• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
24 #include "space-info.h"
25 
26 #define BTRFS_ROOT_TRANS_TAG 0
27 
28 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
29 	[TRANS_STATE_RUNNING]		= 0U,
30 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
31 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
32 					   __TRANS_ATTACH |
33 					   __TRANS_JOIN |
34 					   __TRANS_JOIN_NOSTART),
35 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
36 					   __TRANS_ATTACH |
37 					   __TRANS_JOIN |
38 					   __TRANS_JOIN_NOLOCK |
39 					   __TRANS_JOIN_NOSTART),
40 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
41 					   __TRANS_ATTACH |
42 					   __TRANS_JOIN |
43 					   __TRANS_JOIN_NOLOCK |
44 					   __TRANS_JOIN_NOSTART),
45 };
46 
btrfs_put_transaction(struct btrfs_transaction * transaction)47 void btrfs_put_transaction(struct btrfs_transaction *transaction)
48 {
49 	WARN_ON(refcount_read(&transaction->use_count) == 0);
50 	if (refcount_dec_and_test(&transaction->use_count)) {
51 		BUG_ON(!list_empty(&transaction->list));
52 		WARN_ON(!RB_EMPTY_ROOT(
53 				&transaction->delayed_refs.href_root.rb_root));
54 		WARN_ON(!RB_EMPTY_ROOT(
55 				&transaction->delayed_refs.dirty_extent_root));
56 		if (transaction->delayed_refs.pending_csums)
57 			btrfs_err(transaction->fs_info,
58 				  "pending csums is %llu",
59 				  transaction->delayed_refs.pending_csums);
60 		/*
61 		 * If any block groups are found in ->deleted_bgs then it's
62 		 * because the transaction was aborted and a commit did not
63 		 * happen (things failed before writing the new superblock
64 		 * and calling btrfs_finish_extent_commit()), so we can not
65 		 * discard the physical locations of the block groups.
66 		 */
67 		while (!list_empty(&transaction->deleted_bgs)) {
68 			struct btrfs_block_group_cache *cache;
69 
70 			cache = list_first_entry(&transaction->deleted_bgs,
71 						 struct btrfs_block_group_cache,
72 						 bg_list);
73 			list_del_init(&cache->bg_list);
74 			btrfs_put_block_group_trimming(cache);
75 			btrfs_put_block_group(cache);
76 		}
77 		WARN_ON(!list_empty(&transaction->dev_update_list));
78 		kfree(transaction);
79 	}
80 }
81 
switch_commit_roots(struct btrfs_trans_handle * trans)82 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
83 {
84 	struct btrfs_transaction *cur_trans = trans->transaction;
85 	struct btrfs_fs_info *fs_info = trans->fs_info;
86 	struct btrfs_root *root, *tmp;
87 
88 	down_write(&fs_info->commit_root_sem);
89 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
90 				 dirty_list) {
91 		list_del_init(&root->dirty_list);
92 		free_extent_buffer(root->commit_root);
93 		root->commit_root = btrfs_root_node(root);
94 		if (is_fstree(root->root_key.objectid))
95 			btrfs_unpin_free_ino(root);
96 		extent_io_tree_release(&root->dirty_log_pages);
97 		btrfs_qgroup_clean_swapped_blocks(root);
98 	}
99 
100 	/* We can free old roots now. */
101 	spin_lock(&cur_trans->dropped_roots_lock);
102 	while (!list_empty(&cur_trans->dropped_roots)) {
103 		root = list_first_entry(&cur_trans->dropped_roots,
104 					struct btrfs_root, root_list);
105 		list_del_init(&root->root_list);
106 		spin_unlock(&cur_trans->dropped_roots_lock);
107 		btrfs_free_log(trans, root);
108 		btrfs_drop_and_free_fs_root(fs_info, root);
109 		spin_lock(&cur_trans->dropped_roots_lock);
110 	}
111 	spin_unlock(&cur_trans->dropped_roots_lock);
112 	up_write(&fs_info->commit_root_sem);
113 }
114 
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)115 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
116 					 unsigned int type)
117 {
118 	if (type & TRANS_EXTWRITERS)
119 		atomic_inc(&trans->num_extwriters);
120 }
121 
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)122 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
123 					 unsigned int type)
124 {
125 	if (type & TRANS_EXTWRITERS)
126 		atomic_dec(&trans->num_extwriters);
127 }
128 
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)129 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
130 					  unsigned int type)
131 {
132 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
133 }
134 
extwriter_counter_read(struct btrfs_transaction * trans)135 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
136 {
137 	return atomic_read(&trans->num_extwriters);
138 }
139 
140 /*
141  * To be called after all the new block groups attached to the transaction
142  * handle have been created (btrfs_create_pending_block_groups()).
143  */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)144 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
145 {
146 	struct btrfs_fs_info *fs_info = trans->fs_info;
147 
148 	if (!trans->chunk_bytes_reserved)
149 		return;
150 
151 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
152 
153 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
154 				trans->chunk_bytes_reserved);
155 	trans->chunk_bytes_reserved = 0;
156 }
157 
158 /*
159  * either allocate a new transaction or hop into the existing one
160  */
join_transaction(struct btrfs_fs_info * fs_info,unsigned int type)161 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
162 				     unsigned int type)
163 {
164 	struct btrfs_transaction *cur_trans;
165 
166 	spin_lock(&fs_info->trans_lock);
167 loop:
168 	/* The file system has been taken offline. No new transactions. */
169 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
170 		spin_unlock(&fs_info->trans_lock);
171 		return -EROFS;
172 	}
173 
174 	cur_trans = fs_info->running_transaction;
175 	if (cur_trans) {
176 		if (TRANS_ABORTED(cur_trans)) {
177 			spin_unlock(&fs_info->trans_lock);
178 			return cur_trans->aborted;
179 		}
180 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
181 			spin_unlock(&fs_info->trans_lock);
182 			return -EBUSY;
183 		}
184 		refcount_inc(&cur_trans->use_count);
185 		atomic_inc(&cur_trans->num_writers);
186 		extwriter_counter_inc(cur_trans, type);
187 		spin_unlock(&fs_info->trans_lock);
188 		return 0;
189 	}
190 	spin_unlock(&fs_info->trans_lock);
191 
192 	/*
193 	 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
194 	 * current transaction, and commit it. If there is no transaction, just
195 	 * return ENOENT.
196 	 */
197 	if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
198 		return -ENOENT;
199 
200 	/*
201 	 * JOIN_NOLOCK only happens during the transaction commit, so
202 	 * it is impossible that ->running_transaction is NULL
203 	 */
204 	BUG_ON(type == TRANS_JOIN_NOLOCK);
205 
206 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
207 	if (!cur_trans)
208 		return -ENOMEM;
209 
210 	spin_lock(&fs_info->trans_lock);
211 	if (fs_info->running_transaction) {
212 		/*
213 		 * someone started a transaction after we unlocked.  Make sure
214 		 * to redo the checks above
215 		 */
216 		kfree(cur_trans);
217 		goto loop;
218 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
219 		spin_unlock(&fs_info->trans_lock);
220 		kfree(cur_trans);
221 		return -EROFS;
222 	}
223 
224 	cur_trans->fs_info = fs_info;
225 	atomic_set(&cur_trans->num_writers, 1);
226 	extwriter_counter_init(cur_trans, type);
227 	init_waitqueue_head(&cur_trans->writer_wait);
228 	init_waitqueue_head(&cur_trans->commit_wait);
229 	cur_trans->state = TRANS_STATE_RUNNING;
230 	/*
231 	 * One for this trans handle, one so it will live on until we
232 	 * commit the transaction.
233 	 */
234 	refcount_set(&cur_trans->use_count, 2);
235 	cur_trans->flags = 0;
236 	cur_trans->start_time = ktime_get_seconds();
237 
238 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
239 
240 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
241 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
242 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
243 
244 	/*
245 	 * although the tree mod log is per file system and not per transaction,
246 	 * the log must never go across transaction boundaries.
247 	 */
248 	smp_mb();
249 	if (!list_empty(&fs_info->tree_mod_seq_list))
250 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
251 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
252 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
253 	atomic64_set(&fs_info->tree_mod_seq, 0);
254 
255 	spin_lock_init(&cur_trans->delayed_refs.lock);
256 
257 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
258 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
259 	INIT_LIST_HEAD(&cur_trans->switch_commits);
260 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
261 	INIT_LIST_HEAD(&cur_trans->io_bgs);
262 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
263 	mutex_init(&cur_trans->cache_write_mutex);
264 	spin_lock_init(&cur_trans->dirty_bgs_lock);
265 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
266 	spin_lock_init(&cur_trans->dropped_roots_lock);
267 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
268 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
269 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
270 	fs_info->generation++;
271 	cur_trans->transid = fs_info->generation;
272 	fs_info->running_transaction = cur_trans;
273 	cur_trans->aborted = 0;
274 	spin_unlock(&fs_info->trans_lock);
275 
276 	return 0;
277 }
278 
279 /*
280  * this does all the record keeping required to make sure that a reference
281  * counted root is properly recorded in a given transaction.  This is required
282  * to make sure the old root from before we joined the transaction is deleted
283  * when the transaction commits
284  */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,int force)285 static int record_root_in_trans(struct btrfs_trans_handle *trans,
286 			       struct btrfs_root *root,
287 			       int force)
288 {
289 	struct btrfs_fs_info *fs_info = root->fs_info;
290 
291 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
292 	    root->last_trans < trans->transid) || force) {
293 		WARN_ON(root == fs_info->extent_root);
294 		WARN_ON(!force && root->commit_root != root->node);
295 
296 		/*
297 		 * see below for IN_TRANS_SETUP usage rules
298 		 * we have the reloc mutex held now, so there
299 		 * is only one writer in this function
300 		 */
301 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
302 
303 		/* make sure readers find IN_TRANS_SETUP before
304 		 * they find our root->last_trans update
305 		 */
306 		smp_wmb();
307 
308 		spin_lock(&fs_info->fs_roots_radix_lock);
309 		if (root->last_trans == trans->transid && !force) {
310 			spin_unlock(&fs_info->fs_roots_radix_lock);
311 			return 0;
312 		}
313 		radix_tree_tag_set(&fs_info->fs_roots_radix,
314 				   (unsigned long)root->root_key.objectid,
315 				   BTRFS_ROOT_TRANS_TAG);
316 		spin_unlock(&fs_info->fs_roots_radix_lock);
317 		root->last_trans = trans->transid;
318 
319 		/* this is pretty tricky.  We don't want to
320 		 * take the relocation lock in btrfs_record_root_in_trans
321 		 * unless we're really doing the first setup for this root in
322 		 * this transaction.
323 		 *
324 		 * Normally we'd use root->last_trans as a flag to decide
325 		 * if we want to take the expensive mutex.
326 		 *
327 		 * But, we have to set root->last_trans before we
328 		 * init the relocation root, otherwise, we trip over warnings
329 		 * in ctree.c.  The solution used here is to flag ourselves
330 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
331 		 * fixing up the reloc trees and everyone must wait.
332 		 *
333 		 * When this is zero, they can trust root->last_trans and fly
334 		 * through btrfs_record_root_in_trans without having to take the
335 		 * lock.  smp_wmb() makes sure that all the writes above are
336 		 * done before we pop in the zero below
337 		 */
338 		btrfs_init_reloc_root(trans, root);
339 		smp_mb__before_atomic();
340 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
341 	}
342 	return 0;
343 }
344 
345 
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)346 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
347 			    struct btrfs_root *root)
348 {
349 	struct btrfs_fs_info *fs_info = root->fs_info;
350 	struct btrfs_transaction *cur_trans = trans->transaction;
351 
352 	/* Add ourselves to the transaction dropped list */
353 	spin_lock(&cur_trans->dropped_roots_lock);
354 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
355 	spin_unlock(&cur_trans->dropped_roots_lock);
356 
357 	/* Make sure we don't try to update the root at commit time */
358 	spin_lock(&fs_info->fs_roots_radix_lock);
359 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
360 			     (unsigned long)root->root_key.objectid,
361 			     BTRFS_ROOT_TRANS_TAG);
362 	spin_unlock(&fs_info->fs_roots_radix_lock);
363 }
364 
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)365 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
366 			       struct btrfs_root *root)
367 {
368 	struct btrfs_fs_info *fs_info = root->fs_info;
369 
370 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
371 		return 0;
372 
373 	/*
374 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
375 	 * and barriers
376 	 */
377 	smp_rmb();
378 	if (root->last_trans == trans->transid &&
379 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
380 		return 0;
381 
382 	mutex_lock(&fs_info->reloc_mutex);
383 	record_root_in_trans(trans, root, 0);
384 	mutex_unlock(&fs_info->reloc_mutex);
385 
386 	return 0;
387 }
388 
is_transaction_blocked(struct btrfs_transaction * trans)389 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
390 {
391 	return (trans->state >= TRANS_STATE_COMMIT_START &&
392 		trans->state < TRANS_STATE_UNBLOCKED &&
393 		!TRANS_ABORTED(trans));
394 }
395 
396 /* wait for commit against the current transaction to become unblocked
397  * when this is done, it is safe to start a new transaction, but the current
398  * transaction might not be fully on disk.
399  */
wait_current_trans(struct btrfs_fs_info * fs_info)400 static void wait_current_trans(struct btrfs_fs_info *fs_info)
401 {
402 	struct btrfs_transaction *cur_trans;
403 
404 	spin_lock(&fs_info->trans_lock);
405 	cur_trans = fs_info->running_transaction;
406 	if (cur_trans && is_transaction_blocked(cur_trans)) {
407 		refcount_inc(&cur_trans->use_count);
408 		spin_unlock(&fs_info->trans_lock);
409 
410 		wait_event(fs_info->transaction_wait,
411 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
412 			   TRANS_ABORTED(cur_trans));
413 		btrfs_put_transaction(cur_trans);
414 	} else {
415 		spin_unlock(&fs_info->trans_lock);
416 	}
417 }
418 
may_wait_transaction(struct btrfs_fs_info * fs_info,int type)419 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
420 {
421 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
422 		return 0;
423 
424 	if (type == TRANS_START)
425 		return 1;
426 
427 	return 0;
428 }
429 
need_reserve_reloc_root(struct btrfs_root * root)430 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
431 {
432 	struct btrfs_fs_info *fs_info = root->fs_info;
433 
434 	if (!fs_info->reloc_ctl ||
435 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
436 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
437 	    root->reloc_root)
438 		return false;
439 
440 	return true;
441 }
442 
443 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush,bool enforce_qgroups)444 start_transaction(struct btrfs_root *root, unsigned int num_items,
445 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
446 		  bool enforce_qgroups)
447 {
448 	struct btrfs_fs_info *fs_info = root->fs_info;
449 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
450 	struct btrfs_trans_handle *h;
451 	struct btrfs_transaction *cur_trans;
452 	u64 num_bytes = 0;
453 	u64 qgroup_reserved = 0;
454 	bool reloc_reserved = false;
455 	bool do_chunk_alloc = false;
456 	int ret;
457 
458 	/* Send isn't supposed to start transactions. */
459 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
460 
461 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
462 		return ERR_PTR(-EROFS);
463 
464 	if (current->journal_info) {
465 		WARN_ON(type & TRANS_EXTWRITERS);
466 		h = current->journal_info;
467 		refcount_inc(&h->use_count);
468 		WARN_ON(refcount_read(&h->use_count) > 2);
469 		h->orig_rsv = h->block_rsv;
470 		h->block_rsv = NULL;
471 		goto got_it;
472 	}
473 
474 	/*
475 	 * Do the reservation before we join the transaction so we can do all
476 	 * the appropriate flushing if need be.
477 	 */
478 	if (num_items && root != fs_info->chunk_root) {
479 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
480 		u64 delayed_refs_bytes = 0;
481 
482 		qgroup_reserved = num_items * fs_info->nodesize;
483 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
484 				enforce_qgroups);
485 		if (ret)
486 			return ERR_PTR(ret);
487 
488 		/*
489 		 * We want to reserve all the bytes we may need all at once, so
490 		 * we only do 1 enospc flushing cycle per transaction start.  We
491 		 * accomplish this by simply assuming we'll do 2 x num_items
492 		 * worth of delayed refs updates in this trans handle, and
493 		 * refill that amount for whatever is missing in the reserve.
494 		 */
495 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
496 		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
497 		    delayed_refs_rsv->full == 0) {
498 			delayed_refs_bytes = num_bytes;
499 			num_bytes <<= 1;
500 		}
501 
502 		/*
503 		 * Do the reservation for the relocation root creation
504 		 */
505 		if (need_reserve_reloc_root(root)) {
506 			num_bytes += fs_info->nodesize;
507 			reloc_reserved = true;
508 		}
509 
510 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
511 		if (ret)
512 			goto reserve_fail;
513 		if (delayed_refs_bytes) {
514 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
515 							  delayed_refs_bytes);
516 			num_bytes -= delayed_refs_bytes;
517 		}
518 
519 		if (rsv->space_info->force_alloc)
520 			do_chunk_alloc = true;
521 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
522 		   !delayed_refs_rsv->full) {
523 		/*
524 		 * Some people call with btrfs_start_transaction(root, 0)
525 		 * because they can be throttled, but have some other mechanism
526 		 * for reserving space.  We still want these guys to refill the
527 		 * delayed block_rsv so just add 1 items worth of reservation
528 		 * here.
529 		 */
530 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
531 		if (ret)
532 			goto reserve_fail;
533 	}
534 again:
535 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
536 	if (!h) {
537 		ret = -ENOMEM;
538 		goto alloc_fail;
539 	}
540 
541 	/*
542 	 * If we are JOIN_NOLOCK we're already committing a transaction and
543 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
544 	 * because we're already holding a ref.  We need this because we could
545 	 * have raced in and did an fsync() on a file which can kick a commit
546 	 * and then we deadlock with somebody doing a freeze.
547 	 *
548 	 * If we are ATTACH, it means we just want to catch the current
549 	 * transaction and commit it, so we needn't do sb_start_intwrite().
550 	 */
551 	if (type & __TRANS_FREEZABLE)
552 		sb_start_intwrite(fs_info->sb);
553 
554 	if (may_wait_transaction(fs_info, type))
555 		wait_current_trans(fs_info);
556 
557 	do {
558 		ret = join_transaction(fs_info, type);
559 		if (ret == -EBUSY) {
560 			wait_current_trans(fs_info);
561 			if (unlikely(type == TRANS_ATTACH ||
562 				     type == TRANS_JOIN_NOSTART))
563 				ret = -ENOENT;
564 		}
565 	} while (ret == -EBUSY);
566 
567 	if (ret < 0)
568 		goto join_fail;
569 
570 	cur_trans = fs_info->running_transaction;
571 
572 	h->transid = cur_trans->transid;
573 	h->transaction = cur_trans;
574 	h->root = root;
575 	refcount_set(&h->use_count, 1);
576 	h->fs_info = root->fs_info;
577 
578 	h->type = type;
579 	h->can_flush_pending_bgs = true;
580 	INIT_LIST_HEAD(&h->new_bgs);
581 
582 	smp_mb();
583 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
584 	    may_wait_transaction(fs_info, type)) {
585 		current->journal_info = h;
586 		btrfs_commit_transaction(h);
587 		goto again;
588 	}
589 
590 	if (num_bytes) {
591 		trace_btrfs_space_reservation(fs_info, "transaction",
592 					      h->transid, num_bytes, 1);
593 		h->block_rsv = &fs_info->trans_block_rsv;
594 		h->bytes_reserved = num_bytes;
595 		h->reloc_reserved = reloc_reserved;
596 	}
597 
598 got_it:
599 	if (!current->journal_info)
600 		current->journal_info = h;
601 
602 	/*
603 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
604 	 * ALLOC_FORCE the first run through, and then we won't allocate for
605 	 * anybody else who races in later.  We don't care about the return
606 	 * value here.
607 	 */
608 	if (do_chunk_alloc && num_bytes) {
609 		u64 flags = h->block_rsv->space_info->flags;
610 
611 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
612 				  CHUNK_ALLOC_NO_FORCE);
613 	}
614 
615 	/*
616 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
617 	 * call btrfs_join_transaction() while we're also starting a
618 	 * transaction.
619 	 *
620 	 * Thus it need to be called after current->journal_info initialized,
621 	 * or we can deadlock.
622 	 */
623 	btrfs_record_root_in_trans(h, root);
624 
625 	return h;
626 
627 join_fail:
628 	if (type & __TRANS_FREEZABLE)
629 		sb_end_intwrite(fs_info->sb);
630 	kmem_cache_free(btrfs_trans_handle_cachep, h);
631 alloc_fail:
632 	if (num_bytes)
633 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
634 					num_bytes);
635 reserve_fail:
636 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
637 	return ERR_PTR(ret);
638 }
639 
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)640 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
641 						   unsigned int num_items)
642 {
643 	return start_transaction(root, num_items, TRANS_START,
644 				 BTRFS_RESERVE_FLUSH_ALL, true);
645 }
646 
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items)647 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
648 					struct btrfs_root *root,
649 					unsigned int num_items)
650 {
651 	return start_transaction(root, num_items, TRANS_START,
652 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
653 }
654 
btrfs_join_transaction(struct btrfs_root * root)655 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
656 {
657 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
658 				 true);
659 }
660 
btrfs_join_transaction_nolock(struct btrfs_root * root)661 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
662 {
663 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
664 				 BTRFS_RESERVE_NO_FLUSH, true);
665 }
666 
667 /*
668  * Similar to regular join but it never starts a transaction when none is
669  * running or after waiting for the current one to finish.
670  */
btrfs_join_transaction_nostart(struct btrfs_root * root)671 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
672 {
673 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
674 				 BTRFS_RESERVE_NO_FLUSH, true);
675 }
676 
677 /*
678  * btrfs_attach_transaction() - catch the running transaction
679  *
680  * It is used when we want to commit the current the transaction, but
681  * don't want to start a new one.
682  *
683  * Note: If this function return -ENOENT, it just means there is no
684  * running transaction. But it is possible that the inactive transaction
685  * is still in the memory, not fully on disk. If you hope there is no
686  * inactive transaction in the fs when -ENOENT is returned, you should
687  * invoke
688  *     btrfs_attach_transaction_barrier()
689  */
btrfs_attach_transaction(struct btrfs_root * root)690 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
691 {
692 	return start_transaction(root, 0, TRANS_ATTACH,
693 				 BTRFS_RESERVE_NO_FLUSH, true);
694 }
695 
696 /*
697  * btrfs_attach_transaction_barrier() - catch the running transaction
698  *
699  * It is similar to the above function, the difference is this one
700  * will wait for all the inactive transactions until they fully
701  * complete.
702  */
703 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)704 btrfs_attach_transaction_barrier(struct btrfs_root *root)
705 {
706 	struct btrfs_trans_handle *trans;
707 
708 	trans = start_transaction(root, 0, TRANS_ATTACH,
709 				  BTRFS_RESERVE_NO_FLUSH, true);
710 	if (trans == ERR_PTR(-ENOENT)) {
711 		int ret;
712 
713 		ret = btrfs_wait_for_commit(root->fs_info, 0);
714 		if (ret)
715 			return ERR_PTR(ret);
716 	}
717 
718 	return trans;
719 }
720 
721 /* wait for a transaction commit to be fully complete */
wait_for_commit(struct btrfs_transaction * commit)722 static noinline void wait_for_commit(struct btrfs_transaction *commit)
723 {
724 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
725 }
726 
btrfs_wait_for_commit(struct btrfs_fs_info * fs_info,u64 transid)727 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
728 {
729 	struct btrfs_transaction *cur_trans = NULL, *t;
730 	int ret = 0;
731 
732 	if (transid) {
733 		if (transid <= fs_info->last_trans_committed)
734 			goto out;
735 
736 		/* find specified transaction */
737 		spin_lock(&fs_info->trans_lock);
738 		list_for_each_entry(t, &fs_info->trans_list, list) {
739 			if (t->transid == transid) {
740 				cur_trans = t;
741 				refcount_inc(&cur_trans->use_count);
742 				ret = 0;
743 				break;
744 			}
745 			if (t->transid > transid) {
746 				ret = 0;
747 				break;
748 			}
749 		}
750 		spin_unlock(&fs_info->trans_lock);
751 
752 		/*
753 		 * The specified transaction doesn't exist, or we
754 		 * raced with btrfs_commit_transaction
755 		 */
756 		if (!cur_trans) {
757 			if (transid > fs_info->last_trans_committed)
758 				ret = -EINVAL;
759 			goto out;
760 		}
761 	} else {
762 		/* find newest transaction that is committing | committed */
763 		spin_lock(&fs_info->trans_lock);
764 		list_for_each_entry_reverse(t, &fs_info->trans_list,
765 					    list) {
766 			if (t->state >= TRANS_STATE_COMMIT_START) {
767 				if (t->state == TRANS_STATE_COMPLETED)
768 					break;
769 				cur_trans = t;
770 				refcount_inc(&cur_trans->use_count);
771 				break;
772 			}
773 		}
774 		spin_unlock(&fs_info->trans_lock);
775 		if (!cur_trans)
776 			goto out;  /* nothing committing|committed */
777 	}
778 
779 	wait_for_commit(cur_trans);
780 	ret = cur_trans->aborted;
781 	btrfs_put_transaction(cur_trans);
782 out:
783 	return ret;
784 }
785 
btrfs_throttle(struct btrfs_fs_info * fs_info)786 void btrfs_throttle(struct btrfs_fs_info *fs_info)
787 {
788 	wait_current_trans(fs_info);
789 }
790 
should_end_transaction(struct btrfs_trans_handle * trans)791 static int should_end_transaction(struct btrfs_trans_handle *trans)
792 {
793 	struct btrfs_fs_info *fs_info = trans->fs_info;
794 
795 	if (btrfs_check_space_for_delayed_refs(fs_info))
796 		return 1;
797 
798 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
799 }
800 
btrfs_should_end_transaction(struct btrfs_trans_handle * trans)801 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
802 {
803 	struct btrfs_transaction *cur_trans = trans->transaction;
804 
805 	smp_mb();
806 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
807 	    cur_trans->delayed_refs.flushing)
808 		return 1;
809 
810 	return should_end_transaction(trans);
811 }
812 
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans)813 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
814 
815 {
816 	struct btrfs_fs_info *fs_info = trans->fs_info;
817 
818 	if (!trans->block_rsv) {
819 		ASSERT(!trans->bytes_reserved);
820 		return;
821 	}
822 
823 	if (!trans->bytes_reserved)
824 		return;
825 
826 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
827 	trace_btrfs_space_reservation(fs_info, "transaction",
828 				      trans->transid, trans->bytes_reserved, 0);
829 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
830 				trans->bytes_reserved);
831 	trans->bytes_reserved = 0;
832 }
833 
__btrfs_end_transaction(struct btrfs_trans_handle * trans,int throttle)834 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
835 				   int throttle)
836 {
837 	struct btrfs_fs_info *info = trans->fs_info;
838 	struct btrfs_transaction *cur_trans = trans->transaction;
839 	int err = 0;
840 
841 	if (refcount_read(&trans->use_count) > 1) {
842 		refcount_dec(&trans->use_count);
843 		trans->block_rsv = trans->orig_rsv;
844 		return 0;
845 	}
846 
847 	btrfs_trans_release_metadata(trans);
848 	trans->block_rsv = NULL;
849 
850 	btrfs_create_pending_block_groups(trans);
851 
852 	btrfs_trans_release_chunk_metadata(trans);
853 
854 	if (trans->type & __TRANS_FREEZABLE)
855 		sb_end_intwrite(info->sb);
856 
857 	WARN_ON(cur_trans != info->running_transaction);
858 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
859 	atomic_dec(&cur_trans->num_writers);
860 	extwriter_counter_dec(cur_trans, trans->type);
861 
862 	cond_wake_up(&cur_trans->writer_wait);
863 	btrfs_put_transaction(cur_trans);
864 
865 	if (current->journal_info == trans)
866 		current->journal_info = NULL;
867 
868 	if (throttle)
869 		btrfs_run_delayed_iputs(info);
870 
871 	if (TRANS_ABORTED(trans) ||
872 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
873 		wake_up_process(info->transaction_kthread);
874 		if (TRANS_ABORTED(trans))
875 			err = trans->aborted;
876 		else
877 			err = -EROFS;
878 	}
879 
880 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
881 	return err;
882 }
883 
btrfs_end_transaction(struct btrfs_trans_handle * trans)884 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
885 {
886 	return __btrfs_end_transaction(trans, 0);
887 }
888 
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans)889 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
890 {
891 	return __btrfs_end_transaction(trans, 1);
892 }
893 
894 /*
895  * when btree blocks are allocated, they have some corresponding bits set for
896  * them in one of two extent_io trees.  This is used to make sure all of
897  * those extents are sent to disk but does not wait on them
898  */
btrfs_write_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)899 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
900 			       struct extent_io_tree *dirty_pages, int mark)
901 {
902 	int err = 0;
903 	int werr = 0;
904 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
905 	struct extent_state *cached_state = NULL;
906 	u64 start = 0;
907 	u64 end;
908 
909 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
910 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
911 				      mark, &cached_state)) {
912 		bool wait_writeback = false;
913 
914 		err = convert_extent_bit(dirty_pages, start, end,
915 					 EXTENT_NEED_WAIT,
916 					 mark, &cached_state);
917 		/*
918 		 * convert_extent_bit can return -ENOMEM, which is most of the
919 		 * time a temporary error. So when it happens, ignore the error
920 		 * and wait for writeback of this range to finish - because we
921 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
922 		 * to __btrfs_wait_marked_extents() would not know that
923 		 * writeback for this range started and therefore wouldn't
924 		 * wait for it to finish - we don't want to commit a
925 		 * superblock that points to btree nodes/leafs for which
926 		 * writeback hasn't finished yet (and without errors).
927 		 * We cleanup any entries left in the io tree when committing
928 		 * the transaction (through extent_io_tree_release()).
929 		 */
930 		if (err == -ENOMEM) {
931 			err = 0;
932 			wait_writeback = true;
933 		}
934 		if (!err)
935 			err = filemap_fdatawrite_range(mapping, start, end);
936 		if (err)
937 			werr = err;
938 		else if (wait_writeback)
939 			werr = filemap_fdatawait_range(mapping, start, end);
940 		free_extent_state(cached_state);
941 		cached_state = NULL;
942 		cond_resched();
943 		start = end + 1;
944 	}
945 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
946 	return werr;
947 }
948 
949 /*
950  * when btree blocks are allocated, they have some corresponding bits set for
951  * them in one of two extent_io trees.  This is used to make sure all of
952  * those extents are on disk for transaction or log commit.  We wait
953  * on all the pages and clear them from the dirty pages state tree
954  */
__btrfs_wait_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)955 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
956 				       struct extent_io_tree *dirty_pages)
957 {
958 	int err = 0;
959 	int werr = 0;
960 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
961 	struct extent_state *cached_state = NULL;
962 	u64 start = 0;
963 	u64 end;
964 
965 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
966 				      EXTENT_NEED_WAIT, &cached_state)) {
967 		/*
968 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
969 		 * When committing the transaction, we'll remove any entries
970 		 * left in the io tree. For a log commit, we don't remove them
971 		 * after committing the log because the tree can be accessed
972 		 * concurrently - we do it only at transaction commit time when
973 		 * it's safe to do it (through extent_io_tree_release()).
974 		 */
975 		err = clear_extent_bit(dirty_pages, start, end,
976 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
977 		if (err == -ENOMEM)
978 			err = 0;
979 		if (!err)
980 			err = filemap_fdatawait_range(mapping, start, end);
981 		if (err)
982 			werr = err;
983 		free_extent_state(cached_state);
984 		cached_state = NULL;
985 		cond_resched();
986 		start = end + 1;
987 	}
988 	if (err)
989 		werr = err;
990 	return werr;
991 }
992 
btrfs_wait_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages)993 int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
994 		       struct extent_io_tree *dirty_pages)
995 {
996 	bool errors = false;
997 	int err;
998 
999 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1000 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1001 		errors = true;
1002 
1003 	if (errors && !err)
1004 		err = -EIO;
1005 	return err;
1006 }
1007 
btrfs_wait_tree_log_extents(struct btrfs_root * log_root,int mark)1008 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1009 {
1010 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1011 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1012 	bool errors = false;
1013 	int err;
1014 
1015 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1016 
1017 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1018 	if ((mark & EXTENT_DIRTY) &&
1019 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1020 		errors = true;
1021 
1022 	if ((mark & EXTENT_NEW) &&
1023 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1024 		errors = true;
1025 
1026 	if (errors && !err)
1027 		err = -EIO;
1028 	return err;
1029 }
1030 
1031 /*
1032  * When btree blocks are allocated the corresponding extents are marked dirty.
1033  * This function ensures such extents are persisted on disk for transaction or
1034  * log commit.
1035  *
1036  * @trans: transaction whose dirty pages we'd like to write
1037  */
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans)1038 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1039 {
1040 	int ret;
1041 	int ret2;
1042 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1043 	struct btrfs_fs_info *fs_info = trans->fs_info;
1044 	struct blk_plug plug;
1045 
1046 	blk_start_plug(&plug);
1047 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1048 	blk_finish_plug(&plug);
1049 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1050 
1051 	extent_io_tree_release(&trans->transaction->dirty_pages);
1052 
1053 	if (ret)
1054 		return ret;
1055 	else if (ret2)
1056 		return ret2;
1057 	else
1058 		return 0;
1059 }
1060 
1061 /*
1062  * this is used to update the root pointer in the tree of tree roots.
1063  *
1064  * But, in the case of the extent allocation tree, updating the root
1065  * pointer may allocate blocks which may change the root of the extent
1066  * allocation tree.
1067  *
1068  * So, this loops and repeats and makes sure the cowonly root didn't
1069  * change while the root pointer was being updated in the metadata.
1070  */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1071 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1072 			       struct btrfs_root *root)
1073 {
1074 	int ret;
1075 	u64 old_root_bytenr;
1076 	u64 old_root_used;
1077 	struct btrfs_fs_info *fs_info = root->fs_info;
1078 	struct btrfs_root *tree_root = fs_info->tree_root;
1079 
1080 	old_root_used = btrfs_root_used(&root->root_item);
1081 
1082 	while (1) {
1083 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1084 		if (old_root_bytenr == root->node->start &&
1085 		    old_root_used == btrfs_root_used(&root->root_item))
1086 			break;
1087 
1088 		btrfs_set_root_node(&root->root_item, root->node);
1089 		ret = btrfs_update_root(trans, tree_root,
1090 					&root->root_key,
1091 					&root->root_item);
1092 		if (ret)
1093 			return ret;
1094 
1095 		old_root_used = btrfs_root_used(&root->root_item);
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 /*
1102  * update all the cowonly tree roots on disk
1103  *
1104  * The error handling in this function may not be obvious. Any of the
1105  * failures will cause the file system to go offline. We still need
1106  * to clean up the delayed refs.
1107  */
commit_cowonly_roots(struct btrfs_trans_handle * trans)1108 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1109 {
1110 	struct btrfs_fs_info *fs_info = trans->fs_info;
1111 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1112 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1113 	struct list_head *next;
1114 	struct extent_buffer *eb;
1115 	int ret;
1116 
1117 	eb = btrfs_lock_root_node(fs_info->tree_root);
1118 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1119 			      0, &eb);
1120 	btrfs_tree_unlock(eb);
1121 	free_extent_buffer(eb);
1122 
1123 	if (ret)
1124 		return ret;
1125 
1126 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1127 	if (ret)
1128 		return ret;
1129 
1130 	ret = btrfs_run_dev_stats(trans);
1131 	if (ret)
1132 		return ret;
1133 	ret = btrfs_run_dev_replace(trans);
1134 	if (ret)
1135 		return ret;
1136 	ret = btrfs_run_qgroups(trans);
1137 	if (ret)
1138 		return ret;
1139 
1140 	ret = btrfs_setup_space_cache(trans);
1141 	if (ret)
1142 		return ret;
1143 
1144 	/* run_qgroups might have added some more refs */
1145 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1146 	if (ret)
1147 		return ret;
1148 again:
1149 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1150 		struct btrfs_root *root;
1151 		next = fs_info->dirty_cowonly_roots.next;
1152 		list_del_init(next);
1153 		root = list_entry(next, struct btrfs_root, dirty_list);
1154 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1155 
1156 		if (root != fs_info->extent_root)
1157 			list_add_tail(&root->dirty_list,
1158 				      &trans->transaction->switch_commits);
1159 		ret = update_cowonly_root(trans, root);
1160 		if (ret)
1161 			return ret;
1162 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1163 		if (ret)
1164 			return ret;
1165 	}
1166 
1167 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1168 		ret = btrfs_write_dirty_block_groups(trans);
1169 		if (ret)
1170 			return ret;
1171 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1172 		if (ret)
1173 			return ret;
1174 	}
1175 
1176 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1177 		goto again;
1178 
1179 	list_add_tail(&fs_info->extent_root->dirty_list,
1180 		      &trans->transaction->switch_commits);
1181 
1182 	/* Update dev-replace pointer once everything is committed */
1183 	fs_info->dev_replace.committed_cursor_left =
1184 		fs_info->dev_replace.cursor_left_last_write_of_item;
1185 
1186 	return 0;
1187 }
1188 
1189 /*
1190  * dead roots are old snapshots that need to be deleted.  This allocates
1191  * a dirty root struct and adds it into the list of dead roots that need to
1192  * be deleted
1193  */
btrfs_add_dead_root(struct btrfs_root * root)1194 void btrfs_add_dead_root(struct btrfs_root *root)
1195 {
1196 	struct btrfs_fs_info *fs_info = root->fs_info;
1197 
1198 	spin_lock(&fs_info->trans_lock);
1199 	if (list_empty(&root->root_list))
1200 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1201 	spin_unlock(&fs_info->trans_lock);
1202 }
1203 
1204 /*
1205  * update all the cowonly tree roots on disk
1206  */
commit_fs_roots(struct btrfs_trans_handle * trans)1207 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1208 {
1209 	struct btrfs_fs_info *fs_info = trans->fs_info;
1210 	struct btrfs_root *gang[8];
1211 	int i;
1212 	int ret;
1213 
1214 	spin_lock(&fs_info->fs_roots_radix_lock);
1215 	while (1) {
1216 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1217 						 (void **)gang, 0,
1218 						 ARRAY_SIZE(gang),
1219 						 BTRFS_ROOT_TRANS_TAG);
1220 		if (ret == 0)
1221 			break;
1222 		for (i = 0; i < ret; i++) {
1223 			struct btrfs_root *root = gang[i];
1224 			int ret2;
1225 
1226 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1227 					(unsigned long)root->root_key.objectid,
1228 					BTRFS_ROOT_TRANS_TAG);
1229 			spin_unlock(&fs_info->fs_roots_radix_lock);
1230 
1231 			btrfs_free_log(trans, root);
1232 			btrfs_update_reloc_root(trans, root);
1233 
1234 			btrfs_save_ino_cache(root, trans);
1235 
1236 			/* see comments in should_cow_block() */
1237 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1238 			smp_mb__after_atomic();
1239 
1240 			if (root->commit_root != root->node) {
1241 				list_add_tail(&root->dirty_list,
1242 					&trans->transaction->switch_commits);
1243 				btrfs_set_root_node(&root->root_item,
1244 						    root->node);
1245 			}
1246 
1247 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1248 						&root->root_key,
1249 						&root->root_item);
1250 			if (ret2)
1251 				return ret2;
1252 			spin_lock(&fs_info->fs_roots_radix_lock);
1253 			btrfs_qgroup_free_meta_all_pertrans(root);
1254 		}
1255 	}
1256 	spin_unlock(&fs_info->fs_roots_radix_lock);
1257 	return 0;
1258 }
1259 
1260 /*
1261  * defrag a given btree.
1262  * Every leaf in the btree is read and defragged.
1263  */
btrfs_defrag_root(struct btrfs_root * root)1264 int btrfs_defrag_root(struct btrfs_root *root)
1265 {
1266 	struct btrfs_fs_info *info = root->fs_info;
1267 	struct btrfs_trans_handle *trans;
1268 	int ret;
1269 
1270 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1271 		return 0;
1272 
1273 	while (1) {
1274 		trans = btrfs_start_transaction(root, 0);
1275 		if (IS_ERR(trans)) {
1276 			ret = PTR_ERR(trans);
1277 			break;
1278 		}
1279 
1280 		ret = btrfs_defrag_leaves(trans, root);
1281 
1282 		btrfs_end_transaction(trans);
1283 		btrfs_btree_balance_dirty(info);
1284 		cond_resched();
1285 
1286 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1287 			break;
1288 
1289 		if (btrfs_defrag_cancelled(info)) {
1290 			btrfs_debug(info, "defrag_root cancelled");
1291 			ret = -EAGAIN;
1292 			break;
1293 		}
1294 	}
1295 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1296 	return ret;
1297 }
1298 
1299 /*
1300  * Do all special snapshot related qgroup dirty hack.
1301  *
1302  * Will do all needed qgroup inherit and dirty hack like switch commit
1303  * roots inside one transaction and write all btree into disk, to make
1304  * qgroup works.
1305  */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1306 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1307 				   struct btrfs_root *src,
1308 				   struct btrfs_root *parent,
1309 				   struct btrfs_qgroup_inherit *inherit,
1310 				   u64 dst_objectid)
1311 {
1312 	struct btrfs_fs_info *fs_info = src->fs_info;
1313 	int ret;
1314 
1315 	/*
1316 	 * Save some performance in the case that qgroups are not
1317 	 * enabled. If this check races with the ioctl, rescan will
1318 	 * kick in anyway.
1319 	 */
1320 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1321 		return 0;
1322 
1323 	/*
1324 	 * Ensure dirty @src will be committed.  Or, after coming
1325 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1326 	 * recorded root will never be updated again, causing an outdated root
1327 	 * item.
1328 	 */
1329 	record_root_in_trans(trans, src, 1);
1330 
1331 	/*
1332 	 * We are going to commit transaction, see btrfs_commit_transaction()
1333 	 * comment for reason locking tree_log_mutex
1334 	 */
1335 	mutex_lock(&fs_info->tree_log_mutex);
1336 
1337 	ret = commit_fs_roots(trans);
1338 	if (ret)
1339 		goto out;
1340 	ret = btrfs_qgroup_account_extents(trans);
1341 	if (ret < 0)
1342 		goto out;
1343 
1344 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1345 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1346 				   inherit);
1347 	if (ret < 0)
1348 		goto out;
1349 
1350 	/*
1351 	 * Now we do a simplified commit transaction, which will:
1352 	 * 1) commit all subvolume and extent tree
1353 	 *    To ensure all subvolume and extent tree have a valid
1354 	 *    commit_root to accounting later insert_dir_item()
1355 	 * 2) write all btree blocks onto disk
1356 	 *    This is to make sure later btree modification will be cowed
1357 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1358 	 * In this simplified commit, we don't really care about other trees
1359 	 * like chunk and root tree, as they won't affect qgroup.
1360 	 * And we don't write super to avoid half committed status.
1361 	 */
1362 	ret = commit_cowonly_roots(trans);
1363 	if (ret)
1364 		goto out;
1365 	switch_commit_roots(trans);
1366 	ret = btrfs_write_and_wait_transaction(trans);
1367 	if (ret)
1368 		btrfs_handle_fs_error(fs_info, ret,
1369 			"Error while writing out transaction for qgroup");
1370 
1371 out:
1372 	mutex_unlock(&fs_info->tree_log_mutex);
1373 
1374 	/*
1375 	 * Force parent root to be updated, as we recorded it before so its
1376 	 * last_trans == cur_transid.
1377 	 * Or it won't be committed again onto disk after later
1378 	 * insert_dir_item()
1379 	 */
1380 	if (!ret)
1381 		record_root_in_trans(trans, parent, 1);
1382 	return ret;
1383 }
1384 
1385 /*
1386  * new snapshots need to be created at a very specific time in the
1387  * transaction commit.  This does the actual creation.
1388  *
1389  * Note:
1390  * If the error which may affect the commitment of the current transaction
1391  * happens, we should return the error number. If the error which just affect
1392  * the creation of the pending snapshots, just return 0.
1393  */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)1394 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1395 				   struct btrfs_pending_snapshot *pending)
1396 {
1397 
1398 	struct btrfs_fs_info *fs_info = trans->fs_info;
1399 	struct btrfs_key key;
1400 	struct btrfs_root_item *new_root_item;
1401 	struct btrfs_root *tree_root = fs_info->tree_root;
1402 	struct btrfs_root *root = pending->root;
1403 	struct btrfs_root *parent_root;
1404 	struct btrfs_block_rsv *rsv;
1405 	struct inode *parent_inode;
1406 	struct btrfs_path *path;
1407 	struct btrfs_dir_item *dir_item;
1408 	struct dentry *dentry;
1409 	struct extent_buffer *tmp;
1410 	struct extent_buffer *old;
1411 	struct timespec64 cur_time;
1412 	int ret = 0;
1413 	u64 to_reserve = 0;
1414 	u64 index = 0;
1415 	u64 objectid;
1416 	u64 root_flags;
1417 	uuid_le new_uuid;
1418 
1419 	ASSERT(pending->path);
1420 	path = pending->path;
1421 
1422 	ASSERT(pending->root_item);
1423 	new_root_item = pending->root_item;
1424 
1425 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1426 	if (pending->error)
1427 		goto no_free_objectid;
1428 
1429 	/*
1430 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1431 	 * accounted by later btrfs_qgroup_inherit().
1432 	 */
1433 	btrfs_set_skip_qgroup(trans, objectid);
1434 
1435 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1436 
1437 	if (to_reserve > 0) {
1438 		pending->error = btrfs_block_rsv_add(root,
1439 						     &pending->block_rsv,
1440 						     to_reserve,
1441 						     BTRFS_RESERVE_NO_FLUSH);
1442 		if (pending->error)
1443 			goto clear_skip_qgroup;
1444 	}
1445 
1446 	key.objectid = objectid;
1447 	key.offset = (u64)-1;
1448 	key.type = BTRFS_ROOT_ITEM_KEY;
1449 
1450 	rsv = trans->block_rsv;
1451 	trans->block_rsv = &pending->block_rsv;
1452 	trans->bytes_reserved = trans->block_rsv->reserved;
1453 	trace_btrfs_space_reservation(fs_info, "transaction",
1454 				      trans->transid,
1455 				      trans->bytes_reserved, 1);
1456 	dentry = pending->dentry;
1457 	parent_inode = pending->dir;
1458 	parent_root = BTRFS_I(parent_inode)->root;
1459 	record_root_in_trans(trans, parent_root, 0);
1460 
1461 	cur_time = current_time(parent_inode);
1462 
1463 	/*
1464 	 * insert the directory item
1465 	 */
1466 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1467 	BUG_ON(ret); /* -ENOMEM */
1468 
1469 	/* check if there is a file/dir which has the same name. */
1470 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1471 					 btrfs_ino(BTRFS_I(parent_inode)),
1472 					 dentry->d_name.name,
1473 					 dentry->d_name.len, 0);
1474 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1475 		pending->error = -EEXIST;
1476 		goto dir_item_existed;
1477 	} else if (IS_ERR(dir_item)) {
1478 		ret = PTR_ERR(dir_item);
1479 		btrfs_abort_transaction(trans, ret);
1480 		goto fail;
1481 	}
1482 	btrfs_release_path(path);
1483 
1484 	/*
1485 	 * pull in the delayed directory update
1486 	 * and the delayed inode item
1487 	 * otherwise we corrupt the FS during
1488 	 * snapshot
1489 	 */
1490 	ret = btrfs_run_delayed_items(trans);
1491 	if (ret) {	/* Transaction aborted */
1492 		btrfs_abort_transaction(trans, ret);
1493 		goto fail;
1494 	}
1495 
1496 	record_root_in_trans(trans, root, 0);
1497 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1498 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1499 	btrfs_check_and_init_root_item(new_root_item);
1500 
1501 	root_flags = btrfs_root_flags(new_root_item);
1502 	if (pending->readonly)
1503 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1504 	else
1505 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1506 	btrfs_set_root_flags(new_root_item, root_flags);
1507 
1508 	btrfs_set_root_generation_v2(new_root_item,
1509 			trans->transid);
1510 	uuid_le_gen(&new_uuid);
1511 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1512 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1513 			BTRFS_UUID_SIZE);
1514 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1515 		memset(new_root_item->received_uuid, 0,
1516 		       sizeof(new_root_item->received_uuid));
1517 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1518 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1519 		btrfs_set_root_stransid(new_root_item, 0);
1520 		btrfs_set_root_rtransid(new_root_item, 0);
1521 	}
1522 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1523 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1524 	btrfs_set_root_otransid(new_root_item, trans->transid);
1525 
1526 	old = btrfs_lock_root_node(root);
1527 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1528 	if (ret) {
1529 		btrfs_tree_unlock(old);
1530 		free_extent_buffer(old);
1531 		btrfs_abort_transaction(trans, ret);
1532 		goto fail;
1533 	}
1534 
1535 	btrfs_set_lock_blocking_write(old);
1536 
1537 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1538 	/* clean up in any case */
1539 	btrfs_tree_unlock(old);
1540 	free_extent_buffer(old);
1541 	if (ret) {
1542 		btrfs_abort_transaction(trans, ret);
1543 		goto fail;
1544 	}
1545 	/* see comments in should_cow_block() */
1546 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1547 	smp_wmb();
1548 
1549 	btrfs_set_root_node(new_root_item, tmp);
1550 	/* record when the snapshot was created in key.offset */
1551 	key.offset = trans->transid;
1552 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1553 	btrfs_tree_unlock(tmp);
1554 	free_extent_buffer(tmp);
1555 	if (ret) {
1556 		btrfs_abort_transaction(trans, ret);
1557 		goto fail;
1558 	}
1559 
1560 	/*
1561 	 * insert root back/forward references
1562 	 */
1563 	ret = btrfs_add_root_ref(trans, objectid,
1564 				 parent_root->root_key.objectid,
1565 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1566 				 dentry->d_name.name, dentry->d_name.len);
1567 	if (ret) {
1568 		btrfs_abort_transaction(trans, ret);
1569 		goto fail;
1570 	}
1571 
1572 	key.offset = (u64)-1;
1573 	pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1574 	if (IS_ERR(pending->snap)) {
1575 		ret = PTR_ERR(pending->snap);
1576 		btrfs_abort_transaction(trans, ret);
1577 		goto fail;
1578 	}
1579 
1580 	ret = btrfs_reloc_post_snapshot(trans, pending);
1581 	if (ret) {
1582 		btrfs_abort_transaction(trans, ret);
1583 		goto fail;
1584 	}
1585 
1586 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1587 	if (ret) {
1588 		btrfs_abort_transaction(trans, ret);
1589 		goto fail;
1590 	}
1591 
1592 	/*
1593 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1594 	 * snapshot hack to do fast snapshot.
1595 	 * To co-operate with that hack, we do hack again.
1596 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1597 	 */
1598 	ret = qgroup_account_snapshot(trans, root, parent_root,
1599 				      pending->inherit, objectid);
1600 	if (ret < 0)
1601 		goto fail;
1602 
1603 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1604 				    dentry->d_name.len, BTRFS_I(parent_inode),
1605 				    &key, BTRFS_FT_DIR, index);
1606 	/* We have check then name at the beginning, so it is impossible. */
1607 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1608 	if (ret) {
1609 		btrfs_abort_transaction(trans, ret);
1610 		goto fail;
1611 	}
1612 
1613 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1614 					 dentry->d_name.len * 2);
1615 	parent_inode->i_mtime = parent_inode->i_ctime =
1616 		current_time(parent_inode);
1617 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1618 	if (ret) {
1619 		btrfs_abort_transaction(trans, ret);
1620 		goto fail;
1621 	}
1622 	ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1623 				  objectid);
1624 	if (ret) {
1625 		btrfs_abort_transaction(trans, ret);
1626 		goto fail;
1627 	}
1628 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1629 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1630 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1631 					  objectid);
1632 		if (ret && ret != -EEXIST) {
1633 			btrfs_abort_transaction(trans, ret);
1634 			goto fail;
1635 		}
1636 	}
1637 
1638 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1639 	if (ret) {
1640 		btrfs_abort_transaction(trans, ret);
1641 		goto fail;
1642 	}
1643 
1644 fail:
1645 	pending->error = ret;
1646 dir_item_existed:
1647 	trans->block_rsv = rsv;
1648 	trans->bytes_reserved = 0;
1649 clear_skip_qgroup:
1650 	btrfs_clear_skip_qgroup(trans);
1651 no_free_objectid:
1652 	kfree(new_root_item);
1653 	pending->root_item = NULL;
1654 	btrfs_free_path(path);
1655 	pending->path = NULL;
1656 
1657 	return ret;
1658 }
1659 
1660 /*
1661  * create all the snapshots we've scheduled for creation
1662  */
create_pending_snapshots(struct btrfs_trans_handle * trans)1663 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1664 {
1665 	struct btrfs_pending_snapshot *pending, *next;
1666 	struct list_head *head = &trans->transaction->pending_snapshots;
1667 	int ret = 0;
1668 
1669 	list_for_each_entry_safe(pending, next, head, list) {
1670 		list_del(&pending->list);
1671 		ret = create_pending_snapshot(trans, pending);
1672 		if (ret)
1673 			break;
1674 	}
1675 	return ret;
1676 }
1677 
update_super_roots(struct btrfs_fs_info * fs_info)1678 static void update_super_roots(struct btrfs_fs_info *fs_info)
1679 {
1680 	struct btrfs_root_item *root_item;
1681 	struct btrfs_super_block *super;
1682 
1683 	super = fs_info->super_copy;
1684 
1685 	root_item = &fs_info->chunk_root->root_item;
1686 	super->chunk_root = root_item->bytenr;
1687 	super->chunk_root_generation = root_item->generation;
1688 	super->chunk_root_level = root_item->level;
1689 
1690 	root_item = &fs_info->tree_root->root_item;
1691 	super->root = root_item->bytenr;
1692 	super->generation = root_item->generation;
1693 	super->root_level = root_item->level;
1694 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1695 		super->cache_generation = root_item->generation;
1696 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1697 		super->uuid_tree_generation = root_item->generation;
1698 }
1699 
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1700 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1701 {
1702 	struct btrfs_transaction *trans;
1703 	int ret = 0;
1704 
1705 	spin_lock(&info->trans_lock);
1706 	trans = info->running_transaction;
1707 	if (trans)
1708 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1709 	spin_unlock(&info->trans_lock);
1710 	return ret;
1711 }
1712 
btrfs_transaction_blocked(struct btrfs_fs_info * info)1713 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1714 {
1715 	struct btrfs_transaction *trans;
1716 	int ret = 0;
1717 
1718 	spin_lock(&info->trans_lock);
1719 	trans = info->running_transaction;
1720 	if (trans)
1721 		ret = is_transaction_blocked(trans);
1722 	spin_unlock(&info->trans_lock);
1723 	return ret;
1724 }
1725 
1726 /*
1727  * wait for the current transaction commit to start and block subsequent
1728  * transaction joins
1729  */
wait_current_trans_commit_start(struct btrfs_fs_info * fs_info,struct btrfs_transaction * trans)1730 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1731 					    struct btrfs_transaction *trans)
1732 {
1733 	wait_event(fs_info->transaction_blocked_wait,
1734 		   trans->state >= TRANS_STATE_COMMIT_START ||
1735 		   TRANS_ABORTED(trans));
1736 }
1737 
1738 /*
1739  * wait for the current transaction to start and then become unblocked.
1740  * caller holds ref.
1741  */
wait_current_trans_commit_start_and_unblock(struct btrfs_fs_info * fs_info,struct btrfs_transaction * trans)1742 static void wait_current_trans_commit_start_and_unblock(
1743 					struct btrfs_fs_info *fs_info,
1744 					struct btrfs_transaction *trans)
1745 {
1746 	wait_event(fs_info->transaction_wait,
1747 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1748 		   TRANS_ABORTED(trans));
1749 }
1750 
1751 /*
1752  * commit transactions asynchronously. once btrfs_commit_transaction_async
1753  * returns, any subsequent transaction will not be allowed to join.
1754  */
1755 struct btrfs_async_commit {
1756 	struct btrfs_trans_handle *newtrans;
1757 	struct work_struct work;
1758 };
1759 
do_async_commit(struct work_struct * work)1760 static void do_async_commit(struct work_struct *work)
1761 {
1762 	struct btrfs_async_commit *ac =
1763 		container_of(work, struct btrfs_async_commit, work);
1764 
1765 	/*
1766 	 * We've got freeze protection passed with the transaction.
1767 	 * Tell lockdep about it.
1768 	 */
1769 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1770 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1771 
1772 	current->journal_info = ac->newtrans;
1773 
1774 	btrfs_commit_transaction(ac->newtrans);
1775 	kfree(ac);
1776 }
1777 
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans,int wait_for_unblock)1778 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1779 				   int wait_for_unblock)
1780 {
1781 	struct btrfs_fs_info *fs_info = trans->fs_info;
1782 	struct btrfs_async_commit *ac;
1783 	struct btrfs_transaction *cur_trans;
1784 
1785 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1786 	if (!ac)
1787 		return -ENOMEM;
1788 
1789 	INIT_WORK(&ac->work, do_async_commit);
1790 	ac->newtrans = btrfs_join_transaction(trans->root);
1791 	if (IS_ERR(ac->newtrans)) {
1792 		int err = PTR_ERR(ac->newtrans);
1793 		kfree(ac);
1794 		return err;
1795 	}
1796 
1797 	/* take transaction reference */
1798 	cur_trans = trans->transaction;
1799 	refcount_inc(&cur_trans->use_count);
1800 
1801 	btrfs_end_transaction(trans);
1802 
1803 	/*
1804 	 * Tell lockdep we've released the freeze rwsem, since the
1805 	 * async commit thread will be the one to unlock it.
1806 	 */
1807 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1808 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1809 
1810 	schedule_work(&ac->work);
1811 
1812 	/* wait for transaction to start and unblock */
1813 	if (wait_for_unblock)
1814 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1815 	else
1816 		wait_current_trans_commit_start(fs_info, cur_trans);
1817 
1818 	if (current->journal_info == trans)
1819 		current->journal_info = NULL;
1820 
1821 	btrfs_put_transaction(cur_trans);
1822 	return 0;
1823 }
1824 
1825 
cleanup_transaction(struct btrfs_trans_handle * trans,int err)1826 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1827 {
1828 	struct btrfs_fs_info *fs_info = trans->fs_info;
1829 	struct btrfs_transaction *cur_trans = trans->transaction;
1830 
1831 	WARN_ON(refcount_read(&trans->use_count) > 1);
1832 
1833 	btrfs_abort_transaction(trans, err);
1834 
1835 	spin_lock(&fs_info->trans_lock);
1836 
1837 	/*
1838 	 * If the transaction is removed from the list, it means this
1839 	 * transaction has been committed successfully, so it is impossible
1840 	 * to call the cleanup function.
1841 	 */
1842 	BUG_ON(list_empty(&cur_trans->list));
1843 
1844 	list_del_init(&cur_trans->list);
1845 	if (cur_trans == fs_info->running_transaction) {
1846 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1847 		spin_unlock(&fs_info->trans_lock);
1848 		wait_event(cur_trans->writer_wait,
1849 			   atomic_read(&cur_trans->num_writers) == 1);
1850 
1851 		spin_lock(&fs_info->trans_lock);
1852 	}
1853 	spin_unlock(&fs_info->trans_lock);
1854 
1855 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1856 
1857 	spin_lock(&fs_info->trans_lock);
1858 	if (cur_trans == fs_info->running_transaction)
1859 		fs_info->running_transaction = NULL;
1860 	spin_unlock(&fs_info->trans_lock);
1861 
1862 	if (trans->type & __TRANS_FREEZABLE)
1863 		sb_end_intwrite(fs_info->sb);
1864 	btrfs_put_transaction(cur_trans);
1865 	btrfs_put_transaction(cur_trans);
1866 
1867 	trace_btrfs_transaction_commit(trans->root);
1868 
1869 	if (current->journal_info == trans)
1870 		current->journal_info = NULL;
1871 	btrfs_scrub_cancel(fs_info);
1872 
1873 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1874 }
1875 
1876 /*
1877  * Release reserved delayed ref space of all pending block groups of the
1878  * transaction and remove them from the list
1879  */
btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle * trans)1880 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1881 {
1882        struct btrfs_fs_info *fs_info = trans->fs_info;
1883        struct btrfs_block_group_cache *block_group, *tmp;
1884 
1885        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1886                btrfs_delayed_refs_rsv_release(fs_info, 1);
1887                list_del_init(&block_group->bg_list);
1888        }
1889 }
1890 
btrfs_start_delalloc_flush(struct btrfs_trans_handle * trans)1891 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1892 {
1893 	struct btrfs_fs_info *fs_info = trans->fs_info;
1894 
1895 	/*
1896 	 * We use writeback_inodes_sb here because if we used
1897 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1898 	 * Currently are holding the fs freeze lock, if we do an async flush
1899 	 * we'll do btrfs_join_transaction() and deadlock because we need to
1900 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
1901 	 * from already being in a transaction and our join_transaction doesn't
1902 	 * have to re-take the fs freeze lock.
1903 	 */
1904 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1905 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1906 	} else {
1907 		struct btrfs_pending_snapshot *pending;
1908 		struct list_head *head = &trans->transaction->pending_snapshots;
1909 
1910 		/*
1911 		 * Flush dellaloc for any root that is going to be snapshotted.
1912 		 * This is done to avoid a corrupted version of files, in the
1913 		 * snapshots, that had both buffered and direct IO writes (even
1914 		 * if they were done sequentially) due to an unordered update of
1915 		 * the inode's size on disk.
1916 		 */
1917 		list_for_each_entry(pending, head, list) {
1918 			int ret;
1919 
1920 			ret = btrfs_start_delalloc_snapshot(pending->root);
1921 			if (ret)
1922 				return ret;
1923 		}
1924 	}
1925 	return 0;
1926 }
1927 
btrfs_wait_delalloc_flush(struct btrfs_trans_handle * trans)1928 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1929 {
1930 	struct btrfs_fs_info *fs_info = trans->fs_info;
1931 
1932 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1933 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1934 	} else {
1935 		struct btrfs_pending_snapshot *pending;
1936 		struct list_head *head = &trans->transaction->pending_snapshots;
1937 
1938 		/*
1939 		 * Wait for any dellaloc that we started previously for the roots
1940 		 * that are going to be snapshotted. This is to avoid a corrupted
1941 		 * version of files in the snapshots that had both buffered and
1942 		 * direct IO writes (even if they were done sequentially).
1943 		 */
1944 		list_for_each_entry(pending, head, list)
1945 			btrfs_wait_ordered_extents(pending->root,
1946 						   U64_MAX, 0, U64_MAX);
1947 	}
1948 }
1949 
btrfs_commit_transaction(struct btrfs_trans_handle * trans)1950 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
1951 {
1952 	struct btrfs_fs_info *fs_info = trans->fs_info;
1953 	struct btrfs_transaction *cur_trans = trans->transaction;
1954 	struct btrfs_transaction *prev_trans = NULL;
1955 	int ret;
1956 
1957 	/*
1958 	 * Some places just start a transaction to commit it.  We need to make
1959 	 * sure that if this commit fails that the abort code actually marks the
1960 	 * transaction as failed, so set trans->dirty to make the abort code do
1961 	 * the right thing.
1962 	 */
1963 	trans->dirty = true;
1964 
1965 	/* Stop the commit early if ->aborted is set */
1966 	if (TRANS_ABORTED(cur_trans)) {
1967 		ret = cur_trans->aborted;
1968 		btrfs_end_transaction(trans);
1969 		return ret;
1970 	}
1971 
1972 	btrfs_trans_release_metadata(trans);
1973 	trans->block_rsv = NULL;
1974 
1975 	/* make a pass through all the delayed refs we have so far
1976 	 * any runnings procs may add more while we are here
1977 	 */
1978 	ret = btrfs_run_delayed_refs(trans, 0);
1979 	if (ret) {
1980 		btrfs_end_transaction(trans);
1981 		return ret;
1982 	}
1983 
1984 	cur_trans = trans->transaction;
1985 
1986 	/*
1987 	 * set the flushing flag so procs in this transaction have to
1988 	 * start sending their work down.
1989 	 */
1990 	cur_trans->delayed_refs.flushing = 1;
1991 	smp_wmb();
1992 
1993 	btrfs_create_pending_block_groups(trans);
1994 
1995 	ret = btrfs_run_delayed_refs(trans, 0);
1996 	if (ret) {
1997 		btrfs_end_transaction(trans);
1998 		return ret;
1999 	}
2000 
2001 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2002 		int run_it = 0;
2003 
2004 		/* this mutex is also taken before trying to set
2005 		 * block groups readonly.  We need to make sure
2006 		 * that nobody has set a block group readonly
2007 		 * after a extents from that block group have been
2008 		 * allocated for cache files.  btrfs_set_block_group_ro
2009 		 * will wait for the transaction to commit if it
2010 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2011 		 *
2012 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2013 		 * only one process starts all the block group IO.  It wouldn't
2014 		 * hurt to have more than one go through, but there's no
2015 		 * real advantage to it either.
2016 		 */
2017 		mutex_lock(&fs_info->ro_block_group_mutex);
2018 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2019 				      &cur_trans->flags))
2020 			run_it = 1;
2021 		mutex_unlock(&fs_info->ro_block_group_mutex);
2022 
2023 		if (run_it) {
2024 			ret = btrfs_start_dirty_block_groups(trans);
2025 			if (ret) {
2026 				btrfs_end_transaction(trans);
2027 				return ret;
2028 			}
2029 		}
2030 	}
2031 
2032 	spin_lock(&fs_info->trans_lock);
2033 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2034 		spin_unlock(&fs_info->trans_lock);
2035 		refcount_inc(&cur_trans->use_count);
2036 		ret = btrfs_end_transaction(trans);
2037 
2038 		wait_for_commit(cur_trans);
2039 
2040 		if (TRANS_ABORTED(cur_trans))
2041 			ret = cur_trans->aborted;
2042 
2043 		btrfs_put_transaction(cur_trans);
2044 
2045 		return ret;
2046 	}
2047 
2048 	cur_trans->state = TRANS_STATE_COMMIT_START;
2049 	wake_up(&fs_info->transaction_blocked_wait);
2050 
2051 	if (cur_trans->list.prev != &fs_info->trans_list) {
2052 		prev_trans = list_entry(cur_trans->list.prev,
2053 					struct btrfs_transaction, list);
2054 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2055 			refcount_inc(&prev_trans->use_count);
2056 			spin_unlock(&fs_info->trans_lock);
2057 
2058 			wait_for_commit(prev_trans);
2059 			ret = READ_ONCE(prev_trans->aborted);
2060 
2061 			btrfs_put_transaction(prev_trans);
2062 			if (ret)
2063 				goto cleanup_transaction;
2064 		} else {
2065 			spin_unlock(&fs_info->trans_lock);
2066 		}
2067 	} else {
2068 		spin_unlock(&fs_info->trans_lock);
2069 		/*
2070 		 * The previous transaction was aborted and was already removed
2071 		 * from the list of transactions at fs_info->trans_list. So we
2072 		 * abort to prevent writing a new superblock that reflects a
2073 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2074 		 */
2075 		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2076 			ret = -EROFS;
2077 			goto cleanup_transaction;
2078 		}
2079 	}
2080 
2081 	extwriter_counter_dec(cur_trans, trans->type);
2082 
2083 	ret = btrfs_start_delalloc_flush(trans);
2084 	if (ret)
2085 		goto cleanup_transaction;
2086 
2087 	ret = btrfs_run_delayed_items(trans);
2088 	if (ret)
2089 		goto cleanup_transaction;
2090 
2091 	wait_event(cur_trans->writer_wait,
2092 		   extwriter_counter_read(cur_trans) == 0);
2093 
2094 	/* some pending stuffs might be added after the previous flush. */
2095 	ret = btrfs_run_delayed_items(trans);
2096 	if (ret)
2097 		goto cleanup_transaction;
2098 
2099 	btrfs_wait_delalloc_flush(trans);
2100 
2101 	btrfs_scrub_pause(fs_info);
2102 	/*
2103 	 * Ok now we need to make sure to block out any other joins while we
2104 	 * commit the transaction.  We could have started a join before setting
2105 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2106 	 */
2107 	spin_lock(&fs_info->trans_lock);
2108 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2109 	spin_unlock(&fs_info->trans_lock);
2110 	wait_event(cur_trans->writer_wait,
2111 		   atomic_read(&cur_trans->num_writers) == 1);
2112 
2113 	if (TRANS_ABORTED(cur_trans)) {
2114 		ret = cur_trans->aborted;
2115 		goto scrub_continue;
2116 	}
2117 	/*
2118 	 * the reloc mutex makes sure that we stop
2119 	 * the balancing code from coming in and moving
2120 	 * extents around in the middle of the commit
2121 	 */
2122 	mutex_lock(&fs_info->reloc_mutex);
2123 
2124 	/*
2125 	 * We needn't worry about the delayed items because we will
2126 	 * deal with them in create_pending_snapshot(), which is the
2127 	 * core function of the snapshot creation.
2128 	 */
2129 	ret = create_pending_snapshots(trans);
2130 	if (ret) {
2131 		mutex_unlock(&fs_info->reloc_mutex);
2132 		goto scrub_continue;
2133 	}
2134 
2135 	/*
2136 	 * We insert the dir indexes of the snapshots and update the inode
2137 	 * of the snapshots' parents after the snapshot creation, so there
2138 	 * are some delayed items which are not dealt with. Now deal with
2139 	 * them.
2140 	 *
2141 	 * We needn't worry that this operation will corrupt the snapshots,
2142 	 * because all the tree which are snapshoted will be forced to COW
2143 	 * the nodes and leaves.
2144 	 */
2145 	ret = btrfs_run_delayed_items(trans);
2146 	if (ret) {
2147 		mutex_unlock(&fs_info->reloc_mutex);
2148 		goto scrub_continue;
2149 	}
2150 
2151 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2152 	if (ret) {
2153 		mutex_unlock(&fs_info->reloc_mutex);
2154 		goto scrub_continue;
2155 	}
2156 
2157 	/*
2158 	 * make sure none of the code above managed to slip in a
2159 	 * delayed item
2160 	 */
2161 	btrfs_assert_delayed_root_empty(fs_info);
2162 
2163 	WARN_ON(cur_trans != trans->transaction);
2164 
2165 	/* btrfs_commit_tree_roots is responsible for getting the
2166 	 * various roots consistent with each other.  Every pointer
2167 	 * in the tree of tree roots has to point to the most up to date
2168 	 * root for every subvolume and other tree.  So, we have to keep
2169 	 * the tree logging code from jumping in and changing any
2170 	 * of the trees.
2171 	 *
2172 	 * At this point in the commit, there can't be any tree-log
2173 	 * writers, but a little lower down we drop the trans mutex
2174 	 * and let new people in.  By holding the tree_log_mutex
2175 	 * from now until after the super is written, we avoid races
2176 	 * with the tree-log code.
2177 	 */
2178 	mutex_lock(&fs_info->tree_log_mutex);
2179 
2180 	ret = commit_fs_roots(trans);
2181 	if (ret) {
2182 		mutex_unlock(&fs_info->tree_log_mutex);
2183 		mutex_unlock(&fs_info->reloc_mutex);
2184 		goto scrub_continue;
2185 	}
2186 
2187 	/*
2188 	 * Since the transaction is done, we can apply the pending changes
2189 	 * before the next transaction.
2190 	 */
2191 	btrfs_apply_pending_changes(fs_info);
2192 
2193 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2194 	 * safe to free the root of tree log roots
2195 	 */
2196 	btrfs_free_log_root_tree(trans, fs_info);
2197 
2198 	/*
2199 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2200 	 * new delayed refs. Must handle them or qgroup can be wrong.
2201 	 */
2202 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2203 	if (ret) {
2204 		mutex_unlock(&fs_info->tree_log_mutex);
2205 		mutex_unlock(&fs_info->reloc_mutex);
2206 		goto scrub_continue;
2207 	}
2208 
2209 	/*
2210 	 * Since fs roots are all committed, we can get a quite accurate
2211 	 * new_roots. So let's do quota accounting.
2212 	 */
2213 	ret = btrfs_qgroup_account_extents(trans);
2214 	if (ret < 0) {
2215 		mutex_unlock(&fs_info->tree_log_mutex);
2216 		mutex_unlock(&fs_info->reloc_mutex);
2217 		goto scrub_continue;
2218 	}
2219 
2220 	ret = commit_cowonly_roots(trans);
2221 	if (ret) {
2222 		mutex_unlock(&fs_info->tree_log_mutex);
2223 		mutex_unlock(&fs_info->reloc_mutex);
2224 		goto scrub_continue;
2225 	}
2226 
2227 	/*
2228 	 * The tasks which save the space cache and inode cache may also
2229 	 * update ->aborted, check it.
2230 	 */
2231 	if (TRANS_ABORTED(cur_trans)) {
2232 		ret = cur_trans->aborted;
2233 		mutex_unlock(&fs_info->tree_log_mutex);
2234 		mutex_unlock(&fs_info->reloc_mutex);
2235 		goto scrub_continue;
2236 	}
2237 
2238 	btrfs_prepare_extent_commit(fs_info);
2239 
2240 	cur_trans = fs_info->running_transaction;
2241 
2242 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2243 			    fs_info->tree_root->node);
2244 	list_add_tail(&fs_info->tree_root->dirty_list,
2245 		      &cur_trans->switch_commits);
2246 
2247 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2248 			    fs_info->chunk_root->node);
2249 	list_add_tail(&fs_info->chunk_root->dirty_list,
2250 		      &cur_trans->switch_commits);
2251 
2252 	switch_commit_roots(trans);
2253 
2254 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2255 	ASSERT(list_empty(&cur_trans->io_bgs));
2256 	update_super_roots(fs_info);
2257 
2258 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2259 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2260 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2261 	       sizeof(*fs_info->super_copy));
2262 
2263 	btrfs_commit_device_sizes(cur_trans);
2264 
2265 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2266 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2267 
2268 	btrfs_trans_release_chunk_metadata(trans);
2269 
2270 	spin_lock(&fs_info->trans_lock);
2271 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2272 	fs_info->running_transaction = NULL;
2273 	spin_unlock(&fs_info->trans_lock);
2274 	mutex_unlock(&fs_info->reloc_mutex);
2275 
2276 	wake_up(&fs_info->transaction_wait);
2277 
2278 	ret = btrfs_write_and_wait_transaction(trans);
2279 	if (ret) {
2280 		btrfs_handle_fs_error(fs_info, ret,
2281 				      "Error while writing out transaction");
2282 		mutex_unlock(&fs_info->tree_log_mutex);
2283 		goto scrub_continue;
2284 	}
2285 
2286 	ret = write_all_supers(fs_info, 0);
2287 	/*
2288 	 * the super is written, we can safely allow the tree-loggers
2289 	 * to go about their business
2290 	 */
2291 	mutex_unlock(&fs_info->tree_log_mutex);
2292 	if (ret)
2293 		goto scrub_continue;
2294 
2295 	btrfs_finish_extent_commit(trans);
2296 
2297 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2298 		btrfs_clear_space_info_full(fs_info);
2299 
2300 	fs_info->last_trans_committed = cur_trans->transid;
2301 	/*
2302 	 * We needn't acquire the lock here because there is no other task
2303 	 * which can change it.
2304 	 */
2305 	cur_trans->state = TRANS_STATE_COMPLETED;
2306 	wake_up(&cur_trans->commit_wait);
2307 
2308 	spin_lock(&fs_info->trans_lock);
2309 	list_del_init(&cur_trans->list);
2310 	spin_unlock(&fs_info->trans_lock);
2311 
2312 	btrfs_put_transaction(cur_trans);
2313 	btrfs_put_transaction(cur_trans);
2314 
2315 	if (trans->type & __TRANS_FREEZABLE)
2316 		sb_end_intwrite(fs_info->sb);
2317 
2318 	trace_btrfs_transaction_commit(trans->root);
2319 
2320 	btrfs_scrub_continue(fs_info);
2321 
2322 	if (current->journal_info == trans)
2323 		current->journal_info = NULL;
2324 
2325 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2326 
2327 	return ret;
2328 
2329 scrub_continue:
2330 	btrfs_scrub_continue(fs_info);
2331 cleanup_transaction:
2332 	btrfs_trans_release_metadata(trans);
2333 	btrfs_cleanup_pending_block_groups(trans);
2334 	btrfs_trans_release_chunk_metadata(trans);
2335 	trans->block_rsv = NULL;
2336 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2337 	if (current->journal_info == trans)
2338 		current->journal_info = NULL;
2339 	cleanup_transaction(trans, ret);
2340 
2341 	return ret;
2342 }
2343 
2344 /*
2345  * return < 0 if error
2346  * 0 if there are no more dead_roots at the time of call
2347  * 1 there are more to be processed, call me again
2348  *
2349  * The return value indicates there are certainly more snapshots to delete, but
2350  * if there comes a new one during processing, it may return 0. We don't mind,
2351  * because btrfs_commit_super will poke cleaner thread and it will process it a
2352  * few seconds later.
2353  */
btrfs_clean_one_deleted_snapshot(struct btrfs_root * root)2354 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2355 {
2356 	int ret;
2357 	struct btrfs_fs_info *fs_info = root->fs_info;
2358 
2359 	spin_lock(&fs_info->trans_lock);
2360 	if (list_empty(&fs_info->dead_roots)) {
2361 		spin_unlock(&fs_info->trans_lock);
2362 		return 0;
2363 	}
2364 	root = list_first_entry(&fs_info->dead_roots,
2365 			struct btrfs_root, root_list);
2366 	list_del_init(&root->root_list);
2367 	spin_unlock(&fs_info->trans_lock);
2368 
2369 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2370 
2371 	btrfs_kill_all_delayed_nodes(root);
2372 
2373 	if (btrfs_header_backref_rev(root->node) <
2374 			BTRFS_MIXED_BACKREF_REV)
2375 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2376 	else
2377 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2378 
2379 	return (ret < 0) ? 0 : 1;
2380 }
2381 
btrfs_apply_pending_changes(struct btrfs_fs_info * fs_info)2382 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2383 {
2384 	unsigned long prev;
2385 	unsigned long bit;
2386 
2387 	prev = xchg(&fs_info->pending_changes, 0);
2388 	if (!prev)
2389 		return;
2390 
2391 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2392 	if (prev & bit)
2393 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2394 	prev &= ~bit;
2395 
2396 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2397 	if (prev & bit)
2398 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2399 	prev &= ~bit;
2400 
2401 	bit = 1 << BTRFS_PENDING_COMMIT;
2402 	if (prev & bit)
2403 		btrfs_debug(fs_info, "pending commit done");
2404 	prev &= ~bit;
2405 
2406 	if (prev)
2407 		btrfs_warn(fs_info,
2408 			"unknown pending changes left 0x%lx, ignoring", prev);
2409 }
2410