 *
210 * uuid_mutex (global lock)
211 * ------------------------
212 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
213 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
214 * device) or requested by the device= mount option
215 *
216 * the mutex can be very coarse and can cover long-running operations
217 *
218 * protects: updates to fs_devices counters like missing devices, rw devices,
219 * seeding, structure cloning, opening/closing devices at mount/umount time
220 *
221 * global::fs_devs - add, remove, updates to the global list
222 *
223 * does not protect: manipulation of the fs_devices::devices list in general
224 * but in mount context it could be used to exclude list modifications by eg.
225 * scan ioctl
226 *
227 * btrfs_device::name - renames (write side), read is RCU
228 *
229 * fs_devices::device_list_mutex (per-fs, with RCU)
230 * ------------------------------------------------
231 * protects updates to fs_devices::devices, ie. adding and deleting
232 *
233 * simple list traversal with read-only actions can be done with RCU protection
234 *
235 * may be used to exclude some operations from running concurrently without any
236 * modifications to the list (see write_all_supers)
237 *
238 * Is not required at mount and close times, because our device list is
239 * protected by the uuid_mutex at that point.
240 *
241 * balance_mutex
242 * -------------
243 * protects balance structures (status, state) and context accessed from
244 * several places (internally, ioctl)
245 *
246 * chunk_mutex
247 * -----------
248 * protects chunks, adding or removing during allocation, trim or when a new
249 * device is added/removed. Additionally it also protects post_commit_list of
250 * individual devices, since they can be added to the transaction's
251 * post_commit_list only with chunk_mutex held.
252 *
253 * cleaner_mutex
254 * -------------
255 * a big lock that is held by the cleaner thread and prevents running subvolume
256 * cleaning together with relocation or delayed iputs
257 *
258 *
259 * Lock nesting
260 * ============
261 *
262 * uuid_mutex
263 * volume_mutex
264 * device_list_mutex
265 * chunk_mutex
266 * balance_mutex
267 *
268 *
269 * Exclusive operations, BTRFS_FS_EXCL_OP
270 * ======================================
271 *
272 * Maintains the exclusivity of the following operations that apply to the
273 * whole filesystem and cannot run in parallel.
274 *
275 * - Balance (*)
276 * - Device add
277 * - Device remove
278 * - Device replace (*)
279 * - Resize
280 *
281 * The device operations (as above) can be in one of the following states:
282 *
283 * - Running state
284 * - Paused state
285 * - Completed state
286 *
287 * Only device operations marked with (*) can go into the Paused state for the
288 * following reasons:
289 *
290 * - ioctl (only Balance can be Paused through ioctl)
291 * - filesystem remounted as read-only
292 * - filesystem unmounted and mounted as read-only
293 * - system power-cycle and filesystem mounted as read-only
294 * - filesystem or device errors leading to forced read-only
295 *
296 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
297 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
298 * A device operation in Paused or Running state can be canceled or resumed
299 * either by ioctl (Balance only) or when remounted as read-write.
300 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
301 * completed.
302 */
303
304 DEFINE_MUTEX(uuid_mutex);
305 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)306 struct list_head *btrfs_get_fs_uuids(void)
307 {
308 return &fs_uuids;
309 }
310
311 /*
312 * alloc_fs_devices - allocate struct btrfs_fs_devices
313 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
314 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
315 *
316 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
317 * The returned struct is not linked onto any lists and can be destroyed with
318 * kfree() right away.
319 */
alloc_fs_devices(const u8 * fsid,const u8 * metadata_fsid)320 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
321 const u8 *metadata_fsid)
322 {
323 struct btrfs_fs_devices *fs_devs;
324
325 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
326 if (!fs_devs)
327 return ERR_PTR(-ENOMEM);
328
329 mutex_init(&fs_devs->device_list_mutex);
330
331 INIT_LIST_HEAD(&fs_devs->devices);
332 INIT_LIST_HEAD(&fs_devs->alloc_list);
333 INIT_LIST_HEAD(&fs_devs->fs_list);
334 if (fsid)
335 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
336
337 if (metadata_fsid)
338 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
339 else if (fsid)
340 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
341
342 return fs_devs;
343 }
344
btrfs_free_device(struct btrfs_device * device)345 void btrfs_free_device(struct btrfs_device *device)
346 {
347 WARN_ON(!list_empty(&device->post_commit_list));
348 rcu_string_free(device->name);
349 extent_io_tree_release(&device->alloc_state);
350 bio_put(device->flush_bio);
351 kfree(device);
352 }
353
free_fs_devices(struct btrfs_fs_devices * fs_devices)354 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
355 {
356 struct btrfs_device *device;
357
358 WARN_ON(fs_devices->opened);
359 while (!list_empty(&fs_devices->devices)) {
360 device = list_entry(fs_devices->devices.next,
361 struct btrfs_device, dev_list);
362 list_del(&device->dev_list);
363 btrfs_free_device(device);
364 }
365 kfree(fs_devices);
366 }
367
btrfs_cleanup_fs_uuids(void)368 void __exit btrfs_cleanup_fs_uuids(void)
369 {
370 struct btrfs_fs_devices *fs_devices;
371
372 while (!list_empty(&fs_uuids)) {
373 fs_devices = list_entry(fs_uuids.next,
374 struct btrfs_fs_devices, fs_list);
375 list_del(&fs_devices->fs_list);
376 free_fs_devices(fs_devices);
377 }
378 }
379
380 /*
381 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
382 * Returned struct is not linked onto any lists and must be destroyed using
383 * btrfs_free_device.
384 */
__alloc_device(void)385 static struct btrfs_device *__alloc_device(void)
386 {
387 struct btrfs_device *dev;
388
389 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
390 if (!dev)
391 return ERR_PTR(-ENOMEM);
392
393 /*
394 * Preallocate a bio that's always going to be used for flushing device
395 * barriers and matches the device lifespan
396 */
397 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
398 if (!dev->flush_bio) {
399 kfree(dev);
400 return ERR_PTR(-ENOMEM);
401 }
402
403 INIT_LIST_HEAD(&dev->dev_list);
404 INIT_LIST_HEAD(&dev->dev_alloc_list);
405 INIT_LIST_HEAD(&dev->post_commit_list);
406
407 spin_lock_init(&dev->io_lock);
408
409 atomic_set(&dev->reada_in_flight, 0);
410 atomic_set(&dev->dev_stats_ccnt, 0);
411 btrfs_device_data_ordered_init(dev);
412 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
413 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
414 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
415
416 return dev;
417 }
418
find_fsid(const u8 * fsid,const u8 * metadata_fsid)419 static noinline struct btrfs_fs_devices *find_fsid(
420 const u8 *fsid, const u8 *metadata_fsid)
421 {
422 struct btrfs_fs_devices *fs_devices;
423
424 ASSERT(fsid);
425
426 if (metadata_fsid) {
427 /*
428 * Handle scanned device having completed its fsid change but
429 * belonging to a fs_devices that was created by first scanning
430 * a device which didn't have its fsid/metadata_uuid changed
431 * at all and the CHANGING_FSID_V2 flag set.
432 */
433 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
434 if (fs_devices->fsid_change &&
435 memcmp(metadata_fsid, fs_devices->fsid,
436 BTRFS_FSID_SIZE) == 0 &&
437 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
438 BTRFS_FSID_SIZE) == 0) {
439 return fs_devices;
440 }
441 }
442 /*
443 * Handle scanned device having completed its fsid change but
444 * belonging to a fs_devices that was created by a device that
445 * has an outdated pair of fsid/metadata_uuid and
446 * CHANGING_FSID_V2 flag set.
447 */
448 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
449 if (fs_devices->fsid_change &&
450 memcmp(fs_devices->metadata_uuid,
451 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
452 memcmp(metadata_fsid, fs_devices->metadata_uuid,
453 BTRFS_FSID_SIZE) == 0) {
454 return fs_devices;
455 }
456 }
457 }
458
459 /* Handle non-split brain cases */
460 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461 if (metadata_fsid) {
462 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
463 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
464 BTRFS_FSID_SIZE) == 0)
465 return fs_devices;
466 } else {
467 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
468 return fs_devices;
469 }
470 }
471 return NULL;
472 }
473
474 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct buffer_head ** bh)475 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
476 int flush, struct block_device **bdev,
477 struct buffer_head **bh)
478 {
479 int ret;
480
481 *bdev = blkdev_get_by_path(device_path, flags, holder);
482
483 if (IS_ERR(*bdev)) {
484 ret = PTR_ERR(*bdev);
485 goto error;
486 }
487
488 if (flush)
489 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
490 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
491 if (ret) {
492 blkdev_put(*bdev, flags);
493 goto error;
494 }
495 invalidate_bdev(*bdev);
496 *bh = btrfs_read_dev_super(*bdev);
497 if (IS_ERR(*bh)) {
498 ret = PTR_ERR(*bh);
499 blkdev_put(*bdev, flags);
500 goto error;
501 }
502
503 return 0;
504
505 error:
506 *bdev = NULL;
507 *bh = NULL;
508 return ret;
509 }
510
requeue_list(struct btrfs_pending_bios * pending_bios,struct bio * head,struct bio * tail)511 static void requeue_list(struct btrfs_pending_bios *pending_bios,
512 struct bio *head, struct bio *tail)
513 {
514
515 struct bio *old_head;
516
517 old_head = pending_bios->head;
518 pending_bios->head = head;
519 if (pending_bios->tail)
520 tail->bi_next = old_head;
521 else
522 pending_bios->tail = tail;
523 }
524
525 /*
526 * we try to collect pending bios for a device so we don't get a large
527 * number of procs sending bios down to the same device. This greatly
528 * improves the schedulers ability to collect and merge the bios.
529 *
530 * But, it also turns into a long list of bios to process and that is sure
531 * to eventually make the worker thread block. The solution here is to
532 * make some progress and then put this work struct back at the end of
533 * the list if the block device is congested. This way, multiple devices
534 * can make progress from a single worker thread.
535 */
run_scheduled_bios(struct btrfs_device * device)536 static noinline void run_scheduled_bios(struct btrfs_device *device)
537 {
538 struct btrfs_fs_info *fs_info = device->fs_info;
539 struct bio *pending;
540 struct backing_dev_info *bdi;
541 struct btrfs_pending_bios *pending_bios;
542 struct bio *tail;
543 struct bio *cur;
544 int again = 0;
545 unsigned long num_run;
546 unsigned long batch_run = 0;
547 unsigned long last_waited = 0;
548 int force_reg = 0;
549 int sync_pending = 0;
550 struct blk_plug plug;
551
552 /*
553 * this function runs all the bios we've collected for
554 * a particular device. We don't want to wander off to
555 * another device without first sending all of these down.
556 * So, setup a plug here and finish it off before we return
557 */
558 blk_start_plug(&plug);
559
560 bdi = device->bdev->bd_bdi;
561
562 loop:
563 spin_lock(&device->io_lock);
564
565 loop_lock:
566 num_run = 0;
567
568 /* take all the bios off the list at once and process them
569 * later on (without the lock held). But, remember the
570 * tail and other pointers so the bios can be properly reinserted
571 * into the list if we hit congestion
572 */
573 if (!force_reg && device->pending_sync_bios.head) {
574 pending_bios = &device->pending_sync_bios;
575 force_reg = 1;
576 } else {
577 pending_bios = &device->pending_bios;
578 force_reg = 0;
579 }
580
581 pending = pending_bios->head;
582 tail = pending_bios->tail;
583 WARN_ON(pending && !tail);
584
585 /*
586 * if pending was null this time around, no bios need processing
587 * at all and we can stop. Otherwise it'll loop back up again
588 * and do an additional check so no bios are missed.
589 *
590 * device->running_pending is used to synchronize with the
591 * schedule_bio code.
592 */
593 if (device->pending_sync_bios.head == NULL &&
594 device->pending_bios.head == NULL) {
595 again = 0;
596 device->running_pending = 0;
597 } else {
598 again = 1;
599 device->running_pending = 1;
600 }
601
602 pending_bios->head = NULL;
603 pending_bios->tail = NULL;
604
605 spin_unlock(&device->io_lock);
606
607 while (pending) {
608
609 rmb();
610 /* we want to work on both lists, but do more bios on the
611 * sync list than the regular list
612 */
613 if ((num_run > 32 &&
614 pending_bios != &device->pending_sync_bios &&
615 device->pending_sync_bios.head) ||
616 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
617 device->pending_bios.head)) {
618 spin_lock(&device->io_lock);
619 requeue_list(pending_bios, pending, tail);
620 goto loop_lock;
621 }
622
623 cur = pending;
624 pending = pending->bi_next;
625 cur->bi_next = NULL;
626
627 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
628
629 /*
630 * if we're doing the sync list, record that our
631 * plug has some sync requests on it
632 *
633 * If we're doing the regular list and there are
634 * sync requests sitting around, unplug before
635 * we add more
636 */
637 if (pending_bios == &device->pending_sync_bios) {
638 sync_pending = 1;
639 } else if (sync_pending) {
640 blk_finish_plug(&plug);
641 blk_start_plug(&plug);
642 sync_pending = 0;
643 }
644
645 btrfsic_submit_bio(cur);
646 num_run++;
647 batch_run++;
648
649 cond_resched();
650
651 /*
652 * we made progress, there is more work to do and the bdi
653 * is now congested. Back off and let other work structs
654 * run instead
655 */
656 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
657 fs_info->fs_devices->open_devices > 1) {
658 struct io_context *ioc;
659
660 ioc = current->io_context;
661
662 /*
663 * the main goal here is that we don't want to
664 * block if we're going to be able to submit
665 * more requests without blocking.
666 *
667 * This code does two great things, it pokes into
668 * the elevator code from a filesystem _and_
669 * it makes assumptions about how batching works.
670 */
671 if (ioc && ioc->nr_batch_requests > 0 &&
672 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
673 (last_waited == 0 ||
674 ioc->last_waited == last_waited)) {
675 /*
676 * we want to go through our batch of
677 * requests and stop. So, we copy out
678 * the ioc->last_waited time and test
679 * against it before looping
680 */
681 last_waited = ioc->last_waited;
682 cond_resched();
683 continue;
684 }
685 spin_lock(&device->io_lock);
686 requeue_list(pending_bios, pending, tail);
687 device->running_pending = 1;
688
689 spin_unlock(&device->io_lock);
690 btrfs_queue_work(fs_info->submit_workers,
691 &device->work);
692 goto done;
693 }
694 }
695
696 cond_resched();
697 if (again)
698 goto loop;
699
700 spin_lock(&device->io_lock);
701 if (device->pending_bios.head || device->pending_sync_bios.head)
702 goto loop_lock;
703 spin_unlock(&device->io_lock);
704
705 done:
706 blk_finish_plug(&plug);
707 }
708
pending_bios_fn(struct btrfs_work * work)709 static void pending_bios_fn(struct btrfs_work *work)
710 {
711 struct btrfs_device *device;
712
713 device = container_of(work, struct btrfs_device, work);
714 run_scheduled_bios(device);
715 }
716
717 /*
718 * Check if the device in the path matches the device in the given struct device.
719 *
720 * Returns:
721 * true If it is the same device.
722 * false If it is not the same device or on error.
723 */
device_matched(const struct btrfs_device * device,const char * path)724 static bool device_matched(const struct btrfs_device *device, const char *path)
725 {
726 char *device_name;
727 struct block_device *bdev_old;
728 struct block_device *bdev_new;
729
730 /*
731 * If we are looking for a device with the matching dev_t, then skip
732 * device without a name (a missing device).
733 */
734 if (!device->name)
735 return false;
736
737 device_name = kzalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
738 if (!device_name)
739 return false;
740
741 rcu_read_lock();
742 scnprintf(device_name, BTRFS_PATH_NAME_MAX, "%s", rcu_str_deref(device->name));
743 rcu_read_unlock();
744
745 bdev_old = lookup_bdev(device_name);
746 kfree(device_name);
747 if (IS_ERR(bdev_old))
748 return false;
749
750 bdev_new = lookup_bdev(path);
751 if (IS_ERR(bdev_new))
752 return false;
753
754 if (bdev_old == bdev_new)
755 return true;
756
757 return false;
758 }
759
760 /*
761 * Search and remove all stale (devices which are not mounted) devices.
762 * When both inputs are NULL, it will search and release all stale devices.
763 * path: Optional. When provided will it release all unmounted devices
764 * matching this path only.
765 * skip_dev: Optional. Will skip this device when searching for the stale
766 * devices.
767 * Return: 0 for success or if @path is NULL.
768 * -EBUSY if @path is a mounted device.
769 * -ENOENT if @path does not match any device in the list.
770 */
btrfs_free_stale_devices(const char * path,struct btrfs_device * skip_device)771 static int btrfs_free_stale_devices(const char *path,
772 struct btrfs_device *skip_device)
773 {
774 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
775 struct btrfs_device *device, *tmp_device;
776 int ret = 0;
777
778 lockdep_assert_held(&uuid_mutex);
779
780 if (path)
781 ret = -ENOENT;
782
783 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
784
785 mutex_lock(&fs_devices->device_list_mutex);
786 list_for_each_entry_safe(device, tmp_device,
787 &fs_devices->devices, dev_list) {
788 if (skip_device && skip_device == device)
789 continue;
790 if (path && !device_matched(device, path))
791 continue;
792 if (fs_devices->opened) {
793 /* for an already deleted device return 0 */
794 if (path && ret != 0)
795 ret = -EBUSY;
796 break;
797 }
798
799 /* delete the stale device */
800 fs_devices->num_devices--;
801 list_del(&device->dev_list);
802 btrfs_free_device(device);
803
804 ret = 0;
805 if (fs_devices->num_devices == 0)
806 break;
807 }
808 mutex_unlock(&fs_devices->device_list_mutex);
809
810 if (fs_devices->num_devices == 0) {
811 btrfs_sysfs_remove_fsid(fs_devices);
812 list_del(&fs_devices->fs_list);
813 free_fs_devices(fs_devices);
814 }
815 }
816
817 return ret;
818 }
819
820 /*
821 * This is only used on mount, and we are protected from competing things
822 * messing with our fs_devices by the uuid_mutex, thus we do not need the
823 * fs_devices->device_list_mutex here.
824 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,fmode_t flags,void * holder)825 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
826 struct btrfs_device *device, fmode_t flags,
827 void *holder)
828 {
829 struct request_queue *q;
830 struct block_device *bdev;
831 struct buffer_head *bh;
832 struct btrfs_super_block *disk_super;
833 u64 devid;
834 int ret;
835
836 if (device->bdev)
837 return -EINVAL;
838 if (!device->name)
839 return -EINVAL;
840
841 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
842 &bdev, &bh);
843 if (ret)
844 return ret;
845
846 disk_super = (struct btrfs_super_block *)bh->b_data;
847 devid = btrfs_stack_device_id(&disk_super->dev_item);
848 if (devid != device->devid)
849 goto error_brelse;
850
851 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
852 goto error_brelse;
853
854 device->generation = btrfs_super_generation(disk_super);
855
856 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
857 if (btrfs_super_incompat_flags(disk_super) &
858 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
859 pr_err(
860 "BTRFS: Invalid seeding and uuid-changed device detected\n");
861 goto error_brelse;
862 }
863
864 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
865 fs_devices->seeding = 1;
866 } else {
867 if (bdev_read_only(bdev))
868 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
869 else
870 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
871 }
872
873 q = bdev_get_queue(bdev);
874 if (!blk_queue_nonrot(q))
875 fs_devices->rotating = 1;
876
877 device->bdev = bdev;
878 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
879 device->mode = flags;
880
881 fs_devices->open_devices++;
882 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
883 device->devid != BTRFS_DEV_REPLACE_DEVID) {
884 fs_devices->rw_devices++;
885 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
886 }
887 brelse(bh);
888
889 return 0;
890
891 error_brelse:
892 brelse(bh);
893 blkdev_put(bdev, flags);
894
895 return -EINVAL;
896 }
897
btrfs_sb_fsid_ptr(struct btrfs_super_block * sb)898 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
899 {
900 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
901 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
902
903 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
904 }
905
906 /*
907 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
908 * being created with a disk that has already completed its fsid change.
909 */
find_fsid_inprogress(struct btrfs_super_block * disk_super)910 static struct btrfs_fs_devices *find_fsid_inprogress(
911 struct btrfs_super_block *disk_super)
912 {
913 struct btrfs_fs_devices *fs_devices;
914
915 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
916 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
917 BTRFS_FSID_SIZE) != 0 &&
918 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
919 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
920 return fs_devices;
921 }
922 }
923
924 return NULL;
925 }
926
927
find_fsid_changed(struct btrfs_super_block * disk_super)928 static struct btrfs_fs_devices *find_fsid_changed(
929 struct btrfs_super_block *disk_super)
930 {
931 struct btrfs_fs_devices *fs_devices;
932
933 /*
934 * Handles the case where scanned device is part of an fs that had
935 * multiple successful changes of FSID but curently device didn't
936 * observe it. Meaning our fsid will be different than theirs. We need
937 * to handle two subcases :
938 * 1 - The fs still continues to have different METADATA/FSID uuids.
939 * 2 - The fs is switched back to its original FSID (METADATA/FSID
940 * are equal).
941 */
942 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
943 /* Changed UUIDs */
944 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
945 BTRFS_FSID_SIZE) != 0 &&
946 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
947 BTRFS_FSID_SIZE) == 0 &&
948 memcmp(fs_devices->fsid, disk_super->fsid,
949 BTRFS_FSID_SIZE) != 0)
950 return fs_devices;
951
952 /* Unchanged UUIDs */
953 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
954 BTRFS_FSID_SIZE) == 0 &&
955 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
956 BTRFS_FSID_SIZE) == 0)
957 return fs_devices;
958 }
959
960 return NULL;
961 }
962
find_fsid_reverted_metadata(struct btrfs_super_block * disk_super)963 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
964 struct btrfs_super_block *disk_super)
965 {
966 struct btrfs_fs_devices *fs_devices;
967
968 /*
969 * Handle the case where the scanned device is part of an fs whose last
970 * metadata UUID change reverted it to the original FSID. At the same
971 * time * fs_devices was first created by another constitutent device
972 * which didn't fully observe the operation. This results in an
973 * btrfs_fs_devices created with metadata/fsid different AND
974 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
975 * fs_devices equal to the FSID of the disk.
976 */
977 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
978 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
979 BTRFS_FSID_SIZE) != 0 &&
980 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
981 BTRFS_FSID_SIZE) == 0 &&
982 fs_devices->fsid_change)
983 return fs_devices;
984 }
985
986 return NULL;
987 }
988 /*
989 * Add new device to list of registered devices
990 *
991 * Returns:
992 * device pointer which was just added or updated when successful
993 * error pointer when failed
994 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)995 static noinline struct btrfs_device *device_list_add(const char *path,
996 struct btrfs_super_block *disk_super,
997 bool *new_device_added)
998 {
999 struct btrfs_device *device;
1000 struct btrfs_fs_devices *fs_devices = NULL;
1001 struct rcu_string *name;
1002 u64 found_transid = btrfs_super_generation(disk_super);
1003 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
1004 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
1005 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
1006 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
1007 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
1008
1009 if (fsid_change_in_progress) {
1010 if (!has_metadata_uuid) {
1011 /*
1012 * When we have an image which has CHANGING_FSID_V2 set
1013 * it might belong to either a filesystem which has
1014 * disks with completed fsid change or it might belong
1015 * to fs with no UUID changes in effect, handle both.
1016 */
1017 fs_devices = find_fsid_inprogress(disk_super);
1018 if (!fs_devices)
1019 fs_devices = find_fsid(disk_super->fsid, NULL);
1020 } else {
1021 fs_devices = find_fsid_changed(disk_super);
1022 }
1023 } else if (has_metadata_uuid) {
1024 fs_devices = find_fsid(disk_super->fsid,
1025 disk_super->metadata_uuid);
1026 } else {
1027 fs_devices = find_fsid_reverted_metadata(disk_super);
1028 if (!fs_devices)
1029 fs_devices = find_fsid(disk_super->fsid, NULL);
1030 }
1031
1032
1033 if (!fs_devices) {
1034 if (has_metadata_uuid)
1035 fs_devices = alloc_fs_devices(disk_super->fsid,
1036 disk_super->metadata_uuid);
1037 else
1038 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
1039
1040 if (IS_ERR(fs_devices))
1041 return ERR_CAST(fs_devices);
1042
1043 fs_devices->fsid_change = fsid_change_in_progress;
1044
1045 mutex_lock(&fs_devices->device_list_mutex);
1046 list_add(&fs_devices->fs_list, &fs_uuids);
1047
1048 device = NULL;
1049 } else {
1050 mutex_lock(&fs_devices->device_list_mutex);
1051 device = btrfs_find_device(fs_devices, devid,
1052 disk_super->dev_item.uuid, NULL, false);
1053
1054 /*
1055 * If this disk has been pulled into an fs devices created by
1056 * a device which had the CHANGING_FSID_V2 flag then replace the
1057 * metadata_uuid/fsid values of the fs_devices.
1058 */
1059 if (fs_devices->fsid_change &&
1060 found_transid > fs_devices->latest_generation) {
1061 memcpy(fs_devices->fsid, disk_super->fsid,
1062 BTRFS_FSID_SIZE);
1063
1064 if (has_metadata_uuid)
1065 memcpy(fs_devices->metadata_uuid,
1066 disk_super->metadata_uuid,
1067 BTRFS_FSID_SIZE);
1068 else
1069 memcpy(fs_devices->metadata_uuid,
1070 disk_super->fsid, BTRFS_FSID_SIZE);
1071
1072 fs_devices->fsid_change = false;
1073 }
1074 }
1075
1076 if (!device) {
1077 if (fs_devices->opened) {
1078 mutex_unlock(&fs_devices->device_list_mutex);
1079 return ERR_PTR(-EBUSY);
1080 }
1081
1082 device = btrfs_alloc_device(NULL, &devid,
1083 disk_super->dev_item.uuid);
1084 if (IS_ERR(device)) {
1085 mutex_unlock(&fs_devices->device_list_mutex);
1086 /* we can safely leave the fs_devices entry around */
1087 return device;
1088 }
1089
1090 name = rcu_string_strdup(path, GFP_NOFS);
1091 if (!name) {
1092 btrfs_free_device(device);
1093 mutex_unlock(&fs_devices->device_list_mutex);
1094 return ERR_PTR(-ENOMEM);
1095 }
1096 rcu_assign_pointer(device->name, name);
1097
1098 list_add_rcu(&device->dev_list, &fs_devices->devices);
1099 fs_devices->num_devices++;
1100
1101 device->fs_devices = fs_devices;
1102 *new_device_added = true;
1103
1104 if (disk_super->label[0])
1105 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1106 disk_super->label, devid, found_transid, path);
1107 else
1108 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1109 disk_super->fsid, devid, found_transid, path);
1110
1111 } else if (!device->name || strcmp(device->name->str, path)) {
1112 /*
1113 * When FS is already mounted.
1114 * 1. If you are here and if the device->name is NULL that
1115 * means this device was missing at time of FS mount.
1116 * 2. If you are here and if the device->name is different
1117 * from 'path' that means either
1118 * a. The same device disappeared and reappeared with
1119 * different name. or
1120 * b. The missing-disk-which-was-replaced, has
1121 * reappeared now.
1122 *
1123 * We must allow 1 and 2a above. But 2b would be a spurious
1124 * and unintentional.
1125 *
1126 * Further in case of 1 and 2a above, the disk at 'path'
1127 * would have missed some transaction when it was away and
1128 * in case of 2a the stale bdev has to be updated as well.
1129 * 2b must not be allowed at all time.
1130 */
1131
1132 /*
1133 * For now, we do allow update to btrfs_fs_device through the
1134 * btrfs dev scan cli after FS has been mounted. We're still
1135 * tracking a problem where systems fail mount by subvolume id
1136 * when we reject replacement on a mounted FS.
1137 */
1138 if (!fs_devices->opened && found_transid < device->generation) {
1139 /*
1140 * That is if the FS is _not_ mounted and if you
1141 * are here, that means there is more than one
1142 * disk with same uuid and devid.We keep the one
1143 * with larger generation number or the last-in if
1144 * generation are equal.
1145 */
1146 mutex_unlock(&fs_devices->device_list_mutex);
1147 return ERR_PTR(-EEXIST);
1148 }
1149
1150 /*
1151 * We are going to replace the device path for a given devid,
1152 * make sure it's the same device if the device is mounted
1153 */
1154 if (device->bdev) {
1155 struct block_device *path_bdev;
1156
1157 path_bdev = lookup_bdev(path);
1158 if (IS_ERR(path_bdev)) {
1159 mutex_unlock(&fs_devices->device_list_mutex);
1160 return ERR_CAST(path_bdev);
1161 }
1162
1163 if (device->bdev != path_bdev) {
1164 bdput(path_bdev);
1165 mutex_unlock(&fs_devices->device_list_mutex);
1166 /*
1167 * device->fs_info may not be reliable here, so
1168 * pass in a NULL instead. This avoids a
1169 * possible use-after-free when the fs_info and
1170 * fs_info->sb are already torn down.
1171 */
1172 btrfs_warn_in_rcu(NULL,
1173 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
1174 path, devid, found_transid,
1175 current->comm,
1176 task_pid_nr(current));
1177 return ERR_PTR(-EEXIST);
1178 }
1179 bdput(path_bdev);
1180 btrfs_info_in_rcu(device->fs_info,
1181 "devid %llu device path %s changed to %s scanned by %s (%d)",
1182 devid, rcu_str_deref(device->name),
1183 path, current->comm,
1184 task_pid_nr(current));
1185 }
1186
1187 name = rcu_string_strdup(path, GFP_NOFS);
1188 if (!name) {
1189 mutex_unlock(&fs_devices->device_list_mutex);
1190 return ERR_PTR(-ENOMEM);
1191 }
1192 rcu_string_free(device->name);
1193 rcu_assign_pointer(device->name, name);
1194 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1195 fs_devices->missing_devices--;
1196 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1197 }
1198 }
1199
1200 /*
1201 * Unmount does not free the btrfs_device struct but would zero
1202 * generation along with most of the other members. So just update
1203 * it back. We need it to pick the disk with largest generation
1204 * (as above).
1205 */
1206 if (!fs_devices->opened) {
1207 device->generation = found_transid;
1208 fs_devices->latest_generation = max_t(u64, found_transid,
1209 fs_devices->latest_generation);
1210 }
1211
1212 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1213
1214 mutex_unlock(&fs_devices->device_list_mutex);
1215 return device;
1216 }
1217
clone_fs_devices(struct btrfs_fs_devices * orig)1218 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1219 {
1220 struct btrfs_fs_devices *fs_devices;
1221 struct btrfs_device *device;
1222 struct btrfs_device *orig_dev;
1223 int ret = 0;
1224
1225 lockdep_assert_held(&uuid_mutex);
1226
1227 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1228 if (IS_ERR(fs_devices))
1229 return fs_devices;
1230
1231 fs_devices->total_devices = orig->total_devices;
1232
1233 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1234 struct rcu_string *name;
1235
1236 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1237 orig_dev->uuid);
1238 if (IS_ERR(device)) {
1239 ret = PTR_ERR(device);
1240 goto error;
1241 }
1242
1243 /*
1244 * This is ok to do without rcu read locked because we hold the
1245 * uuid mutex so nothing we touch in here is going to disappear.
1246 */
1247 if (orig_dev->name) {
1248 name = rcu_string_strdup(orig_dev->name->str,
1249 GFP_KERNEL);
1250 if (!name) {
1251 btrfs_free_device(device);
1252 ret = -ENOMEM;
1253 goto error;
1254 }
1255 rcu_assign_pointer(device->name, name);
1256 }
1257
1258 list_add(&device->dev_list, &fs_devices->devices);
1259 device->fs_devices = fs_devices;
1260 fs_devices->num_devices++;
1261 }
1262 return fs_devices;
1263 error:
1264 free_fs_devices(fs_devices);
1265 return ERR_PTR(ret);
1266 }
1267
1268 /*
1269 * After we have read the system tree and know devids belonging to
1270 * this filesystem, remove the device which does not belong there.
1271 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,int step)1272 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1273 {
1274 struct btrfs_device *device, *next;
1275 struct btrfs_device *latest_dev = NULL;
1276
1277 mutex_lock(&uuid_mutex);
1278 again:
1279 /* This is the initialized path, it is safe to release the devices. */
1280 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1281 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1282 &device->dev_state)) {
1283 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1284 &device->dev_state) &&
1285 !test_bit(BTRFS_DEV_STATE_MISSING,
1286 &device->dev_state) &&
1287 (!latest_dev ||
1288 device->generation > latest_dev->generation)) {
1289 latest_dev = device;
1290 }
1291 continue;
1292 }
1293
1294 /*
1295 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1296 * in btrfs_init_dev_replace() so just continue.
1297 */
1298 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1299 continue;
1300
1301 if (device->bdev) {
1302 blkdev_put(device->bdev, device->mode);
1303 device->bdev = NULL;
1304 fs_devices->open_devices--;
1305 }
1306 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1307 list_del_init(&device->dev_alloc_list);
1308 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1309 fs_devices->rw_devices--;
1310 }
1311 list_del_init(&device->dev_list);
1312 fs_devices->num_devices--;
1313 btrfs_free_device(device);
1314 }
1315
1316 if (fs_devices->seed) {
1317 fs_devices = fs_devices->seed;
1318 goto again;
1319 }
1320
1321 fs_devices->latest_bdev = latest_dev->bdev;
1322
1323 mutex_unlock(&uuid_mutex);
1324 }
1325
btrfs_close_bdev(struct btrfs_device * device)1326 static void btrfs_close_bdev(struct btrfs_device *device)
1327 {
1328 if (!device->bdev)
1329 return;
1330
1331 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1332 sync_blockdev(device->bdev);
1333 invalidate_bdev(device->bdev);
1334 }
1335
1336 blkdev_put(device->bdev, device->mode);
1337 }
1338
btrfs_close_one_device(struct btrfs_device * device)1339 static void btrfs_close_one_device(struct btrfs_device *device)
1340 {
1341 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1342 struct btrfs_device *new_device;
1343 struct rcu_string *name;
1344
1345 if (device->bdev)
1346 fs_devices->open_devices--;
1347
1348 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1349 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1350 list_del_init(&device->dev_alloc_list);
1351 fs_devices->rw_devices--;
1352 }
1353
1354 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1355 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1356
1357 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1358 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1359 fs_devices->missing_devices--;
1360 }
1361
1362 btrfs_close_bdev(device);
1363
1364 new_device = btrfs_alloc_device(NULL, &device->devid,
1365 device->uuid);
1366 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1367
1368 /* Safe because we are under uuid_mutex */
1369 if (device->name) {
1370 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1371 BUG_ON(!name); /* -ENOMEM */
1372 rcu_assign_pointer(new_device->name, name);
1373 }
1374
1375 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1376 new_device->fs_devices = device->fs_devices;
1377
1378 synchronize_rcu();
1379 btrfs_free_device(device);
1380 }
1381
close_fs_devices(struct btrfs_fs_devices * fs_devices)1382 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1383 {
1384 struct btrfs_device *device, *tmp;
1385
1386 if (--fs_devices->opened > 0)
1387 return 0;
1388
1389 mutex_lock(&fs_devices->device_list_mutex);
1390 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1391 btrfs_close_one_device(device);
1392 }
1393 mutex_unlock(&fs_devices->device_list_mutex);
1394
1395 WARN_ON(fs_devices->open_devices);
1396 WARN_ON(fs_devices->rw_devices);
1397 fs_devices->opened = 0;
1398 fs_devices->seeding = 0;
1399
1400 return 0;
1401 }
1402
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1403 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1404 {
1405 struct btrfs_fs_devices *seed_devices = NULL;
1406 int ret;
1407
1408 mutex_lock(&uuid_mutex);
1409 ret = close_fs_devices(fs_devices);
1410 if (!fs_devices->opened) {
1411 seed_devices = fs_devices->seed;
1412 fs_devices->seed = NULL;
1413
1414 /*
1415 * If the struct btrfs_fs_devices is not assembled with any
1416 * other device, it can be re-initialized during the next mount
1417 * without the needing device-scan step. Therefore, it can be
1418 * fully freed.
1419 */
1420 if (fs_devices->num_devices == 1) {
1421 list_del(&fs_devices->fs_list);
1422 free_fs_devices(fs_devices);
1423 }
1424 }
1425 mutex_unlock(&uuid_mutex);
1426
1427 while (seed_devices) {
1428 fs_devices = seed_devices;
1429 seed_devices = fs_devices->seed;
1430 close_fs_devices(fs_devices);
1431 free_fs_devices(fs_devices);
1432 }
1433 return ret;
1434 }
1435
open_fs_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1436 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1437 fmode_t flags, void *holder)
1438 {
1439 struct btrfs_device *device;
1440 struct btrfs_device *latest_dev = NULL;
1441 int ret = 0;
1442
1443 flags |= FMODE_EXCL;
1444
1445 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1446 /* Just open everything we can; ignore failures here */
1447 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1448 continue;
1449
1450 if (!latest_dev ||
1451 device->generation > latest_dev->generation)
1452 latest_dev = device;
1453 }
1454 if (fs_devices->open_devices == 0) {
1455 ret = -EINVAL;
1456 goto out;
1457 }
1458 fs_devices->opened = 1;
1459 fs_devices->latest_bdev = latest_dev->bdev;
1460 fs_devices->total_rw_bytes = 0;
1461 out:
1462 return ret;
1463 }
1464
devid_cmp(void * priv,struct list_head * a,struct list_head * b)1465 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1466 {
1467 struct btrfs_device *dev1, *dev2;
1468
1469 dev1 = list_entry(a, struct btrfs_device, dev_list);
1470 dev2 = list_entry(b, struct btrfs_device, dev_list);
1471
1472 if (dev1->devid < dev2->devid)
1473 return -1;
1474 else if (dev1->devid > dev2->devid)
1475 return 1;
1476 return 0;
1477 }
1478
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1479 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1480 fmode_t flags, void *holder)
1481 {
1482 int ret;
1483
1484 lockdep_assert_held(&uuid_mutex);
1485 /*
1486 * The device_list_mutex cannot be taken here in case opening the
1487 * underlying device takes further locks like bd_mutex.
1488 *
1489 * We also don't need the lock here as this is called during mount and
1490 * exclusion is provided by uuid_mutex
1491 */
1492
1493 if (fs_devices->opened) {
1494 fs_devices->opened++;
1495 ret = 0;
1496 } else {
1497 list_sort(NULL, &fs_devices->devices, devid_cmp);
1498 ret = open_fs_devices(fs_devices, flags, holder);
1499 }
1500
1501 return ret;
1502 }
1503
btrfs_release_disk_super(struct page * page)1504 static void btrfs_release_disk_super(struct page *page)
1505 {
1506 kunmap(page);
1507 put_page(page);
1508 }
1509
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,struct page ** page,struct btrfs_super_block ** disk_super)1510 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1511 struct page **page,
1512 struct btrfs_super_block **disk_super)
1513 {
1514 void *p;
1515 pgoff_t index;
1516
1517 /* make sure our super fits in the device */
1518 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1519 return 1;
1520
1521 /* make sure our super fits in the page */
1522 if (sizeof(**disk_super) > PAGE_SIZE)
1523 return 1;
1524
1525 /* make sure our super doesn't straddle pages on disk */
1526 index = bytenr >> PAGE_SHIFT;
1527 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1528 return 1;
1529
1530 /* pull in the page with our super */
1531 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1532 index, GFP_KERNEL);
1533
1534 if (IS_ERR_OR_NULL(*page))
1535 return 1;
1536
1537 p = kmap(*page);
1538
1539 /* align our pointer to the offset of the super block */
1540 *disk_super = p + offset_in_page(bytenr);
1541
1542 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1543 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1544 btrfs_release_disk_super(*page);
1545 return 1;
1546 }
1547
1548 if ((*disk_super)->label[0] &&
1549 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1550 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1551
1552 return 0;
1553 }
1554
btrfs_forget_devices(const char * path)1555 int btrfs_forget_devices(const char *path)
1556 {
1557 int ret;
1558
1559 mutex_lock(&uuid_mutex);
1560 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1561 mutex_unlock(&uuid_mutex);
1562
1563 return ret;
1564 }
1565
1566 /*
1567 * Look for a btrfs signature on a device. This may be called out of the mount path
1568 * and we are not allowed to call set_blocksize during the scan. The superblock
1569 * is read via pagecache
1570 */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder)1571 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1572 void *holder)
1573 {
1574 struct btrfs_super_block *disk_super;
1575 bool new_device_added = false;
1576 struct btrfs_device *device = NULL;
1577 struct block_device *bdev;
1578 struct page *page;
1579 u64 bytenr;
1580
1581 lockdep_assert_held(&uuid_mutex);
1582
1583 /*
1584 * we would like to check all the supers, but that would make
1585 * a btrfs mount succeed after a mkfs from a different FS.
1586 * So, we need to add a special mount option to scan for
1587 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1588 */
1589 bytenr = btrfs_sb_offset(0);
1590
1591 /*
1592 * Avoid using flag |= FMODE_EXCL here, as the systemd-udev may
1593 * initiate the device scan which may race with the user's mount
1594 * or mkfs command, resulting in failure.
1595 * Since the device scan is solely for reading purposes, there is
1596 * no need for FMODE_EXCL. Additionally, the devices are read again
1597 * during the mount process. It is ok to get some inconsistent
1598 * values temporarily, as the device paths of the fsid are the only
1599 * required information for assembling the volume.
1600 */
1601 bdev = blkdev_get_by_path(path, flags, holder);
1602 if (IS_ERR(bdev))
1603 return ERR_CAST(bdev);
1604
1605 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1606 device = ERR_PTR(-EINVAL);
1607 goto error_bdev_put;
1608 }
1609
1610 device = device_list_add(path, disk_super, &new_device_added);
1611 if (!IS_ERR(device)) {
1612 if (new_device_added)
1613 btrfs_free_stale_devices(path, device);
1614 }
1615
1616 btrfs_release_disk_super(page);
1617
1618 error_bdev_put:
1619 blkdev_put(bdev, flags);
1620
1621 return device;
1622 }
1623
1624 /*
1625 * Try to find a chunk that intersects [start, start + len] range and when one
1626 * such is found, record the end of it in *start
1627 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1628 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1629 u64 len)
1630 {
1631 u64 physical_start, physical_end;
1632
1633 lockdep_assert_held(&device->fs_info->chunk_mutex);
1634
1635 if (!find_first_extent_bit(&device->alloc_state, *start,
1636 &physical_start, &physical_end,
1637 CHUNK_ALLOCATED, NULL)) {
1638
1639 if (in_range(physical_start, *start, len) ||
1640 in_range(*start, physical_start,
1641 physical_end + 1 - physical_start)) {
1642 *start = physical_end + 1;
1643 return true;
1644 }
1645 }
1646 return false;
1647 }
1648
1649
1650 /*
1651 * find_free_dev_extent_start - find free space in the specified device
1652 * @device: the device which we search the free space in
1653 * @num_bytes: the size of the free space that we need
1654 * @search_start: the position from which to begin the search
1655 * @start: store the start of the free space.
1656 * @len: the size of the free space. that we find, or the size
1657 * of the max free space if we don't find suitable free space
1658 *
1659 * this uses a pretty simple search, the expectation is that it is
1660 * called very infrequently and that a given device has a small number
1661 * of extents
1662 *
1663 * @start is used to store the start of the free space if we find. But if we
1664 * don't find suitable free space, it will be used to store the start position
1665 * of the max free space.
1666 *
1667 * @len is used to store the size of the free space that we find.
1668 * But if we don't find suitable free space, it is used to store the size of
1669 * the max free space.
1670 *
1671 * NOTE: This function will search *commit* root of device tree, and does extra
1672 * check to ensure dev extents are not double allocated.
1673 * This makes the function safe to allocate dev extents but may not report
1674 * correct usable device space, as device extent freed in current transaction
1675 * is not reported as avaiable.
1676 */
find_free_dev_extent_start(struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1677 static int find_free_dev_extent_start(struct btrfs_device *device,
1678 u64 num_bytes, u64 search_start, u64 *start,
1679 u64 *len)
1680 {
1681 struct btrfs_fs_info *fs_info = device->fs_info;
1682 struct btrfs_root *root = fs_info->dev_root;
1683 struct btrfs_key key;
1684 struct btrfs_dev_extent *dev_extent;
1685 struct btrfs_path *path;
1686 u64 hole_size;
1687 u64 max_hole_start;
1688 u64 max_hole_size;
1689 u64 extent_end;
1690 u64 search_end = device->total_bytes;
1691 int ret;
1692 int slot;
1693 struct extent_buffer *l;
1694
1695 /*
1696 * We don't want to overwrite the superblock on the drive nor any area
1697 * used by the boot loader (grub for example), so we make sure to start
1698 * at an offset of at least 1MB.
1699 */
1700 search_start = max_t(u64, search_start, SZ_1M);
1701
1702 path = btrfs_alloc_path();
1703 if (!path)
1704 return -ENOMEM;
1705
1706 max_hole_start = search_start;
1707 max_hole_size = 0;
1708
1709 again:
1710 if (search_start >= search_end ||
1711 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1712 ret = -ENOSPC;
1713 goto out;
1714 }
1715
1716 path->reada = READA_FORWARD;
1717 path->search_commit_root = 1;
1718 path->skip_locking = 1;
1719
1720 key.objectid = device->devid;
1721 key.offset = search_start;
1722 key.type = BTRFS_DEV_EXTENT_KEY;
1723
1724 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1725 if (ret < 0)
1726 goto out;
1727 if (ret > 0) {
1728 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1729 if (ret < 0)
1730 goto out;
1731 }
1732
1733 while (search_start < search_end) {
1734 l = path->nodes[0];
1735 slot = path->slots[0];
1736 if (slot >= btrfs_header_nritems(l)) {
1737 ret = btrfs_next_leaf(root, path);
1738 if (ret == 0)
1739 continue;
1740 if (ret < 0)
1741 goto out;
1742
1743 break;
1744 }
1745 btrfs_item_key_to_cpu(l, &key, slot);
1746
1747 if (key.objectid < device->devid)
1748 goto next;
1749
1750 if (key.objectid > device->devid)
1751 break;
1752
1753 if (key.type != BTRFS_DEV_EXTENT_KEY)
1754 goto next;
1755
1756 if (key.offset > search_end)
1757 break;
1758
1759 if (key.offset > search_start) {
1760 hole_size = key.offset - search_start;
1761
1762 /*
1763 * Have to check before we set max_hole_start, otherwise
1764 * we could end up sending back this offset anyway.
1765 */
1766 if (contains_pending_extent(device, &search_start,
1767 hole_size)) {
1768 if (key.offset >= search_start)
1769 hole_size = key.offset - search_start;
1770 else
1771 hole_size = 0;
1772 }
1773
1774 if (hole_size > max_hole_size) {
1775 max_hole_start = search_start;
1776 max_hole_size = hole_size;
1777 }
1778
1779 /*
1780 * If this free space is greater than which we need,
1781 * it must be the max free space that we have found
1782 * until now, so max_hole_start must point to the start
1783 * of this free space and the length of this free space
1784 * is stored in max_hole_size. Thus, we return
1785 * max_hole_start and max_hole_size and go back to the
1786 * caller.
1787 */
1788 if (hole_size >= num_bytes) {
1789 ret = 0;
1790 goto out;
1791 }
1792 }
1793
1794 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1795 extent_end = key.offset + btrfs_dev_extent_length(l,
1796 dev_extent);
1797 if (extent_end > search_start)
1798 search_start = extent_end;
1799 next:
1800 path->slots[0]++;
1801 cond_resched();
1802 }
1803
1804 /*
1805 * At this point, search_start should be the end of
1806 * allocated dev extents, and when shrinking the device,
1807 * search_end may be smaller than search_start.
1808 */
1809 if (search_end > search_start) {
1810 hole_size = search_end - search_start;
1811
1812 if (contains_pending_extent(device, &search_start, hole_size)) {
1813 btrfs_release_path(path);
1814 goto again;
1815 }
1816
1817 if (hole_size > max_hole_size) {
1818 max_hole_start = search_start;
1819 max_hole_size = hole_size;
1820 }
1821 }
1822
1823 /* See above. */
1824 if (max_hole_size < num_bytes)
1825 ret = -ENOSPC;
1826 else
1827 ret = 0;
1828
1829 ASSERT(max_hole_start + max_hole_size <= search_end);
1830 out:
1831 btrfs_free_path(path);
1832 *start = max_hole_start;
1833 if (len)
1834 *len = max_hole_size;
1835 return ret;
1836 }
1837
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1838 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1839 u64 *start, u64 *len)
1840 {
1841 /* FIXME use last free of some kind */
1842 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1843 }
1844
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1845 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1846 struct btrfs_device *device,
1847 u64 start, u64 *dev_extent_len)
1848 {
1849 struct btrfs_fs_info *fs_info = device->fs_info;
1850 struct btrfs_root *root = fs_info->dev_root;
1851 int ret;
1852 struct btrfs_path *path;
1853 struct btrfs_key key;
1854 struct btrfs_key found_key;
1855 struct extent_buffer *leaf = NULL;
1856 struct btrfs_dev_extent *extent = NULL;
1857
1858 path = btrfs_alloc_path();
1859 if (!path)
1860 return -ENOMEM;
1861
1862 key.objectid = device->devid;
1863 key.offset = start;
1864 key.type = BTRFS_DEV_EXTENT_KEY;
1865 again:
1866 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1867 if (ret > 0) {
1868 ret = btrfs_previous_item(root, path, key.objectid,
1869 BTRFS_DEV_EXTENT_KEY);
1870 if (ret)
1871 goto out;
1872 leaf = path->nodes[0];
1873 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1874 extent = btrfs_item_ptr(leaf, path->slots[0],
1875 struct btrfs_dev_extent);
1876 BUG_ON(found_key.offset > start || found_key.offset +
1877 btrfs_dev_extent_length(leaf, extent) < start);
1878 key = found_key;
1879 btrfs_release_path(path);
1880 goto again;
1881 } else if (ret == 0) {
1882 leaf = path->nodes[0];
1883 extent = btrfs_item_ptr(leaf, path->slots[0],
1884 struct btrfs_dev_extent);
1885 } else {
1886 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1887 goto out;
1888 }
1889
1890 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1891
1892 ret = btrfs_del_item(trans, root, path);
1893 if (ret) {
1894 btrfs_handle_fs_error(fs_info, ret,
1895 "Failed to remove dev extent item");
1896 } else {
1897 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1898 }
1899 out:
1900 btrfs_free_path(path);
1901 return ret;
1902 }
1903
btrfs_alloc_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)1904 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1905 struct btrfs_device *device,
1906 u64 chunk_offset, u64 start, u64 num_bytes)
1907 {
1908 int ret;
1909 struct btrfs_path *path;
1910 struct btrfs_fs_info *fs_info = device->fs_info;
1911 struct btrfs_root *root = fs_info->dev_root;
1912 struct btrfs_dev_extent *extent;
1913 struct extent_buffer *leaf;
1914 struct btrfs_key key;
1915
1916 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1917 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1918 path = btrfs_alloc_path();
1919 if (!path)
1920 return -ENOMEM;
1921
1922 key.objectid = device->devid;
1923 key.offset = start;
1924 key.type = BTRFS_DEV_EXTENT_KEY;
1925 ret = btrfs_insert_empty_item(trans, root, path, &key,
1926 sizeof(*extent));
1927 if (ret)
1928 goto out;
1929
1930 leaf = path->nodes[0];
1931 extent = btrfs_item_ptr(leaf, path->slots[0],
1932 struct btrfs_dev_extent);
1933 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1934 BTRFS_CHUNK_TREE_OBJECTID);
1935 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1936 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1937 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1938
1939 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1940 btrfs_mark_buffer_dirty(leaf);
1941 out:
1942 btrfs_free_path(path);
1943 return ret;
1944 }
1945
find_next_chunk(struct btrfs_fs_info * fs_info)1946 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1947 {
1948 struct extent_map_tree *em_tree;
1949 struct extent_map *em;
1950 struct rb_node *n;
1951 u64 ret = 0;
1952
1953 em_tree = &fs_info->mapping_tree;
1954 read_lock(&em_tree->lock);
1955 n = rb_last(&em_tree->map.rb_root);
1956 if (n) {
1957 em = rb_entry(n, struct extent_map, rb_node);
1958 ret = em->start + em->len;
1959 }
1960 read_unlock(&em_tree->lock);
1961
1962 return ret;
1963 }
1964
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1965 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1966 u64 *devid_ret)
1967 {
1968 int ret;
1969 struct btrfs_key key;
1970 struct btrfs_key found_key;
1971 struct btrfs_path *path;
1972
1973 path = btrfs_alloc_path();
1974 if (!path)
1975 return -ENOMEM;
1976
1977 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1978 key.type = BTRFS_DEV_ITEM_KEY;
1979 key.offset = (u64)-1;
1980
1981 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1982 if (ret < 0)
1983 goto error;
1984
1985 if (ret == 0) {
1986 /* Corruption */
1987 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1988 ret = -EUCLEAN;
1989 goto error;
1990 }
1991
1992 ret = btrfs_previous_item(fs_info->chunk_root, path,
1993 BTRFS_DEV_ITEMS_OBJECTID,
1994 BTRFS_DEV_ITEM_KEY);
1995 if (ret) {
1996 *devid_ret = 1;
1997 } else {
1998 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1999 path->slots[0]);
2000 *devid_ret = found_key.offset + 1;
2001 }
2002 ret = 0;
2003 error:
2004 btrfs_free_path(path);
2005 return ret;
2006 }
2007
2008 /*
2009 * the device information is stored in the chunk root
2010 * the btrfs_device struct should be fully filled in
2011 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)2012 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
2013 struct btrfs_device *device)
2014 {
2015 int ret;
2016 struct btrfs_path *path;
2017 struct btrfs_dev_item *dev_item;
2018 struct extent_buffer *leaf;
2019 struct btrfs_key key;
2020 unsigned long ptr;
2021
2022 path = btrfs_alloc_path();
2023 if (!path)
2024 return -ENOMEM;
2025
2026 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2027 key.type = BTRFS_DEV_ITEM_KEY;
2028 key.offset = device->devid;
2029
2030 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
2031 &key, sizeof(*dev_item));
2032 if (ret)
2033 goto out;
2034
2035 leaf = path->nodes[0];
2036 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2037
2038 btrfs_set_device_id(leaf, dev_item, device->devid);
2039 btrfs_set_device_generation(leaf, dev_item, 0);
2040 btrfs_set_device_type(leaf, dev_item, device->type);
2041 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2042 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2043 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2044 btrfs_set_device_total_bytes(leaf, dev_item,
2045 btrfs_device_get_disk_total_bytes(device));
2046 btrfs_set_device_bytes_used(leaf, dev_item,
2047 btrfs_device_get_bytes_used(device));
2048 btrfs_set_device_group(leaf, dev_item, 0);
2049 btrfs_set_device_seek_speed(leaf, dev_item, 0);
2050 btrfs_set_device_bandwidth(leaf, dev_item, 0);
2051 btrfs_set_device_start_offset(leaf, dev_item, 0);
2052
2053 ptr = btrfs_device_uuid(dev_item);
2054 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2055 ptr = btrfs_device_fsid(dev_item);
2056 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
2057 ptr, BTRFS_FSID_SIZE);
2058 btrfs_mark_buffer_dirty(leaf);
2059
2060 ret = 0;
2061 out:
2062 btrfs_free_path(path);
2063 return ret;
2064 }
2065
2066 /*
2067 * Function to update ctime/mtime for a given device path.
2068 * Mainly used for ctime/mtime based probe like libblkid.
2069 */
update_dev_time(const char * path_name)2070 static void update_dev_time(const char *path_name)
2071 {
2072 struct file *filp;
2073
2074 filp = filp_open(path_name, O_RDWR, 0);
2075 if (IS_ERR(filp))
2076 return;
2077 file_update_time(filp);
2078 filp_close(filp, NULL);
2079 }
2080
btrfs_rm_dev_item(struct btrfs_device * device)2081 static int btrfs_rm_dev_item(struct btrfs_device *device)
2082 {
2083 struct btrfs_root *root = device->fs_info->chunk_root;
2084 int ret;
2085 struct btrfs_path *path;
2086 struct btrfs_key key;
2087 struct btrfs_trans_handle *trans;
2088
2089 path = btrfs_alloc_path();
2090 if (!path)
2091 return -ENOMEM;
2092
2093 trans = btrfs_start_transaction(root, 0);
2094 if (IS_ERR(trans)) {
2095 btrfs_free_path(path);
2096 return PTR_ERR(trans);
2097 }
2098 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2099 key.type = BTRFS_DEV_ITEM_KEY;
2100 key.offset = device->devid;
2101
2102 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2103 if (ret) {
2104 if (ret > 0)
2105 ret = -ENOENT;
2106 btrfs_abort_transaction(trans, ret);
2107 btrfs_end_transaction(trans);
2108 goto out;
2109 }
2110
2111 ret = btrfs_del_item(trans, root, path);
2112 if (ret) {
2113 btrfs_abort_transaction(trans, ret);
2114 btrfs_end_transaction(trans);
2115 }
2116
2117 out:
2118 btrfs_free_path(path);
2119 if (!ret)
2120 ret = btrfs_commit_transaction(trans);
2121 return ret;
2122 }
2123
2124 /*
2125 * Verify that @num_devices satisfies the RAID profile constraints in the whole
2126 * filesystem. It's up to the caller to adjust that number regarding eg. device
2127 * replace.
2128 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)2129 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2130 u64 num_devices)
2131 {
2132 u64 all_avail;
2133 unsigned seq;
2134 int i;
2135
2136 do {
2137 seq = read_seqbegin(&fs_info->profiles_lock);
2138
2139 all_avail = fs_info->avail_data_alloc_bits |
2140 fs_info->avail_system_alloc_bits |
2141 fs_info->avail_metadata_alloc_bits;
2142 } while (read_seqretry(&fs_info->profiles_lock, seq));
2143
2144 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2145 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2146 continue;
2147
2148 if (num_devices < btrfs_raid_array[i].devs_min) {
2149 int ret = btrfs_raid_array[i].mindev_error;
2150
2151 if (ret)
2152 return ret;
2153 }
2154 }
2155
2156 return 0;
2157 }
2158
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)2159 static struct btrfs_device * btrfs_find_next_active_device(
2160 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2161 {
2162 struct btrfs_device *next_device;
2163
2164 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2165 if (next_device != device &&
2166 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2167 && next_device->bdev)
2168 return next_device;
2169 }
2170
2171 return NULL;
2172 }
2173
2174 /*
2175 * Helper function to check if the given device is part of s_bdev / latest_bdev
2176 * and replace it with the provided or the next active device, in the context
2177 * where this function called, there should be always be another device (or
2178 * this_dev) which is active.
2179 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * this_dev)2180 void btrfs_assign_next_active_device(struct btrfs_device *device,
2181 struct btrfs_device *this_dev)
2182 {
2183 struct btrfs_fs_info *fs_info = device->fs_info;
2184 struct btrfs_device *next_device;
2185
2186 if (this_dev)
2187 next_device = this_dev;
2188 else
2189 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2190 device);
2191 ASSERT(next_device);
2192
2193 if (fs_info->sb->s_bdev &&
2194 (fs_info->sb->s_bdev == device->bdev))
2195 fs_info->sb->s_bdev = next_device->bdev;
2196
2197 if (fs_info->fs_devices->latest_bdev == device->bdev)
2198 fs_info->fs_devices->latest_bdev = next_device->bdev;
2199 }
2200
2201 /*
2202 * Return btrfs_fs_devices::num_devices excluding the device that's being
2203 * currently replaced.
2204 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2205 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2206 {
2207 u64 num_devices = fs_info->fs_devices->num_devices;
2208
2209 down_read(&fs_info->dev_replace.rwsem);
2210 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2211 ASSERT(num_devices > 1);
2212 num_devices--;
2213 }
2214 up_read(&fs_info->dev_replace.rwsem);
2215
2216 return num_devices;
2217 }
2218
btrfs_rm_device(struct btrfs_fs_info * fs_info,const char * device_path,u64 devid)2219 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2220 u64 devid)
2221 {
2222 struct btrfs_device *device;
2223 struct btrfs_fs_devices *cur_devices;
2224 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2225 u64 num_devices;
2226 int ret = 0;
2227
2228 /*
2229 * The device list in fs_devices is accessed without locks (neither
2230 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2231 * filesystem and another device rm cannot run.
2232 */
2233 num_devices = btrfs_num_devices(fs_info);
2234
2235 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2236 if (ret)
2237 goto out;
2238
2239 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2240
2241 if (IS_ERR(device)) {
2242 if (PTR_ERR(device) == -ENOENT &&
2243 device_path && strcmp(device_path, "missing") == 0)
2244 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2245 else
2246 ret = PTR_ERR(device);
2247 goto out;
2248 }
2249
2250 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2251 btrfs_warn_in_rcu(fs_info,
2252 "cannot remove device %s (devid %llu) due to active swapfile",
2253 rcu_str_deref(device->name), device->devid);
2254 ret = -ETXTBSY;
2255 goto out;
2256 }
2257
2258 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2259 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2260 goto out;
2261 }
2262
2263 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2264 fs_info->fs_devices->rw_devices == 1) {
2265 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2266 goto out;
2267 }
2268
2269 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2270 mutex_lock(&fs_info->chunk_mutex);
2271 list_del_init(&device->dev_alloc_list);
2272 device->fs_devices->rw_devices--;
2273 mutex_unlock(&fs_info->chunk_mutex);
2274 }
2275
2276 ret = btrfs_shrink_device(device, 0);
2277 if (!ret)
2278 btrfs_reada_remove_dev(device);
2279 if (ret)
2280 goto error_undo;
2281
2282 /*
2283 * TODO: the superblock still includes this device in its num_devices
2284 * counter although write_all_supers() is not locked out. This
2285 * could give a filesystem state which requires a degraded mount.
2286 */
2287 ret = btrfs_rm_dev_item(device);
2288 if (ret)
2289 goto error_undo;
2290
2291 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2292 btrfs_scrub_cancel_dev(device);
2293
2294 /*
2295 * the device list mutex makes sure that we don't change
2296 * the device list while someone else is writing out all
2297 * the device supers. Whoever is writing all supers, should
2298 * lock the device list mutex before getting the number of
2299 * devices in the super block (super_copy). Conversely,
2300 * whoever updates the number of devices in the super block
2301 * (super_copy) should hold the device list mutex.
2302 */
2303
2304 /*
2305 * In normal cases the cur_devices == fs_devices. But in case
2306 * of deleting a seed device, the cur_devices should point to
2307 * its own fs_devices listed under the fs_devices->seed.
2308 */
2309 cur_devices = device->fs_devices;
2310 mutex_lock(&fs_devices->device_list_mutex);
2311 list_del_rcu(&device->dev_list);
2312
2313 cur_devices->num_devices--;
2314 cur_devices->total_devices--;
2315 /* Update total_devices of the parent fs_devices if it's seed */
2316 if (cur_devices != fs_devices)
2317 fs_devices->total_devices--;
2318
2319 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2320 cur_devices->missing_devices--;
2321
2322 btrfs_assign_next_active_device(device, NULL);
2323
2324 if (device->bdev) {
2325 cur_devices->open_devices--;
2326 /* remove sysfs entry */
2327 btrfs_sysfs_rm_device_link(fs_devices, device);
2328 }
2329
2330 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2331 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2332 mutex_unlock(&fs_devices->device_list_mutex);
2333
2334 /*
2335 * at this point, the device is zero sized and detached from
2336 * the devices list. All that's left is to zero out the old
2337 * supers and free the device.
2338 */
2339 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2340 btrfs_scratch_superblocks(device->bdev, device->name->str);
2341
2342 btrfs_close_bdev(device);
2343 synchronize_rcu();
2344 btrfs_free_device(device);
2345
2346 if (cur_devices->open_devices == 0) {
2347 while (fs_devices) {
2348 if (fs_devices->seed == cur_devices) {
2349 fs_devices->seed = cur_devices->seed;
2350 break;
2351 }
2352 fs_devices = fs_devices->seed;
2353 }
2354 cur_devices->seed = NULL;
2355 close_fs_devices(cur_devices);
2356 free_fs_devices(cur_devices);
2357 }
2358
2359 out:
2360 return ret;
2361
2362 error_undo:
2363 btrfs_reada_undo_remove_dev(device);
2364 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2365 mutex_lock(&fs_info->chunk_mutex);
2366 list_add(&device->dev_alloc_list,
2367 &fs_devices->alloc_list);
2368 device->fs_devices->rw_devices++;
2369 mutex_unlock(&fs_info->chunk_mutex);
2370 }
2371 goto out;
2372 }
2373
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2374 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2375 {
2376 struct btrfs_fs_devices *fs_devices;
2377
2378 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2379
2380 /*
2381 * in case of fs with no seed, srcdev->fs_devices will point
2382 * to fs_devices of fs_info. However when the dev being replaced is
2383 * a seed dev it will point to the seed's local fs_devices. In short
2384 * srcdev will have its correct fs_devices in both the cases.
2385 */
2386 fs_devices = srcdev->fs_devices;
2387
2388 list_del_rcu(&srcdev->dev_list);
2389 list_del(&srcdev->dev_alloc_list);
2390 fs_devices->num_devices--;
2391 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2392 fs_devices->missing_devices--;
2393
2394 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2395 fs_devices->rw_devices--;
2396
2397 if (srcdev->bdev)
2398 fs_devices->open_devices--;
2399 }
2400
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2401 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2402 {
2403 struct btrfs_fs_info *fs_info = srcdev->fs_info;
2404 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2405
2406 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2407 /* zero out the old super if it is writable */
2408 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2409 }
2410
2411 btrfs_close_bdev(srcdev);
2412 synchronize_rcu();
2413 btrfs_free_device(srcdev);
2414
2415 /* if this is no devs we rather delete the fs_devices */
2416 if (!fs_devices->num_devices) {
2417 struct btrfs_fs_devices *tmp_fs_devices;
2418
2419 /*
2420 * On a mounted FS, num_devices can't be zero unless it's a
2421 * seed. In case of a seed device being replaced, the replace
2422 * target added to the sprout FS, so there will be no more
2423 * device left under the seed FS.
2424 */
2425 ASSERT(fs_devices->seeding);
2426
2427 tmp_fs_devices = fs_info->fs_devices;
2428 while (tmp_fs_devices) {
2429 if (tmp_fs_devices->seed == fs_devices) {
2430 tmp_fs_devices->seed = fs_devices->seed;
2431 break;
2432 }
2433 tmp_fs_devices = tmp_fs_devices->seed;
2434 }
2435 fs_devices->seed = NULL;
2436 close_fs_devices(fs_devices);
2437 free_fs_devices(fs_devices);
2438 }
2439 }
2440
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2441 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2442 {
2443 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2444
2445 WARN_ON(!tgtdev);
2446 mutex_lock(&fs_devices->device_list_mutex);
2447
2448 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2449
2450 if (tgtdev->bdev)
2451 fs_devices->open_devices--;
2452
2453 fs_devices->num_devices--;
2454
2455 btrfs_assign_next_active_device(tgtdev, NULL);
2456
2457 list_del_rcu(&tgtdev->dev_list);
2458
2459 mutex_unlock(&fs_devices->device_list_mutex);
2460
2461 /*
2462 * The update_dev_time() with in btrfs_scratch_superblocks()
2463 * may lead to a call to btrfs_show_devname() which will try
2464 * to hold device_list_mutex. And here this device
2465 * is already out of device list, so we don't have to hold
2466 * the device_list_mutex lock.
2467 */
2468 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2469
2470 btrfs_close_bdev(tgtdev);
2471 synchronize_rcu();
2472 btrfs_free_device(tgtdev);
2473 }
2474
btrfs_find_device_by_path(struct btrfs_fs_info * fs_info,const char * device_path)2475 static struct btrfs_device *btrfs_find_device_by_path(
2476 struct btrfs_fs_info *fs_info, const char *device_path)
2477 {
2478 int ret = 0;
2479 struct btrfs_super_block *disk_super;
2480 u64 devid;
2481 u8 *dev_uuid;
2482 struct block_device *bdev;
2483 struct buffer_head *bh;
2484 struct btrfs_device *device;
2485
2486 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2487 fs_info->bdev_holder, 0, &bdev, &bh);
2488 if (ret)
2489 return ERR_PTR(ret);
2490 disk_super = (struct btrfs_super_block *)bh->b_data;
2491 devid = btrfs_stack_device_id(&disk_super->dev_item);
2492 dev_uuid = disk_super->dev_item.uuid;
2493 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2494 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2495 disk_super->metadata_uuid, true);
2496 else
2497 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2498 disk_super->fsid, true);
2499
2500 brelse(bh);
2501 if (!device)
2502 device = ERR_PTR(-ENOENT);
2503 blkdev_put(bdev, FMODE_READ);
2504 return device;
2505 }
2506
2507 /*
2508 * Lookup a device given by device id, or the path if the id is 0.
2509 */
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2510 struct btrfs_device *btrfs_find_device_by_devspec(
2511 struct btrfs_fs_info *fs_info, u64 devid,
2512 const char *device_path)
2513 {
2514 struct btrfs_device *device;
2515
2516 if (devid) {
2517 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2518 NULL, true);
2519 if (!device)
2520 return ERR_PTR(-ENOENT);
2521 return device;
2522 }
2523
2524 if (!device_path || !device_path[0])
2525 return ERR_PTR(-EINVAL);
2526
2527 if (strcmp(device_path, "missing") == 0) {
2528 /* Find first missing device */
2529 list_for_each_entry(device, &fs_info->fs_devices->devices,
2530 dev_list) {
2531 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2532 &device->dev_state) && !device->bdev)
2533 return device;
2534 }
2535 return ERR_PTR(-ENOENT);
2536 }
2537
2538 return btrfs_find_device_by_path(fs_info, device_path);
2539 }
2540
2541 /*
2542 * does all the dirty work required for changing file system's UUID.
2543 */
btrfs_prepare_sprout(struct btrfs_fs_info * fs_info)2544 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2545 {
2546 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2547 struct btrfs_fs_devices *old_devices;
2548 struct btrfs_fs_devices *seed_devices;
2549 struct btrfs_super_block *disk_super = fs_info->super_copy;
2550 struct btrfs_device *device;
2551 u64 super_flags;
2552
2553 lockdep_assert_held(&uuid_mutex);
2554 if (!fs_devices->seeding)
2555 return -EINVAL;
2556
2557 seed_devices = alloc_fs_devices(NULL, NULL);
2558 if (IS_ERR(seed_devices))
2559 return PTR_ERR(seed_devices);
2560
2561 old_devices = clone_fs_devices(fs_devices);
2562 if (IS_ERR(old_devices)) {
2563 kfree(seed_devices);
2564 return PTR_ERR(old_devices);
2565 }
2566
2567 list_add(&old_devices->fs_list, &fs_uuids);
2568
2569 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2570 seed_devices->opened = 1;
2571 INIT_LIST_HEAD(&seed_devices->devices);
2572 INIT_LIST_HEAD(&seed_devices->alloc_list);
2573 mutex_init(&seed_devices->device_list_mutex);
2574
2575 mutex_lock(&fs_devices->device_list_mutex);
2576 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2577 synchronize_rcu);
2578 list_for_each_entry(device, &seed_devices->devices, dev_list)
2579 device->fs_devices = seed_devices;
2580
2581 mutex_lock(&fs_info->chunk_mutex);
2582 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2583 mutex_unlock(&fs_info->chunk_mutex);
2584
2585 fs_devices->seeding = 0;
2586 fs_devices->num_devices = 0;
2587 fs_devices->open_devices = 0;
2588 fs_devices->missing_devices = 0;
2589 fs_devices->rotating = 0;
2590 fs_devices->seed = seed_devices;
2591
2592 generate_random_uuid(fs_devices->fsid);
2593 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2594 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2595 mutex_unlock(&fs_devices->device_list_mutex);
2596
2597 super_flags = btrfs_super_flags(disk_super) &
2598 ~BTRFS_SUPER_FLAG_SEEDING;
2599 btrfs_set_super_flags(disk_super, super_flags);
2600
2601 return 0;
2602 }
2603
2604 /*
2605 * Store the expected generation for seed devices in device items.
2606 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2607 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2608 {
2609 struct btrfs_fs_info *fs_info = trans->fs_info;
2610 struct btrfs_root *root = fs_info->chunk_root;
2611 struct btrfs_path *path;
2612 struct extent_buffer *leaf;
2613 struct btrfs_dev_item *dev_item;
2614 struct btrfs_device *device;
2615 struct btrfs_key key;
2616 u8 fs_uuid[BTRFS_FSID_SIZE];
2617 u8 dev_uuid[BTRFS_UUID_SIZE];
2618 u64 devid;
2619 int ret;
2620
2621 path = btrfs_alloc_path();
2622 if (!path)
2623 return -ENOMEM;
2624
2625 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2626 key.offset = 0;
2627 key.type = BTRFS_DEV_ITEM_KEY;
2628
2629 while (1) {
2630 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2631 if (ret < 0)
2632 goto error;
2633
2634 leaf = path->nodes[0];
2635 next_slot:
2636 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2637 ret = btrfs_next_leaf(root, path);
2638 if (ret > 0)
2639 break;
2640 if (ret < 0)
2641 goto error;
2642 leaf = path->nodes[0];
2643 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2644 btrfs_release_path(path);
2645 continue;
2646 }
2647
2648 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2649 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2650 key.type != BTRFS_DEV_ITEM_KEY)
2651 break;
2652
2653 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2654 struct btrfs_dev_item);
2655 devid = btrfs_device_id(leaf, dev_item);
2656 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2657 BTRFS_UUID_SIZE);
2658 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2659 BTRFS_FSID_SIZE);
2660 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2661 fs_uuid, true);
2662 BUG_ON(!device); /* Logic error */
2663
2664 if (device->fs_devices->seeding) {
2665 btrfs_set_device_generation(leaf, dev_item,
2666 device->generation);
2667 btrfs_mark_buffer_dirty(leaf);
2668 }
2669
2670 path->slots[0]++;
2671 goto next_slot;
2672 }
2673 ret = 0;
2674 error:
2675 btrfs_free_path(path);
2676 return ret;
2677 }
2678
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2679 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2680 {
2681 struct btrfs_root *root = fs_info->dev_root;
2682 struct request_queue *q;
2683 struct btrfs_trans_handle *trans;
2684 struct btrfs_device *device;
2685 struct block_device *bdev;
2686 struct super_block *sb = fs_info->sb;
2687 struct rcu_string *name;
2688 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2689 u64 orig_super_total_bytes;
2690 u64 orig_super_num_devices;
2691 int seeding_dev = 0;
2692 int ret = 0;
2693 bool unlocked = false;
2694
2695 if (sb_rdonly(sb) && !fs_devices->seeding)
2696 return -EROFS;
2697
2698 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2699 fs_info->bdev_holder);
2700 if (IS_ERR(bdev))
2701 return PTR_ERR(bdev);
2702
2703 if (fs_devices->seeding) {
2704 seeding_dev = 1;
2705 down_write(&sb->s_umount);
2706 mutex_lock(&uuid_mutex);
2707 }
2708
2709 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2710
2711 mutex_lock(&fs_devices->device_list_mutex);
2712 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2713 if (device->bdev == bdev) {
2714 ret = -EEXIST;
2715 mutex_unlock(
2716 &fs_devices->device_list_mutex);
2717 goto error;
2718 }
2719 }
2720 mutex_unlock(&fs_devices->device_list_mutex);
2721
2722 device = btrfs_alloc_device(fs_info, NULL, NULL);
2723 if (IS_ERR(device)) {
2724 /* we can safely leave the fs_devices entry around */
2725 ret = PTR_ERR(device);
2726 goto error;
2727 }
2728
2729 name = rcu_string_strdup(device_path, GFP_KERNEL);
2730 if (!name) {
2731 ret = -ENOMEM;
2732 goto error_free_device;
2733 }
2734 rcu_assign_pointer(device->name, name);
2735
2736 trans = btrfs_start_transaction(root, 0);
2737 if (IS_ERR(trans)) {
2738 ret = PTR_ERR(trans);
2739 goto error_free_device;
2740 }
2741
2742 q = bdev_get_queue(bdev);
2743 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2744 device->generation = trans->transid;
2745 device->io_width = fs_info->sectorsize;
2746 device->io_align = fs_info->sectorsize;
2747 device->sector_size = fs_info->sectorsize;
2748 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2749 fs_info->sectorsize);
2750 device->disk_total_bytes = device->total_bytes;
2751 device->commit_total_bytes = device->total_bytes;
2752 device->fs_info = fs_info;
2753 device->bdev = bdev;
2754 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2755 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2756 device->mode = FMODE_EXCL;
2757 device->dev_stats_valid = 1;
2758 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2759
2760 if (seeding_dev) {
2761 sb->s_flags &= ~SB_RDONLY;
2762 ret = btrfs_prepare_sprout(fs_info);
2763 if (ret) {
2764 btrfs_abort_transaction(trans, ret);
2765 goto error_trans;
2766 }
2767 }
2768
2769 device->fs_devices = fs_devices;
2770
2771 mutex_lock(&fs_devices->device_list_mutex);
2772 mutex_lock(&fs_info->chunk_mutex);
2773 list_add_rcu(&device->dev_list, &fs_devices->devices);
2774 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2775 fs_devices->num_devices++;
2776 fs_devices->open_devices++;
2777 fs_devices->rw_devices++;
2778 fs_devices->total_devices++;
2779 fs_devices->total_rw_bytes += device->total_bytes;
2780
2781 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2782
2783 if (!blk_queue_nonrot(q))
2784 fs_devices->rotating = 1;
2785
2786 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2787 btrfs_set_super_total_bytes(fs_info->super_copy,
2788 round_down(orig_super_total_bytes + device->total_bytes,
2789 fs_info->sectorsize));
2790
2791 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2792 btrfs_set_super_num_devices(fs_info->super_copy,
2793 orig_super_num_devices + 1);
2794
2795 /*
2796 * we've got more storage, clear any full flags on the space
2797 * infos
2798 */
2799 btrfs_clear_space_info_full(fs_info);
2800
2801 mutex_unlock(&fs_info->chunk_mutex);
2802
2803 /* Add sysfs device entry */
2804 btrfs_sysfs_add_device_link(fs_devices, device);
2805
2806 mutex_unlock(&fs_devices->device_list_mutex);
2807
2808 if (seeding_dev) {
2809 mutex_lock(&fs_info->chunk_mutex);
2810 ret = init_first_rw_device(trans);
2811 mutex_unlock(&fs_info->chunk_mutex);
2812 if (ret) {
2813 btrfs_abort_transaction(trans, ret);
2814 goto error_sysfs;
2815 }
2816 }
2817
2818 ret = btrfs_add_dev_item(trans, device);
2819 if (ret) {
2820 btrfs_abort_transaction(trans, ret);
2821 goto error_sysfs;
2822 }
2823
2824 if (seeding_dev) {
2825 ret = btrfs_finish_sprout(trans);
2826 if (ret) {
2827 btrfs_abort_transaction(trans, ret);
2828 goto error_sysfs;
2829 }
2830
2831 btrfs_sysfs_update_sprout_fsid(fs_devices,
2832 fs_info->fs_devices->fsid);
2833 }
2834
2835 ret = btrfs_commit_transaction(trans);
2836
2837 if (seeding_dev) {
2838 mutex_unlock(&uuid_mutex);
2839 up_write(&sb->s_umount);
2840 unlocked = true;
2841
2842 if (ret) /* transaction commit */
2843 return ret;
2844
2845 ret = btrfs_relocate_sys_chunks(fs_info);
2846 if (ret < 0)
2847 btrfs_handle_fs_error(fs_info, ret,
2848 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2849 trans = btrfs_attach_transaction(root);
2850 if (IS_ERR(trans)) {
2851 if (PTR_ERR(trans) == -ENOENT)
2852 return 0;
2853 ret = PTR_ERR(trans);
2854 trans = NULL;
2855 goto error_sysfs;
2856 }
2857 ret = btrfs_commit_transaction(trans);
2858 }
2859
2860 /*
2861 * Now that we have written a new super block to this device, check all
2862 * other fs_devices list if device_path alienates any other scanned
2863 * device.
2864 * We can ignore the return value as it typically returns -EINVAL and
2865 * only succeeds if the device was an alien.
2866 */
2867 btrfs_forget_devices(device_path);
2868
2869 /* Update ctime/mtime for blkid or udev */
2870 update_dev_time(device_path);
2871
2872 return ret;
2873
2874 error_sysfs:
2875 btrfs_sysfs_rm_device_link(fs_devices, device);
2876 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2877 mutex_lock(&fs_info->chunk_mutex);
2878 list_del_rcu(&device->dev_list);
2879 list_del(&device->dev_alloc_list);
2880 fs_info->fs_devices->num_devices--;
2881 fs_info->fs_devices->open_devices--;
2882 fs_info->fs_devices->rw_devices--;
2883 fs_info->fs_devices->total_devices--;
2884 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2885 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2886 btrfs_set_super_total_bytes(fs_info->super_copy,
2887 orig_super_total_bytes);
2888 btrfs_set_super_num_devices(fs_info->super_copy,
2889 orig_super_num_devices);
2890 mutex_unlock(&fs_info->chunk_mutex);
2891 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2892 error_trans:
2893 if (seeding_dev)
2894 sb->s_flags |= SB_RDONLY;
2895 if (trans)
2896 btrfs_end_transaction(trans);
2897 error_free_device:
2898 btrfs_free_device(device);
2899 error:
2900 blkdev_put(bdev, FMODE_EXCL);
2901 if (seeding_dev && !unlocked) {
2902 mutex_unlock(&uuid_mutex);
2903 up_write(&sb->s_umount);
2904 }
2905 return ret;
2906 }
2907
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2908 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2909 struct btrfs_device *device)
2910 {
2911 int ret;
2912 struct btrfs_path *path;
2913 struct btrfs_root *root = device->fs_info->chunk_root;
2914 struct btrfs_dev_item *dev_item;
2915 struct extent_buffer *leaf;
2916 struct btrfs_key key;
2917
2918 path = btrfs_alloc_path();
2919 if (!path)
2920 return -ENOMEM;
2921
2922 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2923 key.type = BTRFS_DEV_ITEM_KEY;
2924 key.offset = device->devid;
2925
2926 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2927 if (ret < 0)
2928 goto out;
2929
2930 if (ret > 0) {
2931 ret = -ENOENT;
2932 goto out;
2933 }
2934
2935 leaf = path->nodes[0];
2936 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2937
2938 btrfs_set_device_id(leaf, dev_item, device->devid);
2939 btrfs_set_device_type(leaf, dev_item, device->type);
2940 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2941 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2942 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2943 btrfs_set_device_total_bytes(leaf, dev_item,
2944 btrfs_device_get_disk_total_bytes(device));
2945 btrfs_set_device_bytes_used(leaf, dev_item,
2946 btrfs_device_get_bytes_used(device));
2947 btrfs_mark_buffer_dirty(leaf);
2948
2949 out:
2950 btrfs_free_path(path);
2951 return ret;
2952 }
2953
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2954 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2955 struct btrfs_device *device, u64 new_size)
2956 {
2957 struct btrfs_fs_info *fs_info = device->fs_info;
2958 struct btrfs_super_block *super_copy = fs_info->super_copy;
2959 u64 old_total;
2960 u64 diff;
2961
2962 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2963 return -EACCES;
2964
2965 new_size = round_down(new_size, fs_info->sectorsize);
2966
2967 mutex_lock(&fs_info->chunk_mutex);
2968 old_total = btrfs_super_total_bytes(super_copy);
2969 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2970
2971 if (new_size <= device->total_bytes ||
2972 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2973 mutex_unlock(&fs_info->chunk_mutex);
2974 return -EINVAL;
2975 }
2976
2977 btrfs_set_super_total_bytes(super_copy,
2978 round_down(old_total + diff, fs_info->sectorsize));
2979 device->fs_devices->total_rw_bytes += diff;
2980
2981 btrfs_device_set_total_bytes(device, new_size);
2982 btrfs_device_set_disk_total_bytes(device, new_size);
2983 btrfs_clear_space_info_full(device->fs_info);
2984 if (list_empty(&device->post_commit_list))
2985 list_add_tail(&device->post_commit_list,
2986 &trans->transaction->dev_update_list);
2987 mutex_unlock(&fs_info->chunk_mutex);
2988
2989 return btrfs_update_device(trans, device);
2990 }
2991
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)2992 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2993 {
2994 struct btrfs_fs_info *fs_info = trans->fs_info;
2995 struct btrfs_root *root = fs_info->chunk_root;
2996 int ret;
2997 struct btrfs_path *path;
2998 struct btrfs_key key;
2999
3000 path = btrfs_alloc_path();
3001 if (!path)
3002 return -ENOMEM;
3003
3004 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3005 key.offset = chunk_offset;
3006 key.type = BTRFS_CHUNK_ITEM_KEY;
3007
3008 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3009 if (ret < 0)
3010 goto out;
3011 else if (ret > 0) { /* Logic error or corruption */
3012 btrfs_handle_fs_error(fs_info, -ENOENT,
3013 "Failed lookup while freeing chunk.");
3014 ret = -ENOENT;
3015 goto out;
3016 }
3017
3018 ret = btrfs_del_item(trans, root, path);
3019 if (ret < 0)
3020 btrfs_handle_fs_error(fs_info, ret,
3021 "Failed to delete chunk item.");
3022 out:
3023 btrfs_free_path(path);
3024 return ret;
3025 }
3026
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3027 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3028 {
3029 struct btrfs_super_block *super_copy = fs_info->super_copy;
3030 struct btrfs_disk_key *disk_key;
3031 struct btrfs_chunk *chunk;
3032 u8 *ptr;
3033 int ret = 0;
3034 u32 num_stripes;
3035 u32 array_size;
3036 u32 len = 0;
3037 u32 cur;
3038 struct btrfs_key key;
3039
3040 mutex_lock(&fs_info->chunk_mutex);
3041 array_size = btrfs_super_sys_array_size(super_copy);
3042
3043 ptr = super_copy->sys_chunk_array;
3044 cur = 0;
3045
3046 while (cur < array_size) {
3047 disk_key = (struct btrfs_disk_key *)ptr;
3048 btrfs_disk_key_to_cpu(&key, disk_key);
3049
3050 len = sizeof(*disk_key);
3051
3052 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3053 chunk = (struct btrfs_chunk *)(ptr + len);
3054 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3055 len += btrfs_chunk_item_size(num_stripes);
3056 } else {
3057 ret = -EIO;
3058 break;
3059 }
3060 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3061 key.offset == chunk_offset) {
3062 memmove(ptr, ptr + len, array_size - (cur + len));
3063 array_size -= len;
3064 btrfs_set_super_sys_array_size(super_copy, array_size);
3065 } else {
3066 ptr += len;
3067 cur += len;
3068 }
3069 }
3070 mutex_unlock(&fs_info->chunk_mutex);
3071 return ret;
3072 }
3073
3074 /*
3075 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3076 * @logical: Logical block offset in bytes.
3077 * @length: Length of extent in bytes.
3078 *
3079 * Return: Chunk mapping or ERR_PTR.
3080 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3081 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3082 u64 logical, u64 length)
3083 {
3084 struct extent_map_tree *em_tree;
3085 struct extent_map *em;
3086
3087 em_tree = &fs_info->mapping_tree;
3088 read_lock(&em_tree->lock);
3089 em = lookup_extent_mapping(em_tree, logical, length);
3090 read_unlock(&em_tree->lock);
3091
3092 if (!em) {
3093 btrfs_crit(fs_info,
3094 "unable to find chunk map for logical %llu length %llu",
3095 logical, length);
3096 return ERR_PTR(-EINVAL);
3097 }
3098
3099 if (em->start > logical || em->start + em->len <= logical) {
3100 btrfs_crit(fs_info,
3101 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3102 logical, logical + length, em->start, em->start + em->len);
3103 free_extent_map(em);
3104 return ERR_PTR(-EINVAL);
3105 }
3106
3107 /* callers are responsible for dropping em's ref. */
3108 return em;
3109 }
3110
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3111 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3112 {
3113 struct btrfs_fs_info *fs_info = trans->fs_info;
3114 struct extent_map *em;
3115 struct map_lookup *map;
3116 u64 dev_extent_len = 0;
3117 int i, ret = 0;
3118 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3119
3120 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3121 if (IS_ERR(em)) {
3122 /*
3123 * This is a logic error, but we don't want to just rely on the
3124 * user having built with ASSERT enabled, so if ASSERT doesn't
3125 * do anything we still error out.
3126 */
3127 ASSERT(0);
3128 return PTR_ERR(em);
3129 }
3130 map = em->map_lookup;
3131 mutex_lock(&fs_info->chunk_mutex);
3132 check_system_chunk(trans, map->type);
3133 mutex_unlock(&fs_info->chunk_mutex);
3134
3135 /*
3136 * Take the device list mutex to prevent races with the final phase of
3137 * a device replace operation that replaces the device object associated
3138 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
3139 */
3140 mutex_lock(&fs_devices->device_list_mutex);
3141 for (i = 0; i < map->num_stripes; i++) {
3142 struct btrfs_device *device = map->stripes[i].dev;
3143 ret = btrfs_free_dev_extent(trans, device,
3144 map->stripes[i].physical,
3145 &dev_extent_len);
3146 if (ret) {
3147 mutex_unlock(&fs_devices->device_list_mutex);
3148 btrfs_abort_transaction(trans, ret);
3149 goto out;
3150 }
3151
3152 if (device->bytes_used > 0) {
3153 mutex_lock(&fs_info->chunk_mutex);
3154 btrfs_device_set_bytes_used(device,
3155 device->bytes_used - dev_extent_len);
3156 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3157 btrfs_clear_space_info_full(fs_info);
3158 mutex_unlock(&fs_info->chunk_mutex);
3159 }
3160
3161 ret = btrfs_update_device(trans, device);
3162 if (ret) {
3163 mutex_unlock(&fs_devices->device_list_mutex);
3164 btrfs_abort_transaction(trans, ret);
3165 goto out;
3166 }
3167 }
3168 mutex_unlock(&fs_devices->device_list_mutex);
3169
3170 ret = btrfs_free_chunk(trans, chunk_offset);
3171 if (ret) {
3172 btrfs_abort_transaction(trans, ret);
3173 goto out;
3174 }
3175
3176 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3177
3178 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3179 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3180 if (ret) {
3181 btrfs_abort_transaction(trans, ret);
3182 goto out;
3183 }
3184 }
3185
3186 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3187 if (ret) {
3188 btrfs_abort_transaction(trans, ret);
3189 goto out;
3190 }
3191
3192 out:
3193 /* once for us */
3194 free_extent_map(em);
3195 return ret;
3196 }
3197
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3198 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3199 {
3200 struct btrfs_root *root = fs_info->chunk_root;
3201 struct btrfs_trans_handle *trans;
3202 int ret;
3203
3204 /*
3205 * Prevent races with automatic removal of unused block groups.
3206 * After we relocate and before we remove the chunk with offset
3207 * chunk_offset, automatic removal of the block group can kick in,
3208 * resulting in a failure when calling btrfs_remove_chunk() below.
3209 *
3210 * Make sure to acquire this mutex before doing a tree search (dev
3211 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3212 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3213 * we release the path used to search the chunk/dev tree and before
3214 * the current task acquires this mutex and calls us.
3215 */
3216 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3217
3218 /* step one, relocate all the extents inside this chunk */
3219 btrfs_scrub_pause(fs_info);
3220 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3221 btrfs_scrub_continue(fs_info);
3222 if (ret)
3223 return ret;
3224
3225 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3226 chunk_offset);
3227 if (IS_ERR(trans)) {
3228 ret = PTR_ERR(trans);
3229 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3230 return ret;
3231 }
3232
3233 /*
3234 * step two, delete the device extents and the
3235 * chunk tree entries
3236 */
3237 ret = btrfs_remove_chunk(trans, chunk_offset);
3238 btrfs_end_transaction(trans);
3239 return ret;
3240 }
3241
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3242 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3243 {
3244 struct btrfs_root *chunk_root = fs_info->chunk_root;
3245 struct btrfs_path *path;
3246 struct extent_buffer *leaf;
3247 struct btrfs_chunk *chunk;
3248 struct btrfs_key key;
3249 struct btrfs_key found_key;
3250 u64 chunk_type;
3251 bool retried = false;
3252 int failed = 0;
3253 int ret;
3254
3255 path = btrfs_alloc_path();
3256 if (!path)
3257 return -ENOMEM;
3258
3259 again:
3260 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3261 key.offset = (u64)-1;
3262 key.type = BTRFS_CHUNK_ITEM_KEY;
3263
3264 while (1) {
3265 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3266 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3267 if (ret < 0) {
3268 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3269 goto error;
3270 }
3271 if (ret == 0) {
3272 /*
3273 * On the first search we would find chunk tree with
3274 * offset -1, which is not possible. On subsequent
3275 * loops this would find an existing item on an invalid
3276 * offset (one less than the previous one, wrong
3277 * alignment and size).
3278 */
3279 ret = -EUCLEAN;
3280 goto error;
3281 }
3282
3283 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3284 key.type);
3285 if (ret)
3286 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3287 if (ret < 0)
3288 goto error;
3289 if (ret > 0)
3290 break;
3291
3292 leaf = path->nodes[0];
3293 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3294
3295 chunk = btrfs_item_ptr(leaf, path->slots[0],
3296 struct btrfs_chunk);
3297 chunk_type = btrfs_chunk_type(leaf, chunk);
3298 btrfs_release_path(path);
3299
3300 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3301 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3302 if (ret == -ENOSPC)
3303 failed++;
3304 else
3305 BUG_ON(ret);
3306 }
3307 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3308
3309 if (found_key.offset == 0)
3310 break;
3311 key.offset = found_key.offset - 1;
3312 }
3313 ret = 0;
3314 if (failed && !retried) {
3315 failed = 0;
3316 retried = true;
3317 goto again;
3318 } else if (WARN_ON(failed && retried)) {
3319 ret = -ENOSPC;
3320 }
3321 error:
3322 btrfs_free_path(path);
3323 return ret;
3324 }
3325
3326 /*
3327 * return 1 : allocate a data chunk successfully,
3328 * return <0: errors during allocating a data chunk,
3329 * return 0 : no need to allocate a data chunk.
3330 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3331 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3332 u64 chunk_offset)
3333 {
3334 struct btrfs_block_group_cache *cache;
3335 u64 bytes_used;
3336 u64 chunk_type;
3337
3338 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3339 ASSERT(cache);
3340 chunk_type = cache->flags;
3341 btrfs_put_block_group(cache);
3342
3343 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3344 spin_lock(&fs_info->data_sinfo->lock);
3345 bytes_used = fs_info->data_sinfo->bytes_used;
3346 spin_unlock(&fs_info->data_sinfo->lock);
3347
3348 if (!bytes_used) {
3349 struct btrfs_trans_handle *trans;
3350 int ret;
3351
3352 trans = btrfs_join_transaction(fs_info->tree_root);
3353 if (IS_ERR(trans))
3354 return PTR_ERR(trans);
3355
3356 ret = btrfs_force_chunk_alloc(trans,
3357 BTRFS_BLOCK_GROUP_DATA);
3358 btrfs_end_transaction(trans);
3359 if (ret < 0)
3360 return ret;
3361 return 1;
3362 }
3363 }
3364 return 0;
3365 }
3366
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3367 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3368 struct btrfs_balance_control *bctl)
3369 {
3370 struct btrfs_root *root = fs_info->tree_root;
3371 struct btrfs_trans_handle *trans;
3372 struct btrfs_balance_item *item;
3373 struct btrfs_disk_balance_args disk_bargs;
3374 struct btrfs_path *path;
3375 struct extent_buffer *leaf;
3376 struct btrfs_key key;
3377 int ret, err;
3378
3379 path = btrfs_alloc_path();
3380 if (!path)
3381 return -ENOMEM;
3382
3383 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3384 if (IS_ERR(trans)) {
3385 btrfs_free_path(path);
3386 return PTR_ERR(trans);
3387 }
3388
3389 key.objectid = BTRFS_BALANCE_OBJECTID;
3390 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3391 key.offset = 0;
3392
3393 ret = btrfs_insert_empty_item(trans, root, path, &key,
3394 sizeof(*item));
3395 if (ret)
3396 goto out;
3397
3398 leaf = path->nodes[0];
3399 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3400
3401 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3402
3403 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3404 btrfs_set_balance_data(leaf, item, &disk_bargs);
3405 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3406 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3407 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3408 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3409
3410 btrfs_set_balance_flags(leaf, item, bctl->flags);
3411
3412 btrfs_mark_buffer_dirty(leaf);
3413 out:
3414 btrfs_free_path(path);
3415 err = btrfs_commit_transaction(trans);
3416 if (err && !ret)
3417 ret = err;
3418 return ret;
3419 }
3420
del_balance_item(struct btrfs_fs_info * fs_info)3421 static int del_balance_item(struct btrfs_fs_info *fs_info)
3422 {
3423 struct btrfs_root *root = fs_info->tree_root;
3424 struct btrfs_trans_handle *trans;
3425 struct btrfs_path *path;
3426 struct btrfs_key key;
3427 int ret, err;
3428
3429 path = btrfs_alloc_path();
3430 if (!path)
3431 return -ENOMEM;
3432
3433 trans = btrfs_start_transaction(root, 0);
3434 if (IS_ERR(trans)) {
3435 btrfs_free_path(path);
3436 return PTR_ERR(trans);
3437 }
3438
3439 key.objectid = BTRFS_BALANCE_OBJECTID;
3440 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3441 key.offset = 0;
3442
3443 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3444 if (ret < 0)
3445 goto out;
3446 if (ret > 0) {
3447 ret = -ENOENT;
3448 goto out;
3449 }
3450
3451 ret = btrfs_del_item(trans, root, path);
3452 out:
3453 btrfs_free_path(path);
3454 err = btrfs_commit_transaction(trans);
3455 if (err && !ret)
3456 ret = err;
3457 return ret;
3458 }
3459
3460 /*
3461 * This is a heuristic used to reduce the number of chunks balanced on
3462 * resume after balance was interrupted.
3463 */
update_balance_args(struct btrfs_balance_control * bctl)3464 static void update_balance_args(struct btrfs_balance_control *bctl)
3465 {
3466 /*
3467 * Turn on soft mode for chunk types that were being converted.
3468 */
3469 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3470 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3471 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3472 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3473 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3474 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3475
3476 /*
3477 * Turn on usage filter if is not already used. The idea is
3478 * that chunks that we have already balanced should be
3479 * reasonably full. Don't do it for chunks that are being
3480 * converted - that will keep us from relocating unconverted
3481 * (albeit full) chunks.
3482 */
3483 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3484 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3485 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3486 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3487 bctl->data.usage = 90;
3488 }
3489 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3490 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3491 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3492 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3493 bctl->sys.usage = 90;
3494 }
3495 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3496 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3497 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3498 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3499 bctl->meta.usage = 90;
3500 }
3501 }
3502
3503 /*
3504 * Clear the balance status in fs_info and delete the balance item from disk.
3505 */
reset_balance_state(struct btrfs_fs_info * fs_info)3506 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3507 {
3508 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3509 int ret;
3510
3511 BUG_ON(!fs_info->balance_ctl);
3512
3513 spin_lock(&fs_info->balance_lock);
3514 fs_info->balance_ctl = NULL;
3515 spin_unlock(&fs_info->balance_lock);
3516
3517 kfree(bctl);
3518 ret = del_balance_item(fs_info);
3519 if (ret)
3520 btrfs_handle_fs_error(fs_info, ret, NULL);
3521 }
3522
3523 /*
3524 * Balance filters. Return 1 if chunk should be filtered out
3525 * (should not be balanced).
3526 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3527 static int chunk_profiles_filter(u64 chunk_type,
3528 struct btrfs_balance_args *bargs)
3529 {
3530 chunk_type = chunk_to_extended(chunk_type) &
3531 BTRFS_EXTENDED_PROFILE_MASK;
3532
3533 if (bargs->profiles & chunk_type)
3534 return 0;
3535
3536 return 1;
3537 }
3538
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3539 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3540 struct btrfs_balance_args *bargs)
3541 {
3542 struct btrfs_block_group_cache *cache;
3543 u64 chunk_used;
3544 u64 user_thresh_min;
3545 u64 user_thresh_max;
3546 int ret = 1;
3547
3548 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3549 chunk_used = btrfs_block_group_used(&cache->item);
3550
3551 if (bargs->usage_min == 0)
3552 user_thresh_min = 0;
3553 else
3554 user_thresh_min = div_factor_fine(cache->key.offset,
3555 bargs->usage_min);
3556
3557 if (bargs->usage_max == 0)
3558 user_thresh_max = 1;
3559 else if (bargs->usage_max > 100)
3560 user_thresh_max = cache->key.offset;
3561 else
3562 user_thresh_max = div_factor_fine(cache->key.offset,
3563 bargs->usage_max);
3564
3565 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3566 ret = 0;
3567
3568 btrfs_put_block_group(cache);
3569 return ret;
3570 }
3571
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3572 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3573 u64 chunk_offset, struct btrfs_balance_args *bargs)
3574 {
3575 struct btrfs_block_group_cache *cache;
3576 u64 chunk_used, user_thresh;
3577 int ret = 1;
3578
3579 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3580 chunk_used = btrfs_block_group_used(&cache->item);
3581
3582 if (bargs->usage_min == 0)
3583 user_thresh = 1;
3584 else if (bargs->usage > 100)
3585 user_thresh = cache->key.offset;
3586 else
3587 user_thresh = div_factor_fine(cache->key.offset,
3588 bargs->usage);
3589
3590 if (chunk_used < user_thresh)
3591 ret = 0;
3592
3593 btrfs_put_block_group(cache);
3594 return ret;
3595 }
3596
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3597 static int chunk_devid_filter(struct extent_buffer *leaf,
3598 struct btrfs_chunk *chunk,
3599 struct btrfs_balance_args *bargs)
3600 {
3601 struct btrfs_stripe *stripe;
3602 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3603 int i;
3604
3605 for (i = 0; i < num_stripes; i++) {
3606 stripe = btrfs_stripe_nr(chunk, i);
3607 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3608 return 0;
3609 }
3610
3611 return 1;
3612 }
3613
calc_data_stripes(u64 type,int num_stripes)3614 static u64 calc_data_stripes(u64 type, int num_stripes)
3615 {
3616 const int index = btrfs_bg_flags_to_raid_index(type);
3617 const int ncopies = btrfs_raid_array[index].ncopies;
3618 const int nparity = btrfs_raid_array[index].nparity;
3619
3620 if (nparity)
3621 return num_stripes - nparity;
3622 else
3623 return num_stripes / ncopies;
3624 }
3625
3626 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3627 static int chunk_drange_filter(struct extent_buffer *leaf,
3628 struct btrfs_chunk *chunk,
3629 struct btrfs_balance_args *bargs)
3630 {
3631 struct btrfs_stripe *stripe;
3632 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3633 u64 stripe_offset;
3634 u64 stripe_length;
3635 u64 type;
3636 int factor;
3637 int i;
3638
3639 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3640 return 0;
3641
3642 type = btrfs_chunk_type(leaf, chunk);
3643 factor = calc_data_stripes(type, num_stripes);
3644
3645 for (i = 0; i < num_stripes; i++) {
3646 stripe = btrfs_stripe_nr(chunk, i);
3647 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3648 continue;
3649
3650 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3651 stripe_length = btrfs_chunk_length(leaf, chunk);
3652 stripe_length = div_u64(stripe_length, factor);
3653
3654 if (stripe_offset < bargs->pend &&
3655 stripe_offset + stripe_length > bargs->pstart)
3656 return 0;
3657 }
3658
3659 return 1;
3660 }
3661
3662 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3663 static int chunk_vrange_filter(struct extent_buffer *leaf,
3664 struct btrfs_chunk *chunk,
3665 u64 chunk_offset,
3666 struct btrfs_balance_args *bargs)
3667 {
3668 if (chunk_offset < bargs->vend &&
3669 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3670 /* at least part of the chunk is inside this vrange */
3671 return 0;
3672
3673 return 1;
3674 }
3675
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3676 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3677 struct btrfs_chunk *chunk,
3678 struct btrfs_balance_args *bargs)
3679 {
3680 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3681
3682 if (bargs->stripes_min <= num_stripes
3683 && num_stripes <= bargs->stripes_max)
3684 return 0;
3685
3686 return 1;
3687 }
3688
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3689 static int chunk_soft_convert_filter(u64 chunk_type,
3690 struct btrfs_balance_args *bargs)
3691 {
3692 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3693 return 0;
3694
3695 chunk_type = chunk_to_extended(chunk_type) &
3696 BTRFS_EXTENDED_PROFILE_MASK;
3697
3698 if (bargs->target == chunk_type)
3699 return 1;
3700
3701 return 0;
3702 }
3703
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3704 static int should_balance_chunk(struct extent_buffer *leaf,
3705 struct btrfs_chunk *chunk, u64 chunk_offset)
3706 {
3707 struct btrfs_fs_info *fs_info = leaf->fs_info;
3708 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3709 struct btrfs_balance_args *bargs = NULL;
3710 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3711
3712 /* type filter */
3713 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3714 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3715 return 0;
3716 }
3717
3718 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3719 bargs = &bctl->data;
3720 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3721 bargs = &bctl->sys;
3722 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3723 bargs = &bctl->meta;
3724
3725 /* profiles filter */
3726 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3727 chunk_profiles_filter(chunk_type, bargs)) {
3728 return 0;
3729 }
3730
3731 /* usage filter */
3732 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3733 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3734 return 0;
3735 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3736 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3737 return 0;
3738 }
3739
3740 /* devid filter */
3741 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3742 chunk_devid_filter(leaf, chunk, bargs)) {
3743 return 0;
3744 }
3745
3746 /* drange filter, makes sense only with devid filter */
3747 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3748 chunk_drange_filter(leaf, chunk, bargs)) {
3749 return 0;
3750 }
3751
3752 /* vrange filter */
3753 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3754 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3755 return 0;
3756 }
3757
3758 /* stripes filter */
3759 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3760 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3761 return 0;
3762 }
3763
3764 /* soft profile changing mode */
3765 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3766 chunk_soft_convert_filter(chunk_type, bargs)) {
3767 return 0;
3768 }
3769
3770 /*
3771 * limited by count, must be the last filter
3772 */
3773 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3774 if (bargs->limit == 0)
3775 return 0;
3776 else
3777 bargs->limit--;
3778 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3779 /*
3780 * Same logic as the 'limit' filter; the minimum cannot be
3781 * determined here because we do not have the global information
3782 * about the count of all chunks that satisfy the filters.
3783 */
3784 if (bargs->limit_max == 0)
3785 return 0;
3786 else
3787 bargs->limit_max--;
3788 }
3789
3790 return 1;
3791 }
3792
__btrfs_balance(struct btrfs_fs_info * fs_info)3793 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3794 {
3795 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3796 struct btrfs_root *chunk_root = fs_info->chunk_root;
3797 u64 chunk_type;
3798 struct btrfs_chunk *chunk;
3799 struct btrfs_path *path = NULL;
3800 struct btrfs_key key;
3801 struct btrfs_key found_key;
3802 struct extent_buffer *leaf;
3803 int slot;
3804 int ret;
3805 int enospc_errors = 0;
3806 bool counting = true;
3807 /* The single value limit and min/max limits use the same bytes in the */
3808 u64 limit_data = bctl->data.limit;
3809 u64 limit_meta = bctl->meta.limit;
3810 u64 limit_sys = bctl->sys.limit;
3811 u32 count_data = 0;
3812 u32 count_meta = 0;
3813 u32 count_sys = 0;
3814 int chunk_reserved = 0;
3815
3816 path = btrfs_alloc_path();
3817 if (!path) {
3818 ret = -ENOMEM;
3819 goto error;
3820 }
3821
3822 /* zero out stat counters */
3823 spin_lock(&fs_info->balance_lock);
3824 memset(&bctl->stat, 0, sizeof(bctl->stat));
3825 spin_unlock(&fs_info->balance_lock);
3826 again:
3827 if (!counting) {
3828 /*
3829 * The single value limit and min/max limits use the same bytes
3830 * in the
3831 */
3832 bctl->data.limit = limit_data;
3833 bctl->meta.limit = limit_meta;
3834 bctl->sys.limit = limit_sys;
3835 }
3836 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3837 key.offset = (u64)-1;
3838 key.type = BTRFS_CHUNK_ITEM_KEY;
3839
3840 while (1) {
3841 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3842 atomic_read(&fs_info->balance_cancel_req)) {
3843 ret = -ECANCELED;
3844 goto error;
3845 }
3846
3847 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3848 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3849 if (ret < 0) {
3850 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3851 goto error;
3852 }
3853
3854 /*
3855 * this shouldn't happen, it means the last relocate
3856 * failed
3857 */
3858 if (ret == 0)
3859 BUG(); /* FIXME break ? */
3860
3861 ret = btrfs_previous_item(chunk_root, path, 0,
3862 BTRFS_CHUNK_ITEM_KEY);
3863 if (ret) {
3864 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3865 ret = 0;
3866 break;
3867 }
3868
3869 leaf = path->nodes[0];
3870 slot = path->slots[0];
3871 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3872
3873 if (found_key.objectid != key.objectid) {
3874 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3875 break;
3876 }
3877
3878 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3879 chunk_type = btrfs_chunk_type(leaf, chunk);
3880
3881 if (!counting) {
3882 spin_lock(&fs_info->balance_lock);
3883 bctl->stat.considered++;
3884 spin_unlock(&fs_info->balance_lock);
3885 }
3886
3887 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3888
3889 btrfs_release_path(path);
3890 if (!ret) {
3891 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3892 goto loop;
3893 }
3894
3895 if (counting) {
3896 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3897 spin_lock(&fs_info->balance_lock);
3898 bctl->stat.expected++;
3899 spin_unlock(&fs_info->balance_lock);
3900
3901 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3902 count_data++;
3903 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3904 count_sys++;
3905 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3906 count_meta++;
3907
3908 goto loop;
3909 }
3910
3911 /*
3912 * Apply limit_min filter, no need to check if the LIMITS
3913 * filter is used, limit_min is 0 by default
3914 */
3915 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3916 count_data < bctl->data.limit_min)
3917 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3918 count_meta < bctl->meta.limit_min)
3919 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3920 count_sys < bctl->sys.limit_min)) {
3921 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3922 goto loop;
3923 }
3924
3925 if (!chunk_reserved) {
3926 /*
3927 * We may be relocating the only data chunk we have,
3928 * which could potentially end up with losing data's
3929 * raid profile, so lets allocate an empty one in
3930 * advance.
3931 */
3932 ret = btrfs_may_alloc_data_chunk(fs_info,
3933 found_key.offset);
3934 if (ret < 0) {
3935 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3936 goto error;
3937 } else if (ret == 1) {
3938 chunk_reserved = 1;
3939 }
3940 }
3941
3942 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3943 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3944 if (ret == -ENOSPC) {
3945 enospc_errors++;
3946 } else if (ret == -ETXTBSY) {
3947 btrfs_info(fs_info,
3948 "skipping relocation of block group %llu due to active swapfile",
3949 found_key.offset);
3950 ret = 0;
3951 } else if (ret) {
3952 goto error;
3953 } else {
3954 spin_lock(&fs_info->balance_lock);
3955 bctl->stat.completed++;
3956 spin_unlock(&fs_info->balance_lock);
3957 }
3958 loop:
3959 if (found_key.offset == 0)
3960 break;
3961 key.offset = found_key.offset - 1;
3962 }
3963
3964 if (counting) {
3965 btrfs_release_path(path);
3966 counting = false;
3967 goto again;
3968 }
3969 error:
3970 btrfs_free_path(path);
3971 if (enospc_errors) {
3972 btrfs_info(fs_info, "%d enospc errors during balance",
3973 enospc_errors);
3974 if (!ret)
3975 ret = -ENOSPC;
3976 }
3977
3978 return ret;
3979 }
3980
3981 /**
3982 * alloc_profile_is_valid - see if a given profile is valid and reduced
3983 * @flags: profile to validate
3984 * @extended: if true @flags is treated as an extended profile
3985 */
alloc_profile_is_valid(u64 flags,int extended)3986 static int alloc_profile_is_valid(u64 flags, int extended)
3987 {
3988 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3989 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3990
3991 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3992
3993 /* 1) check that all other bits are zeroed */
3994 if (flags & ~mask)
3995 return 0;
3996
3997 /* 2) see if profile is reduced */
3998 if (flags == 0)
3999 return !extended; /* "0" is valid for usual profiles */
4000
4001 /* true if exactly one bit set */
4002 /*
4003 * Don't use is_power_of_2(unsigned long) because it won't work
4004 * for the single profile (1ULL << 48) on 32-bit CPUs.
4005 */
4006 return flags != 0 && (flags & (flags - 1)) == 0;
4007 }
4008
balance_need_close(struct btrfs_fs_info * fs_info)4009 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4010 {
4011 /* cancel requested || normal exit path */
4012 return atomic_read(&fs_info->balance_cancel_req) ||
4013 (atomic_read(&fs_info->balance_pause_req) == 0 &&
4014 atomic_read(&fs_info->balance_cancel_req) == 0);
4015 }
4016
4017 /* Non-zero return value signifies invalidity */
validate_convert_profile(struct btrfs_balance_args * bctl_arg,u64 allowed)4018 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
4019 u64 allowed)
4020 {
4021 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4022 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
4023 (bctl_arg->target & ~allowed)));
4024 }
4025
4026 /*
4027 * Fill @buf with textual description of balance filter flags @bargs, up to
4028 * @size_buf including the terminating null. The output may be trimmed if it
4029 * does not fit into the provided buffer.
4030 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4031 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4032 u32 size_buf)
4033 {
4034 int ret;
4035 u32 size_bp = size_buf;
4036 char *bp = buf;
4037 u64 flags = bargs->flags;
4038 char tmp_buf[128] = {'\0'};
4039
4040 if (!flags)
4041 return;
4042
4043 #define CHECK_APPEND_NOARG(a) \
4044 do { \
4045 ret = snprintf(bp, size_bp, (a)); \
4046 if (ret < 0 || ret >= size_bp) \
4047 goto out_overflow; \
4048 size_bp -= ret; \
4049 bp += ret; \
4050 } while (0)
4051
4052 #define CHECK_APPEND_1ARG(a, v1) \
4053 do { \
4054 ret = snprintf(bp, size_bp, (a), (v1)); \
4055 if (ret < 0 || ret >= size_bp) \
4056 goto out_overflow; \
4057 size_bp -= ret; \
4058 bp += ret; \
4059 } while (0)
4060
4061 #define CHECK_APPEND_2ARG(a, v1, v2) \
4062 do { \
4063 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4064 if (ret < 0 || ret >= size_bp) \
4065 goto out_overflow; \
4066 size_bp -= ret; \
4067 bp += ret; \
4068 } while (0)
4069
4070 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4071 CHECK_APPEND_1ARG("convert=%s,",
4072 btrfs_bg_type_to_raid_name(bargs->target));
4073
4074 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4075 CHECK_APPEND_NOARG("soft,");
4076
4077 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4078 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4079 sizeof(tmp_buf));
4080 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4081 }
4082
4083 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4084 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4085
4086 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4087 CHECK_APPEND_2ARG("usage=%u..%u,",
4088 bargs->usage_min, bargs->usage_max);
4089
4090 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4091 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4092
4093 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4094 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4095 bargs->pstart, bargs->pend);
4096
4097 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4098 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4099 bargs->vstart, bargs->vend);
4100
4101 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4102 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4103
4104 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4105 CHECK_APPEND_2ARG("limit=%u..%u,",
4106 bargs->limit_min, bargs->limit_max);
4107
4108 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4109 CHECK_APPEND_2ARG("stripes=%u..%u,",
4110 bargs->stripes_min, bargs->stripes_max);
4111
4112 #undef CHECK_APPEND_2ARG
4113 #undef CHECK_APPEND_1ARG
4114 #undef CHECK_APPEND_NOARG
4115
4116 out_overflow:
4117
4118 if (size_bp < size_buf)
4119 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4120 else
4121 buf[0] = '\0';
4122 }
4123
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4124 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4125 {
4126 u32 size_buf = 1024;
4127 char tmp_buf[192] = {'\0'};
4128 char *buf;
4129 char *bp;
4130 u32 size_bp = size_buf;
4131 int ret;
4132 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4133
4134 buf = kzalloc(size_buf, GFP_KERNEL);
4135 if (!buf)
4136 return;
4137
4138 bp = buf;
4139
4140 #define CHECK_APPEND_1ARG(a, v1) \
4141 do { \
4142 ret = snprintf(bp, size_bp, (a), (v1)); \
4143 if (ret < 0 || ret >= size_bp) \
4144 goto out_overflow; \
4145 size_bp -= ret; \
4146 bp += ret; \
4147 } while (0)
4148
4149 if (bctl->flags & BTRFS_BALANCE_FORCE)
4150 CHECK_APPEND_1ARG("%s", "-f ");
4151
4152 if (bctl->flags & BTRFS_BALANCE_DATA) {
4153 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4154 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4155 }
4156
4157 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4158 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4159 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4160 }
4161
4162 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4163 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4164 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4165 }
4166
4167 #undef CHECK_APPEND_1ARG
4168
4169 out_overflow:
4170
4171 if (size_bp < size_buf)
4172 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4173 btrfs_info(fs_info, "balance: %s %s",
4174 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4175 "resume" : "start", buf);
4176
4177 kfree(buf);
4178 }
4179
4180 /*
4181 * Should be called with balance mutexe held
4182 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4183 int btrfs_balance(struct btrfs_fs_info *fs_info,
4184 struct btrfs_balance_control *bctl,
4185 struct btrfs_ioctl_balance_args *bargs)
4186 {
4187 u64 meta_target, data_target;
4188 u64 allowed;
4189 int mixed = 0;
4190 int ret;
4191 u64 num_devices;
4192 unsigned seq;
4193 bool reducing_integrity;
4194 int i;
4195
4196 if (btrfs_fs_closing(fs_info) ||
4197 atomic_read(&fs_info->balance_pause_req) ||
4198 atomic_read(&fs_info->balance_cancel_req)) {
4199 ret = -EINVAL;
4200 goto out;
4201 }
4202
4203 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4204 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4205 mixed = 1;
4206
4207 /*
4208 * In case of mixed groups both data and meta should be picked,
4209 * and identical options should be given for both of them.
4210 */
4211 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4212 if (mixed && (bctl->flags & allowed)) {
4213 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4214 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4215 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4216 btrfs_err(fs_info,
4217 "balance: mixed groups data and metadata options must be the same");
4218 ret = -EINVAL;
4219 goto out;
4220 }
4221 }
4222
4223 /*
4224 * rw_devices will not change at the moment, device add/delete/replace
4225 * are excluded by EXCL_OP
4226 */
4227 num_devices = fs_info->fs_devices->rw_devices;
4228
4229 /*
4230 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4231 * special bit for it, to make it easier to distinguish. Thus we need
4232 * to set it manually, or balance would refuse the profile.
4233 */
4234 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4235 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4236 if (num_devices >= btrfs_raid_array[i].devs_min)
4237 allowed |= btrfs_raid_array[i].bg_flag;
4238
4239 if (validate_convert_profile(&bctl->data, allowed)) {
4240 btrfs_err(fs_info,
4241 "balance: invalid convert data profile %s",
4242 btrfs_bg_type_to_raid_name(bctl->data.target));
4243 ret = -EINVAL;
4244 goto out;
4245 }
4246 if (validate_convert_profile(&bctl->meta, allowed)) {
4247 btrfs_err(fs_info,
4248 "balance: invalid convert metadata profile %s",
4249 btrfs_bg_type_to_raid_name(bctl->meta.target));
4250 ret = -EINVAL;
4251 goto out;
4252 }
4253 if (validate_convert_profile(&bctl->sys, allowed)) {
4254 btrfs_err(fs_info,
4255 "balance: invalid convert system profile %s",
4256 btrfs_bg_type_to_raid_name(bctl->sys.target));
4257 ret = -EINVAL;
4258 goto out;
4259 }
4260
4261 /*
4262 * Allow to reduce metadata or system integrity only if force set for
4263 * profiles with redundancy (copies, parity)
4264 */
4265 allowed = 0;
4266 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4267 if (btrfs_raid_array[i].ncopies >= 2 ||
4268 btrfs_raid_array[i].tolerated_failures >= 1)
4269 allowed |= btrfs_raid_array[i].bg_flag;
4270 }
4271 do {
4272 seq = read_seqbegin(&fs_info->profiles_lock);
4273
4274 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4275 (fs_info->avail_system_alloc_bits & allowed) &&
4276 !(bctl->sys.target & allowed)) ||
4277 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4278 (fs_info->avail_metadata_alloc_bits & allowed) &&
4279 !(bctl->meta.target & allowed)))
4280 reducing_integrity = true;
4281 else
4282 reducing_integrity = false;
4283
4284 /* if we're not converting, the target field is uninitialized */
4285 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4286 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4287 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4288 bctl->data.target : fs_info->avail_data_alloc_bits;
4289 } while (read_seqretry(&fs_info->profiles_lock, seq));
4290
4291 if (reducing_integrity) {
4292 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4293 btrfs_info(fs_info,
4294 "balance: force reducing metadata integrity");
4295 } else {
4296 btrfs_err(fs_info,
4297 "balance: reduces metadata integrity, use --force if you want this");
4298 ret = -EINVAL;
4299 goto out;
4300 }
4301 }
4302
4303 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4304 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4305 btrfs_warn(fs_info,
4306 "balance: metadata profile %s has lower redundancy than data profile %s",
4307 btrfs_bg_type_to_raid_name(meta_target),
4308 btrfs_bg_type_to_raid_name(data_target));
4309 }
4310
4311 if (fs_info->send_in_progress) {
4312 btrfs_warn_rl(fs_info,
4313 "cannot run balance while send operations are in progress (%d in progress)",
4314 fs_info->send_in_progress);
4315 ret = -EAGAIN;
4316 goto out;
4317 }
4318
4319 ret = insert_balance_item(fs_info, bctl);
4320 if (ret && ret != -EEXIST)
4321 goto out;
4322
4323 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4324 BUG_ON(ret == -EEXIST);
4325 BUG_ON(fs_info->balance_ctl);
4326 spin_lock(&fs_info->balance_lock);
4327 fs_info->balance_ctl = bctl;
4328 spin_unlock(&fs_info->balance_lock);
4329 } else {
4330 BUG_ON(ret != -EEXIST);
4331 spin_lock(&fs_info->balance_lock);
4332 update_balance_args(bctl);
4333 spin_unlock(&fs_info->balance_lock);
4334 }
4335
4336 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4337 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4338 describe_balance_start_or_resume(fs_info);
4339 mutex_unlock(&fs_info->balance_mutex);
4340
4341 ret = __btrfs_balance(fs_info);
4342
4343 mutex_lock(&fs_info->balance_mutex);
4344 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4345 btrfs_info(fs_info, "balance: paused");
4346 /*
4347 * Balance can be canceled by:
4348 *
4349 * - Regular cancel request
4350 * Then ret == -ECANCELED and balance_cancel_req > 0
4351 *
4352 * - Fatal signal to "btrfs" process
4353 * Either the signal caught by wait_reserve_ticket() and callers
4354 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4355 * got -ECANCELED.
4356 * Either way, in this case balance_cancel_req = 0, and
4357 * ret == -EINTR or ret == -ECANCELED.
4358 *
4359 * So here we only check the return value to catch canceled balance.
4360 */
4361 else if (ret == -ECANCELED || ret == -EINTR)
4362 btrfs_info(fs_info, "balance: canceled");
4363 else
4364 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4365
4366 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4367
4368 if (bargs) {
4369 memset(bargs, 0, sizeof(*bargs));
4370 btrfs_update_ioctl_balance_args(fs_info, bargs);
4371 }
4372
4373 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4374 balance_need_close(fs_info)) {
4375 reset_balance_state(fs_info);
4376 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4377 }
4378
4379 wake_up(&fs_info->balance_wait_q);
4380
4381 return ret;
4382 out:
4383 if (bctl->flags & BTRFS_BALANCE_RESUME)
4384 reset_balance_state(fs_info);
4385 else
4386 kfree(bctl);
4387 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4388
4389 return ret;
4390 }
4391
balance_kthread(void * data)4392 static int balance_kthread(void *data)
4393 {
4394 struct btrfs_fs_info *fs_info = data;
4395 int ret = 0;
4396
4397 sb_start_write(fs_info->sb);
4398 mutex_lock(&fs_info->balance_mutex);
4399 if (fs_info->balance_ctl)
4400 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4401 mutex_unlock(&fs_info->balance_mutex);
4402 sb_end_write(fs_info->sb);
4403
4404 return ret;
4405 }
4406
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4407 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4408 {
4409 struct task_struct *tsk;
4410
4411 mutex_lock(&fs_info->balance_mutex);
4412 if (!fs_info->balance_ctl) {
4413 mutex_unlock(&fs_info->balance_mutex);
4414 return 0;
4415 }
4416 mutex_unlock(&fs_info->balance_mutex);
4417
4418 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4419 btrfs_info(fs_info, "balance: resume skipped");
4420 return 0;
4421 }
4422
4423 /*
4424 * A ro->rw remount sequence should continue with the paused balance
4425 * regardless of who pauses it, system or the user as of now, so set
4426 * the resume flag.
4427 */
4428 spin_lock(&fs_info->balance_lock);
4429 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4430 spin_unlock(&fs_info->balance_lock);
4431
4432 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4433 return PTR_ERR_OR_ZERO(tsk);
4434 }
4435
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4436 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4437 {
4438 struct btrfs_balance_control *bctl;
4439 struct btrfs_balance_item *item;
4440 struct btrfs_disk_balance_args disk_bargs;
4441 struct btrfs_path *path;
4442 struct extent_buffer *leaf;
4443 struct btrfs_key key;
4444 int ret;
4445
4446 path = btrfs_alloc_path();
4447 if (!path)
4448 return -ENOMEM;
4449
4450 key.objectid = BTRFS_BALANCE_OBJECTID;
4451 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4452 key.offset = 0;
4453
4454 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4455 if (ret < 0)
4456 goto out;
4457 if (ret > 0) { /* ret = -ENOENT; */
4458 ret = 0;
4459 goto out;
4460 }
4461
4462 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4463 if (!bctl) {
4464 ret = -ENOMEM;
4465 goto out;
4466 }
4467
4468 leaf = path->nodes[0];
4469 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4470
4471 bctl->flags = btrfs_balance_flags(leaf, item);
4472 bctl->flags |= BTRFS_BALANCE_RESUME;
4473
4474 btrfs_balance_data(leaf, item, &disk_bargs);
4475 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4476 btrfs_balance_meta(leaf, item, &disk_bargs);
4477 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4478 btrfs_balance_sys(leaf, item, &disk_bargs);
4479 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4480
4481 /*
4482 * This should never happen, as the paused balance state is recovered
4483 * during mount without any chance of other exclusive ops to collide.
4484 *
4485 * This gives the exclusive op status to balance and keeps in paused
4486 * state until user intervention (cancel or umount). If the ownership
4487 * cannot be assigned, show a message but do not fail. The balance
4488 * is in a paused state and must have fs_info::balance_ctl properly
4489 * set up.
4490 */
4491 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4492 btrfs_warn(fs_info,
4493 "balance: cannot set exclusive op status, resume manually");
4494
4495 btrfs_release_path(path);
4496
4497 mutex_lock(&fs_info->balance_mutex);
4498 BUG_ON(fs_info->balance_ctl);
4499 spin_lock(&fs_info->balance_lock);
4500 fs_info->balance_ctl = bctl;
4501 spin_unlock(&fs_info->balance_lock);
4502 mutex_unlock(&fs_info->balance_mutex);
4503 out:
4504 btrfs_free_path(path);
4505 return ret;
4506 }
4507
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4508 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4509 {
4510 int ret = 0;
4511
4512 mutex_lock(&fs_info->balance_mutex);
4513 if (!fs_info->balance_ctl) {
4514 mutex_unlock(&fs_info->balance_mutex);
4515 return -ENOTCONN;
4516 }
4517
4518 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4519 atomic_inc(&fs_info->balance_pause_req);
4520 mutex_unlock(&fs_info->balance_mutex);
4521
4522 wait_event(fs_info->balance_wait_q,
4523 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4524
4525 mutex_lock(&fs_info->balance_mutex);
4526 /* we are good with balance_ctl ripped off from under us */
4527 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4528 atomic_dec(&fs_info->balance_pause_req);
4529 } else {
4530 ret = -ENOTCONN;
4531 }
4532
4533 mutex_unlock(&fs_info->balance_mutex);
4534 return ret;
4535 }
4536
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4537 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4538 {
4539 mutex_lock(&fs_info->balance_mutex);
4540 if (!fs_info->balance_ctl) {
4541 mutex_unlock(&fs_info->balance_mutex);
4542 return -ENOTCONN;
4543 }
4544
4545 /*
4546 * A paused balance with the item stored on disk can be resumed at
4547 * mount time if the mount is read-write. Otherwise it's still paused
4548 * and we must not allow cancelling as it deletes the item.
4549 */
4550 if (sb_rdonly(fs_info->sb)) {
4551 mutex_unlock(&fs_info->balance_mutex);
4552 return -EROFS;
4553 }
4554
4555 atomic_inc(&fs_info->balance_cancel_req);
4556 /*
4557 * if we are running just wait and return, balance item is
4558 * deleted in btrfs_balance in this case
4559 */
4560 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4561 mutex_unlock(&fs_info->balance_mutex);
4562 wait_event(fs_info->balance_wait_q,
4563 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4564 mutex_lock(&fs_info->balance_mutex);
4565 } else {
4566 mutex_unlock(&fs_info->balance_mutex);
4567 /*
4568 * Lock released to allow other waiters to continue, we'll
4569 * reexamine the status again.
4570 */
4571 mutex_lock(&fs_info->balance_mutex);
4572
4573 if (fs_info->balance_ctl) {
4574 reset_balance_state(fs_info);
4575 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4576 btrfs_info(fs_info, "balance: canceled");
4577 }
4578 }
4579
4580 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4581 atomic_dec(&fs_info->balance_cancel_req);
4582 mutex_unlock(&fs_info->balance_mutex);
4583 return 0;
4584 }
4585
btrfs_uuid_scan_kthread(void * data)4586 static int btrfs_uuid_scan_kthread(void *data)
4587 {
4588 struct btrfs_fs_info *fs_info = data;
4589 struct btrfs_root *root = fs_info->tree_root;
4590 struct btrfs_key key;
4591 struct btrfs_path *path = NULL;
4592 int ret = 0;
4593 struct extent_buffer *eb;
4594 int slot;
4595 struct btrfs_root_item root_item;
4596 u32 item_size;
4597 struct btrfs_trans_handle *trans = NULL;
4598
4599 path = btrfs_alloc_path();
4600 if (!path) {
4601 ret = -ENOMEM;
4602 goto out;
4603 }
4604
4605 key.objectid = 0;
4606 key.type = BTRFS_ROOT_ITEM_KEY;
4607 key.offset = 0;
4608
4609 while (1) {
4610 ret = btrfs_search_forward(root, &key, path,
4611 BTRFS_OLDEST_GENERATION);
4612 if (ret) {
4613 if (ret > 0)
4614 ret = 0;
4615 break;
4616 }
4617
4618 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4619 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4620 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4621 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4622 goto skip;
4623
4624 eb = path->nodes[0];
4625 slot = path->slots[0];
4626 item_size = btrfs_item_size_nr(eb, slot);
4627 if (item_size < sizeof(root_item))
4628 goto skip;
4629
4630 read_extent_buffer(eb, &root_item,
4631 btrfs_item_ptr_offset(eb, slot),
4632 (int)sizeof(root_item));
4633 if (btrfs_root_refs(&root_item) == 0)
4634 goto skip;
4635
4636 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4637 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4638 if (trans)
4639 goto update_tree;
4640
4641 btrfs_release_path(path);
4642 /*
4643 * 1 - subvol uuid item
4644 * 1 - received_subvol uuid item
4645 */
4646 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4647 if (IS_ERR(trans)) {
4648 ret = PTR_ERR(trans);
4649 break;
4650 }
4651 continue;
4652 } else {
4653 goto skip;
4654 }
4655 update_tree:
4656 btrfs_release_path(path);
4657 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4658 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4659 BTRFS_UUID_KEY_SUBVOL,
4660 key.objectid);
4661 if (ret < 0) {
4662 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4663 ret);
4664 break;
4665 }
4666 }
4667
4668 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4669 ret = btrfs_uuid_tree_add(trans,
4670 root_item.received_uuid,
4671 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4672 key.objectid);
4673 if (ret < 0) {
4674 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4675 ret);
4676 break;
4677 }
4678 }
4679
4680 skip:
4681 btrfs_release_path(path);
4682 if (trans) {
4683 ret = btrfs_end_transaction(trans);
4684 trans = NULL;
4685 if (ret)
4686 break;
4687 }
4688
4689 if (key.offset < (u64)-1) {
4690 key.offset++;
4691 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4692 key.offset = 0;
4693 key.type = BTRFS_ROOT_ITEM_KEY;
4694 } else if (key.objectid < (u64)-1) {
4695 key.offset = 0;
4696 key.type = BTRFS_ROOT_ITEM_KEY;
4697 key.objectid++;
4698 } else {
4699 break;
4700 }
4701 cond_resched();
4702 }
4703
4704 out:
4705 btrfs_free_path(path);
4706 if (trans && !IS_ERR(trans))
4707 btrfs_end_transaction(trans);
4708 if (ret)
4709 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4710 else
4711 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4712 up(&fs_info->uuid_tree_rescan_sem);
4713 return 0;
4714 }
4715
4716 /*
4717 * Callback for btrfs_uuid_tree_iterate().
4718 * returns:
4719 * 0 check succeeded, the entry is not outdated.
4720 * < 0 if an error occurred.
4721 * > 0 if the check failed, which means the caller shall remove the entry.
4722 */
btrfs_check_uuid_tree_entry(struct btrfs_fs_info * fs_info,u8 * uuid,u8 type,u64 subid)4723 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4724 u8 *uuid, u8 type, u64 subid)
4725 {
4726 struct btrfs_key key;
4727 int ret = 0;
4728 struct btrfs_root *subvol_root;
4729
4730 if (type != BTRFS_UUID_KEY_SUBVOL &&
4731 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4732 goto out;
4733
4734 key.objectid = subid;
4735 key.type = BTRFS_ROOT_ITEM_KEY;
4736 key.offset = (u64)-1;
4737 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4738 if (IS_ERR(subvol_root)) {
4739 ret = PTR_ERR(subvol_root);
4740 if (ret == -ENOENT)
4741 ret = 1;
4742 goto out;
4743 }
4744
4745 switch (type) {
4746 case BTRFS_UUID_KEY_SUBVOL:
4747 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4748 ret = 1;
4749 break;
4750 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4751 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4752 BTRFS_UUID_SIZE))
4753 ret = 1;
4754 break;
4755 }
4756
4757 out:
4758 return ret;
4759 }
4760
btrfs_uuid_rescan_kthread(void * data)4761 static int btrfs_uuid_rescan_kthread(void *data)
4762 {
4763 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4764 int ret;
4765
4766 /*
4767 * 1st step is to iterate through the existing UUID tree and
4768 * to delete all entries that contain outdated data.
4769 * 2nd step is to add all missing entries to the UUID tree.
4770 */
4771 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4772 if (ret < 0) {
4773 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4774 up(&fs_info->uuid_tree_rescan_sem);
4775 return ret;
4776 }
4777 return btrfs_uuid_scan_kthread(data);
4778 }
4779
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4780 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4781 {
4782 struct btrfs_trans_handle *trans;
4783 struct btrfs_root *tree_root = fs_info->tree_root;
4784 struct btrfs_root *uuid_root;
4785 struct task_struct *task;
4786 int ret;
4787
4788 /*
4789 * 1 - root node
4790 * 1 - root item
4791 */
4792 trans = btrfs_start_transaction(tree_root, 2);
4793 if (IS_ERR(trans))
4794 return PTR_ERR(trans);
4795
4796 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4797 if (IS_ERR(uuid_root)) {
4798 ret = PTR_ERR(uuid_root);
4799 btrfs_abort_transaction(trans, ret);
4800 btrfs_end_transaction(trans);
4801 return ret;
4802 }
4803
4804 fs_info->uuid_root = uuid_root;
4805
4806 ret = btrfs_commit_transaction(trans);
4807 if (ret)
4808 return ret;
4809
4810 down(&fs_info->uuid_tree_rescan_sem);
4811 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4812 if (IS_ERR(task)) {
4813 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4814 btrfs_warn(fs_info, "failed to start uuid_scan task");
4815 up(&fs_info->uuid_tree_rescan_sem);
4816 return PTR_ERR(task);
4817 }
4818
4819 return 0;
4820 }
4821
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)4822 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4823 {
4824 struct task_struct *task;
4825
4826 down(&fs_info->uuid_tree_rescan_sem);
4827 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4828 if (IS_ERR(task)) {
4829 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4830 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4831 up(&fs_info->uuid_tree_rescan_sem);
4832 return PTR_ERR(task);
4833 }
4834
4835 return 0;
4836 }
4837
4838 /*
4839 * shrinking a device means finding all of the device extents past
4840 * the new size, and then following the back refs to the chunks.
4841 * The chunk relocation code actually frees the device extent
4842 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4843 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4844 {
4845 struct btrfs_fs_info *fs_info = device->fs_info;
4846 struct btrfs_root *root = fs_info->dev_root;
4847 struct btrfs_trans_handle *trans;
4848 struct btrfs_dev_extent *dev_extent = NULL;
4849 struct btrfs_path *path;
4850 u64 length;
4851 u64 chunk_offset;
4852 int ret;
4853 int slot;
4854 int failed = 0;
4855 bool retried = false;
4856 struct extent_buffer *l;
4857 struct btrfs_key key;
4858 struct btrfs_super_block *super_copy = fs_info->super_copy;
4859 u64 old_total = btrfs_super_total_bytes(super_copy);
4860 u64 old_size = btrfs_device_get_total_bytes(device);
4861 u64 diff;
4862 u64 start;
4863
4864 new_size = round_down(new_size, fs_info->sectorsize);
4865 start = new_size;
4866 diff = round_down(old_size - new_size, fs_info->sectorsize);
4867
4868 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4869 return -EINVAL;
4870
4871 path = btrfs_alloc_path();
4872 if (!path)
4873 return -ENOMEM;
4874
4875 path->reada = READA_BACK;
4876
4877 trans = btrfs_start_transaction(root, 0);
4878 if (IS_ERR(trans)) {
4879 btrfs_free_path(path);
4880 return PTR_ERR(trans);
4881 }
4882
4883 mutex_lock(&fs_info->chunk_mutex);
4884
4885 btrfs_device_set_total_bytes(device, new_size);
4886 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4887 device->fs_devices->total_rw_bytes -= diff;
4888 atomic64_sub(diff, &fs_info->free_chunk_space);
4889 }
4890
4891 /*
4892 * Once the device's size has been set to the new size, ensure all
4893 * in-memory chunks are synced to disk so that the loop below sees them
4894 * and relocates them accordingly.
4895 */
4896 if (contains_pending_extent(device, &start, diff)) {
4897 mutex_unlock(&fs_info->chunk_mutex);
4898 ret = btrfs_commit_transaction(trans);
4899 if (ret)
4900 goto done;
4901 } else {
4902 mutex_unlock(&fs_info->chunk_mutex);
4903 btrfs_end_transaction(trans);
4904 }
4905
4906 again:
4907 key.objectid = device->devid;
4908 key.offset = (u64)-1;
4909 key.type = BTRFS_DEV_EXTENT_KEY;
4910
4911 do {
4912 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4913 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4914 if (ret < 0) {
4915 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4916 goto done;
4917 }
4918
4919 ret = btrfs_previous_item(root, path, 0, key.type);
4920 if (ret)
4921 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4922 if (ret < 0)
4923 goto done;
4924 if (ret) {
4925 ret = 0;
4926 btrfs_release_path(path);
4927 break;
4928 }
4929
4930 l = path->nodes[0];
4931 slot = path->slots[0];
4932 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4933
4934 if (key.objectid != device->devid) {
4935 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4936 btrfs_release_path(path);
4937 break;
4938 }
4939
4940 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4941 length = btrfs_dev_extent_length(l, dev_extent);
4942
4943 if (key.offset + length <= new_size) {
4944 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4945 btrfs_release_path(path);
4946 break;
4947 }
4948
4949 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4950 btrfs_release_path(path);
4951
4952 /*
4953 * We may be relocating the only data chunk we have,
4954 * which could potentially end up with losing data's
4955 * raid profile, so lets allocate an empty one in
4956 * advance.
4957 */
4958 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4959 if (ret < 0) {
4960 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4961 goto done;
4962 }
4963
4964 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4965 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4966 if (ret == -ENOSPC) {
4967 failed++;
4968 } else if (ret) {
4969 if (ret == -ETXTBSY) {
4970 btrfs_warn(fs_info,
4971 "could not shrink block group %llu due to active swapfile",
4972 chunk_offset);
4973 }
4974 goto done;
4975 }
4976 } while (key.offset-- > 0);
4977
4978 if (failed && !retried) {
4979 failed = 0;
4980 retried = true;
4981 goto again;
4982 } else if (failed && retried) {
4983 ret = -ENOSPC;
4984 goto done;
4985 }
4986
4987 /* Shrinking succeeded, else we would be at "done". */
4988 trans = btrfs_start_transaction(root, 0);
4989 if (IS_ERR(trans)) {
4990 ret = PTR_ERR(trans);
4991 goto done;
4992 }
4993
4994 mutex_lock(&fs_info->chunk_mutex);
4995 /* Clear all state bits beyond the shrunk device size */
4996 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4997 CHUNK_STATE_MASK);
4998
4999 btrfs_device_set_disk_total_bytes(device, new_size);
5000 if (list_empty(&device->post_commit_list))
5001 list_add_tail(&device->post_commit_list,
5002 &trans->transaction->dev_update_list);
5003
5004 WARN_ON(diff > old_total);
5005 btrfs_set_super_total_bytes(super_copy,
5006 round_down(old_total - diff, fs_info->sectorsize));
5007 mutex_unlock(&fs_info->chunk_mutex);
5008
5009 /* Now btrfs_update_device() will change the on-disk size. */
5010 ret = btrfs_update_device(trans, device);
5011 if (ret < 0) {
5012 btrfs_abort_transaction(trans, ret);
5013 btrfs_end_transaction(trans);
5014 } else {
5015 ret = btrfs_commit_transaction(trans);
5016 }
5017 done:
5018 btrfs_free_path(path);
5019 if (ret) {
5020 mutex_lock(&fs_info->chunk_mutex);
5021 btrfs_device_set_total_bytes(device, old_size);
5022 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5023 device->fs_devices->total_rw_bytes += diff;
5024 atomic64_add(diff, &fs_info->free_chunk_space);
5025 mutex_unlock(&fs_info->chunk_mutex);
5026 }
5027 return ret;
5028 }
5029
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)5030 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5031 struct btrfs_key *key,
5032 struct btrfs_chunk *chunk, int item_size)
5033 {
5034 struct btrfs_super_block *super_copy = fs_info->super_copy;
5035 struct btrfs_disk_key disk_key;
5036 u32 array_size;
5037 u8 *ptr;
5038
5039 mutex_lock(&fs_info->chunk_mutex);
5040 array_size = btrfs_super_sys_array_size(super_copy);
5041 if (array_size + item_size + sizeof(disk_key)
5042 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
5043 mutex_unlock(&fs_info->chunk_mutex);
5044 return -EFBIG;
5045 }
5046
5047 ptr = super_copy->sys_chunk_array + array_size;
5048 btrfs_cpu_key_to_disk(&disk_key, key);
5049 memcpy(ptr, &disk_key, sizeof(disk_key));
5050 ptr += sizeof(disk_key);
5051 memcpy(ptr, chunk, item_size);
5052 item_size += sizeof(disk_key);
5053 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5054 mutex_unlock(&fs_info->chunk_mutex);
5055
5056 return 0;
5057 }
5058
5059 /*
5060 * sort the devices in descending order by max_avail, total_avail
5061 */
btrfs_cmp_device_info(const void * a,const void * b)5062 static int btrfs_cmp_device_info(const void *a, const void *b)
5063 {
5064 const struct btrfs_device_info *di_a = a;
5065 const struct btrfs_device_info *di_b = b;
5066
5067 if (di_a->max_avail > di_b->max_avail)
5068 return -1;
5069 if (di_a->max_avail < di_b->max_avail)
5070 return 1;
5071 if (di_a->total_avail > di_b->total_avail)
5072 return -1;
5073 if (di_a->total_avail < di_b->total_avail)
5074 return 1;
5075 return 0;
5076 }
5077
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5078 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5079 {
5080 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5081 return;
5082
5083 btrfs_set_fs_incompat(info, RAID56);
5084 }
5085
__btrfs_alloc_chunk(struct btrfs_trans_handle * trans,u64 start,u64 type)5086 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5087 u64 start, u64 type)
5088 {
5089 struct btrfs_fs_info *info = trans->fs_info;
5090 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5091 struct btrfs_device *device;
5092 struct map_lookup *map = NULL;
5093 struct extent_map_tree *em_tree;
5094 struct extent_map *em;
5095 struct btrfs_device_info *devices_info = NULL;
5096 u64 total_avail;
5097 int num_stripes; /* total number of stripes to allocate */
5098 int data_stripes; /* number of stripes that count for
5099 block group size */
5100 int sub_stripes; /* sub_stripes info for map */
5101 int dev_stripes; /* stripes per dev */
5102 int devs_max; /* max devs to use */
5103 int devs_min; /* min devs needed */
5104 int devs_increment; /* ndevs has to be a multiple of this */
5105 int ncopies; /* how many copies to data has */
5106 int nparity; /* number of stripes worth of bytes to
5107 store parity information */
5108 int ret;
5109 u64 max_stripe_size;
5110 u64 max_chunk_size;
5111 u64 stripe_size;
5112 u64 chunk_size;
5113 int ndevs;
5114 int i;
5115 int j;
5116 int index;
5117
5118 BUG_ON(!alloc_profile_is_valid(type, 0));
5119
5120 if (list_empty(&fs_devices->alloc_list)) {
5121 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5122 btrfs_debug(info, "%s: no writable device", __func__);
5123 return -ENOSPC;
5124 }
5125
5126 index = btrfs_bg_flags_to_raid_index(type);
5127
5128 sub_stripes = btrfs_raid_array[index].sub_stripes;
5129 dev_stripes = btrfs_raid_array[index].dev_stripes;
5130 devs_max = btrfs_raid_array[index].devs_max;
5131 if (!devs_max)
5132 devs_max = BTRFS_MAX_DEVS(info);
5133 devs_min = btrfs_raid_array[index].devs_min;
5134 devs_increment = btrfs_raid_array[index].devs_increment;
5135 ncopies = btrfs_raid_array[index].ncopies;
5136 nparity = btrfs_raid_array[index].nparity;
5137
5138 if (type & BTRFS_BLOCK_GROUP_DATA) {
5139 max_stripe_size = SZ_1G;
5140 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5141 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5142 /* for larger filesystems, use larger metadata chunks */
5143 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5144 max_stripe_size = SZ_1G;
5145 else
5146 max_stripe_size = SZ_256M;
5147 max_chunk_size = max_stripe_size;
5148 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5149 max_stripe_size = SZ_32M;
5150 max_chunk_size = 2 * max_stripe_size;
5151 devs_max = min_t(int, devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5152 } else {
5153 btrfs_err(info, "invalid chunk type 0x%llx requested",
5154 type);
5155 BUG();
5156 }
5157
5158 /* We don't want a chunk larger than 10% of writable space */
5159 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5160 max_chunk_size);
5161
5162 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5163 GFP_NOFS);
5164 if (!devices_info)
5165 return -ENOMEM;
5166
5167 /*
5168 * in the first pass through the devices list, we gather information
5169 * about the available holes on each device.
5170 */
5171 ndevs = 0;
5172 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5173 u64 max_avail;
5174 u64 dev_offset;
5175
5176 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5177 WARN(1, KERN_ERR
5178 "BTRFS: read-only device in alloc_list\n");
5179 continue;
5180 }
5181
5182 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5183 &device->dev_state) ||
5184 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5185 continue;
5186
5187 if (device->total_bytes > device->bytes_used)
5188 total_avail = device->total_bytes - device->bytes_used;
5189 else
5190 total_avail = 0;
5191
5192 /* If there is no space on this device, skip it. */
5193 if (total_avail == 0)
5194 continue;
5195
5196 ret = find_free_dev_extent(device,
5197 max_stripe_size * dev_stripes,
5198 &dev_offset, &max_avail);
5199 if (ret && ret != -ENOSPC)
5200 goto error;
5201
5202 if (ret == 0)
5203 max_avail = max_stripe_size * dev_stripes;
5204
5205 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5206 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5207 btrfs_debug(info,
5208 "%s: devid %llu has no free space, have=%llu want=%u",
5209 __func__, device->devid, max_avail,
5210 BTRFS_STRIPE_LEN * dev_stripes);
5211 continue;
5212 }
5213
5214 if (ndevs == fs_devices->rw_devices) {
5215 WARN(1, "%s: found more than %llu devices\n",
5216 __func__, fs_devices->rw_devices);
5217 break;
5218 }
5219 devices_info[ndevs].dev_offset = dev_offset;
5220 devices_info[ndevs].max_avail = max_avail;
5221 devices_info[ndevs].total_avail = total_avail;
5222 devices_info[ndevs].dev = device;
5223 ++ndevs;
5224 }
5225
5226 /*
5227 * now sort the devices by hole size / available space
5228 */
5229 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5230 btrfs_cmp_device_info, NULL);
5231
5232 /* round down to number of usable stripes */
5233 ndevs = round_down(ndevs, devs_increment);
5234
5235 if (ndevs < devs_min) {
5236 ret = -ENOSPC;
5237 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5238 btrfs_debug(info,
5239 "%s: not enough devices with free space: have=%d minimum required=%d",
5240 __func__, ndevs, devs_min);
5241 }
5242 goto error;
5243 }
5244
5245 ndevs = min(ndevs, devs_max);
5246
5247 /*
5248 * The primary goal is to maximize the number of stripes, so use as
5249 * many devices as possible, even if the stripes are not maximum sized.
5250 *
5251 * The DUP profile stores more than one stripe per device, the
5252 * max_avail is the total size so we have to adjust.
5253 */
5254 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5255 num_stripes = ndevs * dev_stripes;
5256
5257 /*
5258 * this will have to be fixed for RAID1 and RAID10 over
5259 * more drives
5260 */
5261 data_stripes = (num_stripes - nparity) / ncopies;
5262
5263 /*
5264 * Use the number of data stripes to figure out how big this chunk
5265 * is really going to be in terms of logical address space,
5266 * and compare that answer with the max chunk size. If it's higher,
5267 * we try to reduce stripe_size.
5268 */
5269 if (stripe_size * data_stripes > max_chunk_size) {
5270 /*
5271 * Reduce stripe_size, round it up to a 16MB boundary again and
5272 * then use it, unless it ends up being even bigger than the
5273 * previous value we had already.
5274 */
5275 stripe_size = min(round_up(div_u64(max_chunk_size,
5276 data_stripes), SZ_16M),
5277 stripe_size);
5278 }
5279
5280 /* align to BTRFS_STRIPE_LEN */
5281 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5282
5283 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5284 if (!map) {
5285 ret = -ENOMEM;
5286 goto error;
5287 }
5288 map->num_stripes = num_stripes;
5289
5290 for (i = 0; i < ndevs; ++i) {
5291 for (j = 0; j < dev_stripes; ++j) {
5292 int s = i * dev_stripes + j;
5293 map->stripes[s].dev = devices_info[i].dev;
5294 map->stripes[s].physical = devices_info[i].dev_offset +
5295 j * stripe_size;
5296 }
5297 }
5298 map->stripe_len = BTRFS_STRIPE_LEN;
5299 map->io_align = BTRFS_STRIPE_LEN;
5300 map->io_width = BTRFS_STRIPE_LEN;
5301 map->type = type;
5302 map->sub_stripes = sub_stripes;
5303
5304 chunk_size = stripe_size * data_stripes;
5305
5306 trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5307
5308 em = alloc_extent_map();
5309 if (!em) {
5310 kfree(map);
5311 ret = -ENOMEM;
5312 goto error;
5313 }
5314 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5315 em->map_lookup = map;
5316 em->start = start;
5317 em->len = chunk_size;
5318 em->block_start = 0;
5319 em->block_len = em->len;
5320 em->orig_block_len = stripe_size;
5321
5322 em_tree = &info->mapping_tree;
5323 write_lock(&em_tree->lock);
5324 ret = add_extent_mapping(em_tree, em, 0);
5325 if (ret) {
5326 write_unlock(&em_tree->lock);
5327 free_extent_map(em);
5328 goto error;
5329 }
5330 write_unlock(&em_tree->lock);
5331
5332 ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5333 if (ret)
5334 goto error_del_extent;
5335
5336 for (i = 0; i < map->num_stripes; i++) {
5337 struct btrfs_device *dev = map->stripes[i].dev;
5338
5339 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
5340 if (list_empty(&dev->post_commit_list))
5341 list_add_tail(&dev->post_commit_list,
5342 &trans->transaction->dev_update_list);
5343 }
5344
5345 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5346
5347 free_extent_map(em);
5348 check_raid56_incompat_flag(info, type);
5349
5350 kfree(devices_info);
5351 return 0;
5352
5353 error_del_extent:
5354 write_lock(&em_tree->lock);
5355 remove_extent_mapping(em_tree, em);
5356 write_unlock(&em_tree->lock);
5357
5358 /* One for our allocation */
5359 free_extent_map(em);
5360 /* One for the tree reference */
5361 free_extent_map(em);
5362 error:
5363 kfree(devices_info);
5364 return ret;
5365 }
5366
btrfs_finish_chunk_alloc(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)5367 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5368 u64 chunk_offset, u64 chunk_size)
5369 {
5370 struct btrfs_fs_info *fs_info = trans->fs_info;
5371 struct btrfs_root *extent_root = fs_info->extent_root;
5372 struct btrfs_root *chunk_root = fs_info->chunk_root;
5373 struct btrfs_key key;
5374 struct btrfs_device *device;
5375 struct btrfs_chunk *chunk;
5376 struct btrfs_stripe *stripe;
5377 struct extent_map *em;
5378 struct map_lookup *map;
5379 size_t item_size;
5380 u64 dev_offset;
5381 u64 stripe_size;
5382 int i = 0;
5383 int ret = 0;
5384
5385 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5386 if (IS_ERR(em))
5387 return PTR_ERR(em);
5388
5389 map = em->map_lookup;
5390 item_size = btrfs_chunk_item_size(map->num_stripes);
5391 stripe_size = em->orig_block_len;
5392
5393 chunk = kzalloc(item_size, GFP_NOFS);
5394 if (!chunk) {
5395 ret = -ENOMEM;
5396 goto out;
5397 }
5398
5399 /*
5400 * Take the device list mutex to prevent races with the final phase of
5401 * a device replace operation that replaces the device object associated
5402 * with the map's stripes, because the device object's id can change
5403 * at any time during that final phase of the device replace operation
5404 * (dev-replace.c:btrfs_dev_replace_finishing()).
5405 */
5406 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5407 for (i = 0; i < map->num_stripes; i++) {
5408 device = map->stripes[i].dev;
5409 dev_offset = map->stripes[i].physical;
5410
5411 ret = btrfs_update_device(trans, device);
5412 if (ret)
5413 break;
5414 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5415 dev_offset, stripe_size);
5416 if (ret)
5417 break;
5418 }
5419 if (ret) {
5420 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5421 goto out;
5422 }
5423
5424 stripe = &chunk->stripe;
5425 for (i = 0; i < map->num_stripes; i++) {
5426 device = map->stripes[i].dev;
5427 dev_offset = map->stripes[i].physical;
5428
5429 btrfs_set_stack_stripe_devid(stripe, device->devid);
5430 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5431 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5432 stripe++;
5433 }
5434 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5435
5436 btrfs_set_stack_chunk_length(chunk, chunk_size);
5437 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5438 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5439 btrfs_set_stack_chunk_type(chunk, map->type);
5440 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5441 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5442 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5443 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5444 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5445
5446 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5447 key.type = BTRFS_CHUNK_ITEM_KEY;
5448 key.offset = chunk_offset;
5449
5450 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5451 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5452 /*
5453 * TODO: Cleanup of inserted chunk root in case of
5454 * failure.
5455 */
5456 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5457 }
5458
5459 out:
5460 kfree(chunk);
5461 free_extent_map(em);
5462 return ret;
5463 }
5464
5465 /*
5466 * Chunk allocation falls into two parts. The first part does work
5467 * that makes the new allocated chunk usable, but does not do any operation
5468 * that modifies the chunk tree. The second part does the work that
5469 * requires modifying the chunk tree. This division is important for the
5470 * bootstrap process of adding storage to a seed btrfs.
5471 */
btrfs_alloc_chunk(struct btrfs_trans_handle * trans,u64 type)5472 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5473 {
5474 u64 chunk_offset;
5475
5476 lockdep_assert_held(&trans->fs_info->chunk_mutex);
5477 chunk_offset = find_next_chunk(trans->fs_info);
5478 return __btrfs_alloc_chunk(trans, chunk_offset, type);
5479 }
5480
init_first_rw_device(struct btrfs_trans_handle * trans)5481 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5482 {
5483 struct btrfs_fs_info *fs_info = trans->fs_info;
5484 u64 chunk_offset;
5485 u64 sys_chunk_offset;
5486 u64 alloc_profile;
5487 int ret;
5488
5489 chunk_offset = find_next_chunk(fs_info);
5490 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5491 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5492 if (ret)
5493 return ret;
5494
5495 sys_chunk_offset = find_next_chunk(fs_info);
5496 alloc_profile = btrfs_system_alloc_profile(fs_info);
5497 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5498 return ret;
5499 }
5500
btrfs_chunk_max_errors(struct map_lookup * map)5501 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5502 {
5503 const int index = btrfs_bg_flags_to_raid_index(map->type);
5504
5505 return btrfs_raid_array[index].tolerated_failures;
5506 }
5507
btrfs_chunk_readonly(struct btrfs_fs_info * fs_info,u64 chunk_offset)5508 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5509 {
5510 struct extent_map *em;
5511 struct map_lookup *map;
5512 int readonly = 0;
5513 int miss_ndevs = 0;
5514 int i;
5515
5516 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5517 if (IS_ERR(em))
5518 return 1;
5519
5520 map = em->map_lookup;
5521 for (i = 0; i < map->num_stripes; i++) {
5522 if (test_bit(BTRFS_DEV_STATE_MISSING,
5523 &map->stripes[i].dev->dev_state)) {
5524 miss_ndevs++;
5525 continue;
5526 }
5527 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5528 &map->stripes[i].dev->dev_state)) {
5529 readonly = 1;
5530 goto end;
5531 }
5532 }
5533
5534 /*
5535 * If the number of missing devices is larger than max errors,
5536 * we can not write the data into that chunk successfully, so
5537 * set it readonly.
5538 */
5539 if (miss_ndevs > btrfs_chunk_max_errors(map))
5540 readonly = 1;
5541 end:
5542 free_extent_map(em);
5543 return readonly;
5544 }
5545
btrfs_mapping_tree_free(struct extent_map_tree * tree)5546 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5547 {
5548 struct extent_map *em;
5549
5550 while (1) {
5551 write_lock(&tree->lock);
5552 em = lookup_extent_mapping(tree, 0, (u64)-1);
5553 if (em)
5554 remove_extent_mapping(tree, em);
5555 write_unlock(&tree->lock);
5556 if (!em)
5557 break;
5558 /* once for us */
5559 free_extent_map(em);
5560 /* once for the tree */
5561 free_extent_map(em);
5562 }
5563 }
5564
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5565 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5566 {
5567 struct extent_map *em;
5568 struct map_lookup *map;
5569 int ret;
5570
5571 em = btrfs_get_chunk_map(fs_info, logical, len);
5572 if (IS_ERR(em))
5573 /*
5574 * We could return errors for these cases, but that could get
5575 * ugly and we'd probably do the same thing which is just not do
5576 * anything else and exit, so return 1 so the callers don't try
5577 * to use other copies.
5578 */
5579 return 1;
5580
5581 map = em->map_lookup;
5582 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5583 ret = map->num_stripes;
5584 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5585 ret = map->sub_stripes;
5586 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5587 ret = 2;
5588 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5589 /*
5590 * There could be two corrupted data stripes, we need
5591 * to loop retry in order to rebuild the correct data.
5592 *
5593 * Fail a stripe at a time on every retry except the
5594 * stripe under reconstruction.
5595 */
5596 ret = map->num_stripes;
5597 else
5598 ret = 1;
5599 free_extent_map(em);
5600
5601 down_read(&fs_info->dev_replace.rwsem);
5602 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5603 fs_info->dev_replace.tgtdev)
5604 ret++;
5605 up_read(&fs_info->dev_replace.rwsem);
5606
5607 return ret;
5608 }
5609
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5610 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5611 u64 logical)
5612 {
5613 struct extent_map *em;
5614 struct map_lookup *map;
5615 unsigned long len = fs_info->sectorsize;
5616
5617 em = btrfs_get_chunk_map(fs_info, logical, len);
5618
5619 if (!WARN_ON(IS_ERR(em))) {
5620 map = em->map_lookup;
5621 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5622 len = map->stripe_len * nr_data_stripes(map);
5623 free_extent_map(em);
5624 }
5625 return len;
5626 }
5627
btrfs_is_parity_mirror(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5628 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5629 {
5630 struct extent_map *em;
5631 struct map_lookup *map;
5632 int ret = 0;
5633
5634 em = btrfs_get_chunk_map(fs_info, logical, len);
5635
5636 if(!WARN_ON(IS_ERR(em))) {
5637 map = em->map_lookup;
5638 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5639 ret = 1;
5640 free_extent_map(em);
5641 }
5642 return ret;
5643 }
5644
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int dev_replace_is_ongoing)5645 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5646 struct map_lookup *map, int first,
5647 int dev_replace_is_ongoing)
5648 {
5649 int i;
5650 int num_stripes;
5651 int preferred_mirror;
5652 int tolerance;
5653 struct btrfs_device *srcdev;
5654
5655 ASSERT((map->type &
5656 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5657
5658 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5659 num_stripes = map->sub_stripes;
5660 else
5661 num_stripes = map->num_stripes;
5662
5663 preferred_mirror = first + current->pid % num_stripes;
5664
5665 if (dev_replace_is_ongoing &&
5666 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5667 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5668 srcdev = fs_info->dev_replace.srcdev;
5669 else
5670 srcdev = NULL;
5671
5672 /*
5673 * try to avoid the drive that is the source drive for a
5674 * dev-replace procedure, only choose it if no other non-missing
5675 * mirror is available
5676 */
5677 for (tolerance = 0; tolerance < 2; tolerance++) {
5678 if (map->stripes[preferred_mirror].dev->bdev &&
5679 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5680 return preferred_mirror;
5681 for (i = first; i < first + num_stripes; i++) {
5682 if (map->stripes[i].dev->bdev &&
5683 (tolerance || map->stripes[i].dev != srcdev))
5684 return i;
5685 }
5686 }
5687
5688 /* we couldn't find one that doesn't fail. Just return something
5689 * and the io error handling code will clean up eventually
5690 */
5691 return preferred_mirror;
5692 }
5693
parity_smaller(u64 a,u64 b)5694 static inline int parity_smaller(u64 a, u64 b)
5695 {
5696 return a > b;
5697 }
5698
5699 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_bio * bbio,int num_stripes)5700 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5701 {
5702 struct btrfs_bio_stripe s;
5703 int i;
5704 u64 l;
5705 int again = 1;
5706
5707 while (again) {
5708 again = 0;
5709 for (i = 0; i < num_stripes - 1; i++) {
5710 if (parity_smaller(bbio->raid_map[i],
5711 bbio->raid_map[i+1])) {
5712 s = bbio->stripes[i];
5713 l = bbio->raid_map[i];
5714 bbio->stripes[i] = bbio->stripes[i+1];
5715 bbio->raid_map[i] = bbio->raid_map[i+1];
5716 bbio->stripes[i+1] = s;
5717 bbio->raid_map[i+1] = l;
5718
5719 again = 1;
5720 }
5721 }
5722 }
5723 }
5724
alloc_btrfs_bio(int total_stripes,int real_stripes)5725 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5726 {
5727 struct btrfs_bio *bbio = kzalloc(
5728 /* the size of the btrfs_bio */
5729 sizeof(struct btrfs_bio) +
5730 /* plus the variable array for the stripes */
5731 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5732 /* plus the variable array for the tgt dev */
5733 sizeof(int) * (real_stripes) +
5734 /*
5735 * plus the raid_map, which includes both the tgt dev
5736 * and the stripes
5737 */
5738 sizeof(u64) * (total_stripes),
5739 GFP_NOFS|__GFP_NOFAIL);
5740
5741 atomic_set(&bbio->error, 0);
5742 refcount_set(&bbio->refs, 1);
5743
5744 return bbio;
5745 }
5746
btrfs_get_bbio(struct btrfs_bio * bbio)5747 void btrfs_get_bbio(struct btrfs_bio *bbio)
5748 {
5749 WARN_ON(!refcount_read(&bbio->refs));
5750 refcount_inc(&bbio->refs);
5751 }
5752
btrfs_put_bbio(struct btrfs_bio * bbio)5753 void btrfs_put_bbio(struct btrfs_bio *bbio)
5754 {
5755 if (!bbio)
5756 return;
5757 if (refcount_dec_and_test(&bbio->refs))
5758 kfree(bbio);
5759 }
5760
5761 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5762 /*
5763 * Please note that, discard won't be sent to target device of device
5764 * replace.
5765 */
__btrfs_map_block_for_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,struct btrfs_bio ** bbio_ret)5766 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5767 u64 logical, u64 *length_ret,
5768 struct btrfs_bio **bbio_ret)
5769 {
5770 struct extent_map *em;
5771 struct map_lookup *map;
5772 struct btrfs_bio *bbio;
5773 u64 length = *length_ret;
5774 u64 offset;
5775 u64 stripe_nr;
5776 u64 stripe_nr_end;
5777 u64 stripe_end_offset;
5778 u64 stripe_cnt;
5779 u64 stripe_len;
5780 u64 stripe_offset;
5781 u64 num_stripes;
5782 u32 stripe_index;
5783 u32 factor = 0;
5784 u32 sub_stripes = 0;
5785 u64 stripes_per_dev = 0;
5786 u32 remaining_stripes = 0;
5787 u32 last_stripe = 0;
5788 int ret = 0;
5789 int i;
5790
5791 /* discard always return a bbio */
5792 ASSERT(bbio_ret);
5793
5794 em = btrfs_get_chunk_map(fs_info, logical, length);
5795 if (IS_ERR(em))
5796 return PTR_ERR(em);
5797
5798 map = em->map_lookup;
5799 /* we don't discard raid56 yet */
5800 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5801 ret = -EOPNOTSUPP;
5802 goto out;
5803 }
5804
5805 offset = logical - em->start;
5806 length = min_t(u64, em->start + em->len - logical, length);
5807 *length_ret = length;
5808
5809 stripe_len = map->stripe_len;
5810 /*
5811 * stripe_nr counts the total number of stripes we have to stride
5812 * to get to this block
5813 */
5814 stripe_nr = div64_u64(offset, stripe_len);
5815
5816 /* stripe_offset is the offset of this block in its stripe */
5817 stripe_offset = offset - stripe_nr * stripe_len;
5818
5819 stripe_nr_end = round_up(offset + length, map->stripe_len);
5820 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5821 stripe_cnt = stripe_nr_end - stripe_nr;
5822 stripe_end_offset = stripe_nr_end * map->stripe_len -
5823 (offset + length);
5824 /*
5825 * after this, stripe_nr is the number of stripes on this
5826 * device we have to walk to find the data, and stripe_index is
5827 * the number of our device in the stripe array
5828 */
5829 num_stripes = 1;
5830 stripe_index = 0;
5831 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5832 BTRFS_BLOCK_GROUP_RAID10)) {
5833 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5834 sub_stripes = 1;
5835 else
5836 sub_stripes = map->sub_stripes;
5837
5838 factor = map->num_stripes / sub_stripes;
5839 num_stripes = min_t(u64, map->num_stripes,
5840 sub_stripes * stripe_cnt);
5841 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5842 stripe_index *= sub_stripes;
5843 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5844 &remaining_stripes);
5845 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5846 last_stripe *= sub_stripes;
5847 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5848 BTRFS_BLOCK_GROUP_DUP)) {
5849 num_stripes = map->num_stripes;
5850 } else {
5851 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5852 &stripe_index);
5853 }
5854
5855 bbio = alloc_btrfs_bio(num_stripes, 0);
5856 if (!bbio) {
5857 ret = -ENOMEM;
5858 goto out;
5859 }
5860
5861 for (i = 0; i < num_stripes; i++) {
5862 bbio->stripes[i].physical =
5863 map->stripes[stripe_index].physical +
5864 stripe_offset + stripe_nr * map->stripe_len;
5865 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5866
5867 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5868 BTRFS_BLOCK_GROUP_RAID10)) {
5869 bbio->stripes[i].length = stripes_per_dev *
5870 map->stripe_len;
5871
5872 if (i / sub_stripes < remaining_stripes)
5873 bbio->stripes[i].length +=
5874 map->stripe_len;
5875
5876 /*
5877 * Special for the first stripe and
5878 * the last stripe:
5879 *
5880 * |-------|...|-------|
5881 * |----------|
5882 * off end_off
5883 */
5884 if (i < sub_stripes)
5885 bbio->stripes[i].length -=
5886 stripe_offset;
5887
5888 if (stripe_index >= last_stripe &&
5889 stripe_index <= (last_stripe +
5890 sub_stripes - 1))
5891 bbio->stripes[i].length -=
5892 stripe_end_offset;
5893
5894 if (i == sub_stripes - 1)
5895 stripe_offset = 0;
5896 } else {
5897 bbio->stripes[i].length = length;
5898 }
5899
5900 stripe_index++;
5901 if (stripe_index == map->num_stripes) {
5902 stripe_index = 0;
5903 stripe_nr++;
5904 }
5905 }
5906
5907 *bbio_ret = bbio;
5908 bbio->map_type = map->type;
5909 bbio->num_stripes = num_stripes;
5910 out:
5911 free_extent_map(em);
5912 return ret;
5913 }
5914
5915 /*
5916 * In dev-replace case, for repair case (that's the only case where the mirror
5917 * is selected explicitly when calling btrfs_map_block), blocks left of the
5918 * left cursor can also be read from the target drive.
5919 *
5920 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5921 * array of stripes.
5922 * For READ, it also needs to be supported using the same mirror number.
5923 *
5924 * If the requested block is not left of the left cursor, EIO is returned. This
5925 * can happen because btrfs_num_copies() returns one more in the dev-replace
5926 * case.
5927 */
get_extra_mirror_from_replace(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 srcdev_devid,int * mirror_num,u64 * physical)5928 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5929 u64 logical, u64 length,
5930 u64 srcdev_devid, int *mirror_num,
5931 u64 *physical)
5932 {
5933 struct btrfs_bio *bbio = NULL;
5934 int num_stripes;
5935 int index_srcdev = 0;
5936 int found = 0;
5937 u64 physical_of_found = 0;
5938 int i;
5939 int ret = 0;
5940
5941 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5942 logical, &length, &bbio, 0, 0);
5943 if (ret) {
5944 ASSERT(bbio == NULL);
5945 return ret;
5946 }
5947
5948 num_stripes = bbio->num_stripes;
5949 if (*mirror_num > num_stripes) {
5950 /*
5951 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5952 * that means that the requested area is not left of the left
5953 * cursor
5954 */
5955 btrfs_put_bbio(bbio);
5956 return -EIO;
5957 }
5958
5959 /*
5960 * process the rest of the function using the mirror_num of the source
5961 * drive. Therefore look it up first. At the end, patch the device
5962 * pointer to the one of the target drive.
5963 */
5964 for (i = 0; i < num_stripes; i++) {
5965 if (bbio->stripes[i].dev->devid != srcdev_devid)
5966 continue;
5967
5968 /*
5969 * In case of DUP, in order to keep it simple, only add the
5970 * mirror with the lowest physical address
5971 */
5972 if (found &&
5973 physical_of_found <= bbio->stripes[i].physical)
5974 continue;
5975
5976 index_srcdev = i;
5977 found = 1;
5978 physical_of_found = bbio->stripes[i].physical;
5979 }
5980
5981 btrfs_put_bbio(bbio);
5982
5983 ASSERT(found);
5984 if (!found)
5985 return -EIO;
5986
5987 *mirror_num = index_srcdev + 1;
5988 *physical = physical_of_found;
5989 return ret;
5990 }
5991
handle_ops_on_dev_replace(enum btrfs_map_op op,struct btrfs_bio ** bbio_ret,struct btrfs_dev_replace * dev_replace,int * num_stripes_ret,int * max_errors_ret)5992 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5993 struct btrfs_bio **bbio_ret,
5994 struct btrfs_dev_replace *dev_replace,
5995 int *num_stripes_ret, int *max_errors_ret)
5996 {
5997 struct btrfs_bio *bbio = *bbio_ret;
5998 u64 srcdev_devid = dev_replace->srcdev->devid;
5999 int tgtdev_indexes = 0;
6000 int num_stripes = *num_stripes_ret;
6001 int max_errors = *max_errors_ret;
6002 int i;
6003
6004 if (op == BTRFS_MAP_WRITE) {
6005 int index_where_to_add;
6006
6007 /*
6008 * duplicate the write operations while the dev replace
6009 * procedure is running. Since the copying of the old disk to
6010 * the new disk takes place at run time while the filesystem is
6011 * mounted writable, the regular write operations to the old
6012 * disk have to be duplicated to go to the new disk as well.
6013 *
6014 * Note that device->missing is handled by the caller, and that
6015 * the write to the old disk is already set up in the stripes
6016 * array.
6017 */
6018 index_where_to_add = num_stripes;
6019 for (i = 0; i < num_stripes; i++) {
6020 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6021 /* write to new disk, too */
6022 struct btrfs_bio_stripe *new =
6023 bbio->stripes + index_where_to_add;
6024 struct btrfs_bio_stripe *old =
6025 bbio->stripes + i;
6026
6027 new->physical = old->physical;
6028 new->length = old->length;
6029 new->dev = dev_replace->tgtdev;
6030 bbio->tgtdev_map[i] = index_where_to_add;
6031 index_where_to_add++;
6032 max_errors++;
6033 tgtdev_indexes++;
6034 }
6035 }
6036 num_stripes = index_where_to_add;
6037 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6038 int index_srcdev = 0;
6039 int found = 0;
6040 u64 physical_of_found = 0;
6041
6042 /*
6043 * During the dev-replace procedure, the target drive can also
6044 * be used to read data in case it is needed to repair a corrupt
6045 * block elsewhere. This is possible if the requested area is
6046 * left of the left cursor. In this area, the target drive is a
6047 * full copy of the source drive.
6048 */
6049 for (i = 0; i < num_stripes; i++) {
6050 if (bbio->stripes[i].dev->devid == srcdev_devid) {
6051 /*
6052 * In case of DUP, in order to keep it simple,
6053 * only add the mirror with the lowest physical
6054 * address
6055 */
6056 if (found &&
6057 physical_of_found <=
6058 bbio->stripes[i].physical)
6059 continue;
6060 index_srcdev = i;
6061 found = 1;
6062 physical_of_found = bbio->stripes[i].physical;
6063 }
6064 }
6065 if (found) {
6066 struct btrfs_bio_stripe *tgtdev_stripe =
6067 bbio->stripes + num_stripes;
6068
6069 tgtdev_stripe->physical = physical_of_found;
6070 tgtdev_stripe->length =
6071 bbio->stripes[index_srcdev].length;
6072 tgtdev_stripe->dev = dev_replace->tgtdev;
6073 bbio->tgtdev_map[index_srcdev] = num_stripes;
6074
6075 tgtdev_indexes++;
6076 num_stripes++;
6077 }
6078 }
6079
6080 *num_stripes_ret = num_stripes;
6081 *max_errors_ret = max_errors;
6082 bbio->num_tgtdevs = tgtdev_indexes;
6083 *bbio_ret = bbio;
6084 }
6085
need_full_stripe(enum btrfs_map_op op)6086 static bool need_full_stripe(enum btrfs_map_op op)
6087 {
6088 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6089 }
6090
6091 /*
6092 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
6093 * tuple. This information is used to calculate how big a
6094 * particular bio can get before it straddles a stripe.
6095 *
6096 * @fs_info - the filesystem
6097 * @logical - address that we want to figure out the geometry of
6098 * @len - the length of IO we are going to perform, starting at @logical
6099 * @op - type of operation - write or read
6100 * @io_geom - pointer used to return values
6101 *
6102 * Returns < 0 in case a chunk for the given logical address cannot be found,
6103 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6104 */
btrfs_get_io_geometry(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 len,struct btrfs_io_geometry * io_geom)6105 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6106 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
6107 {
6108 struct extent_map *em;
6109 struct map_lookup *map;
6110 u64 offset;
6111 u64 stripe_offset;
6112 u64 stripe_nr;
6113 u64 stripe_len;
6114 u64 raid56_full_stripe_start = (u64)-1;
6115 int data_stripes;
6116 int ret = 0;
6117
6118 ASSERT(op != BTRFS_MAP_DISCARD);
6119
6120 em = btrfs_get_chunk_map(fs_info, logical, len);
6121 if (IS_ERR(em))
6122 return PTR_ERR(em);
6123
6124 map = em->map_lookup;
6125 /* Offset of this logical address in the chunk */
6126 offset = logical - em->start;
6127 /* Len of a stripe in a chunk */
6128 stripe_len = map->stripe_len;
6129 /* Stripe wher this block falls in */
6130 stripe_nr = div64_u64(offset, stripe_len);
6131 /* Offset of stripe in the chunk */
6132 stripe_offset = stripe_nr * stripe_len;
6133 if (offset < stripe_offset) {
6134 btrfs_crit(fs_info,
6135 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
6136 stripe_offset, offset, em->start, logical, stripe_len);
6137 ret = -EINVAL;
6138 goto out;
6139 }
6140
6141 /* stripe_offset is the offset of this block in its stripe */
6142 stripe_offset = offset - stripe_offset;
6143 data_stripes = nr_data_stripes(map);
6144
6145 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6146 u64 max_len = stripe_len - stripe_offset;
6147
6148 /*
6149 * In case of raid56, we need to know the stripe aligned start
6150 */
6151 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6152 unsigned long full_stripe_len = stripe_len * data_stripes;
6153 raid56_full_stripe_start = offset;
6154
6155 /*
6156 * Allow a write of a full stripe, but make sure we
6157 * don't allow straddling of stripes
6158 */
6159 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6160 full_stripe_len);
6161 raid56_full_stripe_start *= full_stripe_len;
6162
6163 /*
6164 * For writes to RAID[56], allow a full stripeset across
6165 * all disks. For other RAID types and for RAID[56]
6166 * reads, just allow a single stripe (on a single disk).
6167 */
6168 if (op == BTRFS_MAP_WRITE) {
6169 max_len = stripe_len * data_stripes -
6170 (offset - raid56_full_stripe_start);
6171 }
6172 }
6173 len = min_t(u64, em->len - offset, max_len);
6174 } else {
6175 len = em->len - offset;
6176 }
6177
6178 io_geom->len = len;
6179 io_geom->offset = offset;
6180 io_geom->stripe_len = stripe_len;
6181 io_geom->stripe_nr = stripe_nr;
6182 io_geom->stripe_offset = stripe_offset;
6183 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6184
6185 out:
6186 /* once for us */
6187 free_extent_map(em);
6188 return ret;
6189 }
6190
__btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)6191 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6192 enum btrfs_map_op op,
6193 u64 logical, u64 *length,
6194 struct btrfs_bio **bbio_ret,
6195 int mirror_num, int need_raid_map)
6196 {
6197 struct extent_map *em;
6198 struct map_lookup *map;
6199 u64 stripe_offset;
6200 u64 stripe_nr;
6201 u64 stripe_len;
6202 u32 stripe_index;
6203 int data_stripes;
6204 int i;
6205 int ret = 0;
6206 int num_stripes;
6207 int max_errors = 0;
6208 int tgtdev_indexes = 0;
6209 struct btrfs_bio *bbio = NULL;
6210 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6211 int dev_replace_is_ongoing = 0;
6212 int num_alloc_stripes;
6213 int patch_the_first_stripe_for_dev_replace = 0;
6214 u64 physical_to_patch_in_first_stripe = 0;
6215 u64 raid56_full_stripe_start = (u64)-1;
6216 struct btrfs_io_geometry geom;
6217
6218 ASSERT(bbio_ret);
6219
6220 if (op == BTRFS_MAP_DISCARD)
6221 return __btrfs_map_block_for_discard(fs_info, logical,
6222 length, bbio_ret);
6223
6224 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6225 if (ret < 0)
6226 return ret;
6227
6228 em = btrfs_get_chunk_map(fs_info, logical, *length);
6229 ASSERT(!IS_ERR(em));
6230 map = em->map_lookup;
6231
6232 *length = geom.len;
6233 stripe_len = geom.stripe_len;
6234 stripe_nr = geom.stripe_nr;
6235 stripe_offset = geom.stripe_offset;
6236 raid56_full_stripe_start = geom.raid56_stripe_offset;
6237 data_stripes = nr_data_stripes(map);
6238
6239 down_read(&dev_replace->rwsem);
6240 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6241 /*
6242 * Hold the semaphore for read during the whole operation, write is
6243 * requested at commit time but must wait.
6244 */
6245 if (!dev_replace_is_ongoing)
6246 up_read(&dev_replace->rwsem);
6247
6248 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6249 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6250 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6251 dev_replace->srcdev->devid,
6252 &mirror_num,
6253 &physical_to_patch_in_first_stripe);
6254 if (ret)
6255 goto out;
6256 else
6257 patch_the_first_stripe_for_dev_replace = 1;
6258 } else if (mirror_num > map->num_stripes) {
6259 mirror_num = 0;
6260 }
6261
6262 num_stripes = 1;
6263 stripe_index = 0;
6264 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6265 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6266 &stripe_index);
6267 if (!need_full_stripe(op))
6268 mirror_num = 1;
6269 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6270 if (need_full_stripe(op))
6271 num_stripes = map->num_stripes;
6272 else if (mirror_num)
6273 stripe_index = mirror_num - 1;
6274 else {
6275 stripe_index = find_live_mirror(fs_info, map, 0,
6276 dev_replace_is_ongoing);
6277 mirror_num = stripe_index + 1;
6278 }
6279
6280 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6281 if (need_full_stripe(op)) {
6282 num_stripes = map->num_stripes;
6283 } else if (mirror_num) {
6284 stripe_index = mirror_num - 1;
6285 } else {
6286 mirror_num = 1;
6287 }
6288
6289 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6290 u32 factor = map->num_stripes / map->sub_stripes;
6291
6292 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6293 stripe_index *= map->sub_stripes;
6294
6295 if (need_full_stripe(op))
6296 num_stripes = map->sub_stripes;
6297 else if (mirror_num)
6298 stripe_index += mirror_num - 1;
6299 else {
6300 int old_stripe_index = stripe_index;
6301 stripe_index = find_live_mirror(fs_info, map,
6302 stripe_index,
6303 dev_replace_is_ongoing);
6304 mirror_num = stripe_index - old_stripe_index + 1;
6305 }
6306
6307 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6308 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6309 /* push stripe_nr back to the start of the full stripe */
6310 stripe_nr = div64_u64(raid56_full_stripe_start,
6311 stripe_len * data_stripes);
6312
6313 /* RAID[56] write or recovery. Return all stripes */
6314 num_stripes = map->num_stripes;
6315 max_errors = nr_parity_stripes(map);
6316
6317 *length = map->stripe_len;
6318 stripe_index = 0;
6319 stripe_offset = 0;
6320 } else {
6321 /*
6322 * Mirror #0 or #1 means the original data block.
6323 * Mirror #2 is RAID5 parity block.
6324 * Mirror #3 is RAID6 Q block.
6325 */
6326 stripe_nr = div_u64_rem(stripe_nr,
6327 data_stripes, &stripe_index);
6328 if (mirror_num > 1)
6329 stripe_index = data_stripes + mirror_num - 2;
6330
6331 /* We distribute the parity blocks across stripes */
6332 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6333 &stripe_index);
6334 if (!need_full_stripe(op) && mirror_num <= 1)
6335 mirror_num = 1;
6336 }
6337 } else {
6338 /*
6339 * after this, stripe_nr is the number of stripes on this
6340 * device we have to walk to find the data, and stripe_index is
6341 * the number of our device in the stripe array
6342 */
6343 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6344 &stripe_index);
6345 mirror_num = stripe_index + 1;
6346 }
6347 if (stripe_index >= map->num_stripes) {
6348 btrfs_crit(fs_info,
6349 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6350 stripe_index, map->num_stripes);
6351 ret = -EINVAL;
6352 goto out;
6353 }
6354
6355 num_alloc_stripes = num_stripes;
6356 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6357 if (op == BTRFS_MAP_WRITE)
6358 num_alloc_stripes <<= 1;
6359 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6360 num_alloc_stripes++;
6361 tgtdev_indexes = num_stripes;
6362 }
6363
6364 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6365 if (!bbio) {
6366 ret = -ENOMEM;
6367 goto out;
6368 }
6369 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6370 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6371
6372 /* build raid_map */
6373 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6374 (need_full_stripe(op) || mirror_num > 1)) {
6375 u64 tmp;
6376 unsigned rot;
6377
6378 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6379 sizeof(struct btrfs_bio_stripe) *
6380 num_alloc_stripes +
6381 sizeof(int) * tgtdev_indexes);
6382
6383 /* Work out the disk rotation on this stripe-set */
6384 div_u64_rem(stripe_nr, num_stripes, &rot);
6385
6386 /* Fill in the logical address of each stripe */
6387 tmp = stripe_nr * data_stripes;
6388 for (i = 0; i < data_stripes; i++)
6389 bbio->raid_map[(i+rot) % num_stripes] =
6390 em->start + (tmp + i) * map->stripe_len;
6391
6392 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6393 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6394 bbio->raid_map[(i+rot+1) % num_stripes] =
6395 RAID6_Q_STRIPE;
6396 }
6397
6398
6399 for (i = 0; i < num_stripes; i++) {
6400 bbio->stripes[i].physical =
6401 map->stripes[stripe_index].physical +
6402 stripe_offset +
6403 stripe_nr * map->stripe_len;
6404 bbio->stripes[i].dev =
6405 map->stripes[stripe_index].dev;
6406 stripe_index++;
6407 }
6408
6409 if (need_full_stripe(op))
6410 max_errors = btrfs_chunk_max_errors(map);
6411
6412 if (bbio->raid_map)
6413 sort_parity_stripes(bbio, num_stripes);
6414
6415 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6416 need_full_stripe(op)) {
6417 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6418 &max_errors);
6419 }
6420
6421 *bbio_ret = bbio;
6422 bbio->map_type = map->type;
6423 bbio->num_stripes = num_stripes;
6424 bbio->max_errors = max_errors;
6425 bbio->mirror_num = mirror_num;
6426
6427 /*
6428 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6429 * mirror_num == num_stripes + 1 && dev_replace target drive is
6430 * available as a mirror
6431 */
6432 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6433 WARN_ON(num_stripes > 1);
6434 bbio->stripes[0].dev = dev_replace->tgtdev;
6435 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6436 bbio->mirror_num = map->num_stripes + 1;
6437 }
6438 out:
6439 if (dev_replace_is_ongoing) {
6440 lockdep_assert_held(&dev_replace->rwsem);
6441 /* Unlock and let waiting writers proceed */
6442 up_read(&dev_replace->rwsem);
6443 }
6444 free_extent_map(em);
6445 return ret;
6446 }
6447
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num)6448 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6449 u64 logical, u64 *length,
6450 struct btrfs_bio **bbio_ret, int mirror_num)
6451 {
6452 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6453 mirror_num, 0);
6454 }
6455
6456 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret)6457 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6458 u64 logical, u64 *length,
6459 struct btrfs_bio **bbio_ret)
6460 {
6461 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6462 }
6463
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)6464 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6465 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
6466 {
6467 struct extent_map *em;
6468 struct map_lookup *map;
6469 u64 *buf;
6470 u64 bytenr;
6471 u64 length;
6472 u64 stripe_nr;
6473 u64 rmap_len;
6474 int i, j, nr = 0;
6475
6476 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6477 if (IS_ERR(em))
6478 return -EIO;
6479
6480 map = em->map_lookup;
6481 length = em->len;
6482 rmap_len = map->stripe_len;
6483
6484 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6485 length = div_u64(length, map->num_stripes / map->sub_stripes);
6486 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6487 length = div_u64(length, map->num_stripes);
6488 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6489 length = div_u64(length, nr_data_stripes(map));
6490 rmap_len = map->stripe_len * nr_data_stripes(map);
6491 }
6492
6493 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6494 BUG_ON(!buf); /* -ENOMEM */
6495
6496 for (i = 0; i < map->num_stripes; i++) {
6497 if (map->stripes[i].physical > physical ||
6498 map->stripes[i].physical + length <= physical)
6499 continue;
6500
6501 stripe_nr = physical - map->stripes[i].physical;
6502 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6503
6504 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6505 stripe_nr = stripe_nr * map->num_stripes + i;
6506 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6507 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6508 stripe_nr = stripe_nr * map->num_stripes + i;
6509 } /* else if RAID[56], multiply by nr_data_stripes().
6510 * Alternatively, just use rmap_len below instead of
6511 * map->stripe_len */
6512
6513 bytenr = chunk_start + stripe_nr * rmap_len;
6514 WARN_ON(nr >= map->num_stripes);
6515 for (j = 0; j < nr; j++) {
6516 if (buf[j] == bytenr)
6517 break;
6518 }
6519 if (j == nr) {
6520 WARN_ON(nr >= map->num_stripes);
6521 buf[nr++] = bytenr;
6522 }
6523 }
6524
6525 *logical = buf;
6526 *naddrs = nr;
6527 *stripe_len = rmap_len;
6528
6529 free_extent_map(em);
6530 return 0;
6531 }
6532
btrfs_end_bbio(struct btrfs_bio * bbio,struct bio * bio)6533 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6534 {
6535 bio->bi_private = bbio->private;
6536 bio->bi_end_io = bbio->end_io;
6537 bio_endio(bio);
6538
6539 btrfs_put_bbio(bbio);
6540 }
6541
btrfs_end_bio(struct bio * bio)6542 static void btrfs_end_bio(struct bio *bio)
6543 {
6544 struct btrfs_bio *bbio = bio->bi_private;
6545 int is_orig_bio = 0;
6546
6547 if (bio->bi_status) {
6548 atomic_inc(&bbio->error);
6549 if (bio->bi_status == BLK_STS_IOERR ||
6550 bio->bi_status == BLK_STS_TARGET) {
6551 unsigned int stripe_index =
6552 btrfs_io_bio(bio)->stripe_index;
6553 struct btrfs_device *dev;
6554
6555 BUG_ON(stripe_index >= bbio->num_stripes);
6556 dev = bbio->stripes[stripe_index].dev;
6557 if (dev->bdev) {
6558 if (bio_op(bio) == REQ_OP_WRITE)
6559 btrfs_dev_stat_inc_and_print(dev,
6560 BTRFS_DEV_STAT_WRITE_ERRS);
6561 else if (!(bio->bi_opf & REQ_RAHEAD))
6562 btrfs_dev_stat_inc_and_print(dev,
6563 BTRFS_DEV_STAT_READ_ERRS);
6564 if (bio->bi_opf & REQ_PREFLUSH)
6565 btrfs_dev_stat_inc_and_print(dev,
6566 BTRFS_DEV_STAT_FLUSH_ERRS);
6567 }
6568 }
6569 }
6570
6571 if (bio == bbio->orig_bio)
6572 is_orig_bio = 1;
6573
6574 btrfs_bio_counter_dec(bbio->fs_info);
6575
6576 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6577 if (!is_orig_bio) {
6578 bio_put(bio);
6579 bio = bbio->orig_bio;
6580 }
6581
6582 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6583 /* only send an error to the higher layers if it is
6584 * beyond the tolerance of the btrfs bio
6585 */
6586 if (atomic_read(&bbio->error) > bbio->max_errors) {
6587 bio->bi_status = BLK_STS_IOERR;
6588 } else {
6589 /*
6590 * this bio is actually up to date, we didn't
6591 * go over the max number of errors
6592 */
6593 bio->bi_status = BLK_STS_OK;
6594 }
6595
6596 btrfs_end_bbio(bbio, bio);
6597 } else if (!is_orig_bio) {
6598 bio_put(bio);
6599 }
6600 }
6601
6602 /*
6603 * see run_scheduled_bios for a description of why bios are collected for
6604 * async submit.
6605 *
6606 * This will add one bio to the pending list for a device and make sure
6607 * the work struct is scheduled.
6608 */
btrfs_schedule_bio(struct btrfs_device * device,struct bio * bio)6609 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6610 struct bio *bio)
6611 {
6612 struct btrfs_fs_info *fs_info = device->fs_info;
6613 int should_queue = 1;
6614 struct btrfs_pending_bios *pending_bios;
6615
6616 /* don't bother with additional async steps for reads, right now */
6617 if (bio_op(bio) == REQ_OP_READ) {
6618 btrfsic_submit_bio(bio);
6619 return;
6620 }
6621
6622 WARN_ON(bio->bi_next);
6623 bio->bi_next = NULL;
6624
6625 spin_lock(&device->io_lock);
6626 if (op_is_sync(bio->bi_opf))
6627 pending_bios = &device->pending_sync_bios;
6628 else
6629 pending_bios = &device->pending_bios;
6630
6631 if (pending_bios->tail)
6632 pending_bios->tail->bi_next = bio;
6633
6634 pending_bios->tail = bio;
6635 if (!pending_bios->head)
6636 pending_bios->head = bio;
6637 if (device->running_pending)
6638 should_queue = 0;
6639
6640 spin_unlock(&device->io_lock);
6641
6642 if (should_queue)
6643 btrfs_queue_work(fs_info->submit_workers, &device->work);
6644 }
6645
submit_stripe_bio(struct btrfs_bio * bbio,struct bio * bio,u64 physical,int dev_nr,int async)6646 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6647 u64 physical, int dev_nr, int async)
6648 {
6649 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6650 struct btrfs_fs_info *fs_info = bbio->fs_info;
6651
6652 bio->bi_private = bbio;
6653 btrfs_io_bio(bio)->stripe_index = dev_nr;
6654 bio->bi_end_io = btrfs_end_bio;
6655 bio->bi_iter.bi_sector = physical >> 9;
6656 btrfs_debug_in_rcu(fs_info,
6657 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6658 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6659 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6660 bio->bi_iter.bi_size);
6661 bio_set_dev(bio, dev->bdev);
6662
6663 btrfs_bio_counter_inc_noblocked(fs_info);
6664
6665 if (async)
6666 btrfs_schedule_bio(dev, bio);
6667 else
6668 btrfsic_submit_bio(bio);
6669 }
6670
bbio_error(struct btrfs_bio * bbio,struct bio * bio,u64 logical)6671 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6672 {
6673 atomic_inc(&bbio->error);
6674 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6675 /* Should be the original bio. */
6676 WARN_ON(bio != bbio->orig_bio);
6677
6678 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6679 bio->bi_iter.bi_sector = logical >> 9;
6680 if (atomic_read(&bbio->error) > bbio->max_errors)
6681 bio->bi_status = BLK_STS_IOERR;
6682 else
6683 bio->bi_status = BLK_STS_OK;
6684 btrfs_end_bbio(bbio, bio);
6685 }
6686 }
6687
btrfs_map_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,int async_submit)6688 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6689 int mirror_num, int async_submit)
6690 {
6691 struct btrfs_device *dev;
6692 struct bio *first_bio = bio;
6693 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6694 u64 length = 0;
6695 u64 map_length;
6696 int ret;
6697 int dev_nr;
6698 int total_devs;
6699 struct btrfs_bio *bbio = NULL;
6700
6701 length = bio->bi_iter.bi_size;
6702 map_length = length;
6703
6704 btrfs_bio_counter_inc_blocked(fs_info);
6705 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6706 &map_length, &bbio, mirror_num, 1);
6707 if (ret) {
6708 btrfs_bio_counter_dec(fs_info);
6709 return errno_to_blk_status(ret);
6710 }
6711
6712 total_devs = bbio->num_stripes;
6713 bbio->orig_bio = first_bio;
6714 bbio->private = first_bio->bi_private;
6715 bbio->end_io = first_bio->bi_end_io;
6716 bbio->fs_info = fs_info;
6717 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6718
6719 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6720 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6721 /* In this case, map_length has been set to the length of
6722 a single stripe; not the whole write */
6723 if (bio_op(bio) == REQ_OP_WRITE) {
6724 ret = raid56_parity_write(fs_info, bio, bbio,
6725 map_length);
6726 } else {
6727 ret = raid56_parity_recover(fs_info, bio, bbio,
6728 map_length, mirror_num, 1);
6729 }
6730
6731 btrfs_bio_counter_dec(fs_info);
6732 return errno_to_blk_status(ret);
6733 }
6734
6735 if (map_length < length) {
6736 btrfs_crit(fs_info,
6737 "mapping failed logical %llu bio len %llu len %llu",
6738 logical, length, map_length);
6739 BUG();
6740 }
6741
6742 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6743 dev = bbio->stripes[dev_nr].dev;
6744 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6745 &dev->dev_state) ||
6746 (bio_op(first_bio) == REQ_OP_WRITE &&
6747 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6748 bbio_error(bbio, first_bio, logical);
6749 continue;
6750 }
6751
6752 if (dev_nr < total_devs - 1)
6753 bio = btrfs_bio_clone(first_bio);
6754 else
6755 bio = first_bio;
6756
6757 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6758 dev_nr, async_submit);
6759 }
6760 btrfs_bio_counter_dec(fs_info);
6761 return BLK_STS_OK;
6762 }
6763
6764 /*
6765 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6766 * return NULL.
6767 *
6768 * If devid and uuid are both specified, the match must be exact, otherwise
6769 * only devid is used.
6770 *
6771 * If @seed is true, traverse through the seed devices.
6772 */
btrfs_find_device(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * uuid,u8 * fsid,bool seed)6773 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6774 u64 devid, u8 *uuid, u8 *fsid,
6775 bool seed)
6776 {
6777 struct btrfs_device *device;
6778
6779 while (fs_devices) {
6780 if (!fsid ||
6781 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6782 list_for_each_entry(device, &fs_devices->devices,
6783 dev_list) {
6784 if (device->devid == devid &&
6785 (!uuid || memcmp(device->uuid, uuid,
6786 BTRFS_UUID_SIZE) == 0))
6787 return device;
6788 }
6789 }
6790 if (seed)
6791 fs_devices = fs_devices->seed;
6792 else
6793 return NULL;
6794 }
6795 return NULL;
6796 }
6797
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6798 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6799 u64 devid, u8 *dev_uuid)
6800 {
6801 struct btrfs_device *device;
6802 unsigned int nofs_flag;
6803
6804 /*
6805 * We call this under the chunk_mutex, so we want to use NOFS for this
6806 * allocation, however we don't want to change btrfs_alloc_device() to
6807 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6808 * places.
6809 */
6810 nofs_flag = memalloc_nofs_save();
6811 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6812 memalloc_nofs_restore(nofs_flag);
6813 if (IS_ERR(device))
6814 return device;
6815
6816 list_add(&device->dev_list, &fs_devices->devices);
6817 device->fs_devices = fs_devices;
6818 fs_devices->num_devices++;
6819
6820 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6821 fs_devices->missing_devices++;
6822
6823 return device;
6824 }
6825
6826 /**
6827 * btrfs_alloc_device - allocate struct btrfs_device
6828 * @fs_info: used only for generating a new devid, can be NULL if
6829 * devid is provided (i.e. @devid != NULL).
6830 * @devid: a pointer to devid for this device. If NULL a new devid
6831 * is generated.
6832 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6833 * is generated.
6834 *
6835 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6836 * on error. Returned struct is not linked onto any lists and must be
6837 * destroyed with btrfs_free_device.
6838 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)6839 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6840 const u64 *devid,
6841 const u8 *uuid)
6842 {
6843 struct btrfs_device *dev;
6844 u64 tmp;
6845
6846 if (WARN_ON(!devid && !fs_info))
6847 return ERR_PTR(-EINVAL);
6848
6849 dev = __alloc_device();
6850 if (IS_ERR(dev))
6851 return dev;
6852
6853 if (devid)
6854 tmp = *devid;
6855 else {
6856 int ret;
6857
6858 ret = find_next_devid(fs_info, &tmp);
6859 if (ret) {
6860 btrfs_free_device(dev);
6861 return ERR_PTR(ret);
6862 }
6863 }
6864 dev->devid = tmp;
6865
6866 if (uuid)
6867 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6868 else
6869 generate_random_uuid(dev->uuid);
6870
6871 btrfs_init_work(&dev->work, pending_bios_fn, NULL, NULL);
6872
6873 return dev;
6874 }
6875
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6876 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6877 u64 devid, u8 *uuid, bool error)
6878 {
6879 if (error)
6880 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6881 devid, uuid);
6882 else
6883 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6884 devid, uuid);
6885 }
6886
calc_stripe_length(u64 type,u64 chunk_len,int num_stripes)6887 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6888 {
6889 int index = btrfs_bg_flags_to_raid_index(type);
6890 int ncopies = btrfs_raid_array[index].ncopies;
6891 int data_stripes;
6892
6893 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6894 case BTRFS_BLOCK_GROUP_RAID5:
6895 data_stripes = num_stripes - 1;
6896 break;
6897 case BTRFS_BLOCK_GROUP_RAID6:
6898 data_stripes = num_stripes - 2;
6899 break;
6900 default:
6901 data_stripes = num_stripes / ncopies;
6902 break;
6903 }
6904 return div_u64(chunk_len, data_stripes);
6905 }
6906
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6907 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6908 struct btrfs_chunk *chunk)
6909 {
6910 struct btrfs_fs_info *fs_info = leaf->fs_info;
6911 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6912 struct map_lookup *map;
6913 struct extent_map *em;
6914 u64 logical;
6915 u64 length;
6916 u64 devid;
6917 u8 uuid[BTRFS_UUID_SIZE];
6918 int num_stripes;
6919 int ret;
6920 int i;
6921
6922 logical = key->offset;
6923 length = btrfs_chunk_length(leaf, chunk);
6924 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6925
6926 /*
6927 * Only need to verify chunk item if we're reading from sys chunk array,
6928 * as chunk item in tree block is already verified by tree-checker.
6929 */
6930 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6931 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6932 if (ret)
6933 return ret;
6934 }
6935
6936 read_lock(&map_tree->lock);
6937 em = lookup_extent_mapping(map_tree, logical, 1);
6938 read_unlock(&map_tree->lock);
6939
6940 /* already mapped? */
6941 if (em && em->start <= logical && em->start + em->len > logical) {
6942 free_extent_map(em);
6943 return 0;
6944 } else if (em) {
6945 free_extent_map(em);
6946 }
6947
6948 em = alloc_extent_map();
6949 if (!em)
6950 return -ENOMEM;
6951 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6952 if (!map) {
6953 free_extent_map(em);
6954 return -ENOMEM;
6955 }
6956
6957 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6958 em->map_lookup = map;
6959 em->start = logical;
6960 em->len = length;
6961 em->orig_start = 0;
6962 em->block_start = 0;
6963 em->block_len = em->len;
6964
6965 map->num_stripes = num_stripes;
6966 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6967 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6968 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6969 map->type = btrfs_chunk_type(leaf, chunk);
6970 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6971 map->verified_stripes = 0;
6972 em->orig_block_len = calc_stripe_length(map->type, em->len,
6973 map->num_stripes);
6974 for (i = 0; i < num_stripes; i++) {
6975 map->stripes[i].physical =
6976 btrfs_stripe_offset_nr(leaf, chunk, i);
6977 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6978 read_extent_buffer(leaf, uuid, (unsigned long)
6979 btrfs_stripe_dev_uuid_nr(chunk, i),
6980 BTRFS_UUID_SIZE);
6981 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6982 devid, uuid, NULL, true);
6983 if (!map->stripes[i].dev &&
6984 !btrfs_test_opt(fs_info, DEGRADED)) {
6985 free_extent_map(em);
6986 btrfs_report_missing_device(fs_info, devid, uuid, true);
6987 return -ENOENT;
6988 }
6989 if (!map->stripes[i].dev) {
6990 map->stripes[i].dev =
6991 add_missing_dev(fs_info->fs_devices, devid,
6992 uuid);
6993 if (IS_ERR(map->stripes[i].dev)) {
6994 free_extent_map(em);
6995 btrfs_err(fs_info,
6996 "failed to init missing dev %llu: %ld",
6997 devid, PTR_ERR(map->stripes[i].dev));
6998 return PTR_ERR(map->stripes[i].dev);
6999 }
7000 btrfs_report_missing_device(fs_info, devid, uuid, false);
7001 }
7002 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7003 &(map->stripes[i].dev->dev_state));
7004
7005 }
7006
7007 write_lock(&map_tree->lock);
7008 ret = add_extent_mapping(map_tree, em, 0);
7009 write_unlock(&map_tree->lock);
7010 if (ret < 0) {
7011 btrfs_err(fs_info,
7012 "failed to add chunk map, start=%llu len=%llu: %d",
7013 em->start, em->len, ret);
7014 }
7015 free_extent_map(em);
7016
7017 return ret;
7018 }
7019
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)7020 static void fill_device_from_item(struct extent_buffer *leaf,
7021 struct btrfs_dev_item *dev_item,
7022 struct btrfs_device *device)
7023 {
7024 unsigned long ptr;
7025
7026 device->devid = btrfs_device_id(leaf, dev_item);
7027 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7028 device->total_bytes = device->disk_total_bytes;
7029 device->commit_total_bytes = device->disk_total_bytes;
7030 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7031 device->commit_bytes_used = device->bytes_used;
7032 device->type = btrfs_device_type(leaf, dev_item);
7033 device->io_align = btrfs_device_io_align(leaf, dev_item);
7034 device->io_width = btrfs_device_io_width(leaf, dev_item);
7035 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7036 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7037 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7038
7039 ptr = btrfs_device_uuid(dev_item);
7040 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7041 }
7042
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)7043 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7044 u8 *fsid)
7045 {
7046 struct btrfs_fs_devices *fs_devices;
7047 int ret;
7048
7049 lockdep_assert_held(&uuid_mutex);
7050 ASSERT(fsid);
7051
7052 fs_devices = fs_info->fs_devices->seed;
7053 while (fs_devices) {
7054 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7055 return fs_devices;
7056
7057 fs_devices = fs_devices->seed;
7058 }
7059
7060 fs_devices = find_fsid(fsid, NULL);
7061 if (!fs_devices) {
7062 if (!btrfs_test_opt(fs_info, DEGRADED))
7063 return ERR_PTR(-ENOENT);
7064
7065 fs_devices = alloc_fs_devices(fsid, NULL);
7066 if (IS_ERR(fs_devices))
7067 return fs_devices;
7068
7069 fs_devices->seeding = 1;
7070 fs_devices->opened = 1;
7071 return fs_devices;
7072 }
7073
7074 fs_devices = clone_fs_devices(fs_devices);
7075 if (IS_ERR(fs_devices))
7076 return fs_devices;
7077
7078 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
7079 if (ret) {
7080 free_fs_devices(fs_devices);
7081 fs_devices = ERR_PTR(ret);
7082 goto out;
7083 }
7084
7085 if (!fs_devices->seeding) {
7086 close_fs_devices(fs_devices);
7087 free_fs_devices(fs_devices);
7088 fs_devices = ERR_PTR(-EINVAL);
7089 goto out;
7090 }
7091
7092 fs_devices->seed = fs_info->fs_devices->seed;
7093 fs_info->fs_devices->seed = fs_devices;
7094 out:
7095 return fs_devices;
7096 }
7097
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)7098 static int read_one_dev(struct extent_buffer *leaf,
7099 struct btrfs_dev_item *dev_item)
7100 {
7101 struct btrfs_fs_info *fs_info = leaf->fs_info;
7102 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7103 struct btrfs_device *device;
7104 u64 devid;
7105 int ret;
7106 u8 fs_uuid[BTRFS_FSID_SIZE];
7107 u8 dev_uuid[BTRFS_UUID_SIZE];
7108
7109 devid = btrfs_device_id(leaf, dev_item);
7110 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7111 BTRFS_UUID_SIZE);
7112 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7113 BTRFS_FSID_SIZE);
7114
7115 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7116 fs_devices = open_seed_devices(fs_info, fs_uuid);
7117 if (IS_ERR(fs_devices))
7118 return PTR_ERR(fs_devices);
7119 }
7120
7121 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
7122 fs_uuid, true);
7123 if (!device) {
7124 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7125 btrfs_report_missing_device(fs_info, devid,
7126 dev_uuid, true);
7127 return -ENOENT;
7128 }
7129
7130 device = add_missing_dev(fs_devices, devid, dev_uuid);
7131 if (IS_ERR(device)) {
7132 btrfs_err(fs_info,
7133 "failed to add missing dev %llu: %ld",
7134 devid, PTR_ERR(device));
7135 return PTR_ERR(device);
7136 }
7137 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7138 } else {
7139 if (!device->bdev) {
7140 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7141 btrfs_report_missing_device(fs_info,
7142 devid, dev_uuid, true);
7143 return -ENOENT;
7144 }
7145 btrfs_report_missing_device(fs_info, devid,
7146 dev_uuid, false);
7147 }
7148
7149 if (!device->bdev &&
7150 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7151 /*
7152 * this happens when a device that was properly setup
7153 * in the device info lists suddenly goes bad.
7154 * device->bdev is NULL, and so we have to set
7155 * device->missing to one here
7156 */
7157 device->fs_devices->missing_devices++;
7158 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7159 }
7160
7161 /* Move the device to its own fs_devices */
7162 if (device->fs_devices != fs_devices) {
7163 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7164 &device->dev_state));
7165
7166 list_move(&device->dev_list, &fs_devices->devices);
7167 device->fs_devices->num_devices--;
7168 fs_devices->num_devices++;
7169
7170 device->fs_devices->missing_devices--;
7171 fs_devices->missing_devices++;
7172
7173 device->fs_devices = fs_devices;
7174 }
7175 }
7176
7177 if (device->fs_devices != fs_info->fs_devices) {
7178 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7179 if (device->generation !=
7180 btrfs_device_generation(leaf, dev_item))
7181 return -EINVAL;
7182 }
7183
7184 fill_device_from_item(leaf, dev_item, device);
7185 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7186 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7187 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7188 device->fs_devices->total_rw_bytes += device->total_bytes;
7189 atomic64_add(device->total_bytes - device->bytes_used,
7190 &fs_info->free_chunk_space);
7191 }
7192 ret = 0;
7193 return ret;
7194 }
7195
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7196 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7197 {
7198 struct btrfs_root *root = fs_info->tree_root;
7199 struct btrfs_super_block *super_copy = fs_info->super_copy;
7200 struct extent_buffer *sb;
7201 struct btrfs_disk_key *disk_key;
7202 struct btrfs_chunk *chunk;
7203 u8 *array_ptr;
7204 unsigned long sb_array_offset;
7205 int ret = 0;
7206 u32 num_stripes;
7207 u32 array_size;
7208 u32 len = 0;
7209 u32 cur_offset;
7210 u64 type;
7211 struct btrfs_key key;
7212
7213 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7214 /*
7215 * This will create extent buffer of nodesize, superblock size is
7216 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7217 * overallocate but we can keep it as-is, only the first page is used.
7218 */
7219 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
7220 if (IS_ERR(sb))
7221 return PTR_ERR(sb);
7222 set_extent_buffer_uptodate(sb);
7223 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
7224 /*
7225 * The sb extent buffer is artificial and just used to read the system array.
7226 * set_extent_buffer_uptodate() call does not properly mark all it's
7227 * pages up-to-date when the page is larger: extent does not cover the
7228 * whole page and consequently check_page_uptodate does not find all
7229 * the page's extents up-to-date (the hole beyond sb),
7230 * write_extent_buffer then triggers a WARN_ON.
7231 *
7232 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7233 * but sb spans only this function. Add an explicit SetPageUptodate call
7234 * to silence the warning eg. on PowerPC 64.
7235 */
7236 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7237 SetPageUptodate(sb->pages[0]);
7238
7239 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7240 array_size = btrfs_super_sys_array_size(super_copy);
7241
7242 array_ptr = super_copy->sys_chunk_array;
7243 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7244 cur_offset = 0;
7245
7246 while (cur_offset < array_size) {
7247 disk_key = (struct btrfs_disk_key *)array_ptr;
7248 len = sizeof(*disk_key);
7249 if (cur_offset + len > array_size)
7250 goto out_short_read;
7251
7252 btrfs_disk_key_to_cpu(&key, disk_key);
7253
7254 array_ptr += len;
7255 sb_array_offset += len;
7256 cur_offset += len;
7257
7258 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
7259 chunk = (struct btrfs_chunk *)sb_array_offset;
7260 /*
7261 * At least one btrfs_chunk with one stripe must be
7262 * present, exact stripe count check comes afterwards
7263 */
7264 len = btrfs_chunk_item_size(1);
7265 if (cur_offset + len > array_size)
7266 goto out_short_read;
7267
7268 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7269 if (!num_stripes) {
7270 btrfs_err(fs_info,
7271 "invalid number of stripes %u in sys_array at offset %u",
7272 num_stripes, cur_offset);
7273 ret = -EIO;
7274 break;
7275 }
7276
7277 type = btrfs_chunk_type(sb, chunk);
7278 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7279 btrfs_err(fs_info,
7280 "invalid chunk type %llu in sys_array at offset %u",
7281 type, cur_offset);
7282 ret = -EIO;
7283 break;
7284 }
7285
7286 len = btrfs_chunk_item_size(num_stripes);
7287 if (cur_offset + len > array_size)
7288 goto out_short_read;
7289
7290 ret = read_one_chunk(&key, sb, chunk);
7291 if (ret)
7292 break;
7293 } else {
7294 btrfs_err(fs_info,
7295 "unexpected item type %u in sys_array at offset %u",
7296 (u32)key.type, cur_offset);
7297 ret = -EIO;
7298 break;
7299 }
7300 array_ptr += len;
7301 sb_array_offset += len;
7302 cur_offset += len;
7303 }
7304 clear_extent_buffer_uptodate(sb);
7305 free_extent_buffer_stale(sb);
7306 return ret;
7307
7308 out_short_read:
7309 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7310 len, cur_offset);
7311 clear_extent_buffer_uptodate(sb);
7312 free_extent_buffer_stale(sb);
7313 return -EIO;
7314 }
7315
7316 /*
7317 * Check if all chunks in the fs are OK for read-write degraded mount
7318 *
7319 * If the @failing_dev is specified, it's accounted as missing.
7320 *
7321 * Return true if all chunks meet the minimal RW mount requirements.
7322 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7323 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7324 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7325 struct btrfs_device *failing_dev)
7326 {
7327 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7328 struct extent_map *em;
7329 u64 next_start = 0;
7330 bool ret = true;
7331
7332 read_lock(&map_tree->lock);
7333 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7334 read_unlock(&map_tree->lock);
7335 /* No chunk at all? Return false anyway */
7336 if (!em) {
7337 ret = false;
7338 goto out;
7339 }
7340 while (em) {
7341 struct map_lookup *map;
7342 int missing = 0;
7343 int max_tolerated;
7344 int i;
7345
7346 map = em->map_lookup;
7347 max_tolerated =
7348 btrfs_get_num_tolerated_disk_barrier_failures(
7349 map->type);
7350 for (i = 0; i < map->num_stripes; i++) {
7351 struct btrfs_device *dev = map->stripes[i].dev;
7352
7353 if (!dev || !dev->bdev ||
7354 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7355 dev->last_flush_error)
7356 missing++;
7357 else if (failing_dev && failing_dev == dev)
7358 missing++;
7359 }
7360 if (missing > max_tolerated) {
7361 if (!failing_dev)
7362 btrfs_warn(fs_info,
7363 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7364 em->start, missing, max_tolerated);
7365 free_extent_map(em);
7366 ret = false;
7367 goto out;
7368 }
7369 next_start = extent_map_end(em);
7370 free_extent_map(em);
7371
7372 read_lock(&map_tree->lock);
7373 em = lookup_extent_mapping(map_tree, next_start,
7374 (u64)(-1) - next_start);
7375 read_unlock(&map_tree->lock);
7376 }
7377 out:
7378 return ret;
7379 }
7380
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7381 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7382 {
7383 struct btrfs_root *root = fs_info->chunk_root;
7384 struct btrfs_path *path;
7385 struct extent_buffer *leaf;
7386 struct btrfs_key key;
7387 struct btrfs_key found_key;
7388 int ret;
7389 int slot;
7390 u64 total_dev = 0;
7391
7392 path = btrfs_alloc_path();
7393 if (!path)
7394 return -ENOMEM;
7395
7396 /*
7397 * uuid_mutex is needed only if we are mounting a sprout FS
7398 * otherwise we don't need it.
7399 */
7400 mutex_lock(&uuid_mutex);
7401
7402 /*
7403 * It is possible for mount and umount to race in such a way that
7404 * we execute this code path, but open_fs_devices failed to clear
7405 * total_rw_bytes. We certainly want it cleared before reading the
7406 * device items, so clear it here.
7407 */
7408 fs_info->fs_devices->total_rw_bytes = 0;
7409
7410 /*
7411 * Read all device items, and then all the chunk items. All
7412 * device items are found before any chunk item (their object id
7413 * is smaller than the lowest possible object id for a chunk
7414 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7415 */
7416 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7417 key.offset = 0;
7418 key.type = 0;
7419 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7420 if (ret < 0)
7421 goto error;
7422 while (1) {
7423 leaf = path->nodes[0];
7424 slot = path->slots[0];
7425 if (slot >= btrfs_header_nritems(leaf)) {
7426 ret = btrfs_next_leaf(root, path);
7427 if (ret == 0)
7428 continue;
7429 if (ret < 0)
7430 goto error;
7431 break;
7432 }
7433 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7434 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7435 struct btrfs_dev_item *dev_item;
7436 dev_item = btrfs_item_ptr(leaf, slot,
7437 struct btrfs_dev_item);
7438 ret = read_one_dev(leaf, dev_item);
7439 if (ret)
7440 goto error;
7441 total_dev++;
7442 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7443 struct btrfs_chunk *chunk;
7444 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7445 mutex_lock(&fs_info->chunk_mutex);
7446 ret = read_one_chunk(&found_key, leaf, chunk);
7447 mutex_unlock(&fs_info->chunk_mutex);
7448 if (ret)
7449 goto error;
7450 }
7451 path->slots[0]++;
7452 }
7453
7454 /*
7455 * After loading chunk tree, we've got all device information,
7456 * do another round of validation checks.
7457 */
7458 if (total_dev != fs_info->fs_devices->total_devices) {
7459 btrfs_warn(fs_info,
7460 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7461 btrfs_super_num_devices(fs_info->super_copy),
7462 total_dev);
7463 fs_info->fs_devices->total_devices = total_dev;
7464 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7465 }
7466 if (btrfs_super_total_bytes(fs_info->super_copy) <
7467 fs_info->fs_devices->total_rw_bytes) {
7468 btrfs_err(fs_info,
7469 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7470 btrfs_super_total_bytes(fs_info->super_copy),
7471 fs_info->fs_devices->total_rw_bytes);
7472 ret = -EINVAL;
7473 goto error;
7474 }
7475 ret = 0;
7476 error:
7477 mutex_unlock(&uuid_mutex);
7478
7479 btrfs_free_path(path);
7480 return ret;
7481 }
7482
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7483 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7484 {
7485 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7486 struct btrfs_device *device;
7487
7488 while (fs_devices) {
7489 mutex_lock(&fs_devices->device_list_mutex);
7490 list_for_each_entry(device, &fs_devices->devices, dev_list)
7491 device->fs_info = fs_info;
7492 mutex_unlock(&fs_devices->device_list_mutex);
7493
7494 fs_devices = fs_devices->seed;
7495 }
7496 }
7497
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7498 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7499 const struct btrfs_dev_stats_item *ptr,
7500 int index)
7501 {
7502 u64 val;
7503
7504 read_extent_buffer(eb, &val,
7505 offsetof(struct btrfs_dev_stats_item, values) +
7506 ((unsigned long)ptr) + (index * sizeof(u64)),
7507 sizeof(val));
7508 return val;
7509 }
7510
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7511 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7512 struct btrfs_dev_stats_item *ptr,
7513 int index, u64 val)
7514 {
7515 write_extent_buffer(eb, &val,
7516 offsetof(struct btrfs_dev_stats_item, values) +
7517 ((unsigned long)ptr) + (index * sizeof(u64)),
7518 sizeof(val));
7519 }
7520
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7521 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7522 {
7523 struct btrfs_key key;
7524 struct btrfs_root *dev_root = fs_info->dev_root;
7525 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7526 struct extent_buffer *eb;
7527 int slot;
7528 int ret = 0;
7529 struct btrfs_device *device;
7530 struct btrfs_path *path = NULL;
7531 int i;
7532
7533 path = btrfs_alloc_path();
7534 if (!path)
7535 return -ENOMEM;
7536
7537 mutex_lock(&fs_devices->device_list_mutex);
7538 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7539 int item_size;
7540 struct btrfs_dev_stats_item *ptr;
7541
7542 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7543 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7544 key.offset = device->devid;
7545 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7546 if (ret) {
7547 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7548 btrfs_dev_stat_set(device, i, 0);
7549 device->dev_stats_valid = 1;
7550 btrfs_release_path(path);
7551 continue;
7552 }
7553 slot = path->slots[0];
7554 eb = path->nodes[0];
7555 item_size = btrfs_item_size_nr(eb, slot);
7556
7557 ptr = btrfs_item_ptr(eb, slot,
7558 struct btrfs_dev_stats_item);
7559
7560 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7561 if (item_size >= (1 + i) * sizeof(__le64))
7562 btrfs_dev_stat_set(device, i,
7563 btrfs_dev_stats_value(eb, ptr, i));
7564 else
7565 btrfs_dev_stat_set(device, i, 0);
7566 }
7567
7568 device->dev_stats_valid = 1;
7569 btrfs_dev_stat_print_on_load(device);
7570 btrfs_release_path(path);
7571 }
7572 mutex_unlock(&fs_devices->device_list_mutex);
7573
7574 btrfs_free_path(path);
7575 return ret < 0 ? ret : 0;
7576 }
7577
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7578 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7579 struct btrfs_device *device)
7580 {
7581 struct btrfs_fs_info *fs_info = trans->fs_info;
7582 struct btrfs_root *dev_root = fs_info->dev_root;
7583 struct btrfs_path *path;
7584 struct btrfs_key key;
7585 struct extent_buffer *eb;
7586 struct btrfs_dev_stats_item *ptr;
7587 int ret;
7588 int i;
7589
7590 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7591 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7592 key.offset = device->devid;
7593
7594 path = btrfs_alloc_path();
7595 if (!path)
7596 return -ENOMEM;
7597 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7598 if (ret < 0) {
7599 btrfs_warn_in_rcu(fs_info,
7600 "error %d while searching for dev_stats item for device %s",
7601 ret, rcu_str_deref(device->name));
7602 goto out;
7603 }
7604
7605 if (ret == 0 &&
7606 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7607 /* need to delete old one and insert a new one */
7608 ret = btrfs_del_item(trans, dev_root, path);
7609 if (ret != 0) {
7610 btrfs_warn_in_rcu(fs_info,
7611 "delete too small dev_stats item for device %s failed %d",
7612 rcu_str_deref(device->name), ret);
7613 goto out;
7614 }
7615 ret = 1;
7616 }
7617
7618 if (ret == 1) {
7619 /* need to insert a new item */
7620 btrfs_release_path(path);
7621 ret = btrfs_insert_empty_item(trans, dev_root, path,
7622 &key, sizeof(*ptr));
7623 if (ret < 0) {
7624 btrfs_warn_in_rcu(fs_info,
7625 "insert dev_stats item for device %s failed %d",
7626 rcu_str_deref(device->name), ret);
7627 goto out;
7628 }
7629 }
7630
7631 eb = path->nodes[0];
7632 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7633 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7634 btrfs_set_dev_stats_value(eb, ptr, i,
7635 btrfs_dev_stat_read(device, i));
7636 btrfs_mark_buffer_dirty(eb);
7637
7638 out:
7639 btrfs_free_path(path);
7640 return ret;
7641 }
7642
7643 /*
7644 * called from commit_transaction. Writes all changed device stats to disk.
7645 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7646 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7647 {
7648 struct btrfs_fs_info *fs_info = trans->fs_info;
7649 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7650 struct btrfs_device *device;
7651 int stats_cnt;
7652 int ret = 0;
7653
7654 mutex_lock(&fs_devices->device_list_mutex);
7655 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7656 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7657 if (!device->dev_stats_valid || stats_cnt == 0)
7658 continue;
7659
7660
7661 /*
7662 * There is a LOAD-LOAD control dependency between the value of
7663 * dev_stats_ccnt and updating the on-disk values which requires
7664 * reading the in-memory counters. Such control dependencies
7665 * require explicit read memory barriers.
7666 *
7667 * This memory barriers pairs with smp_mb__before_atomic in
7668 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7669 * barrier implied by atomic_xchg in
7670 * btrfs_dev_stats_read_and_reset
7671 */
7672 smp_rmb();
7673
7674 ret = update_dev_stat_item(trans, device);
7675 if (!ret)
7676 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7677 }
7678 mutex_unlock(&fs_devices->device_list_mutex);
7679
7680 return ret;
7681 }
7682
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7683 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7684 {
7685 btrfs_dev_stat_inc(dev, index);
7686 btrfs_dev_stat_print_on_error(dev);
7687 }
7688
btrfs_dev_stat_print_on_error(struct btrfs_device * dev)7689 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7690 {
7691 if (!dev->dev_stats_valid)
7692 return;
7693 btrfs_err_rl_in_rcu(dev->fs_info,
7694 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7695 rcu_str_deref(dev->name),
7696 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7697 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7698 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7699 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7700 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7701 }
7702
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7703 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7704 {
7705 int i;
7706
7707 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7708 if (btrfs_dev_stat_read(dev, i) != 0)
7709 break;
7710 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7711 return; /* all values == 0, suppress message */
7712
7713 btrfs_info_in_rcu(dev->fs_info,
7714 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7715 rcu_str_deref(dev->name),
7716 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7717 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7718 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7719 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7720 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7721 }
7722
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7723 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7724 struct btrfs_ioctl_get_dev_stats *stats)
7725 {
7726 struct btrfs_device *dev;
7727 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7728 int i;
7729
7730 mutex_lock(&fs_devices->device_list_mutex);
7731 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7732 true);
7733 mutex_unlock(&fs_devices->device_list_mutex);
7734
7735 if (!dev) {
7736 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7737 return -ENODEV;
7738 } else if (!dev->dev_stats_valid) {
7739 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7740 return -ENODEV;
7741 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7742 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7743 if (stats->nr_items > i)
7744 stats->values[i] =
7745 btrfs_dev_stat_read_and_reset(dev, i);
7746 else
7747 btrfs_dev_stat_set(dev, i, 0);
7748 }
7749 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7750 current->comm, task_pid_nr(current));
7751 } else {
7752 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7753 if (stats->nr_items > i)
7754 stats->values[i] = btrfs_dev_stat_read(dev, i);
7755 }
7756 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7757 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7758 return 0;
7759 }
7760
btrfs_scratch_superblocks(struct block_device * bdev,const char * device_path)7761 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7762 {
7763 struct buffer_head *bh;
7764 struct btrfs_super_block *disk_super;
7765 int copy_num;
7766
7767 if (!bdev)
7768 return;
7769
7770 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7771 copy_num++) {
7772
7773 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7774 continue;
7775
7776 disk_super = (struct btrfs_super_block *)bh->b_data;
7777
7778 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7779 set_buffer_dirty(bh);
7780 sync_dirty_buffer(bh);
7781 brelse(bh);
7782 }
7783
7784 /* Notify udev that device has changed */
7785 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7786
7787 /* Update ctime/mtime for device path for libblkid */
7788 update_dev_time(device_path);
7789 }
7790
7791 /*
7792 * Update the size and bytes used for each device where it changed. This is
7793 * delayed since we would otherwise get errors while writing out the
7794 * superblocks.
7795 *
7796 * Must be invoked during transaction commit.
7797 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7798 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7799 {
7800 struct btrfs_device *curr, *next;
7801
7802 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7803
7804 if (list_empty(&trans->dev_update_list))
7805 return;
7806
7807 /*
7808 * We don't need the device_list_mutex here. This list is owned by the
7809 * transaction and the transaction must complete before the device is
7810 * released.
7811 */
7812 mutex_lock(&trans->fs_info->chunk_mutex);
7813 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7814 post_commit_list) {
7815 list_del_init(&curr->post_commit_list);
7816 curr->commit_total_bytes = curr->disk_total_bytes;
7817 curr->commit_bytes_used = curr->bytes_used;
7818 }
7819 mutex_unlock(&trans->fs_info->chunk_mutex);
7820 }
7821
btrfs_set_fs_info_ptr(struct btrfs_fs_info * fs_info)7822 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7823 {
7824 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7825 while (fs_devices) {
7826 fs_devices->fs_info = fs_info;
7827 fs_devices = fs_devices->seed;
7828 }
7829 }
7830
btrfs_reset_fs_info_ptr(struct btrfs_fs_info * fs_info)7831 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7832 {
7833 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7834 while (fs_devices) {
7835 fs_devices->fs_info = NULL;
7836 fs_devices = fs_devices->seed;
7837 }
7838 }
7839
7840 /*
7841 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7842 */
btrfs_bg_type_to_factor(u64 flags)7843 int btrfs_bg_type_to_factor(u64 flags)
7844 {
7845 const int index = btrfs_bg_flags_to_raid_index(flags);
7846
7847 return btrfs_raid_array[index].ncopies;
7848 }
7849
7850
7851
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7852 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7853 u64 chunk_offset, u64 devid,
7854 u64 physical_offset, u64 physical_len)
7855 {
7856 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7857 struct extent_map *em;
7858 struct map_lookup *map;
7859 struct btrfs_device *dev;
7860 u64 stripe_len;
7861 bool found = false;
7862 int ret = 0;
7863 int i;
7864
7865 read_lock(&em_tree->lock);
7866 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7867 read_unlock(&em_tree->lock);
7868
7869 if (!em) {
7870 btrfs_err(fs_info,
7871 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7872 physical_offset, devid);
7873 ret = -EUCLEAN;
7874 goto out;
7875 }
7876
7877 map = em->map_lookup;
7878 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7879 if (physical_len != stripe_len) {
7880 btrfs_err(fs_info,
7881 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7882 physical_offset, devid, em->start, physical_len,
7883 stripe_len);
7884 ret = -EUCLEAN;
7885 goto out;
7886 }
7887
7888 for (i = 0; i < map->num_stripes; i++) {
7889 if (map->stripes[i].dev->devid == devid &&
7890 map->stripes[i].physical == physical_offset) {
7891 found = true;
7892 if (map->verified_stripes >= map->num_stripes) {
7893 btrfs_err(fs_info,
7894 "too many dev extents for chunk %llu found",
7895 em->start);
7896 ret = -EUCLEAN;
7897 goto out;
7898 }
7899 map->verified_stripes++;
7900 break;
7901 }
7902 }
7903 if (!found) {
7904 btrfs_err(fs_info,
7905 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7906 physical_offset, devid);
7907 ret = -EUCLEAN;
7908 }
7909
7910 /* Make sure no dev extent is beyond device bondary */
7911 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7912 if (!dev) {
7913 btrfs_err(fs_info, "failed to find devid %llu", devid);
7914 ret = -EUCLEAN;
7915 goto out;
7916 }
7917
7918 /* It's possible this device is a dummy for seed device */
7919 if (dev->disk_total_bytes == 0) {
7920 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7921 NULL, false);
7922 if (!dev) {
7923 btrfs_err(fs_info, "failed to find seed devid %llu",
7924 devid);
7925 ret = -EUCLEAN;
7926 goto out;
7927 }
7928 }
7929
7930 if (physical_offset + physical_len > dev->disk_total_bytes) {
7931 btrfs_err(fs_info,
7932 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7933 devid, physical_offset, physical_len,
7934 dev->disk_total_bytes);
7935 ret = -EUCLEAN;
7936 goto out;
7937 }
7938 out:
7939 free_extent_map(em);
7940 return ret;
7941 }
7942
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)7943 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7944 {
7945 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7946 struct extent_map *em;
7947 struct rb_node *node;
7948 int ret = 0;
7949
7950 read_lock(&em_tree->lock);
7951 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7952 em = rb_entry(node, struct extent_map, rb_node);
7953 if (em->map_lookup->num_stripes !=
7954 em->map_lookup->verified_stripes) {
7955 btrfs_err(fs_info,
7956 "chunk %llu has missing dev extent, have %d expect %d",
7957 em->start, em->map_lookup->verified_stripes,
7958 em->map_lookup->num_stripes);
7959 ret = -EUCLEAN;
7960 goto out;
7961 }
7962 }
7963 out:
7964 read_unlock(&em_tree->lock);
7965 return ret;
7966 }
7967
7968 /*
7969 * Ensure that all dev extents are mapped to correct chunk, otherwise
7970 * later chunk allocation/free would cause unexpected behavior.
7971 *
7972 * NOTE: This will iterate through the whole device tree, which should be of
7973 * the same size level as the chunk tree. This slightly increases mount time.
7974 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)7975 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7976 {
7977 struct btrfs_path *path;
7978 struct btrfs_root *root = fs_info->dev_root;
7979 struct btrfs_key key;
7980 u64 prev_devid = 0;
7981 u64 prev_dev_ext_end = 0;
7982 int ret = 0;
7983
7984 key.objectid = 1;
7985 key.type = BTRFS_DEV_EXTENT_KEY;
7986 key.offset = 0;
7987
7988 path = btrfs_alloc_path();
7989 if (!path)
7990 return -ENOMEM;
7991
7992 path->reada = READA_FORWARD;
7993 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7994 if (ret < 0)
7995 goto out;
7996
7997 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7998 ret = btrfs_next_item(root, path);
7999 if (ret < 0)
8000 goto out;
8001 /* No dev extents at all? Not good */
8002 if (ret > 0) {
8003 ret = -EUCLEAN;
8004 goto out;
8005 }
8006 }
8007 while (1) {
8008 struct extent_buffer *leaf = path->nodes[0];
8009 struct btrfs_dev_extent *dext;
8010 int slot = path->slots[0];
8011 u64 chunk_offset;
8012 u64 physical_offset;
8013 u64 physical_len;
8014 u64 devid;
8015
8016 btrfs_item_key_to_cpu(leaf, &key, slot);
8017 if (key.type != BTRFS_DEV_EXTENT_KEY)
8018 break;
8019 devid = key.objectid;
8020 physical_offset = key.offset;
8021
8022 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8023 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8024 physical_len = btrfs_dev_extent_length(leaf, dext);
8025
8026 /* Check if this dev extent overlaps with the previous one */
8027 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8028 btrfs_err(fs_info,
8029 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8030 devid, physical_offset, prev_dev_ext_end);
8031 ret = -EUCLEAN;
8032 goto out;
8033 }
8034
8035 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8036 physical_offset, physical_len);
8037 if (ret < 0)
8038 goto out;
8039 prev_devid = devid;
8040 prev_dev_ext_end = physical_offset + physical_len;
8041
8042 ret = btrfs_next_item(root, path);
8043 if (ret < 0)
8044 goto out;
8045 if (ret > 0) {
8046 ret = 0;
8047 break;
8048 }
8049 }
8050
8051 /* Ensure all chunks have corresponding dev extents */
8052 ret = verify_chunk_dev_extent_mapping(fs_info);
8053 out:
8054 btrfs_free_path(path);
8055 return ret;
8056 }
8057
8058 /*
8059 * Check whether the given block group or device is pinned by any inode being
8060 * used as a swapfile.
8061 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)8062 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8063 {
8064 struct btrfs_swapfile_pin *sp;
8065 struct rb_node *node;
8066
8067 spin_lock(&fs_info->swapfile_pins_lock);
8068 node = fs_info->swapfile_pins.rb_node;
8069 while (node) {
8070 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8071 if (ptr < sp->ptr)
8072 node = node->rb_left;
8073 else if (ptr > sp->ptr)
8074 node = node->rb_right;
8075 else
8076 break;
8077 }
8078 spin_unlock(&fs_info->swapfile_pins_lock);
8079 return node != NULL;
8080 }
8081