• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/sched/mm.h>
32 #include <asm/unaligned.h>
33 #include "misc.h"
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "ordered-data.h"
40 #include "xattr.h"
41 #include "tree-log.h"
42 #include "volumes.h"
43 #include "compression.h"
44 #include "locking.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "backref.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 
54 struct btrfs_iget_args {
55 	struct btrfs_key *location;
56 	struct btrfs_root *root;
57 };
58 
59 struct btrfs_dio_data {
60 	u64 reserve;
61 	u64 unsubmitted_oe_range_start;
62 	u64 unsubmitted_oe_range_end;
63 	int overwrite;
64 };
65 
66 static const struct inode_operations btrfs_dir_inode_operations;
67 static const struct inode_operations btrfs_symlink_inode_operations;
68 static const struct inode_operations btrfs_dir_ro_inode_operations;
69 static const struct inode_operations btrfs_special_inode_operations;
70 static const struct inode_operations btrfs_file_inode_operations;
71 static const struct address_space_operations btrfs_aops;
72 static const struct file_operations btrfs_dir_file_operations;
73 static const struct extent_io_ops btrfs_extent_io_ops;
74 
75 static struct kmem_cache *btrfs_inode_cachep;
76 struct kmem_cache *btrfs_trans_handle_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
79 struct kmem_cache *btrfs_free_space_bitmap_cachep;
80 
81 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
82 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
83 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
84 static noinline int cow_file_range(struct inode *inode,
85 				   struct page *locked_page,
86 				   u64 start, u64 end, int *page_started,
87 				   unsigned long *nr_written, int unlock);
88 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
89 				       u64 orig_start, u64 block_start,
90 				       u64 block_len, u64 orig_block_len,
91 				       u64 ram_bytes, int compress_type,
92 				       int type);
93 
94 static void __endio_write_update_ordered(struct inode *inode,
95 					 const u64 offset, const u64 bytes,
96 					 const bool uptodate);
97 
98 /*
99  * Cleanup all submitted ordered extents in specified range to handle errors
100  * from the btrfs_run_delalloc_range() callback.
101  *
102  * NOTE: caller must ensure that when an error happens, it can not call
103  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
104  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
105  * to be released, which we want to happen only when finishing the ordered
106  * extent (btrfs_finish_ordered_io()).
107  */
btrfs_cleanup_ordered_extents(struct inode * inode,struct page * locked_page,u64 offset,u64 bytes)108 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
109 						 struct page *locked_page,
110 						 u64 offset, u64 bytes)
111 {
112 	unsigned long index = offset >> PAGE_SHIFT;
113 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
114 	u64 page_start = page_offset(locked_page);
115 	u64 page_end = page_start + PAGE_SIZE - 1;
116 
117 	struct page *page;
118 
119 	while (index <= end_index) {
120 		page = find_get_page(inode->i_mapping, index);
121 		index++;
122 		if (!page)
123 			continue;
124 		ClearPagePrivate2(page);
125 		put_page(page);
126 	}
127 
128 	/*
129 	 * In case this page belongs to the delalloc range being instantiated
130 	 * then skip it, since the first page of a range is going to be
131 	 * properly cleaned up by the caller of run_delalloc_range
132 	 */
133 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
134 		offset += PAGE_SIZE;
135 		bytes -= PAGE_SIZE;
136 	}
137 
138 	return __endio_write_update_ordered(inode, offset, bytes, false);
139 }
140 
141 static int btrfs_dirty_inode(struct inode *inode);
142 
143 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_inode_set_ops(struct inode * inode)144 void btrfs_test_inode_set_ops(struct inode *inode)
145 {
146 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
147 }
148 #endif
149 
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)150 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
151 				     struct inode *inode,  struct inode *dir,
152 				     const struct qstr *qstr)
153 {
154 	int err;
155 
156 	err = btrfs_init_acl(trans, inode, dir);
157 	if (!err)
158 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
159 	return err;
160 }
161 
162 /*
163  * this does all the hard work for inserting an inline extent into
164  * the btree.  The caller should have done a btrfs_drop_extents so that
165  * no overlapping inline items exist in the btree
166  */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,int extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)167 static int insert_inline_extent(struct btrfs_trans_handle *trans,
168 				struct btrfs_path *path, int extent_inserted,
169 				struct btrfs_root *root, struct inode *inode,
170 				u64 start, size_t size, size_t compressed_size,
171 				int compress_type,
172 				struct page **compressed_pages)
173 {
174 	struct extent_buffer *leaf;
175 	struct page *page = NULL;
176 	char *kaddr;
177 	unsigned long ptr;
178 	struct btrfs_file_extent_item *ei;
179 	int ret;
180 	size_t cur_size = size;
181 	unsigned long offset;
182 
183 	ASSERT((compressed_size > 0 && compressed_pages) ||
184 	       (compressed_size == 0 && !compressed_pages));
185 
186 	if (compressed_size && compressed_pages)
187 		cur_size = compressed_size;
188 
189 	inode_add_bytes(inode, size);
190 
191 	if (!extent_inserted) {
192 		struct btrfs_key key;
193 		size_t datasize;
194 
195 		key.objectid = btrfs_ino(BTRFS_I(inode));
196 		key.offset = start;
197 		key.type = BTRFS_EXTENT_DATA_KEY;
198 
199 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
200 		path->leave_spinning = 1;
201 		ret = btrfs_insert_empty_item(trans, root, path, &key,
202 					      datasize);
203 		if (ret)
204 			goto fail;
205 	}
206 	leaf = path->nodes[0];
207 	ei = btrfs_item_ptr(leaf, path->slots[0],
208 			    struct btrfs_file_extent_item);
209 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
210 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
211 	btrfs_set_file_extent_encryption(leaf, ei, 0);
212 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
213 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
214 	ptr = btrfs_file_extent_inline_start(ei);
215 
216 	if (compress_type != BTRFS_COMPRESS_NONE) {
217 		struct page *cpage;
218 		int i = 0;
219 		while (compressed_size > 0) {
220 			cpage = compressed_pages[i];
221 			cur_size = min_t(unsigned long, compressed_size,
222 				       PAGE_SIZE);
223 
224 			kaddr = kmap_atomic(cpage);
225 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
226 			kunmap_atomic(kaddr);
227 
228 			i++;
229 			ptr += cur_size;
230 			compressed_size -= cur_size;
231 		}
232 		btrfs_set_file_extent_compression(leaf, ei,
233 						  compress_type);
234 	} else {
235 		page = find_get_page(inode->i_mapping,
236 				     start >> PAGE_SHIFT);
237 		btrfs_set_file_extent_compression(leaf, ei, 0);
238 		kaddr = kmap_atomic(page);
239 		offset = offset_in_page(start);
240 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
241 		kunmap_atomic(kaddr);
242 		put_page(page);
243 	}
244 	btrfs_mark_buffer_dirty(leaf);
245 	btrfs_release_path(path);
246 
247 	/*
248 	 * we're an inline extent, so nobody can
249 	 * extend the file past i_size without locking
250 	 * a page we already have locked.
251 	 *
252 	 * We must do any isize and inode updates
253 	 * before we unlock the pages.  Otherwise we
254 	 * could end up racing with unlink.
255 	 */
256 	BTRFS_I(inode)->disk_i_size = inode->i_size;
257 	ret = btrfs_update_inode(trans, root, inode);
258 
259 fail:
260 	return ret;
261 }
262 
263 
264 /*
265  * conditionally insert an inline extent into the file.  This
266  * does the checks required to make sure the data is small enough
267  * to fit as an inline extent.
268  */
cow_file_range_inline(struct inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)269 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
270 					  u64 end, size_t compressed_size,
271 					  int compress_type,
272 					  struct page **compressed_pages)
273 {
274 	struct btrfs_root *root = BTRFS_I(inode)->root;
275 	struct btrfs_fs_info *fs_info = root->fs_info;
276 	struct btrfs_trans_handle *trans;
277 	u64 isize = i_size_read(inode);
278 	u64 actual_end = min(end + 1, isize);
279 	u64 inline_len = actual_end - start;
280 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
281 	u64 data_len = inline_len;
282 	int ret;
283 	struct btrfs_path *path;
284 	int extent_inserted = 0;
285 	u32 extent_item_size;
286 
287 	if (compressed_size)
288 		data_len = compressed_size;
289 
290 	if (start > 0 ||
291 	    actual_end > fs_info->sectorsize ||
292 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
293 	    (!compressed_size &&
294 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
295 	    end + 1 < isize ||
296 	    data_len > fs_info->max_inline) {
297 		return 1;
298 	}
299 
300 	path = btrfs_alloc_path();
301 	if (!path)
302 		return -ENOMEM;
303 
304 	trans = btrfs_join_transaction(root);
305 	if (IS_ERR(trans)) {
306 		btrfs_free_path(path);
307 		return PTR_ERR(trans);
308 	}
309 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
310 
311 	if (compressed_size && compressed_pages)
312 		extent_item_size = btrfs_file_extent_calc_inline_size(
313 		   compressed_size);
314 	else
315 		extent_item_size = btrfs_file_extent_calc_inline_size(
316 		    inline_len);
317 
318 	ret = __btrfs_drop_extents(trans, root, inode, path,
319 				   start, aligned_end, NULL,
320 				   1, 1, extent_item_size, &extent_inserted);
321 	if (ret) {
322 		btrfs_abort_transaction(trans, ret);
323 		goto out;
324 	}
325 
326 	if (isize > actual_end)
327 		inline_len = min_t(u64, isize, actual_end);
328 	ret = insert_inline_extent(trans, path, extent_inserted,
329 				   root, inode, start,
330 				   inline_len, compressed_size,
331 				   compress_type, compressed_pages);
332 	if (ret && ret != -ENOSPC) {
333 		btrfs_abort_transaction(trans, ret);
334 		goto out;
335 	} else if (ret == -ENOSPC) {
336 		ret = 1;
337 		goto out;
338 	}
339 
340 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
341 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
342 out:
343 	/*
344 	 * Don't forget to free the reserved space, as for inlined extent
345 	 * it won't count as data extent, free them directly here.
346 	 * And at reserve time, it's always aligned to page size, so
347 	 * just free one page here.
348 	 */
349 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
350 	btrfs_free_path(path);
351 	btrfs_end_transaction(trans);
352 	return ret;
353 }
354 
355 struct async_extent {
356 	u64 start;
357 	u64 ram_size;
358 	u64 compressed_size;
359 	struct page **pages;
360 	unsigned long nr_pages;
361 	int compress_type;
362 	struct list_head list;
363 };
364 
365 struct async_chunk {
366 	struct inode *inode;
367 	struct page *locked_page;
368 	u64 start;
369 	u64 end;
370 	unsigned int write_flags;
371 	struct list_head extents;
372 	struct btrfs_work work;
373 	atomic_t *pending;
374 };
375 
376 struct async_cow {
377 	/* Number of chunks in flight; must be first in the structure */
378 	atomic_t num_chunks;
379 	struct async_chunk chunks[];
380 };
381 
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)382 static noinline int add_async_extent(struct async_chunk *cow,
383 				     u64 start, u64 ram_size,
384 				     u64 compressed_size,
385 				     struct page **pages,
386 				     unsigned long nr_pages,
387 				     int compress_type)
388 {
389 	struct async_extent *async_extent;
390 
391 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
392 	BUG_ON(!async_extent); /* -ENOMEM */
393 	async_extent->start = start;
394 	async_extent->ram_size = ram_size;
395 	async_extent->compressed_size = compressed_size;
396 	async_extent->pages = pages;
397 	async_extent->nr_pages = nr_pages;
398 	async_extent->compress_type = compress_type;
399 	list_add_tail(&async_extent->list, &cow->extents);
400 	return 0;
401 }
402 
403 /*
404  * Check if the inode has flags compatible with compression
405  */
inode_can_compress(struct inode * inode)406 static inline bool inode_can_compress(struct inode *inode)
407 {
408 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
409 	    BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
410 		return false;
411 	return true;
412 }
413 
414 /*
415  * Check if the inode needs to be submitted to compression, based on mount
416  * options, defragmentation, properties or heuristics.
417  */
inode_need_compress(struct inode * inode,u64 start,u64 end)418 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
419 {
420 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
421 
422 	if (!inode_can_compress(inode)) {
423 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
424 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
425 			btrfs_ino(BTRFS_I(inode)));
426 		return 0;
427 	}
428 	/* force compress */
429 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
430 		return 1;
431 	/* defrag ioctl */
432 	if (BTRFS_I(inode)->defrag_compress)
433 		return 1;
434 	/* bad compression ratios */
435 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
436 		return 0;
437 	if (btrfs_test_opt(fs_info, COMPRESS) ||
438 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
439 	    BTRFS_I(inode)->prop_compress)
440 		return btrfs_compress_heuristic(inode, start, end);
441 	return 0;
442 }
443 
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u64 small_write)444 static inline void inode_should_defrag(struct btrfs_inode *inode,
445 		u64 start, u64 end, u64 num_bytes, u64 small_write)
446 {
447 	/* If this is a small write inside eof, kick off a defrag */
448 	if (num_bytes < small_write &&
449 	    (start > 0 || end + 1 < inode->disk_i_size))
450 		btrfs_add_inode_defrag(NULL, inode);
451 }
452 
453 /*
454  * we create compressed extents in two phases.  The first
455  * phase compresses a range of pages that have already been
456  * locked (both pages and state bits are locked).
457  *
458  * This is done inside an ordered work queue, and the compression
459  * is spread across many cpus.  The actual IO submission is step
460  * two, and the ordered work queue takes care of making sure that
461  * happens in the same order things were put onto the queue by
462  * writepages and friends.
463  *
464  * If this code finds it can't get good compression, it puts an
465  * entry onto the work queue to write the uncompressed bytes.  This
466  * makes sure that both compressed inodes and uncompressed inodes
467  * are written in the same order that the flusher thread sent them
468  * down.
469  */
compress_file_range(struct async_chunk * async_chunk)470 static noinline int compress_file_range(struct async_chunk *async_chunk)
471 {
472 	struct inode *inode = async_chunk->inode;
473 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
474 	u64 blocksize = fs_info->sectorsize;
475 	u64 start = async_chunk->start;
476 	u64 end = async_chunk->end;
477 	u64 actual_end;
478 	u64 i_size;
479 	int ret = 0;
480 	struct page **pages = NULL;
481 	unsigned long nr_pages;
482 	unsigned long total_compressed = 0;
483 	unsigned long total_in = 0;
484 	int i;
485 	int will_compress;
486 	int compress_type = fs_info->compress_type;
487 	int compressed_extents = 0;
488 	int redirty = 0;
489 
490 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
491 			SZ_16K);
492 
493 	/*
494 	 * We need to save i_size before now because it could change in between
495 	 * us evaluating the size and assigning it.  This is because we lock and
496 	 * unlock the page in truncate and fallocate, and then modify the i_size
497 	 * later on.
498 	 *
499 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
500 	 * does that for us.
501 	 */
502 	barrier();
503 	i_size = i_size_read(inode);
504 	barrier();
505 	actual_end = min_t(u64, i_size, end + 1);
506 again:
507 	will_compress = 0;
508 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
509 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
510 	nr_pages = min_t(unsigned long, nr_pages,
511 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
512 
513 	/*
514 	 * we don't want to send crud past the end of i_size through
515 	 * compression, that's just a waste of CPU time.  So, if the
516 	 * end of the file is before the start of our current
517 	 * requested range of bytes, we bail out to the uncompressed
518 	 * cleanup code that can deal with all of this.
519 	 *
520 	 * It isn't really the fastest way to fix things, but this is a
521 	 * very uncommon corner.
522 	 */
523 	if (actual_end <= start)
524 		goto cleanup_and_bail_uncompressed;
525 
526 	total_compressed = actual_end - start;
527 
528 	/*
529 	 * skip compression for a small file range(<=blocksize) that
530 	 * isn't an inline extent, since it doesn't save disk space at all.
531 	 */
532 	if (total_compressed <= blocksize &&
533 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
534 		goto cleanup_and_bail_uncompressed;
535 
536 	total_compressed = min_t(unsigned long, total_compressed,
537 			BTRFS_MAX_UNCOMPRESSED);
538 	total_in = 0;
539 	ret = 0;
540 
541 	/*
542 	 * we do compression for mount -o compress and when the
543 	 * inode has not been flagged as nocompress.  This flag can
544 	 * change at any time if we discover bad compression ratios.
545 	 */
546 	if (inode_need_compress(inode, start, end)) {
547 		WARN_ON(pages);
548 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
549 		if (!pages) {
550 			/* just bail out to the uncompressed code */
551 			nr_pages = 0;
552 			goto cont;
553 		}
554 
555 		if (BTRFS_I(inode)->defrag_compress)
556 			compress_type = BTRFS_I(inode)->defrag_compress;
557 		else if (BTRFS_I(inode)->prop_compress)
558 			compress_type = BTRFS_I(inode)->prop_compress;
559 
560 		/*
561 		 * we need to call clear_page_dirty_for_io on each
562 		 * page in the range.  Otherwise applications with the file
563 		 * mmap'd can wander in and change the page contents while
564 		 * we are compressing them.
565 		 *
566 		 * If the compression fails for any reason, we set the pages
567 		 * dirty again later on.
568 		 *
569 		 * Note that the remaining part is redirtied, the start pointer
570 		 * has moved, the end is the original one.
571 		 */
572 		if (!redirty) {
573 			extent_range_clear_dirty_for_io(inode, start, end);
574 			redirty = 1;
575 		}
576 
577 		/* Compression level is applied here and only here */
578 		ret = btrfs_compress_pages(
579 			compress_type | (fs_info->compress_level << 4),
580 					   inode->i_mapping, start,
581 					   pages,
582 					   &nr_pages,
583 					   &total_in,
584 					   &total_compressed);
585 
586 		if (!ret) {
587 			unsigned long offset = offset_in_page(total_compressed);
588 			struct page *page = pages[nr_pages - 1];
589 			char *kaddr;
590 
591 			/* zero the tail end of the last page, we might be
592 			 * sending it down to disk
593 			 */
594 			if (offset) {
595 				kaddr = kmap_atomic(page);
596 				memset(kaddr + offset, 0,
597 				       PAGE_SIZE - offset);
598 				kunmap_atomic(kaddr);
599 			}
600 			will_compress = 1;
601 		}
602 	}
603 cont:
604 	if (start == 0) {
605 		/* lets try to make an inline extent */
606 		if (ret || total_in < actual_end) {
607 			/* we didn't compress the entire range, try
608 			 * to make an uncompressed inline extent.
609 			 */
610 			ret = cow_file_range_inline(inode, start, end, 0,
611 						    BTRFS_COMPRESS_NONE, NULL);
612 		} else {
613 			/* try making a compressed inline extent */
614 			ret = cow_file_range_inline(inode, start, end,
615 						    total_compressed,
616 						    compress_type, pages);
617 		}
618 		if (ret <= 0) {
619 			unsigned long clear_flags = EXTENT_DELALLOC |
620 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
621 				EXTENT_DO_ACCOUNTING;
622 			unsigned long page_error_op;
623 
624 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
625 
626 			/*
627 			 * inline extent creation worked or returned error,
628 			 * we don't need to create any more async work items.
629 			 * Unlock and free up our temp pages.
630 			 *
631 			 * We use DO_ACCOUNTING here because we need the
632 			 * delalloc_release_metadata to be done _after_ we drop
633 			 * our outstanding extent for clearing delalloc for this
634 			 * range.
635 			 */
636 			extent_clear_unlock_delalloc(inode, start, end, NULL,
637 						     clear_flags,
638 						     PAGE_UNLOCK |
639 						     PAGE_CLEAR_DIRTY |
640 						     PAGE_SET_WRITEBACK |
641 						     page_error_op |
642 						     PAGE_END_WRITEBACK);
643 
644 			/*
645 			 * Ensure we only free the compressed pages if we have
646 			 * them allocated, as we can still reach here with
647 			 * inode_need_compress() == false.
648 			 */
649 			if (pages) {
650 				for (i = 0; i < nr_pages; i++) {
651 					WARN_ON(pages[i]->mapping);
652 					put_page(pages[i]);
653 				}
654 				kfree(pages);
655 			}
656 			return 0;
657 		}
658 	}
659 
660 	if (will_compress) {
661 		/*
662 		 * we aren't doing an inline extent round the compressed size
663 		 * up to a block size boundary so the allocator does sane
664 		 * things
665 		 */
666 		total_compressed = ALIGN(total_compressed, blocksize);
667 
668 		/*
669 		 * one last check to make sure the compression is really a
670 		 * win, compare the page count read with the blocks on disk,
671 		 * compression must free at least one sector size
672 		 */
673 		total_in = ALIGN(total_in, PAGE_SIZE);
674 		if (total_compressed + blocksize <= total_in) {
675 			compressed_extents++;
676 
677 			/*
678 			 * The async work queues will take care of doing actual
679 			 * allocation on disk for these compressed pages, and
680 			 * will submit them to the elevator.
681 			 */
682 			add_async_extent(async_chunk, start, total_in,
683 					total_compressed, pages, nr_pages,
684 					compress_type);
685 
686 			if (start + total_in < end) {
687 				start += total_in;
688 				pages = NULL;
689 				cond_resched();
690 				goto again;
691 			}
692 			return compressed_extents;
693 		}
694 	}
695 	if (pages) {
696 		/*
697 		 * the compression code ran but failed to make things smaller,
698 		 * free any pages it allocated and our page pointer array
699 		 */
700 		for (i = 0; i < nr_pages; i++) {
701 			WARN_ON(pages[i]->mapping);
702 			put_page(pages[i]);
703 		}
704 		kfree(pages);
705 		pages = NULL;
706 		total_compressed = 0;
707 		nr_pages = 0;
708 
709 		/* flag the file so we don't compress in the future */
710 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
711 		    !(BTRFS_I(inode)->prop_compress)) {
712 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
713 		}
714 	}
715 cleanup_and_bail_uncompressed:
716 	/*
717 	 * No compression, but we still need to write the pages in the file
718 	 * we've been given so far.  redirty the locked page if it corresponds
719 	 * to our extent and set things up for the async work queue to run
720 	 * cow_file_range to do the normal delalloc dance.
721 	 */
722 	if (async_chunk->locked_page &&
723 	    (page_offset(async_chunk->locked_page) >= start &&
724 	     page_offset(async_chunk->locked_page)) <= end) {
725 		__set_page_dirty_nobuffers(async_chunk->locked_page);
726 		/* unlocked later on in the async handlers */
727 	}
728 
729 	if (redirty)
730 		extent_range_redirty_for_io(inode, start, end);
731 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
732 			 BTRFS_COMPRESS_NONE);
733 	compressed_extents++;
734 
735 	return compressed_extents;
736 }
737 
free_async_extent_pages(struct async_extent * async_extent)738 static void free_async_extent_pages(struct async_extent *async_extent)
739 {
740 	int i;
741 
742 	if (!async_extent->pages)
743 		return;
744 
745 	for (i = 0; i < async_extent->nr_pages; i++) {
746 		WARN_ON(async_extent->pages[i]->mapping);
747 		put_page(async_extent->pages[i]);
748 	}
749 	kfree(async_extent->pages);
750 	async_extent->nr_pages = 0;
751 	async_extent->pages = NULL;
752 }
753 
754 /*
755  * phase two of compressed writeback.  This is the ordered portion
756  * of the code, which only gets called in the order the work was
757  * queued.  We walk all the async extents created by compress_file_range
758  * and send them down to the disk.
759  */
submit_compressed_extents(struct async_chunk * async_chunk)760 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
761 {
762 	struct inode *inode = async_chunk->inode;
763 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
764 	struct async_extent *async_extent;
765 	u64 alloc_hint = 0;
766 	struct btrfs_key ins;
767 	struct extent_map *em;
768 	struct btrfs_root *root = BTRFS_I(inode)->root;
769 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
770 	int ret = 0;
771 
772 again:
773 	while (!list_empty(&async_chunk->extents)) {
774 		async_extent = list_entry(async_chunk->extents.next,
775 					  struct async_extent, list);
776 		list_del(&async_extent->list);
777 
778 retry:
779 		lock_extent(io_tree, async_extent->start,
780 			    async_extent->start + async_extent->ram_size - 1);
781 		/* did the compression code fall back to uncompressed IO? */
782 		if (!async_extent->pages) {
783 			int page_started = 0;
784 			unsigned long nr_written = 0;
785 
786 			/* allocate blocks */
787 			ret = cow_file_range(inode, async_chunk->locked_page,
788 					     async_extent->start,
789 					     async_extent->start +
790 					     async_extent->ram_size - 1,
791 					     &page_started, &nr_written, 0);
792 
793 			/* JDM XXX */
794 
795 			/*
796 			 * if page_started, cow_file_range inserted an
797 			 * inline extent and took care of all the unlocking
798 			 * and IO for us.  Otherwise, we need to submit
799 			 * all those pages down to the drive.
800 			 */
801 			if (!page_started && !ret)
802 				extent_write_locked_range(inode,
803 						  async_extent->start,
804 						  async_extent->start +
805 						  async_extent->ram_size - 1,
806 						  WB_SYNC_ALL);
807 			else if (ret && async_chunk->locked_page)
808 				unlock_page(async_chunk->locked_page);
809 			kfree(async_extent);
810 			cond_resched();
811 			continue;
812 		}
813 
814 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
815 					   async_extent->compressed_size,
816 					   async_extent->compressed_size,
817 					   0, alloc_hint, &ins, 1, 1);
818 		if (ret) {
819 			free_async_extent_pages(async_extent);
820 
821 			if (ret == -ENOSPC) {
822 				unlock_extent(io_tree, async_extent->start,
823 					      async_extent->start +
824 					      async_extent->ram_size - 1);
825 
826 				/*
827 				 * we need to redirty the pages if we decide to
828 				 * fallback to uncompressed IO, otherwise we
829 				 * will not submit these pages down to lower
830 				 * layers.
831 				 */
832 				extent_range_redirty_for_io(inode,
833 						async_extent->start,
834 						async_extent->start +
835 						async_extent->ram_size - 1);
836 
837 				goto retry;
838 			}
839 			goto out_free;
840 		}
841 		/*
842 		 * here we're doing allocation and writeback of the
843 		 * compressed pages
844 		 */
845 		em = create_io_em(inode, async_extent->start,
846 				  async_extent->ram_size, /* len */
847 				  async_extent->start, /* orig_start */
848 				  ins.objectid, /* block_start */
849 				  ins.offset, /* block_len */
850 				  ins.offset, /* orig_block_len */
851 				  async_extent->ram_size, /* ram_bytes */
852 				  async_extent->compress_type,
853 				  BTRFS_ORDERED_COMPRESSED);
854 		if (IS_ERR(em))
855 			/* ret value is not necessary due to void function */
856 			goto out_free_reserve;
857 		free_extent_map(em);
858 
859 		ret = btrfs_add_ordered_extent_compress(inode,
860 						async_extent->start,
861 						ins.objectid,
862 						async_extent->ram_size,
863 						ins.offset,
864 						BTRFS_ORDERED_COMPRESSED,
865 						async_extent->compress_type);
866 		if (ret) {
867 			btrfs_drop_extent_cache(BTRFS_I(inode),
868 						async_extent->start,
869 						async_extent->start +
870 						async_extent->ram_size - 1, 0);
871 			goto out_free_reserve;
872 		}
873 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
874 
875 		/*
876 		 * clear dirty, set writeback and unlock the pages.
877 		 */
878 		extent_clear_unlock_delalloc(inode, async_extent->start,
879 				async_extent->start +
880 				async_extent->ram_size - 1,
881 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
882 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
883 				PAGE_SET_WRITEBACK);
884 		if (btrfs_submit_compressed_write(inode,
885 				    async_extent->start,
886 				    async_extent->ram_size,
887 				    ins.objectid,
888 				    ins.offset, async_extent->pages,
889 				    async_extent->nr_pages,
890 				    async_chunk->write_flags)) {
891 			struct page *p = async_extent->pages[0];
892 			const u64 start = async_extent->start;
893 			const u64 end = start + async_extent->ram_size - 1;
894 
895 			p->mapping = inode->i_mapping;
896 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
897 
898 			p->mapping = NULL;
899 			extent_clear_unlock_delalloc(inode, start, end,
900 						     NULL, 0,
901 						     PAGE_END_WRITEBACK |
902 						     PAGE_SET_ERROR);
903 			free_async_extent_pages(async_extent);
904 		}
905 		alloc_hint = ins.objectid + ins.offset;
906 		kfree(async_extent);
907 		cond_resched();
908 	}
909 	return;
910 out_free_reserve:
911 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
912 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
913 out_free:
914 	extent_clear_unlock_delalloc(inode, async_extent->start,
915 				     async_extent->start +
916 				     async_extent->ram_size - 1,
917 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
918 				     EXTENT_DELALLOC_NEW |
919 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
920 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
921 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
922 				     PAGE_SET_ERROR);
923 	free_async_extent_pages(async_extent);
924 	kfree(async_extent);
925 	goto again;
926 }
927 
get_extent_allocation_hint(struct inode * inode,u64 start,u64 num_bytes)928 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
929 				      u64 num_bytes)
930 {
931 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
932 	struct extent_map *em;
933 	u64 alloc_hint = 0;
934 
935 	read_lock(&em_tree->lock);
936 	em = search_extent_mapping(em_tree, start, num_bytes);
937 	if (em) {
938 		/*
939 		 * if block start isn't an actual block number then find the
940 		 * first block in this inode and use that as a hint.  If that
941 		 * block is also bogus then just don't worry about it.
942 		 */
943 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
944 			free_extent_map(em);
945 			em = search_extent_mapping(em_tree, 0, 0);
946 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
947 				alloc_hint = em->block_start;
948 			if (em)
949 				free_extent_map(em);
950 		} else {
951 			alloc_hint = em->block_start;
952 			free_extent_map(em);
953 		}
954 	}
955 	read_unlock(&em_tree->lock);
956 
957 	return alloc_hint;
958 }
959 
960 /*
961  * when extent_io.c finds a delayed allocation range in the file,
962  * the call backs end up in this code.  The basic idea is to
963  * allocate extents on disk for the range, and create ordered data structs
964  * in ram to track those extents.
965  *
966  * locked_page is the page that writepage had locked already.  We use
967  * it to make sure we don't do extra locks or unlocks.
968  *
969  * *page_started is set to one if we unlock locked_page and do everything
970  * required to start IO on it.  It may be clean and already done with
971  * IO when we return.
972  */
cow_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,int unlock)973 static noinline int cow_file_range(struct inode *inode,
974 				   struct page *locked_page,
975 				   u64 start, u64 end, int *page_started,
976 				   unsigned long *nr_written, int unlock)
977 {
978 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
979 	struct btrfs_root *root = BTRFS_I(inode)->root;
980 	u64 alloc_hint = 0;
981 	u64 num_bytes;
982 	unsigned long ram_size;
983 	u64 cur_alloc_size = 0;
984 	u64 min_alloc_size;
985 	u64 blocksize = fs_info->sectorsize;
986 	struct btrfs_key ins;
987 	struct extent_map *em;
988 	unsigned clear_bits;
989 	unsigned long page_ops;
990 	bool extent_reserved = false;
991 	int ret = 0;
992 
993 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
994 		WARN_ON_ONCE(1);
995 		ret = -EINVAL;
996 		goto out_unlock;
997 	}
998 
999 	num_bytes = ALIGN(end - start + 1, blocksize);
1000 	num_bytes = max(blocksize,  num_bytes);
1001 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1002 
1003 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
1004 
1005 	if (start == 0) {
1006 		/* lets try to make an inline extent */
1007 		ret = cow_file_range_inline(inode, start, end, 0,
1008 					    BTRFS_COMPRESS_NONE, NULL);
1009 		if (ret == 0) {
1010 			/*
1011 			 * We use DO_ACCOUNTING here because we need the
1012 			 * delalloc_release_metadata to be run _after_ we drop
1013 			 * our outstanding extent for clearing delalloc for this
1014 			 * range.
1015 			 */
1016 			extent_clear_unlock_delalloc(inode, start, end, NULL,
1017 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1018 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1019 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1020 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1021 				     PAGE_END_WRITEBACK);
1022 			*nr_written = *nr_written +
1023 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1024 			*page_started = 1;
1025 			goto out;
1026 		} else if (ret < 0) {
1027 			goto out_unlock;
1028 		}
1029 	}
1030 
1031 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1032 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
1033 			start + num_bytes - 1, 0);
1034 
1035 	/*
1036 	 * Relocation relies on the relocated extents to have exactly the same
1037 	 * size as the original extents. Normally writeback for relocation data
1038 	 * extents follows a NOCOW path because relocation preallocates the
1039 	 * extents. However, due to an operation such as scrub turning a block
1040 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1041 	 * an extent allocated during COW has exactly the requested size and can
1042 	 * not be split into smaller extents, otherwise relocation breaks and
1043 	 * fails during the stage where it updates the bytenr of file extent
1044 	 * items.
1045 	 */
1046 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1047 		min_alloc_size = num_bytes;
1048 	else
1049 		min_alloc_size = fs_info->sectorsize;
1050 
1051 	while (num_bytes > 0) {
1052 		cur_alloc_size = num_bytes;
1053 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1054 					   min_alloc_size, 0, alloc_hint,
1055 					   &ins, 1, 1);
1056 		if (ret < 0)
1057 			goto out_unlock;
1058 		cur_alloc_size = ins.offset;
1059 		extent_reserved = true;
1060 
1061 		ram_size = ins.offset;
1062 		em = create_io_em(inode, start, ins.offset, /* len */
1063 				  start, /* orig_start */
1064 				  ins.objectid, /* block_start */
1065 				  ins.offset, /* block_len */
1066 				  ins.offset, /* orig_block_len */
1067 				  ram_size, /* ram_bytes */
1068 				  BTRFS_COMPRESS_NONE, /* compress_type */
1069 				  BTRFS_ORDERED_REGULAR /* type */);
1070 		if (IS_ERR(em)) {
1071 			ret = PTR_ERR(em);
1072 			goto out_reserve;
1073 		}
1074 		free_extent_map(em);
1075 
1076 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1077 					       ram_size, cur_alloc_size, 0);
1078 		if (ret)
1079 			goto out_drop_extent_cache;
1080 
1081 		if (root->root_key.objectid ==
1082 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1083 			ret = btrfs_reloc_clone_csums(inode, start,
1084 						      cur_alloc_size);
1085 			/*
1086 			 * Only drop cache here, and process as normal.
1087 			 *
1088 			 * We must not allow extent_clear_unlock_delalloc()
1089 			 * at out_unlock label to free meta of this ordered
1090 			 * extent, as its meta should be freed by
1091 			 * btrfs_finish_ordered_io().
1092 			 *
1093 			 * So we must continue until @start is increased to
1094 			 * skip current ordered extent.
1095 			 */
1096 			if (ret)
1097 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1098 						start + ram_size - 1, 0);
1099 		}
1100 
1101 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1102 
1103 		/* we're not doing compressed IO, don't unlock the first
1104 		 * page (which the caller expects to stay locked), don't
1105 		 * clear any dirty bits and don't set any writeback bits
1106 		 *
1107 		 * Do set the Private2 bit so we know this page was properly
1108 		 * setup for writepage
1109 		 */
1110 		page_ops = unlock ? PAGE_UNLOCK : 0;
1111 		page_ops |= PAGE_SET_PRIVATE2;
1112 
1113 		extent_clear_unlock_delalloc(inode, start,
1114 					     start + ram_size - 1,
1115 					     locked_page,
1116 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1117 					     page_ops);
1118 		if (num_bytes < cur_alloc_size)
1119 			num_bytes = 0;
1120 		else
1121 			num_bytes -= cur_alloc_size;
1122 		alloc_hint = ins.objectid + ins.offset;
1123 		start += cur_alloc_size;
1124 		extent_reserved = false;
1125 
1126 		/*
1127 		 * btrfs_reloc_clone_csums() error, since start is increased
1128 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1129 		 * free metadata of current ordered extent, we're OK to exit.
1130 		 */
1131 		if (ret)
1132 			goto out_unlock;
1133 	}
1134 out:
1135 	return ret;
1136 
1137 out_drop_extent_cache:
1138 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1139 out_reserve:
1140 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1141 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1142 out_unlock:
1143 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1144 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1145 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1146 		PAGE_END_WRITEBACK;
1147 	/*
1148 	 * If we reserved an extent for our delalloc range (or a subrange) and
1149 	 * failed to create the respective ordered extent, then it means that
1150 	 * when we reserved the extent we decremented the extent's size from
1151 	 * the data space_info's bytes_may_use counter and incremented the
1152 	 * space_info's bytes_reserved counter by the same amount. We must make
1153 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1154 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1155 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1156 	 */
1157 	if (extent_reserved) {
1158 		extent_clear_unlock_delalloc(inode, start,
1159 					     start + cur_alloc_size - 1,
1160 					     locked_page,
1161 					     clear_bits,
1162 					     page_ops);
1163 		start += cur_alloc_size;
1164 		if (start >= end)
1165 			goto out;
1166 	}
1167 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1168 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1169 				     page_ops);
1170 	goto out;
1171 }
1172 
1173 /*
1174  * work queue call back to started compression on a file and pages
1175  */
async_cow_start(struct btrfs_work * work)1176 static noinline void async_cow_start(struct btrfs_work *work)
1177 {
1178 	struct async_chunk *async_chunk;
1179 	int compressed_extents;
1180 
1181 	async_chunk = container_of(work, struct async_chunk, work);
1182 
1183 	compressed_extents = compress_file_range(async_chunk);
1184 	if (compressed_extents == 0) {
1185 		btrfs_add_delayed_iput(async_chunk->inode);
1186 		async_chunk->inode = NULL;
1187 	}
1188 }
1189 
1190 /*
1191  * work queue call back to submit previously compressed pages
1192  */
async_cow_submit(struct btrfs_work * work)1193 static noinline void async_cow_submit(struct btrfs_work *work)
1194 {
1195 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1196 						     work);
1197 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1198 	unsigned long nr_pages;
1199 
1200 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1201 		PAGE_SHIFT;
1202 
1203 	/*
1204 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1205 	 * in which case we don't have anything to submit, yet we need to
1206 	 * always adjust ->async_delalloc_pages as its paired with the init
1207 	 * happening in cow_file_range_async
1208 	 */
1209 	if (async_chunk->inode)
1210 		submit_compressed_extents(async_chunk);
1211 
1212 	/* atomic_sub_return implies a barrier */
1213 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1214 	    5 * SZ_1M)
1215 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1216 }
1217 
async_cow_free(struct btrfs_work * work)1218 static noinline void async_cow_free(struct btrfs_work *work)
1219 {
1220 	struct async_chunk *async_chunk;
1221 
1222 	async_chunk = container_of(work, struct async_chunk, work);
1223 	if (async_chunk->inode)
1224 		btrfs_add_delayed_iput(async_chunk->inode);
1225 	/*
1226 	 * Since the pointer to 'pending' is at the beginning of the array of
1227 	 * async_chunk's, freeing it ensures the whole array has been freed.
1228 	 */
1229 	if (atomic_dec_and_test(async_chunk->pending))
1230 		kvfree(async_chunk->pending);
1231 }
1232 
cow_file_range_async(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,unsigned int write_flags)1233 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1234 				u64 start, u64 end, int *page_started,
1235 				unsigned long *nr_written,
1236 				unsigned int write_flags)
1237 {
1238 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1239 	struct async_cow *ctx;
1240 	struct async_chunk *async_chunk;
1241 	unsigned long nr_pages;
1242 	u64 cur_end;
1243 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1244 	int i;
1245 	bool should_compress;
1246 	unsigned nofs_flag;
1247 
1248 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1249 
1250 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1251 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1252 		num_chunks = 1;
1253 		should_compress = false;
1254 	} else {
1255 		should_compress = true;
1256 	}
1257 
1258 	nofs_flag = memalloc_nofs_save();
1259 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1260 	memalloc_nofs_restore(nofs_flag);
1261 
1262 	if (!ctx) {
1263 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1264 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1265 			EXTENT_DO_ACCOUNTING;
1266 		unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1267 			PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1268 			PAGE_SET_ERROR;
1269 
1270 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1271 					     clear_bits, page_ops);
1272 		return -ENOMEM;
1273 	}
1274 
1275 	async_chunk = ctx->chunks;
1276 	atomic_set(&ctx->num_chunks, num_chunks);
1277 
1278 	for (i = 0; i < num_chunks; i++) {
1279 		if (should_compress)
1280 			cur_end = min(end, start + SZ_512K - 1);
1281 		else
1282 			cur_end = end;
1283 
1284 		/*
1285 		 * igrab is called higher up in the call chain, take only the
1286 		 * lightweight reference for the callback lifetime
1287 		 */
1288 		ihold(inode);
1289 		async_chunk[i].pending = &ctx->num_chunks;
1290 		async_chunk[i].inode = inode;
1291 		async_chunk[i].start = start;
1292 		async_chunk[i].end = cur_end;
1293 		async_chunk[i].write_flags = write_flags;
1294 		INIT_LIST_HEAD(&async_chunk[i].extents);
1295 
1296 		/*
1297 		 * The locked_page comes all the way from writepage and its
1298 		 * the original page we were actually given.  As we spread
1299 		 * this large delalloc region across multiple async_chunk
1300 		 * structs, only the first struct needs a pointer to locked_page
1301 		 *
1302 		 * This way we don't need racey decisions about who is supposed
1303 		 * to unlock it.
1304 		 */
1305 		if (locked_page) {
1306 			async_chunk[i].locked_page = locked_page;
1307 			locked_page = NULL;
1308 		} else {
1309 			async_chunk[i].locked_page = NULL;
1310 		}
1311 
1312 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1313 				async_cow_submit, async_cow_free);
1314 
1315 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1316 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1317 
1318 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1319 
1320 		*nr_written += nr_pages;
1321 		start = cur_end + 1;
1322 	}
1323 	*page_started = 1;
1324 	return 0;
1325 }
1326 
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)1327 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1328 					u64 bytenr, u64 num_bytes)
1329 {
1330 	int ret;
1331 	struct btrfs_ordered_sum *sums;
1332 	LIST_HEAD(list);
1333 
1334 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1335 				       bytenr + num_bytes - 1, &list, 0);
1336 	if (ret == 0 && list_empty(&list))
1337 		return 0;
1338 
1339 	while (!list_empty(&list)) {
1340 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1341 		list_del(&sums->list);
1342 		kfree(sums);
1343 	}
1344 	if (ret < 0)
1345 		return ret;
1346 	return 1;
1347 }
1348 
fallback_to_cow(struct inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,unsigned long * nr_written)1349 static int fallback_to_cow(struct inode *inode, struct page *locked_page,
1350 			   const u64 start, const u64 end,
1351 			   int *page_started, unsigned long *nr_written)
1352 {
1353 	const bool is_space_ino = btrfs_is_free_space_inode(BTRFS_I(inode));
1354 	const bool is_reloc_ino = (BTRFS_I(inode)->root->root_key.objectid ==
1355 				   BTRFS_DATA_RELOC_TREE_OBJECTID);
1356 	const u64 range_bytes = end + 1 - start;
1357 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1358 	u64 range_start = start;
1359 	u64 count;
1360 
1361 	/*
1362 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1363 	 * made we had not enough available data space and therefore we did not
1364 	 * reserve data space for it, since we though we could do NOCOW for the
1365 	 * respective file range (either there is prealloc extent or the inode
1366 	 * has the NOCOW bit set).
1367 	 *
1368 	 * However when we need to fallback to COW mode (because for example the
1369 	 * block group for the corresponding extent was turned to RO mode by a
1370 	 * scrub or relocation) we need to do the following:
1371 	 *
1372 	 * 1) We increment the bytes_may_use counter of the data space info.
1373 	 *    If COW succeeds, it allocates a new data extent and after doing
1374 	 *    that it decrements the space info's bytes_may_use counter and
1375 	 *    increments its bytes_reserved counter by the same amount (we do
1376 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1377 	 *    bytes_may_use counter to compensate (when space is reserved at
1378 	 *    buffered write time, the bytes_may_use counter is incremented);
1379 	 *
1380 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1381 	 *    that if the COW path fails for any reason, it decrements (through
1382 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1383 	 *    data space info, which we incremented in the step above.
1384 	 *
1385 	 * If we need to fallback to cow and the inode corresponds to a free
1386 	 * space cache inode or an inode of the data relocation tree, we must
1387 	 * also increment bytes_may_use of the data space_info for the same
1388 	 * reason. Space caches and relocated data extents always get a prealloc
1389 	 * extent for them, however scrub or balance may have set the block
1390 	 * group that contains that extent to RO mode and therefore force COW
1391 	 * when starting writeback.
1392 	 */
1393 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1394 				 EXTENT_NORESERVE, 0);
1395 	if (count > 0 || is_space_ino || is_reloc_ino) {
1396 		u64 bytes = count;
1397 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1398 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1399 
1400 		if (is_space_ino || is_reloc_ino)
1401 			bytes = range_bytes;
1402 
1403 		spin_lock(&sinfo->lock);
1404 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1405 		spin_unlock(&sinfo->lock);
1406 
1407 		if (count > 0)
1408 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1409 					 0, 0, NULL);
1410 	}
1411 
1412 	return cow_file_range(inode, locked_page, start, end, page_started,
1413 			      nr_written, 1);
1414 }
1415 
1416 /*
1417  * when nowcow writeback call back.  This checks for snapshots or COW copies
1418  * of the extents that exist in the file, and COWs the file as required.
1419  *
1420  * If no cow copies or snapshots exist, we write directly to the existing
1421  * blocks on disk
1422  */
run_delalloc_nocow(struct inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,int force,unsigned long * nr_written)1423 static noinline int run_delalloc_nocow(struct inode *inode,
1424 				       struct page *locked_page,
1425 				       const u64 start, const u64 end,
1426 				       int *page_started, int force,
1427 				       unsigned long *nr_written)
1428 {
1429 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1430 	struct btrfs_root *root = BTRFS_I(inode)->root;
1431 	struct btrfs_path *path;
1432 	u64 cow_start = (u64)-1;
1433 	u64 cur_offset = start;
1434 	int ret;
1435 	bool check_prev = true;
1436 	const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
1437 	u64 ino = btrfs_ino(BTRFS_I(inode));
1438 	bool nocow = false;
1439 	u64 disk_bytenr = 0;
1440 
1441 	path = btrfs_alloc_path();
1442 	if (!path) {
1443 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1444 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1445 					     EXTENT_DO_ACCOUNTING |
1446 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1447 					     PAGE_CLEAR_DIRTY |
1448 					     PAGE_SET_WRITEBACK |
1449 					     PAGE_END_WRITEBACK);
1450 		return -ENOMEM;
1451 	}
1452 
1453 	while (1) {
1454 		struct btrfs_key found_key;
1455 		struct btrfs_file_extent_item *fi;
1456 		struct extent_buffer *leaf;
1457 		u64 extent_end;
1458 		u64 extent_offset;
1459 		u64 num_bytes = 0;
1460 		u64 disk_num_bytes;
1461 		u64 ram_bytes;
1462 		int extent_type;
1463 
1464 		nocow = false;
1465 
1466 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1467 					       cur_offset, 0);
1468 		if (ret < 0)
1469 			goto error;
1470 
1471 		/*
1472 		 * If there is no extent for our range when doing the initial
1473 		 * search, then go back to the previous slot as it will be the
1474 		 * one containing the search offset
1475 		 */
1476 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1477 			leaf = path->nodes[0];
1478 			btrfs_item_key_to_cpu(leaf, &found_key,
1479 					      path->slots[0] - 1);
1480 			if (found_key.objectid == ino &&
1481 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1482 				path->slots[0]--;
1483 		}
1484 		check_prev = false;
1485 next_slot:
1486 		/* Go to next leaf if we have exhausted the current one */
1487 		leaf = path->nodes[0];
1488 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1489 			ret = btrfs_next_leaf(root, path);
1490 			if (ret < 0) {
1491 				if (cow_start != (u64)-1)
1492 					cur_offset = cow_start;
1493 				goto error;
1494 			}
1495 			if (ret > 0)
1496 				break;
1497 			leaf = path->nodes[0];
1498 		}
1499 
1500 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1501 
1502 		/* Didn't find anything for our INO */
1503 		if (found_key.objectid > ino)
1504 			break;
1505 		/*
1506 		 * Keep searching until we find an EXTENT_ITEM or there are no
1507 		 * more extents for this inode
1508 		 */
1509 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1510 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1511 			path->slots[0]++;
1512 			goto next_slot;
1513 		}
1514 
1515 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1516 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1517 		    found_key.offset > end)
1518 			break;
1519 
1520 		/*
1521 		 * If the found extent starts after requested offset, then
1522 		 * adjust extent_end to be right before this extent begins
1523 		 */
1524 		if (found_key.offset > cur_offset) {
1525 			extent_end = found_key.offset;
1526 			extent_type = 0;
1527 			goto out_check;
1528 		}
1529 
1530 		/*
1531 		 * Found extent which begins before our range and potentially
1532 		 * intersect it
1533 		 */
1534 		fi = btrfs_item_ptr(leaf, path->slots[0],
1535 				    struct btrfs_file_extent_item);
1536 		extent_type = btrfs_file_extent_type(leaf, fi);
1537 
1538 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1539 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1540 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1541 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1542 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1543 			extent_end = found_key.offset +
1544 				btrfs_file_extent_num_bytes(leaf, fi);
1545 			disk_num_bytes =
1546 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1547 			/*
1548 			 * If the extent we got ends before our current offset,
1549 			 * skip to the next extent.
1550 			 */
1551 			if (extent_end <= cur_offset) {
1552 				path->slots[0]++;
1553 				goto next_slot;
1554 			}
1555 			/* Skip holes */
1556 			if (disk_bytenr == 0)
1557 				goto out_check;
1558 			/* Skip compressed/encrypted/encoded extents */
1559 			if (btrfs_file_extent_compression(leaf, fi) ||
1560 			    btrfs_file_extent_encryption(leaf, fi) ||
1561 			    btrfs_file_extent_other_encoding(leaf, fi))
1562 				goto out_check;
1563 			/*
1564 			 * If extent is created before the last volume's snapshot
1565 			 * this implies the extent is shared, hence we can't do
1566 			 * nocow. This is the same check as in
1567 			 * btrfs_cross_ref_exist but without calling
1568 			 * btrfs_search_slot.
1569 			 */
1570 			if (!freespace_inode &&
1571 			    btrfs_file_extent_generation(leaf, fi) <=
1572 			    btrfs_root_last_snapshot(&root->root_item))
1573 				goto out_check;
1574 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1575 				goto out_check;
1576 			/* If extent is RO, we must COW it */
1577 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1578 				goto out_check;
1579 			ret = btrfs_cross_ref_exist(root, ino,
1580 						    found_key.offset -
1581 						    extent_offset, disk_bytenr, false);
1582 			if (ret) {
1583 				/*
1584 				 * ret could be -EIO if the above fails to read
1585 				 * metadata.
1586 				 */
1587 				if (ret < 0) {
1588 					if (cow_start != (u64)-1)
1589 						cur_offset = cow_start;
1590 					goto error;
1591 				}
1592 
1593 				WARN_ON_ONCE(freespace_inode);
1594 				goto out_check;
1595 			}
1596 			disk_bytenr += extent_offset;
1597 			disk_bytenr += cur_offset - found_key.offset;
1598 			num_bytes = min(end + 1, extent_end) - cur_offset;
1599 			/*
1600 			 * If there are pending snapshots for this root, we
1601 			 * fall into common COW way
1602 			 */
1603 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1604 				goto out_check;
1605 			/*
1606 			 * force cow if csum exists in the range.
1607 			 * this ensure that csum for a given extent are
1608 			 * either valid or do not exist.
1609 			 */
1610 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1611 						  num_bytes);
1612 			if (ret) {
1613 				/*
1614 				 * ret could be -EIO if the above fails to read
1615 				 * metadata.
1616 				 */
1617 				if (ret < 0) {
1618 					if (cow_start != (u64)-1)
1619 						cur_offset = cow_start;
1620 					goto error;
1621 				}
1622 				WARN_ON_ONCE(freespace_inode);
1623 				goto out_check;
1624 			}
1625 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1626 				goto out_check;
1627 			nocow = true;
1628 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1629 			extent_end = found_key.offset + ram_bytes;
1630 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1631 			/* Skip extents outside of our requested range */
1632 			if (extent_end <= start) {
1633 				path->slots[0]++;
1634 				goto next_slot;
1635 			}
1636 		} else {
1637 			/* If this triggers then we have a memory corruption */
1638 			BUG();
1639 		}
1640 out_check:
1641 		/*
1642 		 * If nocow is false then record the beginning of the range
1643 		 * that needs to be COWed
1644 		 */
1645 		if (!nocow) {
1646 			if (cow_start == (u64)-1)
1647 				cow_start = cur_offset;
1648 			cur_offset = extent_end;
1649 			if (cur_offset > end)
1650 				break;
1651 			path->slots[0]++;
1652 			goto next_slot;
1653 		}
1654 
1655 		btrfs_release_path(path);
1656 
1657 		/*
1658 		 * COW range from cow_start to found_key.offset - 1. As the key
1659 		 * will contain the beginning of the first extent that can be
1660 		 * NOCOW, following one which needs to be COW'ed
1661 		 */
1662 		if (cow_start != (u64)-1) {
1663 			ret = fallback_to_cow(inode, locked_page, cow_start,
1664 					      found_key.offset - 1,
1665 					      page_started, nr_written);
1666 			if (ret)
1667 				goto error;
1668 			cow_start = (u64)-1;
1669 		}
1670 
1671 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1672 			u64 orig_start = found_key.offset - extent_offset;
1673 			struct extent_map *em;
1674 
1675 			em = create_io_em(inode, cur_offset, num_bytes,
1676 					  orig_start,
1677 					  disk_bytenr, /* block_start */
1678 					  num_bytes, /* block_len */
1679 					  disk_num_bytes, /* orig_block_len */
1680 					  ram_bytes, BTRFS_COMPRESS_NONE,
1681 					  BTRFS_ORDERED_PREALLOC);
1682 			if (IS_ERR(em)) {
1683 				ret = PTR_ERR(em);
1684 				goto error;
1685 			}
1686 			free_extent_map(em);
1687 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1688 						       disk_bytenr, num_bytes,
1689 						       num_bytes,
1690 						       BTRFS_ORDERED_PREALLOC);
1691 			if (ret) {
1692 				btrfs_drop_extent_cache(BTRFS_I(inode),
1693 							cur_offset,
1694 							cur_offset + num_bytes - 1,
1695 							0);
1696 				goto error;
1697 			}
1698 		} else {
1699 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1700 						       disk_bytenr, num_bytes,
1701 						       num_bytes,
1702 						       BTRFS_ORDERED_NOCOW);
1703 			if (ret)
1704 				goto error;
1705 		}
1706 
1707 		if (nocow)
1708 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1709 		nocow = false;
1710 
1711 		if (root->root_key.objectid ==
1712 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1713 			/*
1714 			 * Error handled later, as we must prevent
1715 			 * extent_clear_unlock_delalloc() in error handler
1716 			 * from freeing metadata of created ordered extent.
1717 			 */
1718 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1719 						      num_bytes);
1720 
1721 		extent_clear_unlock_delalloc(inode, cur_offset,
1722 					     cur_offset + num_bytes - 1,
1723 					     locked_page, EXTENT_LOCKED |
1724 					     EXTENT_DELALLOC |
1725 					     EXTENT_CLEAR_DATA_RESV,
1726 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1727 
1728 		cur_offset = extent_end;
1729 
1730 		/*
1731 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1732 		 * handler, as metadata for created ordered extent will only
1733 		 * be freed by btrfs_finish_ordered_io().
1734 		 */
1735 		if (ret)
1736 			goto error;
1737 		if (cur_offset > end)
1738 			break;
1739 	}
1740 	btrfs_release_path(path);
1741 
1742 	if (cur_offset <= end && cow_start == (u64)-1)
1743 		cow_start = cur_offset;
1744 
1745 	if (cow_start != (u64)-1) {
1746 		cur_offset = end;
1747 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
1748 				      page_started, nr_written);
1749 		if (ret)
1750 			goto error;
1751 	}
1752 
1753 error:
1754 	if (nocow)
1755 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1756 
1757 	if (ret && cur_offset < end)
1758 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1759 					     locked_page, EXTENT_LOCKED |
1760 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1761 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1762 					     PAGE_CLEAR_DIRTY |
1763 					     PAGE_SET_WRITEBACK |
1764 					     PAGE_END_WRITEBACK);
1765 	btrfs_free_path(path);
1766 	return ret;
1767 }
1768 
need_force_cow(struct inode * inode,u64 start,u64 end)1769 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1770 {
1771 
1772 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1773 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1774 		return 0;
1775 
1776 	/*
1777 	 * @defrag_bytes is a hint value, no spinlock held here,
1778 	 * if is not zero, it means the file is defragging.
1779 	 * Force cow if given extent needs to be defragged.
1780 	 */
1781 	if (BTRFS_I(inode)->defrag_bytes &&
1782 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1783 			   EXTENT_DEFRAG, 0, NULL))
1784 		return 1;
1785 
1786 	return 0;
1787 }
1788 
1789 /*
1790  * Function to process delayed allocation (create CoW) for ranges which are
1791  * being touched for the first time.
1792  */
btrfs_run_delalloc_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,struct writeback_control * wbc)1793 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
1794 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1795 		struct writeback_control *wbc)
1796 {
1797 	int ret;
1798 	int force_cow = need_force_cow(inode, start, end);
1799 	unsigned int write_flags = wbc_to_write_flags(wbc);
1800 
1801 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1802 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1803 					 page_started, 1, nr_written);
1804 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1805 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1806 					 page_started, 0, nr_written);
1807 	} else if (!inode_can_compress(inode) ||
1808 		   !inode_need_compress(inode, start, end)) {
1809 		ret = cow_file_range(inode, locked_page, start, end,
1810 				      page_started, nr_written, 1);
1811 	} else {
1812 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1813 			&BTRFS_I(inode)->runtime_flags);
1814 		ret = cow_file_range_async(inode, locked_page, start, end,
1815 					   page_started, nr_written,
1816 					   write_flags);
1817 	}
1818 	if (ret)
1819 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1820 					      end - start + 1);
1821 	return ret;
1822 }
1823 
btrfs_split_delalloc_extent(struct inode * inode,struct extent_state * orig,u64 split)1824 void btrfs_split_delalloc_extent(struct inode *inode,
1825 				 struct extent_state *orig, u64 split)
1826 {
1827 	u64 size;
1828 
1829 	/* not delalloc, ignore it */
1830 	if (!(orig->state & EXTENT_DELALLOC))
1831 		return;
1832 
1833 	size = orig->end - orig->start + 1;
1834 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1835 		u32 num_extents;
1836 		u64 new_size;
1837 
1838 		/*
1839 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1840 		 * applies here, just in reverse.
1841 		 */
1842 		new_size = orig->end - split + 1;
1843 		num_extents = count_max_extents(new_size);
1844 		new_size = split - orig->start;
1845 		num_extents += count_max_extents(new_size);
1846 		if (count_max_extents(size) >= num_extents)
1847 			return;
1848 	}
1849 
1850 	spin_lock(&BTRFS_I(inode)->lock);
1851 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1852 	spin_unlock(&BTRFS_I(inode)->lock);
1853 }
1854 
1855 /*
1856  * Handle merged delayed allocation extents so we can keep track of new extents
1857  * that are just merged onto old extents, such as when we are doing sequential
1858  * writes, so we can properly account for the metadata space we'll need.
1859  */
btrfs_merge_delalloc_extent(struct inode * inode,struct extent_state * new,struct extent_state * other)1860 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1861 				 struct extent_state *other)
1862 {
1863 	u64 new_size, old_size;
1864 	u32 num_extents;
1865 
1866 	/* not delalloc, ignore it */
1867 	if (!(other->state & EXTENT_DELALLOC))
1868 		return;
1869 
1870 	if (new->start > other->start)
1871 		new_size = new->end - other->start + 1;
1872 	else
1873 		new_size = other->end - new->start + 1;
1874 
1875 	/* we're not bigger than the max, unreserve the space and go */
1876 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1877 		spin_lock(&BTRFS_I(inode)->lock);
1878 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1879 		spin_unlock(&BTRFS_I(inode)->lock);
1880 		return;
1881 	}
1882 
1883 	/*
1884 	 * We have to add up either side to figure out how many extents were
1885 	 * accounted for before we merged into one big extent.  If the number of
1886 	 * extents we accounted for is <= the amount we need for the new range
1887 	 * then we can return, otherwise drop.  Think of it like this
1888 	 *
1889 	 * [ 4k][MAX_SIZE]
1890 	 *
1891 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1892 	 * need 2 outstanding extents, on one side we have 1 and the other side
1893 	 * we have 1 so they are == and we can return.  But in this case
1894 	 *
1895 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1896 	 *
1897 	 * Each range on their own accounts for 2 extents, but merged together
1898 	 * they are only 3 extents worth of accounting, so we need to drop in
1899 	 * this case.
1900 	 */
1901 	old_size = other->end - other->start + 1;
1902 	num_extents = count_max_extents(old_size);
1903 	old_size = new->end - new->start + 1;
1904 	num_extents += count_max_extents(old_size);
1905 	if (count_max_extents(new_size) >= num_extents)
1906 		return;
1907 
1908 	spin_lock(&BTRFS_I(inode)->lock);
1909 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1910 	spin_unlock(&BTRFS_I(inode)->lock);
1911 }
1912 
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)1913 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1914 				      struct inode *inode)
1915 {
1916 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1917 
1918 	spin_lock(&root->delalloc_lock);
1919 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1920 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1921 			      &root->delalloc_inodes);
1922 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1923 			&BTRFS_I(inode)->runtime_flags);
1924 		root->nr_delalloc_inodes++;
1925 		if (root->nr_delalloc_inodes == 1) {
1926 			spin_lock(&fs_info->delalloc_root_lock);
1927 			BUG_ON(!list_empty(&root->delalloc_root));
1928 			list_add_tail(&root->delalloc_root,
1929 				      &fs_info->delalloc_roots);
1930 			spin_unlock(&fs_info->delalloc_root_lock);
1931 		}
1932 	}
1933 	spin_unlock(&root->delalloc_lock);
1934 }
1935 
1936 
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1937 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1938 				struct btrfs_inode *inode)
1939 {
1940 	struct btrfs_fs_info *fs_info = root->fs_info;
1941 
1942 	if (!list_empty(&inode->delalloc_inodes)) {
1943 		list_del_init(&inode->delalloc_inodes);
1944 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1945 			  &inode->runtime_flags);
1946 		root->nr_delalloc_inodes--;
1947 		if (!root->nr_delalloc_inodes) {
1948 			ASSERT(list_empty(&root->delalloc_inodes));
1949 			spin_lock(&fs_info->delalloc_root_lock);
1950 			BUG_ON(list_empty(&root->delalloc_root));
1951 			list_del_init(&root->delalloc_root);
1952 			spin_unlock(&fs_info->delalloc_root_lock);
1953 		}
1954 	}
1955 }
1956 
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1957 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1958 				     struct btrfs_inode *inode)
1959 {
1960 	spin_lock(&root->delalloc_lock);
1961 	__btrfs_del_delalloc_inode(root, inode);
1962 	spin_unlock(&root->delalloc_lock);
1963 }
1964 
1965 /*
1966  * Properly track delayed allocation bytes in the inode and to maintain the
1967  * list of inodes that have pending delalloc work to be done.
1968  */
btrfs_set_delalloc_extent(struct inode * inode,struct extent_state * state,unsigned * bits)1969 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1970 			       unsigned *bits)
1971 {
1972 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1973 
1974 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1975 		WARN_ON(1);
1976 	/*
1977 	 * set_bit and clear bit hooks normally require _irqsave/restore
1978 	 * but in this case, we are only testing for the DELALLOC
1979 	 * bit, which is only set or cleared with irqs on
1980 	 */
1981 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1982 		struct btrfs_root *root = BTRFS_I(inode)->root;
1983 		u64 len = state->end + 1 - state->start;
1984 		u32 num_extents = count_max_extents(len);
1985 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1986 
1987 		spin_lock(&BTRFS_I(inode)->lock);
1988 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1989 		spin_unlock(&BTRFS_I(inode)->lock);
1990 
1991 		/* For sanity tests */
1992 		if (btrfs_is_testing(fs_info))
1993 			return;
1994 
1995 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1996 					 fs_info->delalloc_batch);
1997 		spin_lock(&BTRFS_I(inode)->lock);
1998 		BTRFS_I(inode)->delalloc_bytes += len;
1999 		if (*bits & EXTENT_DEFRAG)
2000 			BTRFS_I(inode)->defrag_bytes += len;
2001 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2002 					 &BTRFS_I(inode)->runtime_flags))
2003 			btrfs_add_delalloc_inodes(root, inode);
2004 		spin_unlock(&BTRFS_I(inode)->lock);
2005 	}
2006 
2007 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2008 	    (*bits & EXTENT_DELALLOC_NEW)) {
2009 		spin_lock(&BTRFS_I(inode)->lock);
2010 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2011 			state->start;
2012 		spin_unlock(&BTRFS_I(inode)->lock);
2013 	}
2014 }
2015 
2016 /*
2017  * Once a range is no longer delalloc this function ensures that proper
2018  * accounting happens.
2019  */
btrfs_clear_delalloc_extent(struct inode * vfs_inode,struct extent_state * state,unsigned * bits)2020 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2021 				 struct extent_state *state, unsigned *bits)
2022 {
2023 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2024 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2025 	u64 len = state->end + 1 - state->start;
2026 	u32 num_extents = count_max_extents(len);
2027 
2028 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2029 		spin_lock(&inode->lock);
2030 		inode->defrag_bytes -= len;
2031 		spin_unlock(&inode->lock);
2032 	}
2033 
2034 	/*
2035 	 * set_bit and clear bit hooks normally require _irqsave/restore
2036 	 * but in this case, we are only testing for the DELALLOC
2037 	 * bit, which is only set or cleared with irqs on
2038 	 */
2039 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2040 		struct btrfs_root *root = inode->root;
2041 		bool do_list = !btrfs_is_free_space_inode(inode);
2042 
2043 		spin_lock(&inode->lock);
2044 		btrfs_mod_outstanding_extents(inode, -num_extents);
2045 		spin_unlock(&inode->lock);
2046 
2047 		/*
2048 		 * We don't reserve metadata space for space cache inodes so we
2049 		 * don't need to call delalloc_release_metadata if there is an
2050 		 * error.
2051 		 */
2052 		if (*bits & EXTENT_CLEAR_META_RESV &&
2053 		    root != fs_info->tree_root)
2054 			btrfs_delalloc_release_metadata(inode, len, false);
2055 
2056 		/* For sanity tests. */
2057 		if (btrfs_is_testing(fs_info))
2058 			return;
2059 
2060 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2061 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2062 		    (*bits & EXTENT_CLEAR_DATA_RESV))
2063 			btrfs_free_reserved_data_space_noquota(
2064 					&inode->vfs_inode,
2065 					state->start, len);
2066 
2067 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2068 					 fs_info->delalloc_batch);
2069 		spin_lock(&inode->lock);
2070 		inode->delalloc_bytes -= len;
2071 		if (do_list && inode->delalloc_bytes == 0 &&
2072 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2073 					&inode->runtime_flags))
2074 			btrfs_del_delalloc_inode(root, inode);
2075 		spin_unlock(&inode->lock);
2076 	}
2077 
2078 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2079 	    (*bits & EXTENT_DELALLOC_NEW)) {
2080 		spin_lock(&inode->lock);
2081 		ASSERT(inode->new_delalloc_bytes >= len);
2082 		inode->new_delalloc_bytes -= len;
2083 		spin_unlock(&inode->lock);
2084 	}
2085 }
2086 
2087 /*
2088  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2089  * in a chunk's stripe. This function ensures that bios do not span a
2090  * stripe/chunk
2091  *
2092  * @page - The page we are about to add to the bio
2093  * @size - size we want to add to the bio
2094  * @bio - bio we want to ensure is smaller than a stripe
2095  * @bio_flags - flags of the bio
2096  *
2097  * return 1 if page cannot be added to the bio
2098  * return 0 if page can be added to the bio
2099  * return error otherwise
2100  */
btrfs_bio_fits_in_stripe(struct page * page,size_t size,struct bio * bio,unsigned long bio_flags)2101 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2102 			     unsigned long bio_flags)
2103 {
2104 	struct inode *inode = page->mapping->host;
2105 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2106 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
2107 	u64 length = 0;
2108 	u64 map_length;
2109 	int ret;
2110 	struct btrfs_io_geometry geom;
2111 
2112 	if (bio_flags & EXTENT_BIO_COMPRESSED)
2113 		return 0;
2114 
2115 	length = bio->bi_iter.bi_size;
2116 	map_length = length;
2117 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2118 				    &geom);
2119 	if (ret < 0)
2120 		return ret;
2121 
2122 	if (geom.len < length + size)
2123 		return 1;
2124 	return 0;
2125 }
2126 
2127 /*
2128  * in order to insert checksums into the metadata in large chunks,
2129  * we wait until bio submission time.   All the pages in the bio are
2130  * checksummed and sums are attached onto the ordered extent record.
2131  *
2132  * At IO completion time the cums attached on the ordered extent record
2133  * are inserted into the btree
2134  */
btrfs_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)2135 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2136 				    u64 bio_offset)
2137 {
2138 	struct inode *inode = private_data;
2139 	blk_status_t ret = 0;
2140 
2141 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2142 	BUG_ON(ret); /* -ENOMEM */
2143 	return 0;
2144 }
2145 
2146 /*
2147  * extent_io.c submission hook. This does the right thing for csum calculation
2148  * on write, or reading the csums from the tree before a read.
2149  *
2150  * Rules about async/sync submit,
2151  * a) read:				sync submit
2152  *
2153  * b) write without checksum:		sync submit
2154  *
2155  * c) write with checksum:
2156  *    c-1) if bio is issued by fsync:	sync submit
2157  *         (sync_writers != 0)
2158  *
2159  *    c-2) if root is reloc root:	sync submit
2160  *         (only in case of buffered IO)
2161  *
2162  *    c-3) otherwise:			async submit
2163  */
btrfs_submit_bio_hook(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)2164 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
2165 					  int mirror_num,
2166 					  unsigned long bio_flags)
2167 
2168 {
2169 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2170 	struct btrfs_root *root = BTRFS_I(inode)->root;
2171 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2172 	blk_status_t ret = 0;
2173 	int skip_sum;
2174 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2175 
2176 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2177 
2178 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2179 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2180 
2181 	if (bio_op(bio) != REQ_OP_WRITE) {
2182 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2183 		if (ret)
2184 			goto out;
2185 
2186 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2187 			ret = btrfs_submit_compressed_read(inode, bio,
2188 							   mirror_num,
2189 							   bio_flags);
2190 			goto out;
2191 		} else if (!skip_sum) {
2192 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2193 			if (ret)
2194 				goto out;
2195 		}
2196 		goto mapit;
2197 	} else if (async && !skip_sum) {
2198 		/* csum items have already been cloned */
2199 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2200 			goto mapit;
2201 		/* we're doing a write, do the async checksumming */
2202 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2203 					  0, inode, btrfs_submit_bio_start);
2204 		goto out;
2205 	} else if (!skip_sum) {
2206 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2207 		if (ret)
2208 			goto out;
2209 	}
2210 
2211 mapit:
2212 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2213 
2214 out:
2215 	if (ret) {
2216 		bio->bi_status = ret;
2217 		bio_endio(bio);
2218 	}
2219 	return ret;
2220 }
2221 
2222 /*
2223  * given a list of ordered sums record them in the inode.  This happens
2224  * at IO completion time based on sums calculated at bio submission time.
2225  */
add_pending_csums(struct btrfs_trans_handle * trans,struct inode * inode,struct list_head * list)2226 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2227 			     struct inode *inode, struct list_head *list)
2228 {
2229 	struct btrfs_ordered_sum *sum;
2230 	int ret;
2231 
2232 	list_for_each_entry(sum, list, list) {
2233 		trans->adding_csums = true;
2234 		ret = btrfs_csum_file_blocks(trans,
2235 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2236 		trans->adding_csums = false;
2237 		if (ret)
2238 			return ret;
2239 	}
2240 	return 0;
2241 }
2242 
btrfs_set_extent_delalloc(struct inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2243 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2244 			      unsigned int extra_bits,
2245 			      struct extent_state **cached_state)
2246 {
2247 	WARN_ON(PAGE_ALIGNED(end));
2248 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2249 				   extra_bits, cached_state);
2250 }
2251 
2252 /* see btrfs_writepage_start_hook for details on why this is required */
2253 struct btrfs_writepage_fixup {
2254 	struct page *page;
2255 	struct inode *inode;
2256 	struct btrfs_work work;
2257 };
2258 
btrfs_writepage_fixup_worker(struct btrfs_work * work)2259 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2260 {
2261 	struct btrfs_writepage_fixup *fixup;
2262 	struct btrfs_ordered_extent *ordered;
2263 	struct extent_state *cached_state = NULL;
2264 	struct extent_changeset *data_reserved = NULL;
2265 	struct page *page;
2266 	struct inode *inode;
2267 	u64 page_start;
2268 	u64 page_end;
2269 	int ret = 0;
2270 	bool free_delalloc_space = true;
2271 
2272 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2273 	page = fixup->page;
2274 	inode = fixup->inode;
2275 	page_start = page_offset(page);
2276 	page_end = page_offset(page) + PAGE_SIZE - 1;
2277 
2278 	/*
2279 	 * This is similar to page_mkwrite, we need to reserve the space before
2280 	 * we take the page lock.
2281 	 */
2282 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2283 					   PAGE_SIZE);
2284 again:
2285 	lock_page(page);
2286 
2287 	/*
2288 	 * Before we queued this fixup, we took a reference on the page.
2289 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2290 	 * address space.
2291 	 */
2292 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2293 		/*
2294 		 * Unfortunately this is a little tricky, either
2295 		 *
2296 		 * 1) We got here and our page had already been dealt with and
2297 		 *    we reserved our space, thus ret == 0, so we need to just
2298 		 *    drop our space reservation and bail.  This can happen the
2299 		 *    first time we come into the fixup worker, or could happen
2300 		 *    while waiting for the ordered extent.
2301 		 * 2) Our page was already dealt with, but we happened to get an
2302 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2303 		 *    this case we obviously don't have anything to release, but
2304 		 *    because the page was already dealt with we don't want to
2305 		 *    mark the page with an error, so make sure we're resetting
2306 		 *    ret to 0.  This is why we have this check _before_ the ret
2307 		 *    check, because we do not want to have a surprise ENOSPC
2308 		 *    when the page was already properly dealt with.
2309 		 */
2310 		if (!ret) {
2311 			btrfs_delalloc_release_extents(BTRFS_I(inode),
2312 						       PAGE_SIZE);
2313 			btrfs_delalloc_release_space(inode, data_reserved,
2314 						     page_start, PAGE_SIZE,
2315 						     true);
2316 		}
2317 		ret = 0;
2318 		goto out_page;
2319 	}
2320 
2321 	/*
2322 	 * We can't mess with the page state unless it is locked, so now that
2323 	 * it is locked bail if we failed to make our space reservation.
2324 	 */
2325 	if (ret)
2326 		goto out_page;
2327 
2328 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2329 			 &cached_state);
2330 
2331 	/* already ordered? We're done */
2332 	if (PagePrivate2(page))
2333 		goto out_reserved;
2334 
2335 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2336 					PAGE_SIZE);
2337 	if (ordered) {
2338 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2339 				     page_end, &cached_state);
2340 		unlock_page(page);
2341 		btrfs_start_ordered_extent(inode, ordered, 1);
2342 		btrfs_put_ordered_extent(ordered);
2343 		goto again;
2344 	}
2345 
2346 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2347 					&cached_state);
2348 	if (ret)
2349 		goto out_reserved;
2350 
2351 	/*
2352 	 * Everything went as planned, we're now the owner of a dirty page with
2353 	 * delayed allocation bits set and space reserved for our COW
2354 	 * destination.
2355 	 *
2356 	 * The page was dirty when we started, nothing should have cleaned it.
2357 	 */
2358 	BUG_ON(!PageDirty(page));
2359 	free_delalloc_space = false;
2360 out_reserved:
2361 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2362 	if (free_delalloc_space)
2363 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2364 					     PAGE_SIZE, true);
2365 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2366 			     &cached_state);
2367 out_page:
2368 	if (ret) {
2369 		/*
2370 		 * We hit ENOSPC or other errors.  Update the mapping and page
2371 		 * to reflect the errors and clean the page.
2372 		 */
2373 		mapping_set_error(page->mapping, ret);
2374 		end_extent_writepage(page, ret, page_start, page_end);
2375 		clear_page_dirty_for_io(page);
2376 		SetPageError(page);
2377 	}
2378 	ClearPageChecked(page);
2379 	unlock_page(page);
2380 	put_page(page);
2381 	kfree(fixup);
2382 	extent_changeset_free(data_reserved);
2383 	/*
2384 	 * As a precaution, do a delayed iput in case it would be the last iput
2385 	 * that could need flushing space. Recursing back to fixup worker would
2386 	 * deadlock.
2387 	 */
2388 	btrfs_add_delayed_iput(inode);
2389 }
2390 
2391 /*
2392  * There are a few paths in the higher layers of the kernel that directly
2393  * set the page dirty bit without asking the filesystem if it is a
2394  * good idea.  This causes problems because we want to make sure COW
2395  * properly happens and the data=ordered rules are followed.
2396  *
2397  * In our case any range that doesn't have the ORDERED bit set
2398  * hasn't been properly setup for IO.  We kick off an async process
2399  * to fix it up.  The async helper will wait for ordered extents, set
2400  * the delalloc bit and make it safe to write the page.
2401  */
btrfs_writepage_cow_fixup(struct page * page,u64 start,u64 end)2402 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2403 {
2404 	struct inode *inode = page->mapping->host;
2405 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2406 	struct btrfs_writepage_fixup *fixup;
2407 
2408 	/* this page is properly in the ordered list */
2409 	if (TestClearPagePrivate2(page))
2410 		return 0;
2411 
2412 	/*
2413 	 * PageChecked is set below when we create a fixup worker for this page,
2414 	 * don't try to create another one if we're already PageChecked()
2415 	 *
2416 	 * The extent_io writepage code will redirty the page if we send back
2417 	 * EAGAIN.
2418 	 */
2419 	if (PageChecked(page))
2420 		return -EAGAIN;
2421 
2422 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2423 	if (!fixup)
2424 		return -EAGAIN;
2425 
2426 	/*
2427 	 * We are already holding a reference to this inode from
2428 	 * write_cache_pages.  We need to hold it because the space reservation
2429 	 * takes place outside of the page lock, and we can't trust
2430 	 * page->mapping outside of the page lock.
2431 	 */
2432 	ihold(inode);
2433 	SetPageChecked(page);
2434 	get_page(page);
2435 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2436 	fixup->page = page;
2437 	fixup->inode = inode;
2438 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2439 
2440 	return -EAGAIN;
2441 }
2442 
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_pos,u64 disk_bytenr,u64 disk_num_bytes,u64 num_bytes,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding,int extent_type)2443 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2444 				       struct inode *inode, u64 file_pos,
2445 				       u64 disk_bytenr, u64 disk_num_bytes,
2446 				       u64 num_bytes, u64 ram_bytes,
2447 				       u8 compression, u8 encryption,
2448 				       u16 other_encoding, int extent_type)
2449 {
2450 	struct btrfs_root *root = BTRFS_I(inode)->root;
2451 	struct btrfs_file_extent_item *fi;
2452 	struct btrfs_path *path;
2453 	struct extent_buffer *leaf;
2454 	struct btrfs_key ins;
2455 	u64 qg_released;
2456 	int extent_inserted = 0;
2457 	int ret;
2458 
2459 	path = btrfs_alloc_path();
2460 	if (!path)
2461 		return -ENOMEM;
2462 
2463 	/*
2464 	 * we may be replacing one extent in the tree with another.
2465 	 * The new extent is pinned in the extent map, and we don't want
2466 	 * to drop it from the cache until it is completely in the btree.
2467 	 *
2468 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2469 	 * the caller is expected to unpin it and allow it to be merged
2470 	 * with the others.
2471 	 */
2472 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2473 				   file_pos + num_bytes, NULL, 0,
2474 				   1, sizeof(*fi), &extent_inserted);
2475 	if (ret)
2476 		goto out;
2477 
2478 	if (!extent_inserted) {
2479 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2480 		ins.offset = file_pos;
2481 		ins.type = BTRFS_EXTENT_DATA_KEY;
2482 
2483 		path->leave_spinning = 1;
2484 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2485 					      sizeof(*fi));
2486 		if (ret)
2487 			goto out;
2488 	}
2489 	leaf = path->nodes[0];
2490 	fi = btrfs_item_ptr(leaf, path->slots[0],
2491 			    struct btrfs_file_extent_item);
2492 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2493 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2494 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2495 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2496 	btrfs_set_file_extent_offset(leaf, fi, 0);
2497 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2498 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2499 	btrfs_set_file_extent_compression(leaf, fi, compression);
2500 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2501 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2502 
2503 	btrfs_mark_buffer_dirty(leaf);
2504 	btrfs_release_path(path);
2505 
2506 	inode_add_bytes(inode, num_bytes);
2507 
2508 	ins.objectid = disk_bytenr;
2509 	ins.offset = disk_num_bytes;
2510 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2511 
2512 	/*
2513 	 * Release the reserved range from inode dirty range map, as it is
2514 	 * already moved into delayed_ref_head
2515 	 */
2516 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2517 	if (ret < 0)
2518 		goto out;
2519 	qg_released = ret;
2520 	ret = btrfs_alloc_reserved_file_extent(trans, root,
2521 					       btrfs_ino(BTRFS_I(inode)),
2522 					       file_pos, qg_released, &ins);
2523 out:
2524 	btrfs_free_path(path);
2525 
2526 	return ret;
2527 }
2528 
2529 /* snapshot-aware defrag */
2530 struct sa_defrag_extent_backref {
2531 	struct rb_node node;
2532 	struct old_sa_defrag_extent *old;
2533 	u64 root_id;
2534 	u64 inum;
2535 	u64 file_pos;
2536 	u64 extent_offset;
2537 	u64 num_bytes;
2538 	u64 generation;
2539 };
2540 
2541 struct old_sa_defrag_extent {
2542 	struct list_head list;
2543 	struct new_sa_defrag_extent *new;
2544 
2545 	u64 extent_offset;
2546 	u64 bytenr;
2547 	u64 offset;
2548 	u64 len;
2549 	int count;
2550 };
2551 
2552 struct new_sa_defrag_extent {
2553 	struct rb_root root;
2554 	struct list_head head;
2555 	struct btrfs_path *path;
2556 	struct inode *inode;
2557 	u64 file_pos;
2558 	u64 len;
2559 	u64 bytenr;
2560 	u64 disk_len;
2561 	u8 compress_type;
2562 };
2563 
backref_comp(struct sa_defrag_extent_backref * b1,struct sa_defrag_extent_backref * b2)2564 static int backref_comp(struct sa_defrag_extent_backref *b1,
2565 			struct sa_defrag_extent_backref *b2)
2566 {
2567 	if (b1->root_id < b2->root_id)
2568 		return -1;
2569 	else if (b1->root_id > b2->root_id)
2570 		return 1;
2571 
2572 	if (b1->inum < b2->inum)
2573 		return -1;
2574 	else if (b1->inum > b2->inum)
2575 		return 1;
2576 
2577 	if (b1->file_pos < b2->file_pos)
2578 		return -1;
2579 	else if (b1->file_pos > b2->file_pos)
2580 		return 1;
2581 
2582 	/*
2583 	 * [------------------------------] ===> (a range of space)
2584 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2585 	 * |<---------------------------->| ===> (fs/file tree B)
2586 	 *
2587 	 * A range of space can refer to two file extents in one tree while
2588 	 * refer to only one file extent in another tree.
2589 	 *
2590 	 * So we may process a disk offset more than one time(two extents in A)
2591 	 * and locate at the same extent(one extent in B), then insert two same
2592 	 * backrefs(both refer to the extent in B).
2593 	 */
2594 	return 0;
2595 }
2596 
backref_insert(struct rb_root * root,struct sa_defrag_extent_backref * backref)2597 static void backref_insert(struct rb_root *root,
2598 			   struct sa_defrag_extent_backref *backref)
2599 {
2600 	struct rb_node **p = &root->rb_node;
2601 	struct rb_node *parent = NULL;
2602 	struct sa_defrag_extent_backref *entry;
2603 	int ret;
2604 
2605 	while (*p) {
2606 		parent = *p;
2607 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2608 
2609 		ret = backref_comp(backref, entry);
2610 		if (ret < 0)
2611 			p = &(*p)->rb_left;
2612 		else
2613 			p = &(*p)->rb_right;
2614 	}
2615 
2616 	rb_link_node(&backref->node, parent, p);
2617 	rb_insert_color(&backref->node, root);
2618 }
2619 
2620 /*
2621  * Note the backref might has changed, and in this case we just return 0.
2622  */
record_one_backref(u64 inum,u64 offset,u64 root_id,void * ctx)2623 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2624 				       void *ctx)
2625 {
2626 	struct btrfs_file_extent_item *extent;
2627 	struct old_sa_defrag_extent *old = ctx;
2628 	struct new_sa_defrag_extent *new = old->new;
2629 	struct btrfs_path *path = new->path;
2630 	struct btrfs_key key;
2631 	struct btrfs_root *root;
2632 	struct sa_defrag_extent_backref *backref;
2633 	struct extent_buffer *leaf;
2634 	struct inode *inode = new->inode;
2635 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2636 	int slot;
2637 	int ret;
2638 	u64 extent_offset;
2639 	u64 num_bytes;
2640 
2641 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2642 	    inum == btrfs_ino(BTRFS_I(inode)))
2643 		return 0;
2644 
2645 	key.objectid = root_id;
2646 	key.type = BTRFS_ROOT_ITEM_KEY;
2647 	key.offset = (u64)-1;
2648 
2649 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2650 	if (IS_ERR(root)) {
2651 		if (PTR_ERR(root) == -ENOENT)
2652 			return 0;
2653 		WARN_ON(1);
2654 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2655 			 inum, offset, root_id);
2656 		return PTR_ERR(root);
2657 	}
2658 
2659 	key.objectid = inum;
2660 	key.type = BTRFS_EXTENT_DATA_KEY;
2661 	if (offset > (u64)-1 << 32)
2662 		key.offset = 0;
2663 	else
2664 		key.offset = offset;
2665 
2666 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2667 	if (WARN_ON(ret < 0))
2668 		return ret;
2669 	ret = 0;
2670 
2671 	while (1) {
2672 		cond_resched();
2673 
2674 		leaf = path->nodes[0];
2675 		slot = path->slots[0];
2676 
2677 		if (slot >= btrfs_header_nritems(leaf)) {
2678 			ret = btrfs_next_leaf(root, path);
2679 			if (ret < 0) {
2680 				goto out;
2681 			} else if (ret > 0) {
2682 				ret = 0;
2683 				goto out;
2684 			}
2685 			continue;
2686 		}
2687 
2688 		path->slots[0]++;
2689 
2690 		btrfs_item_key_to_cpu(leaf, &key, slot);
2691 
2692 		if (key.objectid > inum)
2693 			goto out;
2694 
2695 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2696 			continue;
2697 
2698 		extent = btrfs_item_ptr(leaf, slot,
2699 					struct btrfs_file_extent_item);
2700 
2701 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2702 			continue;
2703 
2704 		/*
2705 		 * 'offset' refers to the exact key.offset,
2706 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2707 		 * (key.offset - extent_offset).
2708 		 */
2709 		if (key.offset != offset)
2710 			continue;
2711 
2712 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2713 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2714 
2715 		if (extent_offset >= old->extent_offset + old->offset +
2716 		    old->len || extent_offset + num_bytes <=
2717 		    old->extent_offset + old->offset)
2718 			continue;
2719 		break;
2720 	}
2721 
2722 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2723 	if (!backref) {
2724 		ret = -ENOENT;
2725 		goto out;
2726 	}
2727 
2728 	backref->root_id = root_id;
2729 	backref->inum = inum;
2730 	backref->file_pos = offset;
2731 	backref->num_bytes = num_bytes;
2732 	backref->extent_offset = extent_offset;
2733 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2734 	backref->old = old;
2735 	backref_insert(&new->root, backref);
2736 	old->count++;
2737 out:
2738 	btrfs_release_path(path);
2739 	WARN_ON(ret);
2740 	return ret;
2741 }
2742 
record_extent_backrefs(struct btrfs_path * path,struct new_sa_defrag_extent * new)2743 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2744 				   struct new_sa_defrag_extent *new)
2745 {
2746 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2747 	struct old_sa_defrag_extent *old, *tmp;
2748 	int ret;
2749 
2750 	new->path = path;
2751 
2752 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2753 		ret = iterate_inodes_from_logical(old->bytenr +
2754 						  old->extent_offset, fs_info,
2755 						  path, record_one_backref,
2756 						  old, false);
2757 		if (ret < 0 && ret != -ENOENT)
2758 			return false;
2759 
2760 		/* no backref to be processed for this extent */
2761 		if (!old->count) {
2762 			list_del(&old->list);
2763 			kfree(old);
2764 		}
2765 	}
2766 
2767 	if (list_empty(&new->head))
2768 		return false;
2769 
2770 	return true;
2771 }
2772 
relink_is_mergable(struct extent_buffer * leaf,struct btrfs_file_extent_item * fi,struct new_sa_defrag_extent * new)2773 static int relink_is_mergable(struct extent_buffer *leaf,
2774 			      struct btrfs_file_extent_item *fi,
2775 			      struct new_sa_defrag_extent *new)
2776 {
2777 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2778 		return 0;
2779 
2780 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2781 		return 0;
2782 
2783 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2784 		return 0;
2785 
2786 	if (btrfs_file_extent_encryption(leaf, fi) ||
2787 	    btrfs_file_extent_other_encoding(leaf, fi))
2788 		return 0;
2789 
2790 	return 1;
2791 }
2792 
2793 /*
2794  * Note the backref might has changed, and in this case we just return 0.
2795  */
relink_extent_backref(struct btrfs_path * path,struct sa_defrag_extent_backref * prev,struct sa_defrag_extent_backref * backref)2796 static noinline int relink_extent_backref(struct btrfs_path *path,
2797 				 struct sa_defrag_extent_backref *prev,
2798 				 struct sa_defrag_extent_backref *backref)
2799 {
2800 	struct btrfs_file_extent_item *extent;
2801 	struct btrfs_file_extent_item *item;
2802 	struct btrfs_ordered_extent *ordered;
2803 	struct btrfs_trans_handle *trans;
2804 	struct btrfs_ref ref = { 0 };
2805 	struct btrfs_root *root;
2806 	struct btrfs_key key;
2807 	struct extent_buffer *leaf;
2808 	struct old_sa_defrag_extent *old = backref->old;
2809 	struct new_sa_defrag_extent *new = old->new;
2810 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2811 	struct inode *inode;
2812 	struct extent_state *cached = NULL;
2813 	int ret = 0;
2814 	u64 start;
2815 	u64 len;
2816 	u64 lock_start;
2817 	u64 lock_end;
2818 	bool merge = false;
2819 	int index;
2820 
2821 	if (prev && prev->root_id == backref->root_id &&
2822 	    prev->inum == backref->inum &&
2823 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2824 		merge = true;
2825 
2826 	/* step 1: get root */
2827 	key.objectid = backref->root_id;
2828 	key.type = BTRFS_ROOT_ITEM_KEY;
2829 	key.offset = (u64)-1;
2830 
2831 	index = srcu_read_lock(&fs_info->subvol_srcu);
2832 
2833 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2834 	if (IS_ERR(root)) {
2835 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2836 		if (PTR_ERR(root) == -ENOENT)
2837 			return 0;
2838 		return PTR_ERR(root);
2839 	}
2840 
2841 	if (btrfs_root_readonly(root)) {
2842 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2843 		return 0;
2844 	}
2845 
2846 	/* step 2: get inode */
2847 	key.objectid = backref->inum;
2848 	key.type = BTRFS_INODE_ITEM_KEY;
2849 	key.offset = 0;
2850 
2851 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2852 	if (IS_ERR(inode)) {
2853 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2854 		return 0;
2855 	}
2856 
2857 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2858 
2859 	/* step 3: relink backref */
2860 	lock_start = backref->file_pos;
2861 	lock_end = backref->file_pos + backref->num_bytes - 1;
2862 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2863 			 &cached);
2864 
2865 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2866 	if (ordered) {
2867 		btrfs_put_ordered_extent(ordered);
2868 		goto out_unlock;
2869 	}
2870 
2871 	trans = btrfs_join_transaction(root);
2872 	if (IS_ERR(trans)) {
2873 		ret = PTR_ERR(trans);
2874 		goto out_unlock;
2875 	}
2876 
2877 	key.objectid = backref->inum;
2878 	key.type = BTRFS_EXTENT_DATA_KEY;
2879 	key.offset = backref->file_pos;
2880 
2881 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2882 	if (ret < 0) {
2883 		goto out_free_path;
2884 	} else if (ret > 0) {
2885 		ret = 0;
2886 		goto out_free_path;
2887 	}
2888 
2889 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2890 				struct btrfs_file_extent_item);
2891 
2892 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2893 	    backref->generation)
2894 		goto out_free_path;
2895 
2896 	btrfs_release_path(path);
2897 
2898 	start = backref->file_pos;
2899 	if (backref->extent_offset < old->extent_offset + old->offset)
2900 		start += old->extent_offset + old->offset -
2901 			 backref->extent_offset;
2902 
2903 	len = min(backref->extent_offset + backref->num_bytes,
2904 		  old->extent_offset + old->offset + old->len);
2905 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2906 
2907 	ret = btrfs_drop_extents(trans, root, inode, start,
2908 				 start + len, 1);
2909 	if (ret)
2910 		goto out_free_path;
2911 again:
2912 	key.objectid = btrfs_ino(BTRFS_I(inode));
2913 	key.type = BTRFS_EXTENT_DATA_KEY;
2914 	key.offset = start;
2915 
2916 	path->leave_spinning = 1;
2917 	if (merge) {
2918 		struct btrfs_file_extent_item *fi;
2919 		u64 extent_len;
2920 		struct btrfs_key found_key;
2921 
2922 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2923 		if (ret < 0)
2924 			goto out_free_path;
2925 
2926 		path->slots[0]--;
2927 		leaf = path->nodes[0];
2928 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2929 
2930 		fi = btrfs_item_ptr(leaf, path->slots[0],
2931 				    struct btrfs_file_extent_item);
2932 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2933 
2934 		if (extent_len + found_key.offset == start &&
2935 		    relink_is_mergable(leaf, fi, new)) {
2936 			btrfs_set_file_extent_num_bytes(leaf, fi,
2937 							extent_len + len);
2938 			btrfs_mark_buffer_dirty(leaf);
2939 			inode_add_bytes(inode, len);
2940 
2941 			ret = 1;
2942 			goto out_free_path;
2943 		} else {
2944 			merge = false;
2945 			btrfs_release_path(path);
2946 			goto again;
2947 		}
2948 	}
2949 
2950 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2951 					sizeof(*extent));
2952 	if (ret) {
2953 		btrfs_abort_transaction(trans, ret);
2954 		goto out_free_path;
2955 	}
2956 
2957 	leaf = path->nodes[0];
2958 	item = btrfs_item_ptr(leaf, path->slots[0],
2959 				struct btrfs_file_extent_item);
2960 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2961 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2962 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2963 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2964 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2965 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2966 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2967 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2968 	btrfs_set_file_extent_encryption(leaf, item, 0);
2969 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2970 
2971 	btrfs_mark_buffer_dirty(leaf);
2972 	inode_add_bytes(inode, len);
2973 	btrfs_release_path(path);
2974 
2975 	btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr,
2976 			       new->disk_len, 0);
2977 	btrfs_init_data_ref(&ref, backref->root_id, backref->inum,
2978 			    new->file_pos);  /* start - extent_offset */
2979 	ret = btrfs_inc_extent_ref(trans, &ref);
2980 	if (ret) {
2981 		btrfs_abort_transaction(trans, ret);
2982 		goto out_free_path;
2983 	}
2984 
2985 	ret = 1;
2986 out_free_path:
2987 	btrfs_release_path(path);
2988 	path->leave_spinning = 0;
2989 	btrfs_end_transaction(trans);
2990 out_unlock:
2991 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2992 			     &cached);
2993 	iput(inode);
2994 	return ret;
2995 }
2996 
free_sa_defrag_extent(struct new_sa_defrag_extent * new)2997 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2998 {
2999 	struct old_sa_defrag_extent *old, *tmp;
3000 
3001 	if (!new)
3002 		return;
3003 
3004 	list_for_each_entry_safe(old, tmp, &new->head, list) {
3005 		kfree(old);
3006 	}
3007 	kfree(new);
3008 }
3009 
relink_file_extents(struct new_sa_defrag_extent * new)3010 static void relink_file_extents(struct new_sa_defrag_extent *new)
3011 {
3012 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
3013 	struct btrfs_path *path;
3014 	struct sa_defrag_extent_backref *backref;
3015 	struct sa_defrag_extent_backref *prev = NULL;
3016 	struct rb_node *node;
3017 	int ret;
3018 
3019 	path = btrfs_alloc_path();
3020 	if (!path)
3021 		return;
3022 
3023 	if (!record_extent_backrefs(path, new)) {
3024 		btrfs_free_path(path);
3025 		goto out;
3026 	}
3027 	btrfs_release_path(path);
3028 
3029 	while (1) {
3030 		node = rb_first(&new->root);
3031 		if (!node)
3032 			break;
3033 		rb_erase(node, &new->root);
3034 
3035 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
3036 
3037 		ret = relink_extent_backref(path, prev, backref);
3038 		WARN_ON(ret < 0);
3039 
3040 		kfree(prev);
3041 
3042 		if (ret == 1)
3043 			prev = backref;
3044 		else
3045 			prev = NULL;
3046 		cond_resched();
3047 	}
3048 	kfree(prev);
3049 
3050 	btrfs_free_path(path);
3051 out:
3052 	free_sa_defrag_extent(new);
3053 
3054 	atomic_dec(&fs_info->defrag_running);
3055 	wake_up(&fs_info->transaction_wait);
3056 }
3057 
3058 static struct new_sa_defrag_extent *
record_old_file_extents(struct inode * inode,struct btrfs_ordered_extent * ordered)3059 record_old_file_extents(struct inode *inode,
3060 			struct btrfs_ordered_extent *ordered)
3061 {
3062 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3063 	struct btrfs_root *root = BTRFS_I(inode)->root;
3064 	struct btrfs_path *path;
3065 	struct btrfs_key key;
3066 	struct old_sa_defrag_extent *old;
3067 	struct new_sa_defrag_extent *new;
3068 	int ret;
3069 
3070 	new = kmalloc(sizeof(*new), GFP_NOFS);
3071 	if (!new)
3072 		return NULL;
3073 
3074 	new->inode = inode;
3075 	new->file_pos = ordered->file_offset;
3076 	new->len = ordered->len;
3077 	new->bytenr = ordered->start;
3078 	new->disk_len = ordered->disk_len;
3079 	new->compress_type = ordered->compress_type;
3080 	new->root = RB_ROOT;
3081 	INIT_LIST_HEAD(&new->head);
3082 
3083 	path = btrfs_alloc_path();
3084 	if (!path)
3085 		goto out_kfree;
3086 
3087 	key.objectid = btrfs_ino(BTRFS_I(inode));
3088 	key.type = BTRFS_EXTENT_DATA_KEY;
3089 	key.offset = new->file_pos;
3090 
3091 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3092 	if (ret < 0)
3093 		goto out_free_path;
3094 	if (ret > 0 && path->slots[0] > 0)
3095 		path->slots[0]--;
3096 
3097 	/* find out all the old extents for the file range */
3098 	while (1) {
3099 		struct btrfs_file_extent_item *extent;
3100 		struct extent_buffer *l;
3101 		int slot;
3102 		u64 num_bytes;
3103 		u64 offset;
3104 		u64 end;
3105 		u64 disk_bytenr;
3106 		u64 extent_offset;
3107 
3108 		l = path->nodes[0];
3109 		slot = path->slots[0];
3110 
3111 		if (slot >= btrfs_header_nritems(l)) {
3112 			ret = btrfs_next_leaf(root, path);
3113 			if (ret < 0)
3114 				goto out_free_path;
3115 			else if (ret > 0)
3116 				break;
3117 			continue;
3118 		}
3119 
3120 		btrfs_item_key_to_cpu(l, &key, slot);
3121 
3122 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
3123 			break;
3124 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3125 			break;
3126 		if (key.offset >= new->file_pos + new->len)
3127 			break;
3128 
3129 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
3130 
3131 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
3132 		if (key.offset + num_bytes < new->file_pos)
3133 			goto next;
3134 
3135 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
3136 		if (!disk_bytenr)
3137 			goto next;
3138 
3139 		extent_offset = btrfs_file_extent_offset(l, extent);
3140 
3141 		old = kmalloc(sizeof(*old), GFP_NOFS);
3142 		if (!old)
3143 			goto out_free_path;
3144 
3145 		offset = max(new->file_pos, key.offset);
3146 		end = min(new->file_pos + new->len, key.offset + num_bytes);
3147 
3148 		old->bytenr = disk_bytenr;
3149 		old->extent_offset = extent_offset;
3150 		old->offset = offset - key.offset;
3151 		old->len = end - offset;
3152 		old->new = new;
3153 		old->count = 0;
3154 		list_add_tail(&old->list, &new->head);
3155 next:
3156 		path->slots[0]++;
3157 		cond_resched();
3158 	}
3159 
3160 	btrfs_free_path(path);
3161 	atomic_inc(&fs_info->defrag_running);
3162 
3163 	return new;
3164 
3165 out_free_path:
3166 	btrfs_free_path(path);
3167 out_kfree:
3168 	free_sa_defrag_extent(new);
3169 	return NULL;
3170 }
3171 
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)3172 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3173 					 u64 start, u64 len)
3174 {
3175 	struct btrfs_block_group_cache *cache;
3176 
3177 	cache = btrfs_lookup_block_group(fs_info, start);
3178 	ASSERT(cache);
3179 
3180 	spin_lock(&cache->lock);
3181 	cache->delalloc_bytes -= len;
3182 	spin_unlock(&cache->lock);
3183 
3184 	btrfs_put_block_group(cache);
3185 }
3186 
3187 /* as ordered data IO finishes, this gets called so we can finish
3188  * an ordered extent if the range of bytes in the file it covers are
3189  * fully written.
3190  */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)3191 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3192 {
3193 	struct inode *inode = ordered_extent->inode;
3194 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3195 	struct btrfs_root *root = BTRFS_I(inode)->root;
3196 	struct btrfs_trans_handle *trans = NULL;
3197 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3198 	struct extent_state *cached_state = NULL;
3199 	struct new_sa_defrag_extent *new = NULL;
3200 	int compress_type = 0;
3201 	int ret = 0;
3202 	u64 logical_len = ordered_extent->len;
3203 	bool nolock;
3204 	bool truncated = false;
3205 	bool range_locked = false;
3206 	bool clear_new_delalloc_bytes = false;
3207 	bool clear_reserved_extent = true;
3208 
3209 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3210 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3211 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3212 		clear_new_delalloc_bytes = true;
3213 
3214 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
3215 
3216 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3217 		ret = -EIO;
3218 		goto out;
3219 	}
3220 
3221 	btrfs_free_io_failure_record(BTRFS_I(inode),
3222 			ordered_extent->file_offset,
3223 			ordered_extent->file_offset +
3224 			ordered_extent->len - 1);
3225 
3226 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3227 		truncated = true;
3228 		logical_len = ordered_extent->truncated_len;
3229 		/* Truncated the entire extent, don't bother adding */
3230 		if (!logical_len)
3231 			goto out;
3232 	}
3233 
3234 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3235 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3236 
3237 		/*
3238 		 * For mwrite(mmap + memset to write) case, we still reserve
3239 		 * space for NOCOW range.
3240 		 * As NOCOW won't cause a new delayed ref, just free the space
3241 		 */
3242 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3243 				       ordered_extent->len);
3244 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3245 		if (nolock)
3246 			trans = btrfs_join_transaction_nolock(root);
3247 		else
3248 			trans = btrfs_join_transaction(root);
3249 		if (IS_ERR(trans)) {
3250 			ret = PTR_ERR(trans);
3251 			trans = NULL;
3252 			goto out;
3253 		}
3254 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3255 		ret = btrfs_update_inode_fallback(trans, root, inode);
3256 		if (ret) /* -ENOMEM or corruption */
3257 			btrfs_abort_transaction(trans, ret);
3258 		goto out;
3259 	}
3260 
3261 	range_locked = true;
3262 	lock_extent_bits(io_tree, ordered_extent->file_offset,
3263 			 ordered_extent->file_offset + ordered_extent->len - 1,
3264 			 &cached_state);
3265 
3266 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
3267 			ordered_extent->file_offset + ordered_extent->len - 1,
3268 			EXTENT_DEFRAG, 0, cached_state);
3269 	if (ret) {
3270 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3271 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3272 			/* the inode is shared */
3273 			new = record_old_file_extents(inode, ordered_extent);
3274 
3275 		clear_extent_bit(io_tree, ordered_extent->file_offset,
3276 			ordered_extent->file_offset + ordered_extent->len - 1,
3277 			EXTENT_DEFRAG, 0, 0, &cached_state);
3278 	}
3279 
3280 	if (nolock)
3281 		trans = btrfs_join_transaction_nolock(root);
3282 	else
3283 		trans = btrfs_join_transaction(root);
3284 	if (IS_ERR(trans)) {
3285 		ret = PTR_ERR(trans);
3286 		trans = NULL;
3287 		goto out;
3288 	}
3289 
3290 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3291 
3292 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3293 		compress_type = ordered_extent->compress_type;
3294 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3295 		BUG_ON(compress_type);
3296 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3297 				       ordered_extent->len);
3298 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3299 						ordered_extent->file_offset,
3300 						ordered_extent->file_offset +
3301 						logical_len);
3302 	} else {
3303 		BUG_ON(root == fs_info->tree_root);
3304 		ret = insert_reserved_file_extent(trans, inode,
3305 						ordered_extent->file_offset,
3306 						ordered_extent->start,
3307 						ordered_extent->disk_len,
3308 						logical_len, logical_len,
3309 						compress_type, 0, 0,
3310 						BTRFS_FILE_EXTENT_REG);
3311 		if (!ret) {
3312 			clear_reserved_extent = false;
3313 			btrfs_release_delalloc_bytes(fs_info,
3314 						     ordered_extent->start,
3315 						     ordered_extent->disk_len);
3316 		}
3317 	}
3318 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3319 			   ordered_extent->file_offset, ordered_extent->len,
3320 			   trans->transid);
3321 	if (ret < 0) {
3322 		btrfs_abort_transaction(trans, ret);
3323 		goto out;
3324 	}
3325 
3326 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
3327 	if (ret) {
3328 		btrfs_abort_transaction(trans, ret);
3329 		goto out;
3330 	}
3331 
3332 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3333 	ret = btrfs_update_inode_fallback(trans, root, inode);
3334 	if (ret) { /* -ENOMEM or corruption */
3335 		btrfs_abort_transaction(trans, ret);
3336 		goto out;
3337 	}
3338 	ret = 0;
3339 out:
3340 	if (range_locked || clear_new_delalloc_bytes) {
3341 		unsigned int clear_bits = 0;
3342 
3343 		if (range_locked)
3344 			clear_bits |= EXTENT_LOCKED;
3345 		if (clear_new_delalloc_bytes)
3346 			clear_bits |= EXTENT_DELALLOC_NEW;
3347 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3348 				 ordered_extent->file_offset,
3349 				 ordered_extent->file_offset +
3350 				 ordered_extent->len - 1,
3351 				 clear_bits,
3352 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3353 				 0, &cached_state);
3354 	}
3355 
3356 	if (trans)
3357 		btrfs_end_transaction(trans);
3358 
3359 	if (ret || truncated) {
3360 		u64 start, end;
3361 
3362 		/*
3363 		 * If we failed to finish this ordered extent for any reason we
3364 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3365 		 * extent, and mark the inode with the error if it wasn't
3366 		 * already set.  Any error during writeback would have already
3367 		 * set the mapping error, so we need to set it if we're the ones
3368 		 * marking this ordered extent as failed.
3369 		 */
3370 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3371 					     &ordered_extent->flags))
3372 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3373 
3374 		if (truncated)
3375 			start = ordered_extent->file_offset + logical_len;
3376 		else
3377 			start = ordered_extent->file_offset;
3378 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3379 		clear_extent_uptodate(io_tree, start, end, NULL);
3380 
3381 		/* Drop the cache for the part of the extent we didn't write. */
3382 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3383 
3384 		/*
3385 		 * If the ordered extent had an IOERR or something else went
3386 		 * wrong we need to return the space for this ordered extent
3387 		 * back to the allocator.  We only free the extent in the
3388 		 * truncated case if we didn't write out the extent at all.
3389 		 *
3390 		 * If we made it past insert_reserved_file_extent before we
3391 		 * errored out then we don't need to do this as the accounting
3392 		 * has already been done.
3393 		 */
3394 		if ((ret || !logical_len) &&
3395 		    clear_reserved_extent &&
3396 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3397 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3398 			btrfs_free_reserved_extent(fs_info,
3399 						   ordered_extent->start,
3400 						   ordered_extent->disk_len, 1);
3401 	}
3402 
3403 
3404 	/*
3405 	 * This needs to be done to make sure anybody waiting knows we are done
3406 	 * updating everything for this ordered extent.
3407 	 */
3408 	btrfs_remove_ordered_extent(inode, ordered_extent);
3409 
3410 	/* for snapshot-aware defrag */
3411 	if (new) {
3412 		if (ret) {
3413 			free_sa_defrag_extent(new);
3414 			atomic_dec(&fs_info->defrag_running);
3415 		} else {
3416 			relink_file_extents(new);
3417 		}
3418 	}
3419 
3420 	/* once for us */
3421 	btrfs_put_ordered_extent(ordered_extent);
3422 	/* once for the tree */
3423 	btrfs_put_ordered_extent(ordered_extent);
3424 
3425 	return ret;
3426 }
3427 
finish_ordered_fn(struct btrfs_work * work)3428 static void finish_ordered_fn(struct btrfs_work *work)
3429 {
3430 	struct btrfs_ordered_extent *ordered_extent;
3431 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3432 	btrfs_finish_ordered_io(ordered_extent);
3433 }
3434 
btrfs_writepage_endio_finish_ordered(struct page * page,u64 start,u64 end,int uptodate)3435 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3436 					  u64 end, int uptodate)
3437 {
3438 	struct inode *inode = page->mapping->host;
3439 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3440 	struct btrfs_ordered_extent *ordered_extent = NULL;
3441 	struct btrfs_workqueue *wq;
3442 
3443 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3444 
3445 	ClearPagePrivate2(page);
3446 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3447 					    end - start + 1, uptodate))
3448 		return;
3449 
3450 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
3451 		wq = fs_info->endio_freespace_worker;
3452 	else
3453 		wq = fs_info->endio_write_workers;
3454 
3455 	btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
3456 	btrfs_queue_work(wq, &ordered_extent->work);
3457 }
3458 
__readpage_endio_check(struct inode * inode,struct btrfs_io_bio * io_bio,int icsum,struct page * page,int pgoff,u64 start,size_t len)3459 static int __readpage_endio_check(struct inode *inode,
3460 				  struct btrfs_io_bio *io_bio,
3461 				  int icsum, struct page *page,
3462 				  int pgoff, u64 start, size_t len)
3463 {
3464 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3465 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3466 	char *kaddr;
3467 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
3468 	u8 *csum_expected;
3469 	u8 csum[BTRFS_CSUM_SIZE];
3470 
3471 	csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
3472 
3473 	kaddr = kmap_atomic(page);
3474 	shash->tfm = fs_info->csum_shash;
3475 
3476 	crypto_shash_init(shash);
3477 	crypto_shash_update(shash, kaddr + pgoff, len);
3478 	crypto_shash_final(shash, csum);
3479 
3480 	if (memcmp(csum, csum_expected, csum_size))
3481 		goto zeroit;
3482 
3483 	kunmap_atomic(kaddr);
3484 	return 0;
3485 zeroit:
3486 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3487 				    io_bio->mirror_num);
3488 	memset(kaddr + pgoff, 1, len);
3489 	flush_dcache_page(page);
3490 	kunmap_atomic(kaddr);
3491 	return -EIO;
3492 }
3493 
3494 /*
3495  * when reads are done, we need to check csums to verify the data is correct
3496  * if there's a match, we allow the bio to finish.  If not, the code in
3497  * extent_io.c will try to find good copies for us.
3498  */
btrfs_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)3499 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3500 				      u64 phy_offset, struct page *page,
3501 				      u64 start, u64 end, int mirror)
3502 {
3503 	size_t offset = start - page_offset(page);
3504 	struct inode *inode = page->mapping->host;
3505 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3506 	struct btrfs_root *root = BTRFS_I(inode)->root;
3507 
3508 	if (PageChecked(page)) {
3509 		ClearPageChecked(page);
3510 		return 0;
3511 	}
3512 
3513 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3514 		return 0;
3515 
3516 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3517 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3518 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3519 		return 0;
3520 	}
3521 
3522 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3523 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3524 				      start, (size_t)(end - start + 1));
3525 }
3526 
3527 /*
3528  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3529  *
3530  * @inode: The inode we want to perform iput on
3531  *
3532  * This function uses the generic vfs_inode::i_count to track whether we should
3533  * just decrement it (in case it's > 1) or if this is the last iput then link
3534  * the inode to the delayed iput machinery. Delayed iputs are processed at
3535  * transaction commit time/superblock commit/cleaner kthread.
3536  */
btrfs_add_delayed_iput(struct inode * inode)3537 void btrfs_add_delayed_iput(struct inode *inode)
3538 {
3539 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3540 	struct btrfs_inode *binode = BTRFS_I(inode);
3541 
3542 	if (atomic_add_unless(&inode->i_count, -1, 1))
3543 		return;
3544 
3545 	atomic_inc(&fs_info->nr_delayed_iputs);
3546 	spin_lock(&fs_info->delayed_iput_lock);
3547 	ASSERT(list_empty(&binode->delayed_iput));
3548 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3549 	spin_unlock(&fs_info->delayed_iput_lock);
3550 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3551 		wake_up_process(fs_info->cleaner_kthread);
3552 }
3553 
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3554 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3555 				    struct btrfs_inode *inode)
3556 {
3557 	list_del_init(&inode->delayed_iput);
3558 	spin_unlock(&fs_info->delayed_iput_lock);
3559 	iput(&inode->vfs_inode);
3560 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3561 		wake_up(&fs_info->delayed_iputs_wait);
3562 	spin_lock(&fs_info->delayed_iput_lock);
3563 }
3564 
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3565 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3566 				   struct btrfs_inode *inode)
3567 {
3568 	if (!list_empty(&inode->delayed_iput)) {
3569 		spin_lock(&fs_info->delayed_iput_lock);
3570 		if (!list_empty(&inode->delayed_iput))
3571 			run_delayed_iput_locked(fs_info, inode);
3572 		spin_unlock(&fs_info->delayed_iput_lock);
3573 	}
3574 }
3575 
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3576 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3577 {
3578 
3579 	spin_lock(&fs_info->delayed_iput_lock);
3580 	while (!list_empty(&fs_info->delayed_iputs)) {
3581 		struct btrfs_inode *inode;
3582 
3583 		inode = list_first_entry(&fs_info->delayed_iputs,
3584 				struct btrfs_inode, delayed_iput);
3585 		run_delayed_iput_locked(fs_info, inode);
3586 		cond_resched_lock(&fs_info->delayed_iput_lock);
3587 	}
3588 	spin_unlock(&fs_info->delayed_iput_lock);
3589 }
3590 
3591 /**
3592  * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3593  * @fs_info - the fs_info for this fs
3594  * @return - EINTR if we were killed, 0 if nothing's pending
3595  *
3596  * This will wait on any delayed iputs that are currently running with KILLABLE
3597  * set.  Once they are all done running we will return, unless we are killed in
3598  * which case we return EINTR. This helps in user operations like fallocate etc
3599  * that might get blocked on the iputs.
3600  */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3601 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3602 {
3603 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3604 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3605 	if (ret)
3606 		return -EINTR;
3607 	return 0;
3608 }
3609 
3610 /*
3611  * This creates an orphan entry for the given inode in case something goes wrong
3612  * in the middle of an unlink.
3613  */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3614 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3615 		     struct btrfs_inode *inode)
3616 {
3617 	int ret;
3618 
3619 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3620 	if (ret && ret != -EEXIST) {
3621 		btrfs_abort_transaction(trans, ret);
3622 		return ret;
3623 	}
3624 
3625 	return 0;
3626 }
3627 
3628 /*
3629  * We have done the delete so we can go ahead and remove the orphan item for
3630  * this particular inode.
3631  */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3632 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3633 			    struct btrfs_inode *inode)
3634 {
3635 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3636 }
3637 
3638 /*
3639  * this cleans up any orphans that may be left on the list from the last use
3640  * of this root.
3641  */
btrfs_orphan_cleanup(struct btrfs_root * root)3642 int btrfs_orphan_cleanup(struct btrfs_root *root)
3643 {
3644 	struct btrfs_fs_info *fs_info = root->fs_info;
3645 	struct btrfs_path *path;
3646 	struct extent_buffer *leaf;
3647 	struct btrfs_key key, found_key;
3648 	struct btrfs_trans_handle *trans;
3649 	struct inode *inode;
3650 	u64 last_objectid = 0;
3651 	int ret = 0, nr_unlink = 0;
3652 
3653 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3654 		return 0;
3655 
3656 	path = btrfs_alloc_path();
3657 	if (!path) {
3658 		ret = -ENOMEM;
3659 		goto out;
3660 	}
3661 	path->reada = READA_BACK;
3662 
3663 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3664 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3665 	key.offset = (u64)-1;
3666 
3667 	while (1) {
3668 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3669 		if (ret < 0)
3670 			goto out;
3671 
3672 		/*
3673 		 * if ret == 0 means we found what we were searching for, which
3674 		 * is weird, but possible, so only screw with path if we didn't
3675 		 * find the key and see if we have stuff that matches
3676 		 */
3677 		if (ret > 0) {
3678 			ret = 0;
3679 			if (path->slots[0] == 0)
3680 				break;
3681 			path->slots[0]--;
3682 		}
3683 
3684 		/* pull out the item */
3685 		leaf = path->nodes[0];
3686 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3687 
3688 		/* make sure the item matches what we want */
3689 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3690 			break;
3691 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3692 			break;
3693 
3694 		/* release the path since we're done with it */
3695 		btrfs_release_path(path);
3696 
3697 		/*
3698 		 * this is where we are basically btrfs_lookup, without the
3699 		 * crossing root thing.  we store the inode number in the
3700 		 * offset of the orphan item.
3701 		 */
3702 
3703 		if (found_key.offset == last_objectid) {
3704 			btrfs_err(fs_info,
3705 				  "Error removing orphan entry, stopping orphan cleanup");
3706 			ret = -EINVAL;
3707 			goto out;
3708 		}
3709 
3710 		last_objectid = found_key.offset;
3711 
3712 		found_key.objectid = found_key.offset;
3713 		found_key.type = BTRFS_INODE_ITEM_KEY;
3714 		found_key.offset = 0;
3715 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3716 		ret = PTR_ERR_OR_ZERO(inode);
3717 		if (ret && ret != -ENOENT)
3718 			goto out;
3719 
3720 		if (ret == -ENOENT && root == fs_info->tree_root) {
3721 			struct btrfs_root *dead_root;
3722 			struct btrfs_fs_info *fs_info = root->fs_info;
3723 			int is_dead_root = 0;
3724 
3725 			/*
3726 			 * this is an orphan in the tree root. Currently these
3727 			 * could come from 2 sources:
3728 			 *  a) a snapshot deletion in progress
3729 			 *  b) a free space cache inode
3730 			 * We need to distinguish those two, as the snapshot
3731 			 * orphan must not get deleted.
3732 			 * find_dead_roots already ran before us, so if this
3733 			 * is a snapshot deletion, we should find the root
3734 			 * in the dead_roots list
3735 			 */
3736 			spin_lock(&fs_info->trans_lock);
3737 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3738 					    root_list) {
3739 				if (dead_root->root_key.objectid ==
3740 				    found_key.objectid) {
3741 					is_dead_root = 1;
3742 					break;
3743 				}
3744 			}
3745 			spin_unlock(&fs_info->trans_lock);
3746 			if (is_dead_root) {
3747 				/* prevent this orphan from being found again */
3748 				key.offset = found_key.objectid - 1;
3749 				continue;
3750 			}
3751 
3752 		}
3753 
3754 		/*
3755 		 * If we have an inode with links, there are a couple of
3756 		 * possibilities. Old kernels (before v3.12) used to create an
3757 		 * orphan item for truncate indicating that there were possibly
3758 		 * extent items past i_size that needed to be deleted. In v3.12,
3759 		 * truncate was changed to update i_size in sync with the extent
3760 		 * items, but the (useless) orphan item was still created. Since
3761 		 * v4.18, we don't create the orphan item for truncate at all.
3762 		 *
3763 		 * So, this item could mean that we need to do a truncate, but
3764 		 * only if this filesystem was last used on a pre-v3.12 kernel
3765 		 * and was not cleanly unmounted. The odds of that are quite
3766 		 * slim, and it's a pain to do the truncate now, so just delete
3767 		 * the orphan item.
3768 		 *
3769 		 * It's also possible that this orphan item was supposed to be
3770 		 * deleted but wasn't. The inode number may have been reused,
3771 		 * but either way, we can delete the orphan item.
3772 		 */
3773 		if (ret == -ENOENT || inode->i_nlink) {
3774 			if (!ret)
3775 				iput(inode);
3776 			trans = btrfs_start_transaction(root, 1);
3777 			if (IS_ERR(trans)) {
3778 				ret = PTR_ERR(trans);
3779 				goto out;
3780 			}
3781 			btrfs_debug(fs_info, "auto deleting %Lu",
3782 				    found_key.objectid);
3783 			ret = btrfs_del_orphan_item(trans, root,
3784 						    found_key.objectid);
3785 			btrfs_end_transaction(trans);
3786 			if (ret)
3787 				goto out;
3788 			continue;
3789 		}
3790 
3791 		nr_unlink++;
3792 
3793 		/* this will do delete_inode and everything for us */
3794 		iput(inode);
3795 	}
3796 	/* release the path since we're done with it */
3797 	btrfs_release_path(path);
3798 
3799 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3800 
3801 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3802 		trans = btrfs_join_transaction(root);
3803 		if (!IS_ERR(trans))
3804 			btrfs_end_transaction(trans);
3805 	}
3806 
3807 	if (nr_unlink)
3808 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3809 
3810 out:
3811 	if (ret)
3812 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3813 	btrfs_free_path(path);
3814 	return ret;
3815 }
3816 
3817 /*
3818  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3819  * don't find any xattrs, we know there can't be any acls.
3820  *
3821  * slot is the slot the inode is in, objectid is the objectid of the inode
3822  */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3823 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3824 					  int slot, u64 objectid,
3825 					  int *first_xattr_slot)
3826 {
3827 	u32 nritems = btrfs_header_nritems(leaf);
3828 	struct btrfs_key found_key;
3829 	static u64 xattr_access = 0;
3830 	static u64 xattr_default = 0;
3831 	int scanned = 0;
3832 
3833 	if (!xattr_access) {
3834 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3835 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3836 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3837 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3838 	}
3839 
3840 	slot++;
3841 	*first_xattr_slot = -1;
3842 	while (slot < nritems) {
3843 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3844 
3845 		/* we found a different objectid, there must not be acls */
3846 		if (found_key.objectid != objectid)
3847 			return 0;
3848 
3849 		/* we found an xattr, assume we've got an acl */
3850 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3851 			if (*first_xattr_slot == -1)
3852 				*first_xattr_slot = slot;
3853 			if (found_key.offset == xattr_access ||
3854 			    found_key.offset == xattr_default)
3855 				return 1;
3856 		}
3857 
3858 		/*
3859 		 * we found a key greater than an xattr key, there can't
3860 		 * be any acls later on
3861 		 */
3862 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3863 			return 0;
3864 
3865 		slot++;
3866 		scanned++;
3867 
3868 		/*
3869 		 * it goes inode, inode backrefs, xattrs, extents,
3870 		 * so if there are a ton of hard links to an inode there can
3871 		 * be a lot of backrefs.  Don't waste time searching too hard,
3872 		 * this is just an optimization
3873 		 */
3874 		if (scanned >= 8)
3875 			break;
3876 	}
3877 	/* we hit the end of the leaf before we found an xattr or
3878 	 * something larger than an xattr.  We have to assume the inode
3879 	 * has acls
3880 	 */
3881 	if (*first_xattr_slot == -1)
3882 		*first_xattr_slot = slot;
3883 	return 1;
3884 }
3885 
3886 /*
3887  * read an inode from the btree into the in-memory inode
3888  */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3889 static int btrfs_read_locked_inode(struct inode *inode,
3890 				   struct btrfs_path *in_path)
3891 {
3892 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3893 	struct btrfs_path *path = in_path;
3894 	struct extent_buffer *leaf;
3895 	struct btrfs_inode_item *inode_item;
3896 	struct btrfs_root *root = BTRFS_I(inode)->root;
3897 	struct btrfs_key location;
3898 	unsigned long ptr;
3899 	int maybe_acls;
3900 	u32 rdev;
3901 	int ret;
3902 	bool filled = false;
3903 	int first_xattr_slot;
3904 
3905 	ret = btrfs_fill_inode(inode, &rdev);
3906 	if (!ret)
3907 		filled = true;
3908 
3909 	if (!path) {
3910 		path = btrfs_alloc_path();
3911 		if (!path)
3912 			return -ENOMEM;
3913 	}
3914 
3915 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3916 
3917 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3918 	if (ret) {
3919 		if (path != in_path)
3920 			btrfs_free_path(path);
3921 		return ret;
3922 	}
3923 
3924 	leaf = path->nodes[0];
3925 
3926 	if (filled)
3927 		goto cache_index;
3928 
3929 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3930 				    struct btrfs_inode_item);
3931 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3932 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3933 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3934 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3935 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3936 
3937 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3938 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3939 
3940 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3941 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3942 
3943 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3944 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3945 
3946 	BTRFS_I(inode)->i_otime.tv_sec =
3947 		btrfs_timespec_sec(leaf, &inode_item->otime);
3948 	BTRFS_I(inode)->i_otime.tv_nsec =
3949 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3950 
3951 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3952 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3953 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3954 
3955 	inode_set_iversion_queried(inode,
3956 				   btrfs_inode_sequence(leaf, inode_item));
3957 	inode->i_generation = BTRFS_I(inode)->generation;
3958 	inode->i_rdev = 0;
3959 	rdev = btrfs_inode_rdev(leaf, inode_item);
3960 
3961 	BTRFS_I(inode)->index_cnt = (u64)-1;
3962 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3963 
3964 cache_index:
3965 	/*
3966 	 * If we were modified in the current generation and evicted from memory
3967 	 * and then re-read we need to do a full sync since we don't have any
3968 	 * idea about which extents were modified before we were evicted from
3969 	 * cache.
3970 	 *
3971 	 * This is required for both inode re-read from disk and delayed inode
3972 	 * in delayed_nodes_tree.
3973 	 */
3974 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3975 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3976 			&BTRFS_I(inode)->runtime_flags);
3977 
3978 	/*
3979 	 * We don't persist the id of the transaction where an unlink operation
3980 	 * against the inode was last made. So here we assume the inode might
3981 	 * have been evicted, and therefore the exact value of last_unlink_trans
3982 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3983 	 * between the inode and its parent if the inode is fsync'ed and the log
3984 	 * replayed. For example, in the scenario:
3985 	 *
3986 	 * touch mydir/foo
3987 	 * ln mydir/foo mydir/bar
3988 	 * sync
3989 	 * unlink mydir/bar
3990 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3991 	 * xfs_io -c fsync mydir/foo
3992 	 * <power failure>
3993 	 * mount fs, triggers fsync log replay
3994 	 *
3995 	 * We must make sure that when we fsync our inode foo we also log its
3996 	 * parent inode, otherwise after log replay the parent still has the
3997 	 * dentry with the "bar" name but our inode foo has a link count of 1
3998 	 * and doesn't have an inode ref with the name "bar" anymore.
3999 	 *
4000 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
4001 	 * but it guarantees correctness at the expense of occasional full
4002 	 * transaction commits on fsync if our inode is a directory, or if our
4003 	 * inode is not a directory, logging its parent unnecessarily.
4004 	 */
4005 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
4006 
4007 	path->slots[0]++;
4008 	if (inode->i_nlink != 1 ||
4009 	    path->slots[0] >= btrfs_header_nritems(leaf))
4010 		goto cache_acl;
4011 
4012 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4013 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
4014 		goto cache_acl;
4015 
4016 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4017 	if (location.type == BTRFS_INODE_REF_KEY) {
4018 		struct btrfs_inode_ref *ref;
4019 
4020 		ref = (struct btrfs_inode_ref *)ptr;
4021 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
4022 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4023 		struct btrfs_inode_extref *extref;
4024 
4025 		extref = (struct btrfs_inode_extref *)ptr;
4026 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
4027 								     extref);
4028 	}
4029 cache_acl:
4030 	/*
4031 	 * try to precache a NULL acl entry for files that don't have
4032 	 * any xattrs or acls
4033 	 */
4034 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4035 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
4036 	if (first_xattr_slot != -1) {
4037 		path->slots[0] = first_xattr_slot;
4038 		ret = btrfs_load_inode_props(inode, path);
4039 		if (ret)
4040 			btrfs_err(fs_info,
4041 				  "error loading props for ino %llu (root %llu): %d",
4042 				  btrfs_ino(BTRFS_I(inode)),
4043 				  root->root_key.objectid, ret);
4044 	}
4045 	if (path != in_path)
4046 		btrfs_free_path(path);
4047 
4048 	if (!maybe_acls)
4049 		cache_no_acl(inode);
4050 
4051 	switch (inode->i_mode & S_IFMT) {
4052 	case S_IFREG:
4053 		inode->i_mapping->a_ops = &btrfs_aops;
4054 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4055 		inode->i_fop = &btrfs_file_operations;
4056 		inode->i_op = &btrfs_file_inode_operations;
4057 		break;
4058 	case S_IFDIR:
4059 		inode->i_fop = &btrfs_dir_file_operations;
4060 		inode->i_op = &btrfs_dir_inode_operations;
4061 		break;
4062 	case S_IFLNK:
4063 		inode->i_op = &btrfs_symlink_inode_operations;
4064 		inode_nohighmem(inode);
4065 		inode->i_mapping->a_ops = &btrfs_aops;
4066 		break;
4067 	default:
4068 		inode->i_op = &btrfs_special_inode_operations;
4069 		init_special_inode(inode, inode->i_mode, rdev);
4070 		break;
4071 	}
4072 
4073 	btrfs_sync_inode_flags_to_i_flags(inode);
4074 	return 0;
4075 }
4076 
4077 /*
4078  * given a leaf and an inode, copy the inode fields into the leaf
4079  */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)4080 static void fill_inode_item(struct btrfs_trans_handle *trans,
4081 			    struct extent_buffer *leaf,
4082 			    struct btrfs_inode_item *item,
4083 			    struct inode *inode)
4084 {
4085 	struct btrfs_map_token token;
4086 
4087 	btrfs_init_map_token(&token, leaf);
4088 
4089 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
4090 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
4091 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
4092 				   &token);
4093 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
4094 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
4095 
4096 	btrfs_set_token_timespec_sec(leaf, &item->atime,
4097 				     inode->i_atime.tv_sec, &token);
4098 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
4099 				      inode->i_atime.tv_nsec, &token);
4100 
4101 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
4102 				     inode->i_mtime.tv_sec, &token);
4103 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
4104 				      inode->i_mtime.tv_nsec, &token);
4105 
4106 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
4107 				     inode->i_ctime.tv_sec, &token);
4108 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
4109 				      inode->i_ctime.tv_nsec, &token);
4110 
4111 	btrfs_set_token_timespec_sec(leaf, &item->otime,
4112 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
4113 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
4114 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
4115 
4116 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
4117 				     &token);
4118 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
4119 					 &token);
4120 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
4121 				       &token);
4122 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
4123 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
4124 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
4125 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
4126 }
4127 
4128 /*
4129  * copy everything in the in-memory inode into the btree.
4130  */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)4131 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4132 				struct btrfs_root *root, struct inode *inode)
4133 {
4134 	struct btrfs_inode_item *inode_item;
4135 	struct btrfs_path *path;
4136 	struct extent_buffer *leaf;
4137 	int ret;
4138 
4139 	path = btrfs_alloc_path();
4140 	if (!path)
4141 		return -ENOMEM;
4142 
4143 	path->leave_spinning = 1;
4144 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
4145 				 1);
4146 	if (ret) {
4147 		if (ret > 0)
4148 			ret = -ENOENT;
4149 		goto failed;
4150 	}
4151 
4152 	leaf = path->nodes[0];
4153 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4154 				    struct btrfs_inode_item);
4155 
4156 	fill_inode_item(trans, leaf, inode_item, inode);
4157 	btrfs_mark_buffer_dirty(leaf);
4158 	btrfs_set_inode_last_trans(trans, inode);
4159 	ret = 0;
4160 failed:
4161 	btrfs_free_path(path);
4162 	return ret;
4163 }
4164 
4165 /*
4166  * copy everything in the in-memory inode into the btree.
4167  */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)4168 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4169 				struct btrfs_root *root, struct inode *inode)
4170 {
4171 	struct btrfs_fs_info *fs_info = root->fs_info;
4172 	int ret;
4173 
4174 	/*
4175 	 * If the inode is a free space inode, we can deadlock during commit
4176 	 * if we put it into the delayed code.
4177 	 *
4178 	 * The data relocation inode should also be directly updated
4179 	 * without delay
4180 	 */
4181 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
4182 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
4183 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4184 		btrfs_update_root_times(trans, root);
4185 
4186 		ret = btrfs_delayed_update_inode(trans, root, inode);
4187 		if (!ret)
4188 			btrfs_set_inode_last_trans(trans, inode);
4189 		return ret;
4190 	}
4191 
4192 	return btrfs_update_inode_item(trans, root, inode);
4193 }
4194 
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)4195 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4196 					 struct btrfs_root *root,
4197 					 struct inode *inode)
4198 {
4199 	int ret;
4200 
4201 	ret = btrfs_update_inode(trans, root, inode);
4202 	if (ret == -ENOSPC)
4203 		return btrfs_update_inode_item(trans, root, inode);
4204 	return ret;
4205 }
4206 
4207 /*
4208  * unlink helper that gets used here in inode.c and in the tree logging
4209  * recovery code.  It remove a link in a directory with a given name, and
4210  * also drops the back refs in the inode to the directory
4211  */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4212 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4213 				struct btrfs_root *root,
4214 				struct btrfs_inode *dir,
4215 				struct btrfs_inode *inode,
4216 				const char *name, int name_len)
4217 {
4218 	struct btrfs_fs_info *fs_info = root->fs_info;
4219 	struct btrfs_path *path;
4220 	int ret = 0;
4221 	struct btrfs_dir_item *di;
4222 	u64 index;
4223 	u64 ino = btrfs_ino(inode);
4224 	u64 dir_ino = btrfs_ino(dir);
4225 
4226 	path = btrfs_alloc_path();
4227 	if (!path) {
4228 		ret = -ENOMEM;
4229 		goto out;
4230 	}
4231 
4232 	path->leave_spinning = 1;
4233 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4234 				    name, name_len, -1);
4235 	if (IS_ERR_OR_NULL(di)) {
4236 		ret = di ? PTR_ERR(di) : -ENOENT;
4237 		goto err;
4238 	}
4239 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4240 	if (ret)
4241 		goto err;
4242 	btrfs_release_path(path);
4243 
4244 	/*
4245 	 * If we don't have dir index, we have to get it by looking up
4246 	 * the inode ref, since we get the inode ref, remove it directly,
4247 	 * it is unnecessary to do delayed deletion.
4248 	 *
4249 	 * But if we have dir index, needn't search inode ref to get it.
4250 	 * Since the inode ref is close to the inode item, it is better
4251 	 * that we delay to delete it, and just do this deletion when
4252 	 * we update the inode item.
4253 	 */
4254 	if (inode->dir_index) {
4255 		ret = btrfs_delayed_delete_inode_ref(inode);
4256 		if (!ret) {
4257 			index = inode->dir_index;
4258 			goto skip_backref;
4259 		}
4260 	}
4261 
4262 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4263 				  dir_ino, &index);
4264 	if (ret) {
4265 		btrfs_info(fs_info,
4266 			"failed to delete reference to %.*s, inode %llu parent %llu",
4267 			name_len, name, ino, dir_ino);
4268 		btrfs_abort_transaction(trans, ret);
4269 		goto err;
4270 	}
4271 skip_backref:
4272 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4273 	if (ret) {
4274 		btrfs_abort_transaction(trans, ret);
4275 		goto err;
4276 	}
4277 
4278 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4279 			dir_ino);
4280 	if (ret != 0 && ret != -ENOENT) {
4281 		btrfs_abort_transaction(trans, ret);
4282 		goto err;
4283 	}
4284 
4285 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4286 			index);
4287 	if (ret == -ENOENT)
4288 		ret = 0;
4289 	else if (ret)
4290 		btrfs_abort_transaction(trans, ret);
4291 
4292 	/*
4293 	 * If we have a pending delayed iput we could end up with the final iput
4294 	 * being run in btrfs-cleaner context.  If we have enough of these built
4295 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4296 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4297 	 * the inode we can run the delayed iput here without any issues as the
4298 	 * final iput won't be done until after we drop the ref we're currently
4299 	 * holding.
4300 	 */
4301 	btrfs_run_delayed_iput(fs_info, inode);
4302 err:
4303 	btrfs_free_path(path);
4304 	if (ret)
4305 		goto out;
4306 
4307 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4308 	inode_inc_iversion(&inode->vfs_inode);
4309 	inode_inc_iversion(&dir->vfs_inode);
4310 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4311 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4312 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4313 out:
4314 	return ret;
4315 }
4316 
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4317 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4318 		       struct btrfs_root *root,
4319 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4320 		       const char *name, int name_len)
4321 {
4322 	int ret;
4323 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4324 	if (!ret) {
4325 		drop_nlink(&inode->vfs_inode);
4326 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4327 	}
4328 	return ret;
4329 }
4330 
4331 /*
4332  * helper to start transaction for unlink and rmdir.
4333  *
4334  * unlink and rmdir are special in btrfs, they do not always free space, so
4335  * if we cannot make our reservations the normal way try and see if there is
4336  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4337  * allow the unlink to occur.
4338  */
__unlink_start_trans(struct inode * dir)4339 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4340 {
4341 	struct btrfs_root *root = BTRFS_I(dir)->root;
4342 
4343 	/*
4344 	 * 1 for the possible orphan item
4345 	 * 1 for the dir item
4346 	 * 1 for the dir index
4347 	 * 1 for the inode ref
4348 	 * 1 for the inode
4349 	 */
4350 	return btrfs_start_transaction_fallback_global_rsv(root, 5);
4351 }
4352 
btrfs_unlink(struct inode * dir,struct dentry * dentry)4353 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4354 {
4355 	struct btrfs_root *root = BTRFS_I(dir)->root;
4356 	struct btrfs_trans_handle *trans;
4357 	struct inode *inode = d_inode(dentry);
4358 	int ret;
4359 
4360 	trans = __unlink_start_trans(dir);
4361 	if (IS_ERR(trans))
4362 		return PTR_ERR(trans);
4363 
4364 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4365 			0);
4366 
4367 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4368 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4369 			dentry->d_name.len);
4370 	if (ret)
4371 		goto out;
4372 
4373 	if (inode->i_nlink == 0) {
4374 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4375 		if (ret)
4376 			goto out;
4377 	}
4378 
4379 out:
4380 	btrfs_end_transaction(trans);
4381 	btrfs_btree_balance_dirty(root->fs_info);
4382 	return ret;
4383 }
4384 
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry)4385 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4386 			       struct inode *dir, struct dentry *dentry)
4387 {
4388 	struct btrfs_root *root = BTRFS_I(dir)->root;
4389 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4390 	struct btrfs_path *path;
4391 	struct extent_buffer *leaf;
4392 	struct btrfs_dir_item *di;
4393 	struct btrfs_key key;
4394 	const char *name = dentry->d_name.name;
4395 	int name_len = dentry->d_name.len;
4396 	u64 index;
4397 	int ret;
4398 	u64 objectid;
4399 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4400 
4401 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4402 		objectid = inode->root->root_key.objectid;
4403 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4404 		objectid = inode->location.objectid;
4405 	} else {
4406 		WARN_ON(1);
4407 		return -EINVAL;
4408 	}
4409 
4410 	path = btrfs_alloc_path();
4411 	if (!path)
4412 		return -ENOMEM;
4413 
4414 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4415 				   name, name_len, -1);
4416 	if (IS_ERR_OR_NULL(di)) {
4417 		ret = di ? PTR_ERR(di) : -ENOENT;
4418 		goto out;
4419 	}
4420 
4421 	leaf = path->nodes[0];
4422 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4423 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4424 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4425 	if (ret) {
4426 		btrfs_abort_transaction(trans, ret);
4427 		goto out;
4428 	}
4429 	btrfs_release_path(path);
4430 
4431 	/*
4432 	 * This is a placeholder inode for a subvolume we didn't have a
4433 	 * reference to at the time of the snapshot creation.  In the meantime
4434 	 * we could have renamed the real subvol link into our snapshot, so
4435 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
4436 	 * Instead simply lookup the dir_index_item for this entry so we can
4437 	 * remove it.  Otherwise we know we have a ref to the root and we can
4438 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4439 	 */
4440 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4441 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4442 						 name, name_len);
4443 		if (IS_ERR_OR_NULL(di)) {
4444 			if (!di)
4445 				ret = -ENOENT;
4446 			else
4447 				ret = PTR_ERR(di);
4448 			btrfs_abort_transaction(trans, ret);
4449 			goto out;
4450 		}
4451 
4452 		leaf = path->nodes[0];
4453 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4454 		index = key.offset;
4455 		btrfs_release_path(path);
4456 	} else {
4457 		ret = btrfs_del_root_ref(trans, objectid,
4458 					 root->root_key.objectid, dir_ino,
4459 					 &index, name, name_len);
4460 		if (ret) {
4461 			btrfs_abort_transaction(trans, ret);
4462 			goto out;
4463 		}
4464 	}
4465 
4466 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4467 	if (ret) {
4468 		btrfs_abort_transaction(trans, ret);
4469 		goto out;
4470 	}
4471 
4472 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4473 	inode_inc_iversion(dir);
4474 	dir->i_mtime = dir->i_ctime = current_time(dir);
4475 	ret = btrfs_update_inode_fallback(trans, root, dir);
4476 	if (ret)
4477 		btrfs_abort_transaction(trans, ret);
4478 out:
4479 	btrfs_free_path(path);
4480 	return ret;
4481 }
4482 
4483 /*
4484  * Helper to check if the subvolume references other subvolumes or if it's
4485  * default.
4486  */
may_destroy_subvol(struct btrfs_root * root)4487 static noinline int may_destroy_subvol(struct btrfs_root *root)
4488 {
4489 	struct btrfs_fs_info *fs_info = root->fs_info;
4490 	struct btrfs_path *path;
4491 	struct btrfs_dir_item *di;
4492 	struct btrfs_key key;
4493 	u64 dir_id;
4494 	int ret;
4495 
4496 	path = btrfs_alloc_path();
4497 	if (!path)
4498 		return -ENOMEM;
4499 
4500 	/* Make sure this root isn't set as the default subvol */
4501 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4502 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4503 				   dir_id, "default", 7, 0);
4504 	if (di && !IS_ERR(di)) {
4505 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4506 		if (key.objectid == root->root_key.objectid) {
4507 			ret = -EPERM;
4508 			btrfs_err(fs_info,
4509 				  "deleting default subvolume %llu is not allowed",
4510 				  key.objectid);
4511 			goto out;
4512 		}
4513 		btrfs_release_path(path);
4514 	}
4515 
4516 	key.objectid = root->root_key.objectid;
4517 	key.type = BTRFS_ROOT_REF_KEY;
4518 	key.offset = (u64)-1;
4519 
4520 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4521 	if (ret < 0)
4522 		goto out;
4523 	BUG_ON(ret == 0);
4524 
4525 	ret = 0;
4526 	if (path->slots[0] > 0) {
4527 		path->slots[0]--;
4528 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4529 		if (key.objectid == root->root_key.objectid &&
4530 		    key.type == BTRFS_ROOT_REF_KEY)
4531 			ret = -ENOTEMPTY;
4532 	}
4533 out:
4534 	btrfs_free_path(path);
4535 	return ret;
4536 }
4537 
4538 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4539 static void btrfs_prune_dentries(struct btrfs_root *root)
4540 {
4541 	struct btrfs_fs_info *fs_info = root->fs_info;
4542 	struct rb_node *node;
4543 	struct rb_node *prev;
4544 	struct btrfs_inode *entry;
4545 	struct inode *inode;
4546 	u64 objectid = 0;
4547 
4548 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4549 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4550 
4551 	spin_lock(&root->inode_lock);
4552 again:
4553 	node = root->inode_tree.rb_node;
4554 	prev = NULL;
4555 	while (node) {
4556 		prev = node;
4557 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4558 
4559 		if (objectid < btrfs_ino(entry))
4560 			node = node->rb_left;
4561 		else if (objectid > btrfs_ino(entry))
4562 			node = node->rb_right;
4563 		else
4564 			break;
4565 	}
4566 	if (!node) {
4567 		while (prev) {
4568 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4569 			if (objectid <= btrfs_ino(entry)) {
4570 				node = prev;
4571 				break;
4572 			}
4573 			prev = rb_next(prev);
4574 		}
4575 	}
4576 	while (node) {
4577 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4578 		objectid = btrfs_ino(entry) + 1;
4579 		inode = igrab(&entry->vfs_inode);
4580 		if (inode) {
4581 			spin_unlock(&root->inode_lock);
4582 			if (atomic_read(&inode->i_count) > 1)
4583 				d_prune_aliases(inode);
4584 			/*
4585 			 * btrfs_drop_inode will have it removed from the inode
4586 			 * cache when its usage count hits zero.
4587 			 */
4588 			iput(inode);
4589 			cond_resched();
4590 			spin_lock(&root->inode_lock);
4591 			goto again;
4592 		}
4593 
4594 		if (cond_resched_lock(&root->inode_lock))
4595 			goto again;
4596 
4597 		node = rb_next(node);
4598 	}
4599 	spin_unlock(&root->inode_lock);
4600 }
4601 
btrfs_delete_subvolume(struct inode * dir,struct dentry * dentry)4602 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4603 {
4604 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4605 	struct btrfs_root *root = BTRFS_I(dir)->root;
4606 	struct inode *inode = d_inode(dentry);
4607 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4608 	struct btrfs_trans_handle *trans;
4609 	struct btrfs_block_rsv block_rsv;
4610 	u64 root_flags;
4611 	int ret;
4612 	int err;
4613 
4614 	/*
4615 	 * Don't allow to delete a subvolume with send in progress. This is
4616 	 * inside the inode lock so the error handling that has to drop the bit
4617 	 * again is not run concurrently.
4618 	 */
4619 	spin_lock(&dest->root_item_lock);
4620 	if (dest->send_in_progress) {
4621 		spin_unlock(&dest->root_item_lock);
4622 		btrfs_warn(fs_info,
4623 			   "attempt to delete subvolume %llu during send",
4624 			   dest->root_key.objectid);
4625 		return -EPERM;
4626 	}
4627 	root_flags = btrfs_root_flags(&dest->root_item);
4628 	btrfs_set_root_flags(&dest->root_item,
4629 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4630 	spin_unlock(&dest->root_item_lock);
4631 
4632 	down_write(&fs_info->subvol_sem);
4633 
4634 	err = may_destroy_subvol(dest);
4635 	if (err)
4636 		goto out_up_write;
4637 
4638 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4639 	/*
4640 	 * One for dir inode,
4641 	 * two for dir entries,
4642 	 * two for root ref/backref.
4643 	 */
4644 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4645 	if (err)
4646 		goto out_up_write;
4647 
4648 	trans = btrfs_start_transaction(root, 0);
4649 	if (IS_ERR(trans)) {
4650 		err = PTR_ERR(trans);
4651 		goto out_release;
4652 	}
4653 	trans->block_rsv = &block_rsv;
4654 	trans->bytes_reserved = block_rsv.size;
4655 
4656 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4657 
4658 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4659 	if (ret) {
4660 		err = ret;
4661 		btrfs_abort_transaction(trans, ret);
4662 		goto out_end_trans;
4663 	}
4664 
4665 	btrfs_record_root_in_trans(trans, dest);
4666 
4667 	memset(&dest->root_item.drop_progress, 0,
4668 		sizeof(dest->root_item.drop_progress));
4669 	dest->root_item.drop_level = 0;
4670 	btrfs_set_root_refs(&dest->root_item, 0);
4671 
4672 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4673 		ret = btrfs_insert_orphan_item(trans,
4674 					fs_info->tree_root,
4675 					dest->root_key.objectid);
4676 		if (ret) {
4677 			btrfs_abort_transaction(trans, ret);
4678 			err = ret;
4679 			goto out_end_trans;
4680 		}
4681 	}
4682 
4683 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4684 				  BTRFS_UUID_KEY_SUBVOL,
4685 				  dest->root_key.objectid);
4686 	if (ret && ret != -ENOENT) {
4687 		btrfs_abort_transaction(trans, ret);
4688 		err = ret;
4689 		goto out_end_trans;
4690 	}
4691 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4692 		ret = btrfs_uuid_tree_remove(trans,
4693 					  dest->root_item.received_uuid,
4694 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4695 					  dest->root_key.objectid);
4696 		if (ret && ret != -ENOENT) {
4697 			btrfs_abort_transaction(trans, ret);
4698 			err = ret;
4699 			goto out_end_trans;
4700 		}
4701 	}
4702 
4703 	free_anon_bdev(dest->anon_dev);
4704 	dest->anon_dev = 0;
4705 out_end_trans:
4706 	trans->block_rsv = NULL;
4707 	trans->bytes_reserved = 0;
4708 	ret = btrfs_end_transaction(trans);
4709 	if (ret && !err)
4710 		err = ret;
4711 	inode->i_flags |= S_DEAD;
4712 out_release:
4713 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4714 out_up_write:
4715 	up_write(&fs_info->subvol_sem);
4716 	if (err) {
4717 		spin_lock(&dest->root_item_lock);
4718 		root_flags = btrfs_root_flags(&dest->root_item);
4719 		btrfs_set_root_flags(&dest->root_item,
4720 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4721 		spin_unlock(&dest->root_item_lock);
4722 	} else {
4723 		d_invalidate(dentry);
4724 		btrfs_prune_dentries(dest);
4725 		ASSERT(dest->send_in_progress == 0);
4726 
4727 		/* the last ref */
4728 		if (dest->ino_cache_inode) {
4729 			iput(dest->ino_cache_inode);
4730 			dest->ino_cache_inode = NULL;
4731 		}
4732 	}
4733 
4734 	return err;
4735 }
4736 
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4737 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4738 {
4739 	struct inode *inode = d_inode(dentry);
4740 	int err = 0;
4741 	struct btrfs_root *root = BTRFS_I(dir)->root;
4742 	struct btrfs_trans_handle *trans;
4743 	u64 last_unlink_trans;
4744 
4745 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4746 		return -ENOTEMPTY;
4747 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4748 		return btrfs_delete_subvolume(dir, dentry);
4749 
4750 	trans = __unlink_start_trans(dir);
4751 	if (IS_ERR(trans))
4752 		return PTR_ERR(trans);
4753 
4754 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4755 		err = btrfs_unlink_subvol(trans, dir, dentry);
4756 		goto out;
4757 	}
4758 
4759 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4760 	if (err)
4761 		goto out;
4762 
4763 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4764 
4765 	/* now the directory is empty */
4766 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4767 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4768 			dentry->d_name.len);
4769 	if (!err) {
4770 		btrfs_i_size_write(BTRFS_I(inode), 0);
4771 		/*
4772 		 * Propagate the last_unlink_trans value of the deleted dir to
4773 		 * its parent directory. This is to prevent an unrecoverable
4774 		 * log tree in the case we do something like this:
4775 		 * 1) create dir foo
4776 		 * 2) create snapshot under dir foo
4777 		 * 3) delete the snapshot
4778 		 * 4) rmdir foo
4779 		 * 5) mkdir foo
4780 		 * 6) fsync foo or some file inside foo
4781 		 */
4782 		if (last_unlink_trans >= trans->transid)
4783 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4784 	}
4785 out:
4786 	btrfs_end_transaction(trans);
4787 	btrfs_btree_balance_dirty(root->fs_info);
4788 
4789 	return err;
4790 }
4791 
4792 /*
4793  * Return this if we need to call truncate_block for the last bit of the
4794  * truncate.
4795  */
4796 #define NEED_TRUNCATE_BLOCK 1
4797 
4798 /*
4799  * this can truncate away extent items, csum items and directory items.
4800  * It starts at a high offset and removes keys until it can't find
4801  * any higher than new_size
4802  *
4803  * csum items that cross the new i_size are truncated to the new size
4804  * as well.
4805  *
4806  * min_type is the minimum key type to truncate down to.  If set to 0, this
4807  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4808  */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)4809 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4810 			       struct btrfs_root *root,
4811 			       struct inode *inode,
4812 			       u64 new_size, u32 min_type)
4813 {
4814 	struct btrfs_fs_info *fs_info = root->fs_info;
4815 	struct btrfs_path *path;
4816 	struct extent_buffer *leaf;
4817 	struct btrfs_file_extent_item *fi;
4818 	struct btrfs_key key;
4819 	struct btrfs_key found_key;
4820 	u64 extent_start = 0;
4821 	u64 extent_num_bytes = 0;
4822 	u64 extent_offset = 0;
4823 	u64 item_end = 0;
4824 	u64 last_size = new_size;
4825 	u32 found_type = (u8)-1;
4826 	int found_extent;
4827 	int del_item;
4828 	int pending_del_nr = 0;
4829 	int pending_del_slot = 0;
4830 	int extent_type = -1;
4831 	int ret;
4832 	u64 ino = btrfs_ino(BTRFS_I(inode));
4833 	u64 bytes_deleted = 0;
4834 	bool be_nice = false;
4835 	bool should_throttle = false;
4836 	const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4837 	struct extent_state *cached_state = NULL;
4838 
4839 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4840 
4841 	/*
4842 	 * for non-free space inodes and ref cows, we want to back off from
4843 	 * time to time
4844 	 */
4845 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4846 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4847 		be_nice = true;
4848 
4849 	path = btrfs_alloc_path();
4850 	if (!path)
4851 		return -ENOMEM;
4852 	path->reada = READA_BACK;
4853 
4854 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4855 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4856 				 &cached_state);
4857 
4858 	/*
4859 	 * We want to drop from the next block forward in case this new size is
4860 	 * not block aligned since we will be keeping the last block of the
4861 	 * extent just the way it is.
4862 	 */
4863 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4864 	    root == fs_info->tree_root)
4865 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4866 					fs_info->sectorsize),
4867 					(u64)-1, 0);
4868 
4869 	/*
4870 	 * This function is also used to drop the items in the log tree before
4871 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4872 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4873 	 * items.
4874 	 */
4875 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4876 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4877 
4878 	key.objectid = ino;
4879 	key.offset = (u64)-1;
4880 	key.type = (u8)-1;
4881 
4882 search_again:
4883 	/*
4884 	 * with a 16K leaf size and 128MB extents, you can actually queue
4885 	 * up a huge file in a single leaf.  Most of the time that
4886 	 * bytes_deleted is > 0, it will be huge by the time we get here
4887 	 */
4888 	if (be_nice && bytes_deleted > SZ_32M &&
4889 	    btrfs_should_end_transaction(trans)) {
4890 		ret = -EAGAIN;
4891 		goto out;
4892 	}
4893 
4894 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4895 	if (ret < 0)
4896 		goto out;
4897 
4898 	if (ret > 0) {
4899 		ret = 0;
4900 		/* there are no items in the tree for us to truncate, we're
4901 		 * done
4902 		 */
4903 		if (path->slots[0] == 0)
4904 			goto out;
4905 		path->slots[0]--;
4906 	}
4907 
4908 	while (1) {
4909 		fi = NULL;
4910 		leaf = path->nodes[0];
4911 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4912 		found_type = found_key.type;
4913 
4914 		if (found_key.objectid != ino)
4915 			break;
4916 
4917 		if (found_type < min_type)
4918 			break;
4919 
4920 		item_end = found_key.offset;
4921 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4922 			fi = btrfs_item_ptr(leaf, path->slots[0],
4923 					    struct btrfs_file_extent_item);
4924 			extent_type = btrfs_file_extent_type(leaf, fi);
4925 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4926 				item_end +=
4927 				    btrfs_file_extent_num_bytes(leaf, fi);
4928 
4929 				trace_btrfs_truncate_show_fi_regular(
4930 					BTRFS_I(inode), leaf, fi,
4931 					found_key.offset);
4932 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4933 				item_end += btrfs_file_extent_ram_bytes(leaf,
4934 									fi);
4935 
4936 				trace_btrfs_truncate_show_fi_inline(
4937 					BTRFS_I(inode), leaf, fi, path->slots[0],
4938 					found_key.offset);
4939 			}
4940 			item_end--;
4941 		}
4942 		if (found_type > min_type) {
4943 			del_item = 1;
4944 		} else {
4945 			if (item_end < new_size)
4946 				break;
4947 			if (found_key.offset >= new_size)
4948 				del_item = 1;
4949 			else
4950 				del_item = 0;
4951 		}
4952 		found_extent = 0;
4953 		/* FIXME, shrink the extent if the ref count is only 1 */
4954 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4955 			goto delete;
4956 
4957 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4958 			u64 num_dec;
4959 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4960 			if (!del_item) {
4961 				u64 orig_num_bytes =
4962 					btrfs_file_extent_num_bytes(leaf, fi);
4963 				extent_num_bytes = ALIGN(new_size -
4964 						found_key.offset,
4965 						fs_info->sectorsize);
4966 				btrfs_set_file_extent_num_bytes(leaf, fi,
4967 							 extent_num_bytes);
4968 				num_dec = (orig_num_bytes -
4969 					   extent_num_bytes);
4970 				if (test_bit(BTRFS_ROOT_REF_COWS,
4971 					     &root->state) &&
4972 				    extent_start != 0)
4973 					inode_sub_bytes(inode, num_dec);
4974 				btrfs_mark_buffer_dirty(leaf);
4975 			} else {
4976 				extent_num_bytes =
4977 					btrfs_file_extent_disk_num_bytes(leaf,
4978 									 fi);
4979 				extent_offset = found_key.offset -
4980 					btrfs_file_extent_offset(leaf, fi);
4981 
4982 				/* FIXME blocksize != 4096 */
4983 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4984 				if (extent_start != 0) {
4985 					found_extent = 1;
4986 					if (test_bit(BTRFS_ROOT_REF_COWS,
4987 						     &root->state))
4988 						inode_sub_bytes(inode, num_dec);
4989 				}
4990 			}
4991 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4992 			/*
4993 			 * we can't truncate inline items that have had
4994 			 * special encodings
4995 			 */
4996 			if (!del_item &&
4997 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4998 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4999 			    btrfs_file_extent_compression(leaf, fi) == 0) {
5000 				u32 size = (u32)(new_size - found_key.offset);
5001 
5002 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
5003 				size = btrfs_file_extent_calc_inline_size(size);
5004 				btrfs_truncate_item(path, size, 1);
5005 			} else if (!del_item) {
5006 				/*
5007 				 * We have to bail so the last_size is set to
5008 				 * just before this extent.
5009 				 */
5010 				ret = NEED_TRUNCATE_BLOCK;
5011 				break;
5012 			}
5013 
5014 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
5015 				inode_sub_bytes(inode, item_end + 1 - new_size);
5016 		}
5017 delete:
5018 		if (del_item)
5019 			last_size = found_key.offset;
5020 		else
5021 			last_size = new_size;
5022 		if (del_item) {
5023 			if (!pending_del_nr) {
5024 				/* no pending yet, add ourselves */
5025 				pending_del_slot = path->slots[0];
5026 				pending_del_nr = 1;
5027 			} else if (pending_del_nr &&
5028 				   path->slots[0] + 1 == pending_del_slot) {
5029 				/* hop on the pending chunk */
5030 				pending_del_nr++;
5031 				pending_del_slot = path->slots[0];
5032 			} else {
5033 				BUG();
5034 			}
5035 		} else {
5036 			break;
5037 		}
5038 		should_throttle = false;
5039 
5040 		if (found_extent &&
5041 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5042 		     root == fs_info->tree_root)) {
5043 			struct btrfs_ref ref = { 0 };
5044 
5045 			bytes_deleted += extent_num_bytes;
5046 
5047 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
5048 					extent_start, extent_num_bytes, 0);
5049 			ref.real_root = root->root_key.objectid;
5050 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
5051 					ino, extent_offset);
5052 			ret = btrfs_free_extent(trans, &ref);
5053 			if (ret) {
5054 				btrfs_abort_transaction(trans, ret);
5055 				break;
5056 			}
5057 			if (be_nice) {
5058 				if (btrfs_should_throttle_delayed_refs(trans))
5059 					should_throttle = true;
5060 			}
5061 		}
5062 
5063 		if (found_type == BTRFS_INODE_ITEM_KEY)
5064 			break;
5065 
5066 		if (path->slots[0] == 0 ||
5067 		    path->slots[0] != pending_del_slot ||
5068 		    should_throttle) {
5069 			if (pending_del_nr) {
5070 				ret = btrfs_del_items(trans, root, path,
5071 						pending_del_slot,
5072 						pending_del_nr);
5073 				if (ret) {
5074 					btrfs_abort_transaction(trans, ret);
5075 					break;
5076 				}
5077 				pending_del_nr = 0;
5078 			}
5079 			btrfs_release_path(path);
5080 
5081 			/*
5082 			 * We can generate a lot of delayed refs, so we need to
5083 			 * throttle every once and a while and make sure we're
5084 			 * adding enough space to keep up with the work we are
5085 			 * generating.  Since we hold a transaction here we
5086 			 * can't flush, and we don't want to FLUSH_LIMIT because
5087 			 * we could have generated too many delayed refs to
5088 			 * actually allocate, so just bail if we're short and
5089 			 * let the normal reservation dance happen higher up.
5090 			 */
5091 			if (should_throttle) {
5092 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
5093 							BTRFS_RESERVE_NO_FLUSH);
5094 				if (ret) {
5095 					ret = -EAGAIN;
5096 					break;
5097 				}
5098 			}
5099 			goto search_again;
5100 		} else {
5101 			path->slots[0]--;
5102 		}
5103 	}
5104 out:
5105 	if (ret >= 0 && pending_del_nr) {
5106 		int err;
5107 
5108 		err = btrfs_del_items(trans, root, path, pending_del_slot,
5109 				      pending_del_nr);
5110 		if (err) {
5111 			btrfs_abort_transaction(trans, err);
5112 			ret = err;
5113 		}
5114 	}
5115 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5116 		ASSERT(last_size >= new_size);
5117 		if (!ret && last_size > new_size)
5118 			last_size = new_size;
5119 		btrfs_ordered_update_i_size(inode, last_size, NULL);
5120 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
5121 				     (u64)-1, &cached_state);
5122 	}
5123 
5124 	btrfs_free_path(path);
5125 	return ret;
5126 }
5127 
5128 /*
5129  * btrfs_truncate_block - read, zero a chunk and write a block
5130  * @inode - inode that we're zeroing
5131  * @from - the offset to start zeroing
5132  * @len - the length to zero, 0 to zero the entire range respective to the
5133  *	offset
5134  * @front - zero up to the offset instead of from the offset on
5135  *
5136  * This will find the block for the "from" offset and cow the block and zero the
5137  * part we want to zero.  This is used with truncate and hole punching.
5138  */
btrfs_truncate_block(struct inode * inode,loff_t from,loff_t len,int front)5139 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
5140 			int front)
5141 {
5142 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5143 	struct address_space *mapping = inode->i_mapping;
5144 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5145 	struct btrfs_ordered_extent *ordered;
5146 	struct extent_state *cached_state = NULL;
5147 	struct extent_changeset *data_reserved = NULL;
5148 	char *kaddr;
5149 	bool only_release_metadata = false;
5150 	u32 blocksize = fs_info->sectorsize;
5151 	pgoff_t index = from >> PAGE_SHIFT;
5152 	unsigned offset = from & (blocksize - 1);
5153 	struct page *page;
5154 	gfp_t mask = btrfs_alloc_write_mask(mapping);
5155 	size_t write_bytes = blocksize;
5156 	int ret = 0;
5157 	u64 block_start;
5158 	u64 block_end;
5159 
5160 	if (IS_ALIGNED(offset, blocksize) &&
5161 	    (!len || IS_ALIGNED(len, blocksize)))
5162 		goto out;
5163 
5164 	block_start = round_down(from, blocksize);
5165 	block_end = block_start + blocksize - 1;
5166 
5167 
5168 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
5169 					  blocksize);
5170 	if (ret < 0) {
5171 		if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
5172 					      BTRFS_INODE_PREALLOC)) &&
5173 		    btrfs_check_can_nocow(BTRFS_I(inode), block_start,
5174 					  &write_bytes) > 0) {
5175 			/* For nocow case, no need to reserve data space */
5176 			only_release_metadata = true;
5177 		} else {
5178 			goto out;
5179 		}
5180 	}
5181 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
5182 	if (ret < 0) {
5183 		if (!only_release_metadata)
5184 			btrfs_free_reserved_data_space(inode, data_reserved,
5185 					block_start, blocksize);
5186 		goto out;
5187 	}
5188 again:
5189 	page = find_or_create_page(mapping, index, mask);
5190 	if (!page) {
5191 		btrfs_delalloc_release_space(inode, data_reserved,
5192 					     block_start, blocksize, true);
5193 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
5194 		ret = -ENOMEM;
5195 		goto out;
5196 	}
5197 
5198 	if (!PageUptodate(page)) {
5199 		ret = btrfs_readpage(NULL, page);
5200 		lock_page(page);
5201 		if (page->mapping != mapping) {
5202 			unlock_page(page);
5203 			put_page(page);
5204 			goto again;
5205 		}
5206 		if (!PageUptodate(page)) {
5207 			ret = -EIO;
5208 			goto out_unlock;
5209 		}
5210 	}
5211 	wait_on_page_writeback(page);
5212 
5213 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
5214 	set_page_extent_mapped(page);
5215 
5216 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
5217 	if (ordered) {
5218 		unlock_extent_cached(io_tree, block_start, block_end,
5219 				     &cached_state);
5220 		unlock_page(page);
5221 		put_page(page);
5222 		btrfs_start_ordered_extent(inode, ordered, 1);
5223 		btrfs_put_ordered_extent(ordered);
5224 		goto again;
5225 	}
5226 
5227 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
5228 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5229 			 0, 0, &cached_state);
5230 
5231 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5232 					&cached_state);
5233 	if (ret) {
5234 		unlock_extent_cached(io_tree, block_start, block_end,
5235 				     &cached_state);
5236 		goto out_unlock;
5237 	}
5238 
5239 	if (offset != blocksize) {
5240 		if (!len)
5241 			len = blocksize - offset;
5242 		kaddr = kmap(page);
5243 		if (front)
5244 			memset(kaddr + (block_start - page_offset(page)),
5245 				0, offset);
5246 		else
5247 			memset(kaddr + (block_start - page_offset(page)) +  offset,
5248 				0, len);
5249 		flush_dcache_page(page);
5250 		kunmap(page);
5251 	}
5252 	ClearPageChecked(page);
5253 	set_page_dirty(page);
5254 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
5255 
5256 	if (only_release_metadata)
5257 		set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
5258 				block_end, EXTENT_NORESERVE, NULL, NULL,
5259 				GFP_NOFS);
5260 
5261 out_unlock:
5262 	if (ret) {
5263 		if (only_release_metadata)
5264 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
5265 					blocksize, true);
5266 		else
5267 			btrfs_delalloc_release_space(inode, data_reserved,
5268 					block_start, blocksize, true);
5269 	}
5270 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
5271 	unlock_page(page);
5272 	put_page(page);
5273 out:
5274 	if (only_release_metadata)
5275 		btrfs_end_write_no_snapshotting(BTRFS_I(inode)->root);
5276 	extent_changeset_free(data_reserved);
5277 	return ret;
5278 }
5279 
maybe_insert_hole(struct btrfs_root * root,struct inode * inode,u64 offset,u64 len)5280 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
5281 			     u64 offset, u64 len)
5282 {
5283 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5284 	struct btrfs_trans_handle *trans;
5285 	int ret;
5286 
5287 	/*
5288 	 * Still need to make sure the inode looks like it's been updated so
5289 	 * that any holes get logged if we fsync.
5290 	 */
5291 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5292 		BTRFS_I(inode)->last_trans = fs_info->generation;
5293 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
5294 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5295 		return 0;
5296 	}
5297 
5298 	/*
5299 	 * 1 - for the one we're dropping
5300 	 * 1 - for the one we're adding
5301 	 * 1 - for updating the inode.
5302 	 */
5303 	trans = btrfs_start_transaction(root, 3);
5304 	if (IS_ERR(trans))
5305 		return PTR_ERR(trans);
5306 
5307 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5308 	if (ret) {
5309 		btrfs_abort_transaction(trans, ret);
5310 		btrfs_end_transaction(trans);
5311 		return ret;
5312 	}
5313 
5314 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5315 			offset, 0, 0, len, 0, len, 0, 0, 0);
5316 	if (ret)
5317 		btrfs_abort_transaction(trans, ret);
5318 	else
5319 		btrfs_update_inode(trans, root, inode);
5320 	btrfs_end_transaction(trans);
5321 	return ret;
5322 }
5323 
5324 /*
5325  * This function puts in dummy file extents for the area we're creating a hole
5326  * for.  So if we are truncating this file to a larger size we need to insert
5327  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5328  * the range between oldsize and size
5329  */
btrfs_cont_expand(struct inode * inode,loff_t oldsize,loff_t size)5330 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5331 {
5332 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5333 	struct btrfs_root *root = BTRFS_I(inode)->root;
5334 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5335 	struct extent_map *em = NULL;
5336 	struct extent_state *cached_state = NULL;
5337 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5338 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5339 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5340 	u64 last_byte;
5341 	u64 cur_offset;
5342 	u64 hole_size;
5343 	int err = 0;
5344 
5345 	/*
5346 	 * If our size started in the middle of a block we need to zero out the
5347 	 * rest of the block before we expand the i_size, otherwise we could
5348 	 * expose stale data.
5349 	 */
5350 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5351 	if (err)
5352 		return err;
5353 
5354 	if (size <= hole_start)
5355 		return 0;
5356 
5357 	btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start,
5358 					   block_end - 1, &cached_state);
5359 	cur_offset = hole_start;
5360 	while (1) {
5361 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5362 				block_end - cur_offset, 0);
5363 		if (IS_ERR(em)) {
5364 			err = PTR_ERR(em);
5365 			em = NULL;
5366 			break;
5367 		}
5368 		last_byte = min(extent_map_end(em), block_end);
5369 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5370 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5371 			struct extent_map *hole_em;
5372 			hole_size = last_byte - cur_offset;
5373 
5374 			err = maybe_insert_hole(root, inode, cur_offset,
5375 						hole_size);
5376 			if (err)
5377 				break;
5378 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5379 						cur_offset + hole_size - 1, 0);
5380 			hole_em = alloc_extent_map();
5381 			if (!hole_em) {
5382 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5383 					&BTRFS_I(inode)->runtime_flags);
5384 				goto next;
5385 			}
5386 			hole_em->start = cur_offset;
5387 			hole_em->len = hole_size;
5388 			hole_em->orig_start = cur_offset;
5389 
5390 			hole_em->block_start = EXTENT_MAP_HOLE;
5391 			hole_em->block_len = 0;
5392 			hole_em->orig_block_len = 0;
5393 			hole_em->ram_bytes = hole_size;
5394 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
5395 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5396 			hole_em->generation = fs_info->generation;
5397 
5398 			while (1) {
5399 				write_lock(&em_tree->lock);
5400 				err = add_extent_mapping(em_tree, hole_em, 1);
5401 				write_unlock(&em_tree->lock);
5402 				if (err != -EEXIST)
5403 					break;
5404 				btrfs_drop_extent_cache(BTRFS_I(inode),
5405 							cur_offset,
5406 							cur_offset +
5407 							hole_size - 1, 0);
5408 			}
5409 			free_extent_map(hole_em);
5410 		}
5411 next:
5412 		free_extent_map(em);
5413 		em = NULL;
5414 		cur_offset = last_byte;
5415 		if (cur_offset >= block_end)
5416 			break;
5417 	}
5418 	free_extent_map(em);
5419 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5420 	return err;
5421 }
5422 
btrfs_setsize(struct inode * inode,struct iattr * attr)5423 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5424 {
5425 	struct btrfs_root *root = BTRFS_I(inode)->root;
5426 	struct btrfs_trans_handle *trans;
5427 	loff_t oldsize = i_size_read(inode);
5428 	loff_t newsize = attr->ia_size;
5429 	int mask = attr->ia_valid;
5430 	int ret;
5431 
5432 	/*
5433 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5434 	 * special case where we need to update the times despite not having
5435 	 * these flags set.  For all other operations the VFS set these flags
5436 	 * explicitly if it wants a timestamp update.
5437 	 */
5438 	if (newsize != oldsize) {
5439 		inode_inc_iversion(inode);
5440 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5441 			inode->i_ctime = inode->i_mtime =
5442 				current_time(inode);
5443 	}
5444 
5445 	if (newsize > oldsize) {
5446 		/*
5447 		 * Don't do an expanding truncate while snapshotting is ongoing.
5448 		 * This is to ensure the snapshot captures a fully consistent
5449 		 * state of this file - if the snapshot captures this expanding
5450 		 * truncation, it must capture all writes that happened before
5451 		 * this truncation.
5452 		 */
5453 		btrfs_wait_for_snapshot_creation(root);
5454 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5455 		if (ret) {
5456 			btrfs_end_write_no_snapshotting(root);
5457 			return ret;
5458 		}
5459 
5460 		trans = btrfs_start_transaction(root, 1);
5461 		if (IS_ERR(trans)) {
5462 			btrfs_end_write_no_snapshotting(root);
5463 			return PTR_ERR(trans);
5464 		}
5465 
5466 		i_size_write(inode, newsize);
5467 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5468 		pagecache_isize_extended(inode, oldsize, newsize);
5469 		ret = btrfs_update_inode(trans, root, inode);
5470 		btrfs_end_write_no_snapshotting(root);
5471 		btrfs_end_transaction(trans);
5472 	} else {
5473 
5474 		/*
5475 		 * We're truncating a file that used to have good data down to
5476 		 * zero. Make sure it gets into the ordered flush list so that
5477 		 * any new writes get down to disk quickly.
5478 		 */
5479 		if (newsize == 0)
5480 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5481 				&BTRFS_I(inode)->runtime_flags);
5482 
5483 		truncate_setsize(inode, newsize);
5484 
5485 		/* Disable nonlocked read DIO to avoid the endless truncate */
5486 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5487 		inode_dio_wait(inode);
5488 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5489 
5490 		ret = btrfs_truncate(inode, newsize == oldsize);
5491 		if (ret && inode->i_nlink) {
5492 			int err;
5493 
5494 			/*
5495 			 * Truncate failed, so fix up the in-memory size. We
5496 			 * adjusted disk_i_size down as we removed extents, so
5497 			 * wait for disk_i_size to be stable and then update the
5498 			 * in-memory size to match.
5499 			 */
5500 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5501 			if (err)
5502 				return err;
5503 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5504 		}
5505 	}
5506 
5507 	return ret;
5508 }
5509 
btrfs_setattr(struct dentry * dentry,struct iattr * attr)5510 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5511 {
5512 	struct inode *inode = d_inode(dentry);
5513 	struct btrfs_root *root = BTRFS_I(inode)->root;
5514 	int err;
5515 
5516 	if (btrfs_root_readonly(root))
5517 		return -EROFS;
5518 
5519 	err = setattr_prepare(dentry, attr);
5520 	if (err)
5521 		return err;
5522 
5523 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5524 		err = btrfs_setsize(inode, attr);
5525 		if (err)
5526 			return err;
5527 	}
5528 
5529 	if (attr->ia_valid) {
5530 		setattr_copy(inode, attr);
5531 		inode_inc_iversion(inode);
5532 		err = btrfs_dirty_inode(inode);
5533 
5534 		if (!err && attr->ia_valid & ATTR_MODE)
5535 			err = posix_acl_chmod(inode, inode->i_mode);
5536 	}
5537 
5538 	return err;
5539 }
5540 
5541 /*
5542  * While truncating the inode pages during eviction, we get the VFS calling
5543  * btrfs_invalidatepage() against each page of the inode. This is slow because
5544  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5545  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5546  * extent_state structures over and over, wasting lots of time.
5547  *
5548  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5549  * those expensive operations on a per page basis and do only the ordered io
5550  * finishing, while we release here the extent_map and extent_state structures,
5551  * without the excessive merging and splitting.
5552  */
evict_inode_truncate_pages(struct inode * inode)5553 static void evict_inode_truncate_pages(struct inode *inode)
5554 {
5555 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5556 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5557 	struct rb_node *node;
5558 
5559 	ASSERT(inode->i_state & I_FREEING);
5560 	truncate_inode_pages_final(&inode->i_data);
5561 
5562 	write_lock(&map_tree->lock);
5563 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5564 		struct extent_map *em;
5565 
5566 		node = rb_first_cached(&map_tree->map);
5567 		em = rb_entry(node, struct extent_map, rb_node);
5568 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5569 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5570 		remove_extent_mapping(map_tree, em);
5571 		free_extent_map(em);
5572 		if (need_resched()) {
5573 			write_unlock(&map_tree->lock);
5574 			cond_resched();
5575 			write_lock(&map_tree->lock);
5576 		}
5577 	}
5578 	write_unlock(&map_tree->lock);
5579 
5580 	/*
5581 	 * Keep looping until we have no more ranges in the io tree.
5582 	 * We can have ongoing bios started by readpages (called from readahead)
5583 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5584 	 * still in progress (unlocked the pages in the bio but did not yet
5585 	 * unlocked the ranges in the io tree). Therefore this means some
5586 	 * ranges can still be locked and eviction started because before
5587 	 * submitting those bios, which are executed by a separate task (work
5588 	 * queue kthread), inode references (inode->i_count) were not taken
5589 	 * (which would be dropped in the end io callback of each bio).
5590 	 * Therefore here we effectively end up waiting for those bios and
5591 	 * anyone else holding locked ranges without having bumped the inode's
5592 	 * reference count - if we don't do it, when they access the inode's
5593 	 * io_tree to unlock a range it may be too late, leading to an
5594 	 * use-after-free issue.
5595 	 */
5596 	spin_lock(&io_tree->lock);
5597 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5598 		struct extent_state *state;
5599 		struct extent_state *cached_state = NULL;
5600 		u64 start;
5601 		u64 end;
5602 		unsigned state_flags;
5603 
5604 		node = rb_first(&io_tree->state);
5605 		state = rb_entry(node, struct extent_state, rb_node);
5606 		start = state->start;
5607 		end = state->end;
5608 		state_flags = state->state;
5609 		spin_unlock(&io_tree->lock);
5610 
5611 		lock_extent_bits(io_tree, start, end, &cached_state);
5612 
5613 		/*
5614 		 * If still has DELALLOC flag, the extent didn't reach disk,
5615 		 * and its reserved space won't be freed by delayed_ref.
5616 		 * So we need to free its reserved space here.
5617 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5618 		 *
5619 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5620 		 */
5621 		if (state_flags & EXTENT_DELALLOC)
5622 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5623 
5624 		clear_extent_bit(io_tree, start, end,
5625 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5626 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5627 				 &cached_state);
5628 
5629 		cond_resched();
5630 		spin_lock(&io_tree->lock);
5631 	}
5632 	spin_unlock(&io_tree->lock);
5633 }
5634 
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5635 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5636 							struct btrfs_block_rsv *rsv)
5637 {
5638 	struct btrfs_fs_info *fs_info = root->fs_info;
5639 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5640 	struct btrfs_trans_handle *trans;
5641 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5642 	int ret;
5643 
5644 	/*
5645 	 * Eviction should be taking place at some place safe because of our
5646 	 * delayed iputs.  However the normal flushing code will run delayed
5647 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5648 	 *
5649 	 * We reserve the delayed_refs_extra here again because we can't use
5650 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5651 	 * above.  We reserve our extra bit here because we generate a ton of
5652 	 * delayed refs activity by truncating.
5653 	 *
5654 	 * If we cannot make our reservation we'll attempt to steal from the
5655 	 * global reserve, because we really want to be able to free up space.
5656 	 */
5657 	ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5658 				     BTRFS_RESERVE_FLUSH_EVICT);
5659 	if (ret) {
5660 		/*
5661 		 * Try to steal from the global reserve if there is space for
5662 		 * it.
5663 		 */
5664 		if (btrfs_check_space_for_delayed_refs(fs_info) ||
5665 		    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5666 			btrfs_warn(fs_info,
5667 				   "could not allocate space for delete; will truncate on mount");
5668 			return ERR_PTR(-ENOSPC);
5669 		}
5670 		delayed_refs_extra = 0;
5671 	}
5672 
5673 	trans = btrfs_join_transaction(root);
5674 	if (IS_ERR(trans))
5675 		return trans;
5676 
5677 	if (delayed_refs_extra) {
5678 		trans->block_rsv = &fs_info->trans_block_rsv;
5679 		trans->bytes_reserved = delayed_refs_extra;
5680 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5681 					delayed_refs_extra, 1);
5682 	}
5683 	return trans;
5684 }
5685 
btrfs_evict_inode(struct inode * inode)5686 void btrfs_evict_inode(struct inode *inode)
5687 {
5688 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5689 	struct btrfs_trans_handle *trans;
5690 	struct btrfs_root *root = BTRFS_I(inode)->root;
5691 	struct btrfs_block_rsv *rsv;
5692 	int ret;
5693 
5694 	trace_btrfs_inode_evict(inode);
5695 
5696 	if (!root) {
5697 		clear_inode(inode);
5698 		return;
5699 	}
5700 
5701 	evict_inode_truncate_pages(inode);
5702 
5703 	if (inode->i_nlink &&
5704 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5705 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5706 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5707 		goto no_delete;
5708 
5709 	if (is_bad_inode(inode))
5710 		goto no_delete;
5711 
5712 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5713 
5714 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5715 		goto no_delete;
5716 
5717 	if (inode->i_nlink > 0) {
5718 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5719 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5720 		goto no_delete;
5721 	}
5722 
5723 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5724 	if (ret)
5725 		goto no_delete;
5726 
5727 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5728 	if (!rsv)
5729 		goto no_delete;
5730 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5731 	rsv->failfast = 1;
5732 
5733 	btrfs_i_size_write(BTRFS_I(inode), 0);
5734 
5735 	while (1) {
5736 		trans = evict_refill_and_join(root, rsv);
5737 		if (IS_ERR(trans))
5738 			goto free_rsv;
5739 
5740 		trans->block_rsv = rsv;
5741 
5742 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5743 		trans->block_rsv = &fs_info->trans_block_rsv;
5744 		btrfs_end_transaction(trans);
5745 		btrfs_btree_balance_dirty(fs_info);
5746 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5747 			goto free_rsv;
5748 		else if (!ret)
5749 			break;
5750 	}
5751 
5752 	/*
5753 	 * Errors here aren't a big deal, it just means we leave orphan items in
5754 	 * the tree. They will be cleaned up on the next mount. If the inode
5755 	 * number gets reused, cleanup deletes the orphan item without doing
5756 	 * anything, and unlink reuses the existing orphan item.
5757 	 *
5758 	 * If it turns out that we are dropping too many of these, we might want
5759 	 * to add a mechanism for retrying these after a commit.
5760 	 */
5761 	trans = evict_refill_and_join(root, rsv);
5762 	if (!IS_ERR(trans)) {
5763 		trans->block_rsv = rsv;
5764 		btrfs_orphan_del(trans, BTRFS_I(inode));
5765 		trans->block_rsv = &fs_info->trans_block_rsv;
5766 		btrfs_end_transaction(trans);
5767 	}
5768 
5769 	if (!(root == fs_info->tree_root ||
5770 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5771 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5772 
5773 free_rsv:
5774 	btrfs_free_block_rsv(fs_info, rsv);
5775 no_delete:
5776 	/*
5777 	 * If we didn't successfully delete, the orphan item will still be in
5778 	 * the tree and we'll retry on the next mount. Again, we might also want
5779 	 * to retry these periodically in the future.
5780 	 */
5781 	btrfs_remove_delayed_node(BTRFS_I(inode));
5782 	clear_inode(inode);
5783 }
5784 
5785 /*
5786  * Return the key found in the dir entry in the location pointer, fill @type
5787  * with BTRFS_FT_*, and return 0.
5788  *
5789  * If no dir entries were found, returns -ENOENT.
5790  * If found a corrupted location in dir entry, returns -EUCLEAN.
5791  */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5792 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5793 			       struct btrfs_key *location, u8 *type)
5794 {
5795 	const char *name = dentry->d_name.name;
5796 	int namelen = dentry->d_name.len;
5797 	struct btrfs_dir_item *di;
5798 	struct btrfs_path *path;
5799 	struct btrfs_root *root = BTRFS_I(dir)->root;
5800 	int ret = 0;
5801 
5802 	path = btrfs_alloc_path();
5803 	if (!path)
5804 		return -ENOMEM;
5805 
5806 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5807 			name, namelen, 0);
5808 	if (IS_ERR_OR_NULL(di)) {
5809 		ret = di ? PTR_ERR(di) : -ENOENT;
5810 		goto out;
5811 	}
5812 
5813 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5814 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5815 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5816 		ret = -EUCLEAN;
5817 		btrfs_warn(root->fs_info,
5818 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5819 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5820 			   location->objectid, location->type, location->offset);
5821 	}
5822 	if (!ret)
5823 		*type = btrfs_dir_type(path->nodes[0], di);
5824 out:
5825 	btrfs_free_path(path);
5826 	return ret;
5827 }
5828 
5829 /*
5830  * when we hit a tree root in a directory, the btrfs part of the inode
5831  * needs to be changed to reflect the root directory of the tree root.  This
5832  * is kind of like crossing a mount point.
5833  */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5834 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5835 				    struct inode *dir,
5836 				    struct dentry *dentry,
5837 				    struct btrfs_key *location,
5838 				    struct btrfs_root **sub_root)
5839 {
5840 	struct btrfs_path *path;
5841 	struct btrfs_root *new_root;
5842 	struct btrfs_root_ref *ref;
5843 	struct extent_buffer *leaf;
5844 	struct btrfs_key key;
5845 	int ret;
5846 	int err = 0;
5847 
5848 	path = btrfs_alloc_path();
5849 	if (!path) {
5850 		err = -ENOMEM;
5851 		goto out;
5852 	}
5853 
5854 	err = -ENOENT;
5855 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5856 	key.type = BTRFS_ROOT_REF_KEY;
5857 	key.offset = location->objectid;
5858 
5859 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5860 	if (ret) {
5861 		if (ret < 0)
5862 			err = ret;
5863 		goto out;
5864 	}
5865 
5866 	leaf = path->nodes[0];
5867 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5868 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5869 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5870 		goto out;
5871 
5872 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5873 				   (unsigned long)(ref + 1),
5874 				   dentry->d_name.len);
5875 	if (ret)
5876 		goto out;
5877 
5878 	btrfs_release_path(path);
5879 
5880 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5881 	if (IS_ERR(new_root)) {
5882 		err = PTR_ERR(new_root);
5883 		goto out;
5884 	}
5885 
5886 	*sub_root = new_root;
5887 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5888 	location->type = BTRFS_INODE_ITEM_KEY;
5889 	location->offset = 0;
5890 	err = 0;
5891 out:
5892 	btrfs_free_path(path);
5893 	return err;
5894 }
5895 
inode_tree_add(struct inode * inode)5896 static void inode_tree_add(struct inode *inode)
5897 {
5898 	struct btrfs_root *root = BTRFS_I(inode)->root;
5899 	struct btrfs_inode *entry;
5900 	struct rb_node **p;
5901 	struct rb_node *parent;
5902 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5903 	u64 ino = btrfs_ino(BTRFS_I(inode));
5904 
5905 	if (inode_unhashed(inode))
5906 		return;
5907 	parent = NULL;
5908 	spin_lock(&root->inode_lock);
5909 	p = &root->inode_tree.rb_node;
5910 	while (*p) {
5911 		parent = *p;
5912 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5913 
5914 		if (ino < btrfs_ino(entry))
5915 			p = &parent->rb_left;
5916 		else if (ino > btrfs_ino(entry))
5917 			p = &parent->rb_right;
5918 		else {
5919 			WARN_ON(!(entry->vfs_inode.i_state &
5920 				  (I_WILL_FREE | I_FREEING)));
5921 			rb_replace_node(parent, new, &root->inode_tree);
5922 			RB_CLEAR_NODE(parent);
5923 			spin_unlock(&root->inode_lock);
5924 			return;
5925 		}
5926 	}
5927 	rb_link_node(new, parent, p);
5928 	rb_insert_color(new, &root->inode_tree);
5929 	spin_unlock(&root->inode_lock);
5930 }
5931 
inode_tree_del(struct inode * inode)5932 static void inode_tree_del(struct inode *inode)
5933 {
5934 	struct btrfs_root *root = BTRFS_I(inode)->root;
5935 	int empty = 0;
5936 
5937 	spin_lock(&root->inode_lock);
5938 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5939 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5940 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5941 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5942 	}
5943 	spin_unlock(&root->inode_lock);
5944 
5945 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5946 		spin_lock(&root->inode_lock);
5947 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5948 		spin_unlock(&root->inode_lock);
5949 		if (empty)
5950 			btrfs_add_dead_root(root);
5951 	}
5952 }
5953 
5954 
btrfs_init_locked_inode(struct inode * inode,void * p)5955 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5956 {
5957 	struct btrfs_iget_args *args = p;
5958 	inode->i_ino = args->location->objectid;
5959 	memcpy(&BTRFS_I(inode)->location, args->location,
5960 	       sizeof(*args->location));
5961 	BTRFS_I(inode)->root = args->root;
5962 	return 0;
5963 }
5964 
btrfs_find_actor(struct inode * inode,void * opaque)5965 static int btrfs_find_actor(struct inode *inode, void *opaque)
5966 {
5967 	struct btrfs_iget_args *args = opaque;
5968 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5969 		args->root == BTRFS_I(inode)->root;
5970 }
5971 
btrfs_iget_locked(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root)5972 static struct inode *btrfs_iget_locked(struct super_block *s,
5973 				       struct btrfs_key *location,
5974 				       struct btrfs_root *root)
5975 {
5976 	struct inode *inode;
5977 	struct btrfs_iget_args args;
5978 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5979 
5980 	args.location = location;
5981 	args.root = root;
5982 
5983 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5984 			     btrfs_init_locked_inode,
5985 			     (void *)&args);
5986 	return inode;
5987 }
5988 
5989 /* Get an inode object given its location and corresponding root.
5990  * Returns in *is_new if the inode was read from disk
5991  */
btrfs_iget_path(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new,struct btrfs_path * path)5992 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5993 			      struct btrfs_root *root, int *new,
5994 			      struct btrfs_path *path)
5995 {
5996 	struct inode *inode;
5997 
5998 	inode = btrfs_iget_locked(s, location, root);
5999 	if (!inode)
6000 		return ERR_PTR(-ENOMEM);
6001 
6002 	if (inode->i_state & I_NEW) {
6003 		int ret;
6004 
6005 		ret = btrfs_read_locked_inode(inode, path);
6006 		if (!ret) {
6007 			inode_tree_add(inode);
6008 			unlock_new_inode(inode);
6009 			if (new)
6010 				*new = 1;
6011 		} else {
6012 			iget_failed(inode);
6013 			/*
6014 			 * ret > 0 can come from btrfs_search_slot called by
6015 			 * btrfs_read_locked_inode, this means the inode item
6016 			 * was not found.
6017 			 */
6018 			if (ret > 0)
6019 				ret = -ENOENT;
6020 			inode = ERR_PTR(ret);
6021 		}
6022 	}
6023 
6024 	return inode;
6025 }
6026 
btrfs_iget(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new)6027 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
6028 			 struct btrfs_root *root, int *new)
6029 {
6030 	return btrfs_iget_path(s, location, root, new, NULL);
6031 }
6032 
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)6033 static struct inode *new_simple_dir(struct super_block *s,
6034 				    struct btrfs_key *key,
6035 				    struct btrfs_root *root)
6036 {
6037 	struct inode *inode = new_inode(s);
6038 
6039 	if (!inode)
6040 		return ERR_PTR(-ENOMEM);
6041 
6042 	BTRFS_I(inode)->root = root;
6043 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
6044 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
6045 
6046 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
6047 	inode->i_op = &btrfs_dir_ro_inode_operations;
6048 	inode->i_opflags &= ~IOP_XATTR;
6049 	inode->i_fop = &simple_dir_operations;
6050 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
6051 	inode->i_mtime = current_time(inode);
6052 	inode->i_atime = inode->i_mtime;
6053 	inode->i_ctime = inode->i_mtime;
6054 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6055 
6056 	return inode;
6057 }
6058 
btrfs_inode_type(struct inode * inode)6059 static inline u8 btrfs_inode_type(struct inode *inode)
6060 {
6061 	/*
6062 	 * Compile-time asserts that generic FT_* types still match
6063 	 * BTRFS_FT_* types
6064 	 */
6065 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
6066 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
6067 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
6068 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
6069 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
6070 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
6071 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
6072 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
6073 
6074 	return fs_umode_to_ftype(inode->i_mode);
6075 }
6076 
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)6077 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
6078 {
6079 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6080 	struct inode *inode;
6081 	struct btrfs_root *root = BTRFS_I(dir)->root;
6082 	struct btrfs_root *sub_root = root;
6083 	struct btrfs_key location;
6084 	u8 di_type = 0;
6085 	int index;
6086 	int ret = 0;
6087 
6088 	if (dentry->d_name.len > BTRFS_NAME_LEN)
6089 		return ERR_PTR(-ENAMETOOLONG);
6090 
6091 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
6092 	if (ret < 0)
6093 		return ERR_PTR(ret);
6094 
6095 	if (location.type == BTRFS_INODE_ITEM_KEY) {
6096 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
6097 		if (IS_ERR(inode))
6098 			return inode;
6099 
6100 		/* Do extra check against inode mode with di_type */
6101 		if (btrfs_inode_type(inode) != di_type) {
6102 			btrfs_crit(fs_info,
6103 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
6104 				  inode->i_mode, btrfs_inode_type(inode),
6105 				  di_type);
6106 			iput(inode);
6107 			return ERR_PTR(-EUCLEAN);
6108 		}
6109 		return inode;
6110 	}
6111 
6112 	index = srcu_read_lock(&fs_info->subvol_srcu);
6113 	ret = fixup_tree_root_location(fs_info, dir, dentry,
6114 				       &location, &sub_root);
6115 	if (ret < 0) {
6116 		if (ret != -ENOENT)
6117 			inode = ERR_PTR(ret);
6118 		else
6119 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
6120 	} else {
6121 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
6122 	}
6123 	srcu_read_unlock(&fs_info->subvol_srcu, index);
6124 
6125 	if (!IS_ERR(inode) && root != sub_root) {
6126 		down_read(&fs_info->cleanup_work_sem);
6127 		if (!sb_rdonly(inode->i_sb))
6128 			ret = btrfs_orphan_cleanup(sub_root);
6129 		up_read(&fs_info->cleanup_work_sem);
6130 		if (ret) {
6131 			iput(inode);
6132 			inode = ERR_PTR(ret);
6133 		}
6134 	}
6135 
6136 	return inode;
6137 }
6138 
btrfs_dentry_delete(const struct dentry * dentry)6139 static int btrfs_dentry_delete(const struct dentry *dentry)
6140 {
6141 	struct btrfs_root *root;
6142 	struct inode *inode = d_inode(dentry);
6143 
6144 	if (!inode && !IS_ROOT(dentry))
6145 		inode = d_inode(dentry->d_parent);
6146 
6147 	if (inode) {
6148 		root = BTRFS_I(inode)->root;
6149 		if (btrfs_root_refs(&root->root_item) == 0)
6150 			return 1;
6151 
6152 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6153 			return 1;
6154 	}
6155 	return 0;
6156 }
6157 
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)6158 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
6159 				   unsigned int flags)
6160 {
6161 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
6162 
6163 	if (inode == ERR_PTR(-ENOENT))
6164 		inode = NULL;
6165 	return d_splice_alias(inode, dentry);
6166 }
6167 
6168 /*
6169  * All this infrastructure exists because dir_emit can fault, and we are holding
6170  * the tree lock when doing readdir.  For now just allocate a buffer and copy
6171  * our information into that, and then dir_emit from the buffer.  This is
6172  * similar to what NFS does, only we don't keep the buffer around in pagecache
6173  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
6174  * copy_to_user_inatomic so we don't have to worry about page faulting under the
6175  * tree lock.
6176  */
btrfs_opendir(struct inode * inode,struct file * file)6177 static int btrfs_opendir(struct inode *inode, struct file *file)
6178 {
6179 	struct btrfs_file_private *private;
6180 
6181 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
6182 	if (!private)
6183 		return -ENOMEM;
6184 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
6185 	if (!private->filldir_buf) {
6186 		kfree(private);
6187 		return -ENOMEM;
6188 	}
6189 	file->private_data = private;
6190 	return 0;
6191 }
6192 
6193 struct dir_entry {
6194 	u64 ino;
6195 	u64 offset;
6196 	unsigned type;
6197 	int name_len;
6198 };
6199 
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)6200 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6201 {
6202 	while (entries--) {
6203 		struct dir_entry *entry = addr;
6204 		char *name = (char *)(entry + 1);
6205 
6206 		ctx->pos = get_unaligned(&entry->offset);
6207 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6208 					 get_unaligned(&entry->ino),
6209 					 get_unaligned(&entry->type)))
6210 			return 1;
6211 		addr += sizeof(struct dir_entry) +
6212 			get_unaligned(&entry->name_len);
6213 		ctx->pos++;
6214 	}
6215 	return 0;
6216 }
6217 
btrfs_real_readdir(struct file * file,struct dir_context * ctx)6218 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6219 {
6220 	struct inode *inode = file_inode(file);
6221 	struct btrfs_root *root = BTRFS_I(inode)->root;
6222 	struct btrfs_file_private *private = file->private_data;
6223 	struct btrfs_dir_item *di;
6224 	struct btrfs_key key;
6225 	struct btrfs_key found_key;
6226 	struct btrfs_path *path;
6227 	void *addr;
6228 	struct list_head ins_list;
6229 	struct list_head del_list;
6230 	int ret;
6231 	struct extent_buffer *leaf;
6232 	int slot;
6233 	char *name_ptr;
6234 	int name_len;
6235 	int entries = 0;
6236 	int total_len = 0;
6237 	bool put = false;
6238 	struct btrfs_key location;
6239 
6240 	if (!dir_emit_dots(file, ctx))
6241 		return 0;
6242 
6243 	path = btrfs_alloc_path();
6244 	if (!path)
6245 		return -ENOMEM;
6246 
6247 	addr = private->filldir_buf;
6248 	path->reada = READA_FORWARD;
6249 
6250 	INIT_LIST_HEAD(&ins_list);
6251 	INIT_LIST_HEAD(&del_list);
6252 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6253 
6254 again:
6255 	key.type = BTRFS_DIR_INDEX_KEY;
6256 	key.offset = ctx->pos;
6257 	key.objectid = btrfs_ino(BTRFS_I(inode));
6258 
6259 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6260 	if (ret < 0)
6261 		goto err;
6262 
6263 	while (1) {
6264 		struct dir_entry *entry;
6265 
6266 		leaf = path->nodes[0];
6267 		slot = path->slots[0];
6268 		if (slot >= btrfs_header_nritems(leaf)) {
6269 			ret = btrfs_next_leaf(root, path);
6270 			if (ret < 0)
6271 				goto err;
6272 			else if (ret > 0)
6273 				break;
6274 			continue;
6275 		}
6276 
6277 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6278 
6279 		if (found_key.objectid != key.objectid)
6280 			break;
6281 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
6282 			break;
6283 		if (found_key.offset < ctx->pos)
6284 			goto next;
6285 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6286 			goto next;
6287 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6288 		name_len = btrfs_dir_name_len(leaf, di);
6289 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
6290 		    PAGE_SIZE) {
6291 			btrfs_release_path(path);
6292 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6293 			if (ret)
6294 				goto nopos;
6295 			addr = private->filldir_buf;
6296 			entries = 0;
6297 			total_len = 0;
6298 			goto again;
6299 		}
6300 
6301 		entry = addr;
6302 		put_unaligned(name_len, &entry->name_len);
6303 		name_ptr = (char *)(entry + 1);
6304 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6305 				   name_len);
6306 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6307 				&entry->type);
6308 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6309 		put_unaligned(location.objectid, &entry->ino);
6310 		put_unaligned(found_key.offset, &entry->offset);
6311 		entries++;
6312 		addr += sizeof(struct dir_entry) + name_len;
6313 		total_len += sizeof(struct dir_entry) + name_len;
6314 next:
6315 		path->slots[0]++;
6316 	}
6317 	btrfs_release_path(path);
6318 
6319 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6320 	if (ret)
6321 		goto nopos;
6322 
6323 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6324 	if (ret)
6325 		goto nopos;
6326 
6327 	/*
6328 	 * Stop new entries from being returned after we return the last
6329 	 * entry.
6330 	 *
6331 	 * New directory entries are assigned a strictly increasing
6332 	 * offset.  This means that new entries created during readdir
6333 	 * are *guaranteed* to be seen in the future by that readdir.
6334 	 * This has broken buggy programs which operate on names as
6335 	 * they're returned by readdir.  Until we re-use freed offsets
6336 	 * we have this hack to stop new entries from being returned
6337 	 * under the assumption that they'll never reach this huge
6338 	 * offset.
6339 	 *
6340 	 * This is being careful not to overflow 32bit loff_t unless the
6341 	 * last entry requires it because doing so has broken 32bit apps
6342 	 * in the past.
6343 	 */
6344 	if (ctx->pos >= INT_MAX)
6345 		ctx->pos = LLONG_MAX;
6346 	else
6347 		ctx->pos = INT_MAX;
6348 nopos:
6349 	ret = 0;
6350 err:
6351 	if (put)
6352 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6353 	btrfs_free_path(path);
6354 	return ret;
6355 }
6356 
6357 /*
6358  * This is somewhat expensive, updating the tree every time the
6359  * inode changes.  But, it is most likely to find the inode in cache.
6360  * FIXME, needs more benchmarking...there are no reasons other than performance
6361  * to keep or drop this code.
6362  */
btrfs_dirty_inode(struct inode * inode)6363 static int btrfs_dirty_inode(struct inode *inode)
6364 {
6365 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6366 	struct btrfs_root *root = BTRFS_I(inode)->root;
6367 	struct btrfs_trans_handle *trans;
6368 	int ret;
6369 
6370 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6371 		return 0;
6372 
6373 	trans = btrfs_join_transaction(root);
6374 	if (IS_ERR(trans))
6375 		return PTR_ERR(trans);
6376 
6377 	ret = btrfs_update_inode(trans, root, inode);
6378 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6379 		/* whoops, lets try again with the full transaction */
6380 		btrfs_end_transaction(trans);
6381 		trans = btrfs_start_transaction(root, 1);
6382 		if (IS_ERR(trans))
6383 			return PTR_ERR(trans);
6384 
6385 		ret = btrfs_update_inode(trans, root, inode);
6386 	}
6387 	btrfs_end_transaction(trans);
6388 	if (BTRFS_I(inode)->delayed_node)
6389 		btrfs_balance_delayed_items(fs_info);
6390 
6391 	return ret;
6392 }
6393 
6394 /*
6395  * This is a copy of file_update_time.  We need this so we can return error on
6396  * ENOSPC for updating the inode in the case of file write and mmap writes.
6397  */
btrfs_update_time(struct inode * inode,struct timespec64 * now,int flags)6398 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6399 			     int flags)
6400 {
6401 	struct btrfs_root *root = BTRFS_I(inode)->root;
6402 	bool dirty = flags & ~S_VERSION;
6403 
6404 	if (btrfs_root_readonly(root))
6405 		return -EROFS;
6406 
6407 	if (flags & S_VERSION)
6408 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6409 	if (flags & S_CTIME)
6410 		inode->i_ctime = *now;
6411 	if (flags & S_MTIME)
6412 		inode->i_mtime = *now;
6413 	if (flags & S_ATIME)
6414 		inode->i_atime = *now;
6415 	return dirty ? btrfs_dirty_inode(inode) : 0;
6416 }
6417 
6418 /*
6419  * find the highest existing sequence number in a directory
6420  * and then set the in-memory index_cnt variable to reflect
6421  * free sequence numbers
6422  */
btrfs_set_inode_index_count(struct btrfs_inode * inode)6423 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6424 {
6425 	struct btrfs_root *root = inode->root;
6426 	struct btrfs_key key, found_key;
6427 	struct btrfs_path *path;
6428 	struct extent_buffer *leaf;
6429 	int ret;
6430 
6431 	key.objectid = btrfs_ino(inode);
6432 	key.type = BTRFS_DIR_INDEX_KEY;
6433 	key.offset = (u64)-1;
6434 
6435 	path = btrfs_alloc_path();
6436 	if (!path)
6437 		return -ENOMEM;
6438 
6439 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6440 	if (ret < 0)
6441 		goto out;
6442 	/* FIXME: we should be able to handle this */
6443 	if (ret == 0)
6444 		goto out;
6445 	ret = 0;
6446 
6447 	/*
6448 	 * MAGIC NUMBER EXPLANATION:
6449 	 * since we search a directory based on f_pos we have to start at 2
6450 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6451 	 * else has to start at 2
6452 	 */
6453 	if (path->slots[0] == 0) {
6454 		inode->index_cnt = 2;
6455 		goto out;
6456 	}
6457 
6458 	path->slots[0]--;
6459 
6460 	leaf = path->nodes[0];
6461 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6462 
6463 	if (found_key.objectid != btrfs_ino(inode) ||
6464 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6465 		inode->index_cnt = 2;
6466 		goto out;
6467 	}
6468 
6469 	inode->index_cnt = found_key.offset + 1;
6470 out:
6471 	btrfs_free_path(path);
6472 	return ret;
6473 }
6474 
6475 /*
6476  * helper to find a free sequence number in a given directory.  This current
6477  * code is very simple, later versions will do smarter things in the btree
6478  */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6479 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6480 {
6481 	int ret = 0;
6482 
6483 	if (dir->index_cnt == (u64)-1) {
6484 		ret = btrfs_inode_delayed_dir_index_count(dir);
6485 		if (ret) {
6486 			ret = btrfs_set_inode_index_count(dir);
6487 			if (ret)
6488 				return ret;
6489 		}
6490 	}
6491 
6492 	*index = dir->index_cnt;
6493 	dir->index_cnt++;
6494 
6495 	return ret;
6496 }
6497 
btrfs_insert_inode_locked(struct inode * inode)6498 static int btrfs_insert_inode_locked(struct inode *inode)
6499 {
6500 	struct btrfs_iget_args args;
6501 	args.location = &BTRFS_I(inode)->location;
6502 	args.root = BTRFS_I(inode)->root;
6503 
6504 	return insert_inode_locked4(inode,
6505 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6506 		   btrfs_find_actor, &args);
6507 }
6508 
6509 /*
6510  * Inherit flags from the parent inode.
6511  *
6512  * Currently only the compression flags and the cow flags are inherited.
6513  */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)6514 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6515 {
6516 	unsigned int flags;
6517 
6518 	if (!dir)
6519 		return;
6520 
6521 	flags = BTRFS_I(dir)->flags;
6522 
6523 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6524 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6525 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6526 	} else if (flags & BTRFS_INODE_COMPRESS) {
6527 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6528 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6529 	}
6530 
6531 	if (flags & BTRFS_INODE_NODATACOW) {
6532 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6533 		if (S_ISREG(inode->i_mode))
6534 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6535 	}
6536 
6537 	btrfs_sync_inode_flags_to_i_flags(inode);
6538 }
6539 
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)6540 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6541 				     struct btrfs_root *root,
6542 				     struct inode *dir,
6543 				     const char *name, int name_len,
6544 				     u64 ref_objectid, u64 objectid,
6545 				     umode_t mode, u64 *index)
6546 {
6547 	struct btrfs_fs_info *fs_info = root->fs_info;
6548 	struct inode *inode;
6549 	struct btrfs_inode_item *inode_item;
6550 	struct btrfs_key *location;
6551 	struct btrfs_path *path;
6552 	struct btrfs_inode_ref *ref;
6553 	struct btrfs_key key[2];
6554 	u32 sizes[2];
6555 	int nitems = name ? 2 : 1;
6556 	unsigned long ptr;
6557 	unsigned int nofs_flag;
6558 	int ret;
6559 
6560 	path = btrfs_alloc_path();
6561 	if (!path)
6562 		return ERR_PTR(-ENOMEM);
6563 
6564 	nofs_flag = memalloc_nofs_save();
6565 	inode = new_inode(fs_info->sb);
6566 	memalloc_nofs_restore(nofs_flag);
6567 	if (!inode) {
6568 		btrfs_free_path(path);
6569 		return ERR_PTR(-ENOMEM);
6570 	}
6571 
6572 	/*
6573 	 * O_TMPFILE, set link count to 0, so that after this point,
6574 	 * we fill in an inode item with the correct link count.
6575 	 */
6576 	if (!name)
6577 		set_nlink(inode, 0);
6578 
6579 	/*
6580 	 * we have to initialize this early, so we can reclaim the inode
6581 	 * number if we fail afterwards in this function.
6582 	 */
6583 	inode->i_ino = objectid;
6584 
6585 	if (dir && name) {
6586 		trace_btrfs_inode_request(dir);
6587 
6588 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6589 		if (ret) {
6590 			btrfs_free_path(path);
6591 			iput(inode);
6592 			return ERR_PTR(ret);
6593 		}
6594 	} else if (dir) {
6595 		*index = 0;
6596 	}
6597 	/*
6598 	 * index_cnt is ignored for everything but a dir,
6599 	 * btrfs_set_inode_index_count has an explanation for the magic
6600 	 * number
6601 	 */
6602 	BTRFS_I(inode)->index_cnt = 2;
6603 	BTRFS_I(inode)->dir_index = *index;
6604 	BTRFS_I(inode)->root = root;
6605 	BTRFS_I(inode)->generation = trans->transid;
6606 	inode->i_generation = BTRFS_I(inode)->generation;
6607 
6608 	/*
6609 	 * We could have gotten an inode number from somebody who was fsynced
6610 	 * and then removed in this same transaction, so let's just set full
6611 	 * sync since it will be a full sync anyway and this will blow away the
6612 	 * old info in the log.
6613 	 */
6614 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6615 
6616 	key[0].objectid = objectid;
6617 	key[0].type = BTRFS_INODE_ITEM_KEY;
6618 	key[0].offset = 0;
6619 
6620 	sizes[0] = sizeof(struct btrfs_inode_item);
6621 
6622 	if (name) {
6623 		/*
6624 		 * Start new inodes with an inode_ref. This is slightly more
6625 		 * efficient for small numbers of hard links since they will
6626 		 * be packed into one item. Extended refs will kick in if we
6627 		 * add more hard links than can fit in the ref item.
6628 		 */
6629 		key[1].objectid = objectid;
6630 		key[1].type = BTRFS_INODE_REF_KEY;
6631 		key[1].offset = ref_objectid;
6632 
6633 		sizes[1] = name_len + sizeof(*ref);
6634 	}
6635 
6636 	location = &BTRFS_I(inode)->location;
6637 	location->objectid = objectid;
6638 	location->offset = 0;
6639 	location->type = BTRFS_INODE_ITEM_KEY;
6640 
6641 	ret = btrfs_insert_inode_locked(inode);
6642 	if (ret < 0) {
6643 		iput(inode);
6644 		goto fail;
6645 	}
6646 
6647 	path->leave_spinning = 1;
6648 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6649 	if (ret != 0)
6650 		goto fail_unlock;
6651 
6652 	inode_init_owner(inode, dir, mode);
6653 	inode_set_bytes(inode, 0);
6654 
6655 	inode->i_mtime = current_time(inode);
6656 	inode->i_atime = inode->i_mtime;
6657 	inode->i_ctime = inode->i_mtime;
6658 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6659 
6660 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6661 				  struct btrfs_inode_item);
6662 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6663 			     sizeof(*inode_item));
6664 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6665 
6666 	if (name) {
6667 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6668 				     struct btrfs_inode_ref);
6669 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6670 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6671 		ptr = (unsigned long)(ref + 1);
6672 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6673 	}
6674 
6675 	btrfs_mark_buffer_dirty(path->nodes[0]);
6676 	btrfs_free_path(path);
6677 
6678 	btrfs_inherit_iflags(inode, dir);
6679 
6680 	if (S_ISREG(mode)) {
6681 		if (btrfs_test_opt(fs_info, NODATASUM))
6682 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6683 		if (btrfs_test_opt(fs_info, NODATACOW))
6684 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6685 				BTRFS_INODE_NODATASUM;
6686 	}
6687 
6688 	inode_tree_add(inode);
6689 
6690 	trace_btrfs_inode_new(inode);
6691 	btrfs_set_inode_last_trans(trans, inode);
6692 
6693 	btrfs_update_root_times(trans, root);
6694 
6695 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6696 	if (ret)
6697 		btrfs_err(fs_info,
6698 			  "error inheriting props for ino %llu (root %llu): %d",
6699 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6700 
6701 	return inode;
6702 
6703 fail_unlock:
6704 	discard_new_inode(inode);
6705 fail:
6706 	if (dir && name)
6707 		BTRFS_I(dir)->index_cnt--;
6708 	btrfs_free_path(path);
6709 	return ERR_PTR(ret);
6710 }
6711 
6712 /*
6713  * utility function to add 'inode' into 'parent_inode' with
6714  * a give name and a given sequence number.
6715  * if 'add_backref' is true, also insert a backref from the
6716  * inode to the parent directory.
6717  */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const char * name,int name_len,int add_backref,u64 index)6718 int btrfs_add_link(struct btrfs_trans_handle *trans,
6719 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6720 		   const char *name, int name_len, int add_backref, u64 index)
6721 {
6722 	int ret = 0;
6723 	struct btrfs_key key;
6724 	struct btrfs_root *root = parent_inode->root;
6725 	u64 ino = btrfs_ino(inode);
6726 	u64 parent_ino = btrfs_ino(parent_inode);
6727 
6728 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6729 		memcpy(&key, &inode->root->root_key, sizeof(key));
6730 	} else {
6731 		key.objectid = ino;
6732 		key.type = BTRFS_INODE_ITEM_KEY;
6733 		key.offset = 0;
6734 	}
6735 
6736 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6737 		ret = btrfs_add_root_ref(trans, key.objectid,
6738 					 root->root_key.objectid, parent_ino,
6739 					 index, name, name_len);
6740 	} else if (add_backref) {
6741 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6742 					     parent_ino, index);
6743 	}
6744 
6745 	/* Nothing to clean up yet */
6746 	if (ret)
6747 		return ret;
6748 
6749 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6750 				    btrfs_inode_type(&inode->vfs_inode), index);
6751 	if (ret == -EEXIST || ret == -EOVERFLOW)
6752 		goto fail_dir_item;
6753 	else if (ret) {
6754 		btrfs_abort_transaction(trans, ret);
6755 		return ret;
6756 	}
6757 
6758 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6759 			   name_len * 2);
6760 	inode_inc_iversion(&parent_inode->vfs_inode);
6761 	/*
6762 	 * If we are replaying a log tree, we do not want to update the mtime
6763 	 * and ctime of the parent directory with the current time, since the
6764 	 * log replay procedure is responsible for setting them to their correct
6765 	 * values (the ones it had when the fsync was done).
6766 	 */
6767 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6768 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6769 
6770 		parent_inode->vfs_inode.i_mtime = now;
6771 		parent_inode->vfs_inode.i_ctime = now;
6772 	}
6773 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6774 	if (ret)
6775 		btrfs_abort_transaction(trans, ret);
6776 	return ret;
6777 
6778 fail_dir_item:
6779 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6780 		u64 local_index;
6781 		int err;
6782 		err = btrfs_del_root_ref(trans, key.objectid,
6783 					 root->root_key.objectid, parent_ino,
6784 					 &local_index, name, name_len);
6785 		if (err)
6786 			btrfs_abort_transaction(trans, err);
6787 	} else if (add_backref) {
6788 		u64 local_index;
6789 		int err;
6790 
6791 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6792 					  ino, parent_ino, &local_index);
6793 		if (err)
6794 			btrfs_abort_transaction(trans, err);
6795 	}
6796 
6797 	/* Return the original error code */
6798 	return ret;
6799 }
6800 
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_inode * inode,int backref,u64 index)6801 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6802 			    struct btrfs_inode *dir, struct dentry *dentry,
6803 			    struct btrfs_inode *inode, int backref, u64 index)
6804 {
6805 	int err = btrfs_add_link(trans, dir, inode,
6806 				 dentry->d_name.name, dentry->d_name.len,
6807 				 backref, index);
6808 	if (err > 0)
6809 		err = -EEXIST;
6810 	return err;
6811 }
6812 
btrfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6813 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6814 			umode_t mode, dev_t rdev)
6815 {
6816 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6817 	struct btrfs_trans_handle *trans;
6818 	struct btrfs_root *root = BTRFS_I(dir)->root;
6819 	struct inode *inode = NULL;
6820 	int err;
6821 	u64 objectid;
6822 	u64 index = 0;
6823 
6824 	/*
6825 	 * 2 for inode item and ref
6826 	 * 2 for dir items
6827 	 * 1 for xattr if selinux is on
6828 	 */
6829 	trans = btrfs_start_transaction(root, 5);
6830 	if (IS_ERR(trans))
6831 		return PTR_ERR(trans);
6832 
6833 	err = btrfs_find_free_objectid(root, &objectid);
6834 	if (err)
6835 		goto out_unlock;
6836 
6837 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6838 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6839 			mode, &index);
6840 	if (IS_ERR(inode)) {
6841 		err = PTR_ERR(inode);
6842 		inode = NULL;
6843 		goto out_unlock;
6844 	}
6845 
6846 	/*
6847 	* If the active LSM wants to access the inode during
6848 	* d_instantiate it needs these. Smack checks to see
6849 	* if the filesystem supports xattrs by looking at the
6850 	* ops vector.
6851 	*/
6852 	inode->i_op = &btrfs_special_inode_operations;
6853 	init_special_inode(inode, inode->i_mode, rdev);
6854 
6855 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6856 	if (err)
6857 		goto out_unlock;
6858 
6859 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6860 			0, index);
6861 	if (err)
6862 		goto out_unlock;
6863 
6864 	btrfs_update_inode(trans, root, inode);
6865 	d_instantiate_new(dentry, inode);
6866 
6867 out_unlock:
6868 	btrfs_end_transaction(trans);
6869 	btrfs_btree_balance_dirty(fs_info);
6870 	if (err && inode) {
6871 		inode_dec_link_count(inode);
6872 		discard_new_inode(inode);
6873 	}
6874 	return err;
6875 }
6876 
btrfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6877 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6878 			umode_t mode, bool excl)
6879 {
6880 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6881 	struct btrfs_trans_handle *trans;
6882 	struct btrfs_root *root = BTRFS_I(dir)->root;
6883 	struct inode *inode = NULL;
6884 	int err;
6885 	u64 objectid;
6886 	u64 index = 0;
6887 
6888 	/*
6889 	 * 2 for inode item and ref
6890 	 * 2 for dir items
6891 	 * 1 for xattr if selinux is on
6892 	 */
6893 	trans = btrfs_start_transaction(root, 5);
6894 	if (IS_ERR(trans))
6895 		return PTR_ERR(trans);
6896 
6897 	err = btrfs_find_free_objectid(root, &objectid);
6898 	if (err)
6899 		goto out_unlock;
6900 
6901 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6902 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6903 			mode, &index);
6904 	if (IS_ERR(inode)) {
6905 		err = PTR_ERR(inode);
6906 		inode = NULL;
6907 		goto out_unlock;
6908 	}
6909 	/*
6910 	* If the active LSM wants to access the inode during
6911 	* d_instantiate it needs these. Smack checks to see
6912 	* if the filesystem supports xattrs by looking at the
6913 	* ops vector.
6914 	*/
6915 	inode->i_fop = &btrfs_file_operations;
6916 	inode->i_op = &btrfs_file_inode_operations;
6917 	inode->i_mapping->a_ops = &btrfs_aops;
6918 
6919 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6920 	if (err)
6921 		goto out_unlock;
6922 
6923 	err = btrfs_update_inode(trans, root, inode);
6924 	if (err)
6925 		goto out_unlock;
6926 
6927 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6928 			0, index);
6929 	if (err)
6930 		goto out_unlock;
6931 
6932 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6933 	d_instantiate_new(dentry, inode);
6934 
6935 out_unlock:
6936 	btrfs_end_transaction(trans);
6937 	if (err && inode) {
6938 		inode_dec_link_count(inode);
6939 		discard_new_inode(inode);
6940 	}
6941 	btrfs_btree_balance_dirty(fs_info);
6942 	return err;
6943 }
6944 
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6945 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6946 		      struct dentry *dentry)
6947 {
6948 	struct btrfs_trans_handle *trans = NULL;
6949 	struct btrfs_root *root = BTRFS_I(dir)->root;
6950 	struct inode *inode = d_inode(old_dentry);
6951 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6952 	u64 index;
6953 	int err;
6954 	int drop_inode = 0;
6955 
6956 	/* do not allow sys_link's with other subvols of the same device */
6957 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6958 		return -EXDEV;
6959 
6960 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6961 		return -EMLINK;
6962 
6963 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6964 	if (err)
6965 		goto fail;
6966 
6967 	/*
6968 	 * 2 items for inode and inode ref
6969 	 * 2 items for dir items
6970 	 * 1 item for parent inode
6971 	 * 1 item for orphan item deletion if O_TMPFILE
6972 	 */
6973 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6974 	if (IS_ERR(trans)) {
6975 		err = PTR_ERR(trans);
6976 		trans = NULL;
6977 		goto fail;
6978 	}
6979 
6980 	/* There are several dir indexes for this inode, clear the cache. */
6981 	BTRFS_I(inode)->dir_index = 0ULL;
6982 	inc_nlink(inode);
6983 	inode_inc_iversion(inode);
6984 	inode->i_ctime = current_time(inode);
6985 	ihold(inode);
6986 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6987 
6988 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6989 			1, index);
6990 
6991 	if (err) {
6992 		drop_inode = 1;
6993 	} else {
6994 		struct dentry *parent = dentry->d_parent;
6995 
6996 		err = btrfs_update_inode(trans, root, inode);
6997 		if (err)
6998 			goto fail;
6999 		if (inode->i_nlink == 1) {
7000 			/*
7001 			 * If new hard link count is 1, it's a file created
7002 			 * with open(2) O_TMPFILE flag.
7003 			 */
7004 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
7005 			if (err)
7006 				goto fail;
7007 		}
7008 		d_instantiate(dentry, inode);
7009 		btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
7010 	}
7011 
7012 fail:
7013 	if (trans)
7014 		btrfs_end_transaction(trans);
7015 	if (drop_inode) {
7016 		inode_dec_link_count(inode);
7017 		iput(inode);
7018 	}
7019 	btrfs_btree_balance_dirty(fs_info);
7020 	return err;
7021 }
7022 
btrfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)7023 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
7024 {
7025 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
7026 	struct inode *inode = NULL;
7027 	struct btrfs_trans_handle *trans;
7028 	struct btrfs_root *root = BTRFS_I(dir)->root;
7029 	int err = 0;
7030 	u64 objectid = 0;
7031 	u64 index = 0;
7032 
7033 	/*
7034 	 * 2 items for inode and ref
7035 	 * 2 items for dir items
7036 	 * 1 for xattr if selinux is on
7037 	 */
7038 	trans = btrfs_start_transaction(root, 5);
7039 	if (IS_ERR(trans))
7040 		return PTR_ERR(trans);
7041 
7042 	err = btrfs_find_free_objectid(root, &objectid);
7043 	if (err)
7044 		goto out_fail;
7045 
7046 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7047 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
7048 			S_IFDIR | mode, &index);
7049 	if (IS_ERR(inode)) {
7050 		err = PTR_ERR(inode);
7051 		inode = NULL;
7052 		goto out_fail;
7053 	}
7054 
7055 	/* these must be set before we unlock the inode */
7056 	inode->i_op = &btrfs_dir_inode_operations;
7057 	inode->i_fop = &btrfs_dir_file_operations;
7058 
7059 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7060 	if (err)
7061 		goto out_fail;
7062 
7063 	btrfs_i_size_write(BTRFS_I(inode), 0);
7064 	err = btrfs_update_inode(trans, root, inode);
7065 	if (err)
7066 		goto out_fail;
7067 
7068 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
7069 			dentry->d_name.name,
7070 			dentry->d_name.len, 0, index);
7071 	if (err)
7072 		goto out_fail;
7073 
7074 	d_instantiate_new(dentry, inode);
7075 
7076 out_fail:
7077 	btrfs_end_transaction(trans);
7078 	if (err && inode) {
7079 		inode_dec_link_count(inode);
7080 		discard_new_inode(inode);
7081 	}
7082 	btrfs_btree_balance_dirty(fs_info);
7083 	return err;
7084 }
7085 
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)7086 static noinline int uncompress_inline(struct btrfs_path *path,
7087 				      struct page *page,
7088 				      size_t pg_offset, u64 extent_offset,
7089 				      struct btrfs_file_extent_item *item)
7090 {
7091 	int ret;
7092 	struct extent_buffer *leaf = path->nodes[0];
7093 	char *tmp;
7094 	size_t max_size;
7095 	unsigned long inline_size;
7096 	unsigned long ptr;
7097 	int compress_type;
7098 
7099 	WARN_ON(pg_offset != 0);
7100 	compress_type = btrfs_file_extent_compression(leaf, item);
7101 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
7102 	inline_size = btrfs_file_extent_inline_item_len(leaf,
7103 					btrfs_item_nr(path->slots[0]));
7104 	tmp = kmalloc(inline_size, GFP_NOFS);
7105 	if (!tmp)
7106 		return -ENOMEM;
7107 	ptr = btrfs_file_extent_inline_start(item);
7108 
7109 	read_extent_buffer(leaf, tmp, ptr, inline_size);
7110 
7111 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
7112 	ret = btrfs_decompress(compress_type, tmp, page,
7113 			       extent_offset, inline_size, max_size);
7114 
7115 	/*
7116 	 * decompression code contains a memset to fill in any space between the end
7117 	 * of the uncompressed data and the end of max_size in case the decompressed
7118 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
7119 	 * the end of an inline extent and the beginning of the next block, so we
7120 	 * cover that region here.
7121 	 */
7122 
7123 	if (max_size + pg_offset < PAGE_SIZE) {
7124 		char *map = kmap(page);
7125 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
7126 		kunmap(page);
7127 	}
7128 	kfree(tmp);
7129 	return ret;
7130 }
7131 
7132 /*
7133  * a bit scary, this does extent mapping from logical file offset to the disk.
7134  * the ugly parts come from merging extents from the disk with the in-ram
7135  * representation.  This gets more complex because of the data=ordered code,
7136  * where the in-ram extents might be locked pending data=ordered completion.
7137  *
7138  * This also copies inline extents directly into the page.
7139  */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)7140 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
7141 				    struct page *page,
7142 				    size_t pg_offset, u64 start, u64 len,
7143 				    int create)
7144 {
7145 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7146 	int ret;
7147 	int err = 0;
7148 	u64 extent_start = 0;
7149 	u64 extent_end = 0;
7150 	u64 objectid = btrfs_ino(inode);
7151 	int extent_type = -1;
7152 	struct btrfs_path *path = NULL;
7153 	struct btrfs_root *root = inode->root;
7154 	struct btrfs_file_extent_item *item;
7155 	struct extent_buffer *leaf;
7156 	struct btrfs_key found_key;
7157 	struct extent_map *em = NULL;
7158 	struct extent_map_tree *em_tree = &inode->extent_tree;
7159 	struct extent_io_tree *io_tree = &inode->io_tree;
7160 	const bool new_inline = !page || create;
7161 
7162 	read_lock(&em_tree->lock);
7163 	em = lookup_extent_mapping(em_tree, start, len);
7164 	if (em)
7165 		em->bdev = fs_info->fs_devices->latest_bdev;
7166 	read_unlock(&em_tree->lock);
7167 
7168 	if (em) {
7169 		if (em->start > start || em->start + em->len <= start)
7170 			free_extent_map(em);
7171 		else if (em->block_start == EXTENT_MAP_INLINE && page)
7172 			free_extent_map(em);
7173 		else
7174 			goto out;
7175 	}
7176 	em = alloc_extent_map();
7177 	if (!em) {
7178 		err = -ENOMEM;
7179 		goto out;
7180 	}
7181 	em->bdev = fs_info->fs_devices->latest_bdev;
7182 	em->start = EXTENT_MAP_HOLE;
7183 	em->orig_start = EXTENT_MAP_HOLE;
7184 	em->len = (u64)-1;
7185 	em->block_len = (u64)-1;
7186 
7187 	path = btrfs_alloc_path();
7188 	if (!path) {
7189 		err = -ENOMEM;
7190 		goto out;
7191 	}
7192 
7193 	/* Chances are we'll be called again, so go ahead and do readahead */
7194 	path->reada = READA_FORWARD;
7195 
7196 	/*
7197 	 * Unless we're going to uncompress the inline extent, no sleep would
7198 	 * happen.
7199 	 */
7200 	path->leave_spinning = 1;
7201 
7202 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7203 	if (ret < 0) {
7204 		err = ret;
7205 		goto out;
7206 	} else if (ret > 0) {
7207 		if (path->slots[0] == 0)
7208 			goto not_found;
7209 		path->slots[0]--;
7210 	}
7211 
7212 	leaf = path->nodes[0];
7213 	item = btrfs_item_ptr(leaf, path->slots[0],
7214 			      struct btrfs_file_extent_item);
7215 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7216 	if (found_key.objectid != objectid ||
7217 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
7218 		/*
7219 		 * If we backup past the first extent we want to move forward
7220 		 * and see if there is an extent in front of us, otherwise we'll
7221 		 * say there is a hole for our whole search range which can
7222 		 * cause problems.
7223 		 */
7224 		extent_end = start;
7225 		goto next;
7226 	}
7227 
7228 	extent_type = btrfs_file_extent_type(leaf, item);
7229 	extent_start = found_key.offset;
7230 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7231 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7232 		/* Only regular file could have regular/prealloc extent */
7233 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
7234 			err = -EUCLEAN;
7235 			btrfs_crit(fs_info,
7236 		"regular/prealloc extent found for non-regular inode %llu",
7237 				   btrfs_ino(inode));
7238 			goto out;
7239 		}
7240 		extent_end = extent_start +
7241 		       btrfs_file_extent_num_bytes(leaf, item);
7242 
7243 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7244 						       extent_start);
7245 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7246 		size_t size;
7247 
7248 		size = btrfs_file_extent_ram_bytes(leaf, item);
7249 		extent_end = ALIGN(extent_start + size,
7250 				   fs_info->sectorsize);
7251 
7252 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7253 						      path->slots[0],
7254 						      extent_start);
7255 	}
7256 next:
7257 	if (start >= extent_end) {
7258 		path->slots[0]++;
7259 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7260 			ret = btrfs_next_leaf(root, path);
7261 			if (ret < 0) {
7262 				err = ret;
7263 				goto out;
7264 			} else if (ret > 0) {
7265 				goto not_found;
7266 			}
7267 			leaf = path->nodes[0];
7268 		}
7269 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7270 		if (found_key.objectid != objectid ||
7271 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
7272 			goto not_found;
7273 		if (start + len <= found_key.offset)
7274 			goto not_found;
7275 		if (start > found_key.offset)
7276 			goto next;
7277 
7278 		/* New extent overlaps with existing one */
7279 		em->start = start;
7280 		em->orig_start = start;
7281 		em->len = found_key.offset - start;
7282 		em->block_start = EXTENT_MAP_HOLE;
7283 		goto insert;
7284 	}
7285 
7286 	btrfs_extent_item_to_extent_map(inode, path, item,
7287 			new_inline, em);
7288 
7289 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7290 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7291 		goto insert;
7292 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7293 		unsigned long ptr;
7294 		char *map;
7295 		size_t size;
7296 		size_t extent_offset;
7297 		size_t copy_size;
7298 
7299 		if (new_inline)
7300 			goto out;
7301 
7302 		size = btrfs_file_extent_ram_bytes(leaf, item);
7303 		extent_offset = page_offset(page) + pg_offset - extent_start;
7304 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7305 				  size - extent_offset);
7306 		em->start = extent_start + extent_offset;
7307 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7308 		em->orig_block_len = em->len;
7309 		em->orig_start = em->start;
7310 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7311 
7312 		btrfs_set_path_blocking(path);
7313 		if (!PageUptodate(page)) {
7314 			if (btrfs_file_extent_compression(leaf, item) !=
7315 			    BTRFS_COMPRESS_NONE) {
7316 				ret = uncompress_inline(path, page, pg_offset,
7317 							extent_offset, item);
7318 				if (ret) {
7319 					err = ret;
7320 					goto out;
7321 				}
7322 			} else {
7323 				map = kmap(page);
7324 				read_extent_buffer(leaf, map + pg_offset, ptr,
7325 						   copy_size);
7326 				if (pg_offset + copy_size < PAGE_SIZE) {
7327 					memset(map + pg_offset + copy_size, 0,
7328 					       PAGE_SIZE - pg_offset -
7329 					       copy_size);
7330 				}
7331 				kunmap(page);
7332 			}
7333 			flush_dcache_page(page);
7334 		}
7335 		set_extent_uptodate(io_tree, em->start,
7336 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7337 		goto insert;
7338 	}
7339 not_found:
7340 	em->start = start;
7341 	em->orig_start = start;
7342 	em->len = len;
7343 	em->block_start = EXTENT_MAP_HOLE;
7344 insert:
7345 	btrfs_release_path(path);
7346 	if (em->start > start || extent_map_end(em) <= start) {
7347 		btrfs_err(fs_info,
7348 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7349 			  em->start, em->len, start, len);
7350 		err = -EIO;
7351 		goto out;
7352 	}
7353 
7354 	err = 0;
7355 	write_lock(&em_tree->lock);
7356 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7357 	write_unlock(&em_tree->lock);
7358 out:
7359 	btrfs_free_path(path);
7360 
7361 	trace_btrfs_get_extent(root, inode, em);
7362 
7363 	if (err) {
7364 		free_extent_map(em);
7365 		return ERR_PTR(err);
7366 	}
7367 	BUG_ON(!em); /* Error is always set */
7368 	return em;
7369 }
7370 
btrfs_get_extent_fiemap(struct btrfs_inode * inode,u64 start,u64 len)7371 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7372 					   u64 start, u64 len)
7373 {
7374 	struct extent_map *em;
7375 	struct extent_map *hole_em = NULL;
7376 	u64 delalloc_start = start;
7377 	u64 end;
7378 	u64 delalloc_len;
7379 	u64 delalloc_end;
7380 	int err = 0;
7381 
7382 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7383 	if (IS_ERR(em))
7384 		return em;
7385 	/*
7386 	 * If our em maps to:
7387 	 * - a hole or
7388 	 * - a pre-alloc extent,
7389 	 * there might actually be delalloc bytes behind it.
7390 	 */
7391 	if (em->block_start != EXTENT_MAP_HOLE &&
7392 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7393 		return em;
7394 	else
7395 		hole_em = em;
7396 
7397 	/* check to see if we've wrapped (len == -1 or similar) */
7398 	end = start + len;
7399 	if (end < start)
7400 		end = (u64)-1;
7401 	else
7402 		end -= 1;
7403 
7404 	em = NULL;
7405 
7406 	/* ok, we didn't find anything, lets look for delalloc */
7407 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7408 				 end, len, EXTENT_DELALLOC, 1);
7409 	delalloc_end = delalloc_start + delalloc_len;
7410 	if (delalloc_end < delalloc_start)
7411 		delalloc_end = (u64)-1;
7412 
7413 	/*
7414 	 * We didn't find anything useful, return the original results from
7415 	 * get_extent()
7416 	 */
7417 	if (delalloc_start > end || delalloc_end <= start) {
7418 		em = hole_em;
7419 		hole_em = NULL;
7420 		goto out;
7421 	}
7422 
7423 	/*
7424 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
7425 	 * the start they passed in
7426 	 */
7427 	delalloc_start = max(start, delalloc_start);
7428 	delalloc_len = delalloc_end - delalloc_start;
7429 
7430 	if (delalloc_len > 0) {
7431 		u64 hole_start;
7432 		u64 hole_len;
7433 		const u64 hole_end = extent_map_end(hole_em);
7434 
7435 		em = alloc_extent_map();
7436 		if (!em) {
7437 			err = -ENOMEM;
7438 			goto out;
7439 		}
7440 		em->bdev = NULL;
7441 
7442 		ASSERT(hole_em);
7443 		/*
7444 		 * When btrfs_get_extent can't find anything it returns one
7445 		 * huge hole
7446 		 *
7447 		 * Make sure what it found really fits our range, and adjust to
7448 		 * make sure it is based on the start from the caller
7449 		 */
7450 		if (hole_end <= start || hole_em->start > end) {
7451 		       free_extent_map(hole_em);
7452 		       hole_em = NULL;
7453 		} else {
7454 		       hole_start = max(hole_em->start, start);
7455 		       hole_len = hole_end - hole_start;
7456 		}
7457 
7458 		if (hole_em && delalloc_start > hole_start) {
7459 			/*
7460 			 * Our hole starts before our delalloc, so we have to
7461 			 * return just the parts of the hole that go until the
7462 			 * delalloc starts
7463 			 */
7464 			em->len = min(hole_len, delalloc_start - hole_start);
7465 			em->start = hole_start;
7466 			em->orig_start = hole_start;
7467 			/*
7468 			 * Don't adjust block start at all, it is fixed at
7469 			 * EXTENT_MAP_HOLE
7470 			 */
7471 			em->block_start = hole_em->block_start;
7472 			em->block_len = hole_len;
7473 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7474 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7475 		} else {
7476 			/*
7477 			 * Hole is out of passed range or it starts after
7478 			 * delalloc range
7479 			 */
7480 			em->start = delalloc_start;
7481 			em->len = delalloc_len;
7482 			em->orig_start = delalloc_start;
7483 			em->block_start = EXTENT_MAP_DELALLOC;
7484 			em->block_len = delalloc_len;
7485 		}
7486 	} else {
7487 		return hole_em;
7488 	}
7489 out:
7490 
7491 	free_extent_map(hole_em);
7492 	if (err) {
7493 		free_extent_map(em);
7494 		return ERR_PTR(err);
7495 	}
7496 	return em;
7497 }
7498 
btrfs_create_dio_extent(struct inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)7499 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7500 						  const u64 start,
7501 						  const u64 len,
7502 						  const u64 orig_start,
7503 						  const u64 block_start,
7504 						  const u64 block_len,
7505 						  const u64 orig_block_len,
7506 						  const u64 ram_bytes,
7507 						  const int type)
7508 {
7509 	struct extent_map *em = NULL;
7510 	int ret;
7511 
7512 	if (type != BTRFS_ORDERED_NOCOW) {
7513 		em = create_io_em(inode, start, len, orig_start,
7514 				  block_start, block_len, orig_block_len,
7515 				  ram_bytes,
7516 				  BTRFS_COMPRESS_NONE, /* compress_type */
7517 				  type);
7518 		if (IS_ERR(em))
7519 			goto out;
7520 	}
7521 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7522 					   len, block_len, type);
7523 	if (ret) {
7524 		if (em) {
7525 			free_extent_map(em);
7526 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7527 						start + len - 1, 0);
7528 		}
7529 		em = ERR_PTR(ret);
7530 	}
7531  out:
7532 
7533 	return em;
7534 }
7535 
btrfs_new_extent_direct(struct inode * inode,u64 start,u64 len)7536 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7537 						  u64 start, u64 len)
7538 {
7539 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7540 	struct btrfs_root *root = BTRFS_I(inode)->root;
7541 	struct extent_map *em;
7542 	struct btrfs_key ins;
7543 	u64 alloc_hint;
7544 	int ret;
7545 
7546 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7547 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7548 				   0, alloc_hint, &ins, 1, 1);
7549 	if (ret)
7550 		return ERR_PTR(ret);
7551 
7552 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7553 				     ins.objectid, ins.offset, ins.offset,
7554 				     ins.offset, BTRFS_ORDERED_REGULAR);
7555 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7556 	if (IS_ERR(em))
7557 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7558 					   ins.offset, 1);
7559 
7560 	return em;
7561 }
7562 
7563 /*
7564  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7565  * block must be cow'd
7566  */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes,bool strict)7567 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7568 			      u64 *orig_start, u64 *orig_block_len,
7569 			      u64 *ram_bytes, bool strict)
7570 {
7571 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7572 	struct btrfs_path *path;
7573 	int ret;
7574 	struct extent_buffer *leaf;
7575 	struct btrfs_root *root = BTRFS_I(inode)->root;
7576 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7577 	struct btrfs_file_extent_item *fi;
7578 	struct btrfs_key key;
7579 	u64 disk_bytenr;
7580 	u64 backref_offset;
7581 	u64 extent_end;
7582 	u64 num_bytes;
7583 	int slot;
7584 	int found_type;
7585 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7586 
7587 	path = btrfs_alloc_path();
7588 	if (!path)
7589 		return -ENOMEM;
7590 
7591 	ret = btrfs_lookup_file_extent(NULL, root, path,
7592 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7593 	if (ret < 0)
7594 		goto out;
7595 
7596 	slot = path->slots[0];
7597 	if (ret == 1) {
7598 		if (slot == 0) {
7599 			/* can't find the item, must cow */
7600 			ret = 0;
7601 			goto out;
7602 		}
7603 		slot--;
7604 	}
7605 	ret = 0;
7606 	leaf = path->nodes[0];
7607 	btrfs_item_key_to_cpu(leaf, &key, slot);
7608 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7609 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7610 		/* not our file or wrong item type, must cow */
7611 		goto out;
7612 	}
7613 
7614 	if (key.offset > offset) {
7615 		/* Wrong offset, must cow */
7616 		goto out;
7617 	}
7618 
7619 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7620 	found_type = btrfs_file_extent_type(leaf, fi);
7621 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7622 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7623 		/* not a regular extent, must cow */
7624 		goto out;
7625 	}
7626 
7627 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7628 		goto out;
7629 
7630 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7631 	if (extent_end <= offset)
7632 		goto out;
7633 
7634 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7635 	if (disk_bytenr == 0)
7636 		goto out;
7637 
7638 	if (btrfs_file_extent_compression(leaf, fi) ||
7639 	    btrfs_file_extent_encryption(leaf, fi) ||
7640 	    btrfs_file_extent_other_encoding(leaf, fi))
7641 		goto out;
7642 
7643 	/*
7644 	 * Do the same check as in btrfs_cross_ref_exist but without the
7645 	 * unnecessary search.
7646 	 */
7647 	if (!strict &&
7648 	    (btrfs_file_extent_generation(leaf, fi) <=
7649 	     btrfs_root_last_snapshot(&root->root_item)))
7650 		goto out;
7651 
7652 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7653 
7654 	if (orig_start) {
7655 		*orig_start = key.offset - backref_offset;
7656 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7657 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7658 	}
7659 
7660 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7661 		goto out;
7662 
7663 	num_bytes = min(offset + *len, extent_end) - offset;
7664 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7665 		u64 range_end;
7666 
7667 		range_end = round_up(offset + num_bytes,
7668 				     root->fs_info->sectorsize) - 1;
7669 		ret = test_range_bit(io_tree, offset, range_end,
7670 				     EXTENT_DELALLOC, 0, NULL);
7671 		if (ret) {
7672 			ret = -EAGAIN;
7673 			goto out;
7674 		}
7675 	}
7676 
7677 	btrfs_release_path(path);
7678 
7679 	/*
7680 	 * look for other files referencing this extent, if we
7681 	 * find any we must cow
7682 	 */
7683 
7684 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7685 				    key.offset - backref_offset, disk_bytenr,
7686 				    strict);
7687 	if (ret) {
7688 		ret = 0;
7689 		goto out;
7690 	}
7691 
7692 	/*
7693 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7694 	 * in this extent we are about to write.  If there
7695 	 * are any csums in that range we have to cow in order
7696 	 * to keep the csums correct
7697 	 */
7698 	disk_bytenr += backref_offset;
7699 	disk_bytenr += offset - key.offset;
7700 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7701 		goto out;
7702 	/*
7703 	 * all of the above have passed, it is safe to overwrite this extent
7704 	 * without cow
7705 	 */
7706 	*len = num_bytes;
7707 	ret = 1;
7708 out:
7709 	btrfs_free_path(path);
7710 	return ret;
7711 }
7712 
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,int writing)7713 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7714 			      struct extent_state **cached_state, int writing)
7715 {
7716 	struct btrfs_ordered_extent *ordered;
7717 	int ret = 0;
7718 
7719 	while (1) {
7720 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7721 				 cached_state);
7722 		/*
7723 		 * We're concerned with the entire range that we're going to be
7724 		 * doing DIO to, so we need to make sure there's no ordered
7725 		 * extents in this range.
7726 		 */
7727 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7728 						     lockend - lockstart + 1);
7729 
7730 		/*
7731 		 * We need to make sure there are no buffered pages in this
7732 		 * range either, we could have raced between the invalidate in
7733 		 * generic_file_direct_write and locking the extent.  The
7734 		 * invalidate needs to happen so that reads after a write do not
7735 		 * get stale data.
7736 		 */
7737 		if (!ordered &&
7738 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7739 							 lockstart, lockend)))
7740 			break;
7741 
7742 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7743 				     cached_state);
7744 
7745 		if (ordered) {
7746 			/*
7747 			 * If we are doing a DIO read and the ordered extent we
7748 			 * found is for a buffered write, we can not wait for it
7749 			 * to complete and retry, because if we do so we can
7750 			 * deadlock with concurrent buffered writes on page
7751 			 * locks. This happens only if our DIO read covers more
7752 			 * than one extent map, if at this point has already
7753 			 * created an ordered extent for a previous extent map
7754 			 * and locked its range in the inode's io tree, and a
7755 			 * concurrent write against that previous extent map's
7756 			 * range and this range started (we unlock the ranges
7757 			 * in the io tree only when the bios complete and
7758 			 * buffered writes always lock pages before attempting
7759 			 * to lock range in the io tree).
7760 			 */
7761 			if (writing ||
7762 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7763 				btrfs_start_ordered_extent(inode, ordered, 1);
7764 			else
7765 				ret = -ENOTBLK;
7766 			btrfs_put_ordered_extent(ordered);
7767 		} else {
7768 			/*
7769 			 * We could trigger writeback for this range (and wait
7770 			 * for it to complete) and then invalidate the pages for
7771 			 * this range (through invalidate_inode_pages2_range()),
7772 			 * but that can lead us to a deadlock with a concurrent
7773 			 * call to readpages() (a buffered read or a defrag call
7774 			 * triggered a readahead) on a page lock due to an
7775 			 * ordered dio extent we created before but did not have
7776 			 * yet a corresponding bio submitted (whence it can not
7777 			 * complete), which makes readpages() wait for that
7778 			 * ordered extent to complete while holding a lock on
7779 			 * that page.
7780 			 */
7781 			ret = -ENOTBLK;
7782 		}
7783 
7784 		if (ret)
7785 			break;
7786 
7787 		cond_resched();
7788 	}
7789 
7790 	return ret;
7791 }
7792 
7793 /* The callers of this must take lock_extent() */
create_io_em(struct inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7794 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7795 				       u64 orig_start, u64 block_start,
7796 				       u64 block_len, u64 orig_block_len,
7797 				       u64 ram_bytes, int compress_type,
7798 				       int type)
7799 {
7800 	struct extent_map_tree *em_tree;
7801 	struct extent_map *em;
7802 	struct btrfs_root *root = BTRFS_I(inode)->root;
7803 	int ret;
7804 
7805 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7806 	       type == BTRFS_ORDERED_COMPRESSED ||
7807 	       type == BTRFS_ORDERED_NOCOW ||
7808 	       type == BTRFS_ORDERED_REGULAR);
7809 
7810 	em_tree = &BTRFS_I(inode)->extent_tree;
7811 	em = alloc_extent_map();
7812 	if (!em)
7813 		return ERR_PTR(-ENOMEM);
7814 
7815 	em->start = start;
7816 	em->orig_start = orig_start;
7817 	em->len = len;
7818 	em->block_len = block_len;
7819 	em->block_start = block_start;
7820 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7821 	em->orig_block_len = orig_block_len;
7822 	em->ram_bytes = ram_bytes;
7823 	em->generation = -1;
7824 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7825 	if (type == BTRFS_ORDERED_PREALLOC) {
7826 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7827 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7828 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7829 		em->compress_type = compress_type;
7830 	}
7831 
7832 	do {
7833 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7834 				em->start + em->len - 1, 0);
7835 		write_lock(&em_tree->lock);
7836 		ret = add_extent_mapping(em_tree, em, 1);
7837 		write_unlock(&em_tree->lock);
7838 		/*
7839 		 * The caller has taken lock_extent(), who could race with us
7840 		 * to add em?
7841 		 */
7842 	} while (ret == -EEXIST);
7843 
7844 	if (ret) {
7845 		free_extent_map(em);
7846 		return ERR_PTR(ret);
7847 	}
7848 
7849 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7850 	return em;
7851 }
7852 
7853 
btrfs_get_blocks_direct_read(struct extent_map * em,struct buffer_head * bh_result,struct inode * inode,u64 start,u64 len)7854 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7855 					struct buffer_head *bh_result,
7856 					struct inode *inode,
7857 					u64 start, u64 len)
7858 {
7859 	if (em->block_start == EXTENT_MAP_HOLE ||
7860 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7861 		return -ENOENT;
7862 
7863 	len = min(len, em->len - (start - em->start));
7864 
7865 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7866 		inode->i_blkbits;
7867 	bh_result->b_size = len;
7868 	bh_result->b_bdev = em->bdev;
7869 	set_buffer_mapped(bh_result);
7870 
7871 	return 0;
7872 }
7873 
btrfs_get_blocks_direct_write(struct extent_map ** map,struct buffer_head * bh_result,struct inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 len)7874 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7875 					 struct buffer_head *bh_result,
7876 					 struct inode *inode,
7877 					 struct btrfs_dio_data *dio_data,
7878 					 u64 start, u64 len)
7879 {
7880 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7881 	struct extent_map *em = *map;
7882 	int ret = 0;
7883 
7884 	/*
7885 	 * We don't allocate a new extent in the following cases
7886 	 *
7887 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7888 	 * existing extent.
7889 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7890 	 * just use the extent.
7891 	 *
7892 	 */
7893 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7894 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7895 	     em->block_start != EXTENT_MAP_HOLE)) {
7896 		int type;
7897 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7898 
7899 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7900 			type = BTRFS_ORDERED_PREALLOC;
7901 		else
7902 			type = BTRFS_ORDERED_NOCOW;
7903 		len = min(len, em->len - (start - em->start));
7904 		block_start = em->block_start + (start - em->start);
7905 
7906 		if (can_nocow_extent(inode, start, &len, &orig_start,
7907 				     &orig_block_len, &ram_bytes, false) == 1 &&
7908 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7909 			struct extent_map *em2;
7910 
7911 			em2 = btrfs_create_dio_extent(inode, start, len,
7912 						      orig_start, block_start,
7913 						      len, orig_block_len,
7914 						      ram_bytes, type);
7915 			btrfs_dec_nocow_writers(fs_info, block_start);
7916 			if (type == BTRFS_ORDERED_PREALLOC) {
7917 				free_extent_map(em);
7918 				*map = em = em2;
7919 			}
7920 
7921 			if (em2 && IS_ERR(em2)) {
7922 				ret = PTR_ERR(em2);
7923 				goto out;
7924 			}
7925 			/*
7926 			 * For inode marked NODATACOW or extent marked PREALLOC,
7927 			 * use the existing or preallocated extent, so does not
7928 			 * need to adjust btrfs_space_info's bytes_may_use.
7929 			 */
7930 			btrfs_free_reserved_data_space_noquota(inode, start,
7931 							       len);
7932 			goto skip_cow;
7933 		}
7934 	}
7935 
7936 	/* this will cow the extent */
7937 	len = bh_result->b_size;
7938 	free_extent_map(em);
7939 	*map = em = btrfs_new_extent_direct(inode, start, len);
7940 	if (IS_ERR(em)) {
7941 		ret = PTR_ERR(em);
7942 		goto out;
7943 	}
7944 
7945 	len = min(len, em->len - (start - em->start));
7946 
7947 skip_cow:
7948 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7949 		inode->i_blkbits;
7950 	bh_result->b_size = len;
7951 	bh_result->b_bdev = em->bdev;
7952 	set_buffer_mapped(bh_result);
7953 
7954 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7955 		set_buffer_new(bh_result);
7956 
7957 	/*
7958 	 * Need to update the i_size under the extent lock so buffered
7959 	 * readers will get the updated i_size when we unlock.
7960 	 */
7961 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7962 		i_size_write(inode, start + len);
7963 
7964 	WARN_ON(dio_data->reserve < len);
7965 	dio_data->reserve -= len;
7966 	dio_data->unsubmitted_oe_range_end = start + len;
7967 	current->journal_info = dio_data;
7968 out:
7969 	return ret;
7970 }
7971 
btrfs_get_blocks_direct(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)7972 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7973 				   struct buffer_head *bh_result, int create)
7974 {
7975 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7976 	struct extent_map *em;
7977 	struct extent_state *cached_state = NULL;
7978 	struct btrfs_dio_data *dio_data = NULL;
7979 	u64 start = iblock << inode->i_blkbits;
7980 	u64 lockstart, lockend;
7981 	u64 len = bh_result->b_size;
7982 	int ret = 0;
7983 
7984 	if (!create)
7985 		len = min_t(u64, len, fs_info->sectorsize);
7986 
7987 	lockstart = start;
7988 	lockend = start + len - 1;
7989 
7990 	if (current->journal_info) {
7991 		/*
7992 		 * Need to pull our outstanding extents and set journal_info to NULL so
7993 		 * that anything that needs to check if there's a transaction doesn't get
7994 		 * confused.
7995 		 */
7996 		dio_data = current->journal_info;
7997 		current->journal_info = NULL;
7998 	}
7999 
8000 	/*
8001 	 * If this errors out it's because we couldn't invalidate pagecache for
8002 	 * this range and we need to fallback to buffered.
8003 	 */
8004 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
8005 			       create)) {
8006 		ret = -ENOTBLK;
8007 		goto err;
8008 	}
8009 
8010 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
8011 	if (IS_ERR(em)) {
8012 		ret = PTR_ERR(em);
8013 		goto unlock_err;
8014 	}
8015 
8016 	/*
8017 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
8018 	 * io.  INLINE is special, and we could probably kludge it in here, but
8019 	 * it's still buffered so for safety lets just fall back to the generic
8020 	 * buffered path.
8021 	 *
8022 	 * For COMPRESSED we _have_ to read the entire extent in so we can
8023 	 * decompress it, so there will be buffering required no matter what we
8024 	 * do, so go ahead and fallback to buffered.
8025 	 *
8026 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
8027 	 * to buffered IO.  Don't blame me, this is the price we pay for using
8028 	 * the generic code.
8029 	 */
8030 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
8031 	    em->block_start == EXTENT_MAP_INLINE) {
8032 		free_extent_map(em);
8033 		ret = -ENOTBLK;
8034 		goto unlock_err;
8035 	}
8036 
8037 	if (create) {
8038 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
8039 						    dio_data, start, len);
8040 		if (ret < 0)
8041 			goto unlock_err;
8042 
8043 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
8044 				     lockend, &cached_state);
8045 	} else {
8046 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
8047 						   start, len);
8048 		/* Can be negative only if we read from a hole */
8049 		if (ret < 0) {
8050 			ret = 0;
8051 			free_extent_map(em);
8052 			goto unlock_err;
8053 		}
8054 		/*
8055 		 * We need to unlock only the end area that we aren't using.
8056 		 * The rest is going to be unlocked by the endio routine.
8057 		 */
8058 		lockstart = start + bh_result->b_size;
8059 		if (lockstart < lockend) {
8060 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
8061 					     lockstart, lockend, &cached_state);
8062 		} else {
8063 			free_extent_state(cached_state);
8064 		}
8065 	}
8066 
8067 	free_extent_map(em);
8068 
8069 	return 0;
8070 
8071 unlock_err:
8072 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
8073 			     &cached_state);
8074 err:
8075 	if (dio_data)
8076 		current->journal_info = dio_data;
8077 	return ret;
8078 }
8079 
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num)8080 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
8081 						 struct bio *bio,
8082 						 int mirror_num)
8083 {
8084 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8085 	blk_status_t ret;
8086 
8087 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8088 
8089 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8090 	if (ret)
8091 		return ret;
8092 
8093 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
8094 
8095 	return ret;
8096 }
8097 
btrfs_check_dio_repairable(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,int failed_mirror)8098 static int btrfs_check_dio_repairable(struct inode *inode,
8099 				      struct bio *failed_bio,
8100 				      struct io_failure_record *failrec,
8101 				      int failed_mirror)
8102 {
8103 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8104 	int num_copies;
8105 
8106 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8107 	if (num_copies == 1) {
8108 		/*
8109 		 * we only have a single copy of the data, so don't bother with
8110 		 * all the retry and error correction code that follows. no
8111 		 * matter what the error is, it is very likely to persist.
8112 		 */
8113 		btrfs_debug(fs_info,
8114 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
8115 			num_copies, failrec->this_mirror, failed_mirror);
8116 		return 0;
8117 	}
8118 
8119 	failrec->failed_mirror = failed_mirror;
8120 	failrec->this_mirror++;
8121 	if (failrec->this_mirror == failed_mirror)
8122 		failrec->this_mirror++;
8123 
8124 	if (failrec->this_mirror > num_copies) {
8125 		btrfs_debug(fs_info,
8126 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
8127 			num_copies, failrec->this_mirror, failed_mirror);
8128 		return 0;
8129 	}
8130 
8131 	return 1;
8132 }
8133 
dio_read_error(struct inode * inode,struct bio * failed_bio,struct page * page,unsigned int pgoff,u64 start,u64 end,int failed_mirror,bio_end_io_t * repair_endio,void * repair_arg)8134 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
8135 				   struct page *page, unsigned int pgoff,
8136 				   u64 start, u64 end, int failed_mirror,
8137 				   bio_end_io_t *repair_endio, void *repair_arg)
8138 {
8139 	struct io_failure_record *failrec;
8140 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8141 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8142 	struct bio *bio;
8143 	int isector;
8144 	unsigned int read_mode = 0;
8145 	int segs;
8146 	int ret;
8147 	blk_status_t status;
8148 	struct bio_vec bvec;
8149 
8150 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8151 
8152 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
8153 	if (ret)
8154 		return errno_to_blk_status(ret);
8155 
8156 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
8157 					 failed_mirror);
8158 	if (!ret) {
8159 		free_io_failure(failure_tree, io_tree, failrec);
8160 		return BLK_STS_IOERR;
8161 	}
8162 
8163 	segs = bio_segments(failed_bio);
8164 	bio_get_first_bvec(failed_bio, &bvec);
8165 	if (segs > 1 ||
8166 	    (bvec.bv_len > btrfs_inode_sectorsize(inode)))
8167 		read_mode |= REQ_FAILFAST_DEV;
8168 
8169 	isector = start - btrfs_io_bio(failed_bio)->logical;
8170 	isector >>= inode->i_sb->s_blocksize_bits;
8171 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
8172 				pgoff, isector, repair_endio, repair_arg);
8173 	bio->bi_opf = REQ_OP_READ | read_mode;
8174 
8175 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
8176 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8177 		    read_mode, failrec->this_mirror, failrec->in_validation);
8178 
8179 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8180 	if (status) {
8181 		free_io_failure(failure_tree, io_tree, failrec);
8182 		bio_put(bio);
8183 	}
8184 
8185 	return status;
8186 }
8187 
8188 struct btrfs_retry_complete {
8189 	struct completion done;
8190 	struct inode *inode;
8191 	u64 start;
8192 	int uptodate;
8193 };
8194 
btrfs_retry_endio_nocsum(struct bio * bio)8195 static void btrfs_retry_endio_nocsum(struct bio *bio)
8196 {
8197 	struct btrfs_retry_complete *done = bio->bi_private;
8198 	struct inode *inode = done->inode;
8199 	struct bio_vec *bvec;
8200 	struct extent_io_tree *io_tree, *failure_tree;
8201 	struct bvec_iter_all iter_all;
8202 
8203 	if (bio->bi_status)
8204 		goto end;
8205 
8206 	ASSERT(bio->bi_vcnt == 1);
8207 	io_tree = &BTRFS_I(inode)->io_tree;
8208 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
8209 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
8210 
8211 	done->uptodate = 1;
8212 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8213 	bio_for_each_segment_all(bvec, bio, iter_all)
8214 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8215 				 io_tree, done->start, bvec->bv_page,
8216 				 btrfs_ino(BTRFS_I(inode)), 0);
8217 end:
8218 	complete(&done->done);
8219 	bio_put(bio);
8220 }
8221 
__btrfs_correct_data_nocsum(struct inode * inode,struct btrfs_io_bio * io_bio)8222 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8223 						struct btrfs_io_bio *io_bio)
8224 {
8225 	struct btrfs_fs_info *fs_info;
8226 	struct bio_vec bvec;
8227 	struct bvec_iter iter;
8228 	struct btrfs_retry_complete done;
8229 	u64 start;
8230 	unsigned int pgoff;
8231 	u32 sectorsize;
8232 	int nr_sectors;
8233 	blk_status_t ret;
8234 	blk_status_t err = BLK_STS_OK;
8235 
8236 	fs_info = BTRFS_I(inode)->root->fs_info;
8237 	sectorsize = fs_info->sectorsize;
8238 
8239 	start = io_bio->logical;
8240 	done.inode = inode;
8241 	io_bio->bio.bi_iter = io_bio->iter;
8242 
8243 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8244 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8245 		pgoff = bvec.bv_offset;
8246 
8247 next_block_or_try_again:
8248 		done.uptodate = 0;
8249 		done.start = start;
8250 		init_completion(&done.done);
8251 
8252 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8253 				pgoff, start, start + sectorsize - 1,
8254 				io_bio->mirror_num,
8255 				btrfs_retry_endio_nocsum, &done);
8256 		if (ret) {
8257 			err = ret;
8258 			goto next;
8259 		}
8260 
8261 		wait_for_completion_io(&done.done);
8262 
8263 		if (!done.uptodate) {
8264 			/* We might have another mirror, so try again */
8265 			goto next_block_or_try_again;
8266 		}
8267 
8268 next:
8269 		start += sectorsize;
8270 
8271 		nr_sectors--;
8272 		if (nr_sectors) {
8273 			pgoff += sectorsize;
8274 			ASSERT(pgoff < PAGE_SIZE);
8275 			goto next_block_or_try_again;
8276 		}
8277 	}
8278 
8279 	return err;
8280 }
8281 
btrfs_retry_endio(struct bio * bio)8282 static void btrfs_retry_endio(struct bio *bio)
8283 {
8284 	struct btrfs_retry_complete *done = bio->bi_private;
8285 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8286 	struct extent_io_tree *io_tree, *failure_tree;
8287 	struct inode *inode = done->inode;
8288 	struct bio_vec *bvec;
8289 	int uptodate;
8290 	int ret;
8291 	int i = 0;
8292 	struct bvec_iter_all iter_all;
8293 
8294 	if (bio->bi_status)
8295 		goto end;
8296 
8297 	uptodate = 1;
8298 
8299 	ASSERT(bio->bi_vcnt == 1);
8300 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
8301 
8302 	io_tree = &BTRFS_I(inode)->io_tree;
8303 	failure_tree = &BTRFS_I(inode)->io_failure_tree;
8304 
8305 	ASSERT(!bio_flagged(bio, BIO_CLONED));
8306 	bio_for_each_segment_all(bvec, bio, iter_all) {
8307 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8308 					     bvec->bv_offset, done->start,
8309 					     bvec->bv_len);
8310 		if (!ret)
8311 			clean_io_failure(BTRFS_I(inode)->root->fs_info,
8312 					 failure_tree, io_tree, done->start,
8313 					 bvec->bv_page,
8314 					 btrfs_ino(BTRFS_I(inode)),
8315 					 bvec->bv_offset);
8316 		else
8317 			uptodate = 0;
8318 		i++;
8319 	}
8320 
8321 	done->uptodate = uptodate;
8322 end:
8323 	complete(&done->done);
8324 	bio_put(bio);
8325 }
8326 
__btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,blk_status_t err)8327 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8328 		struct btrfs_io_bio *io_bio, blk_status_t err)
8329 {
8330 	struct btrfs_fs_info *fs_info;
8331 	struct bio_vec bvec;
8332 	struct bvec_iter iter;
8333 	struct btrfs_retry_complete done;
8334 	u64 start;
8335 	u64 offset = 0;
8336 	u32 sectorsize;
8337 	int nr_sectors;
8338 	unsigned int pgoff;
8339 	int csum_pos;
8340 	bool uptodate = (err == 0);
8341 	int ret;
8342 	blk_status_t status;
8343 
8344 	fs_info = BTRFS_I(inode)->root->fs_info;
8345 	sectorsize = fs_info->sectorsize;
8346 
8347 	err = BLK_STS_OK;
8348 	start = io_bio->logical;
8349 	done.inode = inode;
8350 	io_bio->bio.bi_iter = io_bio->iter;
8351 
8352 	bio_for_each_segment(bvec, &io_bio->bio, iter) {
8353 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8354 
8355 		pgoff = bvec.bv_offset;
8356 next_block:
8357 		if (uptodate) {
8358 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8359 			ret = __readpage_endio_check(inode, io_bio, csum_pos,
8360 					bvec.bv_page, pgoff, start, sectorsize);
8361 			if (likely(!ret))
8362 				goto next;
8363 		}
8364 try_again:
8365 		done.uptodate = 0;
8366 		done.start = start;
8367 		init_completion(&done.done);
8368 
8369 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8370 					pgoff, start, start + sectorsize - 1,
8371 					io_bio->mirror_num, btrfs_retry_endio,
8372 					&done);
8373 		if (status) {
8374 			err = status;
8375 			goto next;
8376 		}
8377 
8378 		wait_for_completion_io(&done.done);
8379 
8380 		if (!done.uptodate) {
8381 			/* We might have another mirror, so try again */
8382 			goto try_again;
8383 		}
8384 next:
8385 		offset += sectorsize;
8386 		start += sectorsize;
8387 
8388 		ASSERT(nr_sectors);
8389 
8390 		nr_sectors--;
8391 		if (nr_sectors) {
8392 			pgoff += sectorsize;
8393 			ASSERT(pgoff < PAGE_SIZE);
8394 			goto next_block;
8395 		}
8396 	}
8397 
8398 	return err;
8399 }
8400 
btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,blk_status_t err)8401 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8402 		struct btrfs_io_bio *io_bio, blk_status_t err)
8403 {
8404 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8405 
8406 	if (skip_csum) {
8407 		if (unlikely(err))
8408 			return __btrfs_correct_data_nocsum(inode, io_bio);
8409 		else
8410 			return BLK_STS_OK;
8411 	} else {
8412 		return __btrfs_subio_endio_read(inode, io_bio, err);
8413 	}
8414 }
8415 
btrfs_endio_direct_read(struct bio * bio)8416 static void btrfs_endio_direct_read(struct bio *bio)
8417 {
8418 	struct btrfs_dio_private *dip = bio->bi_private;
8419 	struct inode *inode = dip->inode;
8420 	struct bio *dio_bio;
8421 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8422 	blk_status_t err = bio->bi_status;
8423 
8424 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8425 		err = btrfs_subio_endio_read(inode, io_bio, err);
8426 
8427 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8428 		      dip->logical_offset + dip->bytes - 1);
8429 	dio_bio = dip->dio_bio;
8430 
8431 	kfree(dip);
8432 
8433 	dio_bio->bi_status = err;
8434 	dio_end_io(dio_bio);
8435 	btrfs_io_bio_free_csum(io_bio);
8436 	bio_put(bio);
8437 }
8438 
__endio_write_update_ordered(struct inode * inode,const u64 offset,const u64 bytes,const bool uptodate)8439 static void __endio_write_update_ordered(struct inode *inode,
8440 					 const u64 offset, const u64 bytes,
8441 					 const bool uptodate)
8442 {
8443 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8444 	struct btrfs_ordered_extent *ordered = NULL;
8445 	struct btrfs_workqueue *wq;
8446 	u64 ordered_offset = offset;
8447 	u64 ordered_bytes = bytes;
8448 	u64 last_offset;
8449 
8450 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
8451 		wq = fs_info->endio_freespace_worker;
8452 	else
8453 		wq = fs_info->endio_write_workers;
8454 
8455 	while (ordered_offset < offset + bytes) {
8456 		last_offset = ordered_offset;
8457 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8458 							   &ordered_offset,
8459 							   ordered_bytes,
8460 							   uptodate)) {
8461 			btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
8462 					NULL);
8463 			btrfs_queue_work(wq, &ordered->work);
8464 		}
8465 		/*
8466 		 * If btrfs_dec_test_ordered_pending does not find any ordered
8467 		 * extent in the range, we can exit.
8468 		 */
8469 		if (ordered_offset == last_offset)
8470 			return;
8471 		/*
8472 		 * Our bio might span multiple ordered extents. In this case
8473 		 * we keep going until we have accounted the whole dio.
8474 		 */
8475 		if (ordered_offset < offset + bytes) {
8476 			ordered_bytes = offset + bytes - ordered_offset;
8477 			ordered = NULL;
8478 		}
8479 	}
8480 }
8481 
btrfs_endio_direct_write(struct bio * bio)8482 static void btrfs_endio_direct_write(struct bio *bio)
8483 {
8484 	struct btrfs_dio_private *dip = bio->bi_private;
8485 	struct bio *dio_bio = dip->dio_bio;
8486 
8487 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8488 				     dip->bytes, !bio->bi_status);
8489 
8490 	kfree(dip);
8491 
8492 	dio_bio->bi_status = bio->bi_status;
8493 	dio_end_io(dio_bio);
8494 	bio_put(bio);
8495 }
8496 
btrfs_submit_bio_start_direct_io(void * private_data,struct bio * bio,u64 offset)8497 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8498 				    struct bio *bio, u64 offset)
8499 {
8500 	struct inode *inode = private_data;
8501 	blk_status_t ret;
8502 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8503 	BUG_ON(ret); /* -ENOMEM */
8504 	return 0;
8505 }
8506 
btrfs_end_dio_bio(struct bio * bio)8507 static void btrfs_end_dio_bio(struct bio *bio)
8508 {
8509 	struct btrfs_dio_private *dip = bio->bi_private;
8510 	blk_status_t err = bio->bi_status;
8511 
8512 	if (err)
8513 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8514 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8515 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8516 			   bio->bi_opf,
8517 			   (unsigned long long)bio->bi_iter.bi_sector,
8518 			   bio->bi_iter.bi_size, err);
8519 
8520 	if (dip->subio_endio)
8521 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8522 
8523 	if (err) {
8524 		/*
8525 		 * We want to perceive the errors flag being set before
8526 		 * decrementing the reference count. We don't need a barrier
8527 		 * since atomic operations with a return value are fully
8528 		 * ordered as per atomic_t.txt
8529 		 */
8530 		dip->errors = 1;
8531 	}
8532 
8533 	/* if there are more bios still pending for this dio, just exit */
8534 	if (!atomic_dec_and_test(&dip->pending_bios))
8535 		goto out;
8536 
8537 	if (dip->errors) {
8538 		bio_io_error(dip->orig_bio);
8539 	} else {
8540 		dip->dio_bio->bi_status = BLK_STS_OK;
8541 		bio_endio(dip->orig_bio);
8542 	}
8543 out:
8544 	bio_put(bio);
8545 }
8546 
btrfs_lookup_and_bind_dio_csum(struct inode * inode,struct btrfs_dio_private * dip,struct bio * bio,u64 file_offset)8547 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8548 						 struct btrfs_dio_private *dip,
8549 						 struct bio *bio,
8550 						 u64 file_offset)
8551 {
8552 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8553 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8554 	u16 csum_size;
8555 	blk_status_t ret;
8556 
8557 	/*
8558 	 * We load all the csum data we need when we submit
8559 	 * the first bio to reduce the csum tree search and
8560 	 * contention.
8561 	 */
8562 	if (dip->logical_offset == file_offset) {
8563 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8564 						file_offset);
8565 		if (ret)
8566 			return ret;
8567 	}
8568 
8569 	if (bio == dip->orig_bio)
8570 		return 0;
8571 
8572 	file_offset -= dip->logical_offset;
8573 	file_offset >>= inode->i_sb->s_blocksize_bits;
8574 	csum_size = btrfs_super_csum_size(btrfs_sb(inode->i_sb)->super_copy);
8575 	io_bio->csum = orig_io_bio->csum + csum_size * file_offset;
8576 
8577 	return 0;
8578 }
8579 
btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int async_submit)8580 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8581 		struct inode *inode, u64 file_offset, int async_submit)
8582 {
8583 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8584 	struct btrfs_dio_private *dip = bio->bi_private;
8585 	bool write = bio_op(bio) == REQ_OP_WRITE;
8586 	blk_status_t ret;
8587 
8588 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8589 	if (async_submit)
8590 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8591 
8592 	if (!write) {
8593 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8594 		if (ret)
8595 			goto err;
8596 	}
8597 
8598 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8599 		goto map;
8600 
8601 	if (write && async_submit) {
8602 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8603 					  file_offset, inode,
8604 					  btrfs_submit_bio_start_direct_io);
8605 		goto err;
8606 	} else if (write) {
8607 		/*
8608 		 * If we aren't doing async submit, calculate the csum of the
8609 		 * bio now.
8610 		 */
8611 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8612 		if (ret)
8613 			goto err;
8614 	} else {
8615 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8616 						     file_offset);
8617 		if (ret)
8618 			goto err;
8619 	}
8620 map:
8621 	ret = btrfs_map_bio(fs_info, bio, 0, 0);
8622 err:
8623 	return ret;
8624 }
8625 
8626 /*
8627  * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
8628  * or ordered extents whether or not we submit any bios.
8629  */
btrfs_create_dio_private(struct bio * dio_bio,struct inode * inode,loff_t file_offset)8630 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
8631 							  struct inode *inode,
8632 							  loff_t file_offset)
8633 {
8634 	const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8635 	struct btrfs_dio_private *dip;
8636 	struct bio *bio;
8637 
8638 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8639 	if (!dip)
8640 		return NULL;
8641 
8642 	bio = btrfs_bio_clone(dio_bio);
8643 	bio->bi_private = dip;
8644 	btrfs_io_bio(bio)->logical = file_offset;
8645 
8646 	dip->private = dio_bio->bi_private;
8647 	dip->inode = inode;
8648 	dip->logical_offset = file_offset;
8649 	dip->bytes = dio_bio->bi_iter.bi_size;
8650 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8651 	dip->orig_bio = bio;
8652 	dip->dio_bio = dio_bio;
8653 	atomic_set(&dip->pending_bios, 1);
8654 
8655 	if (write) {
8656 		struct btrfs_dio_data *dio_data = current->journal_info;
8657 
8658 		/*
8659 		 * Setting range start and end to the same value means that
8660 		 * no cleanup will happen in btrfs_direct_IO
8661 		 */
8662 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8663 			dip->bytes;
8664 		dio_data->unsubmitted_oe_range_start =
8665 			dio_data->unsubmitted_oe_range_end;
8666 
8667 		bio->bi_end_io = btrfs_endio_direct_write;
8668 	} else {
8669 		bio->bi_end_io = btrfs_endio_direct_read;
8670 		dip->subio_endio = btrfs_subio_endio_read;
8671 	}
8672 	return dip;
8673 }
8674 
btrfs_submit_direct(struct bio * dio_bio,struct inode * inode,loff_t file_offset)8675 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8676 				loff_t file_offset)
8677 {
8678 	const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8679 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8680 	struct btrfs_dio_private *dip;
8681 	struct bio *bio;
8682 	struct bio *orig_bio;
8683 	u64 start_sector;
8684 	int async_submit = 0;
8685 	u64 submit_len;
8686 	int clone_offset = 0;
8687 	int clone_len;
8688 	int ret;
8689 	blk_status_t status;
8690 	struct btrfs_io_geometry geom;
8691 
8692 	dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
8693 	if (!dip) {
8694 		if (!write) {
8695 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8696 				file_offset + dio_bio->bi_iter.bi_size - 1);
8697 		}
8698 		dio_bio->bi_status = BLK_STS_RESOURCE;
8699 		dio_end_io(dio_bio);
8700 		return;
8701 	}
8702 
8703 	orig_bio = dip->orig_bio;
8704 	start_sector = orig_bio->bi_iter.bi_sector;
8705 	submit_len = orig_bio->bi_iter.bi_size;
8706 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8707 				    start_sector << 9, submit_len, &geom);
8708 	if (ret)
8709 		goto out_err;
8710 
8711 	if (geom.len >= submit_len) {
8712 		bio = orig_bio;
8713 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8714 		goto submit;
8715 	}
8716 
8717 	/* async crcs make it difficult to collect full stripe writes. */
8718 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8719 		async_submit = 0;
8720 	else
8721 		async_submit = 1;
8722 
8723 	/* bio split */
8724 	ASSERT(geom.len <= INT_MAX);
8725 	do {
8726 		clone_len = min_t(int, submit_len, geom.len);
8727 
8728 		/*
8729 		 * This will never fail as it's passing GPF_NOFS and
8730 		 * the allocation is backed by btrfs_bioset.
8731 		 */
8732 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8733 					      clone_len);
8734 		bio->bi_private = dip;
8735 		bio->bi_end_io = btrfs_end_dio_bio;
8736 		btrfs_io_bio(bio)->logical = file_offset;
8737 
8738 		ASSERT(submit_len >= clone_len);
8739 		submit_len -= clone_len;
8740 		if (submit_len == 0)
8741 			break;
8742 
8743 		/*
8744 		 * Increase the count before we submit the bio so we know
8745 		 * the end IO handler won't happen before we increase the
8746 		 * count. Otherwise, the dip might get freed before we're
8747 		 * done setting it up.
8748 		 */
8749 		atomic_inc(&dip->pending_bios);
8750 
8751 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8752 						async_submit);
8753 		if (status) {
8754 			bio_put(bio);
8755 			atomic_dec(&dip->pending_bios);
8756 			goto out_err;
8757 		}
8758 
8759 		clone_offset += clone_len;
8760 		start_sector += clone_len >> 9;
8761 		file_offset += clone_len;
8762 
8763 		ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8764 				      start_sector << 9, submit_len, &geom);
8765 		if (ret)
8766 			goto out_err;
8767 	} while (submit_len > 0);
8768 
8769 submit:
8770 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8771 	if (!status)
8772 		return;
8773 
8774 	if (bio != orig_bio)
8775 		bio_put(bio);
8776 out_err:
8777 	dip->errors = 1;
8778 	/*
8779 	 * Before atomic variable goto zero, we must  make sure dip->errors is
8780 	 * perceived to be set. This ordering is ensured by the fact that an
8781 	 * atomic operations with a return value are fully ordered as per
8782 	 * atomic_t.txt
8783 	 */
8784 	if (atomic_dec_and_test(&dip->pending_bios))
8785 		bio_io_error(dip->orig_bio);
8786 }
8787 
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)8788 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8789 			       const struct iov_iter *iter, loff_t offset)
8790 {
8791 	int seg;
8792 	int i;
8793 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8794 	ssize_t retval = -EINVAL;
8795 
8796 	if (offset & blocksize_mask)
8797 		goto out;
8798 
8799 	if (iov_iter_alignment(iter) & blocksize_mask)
8800 		goto out;
8801 
8802 	/* If this is a write we don't need to check anymore */
8803 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8804 		return 0;
8805 	/*
8806 	 * Check to make sure we don't have duplicate iov_base's in this
8807 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8808 	 * when reading back.
8809 	 */
8810 	for (seg = 0; seg < iter->nr_segs; seg++) {
8811 		for (i = seg + 1; i < iter->nr_segs; i++) {
8812 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8813 				goto out;
8814 		}
8815 	}
8816 	retval = 0;
8817 out:
8818 	return retval;
8819 }
8820 
btrfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)8821 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8822 {
8823 	struct file *file = iocb->ki_filp;
8824 	struct inode *inode = file->f_mapping->host;
8825 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8826 	struct btrfs_dio_data dio_data = { 0 };
8827 	struct extent_changeset *data_reserved = NULL;
8828 	loff_t offset = iocb->ki_pos;
8829 	size_t count = 0;
8830 	int flags = 0;
8831 	bool wakeup = true;
8832 	bool relock = false;
8833 	ssize_t ret;
8834 
8835 	if (check_direct_IO(fs_info, iter, offset))
8836 		return 0;
8837 
8838 	inode_dio_begin(inode);
8839 
8840 	/*
8841 	 * The generic stuff only does filemap_write_and_wait_range, which
8842 	 * isn't enough if we've written compressed pages to this area, so
8843 	 * we need to flush the dirty pages again to make absolutely sure
8844 	 * that any outstanding dirty pages are on disk.
8845 	 */
8846 	count = iov_iter_count(iter);
8847 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8848 		     &BTRFS_I(inode)->runtime_flags))
8849 		filemap_fdatawrite_range(inode->i_mapping, offset,
8850 					 offset + count - 1);
8851 
8852 	if (iov_iter_rw(iter) == WRITE) {
8853 		/*
8854 		 * If the write DIO is beyond the EOF, we need update
8855 		 * the isize, but it is protected by i_mutex. So we can
8856 		 * not unlock the i_mutex at this case.
8857 		 */
8858 		if (offset + count <= inode->i_size) {
8859 			dio_data.overwrite = 1;
8860 			inode_unlock(inode);
8861 			relock = true;
8862 		}
8863 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8864 						   offset, count);
8865 		if (ret)
8866 			goto out;
8867 
8868 		/*
8869 		 * We need to know how many extents we reserved so that we can
8870 		 * do the accounting properly if we go over the number we
8871 		 * originally calculated.  Abuse current->journal_info for this.
8872 		 */
8873 		dio_data.reserve = round_up(count,
8874 					    fs_info->sectorsize);
8875 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8876 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8877 		current->journal_info = &dio_data;
8878 		down_read(&BTRFS_I(inode)->dio_sem);
8879 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8880 				     &BTRFS_I(inode)->runtime_flags)) {
8881 		inode_dio_end(inode);
8882 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8883 		wakeup = false;
8884 	}
8885 
8886 	ret = __blockdev_direct_IO(iocb, inode,
8887 				   fs_info->fs_devices->latest_bdev,
8888 				   iter, btrfs_get_blocks_direct, NULL,
8889 				   btrfs_submit_direct, flags);
8890 	if (iov_iter_rw(iter) == WRITE) {
8891 		up_read(&BTRFS_I(inode)->dio_sem);
8892 		current->journal_info = NULL;
8893 		if (ret < 0 && ret != -EIOCBQUEUED) {
8894 			if (dio_data.reserve)
8895 				btrfs_delalloc_release_space(inode, data_reserved,
8896 					offset, dio_data.reserve, true);
8897 			/*
8898 			 * On error we might have left some ordered extents
8899 			 * without submitting corresponding bios for them, so
8900 			 * cleanup them up to avoid other tasks getting them
8901 			 * and waiting for them to complete forever.
8902 			 */
8903 			if (dio_data.unsubmitted_oe_range_start <
8904 			    dio_data.unsubmitted_oe_range_end)
8905 				__endio_write_update_ordered(inode,
8906 					dio_data.unsubmitted_oe_range_start,
8907 					dio_data.unsubmitted_oe_range_end -
8908 					dio_data.unsubmitted_oe_range_start,
8909 					false);
8910 		} else if (ret >= 0 && (size_t)ret < count)
8911 			btrfs_delalloc_release_space(inode, data_reserved,
8912 					offset, count - (size_t)ret, true);
8913 		btrfs_delalloc_release_extents(BTRFS_I(inode), count);
8914 	}
8915 out:
8916 	if (wakeup)
8917 		inode_dio_end(inode);
8918 	if (relock)
8919 		inode_lock(inode);
8920 
8921 	extent_changeset_free(data_reserved);
8922 	return ret;
8923 }
8924 
8925 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8926 
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)8927 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8928 		__u64 start, __u64 len)
8929 {
8930 	int	ret;
8931 
8932 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8933 	if (ret)
8934 		return ret;
8935 
8936 	return extent_fiemap(inode, fieinfo, start, len);
8937 }
8938 
btrfs_readpage(struct file * file,struct page * page)8939 int btrfs_readpage(struct file *file, struct page *page)
8940 {
8941 	struct extent_io_tree *tree;
8942 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8943 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8944 }
8945 
btrfs_writepage(struct page * page,struct writeback_control * wbc)8946 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8947 {
8948 	struct inode *inode = page->mapping->host;
8949 	int ret;
8950 
8951 	if (current->flags & PF_MEMALLOC) {
8952 		redirty_page_for_writepage(wbc, page);
8953 		unlock_page(page);
8954 		return 0;
8955 	}
8956 
8957 	/*
8958 	 * If we are under memory pressure we will call this directly from the
8959 	 * VM, we need to make sure we have the inode referenced for the ordered
8960 	 * extent.  If not just return like we didn't do anything.
8961 	 */
8962 	if (!igrab(inode)) {
8963 		redirty_page_for_writepage(wbc, page);
8964 		return AOP_WRITEPAGE_ACTIVATE;
8965 	}
8966 	ret = extent_write_full_page(page, wbc);
8967 	btrfs_add_delayed_iput(inode);
8968 	return ret;
8969 }
8970 
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8971 static int btrfs_writepages(struct address_space *mapping,
8972 			    struct writeback_control *wbc)
8973 {
8974 	return extent_writepages(mapping, wbc);
8975 }
8976 
8977 static int
btrfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)8978 btrfs_readpages(struct file *file, struct address_space *mapping,
8979 		struct list_head *pages, unsigned nr_pages)
8980 {
8981 	return extent_readpages(mapping, pages, nr_pages);
8982 }
8983 
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)8984 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8985 {
8986 	int ret = try_release_extent_mapping(page, gfp_flags);
8987 	if (ret == 1) {
8988 		ClearPagePrivate(page);
8989 		set_page_private(page, 0);
8990 		put_page(page);
8991 	}
8992 	return ret;
8993 }
8994 
btrfs_releasepage(struct page * page,gfp_t gfp_flags)8995 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8996 {
8997 	if (PageWriteback(page) || PageDirty(page))
8998 		return 0;
8999 	return __btrfs_releasepage(page, gfp_flags);
9000 }
9001 
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)9002 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
9003 				 unsigned int length)
9004 {
9005 	struct inode *inode = page->mapping->host;
9006 	struct extent_io_tree *tree;
9007 	struct btrfs_ordered_extent *ordered;
9008 	struct extent_state *cached_state = NULL;
9009 	u64 page_start = page_offset(page);
9010 	u64 page_end = page_start + PAGE_SIZE - 1;
9011 	u64 start;
9012 	u64 end;
9013 	int inode_evicting = inode->i_state & I_FREEING;
9014 
9015 	/*
9016 	 * we have the page locked, so new writeback can't start,
9017 	 * and the dirty bit won't be cleared while we are here.
9018 	 *
9019 	 * Wait for IO on this page so that we can safely clear
9020 	 * the PagePrivate2 bit and do ordered accounting
9021 	 */
9022 	wait_on_page_writeback(page);
9023 
9024 	tree = &BTRFS_I(inode)->io_tree;
9025 	if (offset) {
9026 		btrfs_releasepage(page, GFP_NOFS);
9027 		return;
9028 	}
9029 
9030 	if (!inode_evicting)
9031 		lock_extent_bits(tree, page_start, page_end, &cached_state);
9032 again:
9033 	start = page_start;
9034 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9035 					page_end - start + 1);
9036 	if (ordered) {
9037 		end = min(page_end, ordered->file_offset + ordered->len - 1);
9038 		/*
9039 		 * IO on this page will never be started, so we need
9040 		 * to account for any ordered extents now
9041 		 */
9042 		if (!inode_evicting)
9043 			clear_extent_bit(tree, start, end,
9044 					 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9045 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
9046 					 EXTENT_DEFRAG, 1, 0, &cached_state);
9047 		/*
9048 		 * whoever cleared the private bit is responsible
9049 		 * for the finish_ordered_io
9050 		 */
9051 		if (TestClearPagePrivate2(page)) {
9052 			struct btrfs_ordered_inode_tree *tree;
9053 			u64 new_len;
9054 
9055 			tree = &BTRFS_I(inode)->ordered_tree;
9056 
9057 			spin_lock_irq(&tree->lock);
9058 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
9059 			new_len = start - ordered->file_offset;
9060 			if (new_len < ordered->truncated_len)
9061 				ordered->truncated_len = new_len;
9062 			spin_unlock_irq(&tree->lock);
9063 
9064 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
9065 							   start,
9066 							   end - start + 1, 1))
9067 				btrfs_finish_ordered_io(ordered);
9068 		}
9069 		btrfs_put_ordered_extent(ordered);
9070 		if (!inode_evicting) {
9071 			cached_state = NULL;
9072 			lock_extent_bits(tree, start, end,
9073 					 &cached_state);
9074 		}
9075 
9076 		start = end + 1;
9077 		if (start < page_end)
9078 			goto again;
9079 	}
9080 
9081 	/*
9082 	 * Qgroup reserved space handler
9083 	 * Page here will be either
9084 	 * 1) Already written to disk or ordered extent already submitted
9085 	 *    Then its QGROUP_RESERVED bit in io_tree is already cleaned.
9086 	 *    Qgroup will be handled by its qgroup_record then.
9087 	 *    btrfs_qgroup_free_data() call will do nothing here.
9088 	 *
9089 	 * 2) Not written to disk yet
9090 	 *    Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
9091 	 *    bit of its io_tree, and free the qgroup reserved data space.
9092 	 *    Since the IO will never happen for this page.
9093 	 */
9094 	btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
9095 	if (!inode_evicting) {
9096 		clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
9097 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9098 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
9099 				 &cached_state);
9100 
9101 		__btrfs_releasepage(page, GFP_NOFS);
9102 	}
9103 
9104 	ClearPageChecked(page);
9105 	if (PagePrivate(page)) {
9106 		ClearPagePrivate(page);
9107 		set_page_private(page, 0);
9108 		put_page(page);
9109 	}
9110 }
9111 
9112 /*
9113  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9114  * called from a page fault handler when a page is first dirtied. Hence we must
9115  * be careful to check for EOF conditions here. We set the page up correctly
9116  * for a written page which means we get ENOSPC checking when writing into
9117  * holes and correct delalloc and unwritten extent mapping on filesystems that
9118  * support these features.
9119  *
9120  * We are not allowed to take the i_mutex here so we have to play games to
9121  * protect against truncate races as the page could now be beyond EOF.  Because
9122  * truncate_setsize() writes the inode size before removing pages, once we have
9123  * the page lock we can determine safely if the page is beyond EOF. If it is not
9124  * beyond EOF, then the page is guaranteed safe against truncation until we
9125  * unlock the page.
9126  */
btrfs_page_mkwrite(struct vm_fault * vmf)9127 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9128 {
9129 	struct page *page = vmf->page;
9130 	struct inode *inode = file_inode(vmf->vma->vm_file);
9131 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9132 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9133 	struct btrfs_ordered_extent *ordered;
9134 	struct extent_state *cached_state = NULL;
9135 	struct extent_changeset *data_reserved = NULL;
9136 	char *kaddr;
9137 	unsigned long zero_start;
9138 	loff_t size;
9139 	vm_fault_t ret;
9140 	int ret2;
9141 	int reserved = 0;
9142 	u64 reserved_space;
9143 	u64 page_start;
9144 	u64 page_end;
9145 	u64 end;
9146 
9147 	reserved_space = PAGE_SIZE;
9148 
9149 	sb_start_pagefault(inode->i_sb);
9150 	page_start = page_offset(page);
9151 	page_end = page_start + PAGE_SIZE - 1;
9152 	end = page_end;
9153 
9154 	/*
9155 	 * Reserving delalloc space after obtaining the page lock can lead to
9156 	 * deadlock. For example, if a dirty page is locked by this function
9157 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9158 	 * dirty page write out, then the btrfs_writepage() function could
9159 	 * end up waiting indefinitely to get a lock on the page currently
9160 	 * being processed by btrfs_page_mkwrite() function.
9161 	 */
9162 	ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
9163 					   reserved_space);
9164 	if (!ret2) {
9165 		ret2 = file_update_time(vmf->vma->vm_file);
9166 		reserved = 1;
9167 	}
9168 	if (ret2) {
9169 		ret = vmf_error(ret2);
9170 		if (reserved)
9171 			goto out;
9172 		goto out_noreserve;
9173 	}
9174 
9175 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9176 again:
9177 	lock_page(page);
9178 	size = i_size_read(inode);
9179 
9180 	if ((page->mapping != inode->i_mapping) ||
9181 	    (page_start >= size)) {
9182 		/* page got truncated out from underneath us */
9183 		goto out_unlock;
9184 	}
9185 	wait_on_page_writeback(page);
9186 
9187 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9188 	set_page_extent_mapped(page);
9189 
9190 	/*
9191 	 * we can't set the delalloc bits if there are pending ordered
9192 	 * extents.  Drop our locks and wait for them to finish
9193 	 */
9194 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9195 			PAGE_SIZE);
9196 	if (ordered) {
9197 		unlock_extent_cached(io_tree, page_start, page_end,
9198 				     &cached_state);
9199 		unlock_page(page);
9200 		btrfs_start_ordered_extent(inode, ordered, 1);
9201 		btrfs_put_ordered_extent(ordered);
9202 		goto again;
9203 	}
9204 
9205 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9206 		reserved_space = round_up(size - page_start,
9207 					  fs_info->sectorsize);
9208 		if (reserved_space < PAGE_SIZE) {
9209 			end = page_start + reserved_space - 1;
9210 			btrfs_delalloc_release_space(inode, data_reserved,
9211 					page_start, PAGE_SIZE - reserved_space,
9212 					true);
9213 		}
9214 	}
9215 
9216 	/*
9217 	 * page_mkwrite gets called when the page is firstly dirtied after it's
9218 	 * faulted in, but write(2) could also dirty a page and set delalloc
9219 	 * bits, thus in this case for space account reason, we still need to
9220 	 * clear any delalloc bits within this page range since we have to
9221 	 * reserve data&meta space before lock_page() (see above comments).
9222 	 */
9223 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9224 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
9225 			  EXTENT_DEFRAG, 0, 0, &cached_state);
9226 
9227 	ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
9228 					&cached_state);
9229 	if (ret2) {
9230 		unlock_extent_cached(io_tree, page_start, page_end,
9231 				     &cached_state);
9232 		ret = VM_FAULT_SIGBUS;
9233 		goto out_unlock;
9234 	}
9235 	ret2 = 0;
9236 
9237 	/* page is wholly or partially inside EOF */
9238 	if (page_start + PAGE_SIZE > size)
9239 		zero_start = offset_in_page(size);
9240 	else
9241 		zero_start = PAGE_SIZE;
9242 
9243 	if (zero_start != PAGE_SIZE) {
9244 		kaddr = kmap(page);
9245 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9246 		flush_dcache_page(page);
9247 		kunmap(page);
9248 	}
9249 	ClearPageChecked(page);
9250 	set_page_dirty(page);
9251 	SetPageUptodate(page);
9252 
9253 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
9254 
9255 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9256 
9257 	if (!ret2) {
9258 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9259 		sb_end_pagefault(inode->i_sb);
9260 		extent_changeset_free(data_reserved);
9261 		return VM_FAULT_LOCKED;
9262 	}
9263 
9264 out_unlock:
9265 	unlock_page(page);
9266 out:
9267 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9268 	btrfs_delalloc_release_space(inode, data_reserved, page_start,
9269 				     reserved_space, (ret != 0));
9270 out_noreserve:
9271 	sb_end_pagefault(inode->i_sb);
9272 	extent_changeset_free(data_reserved);
9273 	return ret;
9274 }
9275 
btrfs_truncate(struct inode * inode,bool skip_writeback)9276 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9277 {
9278 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9279 	struct btrfs_root *root = BTRFS_I(inode)->root;
9280 	struct btrfs_block_rsv *rsv;
9281 	int ret;
9282 	struct btrfs_trans_handle *trans;
9283 	u64 mask = fs_info->sectorsize - 1;
9284 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
9285 
9286 	if (!skip_writeback) {
9287 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9288 					       (u64)-1);
9289 		if (ret)
9290 			return ret;
9291 	}
9292 
9293 	/*
9294 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
9295 	 * things going on here:
9296 	 *
9297 	 * 1) We need to reserve space to update our inode.
9298 	 *
9299 	 * 2) We need to have something to cache all the space that is going to
9300 	 * be free'd up by the truncate operation, but also have some slack
9301 	 * space reserved in case it uses space during the truncate (thank you
9302 	 * very much snapshotting).
9303 	 *
9304 	 * And we need these to be separate.  The fact is we can use a lot of
9305 	 * space doing the truncate, and we have no earthly idea how much space
9306 	 * we will use, so we need the truncate reservation to be separate so it
9307 	 * doesn't end up using space reserved for updating the inode.  We also
9308 	 * need to be able to stop the transaction and start a new one, which
9309 	 * means we need to be able to update the inode several times, and we
9310 	 * have no idea of knowing how many times that will be, so we can't just
9311 	 * reserve 1 item for the entirety of the operation, so that has to be
9312 	 * done separately as well.
9313 	 *
9314 	 * So that leaves us with
9315 	 *
9316 	 * 1) rsv - for the truncate reservation, which we will steal from the
9317 	 * transaction reservation.
9318 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9319 	 * updating the inode.
9320 	 */
9321 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9322 	if (!rsv)
9323 		return -ENOMEM;
9324 	rsv->size = min_size;
9325 	rsv->failfast = 1;
9326 
9327 	/*
9328 	 * 1 for the truncate slack space
9329 	 * 1 for updating the inode.
9330 	 */
9331 	trans = btrfs_start_transaction(root, 2);
9332 	if (IS_ERR(trans)) {
9333 		ret = PTR_ERR(trans);
9334 		goto out;
9335 	}
9336 
9337 	/* Migrate the slack space for the truncate to our reserve */
9338 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9339 				      min_size, false);
9340 	BUG_ON(ret);
9341 
9342 	/*
9343 	 * So if we truncate and then write and fsync we normally would just
9344 	 * write the extents that changed, which is a problem if we need to
9345 	 * first truncate that entire inode.  So set this flag so we write out
9346 	 * all of the extents in the inode to the sync log so we're completely
9347 	 * safe.
9348 	 */
9349 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9350 	trans->block_rsv = rsv;
9351 
9352 	while (1) {
9353 		ret = btrfs_truncate_inode_items(trans, root, inode,
9354 						 inode->i_size,
9355 						 BTRFS_EXTENT_DATA_KEY);
9356 		trans->block_rsv = &fs_info->trans_block_rsv;
9357 		if (ret != -ENOSPC && ret != -EAGAIN)
9358 			break;
9359 
9360 		ret = btrfs_update_inode(trans, root, inode);
9361 		if (ret)
9362 			break;
9363 
9364 		btrfs_end_transaction(trans);
9365 		btrfs_btree_balance_dirty(fs_info);
9366 
9367 		trans = btrfs_start_transaction(root, 2);
9368 		if (IS_ERR(trans)) {
9369 			ret = PTR_ERR(trans);
9370 			trans = NULL;
9371 			break;
9372 		}
9373 
9374 		btrfs_block_rsv_release(fs_info, rsv, -1);
9375 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9376 					      rsv, min_size, false);
9377 		BUG_ON(ret);	/* shouldn't happen */
9378 		trans->block_rsv = rsv;
9379 	}
9380 
9381 	/*
9382 	 * We can't call btrfs_truncate_block inside a trans handle as we could
9383 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9384 	 * we've truncated everything except the last little bit, and can do
9385 	 * btrfs_truncate_block and then update the disk_i_size.
9386 	 */
9387 	if (ret == NEED_TRUNCATE_BLOCK) {
9388 		btrfs_end_transaction(trans);
9389 		btrfs_btree_balance_dirty(fs_info);
9390 
9391 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9392 		if (ret)
9393 			goto out;
9394 		trans = btrfs_start_transaction(root, 1);
9395 		if (IS_ERR(trans)) {
9396 			ret = PTR_ERR(trans);
9397 			goto out;
9398 		}
9399 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9400 	}
9401 
9402 	if (trans) {
9403 		int ret2;
9404 
9405 		trans->block_rsv = &fs_info->trans_block_rsv;
9406 		ret2 = btrfs_update_inode(trans, root, inode);
9407 		if (ret2 && !ret)
9408 			ret = ret2;
9409 
9410 		ret2 = btrfs_end_transaction(trans);
9411 		if (ret2 && !ret)
9412 			ret = ret2;
9413 		btrfs_btree_balance_dirty(fs_info);
9414 	}
9415 out:
9416 	btrfs_free_block_rsv(fs_info, rsv);
9417 
9418 	return ret;
9419 }
9420 
9421 /*
9422  * create a new subvolume directory/inode (helper for the ioctl).
9423  */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,u64 new_dirid)9424 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9425 			     struct btrfs_root *new_root,
9426 			     struct btrfs_root *parent_root,
9427 			     u64 new_dirid)
9428 {
9429 	struct inode *inode;
9430 	int err;
9431 	u64 index = 0;
9432 
9433 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9434 				new_dirid, new_dirid,
9435 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9436 				&index);
9437 	if (IS_ERR(inode))
9438 		return PTR_ERR(inode);
9439 	inode->i_op = &btrfs_dir_inode_operations;
9440 	inode->i_fop = &btrfs_dir_file_operations;
9441 
9442 	set_nlink(inode, 1);
9443 	btrfs_i_size_write(BTRFS_I(inode), 0);
9444 	unlock_new_inode(inode);
9445 
9446 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9447 	if (err)
9448 		btrfs_err(new_root->fs_info,
9449 			  "error inheriting subvolume %llu properties: %d",
9450 			  new_root->root_key.objectid, err);
9451 
9452 	err = btrfs_update_inode(trans, new_root, inode);
9453 
9454 	iput(inode);
9455 	return err;
9456 }
9457 
btrfs_alloc_inode(struct super_block * sb)9458 struct inode *btrfs_alloc_inode(struct super_block *sb)
9459 {
9460 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9461 	struct btrfs_inode *ei;
9462 	struct inode *inode;
9463 
9464 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9465 	if (!ei)
9466 		return NULL;
9467 
9468 	ei->root = NULL;
9469 	ei->generation = 0;
9470 	ei->last_trans = 0;
9471 	ei->last_sub_trans = 0;
9472 	ei->logged_trans = 0;
9473 	ei->delalloc_bytes = 0;
9474 	ei->new_delalloc_bytes = 0;
9475 	ei->defrag_bytes = 0;
9476 	ei->disk_i_size = 0;
9477 	ei->flags = 0;
9478 	ei->csum_bytes = 0;
9479 	ei->index_cnt = (u64)-1;
9480 	ei->dir_index = 0;
9481 	ei->last_unlink_trans = 0;
9482 	ei->last_log_commit = 0;
9483 
9484 	spin_lock_init(&ei->lock);
9485 	ei->outstanding_extents = 0;
9486 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9487 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9488 					      BTRFS_BLOCK_RSV_DELALLOC);
9489 	ei->runtime_flags = 0;
9490 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9491 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9492 
9493 	ei->delayed_node = NULL;
9494 
9495 	ei->i_otime.tv_sec = 0;
9496 	ei->i_otime.tv_nsec = 0;
9497 
9498 	inode = &ei->vfs_inode;
9499 	extent_map_tree_init(&ei->extent_tree);
9500 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9501 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
9502 			    IO_TREE_INODE_IO_FAILURE, inode);
9503 	ei->io_tree.track_uptodate = true;
9504 	ei->io_failure_tree.track_uptodate = true;
9505 	atomic_set(&ei->sync_writers, 0);
9506 	mutex_init(&ei->log_mutex);
9507 	mutex_init(&ei->delalloc_mutex);
9508 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9509 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9510 	INIT_LIST_HEAD(&ei->delayed_iput);
9511 	RB_CLEAR_NODE(&ei->rb_node);
9512 	init_rwsem(&ei->dio_sem);
9513 
9514 	return inode;
9515 }
9516 
9517 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)9518 void btrfs_test_destroy_inode(struct inode *inode)
9519 {
9520 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9521 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9522 }
9523 #endif
9524 
btrfs_free_inode(struct inode * inode)9525 void btrfs_free_inode(struct inode *inode)
9526 {
9527 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9528 }
9529 
btrfs_destroy_inode(struct inode * inode)9530 void btrfs_destroy_inode(struct inode *inode)
9531 {
9532 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9533 	struct btrfs_ordered_extent *ordered;
9534 	struct btrfs_root *root = BTRFS_I(inode)->root;
9535 
9536 	WARN_ON(!hlist_empty(&inode->i_dentry));
9537 	WARN_ON(inode->i_data.nrpages);
9538 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9539 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
9540 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9541 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9542 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9543 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9544 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9545 
9546 	/*
9547 	 * This can happen where we create an inode, but somebody else also
9548 	 * created the same inode and we need to destroy the one we already
9549 	 * created.
9550 	 */
9551 	if (!root)
9552 		return;
9553 
9554 	while (1) {
9555 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9556 		if (!ordered)
9557 			break;
9558 		else {
9559 			btrfs_err(fs_info,
9560 				  "found ordered extent %llu %llu on inode cleanup",
9561 				  ordered->file_offset, ordered->len);
9562 			btrfs_remove_ordered_extent(inode, ordered);
9563 			btrfs_put_ordered_extent(ordered);
9564 			btrfs_put_ordered_extent(ordered);
9565 		}
9566 	}
9567 	btrfs_qgroup_check_reserved_leak(BTRFS_I(inode));
9568 	inode_tree_del(inode);
9569 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9570 }
9571 
btrfs_drop_inode(struct inode * inode)9572 int btrfs_drop_inode(struct inode *inode)
9573 {
9574 	struct btrfs_root *root = BTRFS_I(inode)->root;
9575 
9576 	if (root == NULL)
9577 		return 1;
9578 
9579 	/* the snap/subvol tree is on deleting */
9580 	if (btrfs_root_refs(&root->root_item) == 0)
9581 		return 1;
9582 	else
9583 		return generic_drop_inode(inode);
9584 }
9585 
init_once(void * foo)9586 static void init_once(void *foo)
9587 {
9588 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9589 
9590 	inode_init_once(&ei->vfs_inode);
9591 }
9592 
btrfs_destroy_cachep(void)9593 void __cold btrfs_destroy_cachep(void)
9594 {
9595 	/*
9596 	 * Make sure all delayed rcu free inodes are flushed before we
9597 	 * destroy cache.
9598 	 */
9599 	rcu_barrier();
9600 	kmem_cache_destroy(btrfs_inode_cachep);
9601 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9602 	kmem_cache_destroy(btrfs_path_cachep);
9603 	kmem_cache_destroy(btrfs_free_space_cachep);
9604 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9605 }
9606 
btrfs_init_cachep(void)9607 int __init btrfs_init_cachep(void)
9608 {
9609 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9610 			sizeof(struct btrfs_inode), 0,
9611 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9612 			init_once);
9613 	if (!btrfs_inode_cachep)
9614 		goto fail;
9615 
9616 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9617 			sizeof(struct btrfs_trans_handle), 0,
9618 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9619 	if (!btrfs_trans_handle_cachep)
9620 		goto fail;
9621 
9622 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9623 			sizeof(struct btrfs_path), 0,
9624 			SLAB_MEM_SPREAD, NULL);
9625 	if (!btrfs_path_cachep)
9626 		goto fail;
9627 
9628 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9629 			sizeof(struct btrfs_free_space), 0,
9630 			SLAB_MEM_SPREAD, NULL);
9631 	if (!btrfs_free_space_cachep)
9632 		goto fail;
9633 
9634 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9635 							PAGE_SIZE, PAGE_SIZE,
9636 							SLAB_MEM_SPREAD, NULL);
9637 	if (!btrfs_free_space_bitmap_cachep)
9638 		goto fail;
9639 
9640 	return 0;
9641 fail:
9642 	btrfs_destroy_cachep();
9643 	return -ENOMEM;
9644 }
9645 
btrfs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)9646 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9647 			 u32 request_mask, unsigned int flags)
9648 {
9649 	u64 delalloc_bytes;
9650 	struct inode *inode = d_inode(path->dentry);
9651 	u32 blocksize = inode->i_sb->s_blocksize;
9652 	u32 bi_flags = BTRFS_I(inode)->flags;
9653 
9654 	stat->result_mask |= STATX_BTIME;
9655 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9656 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9657 	if (bi_flags & BTRFS_INODE_APPEND)
9658 		stat->attributes |= STATX_ATTR_APPEND;
9659 	if (bi_flags & BTRFS_INODE_COMPRESS)
9660 		stat->attributes |= STATX_ATTR_COMPRESSED;
9661 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9662 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9663 	if (bi_flags & BTRFS_INODE_NODUMP)
9664 		stat->attributes |= STATX_ATTR_NODUMP;
9665 
9666 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9667 				  STATX_ATTR_COMPRESSED |
9668 				  STATX_ATTR_IMMUTABLE |
9669 				  STATX_ATTR_NODUMP);
9670 
9671 	generic_fillattr(inode, stat);
9672 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9673 
9674 	spin_lock(&BTRFS_I(inode)->lock);
9675 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9676 	spin_unlock(&BTRFS_I(inode)->lock);
9677 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9678 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9679 	return 0;
9680 }
9681 
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)9682 static int btrfs_rename_exchange(struct inode *old_dir,
9683 			      struct dentry *old_dentry,
9684 			      struct inode *new_dir,
9685 			      struct dentry *new_dentry)
9686 {
9687 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9688 	struct btrfs_trans_handle *trans;
9689 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9690 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9691 	struct inode *new_inode = new_dentry->d_inode;
9692 	struct inode *old_inode = old_dentry->d_inode;
9693 	struct timespec64 ctime = current_time(old_inode);
9694 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9695 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9696 	u64 old_idx = 0;
9697 	u64 new_idx = 0;
9698 	int ret;
9699 	int ret2;
9700 	bool root_log_pinned = false;
9701 	bool dest_log_pinned = false;
9702 
9703 	/*
9704 	 * For non-subvolumes allow exchange only within one subvolume, in the
9705 	 * same inode namespace. Two subvolumes (represented as directory) can
9706 	 * be exchanged as they're a logical link and have a fixed inode number.
9707 	 */
9708 	if (root != dest &&
9709 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9710 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
9711 		return -EXDEV;
9712 
9713 	/* close the race window with snapshot create/destroy ioctl */
9714 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9715 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
9716 		down_read(&fs_info->subvol_sem);
9717 
9718 	/*
9719 	 * We want to reserve the absolute worst case amount of items.  So if
9720 	 * both inodes are subvols and we need to unlink them then that would
9721 	 * require 4 item modifications, but if they are both normal inodes it
9722 	 * would require 5 item modifications, so we'll assume their normal
9723 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9724 	 * should cover the worst case number of items we'll modify.
9725 	 */
9726 	trans = btrfs_start_transaction(root, 12);
9727 	if (IS_ERR(trans)) {
9728 		ret = PTR_ERR(trans);
9729 		goto out_notrans;
9730 	}
9731 
9732 	if (dest != root)
9733 		btrfs_record_root_in_trans(trans, dest);
9734 
9735 	/*
9736 	 * We need to find a free sequence number both in the source and
9737 	 * in the destination directory for the exchange.
9738 	 */
9739 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9740 	if (ret)
9741 		goto out_fail;
9742 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9743 	if (ret)
9744 		goto out_fail;
9745 
9746 	BTRFS_I(old_inode)->dir_index = 0ULL;
9747 	BTRFS_I(new_inode)->dir_index = 0ULL;
9748 
9749 	/* Reference for the source. */
9750 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9751 		/* force full log commit if subvolume involved. */
9752 		btrfs_set_log_full_commit(trans);
9753 	} else {
9754 		ret = btrfs_insert_inode_ref(trans, dest,
9755 					     new_dentry->d_name.name,
9756 					     new_dentry->d_name.len,
9757 					     old_ino,
9758 					     btrfs_ino(BTRFS_I(new_dir)),
9759 					     old_idx);
9760 		if (ret)
9761 			goto out_fail;
9762 	}
9763 
9764 	/* And now for the dest. */
9765 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9766 		/* force full log commit if subvolume involved. */
9767 		btrfs_set_log_full_commit(trans);
9768 	} else {
9769 		ret = btrfs_insert_inode_ref(trans, root,
9770 					     old_dentry->d_name.name,
9771 					     old_dentry->d_name.len,
9772 					     new_ino,
9773 					     btrfs_ino(BTRFS_I(old_dir)),
9774 					     new_idx);
9775 		if (ret)
9776 			goto out_fail;
9777 	}
9778 
9779 	/* Update inode version and ctime/mtime. */
9780 	inode_inc_iversion(old_dir);
9781 	inode_inc_iversion(new_dir);
9782 	inode_inc_iversion(old_inode);
9783 	inode_inc_iversion(new_inode);
9784 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9785 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9786 	old_inode->i_ctime = ctime;
9787 	new_inode->i_ctime = ctime;
9788 
9789 	if (old_dentry->d_parent != new_dentry->d_parent) {
9790 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9791 				BTRFS_I(old_inode), 1);
9792 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9793 				BTRFS_I(new_inode), 1);
9794 	}
9795 
9796 	/*
9797 	 * Now pin the logs of the roots. We do it to ensure that no other task
9798 	 * can sync the logs while we are in progress with the rename, because
9799 	 * that could result in an inconsistency in case any of the inodes that
9800 	 * are part of this rename operation were logged before.
9801 	 *
9802 	 * We pin the logs even if at this precise moment none of the inodes was
9803 	 * logged before. This is because right after we checked for that, some
9804 	 * other task fsyncing some other inode not involved with this rename
9805 	 * operation could log that one of our inodes exists.
9806 	 *
9807 	 * We don't need to pin the logs before the above calls to
9808 	 * btrfs_insert_inode_ref(), since those don't ever need to change a log.
9809 	 */
9810 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9811 		btrfs_pin_log_trans(root);
9812 		root_log_pinned = true;
9813 	}
9814 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID) {
9815 		btrfs_pin_log_trans(dest);
9816 		dest_log_pinned = true;
9817 	}
9818 
9819 	/* src is a subvolume */
9820 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9821 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9822 	} else { /* src is an inode */
9823 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9824 					   BTRFS_I(old_dentry->d_inode),
9825 					   old_dentry->d_name.name,
9826 					   old_dentry->d_name.len);
9827 		if (!ret)
9828 			ret = btrfs_update_inode(trans, root, old_inode);
9829 	}
9830 	if (ret) {
9831 		btrfs_abort_transaction(trans, ret);
9832 		goto out_fail;
9833 	}
9834 
9835 	/* dest is a subvolume */
9836 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9837 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9838 	} else { /* dest is an inode */
9839 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9840 					   BTRFS_I(new_dentry->d_inode),
9841 					   new_dentry->d_name.name,
9842 					   new_dentry->d_name.len);
9843 		if (!ret)
9844 			ret = btrfs_update_inode(trans, dest, new_inode);
9845 	}
9846 	if (ret) {
9847 		btrfs_abort_transaction(trans, ret);
9848 		goto out_fail;
9849 	}
9850 
9851 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9852 			     new_dentry->d_name.name,
9853 			     new_dentry->d_name.len, 0, old_idx);
9854 	if (ret) {
9855 		btrfs_abort_transaction(trans, ret);
9856 		goto out_fail;
9857 	}
9858 
9859 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9860 			     old_dentry->d_name.name,
9861 			     old_dentry->d_name.len, 0, new_idx);
9862 	if (ret) {
9863 		btrfs_abort_transaction(trans, ret);
9864 		goto out_fail;
9865 	}
9866 
9867 	if (old_inode->i_nlink == 1)
9868 		BTRFS_I(old_inode)->dir_index = old_idx;
9869 	if (new_inode->i_nlink == 1)
9870 		BTRFS_I(new_inode)->dir_index = new_idx;
9871 
9872 	if (root_log_pinned) {
9873 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9874 				   new_dentry->d_parent);
9875 		btrfs_end_log_trans(root);
9876 		root_log_pinned = false;
9877 	}
9878 	if (dest_log_pinned) {
9879 		btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9880 				   old_dentry->d_parent);
9881 		btrfs_end_log_trans(dest);
9882 		dest_log_pinned = false;
9883 	}
9884 out_fail:
9885 	/*
9886 	 * If we have pinned a log and an error happened, we unpin tasks
9887 	 * trying to sync the log and force them to fallback to a transaction
9888 	 * commit if the log currently contains any of the inodes involved in
9889 	 * this rename operation (to ensure we do not persist a log with an
9890 	 * inconsistent state for any of these inodes or leading to any
9891 	 * inconsistencies when replayed). If the transaction was aborted, the
9892 	 * abortion reason is propagated to userspace when attempting to commit
9893 	 * the transaction. If the log does not contain any of these inodes, we
9894 	 * allow the tasks to sync it.
9895 	 */
9896 	if (ret && (root_log_pinned || dest_log_pinned)) {
9897 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9898 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9899 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9900 		    (new_inode &&
9901 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9902 			btrfs_set_log_full_commit(trans);
9903 
9904 		if (root_log_pinned) {
9905 			btrfs_end_log_trans(root);
9906 			root_log_pinned = false;
9907 		}
9908 		if (dest_log_pinned) {
9909 			btrfs_end_log_trans(dest);
9910 			dest_log_pinned = false;
9911 		}
9912 	}
9913 	ret2 = btrfs_end_transaction(trans);
9914 	ret = ret ? ret : ret2;
9915 out_notrans:
9916 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9917 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9918 		up_read(&fs_info->subvol_sem);
9919 
9920 	return ret;
9921 }
9922 
btrfs_whiteout_for_rename(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct dentry * dentry)9923 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9924 				     struct btrfs_root *root,
9925 				     struct inode *dir,
9926 				     struct dentry *dentry)
9927 {
9928 	int ret;
9929 	struct inode *inode;
9930 	u64 objectid;
9931 	u64 index;
9932 
9933 	ret = btrfs_find_free_objectid(root, &objectid);
9934 	if (ret)
9935 		return ret;
9936 
9937 	inode = btrfs_new_inode(trans, root, dir,
9938 				dentry->d_name.name,
9939 				dentry->d_name.len,
9940 				btrfs_ino(BTRFS_I(dir)),
9941 				objectid,
9942 				S_IFCHR | WHITEOUT_MODE,
9943 				&index);
9944 
9945 	if (IS_ERR(inode)) {
9946 		ret = PTR_ERR(inode);
9947 		return ret;
9948 	}
9949 
9950 	inode->i_op = &btrfs_special_inode_operations;
9951 	init_special_inode(inode, inode->i_mode,
9952 		WHITEOUT_DEV);
9953 
9954 	ret = btrfs_init_inode_security(trans, inode, dir,
9955 				&dentry->d_name);
9956 	if (ret)
9957 		goto out;
9958 
9959 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9960 				BTRFS_I(inode), 0, index);
9961 	if (ret)
9962 		goto out;
9963 
9964 	ret = btrfs_update_inode(trans, root, inode);
9965 out:
9966 	unlock_new_inode(inode);
9967 	if (ret)
9968 		inode_dec_link_count(inode);
9969 	iput(inode);
9970 
9971 	return ret;
9972 }
9973 
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9974 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9975 			   struct inode *new_dir, struct dentry *new_dentry,
9976 			   unsigned int flags)
9977 {
9978 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9979 	struct btrfs_trans_handle *trans;
9980 	unsigned int trans_num_items;
9981 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9982 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9983 	struct inode *new_inode = d_inode(new_dentry);
9984 	struct inode *old_inode = d_inode(old_dentry);
9985 	u64 index = 0;
9986 	int ret;
9987 	int ret2;
9988 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9989 	bool log_pinned = false;
9990 
9991 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9992 		return -EPERM;
9993 
9994 	/* we only allow rename subvolume link between subvolumes */
9995 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9996 		return -EXDEV;
9997 
9998 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9999 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
10000 		return -ENOTEMPTY;
10001 
10002 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
10003 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
10004 		return -ENOTEMPTY;
10005 
10006 
10007 	/* check for collisions, even if the  name isn't there */
10008 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
10009 			     new_dentry->d_name.name,
10010 			     new_dentry->d_name.len);
10011 
10012 	if (ret) {
10013 		if (ret == -EEXIST) {
10014 			/* we shouldn't get
10015 			 * eexist without a new_inode */
10016 			if (WARN_ON(!new_inode)) {
10017 				return ret;
10018 			}
10019 		} else {
10020 			/* maybe -EOVERFLOW */
10021 			return ret;
10022 		}
10023 	}
10024 	ret = 0;
10025 
10026 	/*
10027 	 * we're using rename to replace one file with another.  Start IO on it
10028 	 * now so  we don't add too much work to the end of the transaction
10029 	 */
10030 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
10031 		filemap_flush(old_inode->i_mapping);
10032 
10033 	/* close the racy window with snapshot create/destroy ioctl */
10034 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10035 		down_read(&fs_info->subvol_sem);
10036 	/*
10037 	 * We want to reserve the absolute worst case amount of items.  So if
10038 	 * both inodes are subvols and we need to unlink them then that would
10039 	 * require 4 item modifications, but if they are both normal inodes it
10040 	 * would require 5 item modifications, so we'll assume they are normal
10041 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
10042 	 * should cover the worst case number of items we'll modify.
10043 	 * If our rename has the whiteout flag, we need more 5 units for the
10044 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
10045 	 * when selinux is enabled).
10046 	 */
10047 	trans_num_items = 11;
10048 	if (flags & RENAME_WHITEOUT)
10049 		trans_num_items += 5;
10050 	trans = btrfs_start_transaction(root, trans_num_items);
10051 	if (IS_ERR(trans)) {
10052 		ret = PTR_ERR(trans);
10053 		goto out_notrans;
10054 	}
10055 
10056 	if (dest != root)
10057 		btrfs_record_root_in_trans(trans, dest);
10058 
10059 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
10060 	if (ret)
10061 		goto out_fail;
10062 
10063 	BTRFS_I(old_inode)->dir_index = 0ULL;
10064 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
10065 		/* force full log commit if subvolume involved. */
10066 		btrfs_set_log_full_commit(trans);
10067 	} else {
10068 		ret = btrfs_insert_inode_ref(trans, dest,
10069 					     new_dentry->d_name.name,
10070 					     new_dentry->d_name.len,
10071 					     old_ino,
10072 					     btrfs_ino(BTRFS_I(new_dir)), index);
10073 		if (ret)
10074 			goto out_fail;
10075 	}
10076 
10077 	inode_inc_iversion(old_dir);
10078 	inode_inc_iversion(new_dir);
10079 	inode_inc_iversion(old_inode);
10080 	old_dir->i_ctime = old_dir->i_mtime =
10081 	new_dir->i_ctime = new_dir->i_mtime =
10082 	old_inode->i_ctime = current_time(old_dir);
10083 
10084 	if (old_dentry->d_parent != new_dentry->d_parent)
10085 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
10086 				BTRFS_I(old_inode), 1);
10087 
10088 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
10089 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
10090 	} else {
10091 		/*
10092 		 * Now pin the log. We do it to ensure that no other task can
10093 		 * sync the log while we are in progress with the rename, as
10094 		 * that could result in an inconsistency in case any of the
10095 		 * inodes that are part of this rename operation were logged
10096 		 * before.
10097 		 *
10098 		 * We pin the log even if at this precise moment none of the
10099 		 * inodes was logged before. This is because right after we
10100 		 * checked for that, some other task fsyncing some other inode
10101 		 * not involved with this rename operation could log that one of
10102 		 * our inodes exists.
10103 		 *
10104 		 * We don't need to pin the logs before the above call to
10105 		 * btrfs_insert_inode_ref(), since that does not need to change
10106 		 * a log.
10107 		 */
10108 		btrfs_pin_log_trans(root);
10109 		log_pinned = true;
10110 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
10111 					BTRFS_I(d_inode(old_dentry)),
10112 					old_dentry->d_name.name,
10113 					old_dentry->d_name.len);
10114 		if (!ret)
10115 			ret = btrfs_update_inode(trans, root, old_inode);
10116 	}
10117 	if (ret) {
10118 		btrfs_abort_transaction(trans, ret);
10119 		goto out_fail;
10120 	}
10121 
10122 	if (new_inode) {
10123 		inode_inc_iversion(new_inode);
10124 		new_inode->i_ctime = current_time(new_inode);
10125 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
10126 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10127 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
10128 			BUG_ON(new_inode->i_nlink == 0);
10129 		} else {
10130 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10131 						 BTRFS_I(d_inode(new_dentry)),
10132 						 new_dentry->d_name.name,
10133 						 new_dentry->d_name.len);
10134 		}
10135 		if (!ret && new_inode->i_nlink == 0)
10136 			ret = btrfs_orphan_add(trans,
10137 					BTRFS_I(d_inode(new_dentry)));
10138 		if (ret) {
10139 			btrfs_abort_transaction(trans, ret);
10140 			goto out_fail;
10141 		}
10142 	}
10143 
10144 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
10145 			     new_dentry->d_name.name,
10146 			     new_dentry->d_name.len, 0, index);
10147 	if (ret) {
10148 		btrfs_abort_transaction(trans, ret);
10149 		goto out_fail;
10150 	}
10151 
10152 	if (old_inode->i_nlink == 1)
10153 		BTRFS_I(old_inode)->dir_index = index;
10154 
10155 	if (log_pinned) {
10156 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10157 				   new_dentry->d_parent);
10158 		btrfs_end_log_trans(root);
10159 		log_pinned = false;
10160 	}
10161 
10162 	if (flags & RENAME_WHITEOUT) {
10163 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10164 						old_dentry);
10165 
10166 		if (ret) {
10167 			btrfs_abort_transaction(trans, ret);
10168 			goto out_fail;
10169 		}
10170 	}
10171 out_fail:
10172 	/*
10173 	 * If we have pinned the log and an error happened, we unpin tasks
10174 	 * trying to sync the log and force them to fallback to a transaction
10175 	 * commit if the log currently contains any of the inodes involved in
10176 	 * this rename operation (to ensure we do not persist a log with an
10177 	 * inconsistent state for any of these inodes or leading to any
10178 	 * inconsistencies when replayed). If the transaction was aborted, the
10179 	 * abortion reason is propagated to userspace when attempting to commit
10180 	 * the transaction. If the log does not contain any of these inodes, we
10181 	 * allow the tasks to sync it.
10182 	 */
10183 	if (ret && log_pinned) {
10184 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10185 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10186 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10187 		    (new_inode &&
10188 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10189 			btrfs_set_log_full_commit(trans);
10190 
10191 		btrfs_end_log_trans(root);
10192 		log_pinned = false;
10193 	}
10194 	ret2 = btrfs_end_transaction(trans);
10195 	ret = ret ? ret : ret2;
10196 out_notrans:
10197 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10198 		up_read(&fs_info->subvol_sem);
10199 
10200 	return ret;
10201 }
10202 
btrfs_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)10203 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10204 			 struct inode *new_dir, struct dentry *new_dentry,
10205 			 unsigned int flags)
10206 {
10207 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10208 		return -EINVAL;
10209 
10210 	if (flags & RENAME_EXCHANGE)
10211 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10212 					  new_dentry);
10213 
10214 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10215 }
10216 
10217 struct btrfs_delalloc_work {
10218 	struct inode *inode;
10219 	struct completion completion;
10220 	struct list_head list;
10221 	struct btrfs_work work;
10222 };
10223 
btrfs_run_delalloc_work(struct btrfs_work * work)10224 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10225 {
10226 	struct btrfs_delalloc_work *delalloc_work;
10227 	struct inode *inode;
10228 
10229 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
10230 				     work);
10231 	inode = delalloc_work->inode;
10232 	filemap_flush(inode->i_mapping);
10233 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10234 				&BTRFS_I(inode)->runtime_flags))
10235 		filemap_flush(inode->i_mapping);
10236 
10237 	iput(inode);
10238 	complete(&delalloc_work->completion);
10239 }
10240 
btrfs_alloc_delalloc_work(struct inode * inode)10241 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
10242 {
10243 	struct btrfs_delalloc_work *work;
10244 
10245 	work = kmalloc(sizeof(*work), GFP_NOFS);
10246 	if (!work)
10247 		return NULL;
10248 
10249 	init_completion(&work->completion);
10250 	INIT_LIST_HEAD(&work->list);
10251 	work->inode = inode;
10252 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
10253 
10254 	return work;
10255 }
10256 
10257 /*
10258  * some fairly slow code that needs optimization. This walks the list
10259  * of all the inodes with pending delalloc and forces them to disk.
10260  */
start_delalloc_inodes(struct btrfs_root * root,int nr,bool snapshot)10261 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
10262 {
10263 	struct btrfs_inode *binode;
10264 	struct inode *inode;
10265 	struct btrfs_delalloc_work *work, *next;
10266 	struct list_head works;
10267 	struct list_head splice;
10268 	int ret = 0;
10269 
10270 	INIT_LIST_HEAD(&works);
10271 	INIT_LIST_HEAD(&splice);
10272 
10273 	mutex_lock(&root->delalloc_mutex);
10274 	spin_lock(&root->delalloc_lock);
10275 	list_splice_init(&root->delalloc_inodes, &splice);
10276 	while (!list_empty(&splice)) {
10277 		binode = list_entry(splice.next, struct btrfs_inode,
10278 				    delalloc_inodes);
10279 
10280 		list_move_tail(&binode->delalloc_inodes,
10281 			       &root->delalloc_inodes);
10282 		inode = igrab(&binode->vfs_inode);
10283 		if (!inode) {
10284 			cond_resched_lock(&root->delalloc_lock);
10285 			continue;
10286 		}
10287 		spin_unlock(&root->delalloc_lock);
10288 
10289 		if (snapshot)
10290 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10291 				&binode->runtime_flags);
10292 		work = btrfs_alloc_delalloc_work(inode);
10293 		if (!work) {
10294 			iput(inode);
10295 			ret = -ENOMEM;
10296 			goto out;
10297 		}
10298 		list_add_tail(&work->list, &works);
10299 		btrfs_queue_work(root->fs_info->flush_workers,
10300 				 &work->work);
10301 		ret++;
10302 		if (nr != -1 && ret >= nr)
10303 			goto out;
10304 		cond_resched();
10305 		spin_lock(&root->delalloc_lock);
10306 	}
10307 	spin_unlock(&root->delalloc_lock);
10308 
10309 out:
10310 	list_for_each_entry_safe(work, next, &works, list) {
10311 		list_del_init(&work->list);
10312 		wait_for_completion(&work->completion);
10313 		kfree(work);
10314 	}
10315 
10316 	if (!list_empty(&splice)) {
10317 		spin_lock(&root->delalloc_lock);
10318 		list_splice_tail(&splice, &root->delalloc_inodes);
10319 		spin_unlock(&root->delalloc_lock);
10320 	}
10321 	mutex_unlock(&root->delalloc_mutex);
10322 	return ret;
10323 }
10324 
btrfs_start_delalloc_snapshot(struct btrfs_root * root)10325 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
10326 {
10327 	struct btrfs_fs_info *fs_info = root->fs_info;
10328 	int ret;
10329 
10330 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10331 		return -EROFS;
10332 
10333 	ret = start_delalloc_inodes(root, -1, true);
10334 	if (ret > 0)
10335 		ret = 0;
10336 	return ret;
10337 }
10338 
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,int nr)10339 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10340 {
10341 	struct btrfs_root *root;
10342 	struct list_head splice;
10343 	int ret;
10344 
10345 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10346 		return -EROFS;
10347 
10348 	INIT_LIST_HEAD(&splice);
10349 
10350 	mutex_lock(&fs_info->delalloc_root_mutex);
10351 	spin_lock(&fs_info->delalloc_root_lock);
10352 	list_splice_init(&fs_info->delalloc_roots, &splice);
10353 	while (!list_empty(&splice) && nr) {
10354 		root = list_first_entry(&splice, struct btrfs_root,
10355 					delalloc_root);
10356 		root = btrfs_grab_fs_root(root);
10357 		BUG_ON(!root);
10358 		list_move_tail(&root->delalloc_root,
10359 			       &fs_info->delalloc_roots);
10360 		spin_unlock(&fs_info->delalloc_root_lock);
10361 
10362 		ret = start_delalloc_inodes(root, nr, false);
10363 		btrfs_put_fs_root(root);
10364 		if (ret < 0)
10365 			goto out;
10366 
10367 		if (nr != -1) {
10368 			nr -= ret;
10369 			WARN_ON(nr < 0);
10370 		}
10371 		spin_lock(&fs_info->delalloc_root_lock);
10372 	}
10373 	spin_unlock(&fs_info->delalloc_root_lock);
10374 
10375 	ret = 0;
10376 out:
10377 	if (!list_empty(&splice)) {
10378 		spin_lock(&fs_info->delalloc_root_lock);
10379 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10380 		spin_unlock(&fs_info->delalloc_root_lock);
10381 	}
10382 	mutex_unlock(&fs_info->delalloc_root_mutex);
10383 	return ret;
10384 }
10385 
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)10386 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10387 			 const char *symname)
10388 {
10389 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10390 	struct btrfs_trans_handle *trans;
10391 	struct btrfs_root *root = BTRFS_I(dir)->root;
10392 	struct btrfs_path *path;
10393 	struct btrfs_key key;
10394 	struct inode *inode = NULL;
10395 	int err;
10396 	u64 objectid;
10397 	u64 index = 0;
10398 	int name_len;
10399 	int datasize;
10400 	unsigned long ptr;
10401 	struct btrfs_file_extent_item *ei;
10402 	struct extent_buffer *leaf;
10403 
10404 	name_len = strlen(symname);
10405 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10406 		return -ENAMETOOLONG;
10407 
10408 	/*
10409 	 * 2 items for inode item and ref
10410 	 * 2 items for dir items
10411 	 * 1 item for updating parent inode item
10412 	 * 1 item for the inline extent item
10413 	 * 1 item for xattr if selinux is on
10414 	 */
10415 	trans = btrfs_start_transaction(root, 7);
10416 	if (IS_ERR(trans))
10417 		return PTR_ERR(trans);
10418 
10419 	err = btrfs_find_free_objectid(root, &objectid);
10420 	if (err)
10421 		goto out_unlock;
10422 
10423 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10424 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10425 				objectid, S_IFLNK|S_IRWXUGO, &index);
10426 	if (IS_ERR(inode)) {
10427 		err = PTR_ERR(inode);
10428 		inode = NULL;
10429 		goto out_unlock;
10430 	}
10431 
10432 	/*
10433 	* If the active LSM wants to access the inode during
10434 	* d_instantiate it needs these. Smack checks to see
10435 	* if the filesystem supports xattrs by looking at the
10436 	* ops vector.
10437 	*/
10438 	inode->i_fop = &btrfs_file_operations;
10439 	inode->i_op = &btrfs_file_inode_operations;
10440 	inode->i_mapping->a_ops = &btrfs_aops;
10441 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10442 
10443 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10444 	if (err)
10445 		goto out_unlock;
10446 
10447 	path = btrfs_alloc_path();
10448 	if (!path) {
10449 		err = -ENOMEM;
10450 		goto out_unlock;
10451 	}
10452 	key.objectid = btrfs_ino(BTRFS_I(inode));
10453 	key.offset = 0;
10454 	key.type = BTRFS_EXTENT_DATA_KEY;
10455 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10456 	err = btrfs_insert_empty_item(trans, root, path, &key,
10457 				      datasize);
10458 	if (err) {
10459 		btrfs_free_path(path);
10460 		goto out_unlock;
10461 	}
10462 	leaf = path->nodes[0];
10463 	ei = btrfs_item_ptr(leaf, path->slots[0],
10464 			    struct btrfs_file_extent_item);
10465 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10466 	btrfs_set_file_extent_type(leaf, ei,
10467 				   BTRFS_FILE_EXTENT_INLINE);
10468 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10469 	btrfs_set_file_extent_compression(leaf, ei, 0);
10470 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10471 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10472 
10473 	ptr = btrfs_file_extent_inline_start(ei);
10474 	write_extent_buffer(leaf, symname, ptr, name_len);
10475 	btrfs_mark_buffer_dirty(leaf);
10476 	btrfs_free_path(path);
10477 
10478 	inode->i_op = &btrfs_symlink_inode_operations;
10479 	inode_nohighmem(inode);
10480 	inode_set_bytes(inode, name_len);
10481 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10482 	err = btrfs_update_inode(trans, root, inode);
10483 	/*
10484 	 * Last step, add directory indexes for our symlink inode. This is the
10485 	 * last step to avoid extra cleanup of these indexes if an error happens
10486 	 * elsewhere above.
10487 	 */
10488 	if (!err)
10489 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10490 				BTRFS_I(inode), 0, index);
10491 	if (err)
10492 		goto out_unlock;
10493 
10494 	d_instantiate_new(dentry, inode);
10495 
10496 out_unlock:
10497 	btrfs_end_transaction(trans);
10498 	if (err && inode) {
10499 		inode_dec_link_count(inode);
10500 		discard_new_inode(inode);
10501 	}
10502 	btrfs_btree_balance_dirty(fs_info);
10503 	return err;
10504 }
10505 
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)10506 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10507 				       u64 start, u64 num_bytes, u64 min_size,
10508 				       loff_t actual_len, u64 *alloc_hint,
10509 				       struct btrfs_trans_handle *trans)
10510 {
10511 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10512 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10513 	struct extent_map *em;
10514 	struct btrfs_root *root = BTRFS_I(inode)->root;
10515 	struct btrfs_key ins;
10516 	u64 cur_offset = start;
10517 	u64 clear_offset = start;
10518 	u64 i_size;
10519 	u64 cur_bytes;
10520 	u64 last_alloc = (u64)-1;
10521 	int ret = 0;
10522 	bool own_trans = true;
10523 	u64 end = start + num_bytes - 1;
10524 
10525 	if (trans)
10526 		own_trans = false;
10527 	while (num_bytes > 0) {
10528 		if (own_trans) {
10529 			trans = btrfs_start_transaction(root, 3);
10530 			if (IS_ERR(trans)) {
10531 				ret = PTR_ERR(trans);
10532 				break;
10533 			}
10534 		}
10535 
10536 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10537 		cur_bytes = max(cur_bytes, min_size);
10538 		/*
10539 		 * If we are severely fragmented we could end up with really
10540 		 * small allocations, so if the allocator is returning small
10541 		 * chunks lets make its job easier by only searching for those
10542 		 * sized chunks.
10543 		 */
10544 		cur_bytes = min(cur_bytes, last_alloc);
10545 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10546 				min_size, 0, *alloc_hint, &ins, 1, 0);
10547 		if (ret) {
10548 			if (own_trans)
10549 				btrfs_end_transaction(trans);
10550 			break;
10551 		}
10552 
10553 		/*
10554 		 * We've reserved this space, and thus converted it from
10555 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
10556 		 * from here on out we will only need to clear our reservation
10557 		 * for the remaining unreserved area, so advance our
10558 		 * clear_offset by our extent size.
10559 		 */
10560 		clear_offset += ins.offset;
10561 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10562 
10563 		last_alloc = ins.offset;
10564 		ret = insert_reserved_file_extent(trans, inode,
10565 						  cur_offset, ins.objectid,
10566 						  ins.offset, ins.offset,
10567 						  ins.offset, 0, 0, 0,
10568 						  BTRFS_FILE_EXTENT_PREALLOC);
10569 		if (ret) {
10570 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10571 						   ins.offset, 0);
10572 			btrfs_abort_transaction(trans, ret);
10573 			if (own_trans)
10574 				btrfs_end_transaction(trans);
10575 			break;
10576 		}
10577 
10578 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10579 					cur_offset + ins.offset -1, 0);
10580 
10581 		em = alloc_extent_map();
10582 		if (!em) {
10583 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10584 				&BTRFS_I(inode)->runtime_flags);
10585 			goto next;
10586 		}
10587 
10588 		em->start = cur_offset;
10589 		em->orig_start = cur_offset;
10590 		em->len = ins.offset;
10591 		em->block_start = ins.objectid;
10592 		em->block_len = ins.offset;
10593 		em->orig_block_len = ins.offset;
10594 		em->ram_bytes = ins.offset;
10595 		em->bdev = fs_info->fs_devices->latest_bdev;
10596 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10597 		em->generation = trans->transid;
10598 
10599 		while (1) {
10600 			write_lock(&em_tree->lock);
10601 			ret = add_extent_mapping(em_tree, em, 1);
10602 			write_unlock(&em_tree->lock);
10603 			if (ret != -EEXIST)
10604 				break;
10605 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10606 						cur_offset + ins.offset - 1,
10607 						0);
10608 		}
10609 		free_extent_map(em);
10610 next:
10611 		num_bytes -= ins.offset;
10612 		cur_offset += ins.offset;
10613 		*alloc_hint = ins.objectid + ins.offset;
10614 
10615 		inode_inc_iversion(inode);
10616 		inode->i_ctime = current_time(inode);
10617 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10618 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10619 		    (actual_len > inode->i_size) &&
10620 		    (cur_offset > inode->i_size)) {
10621 			if (cur_offset > actual_len)
10622 				i_size = actual_len;
10623 			else
10624 				i_size = cur_offset;
10625 			i_size_write(inode, i_size);
10626 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10627 		}
10628 
10629 		ret = btrfs_update_inode(trans, root, inode);
10630 
10631 		if (ret) {
10632 			btrfs_abort_transaction(trans, ret);
10633 			if (own_trans)
10634 				btrfs_end_transaction(trans);
10635 			break;
10636 		}
10637 
10638 		if (own_trans)
10639 			btrfs_end_transaction(trans);
10640 	}
10641 	if (clear_offset < end)
10642 		btrfs_free_reserved_data_space(inode, NULL, clear_offset,
10643 			end - clear_offset + 1);
10644 	return ret;
10645 }
10646 
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10647 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10648 			      u64 start, u64 num_bytes, u64 min_size,
10649 			      loff_t actual_len, u64 *alloc_hint)
10650 {
10651 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10652 					   min_size, actual_len, alloc_hint,
10653 					   NULL);
10654 }
10655 
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10656 int btrfs_prealloc_file_range_trans(struct inode *inode,
10657 				    struct btrfs_trans_handle *trans, int mode,
10658 				    u64 start, u64 num_bytes, u64 min_size,
10659 				    loff_t actual_len, u64 *alloc_hint)
10660 {
10661 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10662 					   min_size, actual_len, alloc_hint, trans);
10663 }
10664 
btrfs_set_page_dirty(struct page * page)10665 static int btrfs_set_page_dirty(struct page *page)
10666 {
10667 	return __set_page_dirty_nobuffers(page);
10668 }
10669 
btrfs_permission(struct inode * inode,int mask)10670 static int btrfs_permission(struct inode *inode, int mask)
10671 {
10672 	struct btrfs_root *root = BTRFS_I(inode)->root;
10673 	umode_t mode = inode->i_mode;
10674 
10675 	if (mask & MAY_WRITE &&
10676 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10677 		if (btrfs_root_readonly(root))
10678 			return -EROFS;
10679 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10680 			return -EACCES;
10681 	}
10682 	return generic_permission(inode, mask);
10683 }
10684 
btrfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)10685 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10686 {
10687 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10688 	struct btrfs_trans_handle *trans;
10689 	struct btrfs_root *root = BTRFS_I(dir)->root;
10690 	struct inode *inode = NULL;
10691 	u64 objectid;
10692 	u64 index;
10693 	int ret = 0;
10694 
10695 	/*
10696 	 * 5 units required for adding orphan entry
10697 	 */
10698 	trans = btrfs_start_transaction(root, 5);
10699 	if (IS_ERR(trans))
10700 		return PTR_ERR(trans);
10701 
10702 	ret = btrfs_find_free_objectid(root, &objectid);
10703 	if (ret)
10704 		goto out;
10705 
10706 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10707 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10708 	if (IS_ERR(inode)) {
10709 		ret = PTR_ERR(inode);
10710 		inode = NULL;
10711 		goto out;
10712 	}
10713 
10714 	inode->i_fop = &btrfs_file_operations;
10715 	inode->i_op = &btrfs_file_inode_operations;
10716 
10717 	inode->i_mapping->a_ops = &btrfs_aops;
10718 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10719 
10720 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10721 	if (ret)
10722 		goto out;
10723 
10724 	ret = btrfs_update_inode(trans, root, inode);
10725 	if (ret)
10726 		goto out;
10727 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10728 	if (ret)
10729 		goto out;
10730 
10731 	/*
10732 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10733 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10734 	 * through:
10735 	 *
10736 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10737 	 */
10738 	set_nlink(inode, 1);
10739 	d_tmpfile(dentry, inode);
10740 	unlock_new_inode(inode);
10741 	mark_inode_dirty(inode);
10742 out:
10743 	btrfs_end_transaction(trans);
10744 	if (ret && inode)
10745 		discard_new_inode(inode);
10746 	btrfs_btree_balance_dirty(fs_info);
10747 	return ret;
10748 }
10749 
btrfs_set_range_writeback(struct extent_io_tree * tree,u64 start,u64 end)10750 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10751 {
10752 	struct inode *inode = tree->private_data;
10753 	unsigned long index = start >> PAGE_SHIFT;
10754 	unsigned long end_index = end >> PAGE_SHIFT;
10755 	struct page *page;
10756 
10757 	while (index <= end_index) {
10758 		page = find_get_page(inode->i_mapping, index);
10759 		ASSERT(page); /* Pages should be in the extent_io_tree */
10760 		set_page_writeback(page);
10761 		put_page(page);
10762 		index++;
10763 	}
10764 }
10765 
10766 #ifdef CONFIG_SWAP
10767 /*
10768  * Add an entry indicating a block group or device which is pinned by a
10769  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10770  * negative errno on failure.
10771  */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)10772 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10773 				  bool is_block_group)
10774 {
10775 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10776 	struct btrfs_swapfile_pin *sp, *entry;
10777 	struct rb_node **p;
10778 	struct rb_node *parent = NULL;
10779 
10780 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10781 	if (!sp)
10782 		return -ENOMEM;
10783 	sp->ptr = ptr;
10784 	sp->inode = inode;
10785 	sp->is_block_group = is_block_group;
10786 
10787 	spin_lock(&fs_info->swapfile_pins_lock);
10788 	p = &fs_info->swapfile_pins.rb_node;
10789 	while (*p) {
10790 		parent = *p;
10791 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10792 		if (sp->ptr < entry->ptr ||
10793 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10794 			p = &(*p)->rb_left;
10795 		} else if (sp->ptr > entry->ptr ||
10796 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10797 			p = &(*p)->rb_right;
10798 		} else {
10799 			spin_unlock(&fs_info->swapfile_pins_lock);
10800 			kfree(sp);
10801 			return 1;
10802 		}
10803 	}
10804 	rb_link_node(&sp->node, parent, p);
10805 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10806 	spin_unlock(&fs_info->swapfile_pins_lock);
10807 	return 0;
10808 }
10809 
10810 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)10811 static void btrfs_free_swapfile_pins(struct inode *inode)
10812 {
10813 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10814 	struct btrfs_swapfile_pin *sp;
10815 	struct rb_node *node, *next;
10816 
10817 	spin_lock(&fs_info->swapfile_pins_lock);
10818 	node = rb_first(&fs_info->swapfile_pins);
10819 	while (node) {
10820 		next = rb_next(node);
10821 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10822 		if (sp->inode == inode) {
10823 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10824 			if (sp->is_block_group)
10825 				btrfs_put_block_group(sp->ptr);
10826 			kfree(sp);
10827 		}
10828 		node = next;
10829 	}
10830 	spin_unlock(&fs_info->swapfile_pins_lock);
10831 }
10832 
10833 struct btrfs_swap_info {
10834 	u64 start;
10835 	u64 block_start;
10836 	u64 block_len;
10837 	u64 lowest_ppage;
10838 	u64 highest_ppage;
10839 	unsigned long nr_pages;
10840 	int nr_extents;
10841 };
10842 
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)10843 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10844 				 struct btrfs_swap_info *bsi)
10845 {
10846 	unsigned long nr_pages;
10847 	unsigned long max_pages;
10848 	u64 first_ppage, first_ppage_reported, next_ppage;
10849 	int ret;
10850 
10851 	/*
10852 	 * Our swapfile may have had its size extended after the swap header was
10853 	 * written. In that case activating the swapfile should not go beyond
10854 	 * the max size set in the swap header.
10855 	 */
10856 	if (bsi->nr_pages >= sis->max)
10857 		return 0;
10858 
10859 	max_pages = sis->max - bsi->nr_pages;
10860 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10861 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10862 				PAGE_SIZE) >> PAGE_SHIFT;
10863 
10864 	if (first_ppage >= next_ppage)
10865 		return 0;
10866 	nr_pages = next_ppage - first_ppage;
10867 	nr_pages = min(nr_pages, max_pages);
10868 
10869 	first_ppage_reported = first_ppage;
10870 	if (bsi->start == 0)
10871 		first_ppage_reported++;
10872 	if (bsi->lowest_ppage > first_ppage_reported)
10873 		bsi->lowest_ppage = first_ppage_reported;
10874 	if (bsi->highest_ppage < (next_ppage - 1))
10875 		bsi->highest_ppage = next_ppage - 1;
10876 
10877 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10878 	if (ret < 0)
10879 		return ret;
10880 	bsi->nr_extents += ret;
10881 	bsi->nr_pages += nr_pages;
10882 	return 0;
10883 }
10884 
btrfs_swap_deactivate(struct file * file)10885 static void btrfs_swap_deactivate(struct file *file)
10886 {
10887 	struct inode *inode = file_inode(file);
10888 
10889 	btrfs_free_swapfile_pins(inode);
10890 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10891 }
10892 
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10893 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10894 			       sector_t *span)
10895 {
10896 	struct inode *inode = file_inode(file);
10897 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10898 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10899 	struct extent_state *cached_state = NULL;
10900 	struct extent_map *em = NULL;
10901 	struct btrfs_device *device = NULL;
10902 	struct btrfs_swap_info bsi = {
10903 		.lowest_ppage = (sector_t)-1ULL,
10904 	};
10905 	int ret = 0;
10906 	u64 isize;
10907 	u64 start;
10908 
10909 	/*
10910 	 * If the swap file was just created, make sure delalloc is done. If the
10911 	 * file changes again after this, the user is doing something stupid and
10912 	 * we don't really care.
10913 	 */
10914 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10915 	if (ret)
10916 		return ret;
10917 
10918 	/*
10919 	 * The inode is locked, so these flags won't change after we check them.
10920 	 */
10921 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10922 		btrfs_warn(fs_info, "swapfile must not be compressed");
10923 		return -EINVAL;
10924 	}
10925 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10926 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10927 		return -EINVAL;
10928 	}
10929 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10930 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10931 		return -EINVAL;
10932 	}
10933 
10934 	/*
10935 	 * Balance or device remove/replace/resize can move stuff around from
10936 	 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10937 	 * concurrently while we are mapping the swap extents, and
10938 	 * fs_info->swapfile_pins prevents them from running while the swap file
10939 	 * is active and moving the extents. Note that this also prevents a
10940 	 * concurrent device add which isn't actually necessary, but it's not
10941 	 * really worth the trouble to allow it.
10942 	 */
10943 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10944 		btrfs_warn(fs_info,
10945 	   "cannot activate swapfile while exclusive operation is running");
10946 		return -EBUSY;
10947 	}
10948 	/*
10949 	 * Snapshots can create extents which require COW even if NODATACOW is
10950 	 * set. We use this counter to prevent snapshots. We must increment it
10951 	 * before walking the extents because we don't want a concurrent
10952 	 * snapshot to run after we've already checked the extents.
10953 	 */
10954 	atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10955 
10956 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10957 
10958 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10959 	start = 0;
10960 	while (start < isize) {
10961 		u64 logical_block_start, physical_block_start;
10962 		struct btrfs_block_group_cache *bg;
10963 		u64 len = isize - start;
10964 
10965 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10966 		if (IS_ERR(em)) {
10967 			ret = PTR_ERR(em);
10968 			goto out;
10969 		}
10970 
10971 		if (em->block_start == EXTENT_MAP_HOLE) {
10972 			btrfs_warn(fs_info, "swapfile must not have holes");
10973 			ret = -EINVAL;
10974 			goto out;
10975 		}
10976 		if (em->block_start == EXTENT_MAP_INLINE) {
10977 			/*
10978 			 * It's unlikely we'll ever actually find ourselves
10979 			 * here, as a file small enough to fit inline won't be
10980 			 * big enough to store more than the swap header, but in
10981 			 * case something changes in the future, let's catch it
10982 			 * here rather than later.
10983 			 */
10984 			btrfs_warn(fs_info, "swapfile must not be inline");
10985 			ret = -EINVAL;
10986 			goto out;
10987 		}
10988 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10989 			btrfs_warn(fs_info, "swapfile must not be compressed");
10990 			ret = -EINVAL;
10991 			goto out;
10992 		}
10993 
10994 		logical_block_start = em->block_start + (start - em->start);
10995 		len = min(len, em->len - (start - em->start));
10996 		free_extent_map(em);
10997 		em = NULL;
10998 
10999 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
11000 		if (ret < 0) {
11001 			goto out;
11002 		} else if (ret) {
11003 			ret = 0;
11004 		} else {
11005 			btrfs_warn(fs_info,
11006 				   "swapfile must not be copy-on-write");
11007 			ret = -EINVAL;
11008 			goto out;
11009 		}
11010 
11011 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
11012 		if (IS_ERR(em)) {
11013 			ret = PTR_ERR(em);
11014 			goto out;
11015 		}
11016 
11017 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
11018 			btrfs_warn(fs_info,
11019 				   "swapfile must have single data profile");
11020 			ret = -EINVAL;
11021 			goto out;
11022 		}
11023 
11024 		if (device == NULL) {
11025 			device = em->map_lookup->stripes[0].dev;
11026 			ret = btrfs_add_swapfile_pin(inode, device, false);
11027 			if (ret == 1)
11028 				ret = 0;
11029 			else if (ret)
11030 				goto out;
11031 		} else if (device != em->map_lookup->stripes[0].dev) {
11032 			btrfs_warn(fs_info, "swapfile must be on one device");
11033 			ret = -EINVAL;
11034 			goto out;
11035 		}
11036 
11037 		physical_block_start = (em->map_lookup->stripes[0].physical +
11038 					(logical_block_start - em->start));
11039 		len = min(len, em->len - (logical_block_start - em->start));
11040 		free_extent_map(em);
11041 		em = NULL;
11042 
11043 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
11044 		if (!bg) {
11045 			btrfs_warn(fs_info,
11046 			   "could not find block group containing swapfile");
11047 			ret = -EINVAL;
11048 			goto out;
11049 		}
11050 
11051 		ret = btrfs_add_swapfile_pin(inode, bg, true);
11052 		if (ret) {
11053 			btrfs_put_block_group(bg);
11054 			if (ret == 1)
11055 				ret = 0;
11056 			else
11057 				goto out;
11058 		}
11059 
11060 		if (bsi.block_len &&
11061 		    bsi.block_start + bsi.block_len == physical_block_start) {
11062 			bsi.block_len += len;
11063 		} else {
11064 			if (bsi.block_len) {
11065 				ret = btrfs_add_swap_extent(sis, &bsi);
11066 				if (ret)
11067 					goto out;
11068 			}
11069 			bsi.start = start;
11070 			bsi.block_start = physical_block_start;
11071 			bsi.block_len = len;
11072 		}
11073 
11074 		start += len;
11075 	}
11076 
11077 	if (bsi.block_len)
11078 		ret = btrfs_add_swap_extent(sis, &bsi);
11079 
11080 out:
11081 	if (!IS_ERR_OR_NULL(em))
11082 		free_extent_map(em);
11083 
11084 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
11085 
11086 	if (ret)
11087 		btrfs_swap_deactivate(file);
11088 
11089 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
11090 
11091 	if (ret)
11092 		return ret;
11093 
11094 	if (device)
11095 		sis->bdev = device->bdev;
11096 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
11097 	sis->max = bsi.nr_pages;
11098 	sis->pages = bsi.nr_pages - 1;
11099 	sis->highest_bit = bsi.nr_pages - 1;
11100 	return bsi.nr_extents;
11101 }
11102 #else
btrfs_swap_deactivate(struct file * file)11103 static void btrfs_swap_deactivate(struct file *file)
11104 {
11105 }
11106 
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)11107 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11108 			       sector_t *span)
11109 {
11110 	return -EOPNOTSUPP;
11111 }
11112 #endif
11113 
11114 static const struct inode_operations btrfs_dir_inode_operations = {
11115 	.getattr	= btrfs_getattr,
11116 	.lookup		= btrfs_lookup,
11117 	.create		= btrfs_create,
11118 	.unlink		= btrfs_unlink,
11119 	.link		= btrfs_link,
11120 	.mkdir		= btrfs_mkdir,
11121 	.rmdir		= btrfs_rmdir,
11122 	.rename		= btrfs_rename2,
11123 	.symlink	= btrfs_symlink,
11124 	.setattr	= btrfs_setattr,
11125 	.mknod		= btrfs_mknod,
11126 	.listxattr	= btrfs_listxattr,
11127 	.permission	= btrfs_permission,
11128 	.get_acl	= btrfs_get_acl,
11129 	.set_acl	= btrfs_set_acl,
11130 	.update_time	= btrfs_update_time,
11131 	.tmpfile        = btrfs_tmpfile,
11132 };
11133 static const struct inode_operations btrfs_dir_ro_inode_operations = {
11134 	.lookup		= btrfs_lookup,
11135 	.permission	= btrfs_permission,
11136 	.update_time	= btrfs_update_time,
11137 };
11138 
11139 static const struct file_operations btrfs_dir_file_operations = {
11140 	.llseek		= generic_file_llseek,
11141 	.read		= generic_read_dir,
11142 	.iterate_shared	= btrfs_real_readdir,
11143 	.open		= btrfs_opendir,
11144 	.unlocked_ioctl	= btrfs_ioctl,
11145 #ifdef CONFIG_COMPAT
11146 	.compat_ioctl	= btrfs_compat_ioctl,
11147 #endif
11148 	.release        = btrfs_release_file,
11149 	.fsync		= btrfs_sync_file,
11150 };
11151 
11152 static const struct extent_io_ops btrfs_extent_io_ops = {
11153 	/* mandatory callbacks */
11154 	.submit_bio_hook = btrfs_submit_bio_hook,
11155 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
11156 };
11157 
11158 /*
11159  * btrfs doesn't support the bmap operation because swapfiles
11160  * use bmap to make a mapping of extents in the file.  They assume
11161  * these extents won't change over the life of the file and they
11162  * use the bmap result to do IO directly to the drive.
11163  *
11164  * the btrfs bmap call would return logical addresses that aren't
11165  * suitable for IO and they also will change frequently as COW
11166  * operations happen.  So, swapfile + btrfs == corruption.
11167  *
11168  * For now we're avoiding this by dropping bmap.
11169  */
11170 static const struct address_space_operations btrfs_aops = {
11171 	.readpage	= btrfs_readpage,
11172 	.writepage	= btrfs_writepage,
11173 	.writepages	= btrfs_writepages,
11174 	.readpages	= btrfs_readpages,
11175 	.direct_IO	= btrfs_direct_IO,
11176 	.invalidatepage = btrfs_invalidatepage,
11177 	.releasepage	= btrfs_releasepage,
11178 	.set_page_dirty	= btrfs_set_page_dirty,
11179 	.error_remove_page = generic_error_remove_page,
11180 	.swap_activate	= btrfs_swap_activate,
11181 	.swap_deactivate = btrfs_swap_deactivate,
11182 };
11183 
11184 static const struct inode_operations btrfs_file_inode_operations = {
11185 	.getattr	= btrfs_getattr,
11186 	.setattr	= btrfs_setattr,
11187 	.listxattr      = btrfs_listxattr,
11188 	.permission	= btrfs_permission,
11189 	.fiemap		= btrfs_fiemap,
11190 	.get_acl	= btrfs_get_acl,
11191 	.set_acl	= btrfs_set_acl,
11192 	.update_time	= btrfs_update_time,
11193 };
11194 static const struct inode_operations btrfs_special_inode_operations = {
11195 	.getattr	= btrfs_getattr,
11196 	.setattr	= btrfs_setattr,
11197 	.permission	= btrfs_permission,
11198 	.listxattr	= btrfs_listxattr,
11199 	.get_acl	= btrfs_get_acl,
11200 	.set_acl	= btrfs_set_acl,
11201 	.update_time	= btrfs_update_time,
11202 };
11203 static const struct inode_operations btrfs_symlink_inode_operations = {
11204 	.get_link	= page_get_link,
11205 	.getattr	= btrfs_getattr,
11206 	.setattr	= btrfs_setattr,
11207 	.permission	= btrfs_permission,
11208 	.listxattr	= btrfs_listxattr,
11209 	.update_time	= btrfs_update_time,
11210 };
11211 
11212 const struct dentry_operations btrfs_dentry_operations = {
11213 	.d_delete	= btrfs_dentry_delete,
11214 };
11215