1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/sched/mm.h>
32 #include <asm/unaligned.h>
33 #include "misc.h"
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "transaction.h"
37 #include "btrfs_inode.h"
38 #include "print-tree.h"
39 #include "ordered-data.h"
40 #include "xattr.h"
41 #include "tree-log.h"
42 #include "volumes.h"
43 #include "compression.h"
44 #include "locking.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "backref.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53
54 struct btrfs_iget_args {
55 struct btrfs_key *location;
56 struct btrfs_root *root;
57 };
58
59 struct btrfs_dio_data {
60 u64 reserve;
61 u64 unsubmitted_oe_range_start;
62 u64 unsubmitted_oe_range_end;
63 int overwrite;
64 };
65
66 static const struct inode_operations btrfs_dir_inode_operations;
67 static const struct inode_operations btrfs_symlink_inode_operations;
68 static const struct inode_operations btrfs_dir_ro_inode_operations;
69 static const struct inode_operations btrfs_special_inode_operations;
70 static const struct inode_operations btrfs_file_inode_operations;
71 static const struct address_space_operations btrfs_aops;
72 static const struct file_operations btrfs_dir_file_operations;
73 static const struct extent_io_ops btrfs_extent_io_ops;
74
75 static struct kmem_cache *btrfs_inode_cachep;
76 struct kmem_cache *btrfs_trans_handle_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
79 struct kmem_cache *btrfs_free_space_bitmap_cachep;
80
81 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
82 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
83 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
84 static noinline int cow_file_range(struct inode *inode,
85 struct page *locked_page,
86 u64 start, u64 end, int *page_started,
87 unsigned long *nr_written, int unlock);
88 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
89 u64 orig_start, u64 block_start,
90 u64 block_len, u64 orig_block_len,
91 u64 ram_bytes, int compress_type,
92 int type);
93
94 static void __endio_write_update_ordered(struct inode *inode,
95 const u64 offset, const u64 bytes,
96 const bool uptodate);
97
98 /*
99 * Cleanup all submitted ordered extents in specified range to handle errors
100 * from the btrfs_run_delalloc_range() callback.
101 *
102 * NOTE: caller must ensure that when an error happens, it can not call
103 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
104 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
105 * to be released, which we want to happen only when finishing the ordered
106 * extent (btrfs_finish_ordered_io()).
107 */
btrfs_cleanup_ordered_extents(struct inode * inode,struct page * locked_page,u64 offset,u64 bytes)108 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
109 struct page *locked_page,
110 u64 offset, u64 bytes)
111 {
112 unsigned long index = offset >> PAGE_SHIFT;
113 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
114 u64 page_start = page_offset(locked_page);
115 u64 page_end = page_start + PAGE_SIZE - 1;
116
117 struct page *page;
118
119 while (index <= end_index) {
120 page = find_get_page(inode->i_mapping, index);
121 index++;
122 if (!page)
123 continue;
124 ClearPagePrivate2(page);
125 put_page(page);
126 }
127
128 /*
129 * In case this page belongs to the delalloc range being instantiated
130 * then skip it, since the first page of a range is going to be
131 * properly cleaned up by the caller of run_delalloc_range
132 */
133 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
134 offset += PAGE_SIZE;
135 bytes -= PAGE_SIZE;
136 }
137
138 return __endio_write_update_ordered(inode, offset, bytes, false);
139 }
140
141 static int btrfs_dirty_inode(struct inode *inode);
142
143 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_inode_set_ops(struct inode * inode)144 void btrfs_test_inode_set_ops(struct inode *inode)
145 {
146 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
147 }
148 #endif
149
btrfs_init_inode_security(struct btrfs_trans_handle * trans,struct inode * inode,struct inode * dir,const struct qstr * qstr)150 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
151 struct inode *inode, struct inode *dir,
152 const struct qstr *qstr)
153 {
154 int err;
155
156 err = btrfs_init_acl(trans, inode, dir);
157 if (!err)
158 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
159 return err;
160 }
161
162 /*
163 * this does all the hard work for inserting an inline extent into
164 * the btree. The caller should have done a btrfs_drop_extents so that
165 * no overlapping inline items exist in the btree
166 */
insert_inline_extent(struct btrfs_trans_handle * trans,struct btrfs_path * path,int extent_inserted,struct btrfs_root * root,struct inode * inode,u64 start,size_t size,size_t compressed_size,int compress_type,struct page ** compressed_pages)167 static int insert_inline_extent(struct btrfs_trans_handle *trans,
168 struct btrfs_path *path, int extent_inserted,
169 struct btrfs_root *root, struct inode *inode,
170 u64 start, size_t size, size_t compressed_size,
171 int compress_type,
172 struct page **compressed_pages)
173 {
174 struct extent_buffer *leaf;
175 struct page *page = NULL;
176 char *kaddr;
177 unsigned long ptr;
178 struct btrfs_file_extent_item *ei;
179 int ret;
180 size_t cur_size = size;
181 unsigned long offset;
182
183 ASSERT((compressed_size > 0 && compressed_pages) ||
184 (compressed_size == 0 && !compressed_pages));
185
186 if (compressed_size && compressed_pages)
187 cur_size = compressed_size;
188
189 inode_add_bytes(inode, size);
190
191 if (!extent_inserted) {
192 struct btrfs_key key;
193 size_t datasize;
194
195 key.objectid = btrfs_ino(BTRFS_I(inode));
196 key.offset = start;
197 key.type = BTRFS_EXTENT_DATA_KEY;
198
199 datasize = btrfs_file_extent_calc_inline_size(cur_size);
200 path->leave_spinning = 1;
201 ret = btrfs_insert_empty_item(trans, root, path, &key,
202 datasize);
203 if (ret)
204 goto fail;
205 }
206 leaf = path->nodes[0];
207 ei = btrfs_item_ptr(leaf, path->slots[0],
208 struct btrfs_file_extent_item);
209 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
210 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
211 btrfs_set_file_extent_encryption(leaf, ei, 0);
212 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
213 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
214 ptr = btrfs_file_extent_inline_start(ei);
215
216 if (compress_type != BTRFS_COMPRESS_NONE) {
217 struct page *cpage;
218 int i = 0;
219 while (compressed_size > 0) {
220 cpage = compressed_pages[i];
221 cur_size = min_t(unsigned long, compressed_size,
222 PAGE_SIZE);
223
224 kaddr = kmap_atomic(cpage);
225 write_extent_buffer(leaf, kaddr, ptr, cur_size);
226 kunmap_atomic(kaddr);
227
228 i++;
229 ptr += cur_size;
230 compressed_size -= cur_size;
231 }
232 btrfs_set_file_extent_compression(leaf, ei,
233 compress_type);
234 } else {
235 page = find_get_page(inode->i_mapping,
236 start >> PAGE_SHIFT);
237 btrfs_set_file_extent_compression(leaf, ei, 0);
238 kaddr = kmap_atomic(page);
239 offset = offset_in_page(start);
240 write_extent_buffer(leaf, kaddr + offset, ptr, size);
241 kunmap_atomic(kaddr);
242 put_page(page);
243 }
244 btrfs_mark_buffer_dirty(leaf);
245 btrfs_release_path(path);
246
247 /*
248 * we're an inline extent, so nobody can
249 * extend the file past i_size without locking
250 * a page we already have locked.
251 *
252 * We must do any isize and inode updates
253 * before we unlock the pages. Otherwise we
254 * could end up racing with unlink.
255 */
256 BTRFS_I(inode)->disk_i_size = inode->i_size;
257 ret = btrfs_update_inode(trans, root, inode);
258
259 fail:
260 return ret;
261 }
262
263
264 /*
265 * conditionally insert an inline extent into the file. This
266 * does the checks required to make sure the data is small enough
267 * to fit as an inline extent.
268 */
cow_file_range_inline(struct inode * inode,u64 start,u64 end,size_t compressed_size,int compress_type,struct page ** compressed_pages)269 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
270 u64 end, size_t compressed_size,
271 int compress_type,
272 struct page **compressed_pages)
273 {
274 struct btrfs_root *root = BTRFS_I(inode)->root;
275 struct btrfs_fs_info *fs_info = root->fs_info;
276 struct btrfs_trans_handle *trans;
277 u64 isize = i_size_read(inode);
278 u64 actual_end = min(end + 1, isize);
279 u64 inline_len = actual_end - start;
280 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
281 u64 data_len = inline_len;
282 int ret;
283 struct btrfs_path *path;
284 int extent_inserted = 0;
285 u32 extent_item_size;
286
287 if (compressed_size)
288 data_len = compressed_size;
289
290 if (start > 0 ||
291 actual_end > fs_info->sectorsize ||
292 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
293 (!compressed_size &&
294 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
295 end + 1 < isize ||
296 data_len > fs_info->max_inline) {
297 return 1;
298 }
299
300 path = btrfs_alloc_path();
301 if (!path)
302 return -ENOMEM;
303
304 trans = btrfs_join_transaction(root);
305 if (IS_ERR(trans)) {
306 btrfs_free_path(path);
307 return PTR_ERR(trans);
308 }
309 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
310
311 if (compressed_size && compressed_pages)
312 extent_item_size = btrfs_file_extent_calc_inline_size(
313 compressed_size);
314 else
315 extent_item_size = btrfs_file_extent_calc_inline_size(
316 inline_len);
317
318 ret = __btrfs_drop_extents(trans, root, inode, path,
319 start, aligned_end, NULL,
320 1, 1, extent_item_size, &extent_inserted);
321 if (ret) {
322 btrfs_abort_transaction(trans, ret);
323 goto out;
324 }
325
326 if (isize > actual_end)
327 inline_len = min_t(u64, isize, actual_end);
328 ret = insert_inline_extent(trans, path, extent_inserted,
329 root, inode, start,
330 inline_len, compressed_size,
331 compress_type, compressed_pages);
332 if (ret && ret != -ENOSPC) {
333 btrfs_abort_transaction(trans, ret);
334 goto out;
335 } else if (ret == -ENOSPC) {
336 ret = 1;
337 goto out;
338 }
339
340 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
341 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
342 out:
343 /*
344 * Don't forget to free the reserved space, as for inlined extent
345 * it won't count as data extent, free them directly here.
346 * And at reserve time, it's always aligned to page size, so
347 * just free one page here.
348 */
349 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
350 btrfs_free_path(path);
351 btrfs_end_transaction(trans);
352 return ret;
353 }
354
355 struct async_extent {
356 u64 start;
357 u64 ram_size;
358 u64 compressed_size;
359 struct page **pages;
360 unsigned long nr_pages;
361 int compress_type;
362 struct list_head list;
363 };
364
365 struct async_chunk {
366 struct inode *inode;
367 struct page *locked_page;
368 u64 start;
369 u64 end;
370 unsigned int write_flags;
371 struct list_head extents;
372 struct btrfs_work work;
373 atomic_t *pending;
374 };
375
376 struct async_cow {
377 /* Number of chunks in flight; must be first in the structure */
378 atomic_t num_chunks;
379 struct async_chunk chunks[];
380 };
381
add_async_extent(struct async_chunk * cow,u64 start,u64 ram_size,u64 compressed_size,struct page ** pages,unsigned long nr_pages,int compress_type)382 static noinline int add_async_extent(struct async_chunk *cow,
383 u64 start, u64 ram_size,
384 u64 compressed_size,
385 struct page **pages,
386 unsigned long nr_pages,
387 int compress_type)
388 {
389 struct async_extent *async_extent;
390
391 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
392 BUG_ON(!async_extent); /* -ENOMEM */
393 async_extent->start = start;
394 async_extent->ram_size = ram_size;
395 async_extent->compressed_size = compressed_size;
396 async_extent->pages = pages;
397 async_extent->nr_pages = nr_pages;
398 async_extent->compress_type = compress_type;
399 list_add_tail(&async_extent->list, &cow->extents);
400 return 0;
401 }
402
403 /*
404 * Check if the inode has flags compatible with compression
405 */
inode_can_compress(struct inode * inode)406 static inline bool inode_can_compress(struct inode *inode)
407 {
408 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
409 BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
410 return false;
411 return true;
412 }
413
414 /*
415 * Check if the inode needs to be submitted to compression, based on mount
416 * options, defragmentation, properties or heuristics.
417 */
inode_need_compress(struct inode * inode,u64 start,u64 end)418 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
419 {
420 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
421
422 if (!inode_can_compress(inode)) {
423 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
424 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
425 btrfs_ino(BTRFS_I(inode)));
426 return 0;
427 }
428 /* force compress */
429 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
430 return 1;
431 /* defrag ioctl */
432 if (BTRFS_I(inode)->defrag_compress)
433 return 1;
434 /* bad compression ratios */
435 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
436 return 0;
437 if (btrfs_test_opt(fs_info, COMPRESS) ||
438 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
439 BTRFS_I(inode)->prop_compress)
440 return btrfs_compress_heuristic(inode, start, end);
441 return 0;
442 }
443
inode_should_defrag(struct btrfs_inode * inode,u64 start,u64 end,u64 num_bytes,u64 small_write)444 static inline void inode_should_defrag(struct btrfs_inode *inode,
445 u64 start, u64 end, u64 num_bytes, u64 small_write)
446 {
447 /* If this is a small write inside eof, kick off a defrag */
448 if (num_bytes < small_write &&
449 (start > 0 || end + 1 < inode->disk_i_size))
450 btrfs_add_inode_defrag(NULL, inode);
451 }
452
453 /*
454 * we create compressed extents in two phases. The first
455 * phase compresses a range of pages that have already been
456 * locked (both pages and state bits are locked).
457 *
458 * This is done inside an ordered work queue, and the compression
459 * is spread across many cpus. The actual IO submission is step
460 * two, and the ordered work queue takes care of making sure that
461 * happens in the same order things were put onto the queue by
462 * writepages and friends.
463 *
464 * If this code finds it can't get good compression, it puts an
465 * entry onto the work queue to write the uncompressed bytes. This
466 * makes sure that both compressed inodes and uncompressed inodes
467 * are written in the same order that the flusher thread sent them
468 * down.
469 */
compress_file_range(struct async_chunk * async_chunk)470 static noinline int compress_file_range(struct async_chunk *async_chunk)
471 {
472 struct inode *inode = async_chunk->inode;
473 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
474 u64 blocksize = fs_info->sectorsize;
475 u64 start = async_chunk->start;
476 u64 end = async_chunk->end;
477 u64 actual_end;
478 u64 i_size;
479 int ret = 0;
480 struct page **pages = NULL;
481 unsigned long nr_pages;
482 unsigned long total_compressed = 0;
483 unsigned long total_in = 0;
484 int i;
485 int will_compress;
486 int compress_type = fs_info->compress_type;
487 int compressed_extents = 0;
488 int redirty = 0;
489
490 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
491 SZ_16K);
492
493 /*
494 * We need to save i_size before now because it could change in between
495 * us evaluating the size and assigning it. This is because we lock and
496 * unlock the page in truncate and fallocate, and then modify the i_size
497 * later on.
498 *
499 * The barriers are to emulate READ_ONCE, remove that once i_size_read
500 * does that for us.
501 */
502 barrier();
503 i_size = i_size_read(inode);
504 barrier();
505 actual_end = min_t(u64, i_size, end + 1);
506 again:
507 will_compress = 0;
508 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
509 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
510 nr_pages = min_t(unsigned long, nr_pages,
511 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
512
513 /*
514 * we don't want to send crud past the end of i_size through
515 * compression, that's just a waste of CPU time. So, if the
516 * end of the file is before the start of our current
517 * requested range of bytes, we bail out to the uncompressed
518 * cleanup code that can deal with all of this.
519 *
520 * It isn't really the fastest way to fix things, but this is a
521 * very uncommon corner.
522 */
523 if (actual_end <= start)
524 goto cleanup_and_bail_uncompressed;
525
526 total_compressed = actual_end - start;
527
528 /*
529 * skip compression for a small file range(<=blocksize) that
530 * isn't an inline extent, since it doesn't save disk space at all.
531 */
532 if (total_compressed <= blocksize &&
533 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
534 goto cleanup_and_bail_uncompressed;
535
536 total_compressed = min_t(unsigned long, total_compressed,
537 BTRFS_MAX_UNCOMPRESSED);
538 total_in = 0;
539 ret = 0;
540
541 /*
542 * we do compression for mount -o compress and when the
543 * inode has not been flagged as nocompress. This flag can
544 * change at any time if we discover bad compression ratios.
545 */
546 if (inode_need_compress(inode, start, end)) {
547 WARN_ON(pages);
548 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
549 if (!pages) {
550 /* just bail out to the uncompressed code */
551 nr_pages = 0;
552 goto cont;
553 }
554
555 if (BTRFS_I(inode)->defrag_compress)
556 compress_type = BTRFS_I(inode)->defrag_compress;
557 else if (BTRFS_I(inode)->prop_compress)
558 compress_type = BTRFS_I(inode)->prop_compress;
559
560 /*
561 * we need to call clear_page_dirty_for_io on each
562 * page in the range. Otherwise applications with the file
563 * mmap'd can wander in and change the page contents while
564 * we are compressing them.
565 *
566 * If the compression fails for any reason, we set the pages
567 * dirty again later on.
568 *
569 * Note that the remaining part is redirtied, the start pointer
570 * has moved, the end is the original one.
571 */
572 if (!redirty) {
573 extent_range_clear_dirty_for_io(inode, start, end);
574 redirty = 1;
575 }
576
577 /* Compression level is applied here and only here */
578 ret = btrfs_compress_pages(
579 compress_type | (fs_info->compress_level << 4),
580 inode->i_mapping, start,
581 pages,
582 &nr_pages,
583 &total_in,
584 &total_compressed);
585
586 if (!ret) {
587 unsigned long offset = offset_in_page(total_compressed);
588 struct page *page = pages[nr_pages - 1];
589 char *kaddr;
590
591 /* zero the tail end of the last page, we might be
592 * sending it down to disk
593 */
594 if (offset) {
595 kaddr = kmap_atomic(page);
596 memset(kaddr + offset, 0,
597 PAGE_SIZE - offset);
598 kunmap_atomic(kaddr);
599 }
600 will_compress = 1;
601 }
602 }
603 cont:
604 if (start == 0) {
605 /* lets try to make an inline extent */
606 if (ret || total_in < actual_end) {
607 /* we didn't compress the entire range, try
608 * to make an uncompressed inline extent.
609 */
610 ret = cow_file_range_inline(inode, start, end, 0,
611 BTRFS_COMPRESS_NONE, NULL);
612 } else {
613 /* try making a compressed inline extent */
614 ret = cow_file_range_inline(inode, start, end,
615 total_compressed,
616 compress_type, pages);
617 }
618 if (ret <= 0) {
619 unsigned long clear_flags = EXTENT_DELALLOC |
620 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
621 EXTENT_DO_ACCOUNTING;
622 unsigned long page_error_op;
623
624 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
625
626 /*
627 * inline extent creation worked or returned error,
628 * we don't need to create any more async work items.
629 * Unlock and free up our temp pages.
630 *
631 * We use DO_ACCOUNTING here because we need the
632 * delalloc_release_metadata to be done _after_ we drop
633 * our outstanding extent for clearing delalloc for this
634 * range.
635 */
636 extent_clear_unlock_delalloc(inode, start, end, NULL,
637 clear_flags,
638 PAGE_UNLOCK |
639 PAGE_CLEAR_DIRTY |
640 PAGE_SET_WRITEBACK |
641 page_error_op |
642 PAGE_END_WRITEBACK);
643
644 /*
645 * Ensure we only free the compressed pages if we have
646 * them allocated, as we can still reach here with
647 * inode_need_compress() == false.
648 */
649 if (pages) {
650 for (i = 0; i < nr_pages; i++) {
651 WARN_ON(pages[i]->mapping);
652 put_page(pages[i]);
653 }
654 kfree(pages);
655 }
656 return 0;
657 }
658 }
659
660 if (will_compress) {
661 /*
662 * we aren't doing an inline extent round the compressed size
663 * up to a block size boundary so the allocator does sane
664 * things
665 */
666 total_compressed = ALIGN(total_compressed, blocksize);
667
668 /*
669 * one last check to make sure the compression is really a
670 * win, compare the page count read with the blocks on disk,
671 * compression must free at least one sector size
672 */
673 total_in = ALIGN(total_in, PAGE_SIZE);
674 if (total_compressed + blocksize <= total_in) {
675 compressed_extents++;
676
677 /*
678 * The async work queues will take care of doing actual
679 * allocation on disk for these compressed pages, and
680 * will submit them to the elevator.
681 */
682 add_async_extent(async_chunk, start, total_in,
683 total_compressed, pages, nr_pages,
684 compress_type);
685
686 if (start + total_in < end) {
687 start += total_in;
688 pages = NULL;
689 cond_resched();
690 goto again;
691 }
692 return compressed_extents;
693 }
694 }
695 if (pages) {
696 /*
697 * the compression code ran but failed to make things smaller,
698 * free any pages it allocated and our page pointer array
699 */
700 for (i = 0; i < nr_pages; i++) {
701 WARN_ON(pages[i]->mapping);
702 put_page(pages[i]);
703 }
704 kfree(pages);
705 pages = NULL;
706 total_compressed = 0;
707 nr_pages = 0;
708
709 /* flag the file so we don't compress in the future */
710 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
711 !(BTRFS_I(inode)->prop_compress)) {
712 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
713 }
714 }
715 cleanup_and_bail_uncompressed:
716 /*
717 * No compression, but we still need to write the pages in the file
718 * we've been given so far. redirty the locked page if it corresponds
719 * to our extent and set things up for the async work queue to run
720 * cow_file_range to do the normal delalloc dance.
721 */
722 if (async_chunk->locked_page &&
723 (page_offset(async_chunk->locked_page) >= start &&
724 page_offset(async_chunk->locked_page)) <= end) {
725 __set_page_dirty_nobuffers(async_chunk->locked_page);
726 /* unlocked later on in the async handlers */
727 }
728
729 if (redirty)
730 extent_range_redirty_for_io(inode, start, end);
731 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
732 BTRFS_COMPRESS_NONE);
733 compressed_extents++;
734
735 return compressed_extents;
736 }
737
free_async_extent_pages(struct async_extent * async_extent)738 static void free_async_extent_pages(struct async_extent *async_extent)
739 {
740 int i;
741
742 if (!async_extent->pages)
743 return;
744
745 for (i = 0; i < async_extent->nr_pages; i++) {
746 WARN_ON(async_extent->pages[i]->mapping);
747 put_page(async_extent->pages[i]);
748 }
749 kfree(async_extent->pages);
750 async_extent->nr_pages = 0;
751 async_extent->pages = NULL;
752 }
753
754 /*
755 * phase two of compressed writeback. This is the ordered portion
756 * of the code, which only gets called in the order the work was
757 * queued. We walk all the async extents created by compress_file_range
758 * and send them down to the disk.
759 */
submit_compressed_extents(struct async_chunk * async_chunk)760 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
761 {
762 struct inode *inode = async_chunk->inode;
763 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
764 struct async_extent *async_extent;
765 u64 alloc_hint = 0;
766 struct btrfs_key ins;
767 struct extent_map *em;
768 struct btrfs_root *root = BTRFS_I(inode)->root;
769 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
770 int ret = 0;
771
772 again:
773 while (!list_empty(&async_chunk->extents)) {
774 async_extent = list_entry(async_chunk->extents.next,
775 struct async_extent, list);
776 list_del(&async_extent->list);
777
778 retry:
779 lock_extent(io_tree, async_extent->start,
780 async_extent->start + async_extent->ram_size - 1);
781 /* did the compression code fall back to uncompressed IO? */
782 if (!async_extent->pages) {
783 int page_started = 0;
784 unsigned long nr_written = 0;
785
786 /* allocate blocks */
787 ret = cow_file_range(inode, async_chunk->locked_page,
788 async_extent->start,
789 async_extent->start +
790 async_extent->ram_size - 1,
791 &page_started, &nr_written, 0);
792
793 /* JDM XXX */
794
795 /*
796 * if page_started, cow_file_range inserted an
797 * inline extent and took care of all the unlocking
798 * and IO for us. Otherwise, we need to submit
799 * all those pages down to the drive.
800 */
801 if (!page_started && !ret)
802 extent_write_locked_range(inode,
803 async_extent->start,
804 async_extent->start +
805 async_extent->ram_size - 1,
806 WB_SYNC_ALL);
807 else if (ret && async_chunk->locked_page)
808 unlock_page(async_chunk->locked_page);
809 kfree(async_extent);
810 cond_resched();
811 continue;
812 }
813
814 ret = btrfs_reserve_extent(root, async_extent->ram_size,
815 async_extent->compressed_size,
816 async_extent->compressed_size,
817 0, alloc_hint, &ins, 1, 1);
818 if (ret) {
819 free_async_extent_pages(async_extent);
820
821 if (ret == -ENOSPC) {
822 unlock_extent(io_tree, async_extent->start,
823 async_extent->start +
824 async_extent->ram_size - 1);
825
826 /*
827 * we need to redirty the pages if we decide to
828 * fallback to uncompressed IO, otherwise we
829 * will not submit these pages down to lower
830 * layers.
831 */
832 extent_range_redirty_for_io(inode,
833 async_extent->start,
834 async_extent->start +
835 async_extent->ram_size - 1);
836
837 goto retry;
838 }
839 goto out_free;
840 }
841 /*
842 * here we're doing allocation and writeback of the
843 * compressed pages
844 */
845 em = create_io_em(inode, async_extent->start,
846 async_extent->ram_size, /* len */
847 async_extent->start, /* orig_start */
848 ins.objectid, /* block_start */
849 ins.offset, /* block_len */
850 ins.offset, /* orig_block_len */
851 async_extent->ram_size, /* ram_bytes */
852 async_extent->compress_type,
853 BTRFS_ORDERED_COMPRESSED);
854 if (IS_ERR(em))
855 /* ret value is not necessary due to void function */
856 goto out_free_reserve;
857 free_extent_map(em);
858
859 ret = btrfs_add_ordered_extent_compress(inode,
860 async_extent->start,
861 ins.objectid,
862 async_extent->ram_size,
863 ins.offset,
864 BTRFS_ORDERED_COMPRESSED,
865 async_extent->compress_type);
866 if (ret) {
867 btrfs_drop_extent_cache(BTRFS_I(inode),
868 async_extent->start,
869 async_extent->start +
870 async_extent->ram_size - 1, 0);
871 goto out_free_reserve;
872 }
873 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
874
875 /*
876 * clear dirty, set writeback and unlock the pages.
877 */
878 extent_clear_unlock_delalloc(inode, async_extent->start,
879 async_extent->start +
880 async_extent->ram_size - 1,
881 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
882 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
883 PAGE_SET_WRITEBACK);
884 if (btrfs_submit_compressed_write(inode,
885 async_extent->start,
886 async_extent->ram_size,
887 ins.objectid,
888 ins.offset, async_extent->pages,
889 async_extent->nr_pages,
890 async_chunk->write_flags)) {
891 struct page *p = async_extent->pages[0];
892 const u64 start = async_extent->start;
893 const u64 end = start + async_extent->ram_size - 1;
894
895 p->mapping = inode->i_mapping;
896 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
897
898 p->mapping = NULL;
899 extent_clear_unlock_delalloc(inode, start, end,
900 NULL, 0,
901 PAGE_END_WRITEBACK |
902 PAGE_SET_ERROR);
903 free_async_extent_pages(async_extent);
904 }
905 alloc_hint = ins.objectid + ins.offset;
906 kfree(async_extent);
907 cond_resched();
908 }
909 return;
910 out_free_reserve:
911 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
912 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
913 out_free:
914 extent_clear_unlock_delalloc(inode, async_extent->start,
915 async_extent->start +
916 async_extent->ram_size - 1,
917 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
918 EXTENT_DELALLOC_NEW |
919 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
920 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
921 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
922 PAGE_SET_ERROR);
923 free_async_extent_pages(async_extent);
924 kfree(async_extent);
925 goto again;
926 }
927
get_extent_allocation_hint(struct inode * inode,u64 start,u64 num_bytes)928 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
929 u64 num_bytes)
930 {
931 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
932 struct extent_map *em;
933 u64 alloc_hint = 0;
934
935 read_lock(&em_tree->lock);
936 em = search_extent_mapping(em_tree, start, num_bytes);
937 if (em) {
938 /*
939 * if block start isn't an actual block number then find the
940 * first block in this inode and use that as a hint. If that
941 * block is also bogus then just don't worry about it.
942 */
943 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
944 free_extent_map(em);
945 em = search_extent_mapping(em_tree, 0, 0);
946 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
947 alloc_hint = em->block_start;
948 if (em)
949 free_extent_map(em);
950 } else {
951 alloc_hint = em->block_start;
952 free_extent_map(em);
953 }
954 }
955 read_unlock(&em_tree->lock);
956
957 return alloc_hint;
958 }
959
960 /*
961 * when extent_io.c finds a delayed allocation range in the file,
962 * the call backs end up in this code. The basic idea is to
963 * allocate extents on disk for the range, and create ordered data structs
964 * in ram to track those extents.
965 *
966 * locked_page is the page that writepage had locked already. We use
967 * it to make sure we don't do extra locks or unlocks.
968 *
969 * *page_started is set to one if we unlock locked_page and do everything
970 * required to start IO on it. It may be clean and already done with
971 * IO when we return.
972 */
cow_file_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,int unlock)973 static noinline int cow_file_range(struct inode *inode,
974 struct page *locked_page,
975 u64 start, u64 end, int *page_started,
976 unsigned long *nr_written, int unlock)
977 {
978 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
979 struct btrfs_root *root = BTRFS_I(inode)->root;
980 u64 alloc_hint = 0;
981 u64 num_bytes;
982 unsigned long ram_size;
983 u64 cur_alloc_size = 0;
984 u64 min_alloc_size;
985 u64 blocksize = fs_info->sectorsize;
986 struct btrfs_key ins;
987 struct extent_map *em;
988 unsigned clear_bits;
989 unsigned long page_ops;
990 bool extent_reserved = false;
991 int ret = 0;
992
993 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
994 WARN_ON_ONCE(1);
995 ret = -EINVAL;
996 goto out_unlock;
997 }
998
999 num_bytes = ALIGN(end - start + 1, blocksize);
1000 num_bytes = max(blocksize, num_bytes);
1001 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1002
1003 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
1004
1005 if (start == 0) {
1006 /* lets try to make an inline extent */
1007 ret = cow_file_range_inline(inode, start, end, 0,
1008 BTRFS_COMPRESS_NONE, NULL);
1009 if (ret == 0) {
1010 /*
1011 * We use DO_ACCOUNTING here because we need the
1012 * delalloc_release_metadata to be run _after_ we drop
1013 * our outstanding extent for clearing delalloc for this
1014 * range.
1015 */
1016 extent_clear_unlock_delalloc(inode, start, end, NULL,
1017 EXTENT_LOCKED | EXTENT_DELALLOC |
1018 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1019 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1020 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1021 PAGE_END_WRITEBACK);
1022 *nr_written = *nr_written +
1023 (end - start + PAGE_SIZE) / PAGE_SIZE;
1024 *page_started = 1;
1025 goto out;
1026 } else if (ret < 0) {
1027 goto out_unlock;
1028 }
1029 }
1030
1031 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1032 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1033 start + num_bytes - 1, 0);
1034
1035 /*
1036 * Relocation relies on the relocated extents to have exactly the same
1037 * size as the original extents. Normally writeback for relocation data
1038 * extents follows a NOCOW path because relocation preallocates the
1039 * extents. However, due to an operation such as scrub turning a block
1040 * group to RO mode, it may fallback to COW mode, so we must make sure
1041 * an extent allocated during COW has exactly the requested size and can
1042 * not be split into smaller extents, otherwise relocation breaks and
1043 * fails during the stage where it updates the bytenr of file extent
1044 * items.
1045 */
1046 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1047 min_alloc_size = num_bytes;
1048 else
1049 min_alloc_size = fs_info->sectorsize;
1050
1051 while (num_bytes > 0) {
1052 cur_alloc_size = num_bytes;
1053 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1054 min_alloc_size, 0, alloc_hint,
1055 &ins, 1, 1);
1056 if (ret < 0)
1057 goto out_unlock;
1058 cur_alloc_size = ins.offset;
1059 extent_reserved = true;
1060
1061 ram_size = ins.offset;
1062 em = create_io_em(inode, start, ins.offset, /* len */
1063 start, /* orig_start */
1064 ins.objectid, /* block_start */
1065 ins.offset, /* block_len */
1066 ins.offset, /* orig_block_len */
1067 ram_size, /* ram_bytes */
1068 BTRFS_COMPRESS_NONE, /* compress_type */
1069 BTRFS_ORDERED_REGULAR /* type */);
1070 if (IS_ERR(em)) {
1071 ret = PTR_ERR(em);
1072 goto out_reserve;
1073 }
1074 free_extent_map(em);
1075
1076 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1077 ram_size, cur_alloc_size, 0);
1078 if (ret)
1079 goto out_drop_extent_cache;
1080
1081 if (root->root_key.objectid ==
1082 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1083 ret = btrfs_reloc_clone_csums(inode, start,
1084 cur_alloc_size);
1085 /*
1086 * Only drop cache here, and process as normal.
1087 *
1088 * We must not allow extent_clear_unlock_delalloc()
1089 * at out_unlock label to free meta of this ordered
1090 * extent, as its meta should be freed by
1091 * btrfs_finish_ordered_io().
1092 *
1093 * So we must continue until @start is increased to
1094 * skip current ordered extent.
1095 */
1096 if (ret)
1097 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1098 start + ram_size - 1, 0);
1099 }
1100
1101 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1102
1103 /* we're not doing compressed IO, don't unlock the first
1104 * page (which the caller expects to stay locked), don't
1105 * clear any dirty bits and don't set any writeback bits
1106 *
1107 * Do set the Private2 bit so we know this page was properly
1108 * setup for writepage
1109 */
1110 page_ops = unlock ? PAGE_UNLOCK : 0;
1111 page_ops |= PAGE_SET_PRIVATE2;
1112
1113 extent_clear_unlock_delalloc(inode, start,
1114 start + ram_size - 1,
1115 locked_page,
1116 EXTENT_LOCKED | EXTENT_DELALLOC,
1117 page_ops);
1118 if (num_bytes < cur_alloc_size)
1119 num_bytes = 0;
1120 else
1121 num_bytes -= cur_alloc_size;
1122 alloc_hint = ins.objectid + ins.offset;
1123 start += cur_alloc_size;
1124 extent_reserved = false;
1125
1126 /*
1127 * btrfs_reloc_clone_csums() error, since start is increased
1128 * extent_clear_unlock_delalloc() at out_unlock label won't
1129 * free metadata of current ordered extent, we're OK to exit.
1130 */
1131 if (ret)
1132 goto out_unlock;
1133 }
1134 out:
1135 return ret;
1136
1137 out_drop_extent_cache:
1138 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1139 out_reserve:
1140 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1141 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1142 out_unlock:
1143 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1144 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1145 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1146 PAGE_END_WRITEBACK;
1147 /*
1148 * If we reserved an extent for our delalloc range (or a subrange) and
1149 * failed to create the respective ordered extent, then it means that
1150 * when we reserved the extent we decremented the extent's size from
1151 * the data space_info's bytes_may_use counter and incremented the
1152 * space_info's bytes_reserved counter by the same amount. We must make
1153 * sure extent_clear_unlock_delalloc() does not try to decrement again
1154 * the data space_info's bytes_may_use counter, therefore we do not pass
1155 * it the flag EXTENT_CLEAR_DATA_RESV.
1156 */
1157 if (extent_reserved) {
1158 extent_clear_unlock_delalloc(inode, start,
1159 start + cur_alloc_size - 1,
1160 locked_page,
1161 clear_bits,
1162 page_ops);
1163 start += cur_alloc_size;
1164 if (start >= end)
1165 goto out;
1166 }
1167 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1168 clear_bits | EXTENT_CLEAR_DATA_RESV,
1169 page_ops);
1170 goto out;
1171 }
1172
1173 /*
1174 * work queue call back to started compression on a file and pages
1175 */
async_cow_start(struct btrfs_work * work)1176 static noinline void async_cow_start(struct btrfs_work *work)
1177 {
1178 struct async_chunk *async_chunk;
1179 int compressed_extents;
1180
1181 async_chunk = container_of(work, struct async_chunk, work);
1182
1183 compressed_extents = compress_file_range(async_chunk);
1184 if (compressed_extents == 0) {
1185 btrfs_add_delayed_iput(async_chunk->inode);
1186 async_chunk->inode = NULL;
1187 }
1188 }
1189
1190 /*
1191 * work queue call back to submit previously compressed pages
1192 */
async_cow_submit(struct btrfs_work * work)1193 static noinline void async_cow_submit(struct btrfs_work *work)
1194 {
1195 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1196 work);
1197 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1198 unsigned long nr_pages;
1199
1200 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1201 PAGE_SHIFT;
1202
1203 /*
1204 * ->inode could be NULL if async_chunk_start has failed to compress,
1205 * in which case we don't have anything to submit, yet we need to
1206 * always adjust ->async_delalloc_pages as its paired with the init
1207 * happening in cow_file_range_async
1208 */
1209 if (async_chunk->inode)
1210 submit_compressed_extents(async_chunk);
1211
1212 /* atomic_sub_return implies a barrier */
1213 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1214 5 * SZ_1M)
1215 cond_wake_up_nomb(&fs_info->async_submit_wait);
1216 }
1217
async_cow_free(struct btrfs_work * work)1218 static noinline void async_cow_free(struct btrfs_work *work)
1219 {
1220 struct async_chunk *async_chunk;
1221
1222 async_chunk = container_of(work, struct async_chunk, work);
1223 if (async_chunk->inode)
1224 btrfs_add_delayed_iput(async_chunk->inode);
1225 /*
1226 * Since the pointer to 'pending' is at the beginning of the array of
1227 * async_chunk's, freeing it ensures the whole array has been freed.
1228 */
1229 if (atomic_dec_and_test(async_chunk->pending))
1230 kvfree(async_chunk->pending);
1231 }
1232
cow_file_range_async(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,unsigned int write_flags)1233 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1234 u64 start, u64 end, int *page_started,
1235 unsigned long *nr_written,
1236 unsigned int write_flags)
1237 {
1238 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1239 struct async_cow *ctx;
1240 struct async_chunk *async_chunk;
1241 unsigned long nr_pages;
1242 u64 cur_end;
1243 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1244 int i;
1245 bool should_compress;
1246 unsigned nofs_flag;
1247
1248 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1249
1250 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1251 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1252 num_chunks = 1;
1253 should_compress = false;
1254 } else {
1255 should_compress = true;
1256 }
1257
1258 nofs_flag = memalloc_nofs_save();
1259 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1260 memalloc_nofs_restore(nofs_flag);
1261
1262 if (!ctx) {
1263 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1264 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1265 EXTENT_DO_ACCOUNTING;
1266 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1267 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1268 PAGE_SET_ERROR;
1269
1270 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1271 clear_bits, page_ops);
1272 return -ENOMEM;
1273 }
1274
1275 async_chunk = ctx->chunks;
1276 atomic_set(&ctx->num_chunks, num_chunks);
1277
1278 for (i = 0; i < num_chunks; i++) {
1279 if (should_compress)
1280 cur_end = min(end, start + SZ_512K - 1);
1281 else
1282 cur_end = end;
1283
1284 /*
1285 * igrab is called higher up in the call chain, take only the
1286 * lightweight reference for the callback lifetime
1287 */
1288 ihold(inode);
1289 async_chunk[i].pending = &ctx->num_chunks;
1290 async_chunk[i].inode = inode;
1291 async_chunk[i].start = start;
1292 async_chunk[i].end = cur_end;
1293 async_chunk[i].write_flags = write_flags;
1294 INIT_LIST_HEAD(&async_chunk[i].extents);
1295
1296 /*
1297 * The locked_page comes all the way from writepage and its
1298 * the original page we were actually given. As we spread
1299 * this large delalloc region across multiple async_chunk
1300 * structs, only the first struct needs a pointer to locked_page
1301 *
1302 * This way we don't need racey decisions about who is supposed
1303 * to unlock it.
1304 */
1305 if (locked_page) {
1306 async_chunk[i].locked_page = locked_page;
1307 locked_page = NULL;
1308 } else {
1309 async_chunk[i].locked_page = NULL;
1310 }
1311
1312 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1313 async_cow_submit, async_cow_free);
1314
1315 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1316 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1317
1318 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1319
1320 *nr_written += nr_pages;
1321 start = cur_end + 1;
1322 }
1323 *page_started = 1;
1324 return 0;
1325 }
1326
csum_exist_in_range(struct btrfs_fs_info * fs_info,u64 bytenr,u64 num_bytes)1327 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1328 u64 bytenr, u64 num_bytes)
1329 {
1330 int ret;
1331 struct btrfs_ordered_sum *sums;
1332 LIST_HEAD(list);
1333
1334 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1335 bytenr + num_bytes - 1, &list, 0);
1336 if (ret == 0 && list_empty(&list))
1337 return 0;
1338
1339 while (!list_empty(&list)) {
1340 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1341 list_del(&sums->list);
1342 kfree(sums);
1343 }
1344 if (ret < 0)
1345 return ret;
1346 return 1;
1347 }
1348
fallback_to_cow(struct inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,unsigned long * nr_written)1349 static int fallback_to_cow(struct inode *inode, struct page *locked_page,
1350 const u64 start, const u64 end,
1351 int *page_started, unsigned long *nr_written)
1352 {
1353 const bool is_space_ino = btrfs_is_free_space_inode(BTRFS_I(inode));
1354 const bool is_reloc_ino = (BTRFS_I(inode)->root->root_key.objectid ==
1355 BTRFS_DATA_RELOC_TREE_OBJECTID);
1356 const u64 range_bytes = end + 1 - start;
1357 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1358 u64 range_start = start;
1359 u64 count;
1360
1361 /*
1362 * If EXTENT_NORESERVE is set it means that when the buffered write was
1363 * made we had not enough available data space and therefore we did not
1364 * reserve data space for it, since we though we could do NOCOW for the
1365 * respective file range (either there is prealloc extent or the inode
1366 * has the NOCOW bit set).
1367 *
1368 * However when we need to fallback to COW mode (because for example the
1369 * block group for the corresponding extent was turned to RO mode by a
1370 * scrub or relocation) we need to do the following:
1371 *
1372 * 1) We increment the bytes_may_use counter of the data space info.
1373 * If COW succeeds, it allocates a new data extent and after doing
1374 * that it decrements the space info's bytes_may_use counter and
1375 * increments its bytes_reserved counter by the same amount (we do
1376 * this at btrfs_add_reserved_bytes()). So we need to increment the
1377 * bytes_may_use counter to compensate (when space is reserved at
1378 * buffered write time, the bytes_may_use counter is incremented);
1379 *
1380 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1381 * that if the COW path fails for any reason, it decrements (through
1382 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1383 * data space info, which we incremented in the step above.
1384 *
1385 * If we need to fallback to cow and the inode corresponds to a free
1386 * space cache inode or an inode of the data relocation tree, we must
1387 * also increment bytes_may_use of the data space_info for the same
1388 * reason. Space caches and relocated data extents always get a prealloc
1389 * extent for them, however scrub or balance may have set the block
1390 * group that contains that extent to RO mode and therefore force COW
1391 * when starting writeback.
1392 */
1393 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1394 EXTENT_NORESERVE, 0);
1395 if (count > 0 || is_space_ino || is_reloc_ino) {
1396 u64 bytes = count;
1397 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1398 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1399
1400 if (is_space_ino || is_reloc_ino)
1401 bytes = range_bytes;
1402
1403 spin_lock(&sinfo->lock);
1404 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1405 spin_unlock(&sinfo->lock);
1406
1407 if (count > 0)
1408 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1409 0, 0, NULL);
1410 }
1411
1412 return cow_file_range(inode, locked_page, start, end, page_started,
1413 nr_written, 1);
1414 }
1415
1416 /*
1417 * when nowcow writeback call back. This checks for snapshots or COW copies
1418 * of the extents that exist in the file, and COWs the file as required.
1419 *
1420 * If no cow copies or snapshots exist, we write directly to the existing
1421 * blocks on disk
1422 */
run_delalloc_nocow(struct inode * inode,struct page * locked_page,const u64 start,const u64 end,int * page_started,int force,unsigned long * nr_written)1423 static noinline int run_delalloc_nocow(struct inode *inode,
1424 struct page *locked_page,
1425 const u64 start, const u64 end,
1426 int *page_started, int force,
1427 unsigned long *nr_written)
1428 {
1429 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1430 struct btrfs_root *root = BTRFS_I(inode)->root;
1431 struct btrfs_path *path;
1432 u64 cow_start = (u64)-1;
1433 u64 cur_offset = start;
1434 int ret;
1435 bool check_prev = true;
1436 const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
1437 u64 ino = btrfs_ino(BTRFS_I(inode));
1438 bool nocow = false;
1439 u64 disk_bytenr = 0;
1440
1441 path = btrfs_alloc_path();
1442 if (!path) {
1443 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1444 EXTENT_LOCKED | EXTENT_DELALLOC |
1445 EXTENT_DO_ACCOUNTING |
1446 EXTENT_DEFRAG, PAGE_UNLOCK |
1447 PAGE_CLEAR_DIRTY |
1448 PAGE_SET_WRITEBACK |
1449 PAGE_END_WRITEBACK);
1450 return -ENOMEM;
1451 }
1452
1453 while (1) {
1454 struct btrfs_key found_key;
1455 struct btrfs_file_extent_item *fi;
1456 struct extent_buffer *leaf;
1457 u64 extent_end;
1458 u64 extent_offset;
1459 u64 num_bytes = 0;
1460 u64 disk_num_bytes;
1461 u64 ram_bytes;
1462 int extent_type;
1463
1464 nocow = false;
1465
1466 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1467 cur_offset, 0);
1468 if (ret < 0)
1469 goto error;
1470
1471 /*
1472 * If there is no extent for our range when doing the initial
1473 * search, then go back to the previous slot as it will be the
1474 * one containing the search offset
1475 */
1476 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1477 leaf = path->nodes[0];
1478 btrfs_item_key_to_cpu(leaf, &found_key,
1479 path->slots[0] - 1);
1480 if (found_key.objectid == ino &&
1481 found_key.type == BTRFS_EXTENT_DATA_KEY)
1482 path->slots[0]--;
1483 }
1484 check_prev = false;
1485 next_slot:
1486 /* Go to next leaf if we have exhausted the current one */
1487 leaf = path->nodes[0];
1488 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1489 ret = btrfs_next_leaf(root, path);
1490 if (ret < 0) {
1491 if (cow_start != (u64)-1)
1492 cur_offset = cow_start;
1493 goto error;
1494 }
1495 if (ret > 0)
1496 break;
1497 leaf = path->nodes[0];
1498 }
1499
1500 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1501
1502 /* Didn't find anything for our INO */
1503 if (found_key.objectid > ino)
1504 break;
1505 /*
1506 * Keep searching until we find an EXTENT_ITEM or there are no
1507 * more extents for this inode
1508 */
1509 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1510 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1511 path->slots[0]++;
1512 goto next_slot;
1513 }
1514
1515 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1516 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1517 found_key.offset > end)
1518 break;
1519
1520 /*
1521 * If the found extent starts after requested offset, then
1522 * adjust extent_end to be right before this extent begins
1523 */
1524 if (found_key.offset > cur_offset) {
1525 extent_end = found_key.offset;
1526 extent_type = 0;
1527 goto out_check;
1528 }
1529
1530 /*
1531 * Found extent which begins before our range and potentially
1532 * intersect it
1533 */
1534 fi = btrfs_item_ptr(leaf, path->slots[0],
1535 struct btrfs_file_extent_item);
1536 extent_type = btrfs_file_extent_type(leaf, fi);
1537
1538 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1539 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1540 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1541 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1542 extent_offset = btrfs_file_extent_offset(leaf, fi);
1543 extent_end = found_key.offset +
1544 btrfs_file_extent_num_bytes(leaf, fi);
1545 disk_num_bytes =
1546 btrfs_file_extent_disk_num_bytes(leaf, fi);
1547 /*
1548 * If the extent we got ends before our current offset,
1549 * skip to the next extent.
1550 */
1551 if (extent_end <= cur_offset) {
1552 path->slots[0]++;
1553 goto next_slot;
1554 }
1555 /* Skip holes */
1556 if (disk_bytenr == 0)
1557 goto out_check;
1558 /* Skip compressed/encrypted/encoded extents */
1559 if (btrfs_file_extent_compression(leaf, fi) ||
1560 btrfs_file_extent_encryption(leaf, fi) ||
1561 btrfs_file_extent_other_encoding(leaf, fi))
1562 goto out_check;
1563 /*
1564 * If extent is created before the last volume's snapshot
1565 * this implies the extent is shared, hence we can't do
1566 * nocow. This is the same check as in
1567 * btrfs_cross_ref_exist but without calling
1568 * btrfs_search_slot.
1569 */
1570 if (!freespace_inode &&
1571 btrfs_file_extent_generation(leaf, fi) <=
1572 btrfs_root_last_snapshot(&root->root_item))
1573 goto out_check;
1574 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1575 goto out_check;
1576 /* If extent is RO, we must COW it */
1577 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1578 goto out_check;
1579 ret = btrfs_cross_ref_exist(root, ino,
1580 found_key.offset -
1581 extent_offset, disk_bytenr, false);
1582 if (ret) {
1583 /*
1584 * ret could be -EIO if the above fails to read
1585 * metadata.
1586 */
1587 if (ret < 0) {
1588 if (cow_start != (u64)-1)
1589 cur_offset = cow_start;
1590 goto error;
1591 }
1592
1593 WARN_ON_ONCE(freespace_inode);
1594 goto out_check;
1595 }
1596 disk_bytenr += extent_offset;
1597 disk_bytenr += cur_offset - found_key.offset;
1598 num_bytes = min(end + 1, extent_end) - cur_offset;
1599 /*
1600 * If there are pending snapshots for this root, we
1601 * fall into common COW way
1602 */
1603 if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1604 goto out_check;
1605 /*
1606 * force cow if csum exists in the range.
1607 * this ensure that csum for a given extent are
1608 * either valid or do not exist.
1609 */
1610 ret = csum_exist_in_range(fs_info, disk_bytenr,
1611 num_bytes);
1612 if (ret) {
1613 /*
1614 * ret could be -EIO if the above fails to read
1615 * metadata.
1616 */
1617 if (ret < 0) {
1618 if (cow_start != (u64)-1)
1619 cur_offset = cow_start;
1620 goto error;
1621 }
1622 WARN_ON_ONCE(freespace_inode);
1623 goto out_check;
1624 }
1625 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1626 goto out_check;
1627 nocow = true;
1628 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1629 extent_end = found_key.offset + ram_bytes;
1630 extent_end = ALIGN(extent_end, fs_info->sectorsize);
1631 /* Skip extents outside of our requested range */
1632 if (extent_end <= start) {
1633 path->slots[0]++;
1634 goto next_slot;
1635 }
1636 } else {
1637 /* If this triggers then we have a memory corruption */
1638 BUG();
1639 }
1640 out_check:
1641 /*
1642 * If nocow is false then record the beginning of the range
1643 * that needs to be COWed
1644 */
1645 if (!nocow) {
1646 if (cow_start == (u64)-1)
1647 cow_start = cur_offset;
1648 cur_offset = extent_end;
1649 if (cur_offset > end)
1650 break;
1651 path->slots[0]++;
1652 goto next_slot;
1653 }
1654
1655 btrfs_release_path(path);
1656
1657 /*
1658 * COW range from cow_start to found_key.offset - 1. As the key
1659 * will contain the beginning of the first extent that can be
1660 * NOCOW, following one which needs to be COW'ed
1661 */
1662 if (cow_start != (u64)-1) {
1663 ret = fallback_to_cow(inode, locked_page, cow_start,
1664 found_key.offset - 1,
1665 page_started, nr_written);
1666 if (ret)
1667 goto error;
1668 cow_start = (u64)-1;
1669 }
1670
1671 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1672 u64 orig_start = found_key.offset - extent_offset;
1673 struct extent_map *em;
1674
1675 em = create_io_em(inode, cur_offset, num_bytes,
1676 orig_start,
1677 disk_bytenr, /* block_start */
1678 num_bytes, /* block_len */
1679 disk_num_bytes, /* orig_block_len */
1680 ram_bytes, BTRFS_COMPRESS_NONE,
1681 BTRFS_ORDERED_PREALLOC);
1682 if (IS_ERR(em)) {
1683 ret = PTR_ERR(em);
1684 goto error;
1685 }
1686 free_extent_map(em);
1687 ret = btrfs_add_ordered_extent(inode, cur_offset,
1688 disk_bytenr, num_bytes,
1689 num_bytes,
1690 BTRFS_ORDERED_PREALLOC);
1691 if (ret) {
1692 btrfs_drop_extent_cache(BTRFS_I(inode),
1693 cur_offset,
1694 cur_offset + num_bytes - 1,
1695 0);
1696 goto error;
1697 }
1698 } else {
1699 ret = btrfs_add_ordered_extent(inode, cur_offset,
1700 disk_bytenr, num_bytes,
1701 num_bytes,
1702 BTRFS_ORDERED_NOCOW);
1703 if (ret)
1704 goto error;
1705 }
1706
1707 if (nocow)
1708 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1709 nocow = false;
1710
1711 if (root->root_key.objectid ==
1712 BTRFS_DATA_RELOC_TREE_OBJECTID)
1713 /*
1714 * Error handled later, as we must prevent
1715 * extent_clear_unlock_delalloc() in error handler
1716 * from freeing metadata of created ordered extent.
1717 */
1718 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1719 num_bytes);
1720
1721 extent_clear_unlock_delalloc(inode, cur_offset,
1722 cur_offset + num_bytes - 1,
1723 locked_page, EXTENT_LOCKED |
1724 EXTENT_DELALLOC |
1725 EXTENT_CLEAR_DATA_RESV,
1726 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1727
1728 cur_offset = extent_end;
1729
1730 /*
1731 * btrfs_reloc_clone_csums() error, now we're OK to call error
1732 * handler, as metadata for created ordered extent will only
1733 * be freed by btrfs_finish_ordered_io().
1734 */
1735 if (ret)
1736 goto error;
1737 if (cur_offset > end)
1738 break;
1739 }
1740 btrfs_release_path(path);
1741
1742 if (cur_offset <= end && cow_start == (u64)-1)
1743 cow_start = cur_offset;
1744
1745 if (cow_start != (u64)-1) {
1746 cur_offset = end;
1747 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1748 page_started, nr_written);
1749 if (ret)
1750 goto error;
1751 }
1752
1753 error:
1754 if (nocow)
1755 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1756
1757 if (ret && cur_offset < end)
1758 extent_clear_unlock_delalloc(inode, cur_offset, end,
1759 locked_page, EXTENT_LOCKED |
1760 EXTENT_DELALLOC | EXTENT_DEFRAG |
1761 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1762 PAGE_CLEAR_DIRTY |
1763 PAGE_SET_WRITEBACK |
1764 PAGE_END_WRITEBACK);
1765 btrfs_free_path(path);
1766 return ret;
1767 }
1768
need_force_cow(struct inode * inode,u64 start,u64 end)1769 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1770 {
1771
1772 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1773 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1774 return 0;
1775
1776 /*
1777 * @defrag_bytes is a hint value, no spinlock held here,
1778 * if is not zero, it means the file is defragging.
1779 * Force cow if given extent needs to be defragged.
1780 */
1781 if (BTRFS_I(inode)->defrag_bytes &&
1782 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1783 EXTENT_DEFRAG, 0, NULL))
1784 return 1;
1785
1786 return 0;
1787 }
1788
1789 /*
1790 * Function to process delayed allocation (create CoW) for ranges which are
1791 * being touched for the first time.
1792 */
btrfs_run_delalloc_range(struct inode * inode,struct page * locked_page,u64 start,u64 end,int * page_started,unsigned long * nr_written,struct writeback_control * wbc)1793 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
1794 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1795 struct writeback_control *wbc)
1796 {
1797 int ret;
1798 int force_cow = need_force_cow(inode, start, end);
1799 unsigned int write_flags = wbc_to_write_flags(wbc);
1800
1801 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1802 ret = run_delalloc_nocow(inode, locked_page, start, end,
1803 page_started, 1, nr_written);
1804 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1805 ret = run_delalloc_nocow(inode, locked_page, start, end,
1806 page_started, 0, nr_written);
1807 } else if (!inode_can_compress(inode) ||
1808 !inode_need_compress(inode, start, end)) {
1809 ret = cow_file_range(inode, locked_page, start, end,
1810 page_started, nr_written, 1);
1811 } else {
1812 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1813 &BTRFS_I(inode)->runtime_flags);
1814 ret = cow_file_range_async(inode, locked_page, start, end,
1815 page_started, nr_written,
1816 write_flags);
1817 }
1818 if (ret)
1819 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1820 end - start + 1);
1821 return ret;
1822 }
1823
btrfs_split_delalloc_extent(struct inode * inode,struct extent_state * orig,u64 split)1824 void btrfs_split_delalloc_extent(struct inode *inode,
1825 struct extent_state *orig, u64 split)
1826 {
1827 u64 size;
1828
1829 /* not delalloc, ignore it */
1830 if (!(orig->state & EXTENT_DELALLOC))
1831 return;
1832
1833 size = orig->end - orig->start + 1;
1834 if (size > BTRFS_MAX_EXTENT_SIZE) {
1835 u32 num_extents;
1836 u64 new_size;
1837
1838 /*
1839 * See the explanation in btrfs_merge_delalloc_extent, the same
1840 * applies here, just in reverse.
1841 */
1842 new_size = orig->end - split + 1;
1843 num_extents = count_max_extents(new_size);
1844 new_size = split - orig->start;
1845 num_extents += count_max_extents(new_size);
1846 if (count_max_extents(size) >= num_extents)
1847 return;
1848 }
1849
1850 spin_lock(&BTRFS_I(inode)->lock);
1851 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1852 spin_unlock(&BTRFS_I(inode)->lock);
1853 }
1854
1855 /*
1856 * Handle merged delayed allocation extents so we can keep track of new extents
1857 * that are just merged onto old extents, such as when we are doing sequential
1858 * writes, so we can properly account for the metadata space we'll need.
1859 */
btrfs_merge_delalloc_extent(struct inode * inode,struct extent_state * new,struct extent_state * other)1860 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1861 struct extent_state *other)
1862 {
1863 u64 new_size, old_size;
1864 u32 num_extents;
1865
1866 /* not delalloc, ignore it */
1867 if (!(other->state & EXTENT_DELALLOC))
1868 return;
1869
1870 if (new->start > other->start)
1871 new_size = new->end - other->start + 1;
1872 else
1873 new_size = other->end - new->start + 1;
1874
1875 /* we're not bigger than the max, unreserve the space and go */
1876 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1877 spin_lock(&BTRFS_I(inode)->lock);
1878 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1879 spin_unlock(&BTRFS_I(inode)->lock);
1880 return;
1881 }
1882
1883 /*
1884 * We have to add up either side to figure out how many extents were
1885 * accounted for before we merged into one big extent. If the number of
1886 * extents we accounted for is <= the amount we need for the new range
1887 * then we can return, otherwise drop. Think of it like this
1888 *
1889 * [ 4k][MAX_SIZE]
1890 *
1891 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1892 * need 2 outstanding extents, on one side we have 1 and the other side
1893 * we have 1 so they are == and we can return. But in this case
1894 *
1895 * [MAX_SIZE+4k][MAX_SIZE+4k]
1896 *
1897 * Each range on their own accounts for 2 extents, but merged together
1898 * they are only 3 extents worth of accounting, so we need to drop in
1899 * this case.
1900 */
1901 old_size = other->end - other->start + 1;
1902 num_extents = count_max_extents(old_size);
1903 old_size = new->end - new->start + 1;
1904 num_extents += count_max_extents(old_size);
1905 if (count_max_extents(new_size) >= num_extents)
1906 return;
1907
1908 spin_lock(&BTRFS_I(inode)->lock);
1909 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1910 spin_unlock(&BTRFS_I(inode)->lock);
1911 }
1912
btrfs_add_delalloc_inodes(struct btrfs_root * root,struct inode * inode)1913 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1914 struct inode *inode)
1915 {
1916 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1917
1918 spin_lock(&root->delalloc_lock);
1919 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1920 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1921 &root->delalloc_inodes);
1922 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1923 &BTRFS_I(inode)->runtime_flags);
1924 root->nr_delalloc_inodes++;
1925 if (root->nr_delalloc_inodes == 1) {
1926 spin_lock(&fs_info->delalloc_root_lock);
1927 BUG_ON(!list_empty(&root->delalloc_root));
1928 list_add_tail(&root->delalloc_root,
1929 &fs_info->delalloc_roots);
1930 spin_unlock(&fs_info->delalloc_root_lock);
1931 }
1932 }
1933 spin_unlock(&root->delalloc_lock);
1934 }
1935
1936
__btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1937 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1938 struct btrfs_inode *inode)
1939 {
1940 struct btrfs_fs_info *fs_info = root->fs_info;
1941
1942 if (!list_empty(&inode->delalloc_inodes)) {
1943 list_del_init(&inode->delalloc_inodes);
1944 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1945 &inode->runtime_flags);
1946 root->nr_delalloc_inodes--;
1947 if (!root->nr_delalloc_inodes) {
1948 ASSERT(list_empty(&root->delalloc_inodes));
1949 spin_lock(&fs_info->delalloc_root_lock);
1950 BUG_ON(list_empty(&root->delalloc_root));
1951 list_del_init(&root->delalloc_root);
1952 spin_unlock(&fs_info->delalloc_root_lock);
1953 }
1954 }
1955 }
1956
btrfs_del_delalloc_inode(struct btrfs_root * root,struct btrfs_inode * inode)1957 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1958 struct btrfs_inode *inode)
1959 {
1960 spin_lock(&root->delalloc_lock);
1961 __btrfs_del_delalloc_inode(root, inode);
1962 spin_unlock(&root->delalloc_lock);
1963 }
1964
1965 /*
1966 * Properly track delayed allocation bytes in the inode and to maintain the
1967 * list of inodes that have pending delalloc work to be done.
1968 */
btrfs_set_delalloc_extent(struct inode * inode,struct extent_state * state,unsigned * bits)1969 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1970 unsigned *bits)
1971 {
1972 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1973
1974 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1975 WARN_ON(1);
1976 /*
1977 * set_bit and clear bit hooks normally require _irqsave/restore
1978 * but in this case, we are only testing for the DELALLOC
1979 * bit, which is only set or cleared with irqs on
1980 */
1981 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1982 struct btrfs_root *root = BTRFS_I(inode)->root;
1983 u64 len = state->end + 1 - state->start;
1984 u32 num_extents = count_max_extents(len);
1985 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1986
1987 spin_lock(&BTRFS_I(inode)->lock);
1988 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1989 spin_unlock(&BTRFS_I(inode)->lock);
1990
1991 /* For sanity tests */
1992 if (btrfs_is_testing(fs_info))
1993 return;
1994
1995 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1996 fs_info->delalloc_batch);
1997 spin_lock(&BTRFS_I(inode)->lock);
1998 BTRFS_I(inode)->delalloc_bytes += len;
1999 if (*bits & EXTENT_DEFRAG)
2000 BTRFS_I(inode)->defrag_bytes += len;
2001 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2002 &BTRFS_I(inode)->runtime_flags))
2003 btrfs_add_delalloc_inodes(root, inode);
2004 spin_unlock(&BTRFS_I(inode)->lock);
2005 }
2006
2007 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2008 (*bits & EXTENT_DELALLOC_NEW)) {
2009 spin_lock(&BTRFS_I(inode)->lock);
2010 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2011 state->start;
2012 spin_unlock(&BTRFS_I(inode)->lock);
2013 }
2014 }
2015
2016 /*
2017 * Once a range is no longer delalloc this function ensures that proper
2018 * accounting happens.
2019 */
btrfs_clear_delalloc_extent(struct inode * vfs_inode,struct extent_state * state,unsigned * bits)2020 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2021 struct extent_state *state, unsigned *bits)
2022 {
2023 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2024 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2025 u64 len = state->end + 1 - state->start;
2026 u32 num_extents = count_max_extents(len);
2027
2028 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2029 spin_lock(&inode->lock);
2030 inode->defrag_bytes -= len;
2031 spin_unlock(&inode->lock);
2032 }
2033
2034 /*
2035 * set_bit and clear bit hooks normally require _irqsave/restore
2036 * but in this case, we are only testing for the DELALLOC
2037 * bit, which is only set or cleared with irqs on
2038 */
2039 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2040 struct btrfs_root *root = inode->root;
2041 bool do_list = !btrfs_is_free_space_inode(inode);
2042
2043 spin_lock(&inode->lock);
2044 btrfs_mod_outstanding_extents(inode, -num_extents);
2045 spin_unlock(&inode->lock);
2046
2047 /*
2048 * We don't reserve metadata space for space cache inodes so we
2049 * don't need to call delalloc_release_metadata if there is an
2050 * error.
2051 */
2052 if (*bits & EXTENT_CLEAR_META_RESV &&
2053 root != fs_info->tree_root)
2054 btrfs_delalloc_release_metadata(inode, len, false);
2055
2056 /* For sanity tests. */
2057 if (btrfs_is_testing(fs_info))
2058 return;
2059
2060 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2061 do_list && !(state->state & EXTENT_NORESERVE) &&
2062 (*bits & EXTENT_CLEAR_DATA_RESV))
2063 btrfs_free_reserved_data_space_noquota(
2064 &inode->vfs_inode,
2065 state->start, len);
2066
2067 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2068 fs_info->delalloc_batch);
2069 spin_lock(&inode->lock);
2070 inode->delalloc_bytes -= len;
2071 if (do_list && inode->delalloc_bytes == 0 &&
2072 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2073 &inode->runtime_flags))
2074 btrfs_del_delalloc_inode(root, inode);
2075 spin_unlock(&inode->lock);
2076 }
2077
2078 if ((state->state & EXTENT_DELALLOC_NEW) &&
2079 (*bits & EXTENT_DELALLOC_NEW)) {
2080 spin_lock(&inode->lock);
2081 ASSERT(inode->new_delalloc_bytes >= len);
2082 inode->new_delalloc_bytes -= len;
2083 spin_unlock(&inode->lock);
2084 }
2085 }
2086
2087 /*
2088 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2089 * in a chunk's stripe. This function ensures that bios do not span a
2090 * stripe/chunk
2091 *
2092 * @page - The page we are about to add to the bio
2093 * @size - size we want to add to the bio
2094 * @bio - bio we want to ensure is smaller than a stripe
2095 * @bio_flags - flags of the bio
2096 *
2097 * return 1 if page cannot be added to the bio
2098 * return 0 if page can be added to the bio
2099 * return error otherwise
2100 */
btrfs_bio_fits_in_stripe(struct page * page,size_t size,struct bio * bio,unsigned long bio_flags)2101 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2102 unsigned long bio_flags)
2103 {
2104 struct inode *inode = page->mapping->host;
2105 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2106 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
2107 u64 length = 0;
2108 u64 map_length;
2109 int ret;
2110 struct btrfs_io_geometry geom;
2111
2112 if (bio_flags & EXTENT_BIO_COMPRESSED)
2113 return 0;
2114
2115 length = bio->bi_iter.bi_size;
2116 map_length = length;
2117 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2118 &geom);
2119 if (ret < 0)
2120 return ret;
2121
2122 if (geom.len < length + size)
2123 return 1;
2124 return 0;
2125 }
2126
2127 /*
2128 * in order to insert checksums into the metadata in large chunks,
2129 * we wait until bio submission time. All the pages in the bio are
2130 * checksummed and sums are attached onto the ordered extent record.
2131 *
2132 * At IO completion time the cums attached on the ordered extent record
2133 * are inserted into the btree
2134 */
btrfs_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)2135 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2136 u64 bio_offset)
2137 {
2138 struct inode *inode = private_data;
2139 blk_status_t ret = 0;
2140
2141 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2142 BUG_ON(ret); /* -ENOMEM */
2143 return 0;
2144 }
2145
2146 /*
2147 * extent_io.c submission hook. This does the right thing for csum calculation
2148 * on write, or reading the csums from the tree before a read.
2149 *
2150 * Rules about async/sync submit,
2151 * a) read: sync submit
2152 *
2153 * b) write without checksum: sync submit
2154 *
2155 * c) write with checksum:
2156 * c-1) if bio is issued by fsync: sync submit
2157 * (sync_writers != 0)
2158 *
2159 * c-2) if root is reloc root: sync submit
2160 * (only in case of buffered IO)
2161 *
2162 * c-3) otherwise: async submit
2163 */
btrfs_submit_bio_hook(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)2164 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
2165 int mirror_num,
2166 unsigned long bio_flags)
2167
2168 {
2169 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2170 struct btrfs_root *root = BTRFS_I(inode)->root;
2171 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2172 blk_status_t ret = 0;
2173 int skip_sum;
2174 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2175
2176 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2177
2178 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2179 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2180
2181 if (bio_op(bio) != REQ_OP_WRITE) {
2182 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2183 if (ret)
2184 goto out;
2185
2186 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2187 ret = btrfs_submit_compressed_read(inode, bio,
2188 mirror_num,
2189 bio_flags);
2190 goto out;
2191 } else if (!skip_sum) {
2192 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2193 if (ret)
2194 goto out;
2195 }
2196 goto mapit;
2197 } else if (async && !skip_sum) {
2198 /* csum items have already been cloned */
2199 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2200 goto mapit;
2201 /* we're doing a write, do the async checksumming */
2202 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2203 0, inode, btrfs_submit_bio_start);
2204 goto out;
2205 } else if (!skip_sum) {
2206 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2207 if (ret)
2208 goto out;
2209 }
2210
2211 mapit:
2212 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2213
2214 out:
2215 if (ret) {
2216 bio->bi_status = ret;
2217 bio_endio(bio);
2218 }
2219 return ret;
2220 }
2221
2222 /*
2223 * given a list of ordered sums record them in the inode. This happens
2224 * at IO completion time based on sums calculated at bio submission time.
2225 */
add_pending_csums(struct btrfs_trans_handle * trans,struct inode * inode,struct list_head * list)2226 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2227 struct inode *inode, struct list_head *list)
2228 {
2229 struct btrfs_ordered_sum *sum;
2230 int ret;
2231
2232 list_for_each_entry(sum, list, list) {
2233 trans->adding_csums = true;
2234 ret = btrfs_csum_file_blocks(trans,
2235 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2236 trans->adding_csums = false;
2237 if (ret)
2238 return ret;
2239 }
2240 return 0;
2241 }
2242
btrfs_set_extent_delalloc(struct inode * inode,u64 start,u64 end,unsigned int extra_bits,struct extent_state ** cached_state)2243 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2244 unsigned int extra_bits,
2245 struct extent_state **cached_state)
2246 {
2247 WARN_ON(PAGE_ALIGNED(end));
2248 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2249 extra_bits, cached_state);
2250 }
2251
2252 /* see btrfs_writepage_start_hook for details on why this is required */
2253 struct btrfs_writepage_fixup {
2254 struct page *page;
2255 struct inode *inode;
2256 struct btrfs_work work;
2257 };
2258
btrfs_writepage_fixup_worker(struct btrfs_work * work)2259 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2260 {
2261 struct btrfs_writepage_fixup *fixup;
2262 struct btrfs_ordered_extent *ordered;
2263 struct extent_state *cached_state = NULL;
2264 struct extent_changeset *data_reserved = NULL;
2265 struct page *page;
2266 struct inode *inode;
2267 u64 page_start;
2268 u64 page_end;
2269 int ret = 0;
2270 bool free_delalloc_space = true;
2271
2272 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2273 page = fixup->page;
2274 inode = fixup->inode;
2275 page_start = page_offset(page);
2276 page_end = page_offset(page) + PAGE_SIZE - 1;
2277
2278 /*
2279 * This is similar to page_mkwrite, we need to reserve the space before
2280 * we take the page lock.
2281 */
2282 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2283 PAGE_SIZE);
2284 again:
2285 lock_page(page);
2286
2287 /*
2288 * Before we queued this fixup, we took a reference on the page.
2289 * page->mapping may go NULL, but it shouldn't be moved to a different
2290 * address space.
2291 */
2292 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2293 /*
2294 * Unfortunately this is a little tricky, either
2295 *
2296 * 1) We got here and our page had already been dealt with and
2297 * we reserved our space, thus ret == 0, so we need to just
2298 * drop our space reservation and bail. This can happen the
2299 * first time we come into the fixup worker, or could happen
2300 * while waiting for the ordered extent.
2301 * 2) Our page was already dealt with, but we happened to get an
2302 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2303 * this case we obviously don't have anything to release, but
2304 * because the page was already dealt with we don't want to
2305 * mark the page with an error, so make sure we're resetting
2306 * ret to 0. This is why we have this check _before_ the ret
2307 * check, because we do not want to have a surprise ENOSPC
2308 * when the page was already properly dealt with.
2309 */
2310 if (!ret) {
2311 btrfs_delalloc_release_extents(BTRFS_I(inode),
2312 PAGE_SIZE);
2313 btrfs_delalloc_release_space(inode, data_reserved,
2314 page_start, PAGE_SIZE,
2315 true);
2316 }
2317 ret = 0;
2318 goto out_page;
2319 }
2320
2321 /*
2322 * We can't mess with the page state unless it is locked, so now that
2323 * it is locked bail if we failed to make our space reservation.
2324 */
2325 if (ret)
2326 goto out_page;
2327
2328 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2329 &cached_state);
2330
2331 /* already ordered? We're done */
2332 if (PagePrivate2(page))
2333 goto out_reserved;
2334
2335 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2336 PAGE_SIZE);
2337 if (ordered) {
2338 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2339 page_end, &cached_state);
2340 unlock_page(page);
2341 btrfs_start_ordered_extent(inode, ordered, 1);
2342 btrfs_put_ordered_extent(ordered);
2343 goto again;
2344 }
2345
2346 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2347 &cached_state);
2348 if (ret)
2349 goto out_reserved;
2350
2351 /*
2352 * Everything went as planned, we're now the owner of a dirty page with
2353 * delayed allocation bits set and space reserved for our COW
2354 * destination.
2355 *
2356 * The page was dirty when we started, nothing should have cleaned it.
2357 */
2358 BUG_ON(!PageDirty(page));
2359 free_delalloc_space = false;
2360 out_reserved:
2361 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2362 if (free_delalloc_space)
2363 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2364 PAGE_SIZE, true);
2365 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2366 &cached_state);
2367 out_page:
2368 if (ret) {
2369 /*
2370 * We hit ENOSPC or other errors. Update the mapping and page
2371 * to reflect the errors and clean the page.
2372 */
2373 mapping_set_error(page->mapping, ret);
2374 end_extent_writepage(page, ret, page_start, page_end);
2375 clear_page_dirty_for_io(page);
2376 SetPageError(page);
2377 }
2378 ClearPageChecked(page);
2379 unlock_page(page);
2380 put_page(page);
2381 kfree(fixup);
2382 extent_changeset_free(data_reserved);
2383 /*
2384 * As a precaution, do a delayed iput in case it would be the last iput
2385 * that could need flushing space. Recursing back to fixup worker would
2386 * deadlock.
2387 */
2388 btrfs_add_delayed_iput(inode);
2389 }
2390
2391 /*
2392 * There are a few paths in the higher layers of the kernel that directly
2393 * set the page dirty bit without asking the filesystem if it is a
2394 * good idea. This causes problems because we want to make sure COW
2395 * properly happens and the data=ordered rules are followed.
2396 *
2397 * In our case any range that doesn't have the ORDERED bit set
2398 * hasn't been properly setup for IO. We kick off an async process
2399 * to fix it up. The async helper will wait for ordered extents, set
2400 * the delalloc bit and make it safe to write the page.
2401 */
btrfs_writepage_cow_fixup(struct page * page,u64 start,u64 end)2402 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2403 {
2404 struct inode *inode = page->mapping->host;
2405 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2406 struct btrfs_writepage_fixup *fixup;
2407
2408 /* this page is properly in the ordered list */
2409 if (TestClearPagePrivate2(page))
2410 return 0;
2411
2412 /*
2413 * PageChecked is set below when we create a fixup worker for this page,
2414 * don't try to create another one if we're already PageChecked()
2415 *
2416 * The extent_io writepage code will redirty the page if we send back
2417 * EAGAIN.
2418 */
2419 if (PageChecked(page))
2420 return -EAGAIN;
2421
2422 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2423 if (!fixup)
2424 return -EAGAIN;
2425
2426 /*
2427 * We are already holding a reference to this inode from
2428 * write_cache_pages. We need to hold it because the space reservation
2429 * takes place outside of the page lock, and we can't trust
2430 * page->mapping outside of the page lock.
2431 */
2432 ihold(inode);
2433 SetPageChecked(page);
2434 get_page(page);
2435 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2436 fixup->page = page;
2437 fixup->inode = inode;
2438 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2439
2440 return -EAGAIN;
2441 }
2442
insert_reserved_file_extent(struct btrfs_trans_handle * trans,struct inode * inode,u64 file_pos,u64 disk_bytenr,u64 disk_num_bytes,u64 num_bytes,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding,int extent_type)2443 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2444 struct inode *inode, u64 file_pos,
2445 u64 disk_bytenr, u64 disk_num_bytes,
2446 u64 num_bytes, u64 ram_bytes,
2447 u8 compression, u8 encryption,
2448 u16 other_encoding, int extent_type)
2449 {
2450 struct btrfs_root *root = BTRFS_I(inode)->root;
2451 struct btrfs_file_extent_item *fi;
2452 struct btrfs_path *path;
2453 struct extent_buffer *leaf;
2454 struct btrfs_key ins;
2455 u64 qg_released;
2456 int extent_inserted = 0;
2457 int ret;
2458
2459 path = btrfs_alloc_path();
2460 if (!path)
2461 return -ENOMEM;
2462
2463 /*
2464 * we may be replacing one extent in the tree with another.
2465 * The new extent is pinned in the extent map, and we don't want
2466 * to drop it from the cache until it is completely in the btree.
2467 *
2468 * So, tell btrfs_drop_extents to leave this extent in the cache.
2469 * the caller is expected to unpin it and allow it to be merged
2470 * with the others.
2471 */
2472 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2473 file_pos + num_bytes, NULL, 0,
2474 1, sizeof(*fi), &extent_inserted);
2475 if (ret)
2476 goto out;
2477
2478 if (!extent_inserted) {
2479 ins.objectid = btrfs_ino(BTRFS_I(inode));
2480 ins.offset = file_pos;
2481 ins.type = BTRFS_EXTENT_DATA_KEY;
2482
2483 path->leave_spinning = 1;
2484 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2485 sizeof(*fi));
2486 if (ret)
2487 goto out;
2488 }
2489 leaf = path->nodes[0];
2490 fi = btrfs_item_ptr(leaf, path->slots[0],
2491 struct btrfs_file_extent_item);
2492 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2493 btrfs_set_file_extent_type(leaf, fi, extent_type);
2494 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2495 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2496 btrfs_set_file_extent_offset(leaf, fi, 0);
2497 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2498 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2499 btrfs_set_file_extent_compression(leaf, fi, compression);
2500 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2501 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2502
2503 btrfs_mark_buffer_dirty(leaf);
2504 btrfs_release_path(path);
2505
2506 inode_add_bytes(inode, num_bytes);
2507
2508 ins.objectid = disk_bytenr;
2509 ins.offset = disk_num_bytes;
2510 ins.type = BTRFS_EXTENT_ITEM_KEY;
2511
2512 /*
2513 * Release the reserved range from inode dirty range map, as it is
2514 * already moved into delayed_ref_head
2515 */
2516 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2517 if (ret < 0)
2518 goto out;
2519 qg_released = ret;
2520 ret = btrfs_alloc_reserved_file_extent(trans, root,
2521 btrfs_ino(BTRFS_I(inode)),
2522 file_pos, qg_released, &ins);
2523 out:
2524 btrfs_free_path(path);
2525
2526 return ret;
2527 }
2528
2529 /* snapshot-aware defrag */
2530 struct sa_defrag_extent_backref {
2531 struct rb_node node;
2532 struct old_sa_defrag_extent *old;
2533 u64 root_id;
2534 u64 inum;
2535 u64 file_pos;
2536 u64 extent_offset;
2537 u64 num_bytes;
2538 u64 generation;
2539 };
2540
2541 struct old_sa_defrag_extent {
2542 struct list_head list;
2543 struct new_sa_defrag_extent *new;
2544
2545 u64 extent_offset;
2546 u64 bytenr;
2547 u64 offset;
2548 u64 len;
2549 int count;
2550 };
2551
2552 struct new_sa_defrag_extent {
2553 struct rb_root root;
2554 struct list_head head;
2555 struct btrfs_path *path;
2556 struct inode *inode;
2557 u64 file_pos;
2558 u64 len;
2559 u64 bytenr;
2560 u64 disk_len;
2561 u8 compress_type;
2562 };
2563
backref_comp(struct sa_defrag_extent_backref * b1,struct sa_defrag_extent_backref * b2)2564 static int backref_comp(struct sa_defrag_extent_backref *b1,
2565 struct sa_defrag_extent_backref *b2)
2566 {
2567 if (b1->root_id < b2->root_id)
2568 return -1;
2569 else if (b1->root_id > b2->root_id)
2570 return 1;
2571
2572 if (b1->inum < b2->inum)
2573 return -1;
2574 else if (b1->inum > b2->inum)
2575 return 1;
2576
2577 if (b1->file_pos < b2->file_pos)
2578 return -1;
2579 else if (b1->file_pos > b2->file_pos)
2580 return 1;
2581
2582 /*
2583 * [------------------------------] ===> (a range of space)
2584 * |<--->| |<---->| =============> (fs/file tree A)
2585 * |<---------------------------->| ===> (fs/file tree B)
2586 *
2587 * A range of space can refer to two file extents in one tree while
2588 * refer to only one file extent in another tree.
2589 *
2590 * So we may process a disk offset more than one time(two extents in A)
2591 * and locate at the same extent(one extent in B), then insert two same
2592 * backrefs(both refer to the extent in B).
2593 */
2594 return 0;
2595 }
2596
backref_insert(struct rb_root * root,struct sa_defrag_extent_backref * backref)2597 static void backref_insert(struct rb_root *root,
2598 struct sa_defrag_extent_backref *backref)
2599 {
2600 struct rb_node **p = &root->rb_node;
2601 struct rb_node *parent = NULL;
2602 struct sa_defrag_extent_backref *entry;
2603 int ret;
2604
2605 while (*p) {
2606 parent = *p;
2607 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2608
2609 ret = backref_comp(backref, entry);
2610 if (ret < 0)
2611 p = &(*p)->rb_left;
2612 else
2613 p = &(*p)->rb_right;
2614 }
2615
2616 rb_link_node(&backref->node, parent, p);
2617 rb_insert_color(&backref->node, root);
2618 }
2619
2620 /*
2621 * Note the backref might has changed, and in this case we just return 0.
2622 */
record_one_backref(u64 inum,u64 offset,u64 root_id,void * ctx)2623 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2624 void *ctx)
2625 {
2626 struct btrfs_file_extent_item *extent;
2627 struct old_sa_defrag_extent *old = ctx;
2628 struct new_sa_defrag_extent *new = old->new;
2629 struct btrfs_path *path = new->path;
2630 struct btrfs_key key;
2631 struct btrfs_root *root;
2632 struct sa_defrag_extent_backref *backref;
2633 struct extent_buffer *leaf;
2634 struct inode *inode = new->inode;
2635 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2636 int slot;
2637 int ret;
2638 u64 extent_offset;
2639 u64 num_bytes;
2640
2641 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2642 inum == btrfs_ino(BTRFS_I(inode)))
2643 return 0;
2644
2645 key.objectid = root_id;
2646 key.type = BTRFS_ROOT_ITEM_KEY;
2647 key.offset = (u64)-1;
2648
2649 root = btrfs_read_fs_root_no_name(fs_info, &key);
2650 if (IS_ERR(root)) {
2651 if (PTR_ERR(root) == -ENOENT)
2652 return 0;
2653 WARN_ON(1);
2654 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2655 inum, offset, root_id);
2656 return PTR_ERR(root);
2657 }
2658
2659 key.objectid = inum;
2660 key.type = BTRFS_EXTENT_DATA_KEY;
2661 if (offset > (u64)-1 << 32)
2662 key.offset = 0;
2663 else
2664 key.offset = offset;
2665
2666 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2667 if (WARN_ON(ret < 0))
2668 return ret;
2669 ret = 0;
2670
2671 while (1) {
2672 cond_resched();
2673
2674 leaf = path->nodes[0];
2675 slot = path->slots[0];
2676
2677 if (slot >= btrfs_header_nritems(leaf)) {
2678 ret = btrfs_next_leaf(root, path);
2679 if (ret < 0) {
2680 goto out;
2681 } else if (ret > 0) {
2682 ret = 0;
2683 goto out;
2684 }
2685 continue;
2686 }
2687
2688 path->slots[0]++;
2689
2690 btrfs_item_key_to_cpu(leaf, &key, slot);
2691
2692 if (key.objectid > inum)
2693 goto out;
2694
2695 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2696 continue;
2697
2698 extent = btrfs_item_ptr(leaf, slot,
2699 struct btrfs_file_extent_item);
2700
2701 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2702 continue;
2703
2704 /*
2705 * 'offset' refers to the exact key.offset,
2706 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2707 * (key.offset - extent_offset).
2708 */
2709 if (key.offset != offset)
2710 continue;
2711
2712 extent_offset = btrfs_file_extent_offset(leaf, extent);
2713 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2714
2715 if (extent_offset >= old->extent_offset + old->offset +
2716 old->len || extent_offset + num_bytes <=
2717 old->extent_offset + old->offset)
2718 continue;
2719 break;
2720 }
2721
2722 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2723 if (!backref) {
2724 ret = -ENOENT;
2725 goto out;
2726 }
2727
2728 backref->root_id = root_id;
2729 backref->inum = inum;
2730 backref->file_pos = offset;
2731 backref->num_bytes = num_bytes;
2732 backref->extent_offset = extent_offset;
2733 backref->generation = btrfs_file_extent_generation(leaf, extent);
2734 backref->old = old;
2735 backref_insert(&new->root, backref);
2736 old->count++;
2737 out:
2738 btrfs_release_path(path);
2739 WARN_ON(ret);
2740 return ret;
2741 }
2742
record_extent_backrefs(struct btrfs_path * path,struct new_sa_defrag_extent * new)2743 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2744 struct new_sa_defrag_extent *new)
2745 {
2746 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2747 struct old_sa_defrag_extent *old, *tmp;
2748 int ret;
2749
2750 new->path = path;
2751
2752 list_for_each_entry_safe(old, tmp, &new->head, list) {
2753 ret = iterate_inodes_from_logical(old->bytenr +
2754 old->extent_offset, fs_info,
2755 path, record_one_backref,
2756 old, false);
2757 if (ret < 0 && ret != -ENOENT)
2758 return false;
2759
2760 /* no backref to be processed for this extent */
2761 if (!old->count) {
2762 list_del(&old->list);
2763 kfree(old);
2764 }
2765 }
2766
2767 if (list_empty(&new->head))
2768 return false;
2769
2770 return true;
2771 }
2772
relink_is_mergable(struct extent_buffer * leaf,struct btrfs_file_extent_item * fi,struct new_sa_defrag_extent * new)2773 static int relink_is_mergable(struct extent_buffer *leaf,
2774 struct btrfs_file_extent_item *fi,
2775 struct new_sa_defrag_extent *new)
2776 {
2777 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2778 return 0;
2779
2780 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2781 return 0;
2782
2783 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2784 return 0;
2785
2786 if (btrfs_file_extent_encryption(leaf, fi) ||
2787 btrfs_file_extent_other_encoding(leaf, fi))
2788 return 0;
2789
2790 return 1;
2791 }
2792
2793 /*
2794 * Note the backref might has changed, and in this case we just return 0.
2795 */
relink_extent_backref(struct btrfs_path * path,struct sa_defrag_extent_backref * prev,struct sa_defrag_extent_backref * backref)2796 static noinline int relink_extent_backref(struct btrfs_path *path,
2797 struct sa_defrag_extent_backref *prev,
2798 struct sa_defrag_extent_backref *backref)
2799 {
2800 struct btrfs_file_extent_item *extent;
2801 struct btrfs_file_extent_item *item;
2802 struct btrfs_ordered_extent *ordered;
2803 struct btrfs_trans_handle *trans;
2804 struct btrfs_ref ref = { 0 };
2805 struct btrfs_root *root;
2806 struct btrfs_key key;
2807 struct extent_buffer *leaf;
2808 struct old_sa_defrag_extent *old = backref->old;
2809 struct new_sa_defrag_extent *new = old->new;
2810 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2811 struct inode *inode;
2812 struct extent_state *cached = NULL;
2813 int ret = 0;
2814 u64 start;
2815 u64 len;
2816 u64 lock_start;
2817 u64 lock_end;
2818 bool merge = false;
2819 int index;
2820
2821 if (prev && prev->root_id == backref->root_id &&
2822 prev->inum == backref->inum &&
2823 prev->file_pos + prev->num_bytes == backref->file_pos)
2824 merge = true;
2825
2826 /* step 1: get root */
2827 key.objectid = backref->root_id;
2828 key.type = BTRFS_ROOT_ITEM_KEY;
2829 key.offset = (u64)-1;
2830
2831 index = srcu_read_lock(&fs_info->subvol_srcu);
2832
2833 root = btrfs_read_fs_root_no_name(fs_info, &key);
2834 if (IS_ERR(root)) {
2835 srcu_read_unlock(&fs_info->subvol_srcu, index);
2836 if (PTR_ERR(root) == -ENOENT)
2837 return 0;
2838 return PTR_ERR(root);
2839 }
2840
2841 if (btrfs_root_readonly(root)) {
2842 srcu_read_unlock(&fs_info->subvol_srcu, index);
2843 return 0;
2844 }
2845
2846 /* step 2: get inode */
2847 key.objectid = backref->inum;
2848 key.type = BTRFS_INODE_ITEM_KEY;
2849 key.offset = 0;
2850
2851 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2852 if (IS_ERR(inode)) {
2853 srcu_read_unlock(&fs_info->subvol_srcu, index);
2854 return 0;
2855 }
2856
2857 srcu_read_unlock(&fs_info->subvol_srcu, index);
2858
2859 /* step 3: relink backref */
2860 lock_start = backref->file_pos;
2861 lock_end = backref->file_pos + backref->num_bytes - 1;
2862 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2863 &cached);
2864
2865 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2866 if (ordered) {
2867 btrfs_put_ordered_extent(ordered);
2868 goto out_unlock;
2869 }
2870
2871 trans = btrfs_join_transaction(root);
2872 if (IS_ERR(trans)) {
2873 ret = PTR_ERR(trans);
2874 goto out_unlock;
2875 }
2876
2877 key.objectid = backref->inum;
2878 key.type = BTRFS_EXTENT_DATA_KEY;
2879 key.offset = backref->file_pos;
2880
2881 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2882 if (ret < 0) {
2883 goto out_free_path;
2884 } else if (ret > 0) {
2885 ret = 0;
2886 goto out_free_path;
2887 }
2888
2889 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2890 struct btrfs_file_extent_item);
2891
2892 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2893 backref->generation)
2894 goto out_free_path;
2895
2896 btrfs_release_path(path);
2897
2898 start = backref->file_pos;
2899 if (backref->extent_offset < old->extent_offset + old->offset)
2900 start += old->extent_offset + old->offset -
2901 backref->extent_offset;
2902
2903 len = min(backref->extent_offset + backref->num_bytes,
2904 old->extent_offset + old->offset + old->len);
2905 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2906
2907 ret = btrfs_drop_extents(trans, root, inode, start,
2908 start + len, 1);
2909 if (ret)
2910 goto out_free_path;
2911 again:
2912 key.objectid = btrfs_ino(BTRFS_I(inode));
2913 key.type = BTRFS_EXTENT_DATA_KEY;
2914 key.offset = start;
2915
2916 path->leave_spinning = 1;
2917 if (merge) {
2918 struct btrfs_file_extent_item *fi;
2919 u64 extent_len;
2920 struct btrfs_key found_key;
2921
2922 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2923 if (ret < 0)
2924 goto out_free_path;
2925
2926 path->slots[0]--;
2927 leaf = path->nodes[0];
2928 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2929
2930 fi = btrfs_item_ptr(leaf, path->slots[0],
2931 struct btrfs_file_extent_item);
2932 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2933
2934 if (extent_len + found_key.offset == start &&
2935 relink_is_mergable(leaf, fi, new)) {
2936 btrfs_set_file_extent_num_bytes(leaf, fi,
2937 extent_len + len);
2938 btrfs_mark_buffer_dirty(leaf);
2939 inode_add_bytes(inode, len);
2940
2941 ret = 1;
2942 goto out_free_path;
2943 } else {
2944 merge = false;
2945 btrfs_release_path(path);
2946 goto again;
2947 }
2948 }
2949
2950 ret = btrfs_insert_empty_item(trans, root, path, &key,
2951 sizeof(*extent));
2952 if (ret) {
2953 btrfs_abort_transaction(trans, ret);
2954 goto out_free_path;
2955 }
2956
2957 leaf = path->nodes[0];
2958 item = btrfs_item_ptr(leaf, path->slots[0],
2959 struct btrfs_file_extent_item);
2960 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2961 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2962 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2963 btrfs_set_file_extent_num_bytes(leaf, item, len);
2964 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2965 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2966 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2967 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2968 btrfs_set_file_extent_encryption(leaf, item, 0);
2969 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2970
2971 btrfs_mark_buffer_dirty(leaf);
2972 inode_add_bytes(inode, len);
2973 btrfs_release_path(path);
2974
2975 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new->bytenr,
2976 new->disk_len, 0);
2977 btrfs_init_data_ref(&ref, backref->root_id, backref->inum,
2978 new->file_pos); /* start - extent_offset */
2979 ret = btrfs_inc_extent_ref(trans, &ref);
2980 if (ret) {
2981 btrfs_abort_transaction(trans, ret);
2982 goto out_free_path;
2983 }
2984
2985 ret = 1;
2986 out_free_path:
2987 btrfs_release_path(path);
2988 path->leave_spinning = 0;
2989 btrfs_end_transaction(trans);
2990 out_unlock:
2991 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2992 &cached);
2993 iput(inode);
2994 return ret;
2995 }
2996
free_sa_defrag_extent(struct new_sa_defrag_extent * new)2997 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2998 {
2999 struct old_sa_defrag_extent *old, *tmp;
3000
3001 if (!new)
3002 return;
3003
3004 list_for_each_entry_safe(old, tmp, &new->head, list) {
3005 kfree(old);
3006 }
3007 kfree(new);
3008 }
3009
relink_file_extents(struct new_sa_defrag_extent * new)3010 static void relink_file_extents(struct new_sa_defrag_extent *new)
3011 {
3012 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
3013 struct btrfs_path *path;
3014 struct sa_defrag_extent_backref *backref;
3015 struct sa_defrag_extent_backref *prev = NULL;
3016 struct rb_node *node;
3017 int ret;
3018
3019 path = btrfs_alloc_path();
3020 if (!path)
3021 return;
3022
3023 if (!record_extent_backrefs(path, new)) {
3024 btrfs_free_path(path);
3025 goto out;
3026 }
3027 btrfs_release_path(path);
3028
3029 while (1) {
3030 node = rb_first(&new->root);
3031 if (!node)
3032 break;
3033 rb_erase(node, &new->root);
3034
3035 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
3036
3037 ret = relink_extent_backref(path, prev, backref);
3038 WARN_ON(ret < 0);
3039
3040 kfree(prev);
3041
3042 if (ret == 1)
3043 prev = backref;
3044 else
3045 prev = NULL;
3046 cond_resched();
3047 }
3048 kfree(prev);
3049
3050 btrfs_free_path(path);
3051 out:
3052 free_sa_defrag_extent(new);
3053
3054 atomic_dec(&fs_info->defrag_running);
3055 wake_up(&fs_info->transaction_wait);
3056 }
3057
3058 static struct new_sa_defrag_extent *
record_old_file_extents(struct inode * inode,struct btrfs_ordered_extent * ordered)3059 record_old_file_extents(struct inode *inode,
3060 struct btrfs_ordered_extent *ordered)
3061 {
3062 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3063 struct btrfs_root *root = BTRFS_I(inode)->root;
3064 struct btrfs_path *path;
3065 struct btrfs_key key;
3066 struct old_sa_defrag_extent *old;
3067 struct new_sa_defrag_extent *new;
3068 int ret;
3069
3070 new = kmalloc(sizeof(*new), GFP_NOFS);
3071 if (!new)
3072 return NULL;
3073
3074 new->inode = inode;
3075 new->file_pos = ordered->file_offset;
3076 new->len = ordered->len;
3077 new->bytenr = ordered->start;
3078 new->disk_len = ordered->disk_len;
3079 new->compress_type = ordered->compress_type;
3080 new->root = RB_ROOT;
3081 INIT_LIST_HEAD(&new->head);
3082
3083 path = btrfs_alloc_path();
3084 if (!path)
3085 goto out_kfree;
3086
3087 key.objectid = btrfs_ino(BTRFS_I(inode));
3088 key.type = BTRFS_EXTENT_DATA_KEY;
3089 key.offset = new->file_pos;
3090
3091 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3092 if (ret < 0)
3093 goto out_free_path;
3094 if (ret > 0 && path->slots[0] > 0)
3095 path->slots[0]--;
3096
3097 /* find out all the old extents for the file range */
3098 while (1) {
3099 struct btrfs_file_extent_item *extent;
3100 struct extent_buffer *l;
3101 int slot;
3102 u64 num_bytes;
3103 u64 offset;
3104 u64 end;
3105 u64 disk_bytenr;
3106 u64 extent_offset;
3107
3108 l = path->nodes[0];
3109 slot = path->slots[0];
3110
3111 if (slot >= btrfs_header_nritems(l)) {
3112 ret = btrfs_next_leaf(root, path);
3113 if (ret < 0)
3114 goto out_free_path;
3115 else if (ret > 0)
3116 break;
3117 continue;
3118 }
3119
3120 btrfs_item_key_to_cpu(l, &key, slot);
3121
3122 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
3123 break;
3124 if (key.type != BTRFS_EXTENT_DATA_KEY)
3125 break;
3126 if (key.offset >= new->file_pos + new->len)
3127 break;
3128
3129 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
3130
3131 num_bytes = btrfs_file_extent_num_bytes(l, extent);
3132 if (key.offset + num_bytes < new->file_pos)
3133 goto next;
3134
3135 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
3136 if (!disk_bytenr)
3137 goto next;
3138
3139 extent_offset = btrfs_file_extent_offset(l, extent);
3140
3141 old = kmalloc(sizeof(*old), GFP_NOFS);
3142 if (!old)
3143 goto out_free_path;
3144
3145 offset = max(new->file_pos, key.offset);
3146 end = min(new->file_pos + new->len, key.offset + num_bytes);
3147
3148 old->bytenr = disk_bytenr;
3149 old->extent_offset = extent_offset;
3150 old->offset = offset - key.offset;
3151 old->len = end - offset;
3152 old->new = new;
3153 old->count = 0;
3154 list_add_tail(&old->list, &new->head);
3155 next:
3156 path->slots[0]++;
3157 cond_resched();
3158 }
3159
3160 btrfs_free_path(path);
3161 atomic_inc(&fs_info->defrag_running);
3162
3163 return new;
3164
3165 out_free_path:
3166 btrfs_free_path(path);
3167 out_kfree:
3168 free_sa_defrag_extent(new);
3169 return NULL;
3170 }
3171
btrfs_release_delalloc_bytes(struct btrfs_fs_info * fs_info,u64 start,u64 len)3172 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3173 u64 start, u64 len)
3174 {
3175 struct btrfs_block_group_cache *cache;
3176
3177 cache = btrfs_lookup_block_group(fs_info, start);
3178 ASSERT(cache);
3179
3180 spin_lock(&cache->lock);
3181 cache->delalloc_bytes -= len;
3182 spin_unlock(&cache->lock);
3183
3184 btrfs_put_block_group(cache);
3185 }
3186
3187 /* as ordered data IO finishes, this gets called so we can finish
3188 * an ordered extent if the range of bytes in the file it covers are
3189 * fully written.
3190 */
btrfs_finish_ordered_io(struct btrfs_ordered_extent * ordered_extent)3191 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3192 {
3193 struct inode *inode = ordered_extent->inode;
3194 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3195 struct btrfs_root *root = BTRFS_I(inode)->root;
3196 struct btrfs_trans_handle *trans = NULL;
3197 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3198 struct extent_state *cached_state = NULL;
3199 struct new_sa_defrag_extent *new = NULL;
3200 int compress_type = 0;
3201 int ret = 0;
3202 u64 logical_len = ordered_extent->len;
3203 bool nolock;
3204 bool truncated = false;
3205 bool range_locked = false;
3206 bool clear_new_delalloc_bytes = false;
3207 bool clear_reserved_extent = true;
3208
3209 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3210 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3211 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3212 clear_new_delalloc_bytes = true;
3213
3214 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
3215
3216 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3217 ret = -EIO;
3218 goto out;
3219 }
3220
3221 btrfs_free_io_failure_record(BTRFS_I(inode),
3222 ordered_extent->file_offset,
3223 ordered_extent->file_offset +
3224 ordered_extent->len - 1);
3225
3226 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3227 truncated = true;
3228 logical_len = ordered_extent->truncated_len;
3229 /* Truncated the entire extent, don't bother adding */
3230 if (!logical_len)
3231 goto out;
3232 }
3233
3234 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3235 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3236
3237 /*
3238 * For mwrite(mmap + memset to write) case, we still reserve
3239 * space for NOCOW range.
3240 * As NOCOW won't cause a new delayed ref, just free the space
3241 */
3242 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3243 ordered_extent->len);
3244 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3245 if (nolock)
3246 trans = btrfs_join_transaction_nolock(root);
3247 else
3248 trans = btrfs_join_transaction(root);
3249 if (IS_ERR(trans)) {
3250 ret = PTR_ERR(trans);
3251 trans = NULL;
3252 goto out;
3253 }
3254 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3255 ret = btrfs_update_inode_fallback(trans, root, inode);
3256 if (ret) /* -ENOMEM or corruption */
3257 btrfs_abort_transaction(trans, ret);
3258 goto out;
3259 }
3260
3261 range_locked = true;
3262 lock_extent_bits(io_tree, ordered_extent->file_offset,
3263 ordered_extent->file_offset + ordered_extent->len - 1,
3264 &cached_state);
3265
3266 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3267 ordered_extent->file_offset + ordered_extent->len - 1,
3268 EXTENT_DEFRAG, 0, cached_state);
3269 if (ret) {
3270 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3271 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3272 /* the inode is shared */
3273 new = record_old_file_extents(inode, ordered_extent);
3274
3275 clear_extent_bit(io_tree, ordered_extent->file_offset,
3276 ordered_extent->file_offset + ordered_extent->len - 1,
3277 EXTENT_DEFRAG, 0, 0, &cached_state);
3278 }
3279
3280 if (nolock)
3281 trans = btrfs_join_transaction_nolock(root);
3282 else
3283 trans = btrfs_join_transaction(root);
3284 if (IS_ERR(trans)) {
3285 ret = PTR_ERR(trans);
3286 trans = NULL;
3287 goto out;
3288 }
3289
3290 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3291
3292 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3293 compress_type = ordered_extent->compress_type;
3294 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3295 BUG_ON(compress_type);
3296 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3297 ordered_extent->len);
3298 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3299 ordered_extent->file_offset,
3300 ordered_extent->file_offset +
3301 logical_len);
3302 } else {
3303 BUG_ON(root == fs_info->tree_root);
3304 ret = insert_reserved_file_extent(trans, inode,
3305 ordered_extent->file_offset,
3306 ordered_extent->start,
3307 ordered_extent->disk_len,
3308 logical_len, logical_len,
3309 compress_type, 0, 0,
3310 BTRFS_FILE_EXTENT_REG);
3311 if (!ret) {
3312 clear_reserved_extent = false;
3313 btrfs_release_delalloc_bytes(fs_info,
3314 ordered_extent->start,
3315 ordered_extent->disk_len);
3316 }
3317 }
3318 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3319 ordered_extent->file_offset, ordered_extent->len,
3320 trans->transid);
3321 if (ret < 0) {
3322 btrfs_abort_transaction(trans, ret);
3323 goto out;
3324 }
3325
3326 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3327 if (ret) {
3328 btrfs_abort_transaction(trans, ret);
3329 goto out;
3330 }
3331
3332 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3333 ret = btrfs_update_inode_fallback(trans, root, inode);
3334 if (ret) { /* -ENOMEM or corruption */
3335 btrfs_abort_transaction(trans, ret);
3336 goto out;
3337 }
3338 ret = 0;
3339 out:
3340 if (range_locked || clear_new_delalloc_bytes) {
3341 unsigned int clear_bits = 0;
3342
3343 if (range_locked)
3344 clear_bits |= EXTENT_LOCKED;
3345 if (clear_new_delalloc_bytes)
3346 clear_bits |= EXTENT_DELALLOC_NEW;
3347 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3348 ordered_extent->file_offset,
3349 ordered_extent->file_offset +
3350 ordered_extent->len - 1,
3351 clear_bits,
3352 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3353 0, &cached_state);
3354 }
3355
3356 if (trans)
3357 btrfs_end_transaction(trans);
3358
3359 if (ret || truncated) {
3360 u64 start, end;
3361
3362 /*
3363 * If we failed to finish this ordered extent for any reason we
3364 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3365 * extent, and mark the inode with the error if it wasn't
3366 * already set. Any error during writeback would have already
3367 * set the mapping error, so we need to set it if we're the ones
3368 * marking this ordered extent as failed.
3369 */
3370 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3371 &ordered_extent->flags))
3372 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3373
3374 if (truncated)
3375 start = ordered_extent->file_offset + logical_len;
3376 else
3377 start = ordered_extent->file_offset;
3378 end = ordered_extent->file_offset + ordered_extent->len - 1;
3379 clear_extent_uptodate(io_tree, start, end, NULL);
3380
3381 /* Drop the cache for the part of the extent we didn't write. */
3382 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3383
3384 /*
3385 * If the ordered extent had an IOERR or something else went
3386 * wrong we need to return the space for this ordered extent
3387 * back to the allocator. We only free the extent in the
3388 * truncated case if we didn't write out the extent at all.
3389 *
3390 * If we made it past insert_reserved_file_extent before we
3391 * errored out then we don't need to do this as the accounting
3392 * has already been done.
3393 */
3394 if ((ret || !logical_len) &&
3395 clear_reserved_extent &&
3396 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3397 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3398 btrfs_free_reserved_extent(fs_info,
3399 ordered_extent->start,
3400 ordered_extent->disk_len, 1);
3401 }
3402
3403
3404 /*
3405 * This needs to be done to make sure anybody waiting knows we are done
3406 * updating everything for this ordered extent.
3407 */
3408 btrfs_remove_ordered_extent(inode, ordered_extent);
3409
3410 /* for snapshot-aware defrag */
3411 if (new) {
3412 if (ret) {
3413 free_sa_defrag_extent(new);
3414 atomic_dec(&fs_info->defrag_running);
3415 } else {
3416 relink_file_extents(new);
3417 }
3418 }
3419
3420 /* once for us */
3421 btrfs_put_ordered_extent(ordered_extent);
3422 /* once for the tree */
3423 btrfs_put_ordered_extent(ordered_extent);
3424
3425 return ret;
3426 }
3427
finish_ordered_fn(struct btrfs_work * work)3428 static void finish_ordered_fn(struct btrfs_work *work)
3429 {
3430 struct btrfs_ordered_extent *ordered_extent;
3431 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3432 btrfs_finish_ordered_io(ordered_extent);
3433 }
3434
btrfs_writepage_endio_finish_ordered(struct page * page,u64 start,u64 end,int uptodate)3435 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3436 u64 end, int uptodate)
3437 {
3438 struct inode *inode = page->mapping->host;
3439 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3440 struct btrfs_ordered_extent *ordered_extent = NULL;
3441 struct btrfs_workqueue *wq;
3442
3443 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3444
3445 ClearPagePrivate2(page);
3446 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3447 end - start + 1, uptodate))
3448 return;
3449
3450 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
3451 wq = fs_info->endio_freespace_worker;
3452 else
3453 wq = fs_info->endio_write_workers;
3454
3455 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
3456 btrfs_queue_work(wq, &ordered_extent->work);
3457 }
3458
__readpage_endio_check(struct inode * inode,struct btrfs_io_bio * io_bio,int icsum,struct page * page,int pgoff,u64 start,size_t len)3459 static int __readpage_endio_check(struct inode *inode,
3460 struct btrfs_io_bio *io_bio,
3461 int icsum, struct page *page,
3462 int pgoff, u64 start, size_t len)
3463 {
3464 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3465 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3466 char *kaddr;
3467 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
3468 u8 *csum_expected;
3469 u8 csum[BTRFS_CSUM_SIZE];
3470
3471 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
3472
3473 kaddr = kmap_atomic(page);
3474 shash->tfm = fs_info->csum_shash;
3475
3476 crypto_shash_init(shash);
3477 crypto_shash_update(shash, kaddr + pgoff, len);
3478 crypto_shash_final(shash, csum);
3479
3480 if (memcmp(csum, csum_expected, csum_size))
3481 goto zeroit;
3482
3483 kunmap_atomic(kaddr);
3484 return 0;
3485 zeroit:
3486 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3487 io_bio->mirror_num);
3488 memset(kaddr + pgoff, 1, len);
3489 flush_dcache_page(page);
3490 kunmap_atomic(kaddr);
3491 return -EIO;
3492 }
3493
3494 /*
3495 * when reads are done, we need to check csums to verify the data is correct
3496 * if there's a match, we allow the bio to finish. If not, the code in
3497 * extent_io.c will try to find good copies for us.
3498 */
btrfs_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)3499 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3500 u64 phy_offset, struct page *page,
3501 u64 start, u64 end, int mirror)
3502 {
3503 size_t offset = start - page_offset(page);
3504 struct inode *inode = page->mapping->host;
3505 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3506 struct btrfs_root *root = BTRFS_I(inode)->root;
3507
3508 if (PageChecked(page)) {
3509 ClearPageChecked(page);
3510 return 0;
3511 }
3512
3513 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3514 return 0;
3515
3516 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3517 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3518 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3519 return 0;
3520 }
3521
3522 phy_offset >>= inode->i_sb->s_blocksize_bits;
3523 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3524 start, (size_t)(end - start + 1));
3525 }
3526
3527 /*
3528 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3529 *
3530 * @inode: The inode we want to perform iput on
3531 *
3532 * This function uses the generic vfs_inode::i_count to track whether we should
3533 * just decrement it (in case it's > 1) or if this is the last iput then link
3534 * the inode to the delayed iput machinery. Delayed iputs are processed at
3535 * transaction commit time/superblock commit/cleaner kthread.
3536 */
btrfs_add_delayed_iput(struct inode * inode)3537 void btrfs_add_delayed_iput(struct inode *inode)
3538 {
3539 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3540 struct btrfs_inode *binode = BTRFS_I(inode);
3541
3542 if (atomic_add_unless(&inode->i_count, -1, 1))
3543 return;
3544
3545 atomic_inc(&fs_info->nr_delayed_iputs);
3546 spin_lock(&fs_info->delayed_iput_lock);
3547 ASSERT(list_empty(&binode->delayed_iput));
3548 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3549 spin_unlock(&fs_info->delayed_iput_lock);
3550 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3551 wake_up_process(fs_info->cleaner_kthread);
3552 }
3553
run_delayed_iput_locked(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3554 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3555 struct btrfs_inode *inode)
3556 {
3557 list_del_init(&inode->delayed_iput);
3558 spin_unlock(&fs_info->delayed_iput_lock);
3559 iput(&inode->vfs_inode);
3560 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3561 wake_up(&fs_info->delayed_iputs_wait);
3562 spin_lock(&fs_info->delayed_iput_lock);
3563 }
3564
btrfs_run_delayed_iput(struct btrfs_fs_info * fs_info,struct btrfs_inode * inode)3565 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3566 struct btrfs_inode *inode)
3567 {
3568 if (!list_empty(&inode->delayed_iput)) {
3569 spin_lock(&fs_info->delayed_iput_lock);
3570 if (!list_empty(&inode->delayed_iput))
3571 run_delayed_iput_locked(fs_info, inode);
3572 spin_unlock(&fs_info->delayed_iput_lock);
3573 }
3574 }
3575
btrfs_run_delayed_iputs(struct btrfs_fs_info * fs_info)3576 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3577 {
3578
3579 spin_lock(&fs_info->delayed_iput_lock);
3580 while (!list_empty(&fs_info->delayed_iputs)) {
3581 struct btrfs_inode *inode;
3582
3583 inode = list_first_entry(&fs_info->delayed_iputs,
3584 struct btrfs_inode, delayed_iput);
3585 run_delayed_iput_locked(fs_info, inode);
3586 cond_resched_lock(&fs_info->delayed_iput_lock);
3587 }
3588 spin_unlock(&fs_info->delayed_iput_lock);
3589 }
3590
3591 /**
3592 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
3593 * @fs_info - the fs_info for this fs
3594 * @return - EINTR if we were killed, 0 if nothing's pending
3595 *
3596 * This will wait on any delayed iputs that are currently running with KILLABLE
3597 * set. Once they are all done running we will return, unless we are killed in
3598 * which case we return EINTR. This helps in user operations like fallocate etc
3599 * that might get blocked on the iputs.
3600 */
btrfs_wait_on_delayed_iputs(struct btrfs_fs_info * fs_info)3601 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3602 {
3603 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3604 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3605 if (ret)
3606 return -EINTR;
3607 return 0;
3608 }
3609
3610 /*
3611 * This creates an orphan entry for the given inode in case something goes wrong
3612 * in the middle of an unlink.
3613 */
btrfs_orphan_add(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3614 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3615 struct btrfs_inode *inode)
3616 {
3617 int ret;
3618
3619 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3620 if (ret && ret != -EEXIST) {
3621 btrfs_abort_transaction(trans, ret);
3622 return ret;
3623 }
3624
3625 return 0;
3626 }
3627
3628 /*
3629 * We have done the delete so we can go ahead and remove the orphan item for
3630 * this particular inode.
3631 */
btrfs_orphan_del(struct btrfs_trans_handle * trans,struct btrfs_inode * inode)3632 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3633 struct btrfs_inode *inode)
3634 {
3635 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3636 }
3637
3638 /*
3639 * this cleans up any orphans that may be left on the list from the last use
3640 * of this root.
3641 */
btrfs_orphan_cleanup(struct btrfs_root * root)3642 int btrfs_orphan_cleanup(struct btrfs_root *root)
3643 {
3644 struct btrfs_fs_info *fs_info = root->fs_info;
3645 struct btrfs_path *path;
3646 struct extent_buffer *leaf;
3647 struct btrfs_key key, found_key;
3648 struct btrfs_trans_handle *trans;
3649 struct inode *inode;
3650 u64 last_objectid = 0;
3651 int ret = 0, nr_unlink = 0;
3652
3653 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3654 return 0;
3655
3656 path = btrfs_alloc_path();
3657 if (!path) {
3658 ret = -ENOMEM;
3659 goto out;
3660 }
3661 path->reada = READA_BACK;
3662
3663 key.objectid = BTRFS_ORPHAN_OBJECTID;
3664 key.type = BTRFS_ORPHAN_ITEM_KEY;
3665 key.offset = (u64)-1;
3666
3667 while (1) {
3668 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3669 if (ret < 0)
3670 goto out;
3671
3672 /*
3673 * if ret == 0 means we found what we were searching for, which
3674 * is weird, but possible, so only screw with path if we didn't
3675 * find the key and see if we have stuff that matches
3676 */
3677 if (ret > 0) {
3678 ret = 0;
3679 if (path->slots[0] == 0)
3680 break;
3681 path->slots[0]--;
3682 }
3683
3684 /* pull out the item */
3685 leaf = path->nodes[0];
3686 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3687
3688 /* make sure the item matches what we want */
3689 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3690 break;
3691 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3692 break;
3693
3694 /* release the path since we're done with it */
3695 btrfs_release_path(path);
3696
3697 /*
3698 * this is where we are basically btrfs_lookup, without the
3699 * crossing root thing. we store the inode number in the
3700 * offset of the orphan item.
3701 */
3702
3703 if (found_key.offset == last_objectid) {
3704 btrfs_err(fs_info,
3705 "Error removing orphan entry, stopping orphan cleanup");
3706 ret = -EINVAL;
3707 goto out;
3708 }
3709
3710 last_objectid = found_key.offset;
3711
3712 found_key.objectid = found_key.offset;
3713 found_key.type = BTRFS_INODE_ITEM_KEY;
3714 found_key.offset = 0;
3715 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3716 ret = PTR_ERR_OR_ZERO(inode);
3717 if (ret && ret != -ENOENT)
3718 goto out;
3719
3720 if (ret == -ENOENT && root == fs_info->tree_root) {
3721 struct btrfs_root *dead_root;
3722 struct btrfs_fs_info *fs_info = root->fs_info;
3723 int is_dead_root = 0;
3724
3725 /*
3726 * this is an orphan in the tree root. Currently these
3727 * could come from 2 sources:
3728 * a) a snapshot deletion in progress
3729 * b) a free space cache inode
3730 * We need to distinguish those two, as the snapshot
3731 * orphan must not get deleted.
3732 * find_dead_roots already ran before us, so if this
3733 * is a snapshot deletion, we should find the root
3734 * in the dead_roots list
3735 */
3736 spin_lock(&fs_info->trans_lock);
3737 list_for_each_entry(dead_root, &fs_info->dead_roots,
3738 root_list) {
3739 if (dead_root->root_key.objectid ==
3740 found_key.objectid) {
3741 is_dead_root = 1;
3742 break;
3743 }
3744 }
3745 spin_unlock(&fs_info->trans_lock);
3746 if (is_dead_root) {
3747 /* prevent this orphan from being found again */
3748 key.offset = found_key.objectid - 1;
3749 continue;
3750 }
3751
3752 }
3753
3754 /*
3755 * If we have an inode with links, there are a couple of
3756 * possibilities. Old kernels (before v3.12) used to create an
3757 * orphan item for truncate indicating that there were possibly
3758 * extent items past i_size that needed to be deleted. In v3.12,
3759 * truncate was changed to update i_size in sync with the extent
3760 * items, but the (useless) orphan item was still created. Since
3761 * v4.18, we don't create the orphan item for truncate at all.
3762 *
3763 * So, this item could mean that we need to do a truncate, but
3764 * only if this filesystem was last used on a pre-v3.12 kernel
3765 * and was not cleanly unmounted. The odds of that are quite
3766 * slim, and it's a pain to do the truncate now, so just delete
3767 * the orphan item.
3768 *
3769 * It's also possible that this orphan item was supposed to be
3770 * deleted but wasn't. The inode number may have been reused,
3771 * but either way, we can delete the orphan item.
3772 */
3773 if (ret == -ENOENT || inode->i_nlink) {
3774 if (!ret)
3775 iput(inode);
3776 trans = btrfs_start_transaction(root, 1);
3777 if (IS_ERR(trans)) {
3778 ret = PTR_ERR(trans);
3779 goto out;
3780 }
3781 btrfs_debug(fs_info, "auto deleting %Lu",
3782 found_key.objectid);
3783 ret = btrfs_del_orphan_item(trans, root,
3784 found_key.objectid);
3785 btrfs_end_transaction(trans);
3786 if (ret)
3787 goto out;
3788 continue;
3789 }
3790
3791 nr_unlink++;
3792
3793 /* this will do delete_inode and everything for us */
3794 iput(inode);
3795 }
3796 /* release the path since we're done with it */
3797 btrfs_release_path(path);
3798
3799 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3800
3801 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3802 trans = btrfs_join_transaction(root);
3803 if (!IS_ERR(trans))
3804 btrfs_end_transaction(trans);
3805 }
3806
3807 if (nr_unlink)
3808 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3809
3810 out:
3811 if (ret)
3812 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3813 btrfs_free_path(path);
3814 return ret;
3815 }
3816
3817 /*
3818 * very simple check to peek ahead in the leaf looking for xattrs. If we
3819 * don't find any xattrs, we know there can't be any acls.
3820 *
3821 * slot is the slot the inode is in, objectid is the objectid of the inode
3822 */
acls_after_inode_item(struct extent_buffer * leaf,int slot,u64 objectid,int * first_xattr_slot)3823 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3824 int slot, u64 objectid,
3825 int *first_xattr_slot)
3826 {
3827 u32 nritems = btrfs_header_nritems(leaf);
3828 struct btrfs_key found_key;
3829 static u64 xattr_access = 0;
3830 static u64 xattr_default = 0;
3831 int scanned = 0;
3832
3833 if (!xattr_access) {
3834 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3835 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3836 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3837 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3838 }
3839
3840 slot++;
3841 *first_xattr_slot = -1;
3842 while (slot < nritems) {
3843 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3844
3845 /* we found a different objectid, there must not be acls */
3846 if (found_key.objectid != objectid)
3847 return 0;
3848
3849 /* we found an xattr, assume we've got an acl */
3850 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3851 if (*first_xattr_slot == -1)
3852 *first_xattr_slot = slot;
3853 if (found_key.offset == xattr_access ||
3854 found_key.offset == xattr_default)
3855 return 1;
3856 }
3857
3858 /*
3859 * we found a key greater than an xattr key, there can't
3860 * be any acls later on
3861 */
3862 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3863 return 0;
3864
3865 slot++;
3866 scanned++;
3867
3868 /*
3869 * it goes inode, inode backrefs, xattrs, extents,
3870 * so if there are a ton of hard links to an inode there can
3871 * be a lot of backrefs. Don't waste time searching too hard,
3872 * this is just an optimization
3873 */
3874 if (scanned >= 8)
3875 break;
3876 }
3877 /* we hit the end of the leaf before we found an xattr or
3878 * something larger than an xattr. We have to assume the inode
3879 * has acls
3880 */
3881 if (*first_xattr_slot == -1)
3882 *first_xattr_slot = slot;
3883 return 1;
3884 }
3885
3886 /*
3887 * read an inode from the btree into the in-memory inode
3888 */
btrfs_read_locked_inode(struct inode * inode,struct btrfs_path * in_path)3889 static int btrfs_read_locked_inode(struct inode *inode,
3890 struct btrfs_path *in_path)
3891 {
3892 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3893 struct btrfs_path *path = in_path;
3894 struct extent_buffer *leaf;
3895 struct btrfs_inode_item *inode_item;
3896 struct btrfs_root *root = BTRFS_I(inode)->root;
3897 struct btrfs_key location;
3898 unsigned long ptr;
3899 int maybe_acls;
3900 u32 rdev;
3901 int ret;
3902 bool filled = false;
3903 int first_xattr_slot;
3904
3905 ret = btrfs_fill_inode(inode, &rdev);
3906 if (!ret)
3907 filled = true;
3908
3909 if (!path) {
3910 path = btrfs_alloc_path();
3911 if (!path)
3912 return -ENOMEM;
3913 }
3914
3915 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3916
3917 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3918 if (ret) {
3919 if (path != in_path)
3920 btrfs_free_path(path);
3921 return ret;
3922 }
3923
3924 leaf = path->nodes[0];
3925
3926 if (filled)
3927 goto cache_index;
3928
3929 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3930 struct btrfs_inode_item);
3931 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3932 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3933 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3934 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3935 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3936
3937 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3938 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3939
3940 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3941 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3942
3943 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3944 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3945
3946 BTRFS_I(inode)->i_otime.tv_sec =
3947 btrfs_timespec_sec(leaf, &inode_item->otime);
3948 BTRFS_I(inode)->i_otime.tv_nsec =
3949 btrfs_timespec_nsec(leaf, &inode_item->otime);
3950
3951 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3952 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3953 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3954
3955 inode_set_iversion_queried(inode,
3956 btrfs_inode_sequence(leaf, inode_item));
3957 inode->i_generation = BTRFS_I(inode)->generation;
3958 inode->i_rdev = 0;
3959 rdev = btrfs_inode_rdev(leaf, inode_item);
3960
3961 BTRFS_I(inode)->index_cnt = (u64)-1;
3962 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3963
3964 cache_index:
3965 /*
3966 * If we were modified in the current generation and evicted from memory
3967 * and then re-read we need to do a full sync since we don't have any
3968 * idea about which extents were modified before we were evicted from
3969 * cache.
3970 *
3971 * This is required for both inode re-read from disk and delayed inode
3972 * in delayed_nodes_tree.
3973 */
3974 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3975 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3976 &BTRFS_I(inode)->runtime_flags);
3977
3978 /*
3979 * We don't persist the id of the transaction where an unlink operation
3980 * against the inode was last made. So here we assume the inode might
3981 * have been evicted, and therefore the exact value of last_unlink_trans
3982 * lost, and set it to last_trans to avoid metadata inconsistencies
3983 * between the inode and its parent if the inode is fsync'ed and the log
3984 * replayed. For example, in the scenario:
3985 *
3986 * touch mydir/foo
3987 * ln mydir/foo mydir/bar
3988 * sync
3989 * unlink mydir/bar
3990 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3991 * xfs_io -c fsync mydir/foo
3992 * <power failure>
3993 * mount fs, triggers fsync log replay
3994 *
3995 * We must make sure that when we fsync our inode foo we also log its
3996 * parent inode, otherwise after log replay the parent still has the
3997 * dentry with the "bar" name but our inode foo has a link count of 1
3998 * and doesn't have an inode ref with the name "bar" anymore.
3999 *
4000 * Setting last_unlink_trans to last_trans is a pessimistic approach,
4001 * but it guarantees correctness at the expense of occasional full
4002 * transaction commits on fsync if our inode is a directory, or if our
4003 * inode is not a directory, logging its parent unnecessarily.
4004 */
4005 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
4006
4007 path->slots[0]++;
4008 if (inode->i_nlink != 1 ||
4009 path->slots[0] >= btrfs_header_nritems(leaf))
4010 goto cache_acl;
4011
4012 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4013 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
4014 goto cache_acl;
4015
4016 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4017 if (location.type == BTRFS_INODE_REF_KEY) {
4018 struct btrfs_inode_ref *ref;
4019
4020 ref = (struct btrfs_inode_ref *)ptr;
4021 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
4022 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4023 struct btrfs_inode_extref *extref;
4024
4025 extref = (struct btrfs_inode_extref *)ptr;
4026 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
4027 extref);
4028 }
4029 cache_acl:
4030 /*
4031 * try to precache a NULL acl entry for files that don't have
4032 * any xattrs or acls
4033 */
4034 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4035 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
4036 if (first_xattr_slot != -1) {
4037 path->slots[0] = first_xattr_slot;
4038 ret = btrfs_load_inode_props(inode, path);
4039 if (ret)
4040 btrfs_err(fs_info,
4041 "error loading props for ino %llu (root %llu): %d",
4042 btrfs_ino(BTRFS_I(inode)),
4043 root->root_key.objectid, ret);
4044 }
4045 if (path != in_path)
4046 btrfs_free_path(path);
4047
4048 if (!maybe_acls)
4049 cache_no_acl(inode);
4050
4051 switch (inode->i_mode & S_IFMT) {
4052 case S_IFREG:
4053 inode->i_mapping->a_ops = &btrfs_aops;
4054 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4055 inode->i_fop = &btrfs_file_operations;
4056 inode->i_op = &btrfs_file_inode_operations;
4057 break;
4058 case S_IFDIR:
4059 inode->i_fop = &btrfs_dir_file_operations;
4060 inode->i_op = &btrfs_dir_inode_operations;
4061 break;
4062 case S_IFLNK:
4063 inode->i_op = &btrfs_symlink_inode_operations;
4064 inode_nohighmem(inode);
4065 inode->i_mapping->a_ops = &btrfs_aops;
4066 break;
4067 default:
4068 inode->i_op = &btrfs_special_inode_operations;
4069 init_special_inode(inode, inode->i_mode, rdev);
4070 break;
4071 }
4072
4073 btrfs_sync_inode_flags_to_i_flags(inode);
4074 return 0;
4075 }
4076
4077 /*
4078 * given a leaf and an inode, copy the inode fields into the leaf
4079 */
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode)4080 static void fill_inode_item(struct btrfs_trans_handle *trans,
4081 struct extent_buffer *leaf,
4082 struct btrfs_inode_item *item,
4083 struct inode *inode)
4084 {
4085 struct btrfs_map_token token;
4086
4087 btrfs_init_map_token(&token, leaf);
4088
4089 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
4090 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
4091 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
4092 &token);
4093 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
4094 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
4095
4096 btrfs_set_token_timespec_sec(leaf, &item->atime,
4097 inode->i_atime.tv_sec, &token);
4098 btrfs_set_token_timespec_nsec(leaf, &item->atime,
4099 inode->i_atime.tv_nsec, &token);
4100
4101 btrfs_set_token_timespec_sec(leaf, &item->mtime,
4102 inode->i_mtime.tv_sec, &token);
4103 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
4104 inode->i_mtime.tv_nsec, &token);
4105
4106 btrfs_set_token_timespec_sec(leaf, &item->ctime,
4107 inode->i_ctime.tv_sec, &token);
4108 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
4109 inode->i_ctime.tv_nsec, &token);
4110
4111 btrfs_set_token_timespec_sec(leaf, &item->otime,
4112 BTRFS_I(inode)->i_otime.tv_sec, &token);
4113 btrfs_set_token_timespec_nsec(leaf, &item->otime,
4114 BTRFS_I(inode)->i_otime.tv_nsec, &token);
4115
4116 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
4117 &token);
4118 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
4119 &token);
4120 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
4121 &token);
4122 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
4123 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
4124 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
4125 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
4126 }
4127
4128 /*
4129 * copy everything in the in-memory inode into the btree.
4130 */
btrfs_update_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)4131 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4132 struct btrfs_root *root, struct inode *inode)
4133 {
4134 struct btrfs_inode_item *inode_item;
4135 struct btrfs_path *path;
4136 struct extent_buffer *leaf;
4137 int ret;
4138
4139 path = btrfs_alloc_path();
4140 if (!path)
4141 return -ENOMEM;
4142
4143 path->leave_spinning = 1;
4144 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
4145 1);
4146 if (ret) {
4147 if (ret > 0)
4148 ret = -ENOENT;
4149 goto failed;
4150 }
4151
4152 leaf = path->nodes[0];
4153 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4154 struct btrfs_inode_item);
4155
4156 fill_inode_item(trans, leaf, inode_item, inode);
4157 btrfs_mark_buffer_dirty(leaf);
4158 btrfs_set_inode_last_trans(trans, inode);
4159 ret = 0;
4160 failed:
4161 btrfs_free_path(path);
4162 return ret;
4163 }
4164
4165 /*
4166 * copy everything in the in-memory inode into the btree.
4167 */
btrfs_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)4168 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4169 struct btrfs_root *root, struct inode *inode)
4170 {
4171 struct btrfs_fs_info *fs_info = root->fs_info;
4172 int ret;
4173
4174 /*
4175 * If the inode is a free space inode, we can deadlock during commit
4176 * if we put it into the delayed code.
4177 *
4178 * The data relocation inode should also be directly updated
4179 * without delay
4180 */
4181 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
4182 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
4183 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4184 btrfs_update_root_times(trans, root);
4185
4186 ret = btrfs_delayed_update_inode(trans, root, inode);
4187 if (!ret)
4188 btrfs_set_inode_last_trans(trans, inode);
4189 return ret;
4190 }
4191
4192 return btrfs_update_inode_item(trans, root, inode);
4193 }
4194
btrfs_update_inode_fallback(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)4195 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4196 struct btrfs_root *root,
4197 struct inode *inode)
4198 {
4199 int ret;
4200
4201 ret = btrfs_update_inode(trans, root, inode);
4202 if (ret == -ENOSPC)
4203 return btrfs_update_inode_item(trans, root, inode);
4204 return ret;
4205 }
4206
4207 /*
4208 * unlink helper that gets used here in inode.c and in the tree logging
4209 * recovery code. It remove a link in a directory with a given name, and
4210 * also drops the back refs in the inode to the directory
4211 */
__btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4212 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4213 struct btrfs_root *root,
4214 struct btrfs_inode *dir,
4215 struct btrfs_inode *inode,
4216 const char *name, int name_len)
4217 {
4218 struct btrfs_fs_info *fs_info = root->fs_info;
4219 struct btrfs_path *path;
4220 int ret = 0;
4221 struct btrfs_dir_item *di;
4222 u64 index;
4223 u64 ino = btrfs_ino(inode);
4224 u64 dir_ino = btrfs_ino(dir);
4225
4226 path = btrfs_alloc_path();
4227 if (!path) {
4228 ret = -ENOMEM;
4229 goto out;
4230 }
4231
4232 path->leave_spinning = 1;
4233 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4234 name, name_len, -1);
4235 if (IS_ERR_OR_NULL(di)) {
4236 ret = di ? PTR_ERR(di) : -ENOENT;
4237 goto err;
4238 }
4239 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4240 if (ret)
4241 goto err;
4242 btrfs_release_path(path);
4243
4244 /*
4245 * If we don't have dir index, we have to get it by looking up
4246 * the inode ref, since we get the inode ref, remove it directly,
4247 * it is unnecessary to do delayed deletion.
4248 *
4249 * But if we have dir index, needn't search inode ref to get it.
4250 * Since the inode ref is close to the inode item, it is better
4251 * that we delay to delete it, and just do this deletion when
4252 * we update the inode item.
4253 */
4254 if (inode->dir_index) {
4255 ret = btrfs_delayed_delete_inode_ref(inode);
4256 if (!ret) {
4257 index = inode->dir_index;
4258 goto skip_backref;
4259 }
4260 }
4261
4262 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4263 dir_ino, &index);
4264 if (ret) {
4265 btrfs_info(fs_info,
4266 "failed to delete reference to %.*s, inode %llu parent %llu",
4267 name_len, name, ino, dir_ino);
4268 btrfs_abort_transaction(trans, ret);
4269 goto err;
4270 }
4271 skip_backref:
4272 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4273 if (ret) {
4274 btrfs_abort_transaction(trans, ret);
4275 goto err;
4276 }
4277
4278 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4279 dir_ino);
4280 if (ret != 0 && ret != -ENOENT) {
4281 btrfs_abort_transaction(trans, ret);
4282 goto err;
4283 }
4284
4285 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4286 index);
4287 if (ret == -ENOENT)
4288 ret = 0;
4289 else if (ret)
4290 btrfs_abort_transaction(trans, ret);
4291
4292 /*
4293 * If we have a pending delayed iput we could end up with the final iput
4294 * being run in btrfs-cleaner context. If we have enough of these built
4295 * up we can end up burning a lot of time in btrfs-cleaner without any
4296 * way to throttle the unlinks. Since we're currently holding a ref on
4297 * the inode we can run the delayed iput here without any issues as the
4298 * final iput won't be done until after we drop the ref we're currently
4299 * holding.
4300 */
4301 btrfs_run_delayed_iput(fs_info, inode);
4302 err:
4303 btrfs_free_path(path);
4304 if (ret)
4305 goto out;
4306
4307 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4308 inode_inc_iversion(&inode->vfs_inode);
4309 inode_inc_iversion(&dir->vfs_inode);
4310 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4311 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4312 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4313 out:
4314 return ret;
4315 }
4316
btrfs_unlink_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_inode * dir,struct btrfs_inode * inode,const char * name,int name_len)4317 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4318 struct btrfs_root *root,
4319 struct btrfs_inode *dir, struct btrfs_inode *inode,
4320 const char *name, int name_len)
4321 {
4322 int ret;
4323 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4324 if (!ret) {
4325 drop_nlink(&inode->vfs_inode);
4326 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4327 }
4328 return ret;
4329 }
4330
4331 /*
4332 * helper to start transaction for unlink and rmdir.
4333 *
4334 * unlink and rmdir are special in btrfs, they do not always free space, so
4335 * if we cannot make our reservations the normal way try and see if there is
4336 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4337 * allow the unlink to occur.
4338 */
__unlink_start_trans(struct inode * dir)4339 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4340 {
4341 struct btrfs_root *root = BTRFS_I(dir)->root;
4342
4343 /*
4344 * 1 for the possible orphan item
4345 * 1 for the dir item
4346 * 1 for the dir index
4347 * 1 for the inode ref
4348 * 1 for the inode
4349 */
4350 return btrfs_start_transaction_fallback_global_rsv(root, 5);
4351 }
4352
btrfs_unlink(struct inode * dir,struct dentry * dentry)4353 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4354 {
4355 struct btrfs_root *root = BTRFS_I(dir)->root;
4356 struct btrfs_trans_handle *trans;
4357 struct inode *inode = d_inode(dentry);
4358 int ret;
4359
4360 trans = __unlink_start_trans(dir);
4361 if (IS_ERR(trans))
4362 return PTR_ERR(trans);
4363
4364 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4365 0);
4366
4367 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4368 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4369 dentry->d_name.len);
4370 if (ret)
4371 goto out;
4372
4373 if (inode->i_nlink == 0) {
4374 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4375 if (ret)
4376 goto out;
4377 }
4378
4379 out:
4380 btrfs_end_transaction(trans);
4381 btrfs_btree_balance_dirty(root->fs_info);
4382 return ret;
4383 }
4384
btrfs_unlink_subvol(struct btrfs_trans_handle * trans,struct inode * dir,struct dentry * dentry)4385 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4386 struct inode *dir, struct dentry *dentry)
4387 {
4388 struct btrfs_root *root = BTRFS_I(dir)->root;
4389 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4390 struct btrfs_path *path;
4391 struct extent_buffer *leaf;
4392 struct btrfs_dir_item *di;
4393 struct btrfs_key key;
4394 const char *name = dentry->d_name.name;
4395 int name_len = dentry->d_name.len;
4396 u64 index;
4397 int ret;
4398 u64 objectid;
4399 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4400
4401 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4402 objectid = inode->root->root_key.objectid;
4403 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4404 objectid = inode->location.objectid;
4405 } else {
4406 WARN_ON(1);
4407 return -EINVAL;
4408 }
4409
4410 path = btrfs_alloc_path();
4411 if (!path)
4412 return -ENOMEM;
4413
4414 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4415 name, name_len, -1);
4416 if (IS_ERR_OR_NULL(di)) {
4417 ret = di ? PTR_ERR(di) : -ENOENT;
4418 goto out;
4419 }
4420
4421 leaf = path->nodes[0];
4422 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4423 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4424 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4425 if (ret) {
4426 btrfs_abort_transaction(trans, ret);
4427 goto out;
4428 }
4429 btrfs_release_path(path);
4430
4431 /*
4432 * This is a placeholder inode for a subvolume we didn't have a
4433 * reference to at the time of the snapshot creation. In the meantime
4434 * we could have renamed the real subvol link into our snapshot, so
4435 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
4436 * Instead simply lookup the dir_index_item for this entry so we can
4437 * remove it. Otherwise we know we have a ref to the root and we can
4438 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4439 */
4440 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4441 di = btrfs_search_dir_index_item(root, path, dir_ino,
4442 name, name_len);
4443 if (IS_ERR_OR_NULL(di)) {
4444 if (!di)
4445 ret = -ENOENT;
4446 else
4447 ret = PTR_ERR(di);
4448 btrfs_abort_transaction(trans, ret);
4449 goto out;
4450 }
4451
4452 leaf = path->nodes[0];
4453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4454 index = key.offset;
4455 btrfs_release_path(path);
4456 } else {
4457 ret = btrfs_del_root_ref(trans, objectid,
4458 root->root_key.objectid, dir_ino,
4459 &index, name, name_len);
4460 if (ret) {
4461 btrfs_abort_transaction(trans, ret);
4462 goto out;
4463 }
4464 }
4465
4466 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4467 if (ret) {
4468 btrfs_abort_transaction(trans, ret);
4469 goto out;
4470 }
4471
4472 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4473 inode_inc_iversion(dir);
4474 dir->i_mtime = dir->i_ctime = current_time(dir);
4475 ret = btrfs_update_inode_fallback(trans, root, dir);
4476 if (ret)
4477 btrfs_abort_transaction(trans, ret);
4478 out:
4479 btrfs_free_path(path);
4480 return ret;
4481 }
4482
4483 /*
4484 * Helper to check if the subvolume references other subvolumes or if it's
4485 * default.
4486 */
may_destroy_subvol(struct btrfs_root * root)4487 static noinline int may_destroy_subvol(struct btrfs_root *root)
4488 {
4489 struct btrfs_fs_info *fs_info = root->fs_info;
4490 struct btrfs_path *path;
4491 struct btrfs_dir_item *di;
4492 struct btrfs_key key;
4493 u64 dir_id;
4494 int ret;
4495
4496 path = btrfs_alloc_path();
4497 if (!path)
4498 return -ENOMEM;
4499
4500 /* Make sure this root isn't set as the default subvol */
4501 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4502 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4503 dir_id, "default", 7, 0);
4504 if (di && !IS_ERR(di)) {
4505 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4506 if (key.objectid == root->root_key.objectid) {
4507 ret = -EPERM;
4508 btrfs_err(fs_info,
4509 "deleting default subvolume %llu is not allowed",
4510 key.objectid);
4511 goto out;
4512 }
4513 btrfs_release_path(path);
4514 }
4515
4516 key.objectid = root->root_key.objectid;
4517 key.type = BTRFS_ROOT_REF_KEY;
4518 key.offset = (u64)-1;
4519
4520 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4521 if (ret < 0)
4522 goto out;
4523 BUG_ON(ret == 0);
4524
4525 ret = 0;
4526 if (path->slots[0] > 0) {
4527 path->slots[0]--;
4528 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4529 if (key.objectid == root->root_key.objectid &&
4530 key.type == BTRFS_ROOT_REF_KEY)
4531 ret = -ENOTEMPTY;
4532 }
4533 out:
4534 btrfs_free_path(path);
4535 return ret;
4536 }
4537
4538 /* Delete all dentries for inodes belonging to the root */
btrfs_prune_dentries(struct btrfs_root * root)4539 static void btrfs_prune_dentries(struct btrfs_root *root)
4540 {
4541 struct btrfs_fs_info *fs_info = root->fs_info;
4542 struct rb_node *node;
4543 struct rb_node *prev;
4544 struct btrfs_inode *entry;
4545 struct inode *inode;
4546 u64 objectid = 0;
4547
4548 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4549 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4550
4551 spin_lock(&root->inode_lock);
4552 again:
4553 node = root->inode_tree.rb_node;
4554 prev = NULL;
4555 while (node) {
4556 prev = node;
4557 entry = rb_entry(node, struct btrfs_inode, rb_node);
4558
4559 if (objectid < btrfs_ino(entry))
4560 node = node->rb_left;
4561 else if (objectid > btrfs_ino(entry))
4562 node = node->rb_right;
4563 else
4564 break;
4565 }
4566 if (!node) {
4567 while (prev) {
4568 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4569 if (objectid <= btrfs_ino(entry)) {
4570 node = prev;
4571 break;
4572 }
4573 prev = rb_next(prev);
4574 }
4575 }
4576 while (node) {
4577 entry = rb_entry(node, struct btrfs_inode, rb_node);
4578 objectid = btrfs_ino(entry) + 1;
4579 inode = igrab(&entry->vfs_inode);
4580 if (inode) {
4581 spin_unlock(&root->inode_lock);
4582 if (atomic_read(&inode->i_count) > 1)
4583 d_prune_aliases(inode);
4584 /*
4585 * btrfs_drop_inode will have it removed from the inode
4586 * cache when its usage count hits zero.
4587 */
4588 iput(inode);
4589 cond_resched();
4590 spin_lock(&root->inode_lock);
4591 goto again;
4592 }
4593
4594 if (cond_resched_lock(&root->inode_lock))
4595 goto again;
4596
4597 node = rb_next(node);
4598 }
4599 spin_unlock(&root->inode_lock);
4600 }
4601
btrfs_delete_subvolume(struct inode * dir,struct dentry * dentry)4602 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4603 {
4604 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4605 struct btrfs_root *root = BTRFS_I(dir)->root;
4606 struct inode *inode = d_inode(dentry);
4607 struct btrfs_root *dest = BTRFS_I(inode)->root;
4608 struct btrfs_trans_handle *trans;
4609 struct btrfs_block_rsv block_rsv;
4610 u64 root_flags;
4611 int ret;
4612 int err;
4613
4614 /*
4615 * Don't allow to delete a subvolume with send in progress. This is
4616 * inside the inode lock so the error handling that has to drop the bit
4617 * again is not run concurrently.
4618 */
4619 spin_lock(&dest->root_item_lock);
4620 if (dest->send_in_progress) {
4621 spin_unlock(&dest->root_item_lock);
4622 btrfs_warn(fs_info,
4623 "attempt to delete subvolume %llu during send",
4624 dest->root_key.objectid);
4625 return -EPERM;
4626 }
4627 root_flags = btrfs_root_flags(&dest->root_item);
4628 btrfs_set_root_flags(&dest->root_item,
4629 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4630 spin_unlock(&dest->root_item_lock);
4631
4632 down_write(&fs_info->subvol_sem);
4633
4634 err = may_destroy_subvol(dest);
4635 if (err)
4636 goto out_up_write;
4637
4638 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4639 /*
4640 * One for dir inode,
4641 * two for dir entries,
4642 * two for root ref/backref.
4643 */
4644 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4645 if (err)
4646 goto out_up_write;
4647
4648 trans = btrfs_start_transaction(root, 0);
4649 if (IS_ERR(trans)) {
4650 err = PTR_ERR(trans);
4651 goto out_release;
4652 }
4653 trans->block_rsv = &block_rsv;
4654 trans->bytes_reserved = block_rsv.size;
4655
4656 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4657
4658 ret = btrfs_unlink_subvol(trans, dir, dentry);
4659 if (ret) {
4660 err = ret;
4661 btrfs_abort_transaction(trans, ret);
4662 goto out_end_trans;
4663 }
4664
4665 btrfs_record_root_in_trans(trans, dest);
4666
4667 memset(&dest->root_item.drop_progress, 0,
4668 sizeof(dest->root_item.drop_progress));
4669 dest->root_item.drop_level = 0;
4670 btrfs_set_root_refs(&dest->root_item, 0);
4671
4672 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4673 ret = btrfs_insert_orphan_item(trans,
4674 fs_info->tree_root,
4675 dest->root_key.objectid);
4676 if (ret) {
4677 btrfs_abort_transaction(trans, ret);
4678 err = ret;
4679 goto out_end_trans;
4680 }
4681 }
4682
4683 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4684 BTRFS_UUID_KEY_SUBVOL,
4685 dest->root_key.objectid);
4686 if (ret && ret != -ENOENT) {
4687 btrfs_abort_transaction(trans, ret);
4688 err = ret;
4689 goto out_end_trans;
4690 }
4691 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4692 ret = btrfs_uuid_tree_remove(trans,
4693 dest->root_item.received_uuid,
4694 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4695 dest->root_key.objectid);
4696 if (ret && ret != -ENOENT) {
4697 btrfs_abort_transaction(trans, ret);
4698 err = ret;
4699 goto out_end_trans;
4700 }
4701 }
4702
4703 free_anon_bdev(dest->anon_dev);
4704 dest->anon_dev = 0;
4705 out_end_trans:
4706 trans->block_rsv = NULL;
4707 trans->bytes_reserved = 0;
4708 ret = btrfs_end_transaction(trans);
4709 if (ret && !err)
4710 err = ret;
4711 inode->i_flags |= S_DEAD;
4712 out_release:
4713 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4714 out_up_write:
4715 up_write(&fs_info->subvol_sem);
4716 if (err) {
4717 spin_lock(&dest->root_item_lock);
4718 root_flags = btrfs_root_flags(&dest->root_item);
4719 btrfs_set_root_flags(&dest->root_item,
4720 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4721 spin_unlock(&dest->root_item_lock);
4722 } else {
4723 d_invalidate(dentry);
4724 btrfs_prune_dentries(dest);
4725 ASSERT(dest->send_in_progress == 0);
4726
4727 /* the last ref */
4728 if (dest->ino_cache_inode) {
4729 iput(dest->ino_cache_inode);
4730 dest->ino_cache_inode = NULL;
4731 }
4732 }
4733
4734 return err;
4735 }
4736
btrfs_rmdir(struct inode * dir,struct dentry * dentry)4737 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4738 {
4739 struct inode *inode = d_inode(dentry);
4740 int err = 0;
4741 struct btrfs_root *root = BTRFS_I(dir)->root;
4742 struct btrfs_trans_handle *trans;
4743 u64 last_unlink_trans;
4744
4745 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4746 return -ENOTEMPTY;
4747 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4748 return btrfs_delete_subvolume(dir, dentry);
4749
4750 trans = __unlink_start_trans(dir);
4751 if (IS_ERR(trans))
4752 return PTR_ERR(trans);
4753
4754 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4755 err = btrfs_unlink_subvol(trans, dir, dentry);
4756 goto out;
4757 }
4758
4759 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4760 if (err)
4761 goto out;
4762
4763 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4764
4765 /* now the directory is empty */
4766 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4767 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4768 dentry->d_name.len);
4769 if (!err) {
4770 btrfs_i_size_write(BTRFS_I(inode), 0);
4771 /*
4772 * Propagate the last_unlink_trans value of the deleted dir to
4773 * its parent directory. This is to prevent an unrecoverable
4774 * log tree in the case we do something like this:
4775 * 1) create dir foo
4776 * 2) create snapshot under dir foo
4777 * 3) delete the snapshot
4778 * 4) rmdir foo
4779 * 5) mkdir foo
4780 * 6) fsync foo or some file inside foo
4781 */
4782 if (last_unlink_trans >= trans->transid)
4783 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4784 }
4785 out:
4786 btrfs_end_transaction(trans);
4787 btrfs_btree_balance_dirty(root->fs_info);
4788
4789 return err;
4790 }
4791
4792 /*
4793 * Return this if we need to call truncate_block for the last bit of the
4794 * truncate.
4795 */
4796 #define NEED_TRUNCATE_BLOCK 1
4797
4798 /*
4799 * this can truncate away extent items, csum items and directory items.
4800 * It starts at a high offset and removes keys until it can't find
4801 * any higher than new_size
4802 *
4803 * csum items that cross the new i_size are truncated to the new size
4804 * as well.
4805 *
4806 * min_type is the minimum key type to truncate down to. If set to 0, this
4807 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4808 */
btrfs_truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 new_size,u32 min_type)4809 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4810 struct btrfs_root *root,
4811 struct inode *inode,
4812 u64 new_size, u32 min_type)
4813 {
4814 struct btrfs_fs_info *fs_info = root->fs_info;
4815 struct btrfs_path *path;
4816 struct extent_buffer *leaf;
4817 struct btrfs_file_extent_item *fi;
4818 struct btrfs_key key;
4819 struct btrfs_key found_key;
4820 u64 extent_start = 0;
4821 u64 extent_num_bytes = 0;
4822 u64 extent_offset = 0;
4823 u64 item_end = 0;
4824 u64 last_size = new_size;
4825 u32 found_type = (u8)-1;
4826 int found_extent;
4827 int del_item;
4828 int pending_del_nr = 0;
4829 int pending_del_slot = 0;
4830 int extent_type = -1;
4831 int ret;
4832 u64 ino = btrfs_ino(BTRFS_I(inode));
4833 u64 bytes_deleted = 0;
4834 bool be_nice = false;
4835 bool should_throttle = false;
4836 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4837 struct extent_state *cached_state = NULL;
4838
4839 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4840
4841 /*
4842 * for non-free space inodes and ref cows, we want to back off from
4843 * time to time
4844 */
4845 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4846 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4847 be_nice = true;
4848
4849 path = btrfs_alloc_path();
4850 if (!path)
4851 return -ENOMEM;
4852 path->reada = READA_BACK;
4853
4854 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4855 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4856 &cached_state);
4857
4858 /*
4859 * We want to drop from the next block forward in case this new size is
4860 * not block aligned since we will be keeping the last block of the
4861 * extent just the way it is.
4862 */
4863 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4864 root == fs_info->tree_root)
4865 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4866 fs_info->sectorsize),
4867 (u64)-1, 0);
4868
4869 /*
4870 * This function is also used to drop the items in the log tree before
4871 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4872 * it is used to drop the logged items. So we shouldn't kill the delayed
4873 * items.
4874 */
4875 if (min_type == 0 && root == BTRFS_I(inode)->root)
4876 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4877
4878 key.objectid = ino;
4879 key.offset = (u64)-1;
4880 key.type = (u8)-1;
4881
4882 search_again:
4883 /*
4884 * with a 16K leaf size and 128MB extents, you can actually queue
4885 * up a huge file in a single leaf. Most of the time that
4886 * bytes_deleted is > 0, it will be huge by the time we get here
4887 */
4888 if (be_nice && bytes_deleted > SZ_32M &&
4889 btrfs_should_end_transaction(trans)) {
4890 ret = -EAGAIN;
4891 goto out;
4892 }
4893
4894 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4895 if (ret < 0)
4896 goto out;
4897
4898 if (ret > 0) {
4899 ret = 0;
4900 /* there are no items in the tree for us to truncate, we're
4901 * done
4902 */
4903 if (path->slots[0] == 0)
4904 goto out;
4905 path->slots[0]--;
4906 }
4907
4908 while (1) {
4909 fi = NULL;
4910 leaf = path->nodes[0];
4911 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4912 found_type = found_key.type;
4913
4914 if (found_key.objectid != ino)
4915 break;
4916
4917 if (found_type < min_type)
4918 break;
4919
4920 item_end = found_key.offset;
4921 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4922 fi = btrfs_item_ptr(leaf, path->slots[0],
4923 struct btrfs_file_extent_item);
4924 extent_type = btrfs_file_extent_type(leaf, fi);
4925 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4926 item_end +=
4927 btrfs_file_extent_num_bytes(leaf, fi);
4928
4929 trace_btrfs_truncate_show_fi_regular(
4930 BTRFS_I(inode), leaf, fi,
4931 found_key.offset);
4932 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4933 item_end += btrfs_file_extent_ram_bytes(leaf,
4934 fi);
4935
4936 trace_btrfs_truncate_show_fi_inline(
4937 BTRFS_I(inode), leaf, fi, path->slots[0],
4938 found_key.offset);
4939 }
4940 item_end--;
4941 }
4942 if (found_type > min_type) {
4943 del_item = 1;
4944 } else {
4945 if (item_end < new_size)
4946 break;
4947 if (found_key.offset >= new_size)
4948 del_item = 1;
4949 else
4950 del_item = 0;
4951 }
4952 found_extent = 0;
4953 /* FIXME, shrink the extent if the ref count is only 1 */
4954 if (found_type != BTRFS_EXTENT_DATA_KEY)
4955 goto delete;
4956
4957 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4958 u64 num_dec;
4959 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4960 if (!del_item) {
4961 u64 orig_num_bytes =
4962 btrfs_file_extent_num_bytes(leaf, fi);
4963 extent_num_bytes = ALIGN(new_size -
4964 found_key.offset,
4965 fs_info->sectorsize);
4966 btrfs_set_file_extent_num_bytes(leaf, fi,
4967 extent_num_bytes);
4968 num_dec = (orig_num_bytes -
4969 extent_num_bytes);
4970 if (test_bit(BTRFS_ROOT_REF_COWS,
4971 &root->state) &&
4972 extent_start != 0)
4973 inode_sub_bytes(inode, num_dec);
4974 btrfs_mark_buffer_dirty(leaf);
4975 } else {
4976 extent_num_bytes =
4977 btrfs_file_extent_disk_num_bytes(leaf,
4978 fi);
4979 extent_offset = found_key.offset -
4980 btrfs_file_extent_offset(leaf, fi);
4981
4982 /* FIXME blocksize != 4096 */
4983 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4984 if (extent_start != 0) {
4985 found_extent = 1;
4986 if (test_bit(BTRFS_ROOT_REF_COWS,
4987 &root->state))
4988 inode_sub_bytes(inode, num_dec);
4989 }
4990 }
4991 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4992 /*
4993 * we can't truncate inline items that have had
4994 * special encodings
4995 */
4996 if (!del_item &&
4997 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4998 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4999 btrfs_file_extent_compression(leaf, fi) == 0) {
5000 u32 size = (u32)(new_size - found_key.offset);
5001
5002 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
5003 size = btrfs_file_extent_calc_inline_size(size);
5004 btrfs_truncate_item(path, size, 1);
5005 } else if (!del_item) {
5006 /*
5007 * We have to bail so the last_size is set to
5008 * just before this extent.
5009 */
5010 ret = NEED_TRUNCATE_BLOCK;
5011 break;
5012 }
5013
5014 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
5015 inode_sub_bytes(inode, item_end + 1 - new_size);
5016 }
5017 delete:
5018 if (del_item)
5019 last_size = found_key.offset;
5020 else
5021 last_size = new_size;
5022 if (del_item) {
5023 if (!pending_del_nr) {
5024 /* no pending yet, add ourselves */
5025 pending_del_slot = path->slots[0];
5026 pending_del_nr = 1;
5027 } else if (pending_del_nr &&
5028 path->slots[0] + 1 == pending_del_slot) {
5029 /* hop on the pending chunk */
5030 pending_del_nr++;
5031 pending_del_slot = path->slots[0];
5032 } else {
5033 BUG();
5034 }
5035 } else {
5036 break;
5037 }
5038 should_throttle = false;
5039
5040 if (found_extent &&
5041 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5042 root == fs_info->tree_root)) {
5043 struct btrfs_ref ref = { 0 };
5044
5045 bytes_deleted += extent_num_bytes;
5046
5047 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
5048 extent_start, extent_num_bytes, 0);
5049 ref.real_root = root->root_key.objectid;
5050 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
5051 ino, extent_offset);
5052 ret = btrfs_free_extent(trans, &ref);
5053 if (ret) {
5054 btrfs_abort_transaction(trans, ret);
5055 break;
5056 }
5057 if (be_nice) {
5058 if (btrfs_should_throttle_delayed_refs(trans))
5059 should_throttle = true;
5060 }
5061 }
5062
5063 if (found_type == BTRFS_INODE_ITEM_KEY)
5064 break;
5065
5066 if (path->slots[0] == 0 ||
5067 path->slots[0] != pending_del_slot ||
5068 should_throttle) {
5069 if (pending_del_nr) {
5070 ret = btrfs_del_items(trans, root, path,
5071 pending_del_slot,
5072 pending_del_nr);
5073 if (ret) {
5074 btrfs_abort_transaction(trans, ret);
5075 break;
5076 }
5077 pending_del_nr = 0;
5078 }
5079 btrfs_release_path(path);
5080
5081 /*
5082 * We can generate a lot of delayed refs, so we need to
5083 * throttle every once and a while and make sure we're
5084 * adding enough space to keep up with the work we are
5085 * generating. Since we hold a transaction here we
5086 * can't flush, and we don't want to FLUSH_LIMIT because
5087 * we could have generated too many delayed refs to
5088 * actually allocate, so just bail if we're short and
5089 * let the normal reservation dance happen higher up.
5090 */
5091 if (should_throttle) {
5092 ret = btrfs_delayed_refs_rsv_refill(fs_info,
5093 BTRFS_RESERVE_NO_FLUSH);
5094 if (ret) {
5095 ret = -EAGAIN;
5096 break;
5097 }
5098 }
5099 goto search_again;
5100 } else {
5101 path->slots[0]--;
5102 }
5103 }
5104 out:
5105 if (ret >= 0 && pending_del_nr) {
5106 int err;
5107
5108 err = btrfs_del_items(trans, root, path, pending_del_slot,
5109 pending_del_nr);
5110 if (err) {
5111 btrfs_abort_transaction(trans, err);
5112 ret = err;
5113 }
5114 }
5115 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5116 ASSERT(last_size >= new_size);
5117 if (!ret && last_size > new_size)
5118 last_size = new_size;
5119 btrfs_ordered_update_i_size(inode, last_size, NULL);
5120 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
5121 (u64)-1, &cached_state);
5122 }
5123
5124 btrfs_free_path(path);
5125 return ret;
5126 }
5127
5128 /*
5129 * btrfs_truncate_block - read, zero a chunk and write a block
5130 * @inode - inode that we're zeroing
5131 * @from - the offset to start zeroing
5132 * @len - the length to zero, 0 to zero the entire range respective to the
5133 * offset
5134 * @front - zero up to the offset instead of from the offset on
5135 *
5136 * This will find the block for the "from" offset and cow the block and zero the
5137 * part we want to zero. This is used with truncate and hole punching.
5138 */
btrfs_truncate_block(struct inode * inode,loff_t from,loff_t len,int front)5139 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
5140 int front)
5141 {
5142 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5143 struct address_space *mapping = inode->i_mapping;
5144 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5145 struct btrfs_ordered_extent *ordered;
5146 struct extent_state *cached_state = NULL;
5147 struct extent_changeset *data_reserved = NULL;
5148 char *kaddr;
5149 bool only_release_metadata = false;
5150 u32 blocksize = fs_info->sectorsize;
5151 pgoff_t index = from >> PAGE_SHIFT;
5152 unsigned offset = from & (blocksize - 1);
5153 struct page *page;
5154 gfp_t mask = btrfs_alloc_write_mask(mapping);
5155 size_t write_bytes = blocksize;
5156 int ret = 0;
5157 u64 block_start;
5158 u64 block_end;
5159
5160 if (IS_ALIGNED(offset, blocksize) &&
5161 (!len || IS_ALIGNED(len, blocksize)))
5162 goto out;
5163
5164 block_start = round_down(from, blocksize);
5165 block_end = block_start + blocksize - 1;
5166
5167
5168 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
5169 blocksize);
5170 if (ret < 0) {
5171 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
5172 BTRFS_INODE_PREALLOC)) &&
5173 btrfs_check_can_nocow(BTRFS_I(inode), block_start,
5174 &write_bytes) > 0) {
5175 /* For nocow case, no need to reserve data space */
5176 only_release_metadata = true;
5177 } else {
5178 goto out;
5179 }
5180 }
5181 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
5182 if (ret < 0) {
5183 if (!only_release_metadata)
5184 btrfs_free_reserved_data_space(inode, data_reserved,
5185 block_start, blocksize);
5186 goto out;
5187 }
5188 again:
5189 page = find_or_create_page(mapping, index, mask);
5190 if (!page) {
5191 btrfs_delalloc_release_space(inode, data_reserved,
5192 block_start, blocksize, true);
5193 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
5194 ret = -ENOMEM;
5195 goto out;
5196 }
5197
5198 if (!PageUptodate(page)) {
5199 ret = btrfs_readpage(NULL, page);
5200 lock_page(page);
5201 if (page->mapping != mapping) {
5202 unlock_page(page);
5203 put_page(page);
5204 goto again;
5205 }
5206 if (!PageUptodate(page)) {
5207 ret = -EIO;
5208 goto out_unlock;
5209 }
5210 }
5211 wait_on_page_writeback(page);
5212
5213 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
5214 set_page_extent_mapped(page);
5215
5216 ordered = btrfs_lookup_ordered_extent(inode, block_start);
5217 if (ordered) {
5218 unlock_extent_cached(io_tree, block_start, block_end,
5219 &cached_state);
5220 unlock_page(page);
5221 put_page(page);
5222 btrfs_start_ordered_extent(inode, ordered, 1);
5223 btrfs_put_ordered_extent(ordered);
5224 goto again;
5225 }
5226
5227 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
5228 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5229 0, 0, &cached_state);
5230
5231 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5232 &cached_state);
5233 if (ret) {
5234 unlock_extent_cached(io_tree, block_start, block_end,
5235 &cached_state);
5236 goto out_unlock;
5237 }
5238
5239 if (offset != blocksize) {
5240 if (!len)
5241 len = blocksize - offset;
5242 kaddr = kmap(page);
5243 if (front)
5244 memset(kaddr + (block_start - page_offset(page)),
5245 0, offset);
5246 else
5247 memset(kaddr + (block_start - page_offset(page)) + offset,
5248 0, len);
5249 flush_dcache_page(page);
5250 kunmap(page);
5251 }
5252 ClearPageChecked(page);
5253 set_page_dirty(page);
5254 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
5255
5256 if (only_release_metadata)
5257 set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
5258 block_end, EXTENT_NORESERVE, NULL, NULL,
5259 GFP_NOFS);
5260
5261 out_unlock:
5262 if (ret) {
5263 if (only_release_metadata)
5264 btrfs_delalloc_release_metadata(BTRFS_I(inode),
5265 blocksize, true);
5266 else
5267 btrfs_delalloc_release_space(inode, data_reserved,
5268 block_start, blocksize, true);
5269 }
5270 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
5271 unlock_page(page);
5272 put_page(page);
5273 out:
5274 if (only_release_metadata)
5275 btrfs_end_write_no_snapshotting(BTRFS_I(inode)->root);
5276 extent_changeset_free(data_reserved);
5277 return ret;
5278 }
5279
maybe_insert_hole(struct btrfs_root * root,struct inode * inode,u64 offset,u64 len)5280 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
5281 u64 offset, u64 len)
5282 {
5283 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5284 struct btrfs_trans_handle *trans;
5285 int ret;
5286
5287 /*
5288 * Still need to make sure the inode looks like it's been updated so
5289 * that any holes get logged if we fsync.
5290 */
5291 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
5292 BTRFS_I(inode)->last_trans = fs_info->generation;
5293 BTRFS_I(inode)->last_sub_trans = root->log_transid;
5294 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
5295 return 0;
5296 }
5297
5298 /*
5299 * 1 - for the one we're dropping
5300 * 1 - for the one we're adding
5301 * 1 - for updating the inode.
5302 */
5303 trans = btrfs_start_transaction(root, 3);
5304 if (IS_ERR(trans))
5305 return PTR_ERR(trans);
5306
5307 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
5308 if (ret) {
5309 btrfs_abort_transaction(trans, ret);
5310 btrfs_end_transaction(trans);
5311 return ret;
5312 }
5313
5314 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
5315 offset, 0, 0, len, 0, len, 0, 0, 0);
5316 if (ret)
5317 btrfs_abort_transaction(trans, ret);
5318 else
5319 btrfs_update_inode(trans, root, inode);
5320 btrfs_end_transaction(trans);
5321 return ret;
5322 }
5323
5324 /*
5325 * This function puts in dummy file extents for the area we're creating a hole
5326 * for. So if we are truncating this file to a larger size we need to insert
5327 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5328 * the range between oldsize and size
5329 */
btrfs_cont_expand(struct inode * inode,loff_t oldsize,loff_t size)5330 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5331 {
5332 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5333 struct btrfs_root *root = BTRFS_I(inode)->root;
5334 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5335 struct extent_map *em = NULL;
5336 struct extent_state *cached_state = NULL;
5337 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5338 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5339 u64 block_end = ALIGN(size, fs_info->sectorsize);
5340 u64 last_byte;
5341 u64 cur_offset;
5342 u64 hole_size;
5343 int err = 0;
5344
5345 /*
5346 * If our size started in the middle of a block we need to zero out the
5347 * rest of the block before we expand the i_size, otherwise we could
5348 * expose stale data.
5349 */
5350 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5351 if (err)
5352 return err;
5353
5354 if (size <= hole_start)
5355 return 0;
5356
5357 btrfs_lock_and_flush_ordered_range(io_tree, BTRFS_I(inode), hole_start,
5358 block_end - 1, &cached_state);
5359 cur_offset = hole_start;
5360 while (1) {
5361 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5362 block_end - cur_offset, 0);
5363 if (IS_ERR(em)) {
5364 err = PTR_ERR(em);
5365 em = NULL;
5366 break;
5367 }
5368 last_byte = min(extent_map_end(em), block_end);
5369 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5370 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5371 struct extent_map *hole_em;
5372 hole_size = last_byte - cur_offset;
5373
5374 err = maybe_insert_hole(root, inode, cur_offset,
5375 hole_size);
5376 if (err)
5377 break;
5378 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5379 cur_offset + hole_size - 1, 0);
5380 hole_em = alloc_extent_map();
5381 if (!hole_em) {
5382 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5383 &BTRFS_I(inode)->runtime_flags);
5384 goto next;
5385 }
5386 hole_em->start = cur_offset;
5387 hole_em->len = hole_size;
5388 hole_em->orig_start = cur_offset;
5389
5390 hole_em->block_start = EXTENT_MAP_HOLE;
5391 hole_em->block_len = 0;
5392 hole_em->orig_block_len = 0;
5393 hole_em->ram_bytes = hole_size;
5394 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5395 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5396 hole_em->generation = fs_info->generation;
5397
5398 while (1) {
5399 write_lock(&em_tree->lock);
5400 err = add_extent_mapping(em_tree, hole_em, 1);
5401 write_unlock(&em_tree->lock);
5402 if (err != -EEXIST)
5403 break;
5404 btrfs_drop_extent_cache(BTRFS_I(inode),
5405 cur_offset,
5406 cur_offset +
5407 hole_size - 1, 0);
5408 }
5409 free_extent_map(hole_em);
5410 }
5411 next:
5412 free_extent_map(em);
5413 em = NULL;
5414 cur_offset = last_byte;
5415 if (cur_offset >= block_end)
5416 break;
5417 }
5418 free_extent_map(em);
5419 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5420 return err;
5421 }
5422
btrfs_setsize(struct inode * inode,struct iattr * attr)5423 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5424 {
5425 struct btrfs_root *root = BTRFS_I(inode)->root;
5426 struct btrfs_trans_handle *trans;
5427 loff_t oldsize = i_size_read(inode);
5428 loff_t newsize = attr->ia_size;
5429 int mask = attr->ia_valid;
5430 int ret;
5431
5432 /*
5433 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5434 * special case where we need to update the times despite not having
5435 * these flags set. For all other operations the VFS set these flags
5436 * explicitly if it wants a timestamp update.
5437 */
5438 if (newsize != oldsize) {
5439 inode_inc_iversion(inode);
5440 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5441 inode->i_ctime = inode->i_mtime =
5442 current_time(inode);
5443 }
5444
5445 if (newsize > oldsize) {
5446 /*
5447 * Don't do an expanding truncate while snapshotting is ongoing.
5448 * This is to ensure the snapshot captures a fully consistent
5449 * state of this file - if the snapshot captures this expanding
5450 * truncation, it must capture all writes that happened before
5451 * this truncation.
5452 */
5453 btrfs_wait_for_snapshot_creation(root);
5454 ret = btrfs_cont_expand(inode, oldsize, newsize);
5455 if (ret) {
5456 btrfs_end_write_no_snapshotting(root);
5457 return ret;
5458 }
5459
5460 trans = btrfs_start_transaction(root, 1);
5461 if (IS_ERR(trans)) {
5462 btrfs_end_write_no_snapshotting(root);
5463 return PTR_ERR(trans);
5464 }
5465
5466 i_size_write(inode, newsize);
5467 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5468 pagecache_isize_extended(inode, oldsize, newsize);
5469 ret = btrfs_update_inode(trans, root, inode);
5470 btrfs_end_write_no_snapshotting(root);
5471 btrfs_end_transaction(trans);
5472 } else {
5473
5474 /*
5475 * We're truncating a file that used to have good data down to
5476 * zero. Make sure it gets into the ordered flush list so that
5477 * any new writes get down to disk quickly.
5478 */
5479 if (newsize == 0)
5480 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5481 &BTRFS_I(inode)->runtime_flags);
5482
5483 truncate_setsize(inode, newsize);
5484
5485 /* Disable nonlocked read DIO to avoid the endless truncate */
5486 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5487 inode_dio_wait(inode);
5488 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5489
5490 ret = btrfs_truncate(inode, newsize == oldsize);
5491 if (ret && inode->i_nlink) {
5492 int err;
5493
5494 /*
5495 * Truncate failed, so fix up the in-memory size. We
5496 * adjusted disk_i_size down as we removed extents, so
5497 * wait for disk_i_size to be stable and then update the
5498 * in-memory size to match.
5499 */
5500 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5501 if (err)
5502 return err;
5503 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5504 }
5505 }
5506
5507 return ret;
5508 }
5509
btrfs_setattr(struct dentry * dentry,struct iattr * attr)5510 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5511 {
5512 struct inode *inode = d_inode(dentry);
5513 struct btrfs_root *root = BTRFS_I(inode)->root;
5514 int err;
5515
5516 if (btrfs_root_readonly(root))
5517 return -EROFS;
5518
5519 err = setattr_prepare(dentry, attr);
5520 if (err)
5521 return err;
5522
5523 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5524 err = btrfs_setsize(inode, attr);
5525 if (err)
5526 return err;
5527 }
5528
5529 if (attr->ia_valid) {
5530 setattr_copy(inode, attr);
5531 inode_inc_iversion(inode);
5532 err = btrfs_dirty_inode(inode);
5533
5534 if (!err && attr->ia_valid & ATTR_MODE)
5535 err = posix_acl_chmod(inode, inode->i_mode);
5536 }
5537
5538 return err;
5539 }
5540
5541 /*
5542 * While truncating the inode pages during eviction, we get the VFS calling
5543 * btrfs_invalidatepage() against each page of the inode. This is slow because
5544 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5545 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5546 * extent_state structures over and over, wasting lots of time.
5547 *
5548 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5549 * those expensive operations on a per page basis and do only the ordered io
5550 * finishing, while we release here the extent_map and extent_state structures,
5551 * without the excessive merging and splitting.
5552 */
evict_inode_truncate_pages(struct inode * inode)5553 static void evict_inode_truncate_pages(struct inode *inode)
5554 {
5555 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5556 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5557 struct rb_node *node;
5558
5559 ASSERT(inode->i_state & I_FREEING);
5560 truncate_inode_pages_final(&inode->i_data);
5561
5562 write_lock(&map_tree->lock);
5563 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5564 struct extent_map *em;
5565
5566 node = rb_first_cached(&map_tree->map);
5567 em = rb_entry(node, struct extent_map, rb_node);
5568 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5569 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5570 remove_extent_mapping(map_tree, em);
5571 free_extent_map(em);
5572 if (need_resched()) {
5573 write_unlock(&map_tree->lock);
5574 cond_resched();
5575 write_lock(&map_tree->lock);
5576 }
5577 }
5578 write_unlock(&map_tree->lock);
5579
5580 /*
5581 * Keep looping until we have no more ranges in the io tree.
5582 * We can have ongoing bios started by readpages (called from readahead)
5583 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5584 * still in progress (unlocked the pages in the bio but did not yet
5585 * unlocked the ranges in the io tree). Therefore this means some
5586 * ranges can still be locked and eviction started because before
5587 * submitting those bios, which are executed by a separate task (work
5588 * queue kthread), inode references (inode->i_count) were not taken
5589 * (which would be dropped in the end io callback of each bio).
5590 * Therefore here we effectively end up waiting for those bios and
5591 * anyone else holding locked ranges without having bumped the inode's
5592 * reference count - if we don't do it, when they access the inode's
5593 * io_tree to unlock a range it may be too late, leading to an
5594 * use-after-free issue.
5595 */
5596 spin_lock(&io_tree->lock);
5597 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5598 struct extent_state *state;
5599 struct extent_state *cached_state = NULL;
5600 u64 start;
5601 u64 end;
5602 unsigned state_flags;
5603
5604 node = rb_first(&io_tree->state);
5605 state = rb_entry(node, struct extent_state, rb_node);
5606 start = state->start;
5607 end = state->end;
5608 state_flags = state->state;
5609 spin_unlock(&io_tree->lock);
5610
5611 lock_extent_bits(io_tree, start, end, &cached_state);
5612
5613 /*
5614 * If still has DELALLOC flag, the extent didn't reach disk,
5615 * and its reserved space won't be freed by delayed_ref.
5616 * So we need to free its reserved space here.
5617 * (Refer to comment in btrfs_invalidatepage, case 2)
5618 *
5619 * Note, end is the bytenr of last byte, so we need + 1 here.
5620 */
5621 if (state_flags & EXTENT_DELALLOC)
5622 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5623
5624 clear_extent_bit(io_tree, start, end,
5625 EXTENT_LOCKED | EXTENT_DELALLOC |
5626 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5627 &cached_state);
5628
5629 cond_resched();
5630 spin_lock(&io_tree->lock);
5631 }
5632 spin_unlock(&io_tree->lock);
5633 }
5634
evict_refill_and_join(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5635 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5636 struct btrfs_block_rsv *rsv)
5637 {
5638 struct btrfs_fs_info *fs_info = root->fs_info;
5639 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5640 struct btrfs_trans_handle *trans;
5641 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5642 int ret;
5643
5644 /*
5645 * Eviction should be taking place at some place safe because of our
5646 * delayed iputs. However the normal flushing code will run delayed
5647 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5648 *
5649 * We reserve the delayed_refs_extra here again because we can't use
5650 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5651 * above. We reserve our extra bit here because we generate a ton of
5652 * delayed refs activity by truncating.
5653 *
5654 * If we cannot make our reservation we'll attempt to steal from the
5655 * global reserve, because we really want to be able to free up space.
5656 */
5657 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5658 BTRFS_RESERVE_FLUSH_EVICT);
5659 if (ret) {
5660 /*
5661 * Try to steal from the global reserve if there is space for
5662 * it.
5663 */
5664 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5665 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5666 btrfs_warn(fs_info,
5667 "could not allocate space for delete; will truncate on mount");
5668 return ERR_PTR(-ENOSPC);
5669 }
5670 delayed_refs_extra = 0;
5671 }
5672
5673 trans = btrfs_join_transaction(root);
5674 if (IS_ERR(trans))
5675 return trans;
5676
5677 if (delayed_refs_extra) {
5678 trans->block_rsv = &fs_info->trans_block_rsv;
5679 trans->bytes_reserved = delayed_refs_extra;
5680 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5681 delayed_refs_extra, 1);
5682 }
5683 return trans;
5684 }
5685
btrfs_evict_inode(struct inode * inode)5686 void btrfs_evict_inode(struct inode *inode)
5687 {
5688 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5689 struct btrfs_trans_handle *trans;
5690 struct btrfs_root *root = BTRFS_I(inode)->root;
5691 struct btrfs_block_rsv *rsv;
5692 int ret;
5693
5694 trace_btrfs_inode_evict(inode);
5695
5696 if (!root) {
5697 clear_inode(inode);
5698 return;
5699 }
5700
5701 evict_inode_truncate_pages(inode);
5702
5703 if (inode->i_nlink &&
5704 ((btrfs_root_refs(&root->root_item) != 0 &&
5705 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5706 btrfs_is_free_space_inode(BTRFS_I(inode))))
5707 goto no_delete;
5708
5709 if (is_bad_inode(inode))
5710 goto no_delete;
5711
5712 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5713
5714 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5715 goto no_delete;
5716
5717 if (inode->i_nlink > 0) {
5718 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5719 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5720 goto no_delete;
5721 }
5722
5723 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5724 if (ret)
5725 goto no_delete;
5726
5727 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5728 if (!rsv)
5729 goto no_delete;
5730 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5731 rsv->failfast = 1;
5732
5733 btrfs_i_size_write(BTRFS_I(inode), 0);
5734
5735 while (1) {
5736 trans = evict_refill_and_join(root, rsv);
5737 if (IS_ERR(trans))
5738 goto free_rsv;
5739
5740 trans->block_rsv = rsv;
5741
5742 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5743 trans->block_rsv = &fs_info->trans_block_rsv;
5744 btrfs_end_transaction(trans);
5745 btrfs_btree_balance_dirty(fs_info);
5746 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5747 goto free_rsv;
5748 else if (!ret)
5749 break;
5750 }
5751
5752 /*
5753 * Errors here aren't a big deal, it just means we leave orphan items in
5754 * the tree. They will be cleaned up on the next mount. If the inode
5755 * number gets reused, cleanup deletes the orphan item without doing
5756 * anything, and unlink reuses the existing orphan item.
5757 *
5758 * If it turns out that we are dropping too many of these, we might want
5759 * to add a mechanism for retrying these after a commit.
5760 */
5761 trans = evict_refill_and_join(root, rsv);
5762 if (!IS_ERR(trans)) {
5763 trans->block_rsv = rsv;
5764 btrfs_orphan_del(trans, BTRFS_I(inode));
5765 trans->block_rsv = &fs_info->trans_block_rsv;
5766 btrfs_end_transaction(trans);
5767 }
5768
5769 if (!(root == fs_info->tree_root ||
5770 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5771 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5772
5773 free_rsv:
5774 btrfs_free_block_rsv(fs_info, rsv);
5775 no_delete:
5776 /*
5777 * If we didn't successfully delete, the orphan item will still be in
5778 * the tree and we'll retry on the next mount. Again, we might also want
5779 * to retry these periodically in the future.
5780 */
5781 btrfs_remove_delayed_node(BTRFS_I(inode));
5782 clear_inode(inode);
5783 }
5784
5785 /*
5786 * Return the key found in the dir entry in the location pointer, fill @type
5787 * with BTRFS_FT_*, and return 0.
5788 *
5789 * If no dir entries were found, returns -ENOENT.
5790 * If found a corrupted location in dir entry, returns -EUCLEAN.
5791 */
btrfs_inode_by_name(struct inode * dir,struct dentry * dentry,struct btrfs_key * location,u8 * type)5792 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5793 struct btrfs_key *location, u8 *type)
5794 {
5795 const char *name = dentry->d_name.name;
5796 int namelen = dentry->d_name.len;
5797 struct btrfs_dir_item *di;
5798 struct btrfs_path *path;
5799 struct btrfs_root *root = BTRFS_I(dir)->root;
5800 int ret = 0;
5801
5802 path = btrfs_alloc_path();
5803 if (!path)
5804 return -ENOMEM;
5805
5806 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5807 name, namelen, 0);
5808 if (IS_ERR_OR_NULL(di)) {
5809 ret = di ? PTR_ERR(di) : -ENOENT;
5810 goto out;
5811 }
5812
5813 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5814 if (location->type != BTRFS_INODE_ITEM_KEY &&
5815 location->type != BTRFS_ROOT_ITEM_KEY) {
5816 ret = -EUCLEAN;
5817 btrfs_warn(root->fs_info,
5818 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5819 __func__, name, btrfs_ino(BTRFS_I(dir)),
5820 location->objectid, location->type, location->offset);
5821 }
5822 if (!ret)
5823 *type = btrfs_dir_type(path->nodes[0], di);
5824 out:
5825 btrfs_free_path(path);
5826 return ret;
5827 }
5828
5829 /*
5830 * when we hit a tree root in a directory, the btrfs part of the inode
5831 * needs to be changed to reflect the root directory of the tree root. This
5832 * is kind of like crossing a mount point.
5833 */
fixup_tree_root_location(struct btrfs_fs_info * fs_info,struct inode * dir,struct dentry * dentry,struct btrfs_key * location,struct btrfs_root ** sub_root)5834 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5835 struct inode *dir,
5836 struct dentry *dentry,
5837 struct btrfs_key *location,
5838 struct btrfs_root **sub_root)
5839 {
5840 struct btrfs_path *path;
5841 struct btrfs_root *new_root;
5842 struct btrfs_root_ref *ref;
5843 struct extent_buffer *leaf;
5844 struct btrfs_key key;
5845 int ret;
5846 int err = 0;
5847
5848 path = btrfs_alloc_path();
5849 if (!path) {
5850 err = -ENOMEM;
5851 goto out;
5852 }
5853
5854 err = -ENOENT;
5855 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5856 key.type = BTRFS_ROOT_REF_KEY;
5857 key.offset = location->objectid;
5858
5859 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5860 if (ret) {
5861 if (ret < 0)
5862 err = ret;
5863 goto out;
5864 }
5865
5866 leaf = path->nodes[0];
5867 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5868 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5869 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5870 goto out;
5871
5872 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5873 (unsigned long)(ref + 1),
5874 dentry->d_name.len);
5875 if (ret)
5876 goto out;
5877
5878 btrfs_release_path(path);
5879
5880 new_root = btrfs_read_fs_root_no_name(fs_info, location);
5881 if (IS_ERR(new_root)) {
5882 err = PTR_ERR(new_root);
5883 goto out;
5884 }
5885
5886 *sub_root = new_root;
5887 location->objectid = btrfs_root_dirid(&new_root->root_item);
5888 location->type = BTRFS_INODE_ITEM_KEY;
5889 location->offset = 0;
5890 err = 0;
5891 out:
5892 btrfs_free_path(path);
5893 return err;
5894 }
5895
inode_tree_add(struct inode * inode)5896 static void inode_tree_add(struct inode *inode)
5897 {
5898 struct btrfs_root *root = BTRFS_I(inode)->root;
5899 struct btrfs_inode *entry;
5900 struct rb_node **p;
5901 struct rb_node *parent;
5902 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5903 u64 ino = btrfs_ino(BTRFS_I(inode));
5904
5905 if (inode_unhashed(inode))
5906 return;
5907 parent = NULL;
5908 spin_lock(&root->inode_lock);
5909 p = &root->inode_tree.rb_node;
5910 while (*p) {
5911 parent = *p;
5912 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5913
5914 if (ino < btrfs_ino(entry))
5915 p = &parent->rb_left;
5916 else if (ino > btrfs_ino(entry))
5917 p = &parent->rb_right;
5918 else {
5919 WARN_ON(!(entry->vfs_inode.i_state &
5920 (I_WILL_FREE | I_FREEING)));
5921 rb_replace_node(parent, new, &root->inode_tree);
5922 RB_CLEAR_NODE(parent);
5923 spin_unlock(&root->inode_lock);
5924 return;
5925 }
5926 }
5927 rb_link_node(new, parent, p);
5928 rb_insert_color(new, &root->inode_tree);
5929 spin_unlock(&root->inode_lock);
5930 }
5931
inode_tree_del(struct inode * inode)5932 static void inode_tree_del(struct inode *inode)
5933 {
5934 struct btrfs_root *root = BTRFS_I(inode)->root;
5935 int empty = 0;
5936
5937 spin_lock(&root->inode_lock);
5938 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5939 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5940 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5941 empty = RB_EMPTY_ROOT(&root->inode_tree);
5942 }
5943 spin_unlock(&root->inode_lock);
5944
5945 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5946 spin_lock(&root->inode_lock);
5947 empty = RB_EMPTY_ROOT(&root->inode_tree);
5948 spin_unlock(&root->inode_lock);
5949 if (empty)
5950 btrfs_add_dead_root(root);
5951 }
5952 }
5953
5954
btrfs_init_locked_inode(struct inode * inode,void * p)5955 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5956 {
5957 struct btrfs_iget_args *args = p;
5958 inode->i_ino = args->location->objectid;
5959 memcpy(&BTRFS_I(inode)->location, args->location,
5960 sizeof(*args->location));
5961 BTRFS_I(inode)->root = args->root;
5962 return 0;
5963 }
5964
btrfs_find_actor(struct inode * inode,void * opaque)5965 static int btrfs_find_actor(struct inode *inode, void *opaque)
5966 {
5967 struct btrfs_iget_args *args = opaque;
5968 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5969 args->root == BTRFS_I(inode)->root;
5970 }
5971
btrfs_iget_locked(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root)5972 static struct inode *btrfs_iget_locked(struct super_block *s,
5973 struct btrfs_key *location,
5974 struct btrfs_root *root)
5975 {
5976 struct inode *inode;
5977 struct btrfs_iget_args args;
5978 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5979
5980 args.location = location;
5981 args.root = root;
5982
5983 inode = iget5_locked(s, hashval, btrfs_find_actor,
5984 btrfs_init_locked_inode,
5985 (void *)&args);
5986 return inode;
5987 }
5988
5989 /* Get an inode object given its location and corresponding root.
5990 * Returns in *is_new if the inode was read from disk
5991 */
btrfs_iget_path(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new,struct btrfs_path * path)5992 struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5993 struct btrfs_root *root, int *new,
5994 struct btrfs_path *path)
5995 {
5996 struct inode *inode;
5997
5998 inode = btrfs_iget_locked(s, location, root);
5999 if (!inode)
6000 return ERR_PTR(-ENOMEM);
6001
6002 if (inode->i_state & I_NEW) {
6003 int ret;
6004
6005 ret = btrfs_read_locked_inode(inode, path);
6006 if (!ret) {
6007 inode_tree_add(inode);
6008 unlock_new_inode(inode);
6009 if (new)
6010 *new = 1;
6011 } else {
6012 iget_failed(inode);
6013 /*
6014 * ret > 0 can come from btrfs_search_slot called by
6015 * btrfs_read_locked_inode, this means the inode item
6016 * was not found.
6017 */
6018 if (ret > 0)
6019 ret = -ENOENT;
6020 inode = ERR_PTR(ret);
6021 }
6022 }
6023
6024 return inode;
6025 }
6026
btrfs_iget(struct super_block * s,struct btrfs_key * location,struct btrfs_root * root,int * new)6027 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
6028 struct btrfs_root *root, int *new)
6029 {
6030 return btrfs_iget_path(s, location, root, new, NULL);
6031 }
6032
new_simple_dir(struct super_block * s,struct btrfs_key * key,struct btrfs_root * root)6033 static struct inode *new_simple_dir(struct super_block *s,
6034 struct btrfs_key *key,
6035 struct btrfs_root *root)
6036 {
6037 struct inode *inode = new_inode(s);
6038
6039 if (!inode)
6040 return ERR_PTR(-ENOMEM);
6041
6042 BTRFS_I(inode)->root = root;
6043 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
6044 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
6045
6046 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
6047 inode->i_op = &btrfs_dir_ro_inode_operations;
6048 inode->i_opflags &= ~IOP_XATTR;
6049 inode->i_fop = &simple_dir_operations;
6050 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
6051 inode->i_mtime = current_time(inode);
6052 inode->i_atime = inode->i_mtime;
6053 inode->i_ctime = inode->i_mtime;
6054 BTRFS_I(inode)->i_otime = inode->i_mtime;
6055
6056 return inode;
6057 }
6058
btrfs_inode_type(struct inode * inode)6059 static inline u8 btrfs_inode_type(struct inode *inode)
6060 {
6061 /*
6062 * Compile-time asserts that generic FT_* types still match
6063 * BTRFS_FT_* types
6064 */
6065 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
6066 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
6067 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
6068 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
6069 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
6070 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
6071 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
6072 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
6073
6074 return fs_umode_to_ftype(inode->i_mode);
6075 }
6076
btrfs_lookup_dentry(struct inode * dir,struct dentry * dentry)6077 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
6078 {
6079 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6080 struct inode *inode;
6081 struct btrfs_root *root = BTRFS_I(dir)->root;
6082 struct btrfs_root *sub_root = root;
6083 struct btrfs_key location;
6084 u8 di_type = 0;
6085 int index;
6086 int ret = 0;
6087
6088 if (dentry->d_name.len > BTRFS_NAME_LEN)
6089 return ERR_PTR(-ENAMETOOLONG);
6090
6091 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
6092 if (ret < 0)
6093 return ERR_PTR(ret);
6094
6095 if (location.type == BTRFS_INODE_ITEM_KEY) {
6096 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
6097 if (IS_ERR(inode))
6098 return inode;
6099
6100 /* Do extra check against inode mode with di_type */
6101 if (btrfs_inode_type(inode) != di_type) {
6102 btrfs_crit(fs_info,
6103 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
6104 inode->i_mode, btrfs_inode_type(inode),
6105 di_type);
6106 iput(inode);
6107 return ERR_PTR(-EUCLEAN);
6108 }
6109 return inode;
6110 }
6111
6112 index = srcu_read_lock(&fs_info->subvol_srcu);
6113 ret = fixup_tree_root_location(fs_info, dir, dentry,
6114 &location, &sub_root);
6115 if (ret < 0) {
6116 if (ret != -ENOENT)
6117 inode = ERR_PTR(ret);
6118 else
6119 inode = new_simple_dir(dir->i_sb, &location, sub_root);
6120 } else {
6121 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
6122 }
6123 srcu_read_unlock(&fs_info->subvol_srcu, index);
6124
6125 if (!IS_ERR(inode) && root != sub_root) {
6126 down_read(&fs_info->cleanup_work_sem);
6127 if (!sb_rdonly(inode->i_sb))
6128 ret = btrfs_orphan_cleanup(sub_root);
6129 up_read(&fs_info->cleanup_work_sem);
6130 if (ret) {
6131 iput(inode);
6132 inode = ERR_PTR(ret);
6133 }
6134 }
6135
6136 return inode;
6137 }
6138
btrfs_dentry_delete(const struct dentry * dentry)6139 static int btrfs_dentry_delete(const struct dentry *dentry)
6140 {
6141 struct btrfs_root *root;
6142 struct inode *inode = d_inode(dentry);
6143
6144 if (!inode && !IS_ROOT(dentry))
6145 inode = d_inode(dentry->d_parent);
6146
6147 if (inode) {
6148 root = BTRFS_I(inode)->root;
6149 if (btrfs_root_refs(&root->root_item) == 0)
6150 return 1;
6151
6152 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6153 return 1;
6154 }
6155 return 0;
6156 }
6157
btrfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)6158 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
6159 unsigned int flags)
6160 {
6161 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
6162
6163 if (inode == ERR_PTR(-ENOENT))
6164 inode = NULL;
6165 return d_splice_alias(inode, dentry);
6166 }
6167
6168 /*
6169 * All this infrastructure exists because dir_emit can fault, and we are holding
6170 * the tree lock when doing readdir. For now just allocate a buffer and copy
6171 * our information into that, and then dir_emit from the buffer. This is
6172 * similar to what NFS does, only we don't keep the buffer around in pagecache
6173 * because I'm afraid I'll mess that up. Long term we need to make filldir do
6174 * copy_to_user_inatomic so we don't have to worry about page faulting under the
6175 * tree lock.
6176 */
btrfs_opendir(struct inode * inode,struct file * file)6177 static int btrfs_opendir(struct inode *inode, struct file *file)
6178 {
6179 struct btrfs_file_private *private;
6180
6181 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
6182 if (!private)
6183 return -ENOMEM;
6184 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
6185 if (!private->filldir_buf) {
6186 kfree(private);
6187 return -ENOMEM;
6188 }
6189 file->private_data = private;
6190 return 0;
6191 }
6192
6193 struct dir_entry {
6194 u64 ino;
6195 u64 offset;
6196 unsigned type;
6197 int name_len;
6198 };
6199
btrfs_filldir(void * addr,int entries,struct dir_context * ctx)6200 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6201 {
6202 while (entries--) {
6203 struct dir_entry *entry = addr;
6204 char *name = (char *)(entry + 1);
6205
6206 ctx->pos = get_unaligned(&entry->offset);
6207 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6208 get_unaligned(&entry->ino),
6209 get_unaligned(&entry->type)))
6210 return 1;
6211 addr += sizeof(struct dir_entry) +
6212 get_unaligned(&entry->name_len);
6213 ctx->pos++;
6214 }
6215 return 0;
6216 }
6217
btrfs_real_readdir(struct file * file,struct dir_context * ctx)6218 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6219 {
6220 struct inode *inode = file_inode(file);
6221 struct btrfs_root *root = BTRFS_I(inode)->root;
6222 struct btrfs_file_private *private = file->private_data;
6223 struct btrfs_dir_item *di;
6224 struct btrfs_key key;
6225 struct btrfs_key found_key;
6226 struct btrfs_path *path;
6227 void *addr;
6228 struct list_head ins_list;
6229 struct list_head del_list;
6230 int ret;
6231 struct extent_buffer *leaf;
6232 int slot;
6233 char *name_ptr;
6234 int name_len;
6235 int entries = 0;
6236 int total_len = 0;
6237 bool put = false;
6238 struct btrfs_key location;
6239
6240 if (!dir_emit_dots(file, ctx))
6241 return 0;
6242
6243 path = btrfs_alloc_path();
6244 if (!path)
6245 return -ENOMEM;
6246
6247 addr = private->filldir_buf;
6248 path->reada = READA_FORWARD;
6249
6250 INIT_LIST_HEAD(&ins_list);
6251 INIT_LIST_HEAD(&del_list);
6252 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6253
6254 again:
6255 key.type = BTRFS_DIR_INDEX_KEY;
6256 key.offset = ctx->pos;
6257 key.objectid = btrfs_ino(BTRFS_I(inode));
6258
6259 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6260 if (ret < 0)
6261 goto err;
6262
6263 while (1) {
6264 struct dir_entry *entry;
6265
6266 leaf = path->nodes[0];
6267 slot = path->slots[0];
6268 if (slot >= btrfs_header_nritems(leaf)) {
6269 ret = btrfs_next_leaf(root, path);
6270 if (ret < 0)
6271 goto err;
6272 else if (ret > 0)
6273 break;
6274 continue;
6275 }
6276
6277 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6278
6279 if (found_key.objectid != key.objectid)
6280 break;
6281 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6282 break;
6283 if (found_key.offset < ctx->pos)
6284 goto next;
6285 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6286 goto next;
6287 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6288 name_len = btrfs_dir_name_len(leaf, di);
6289 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6290 PAGE_SIZE) {
6291 btrfs_release_path(path);
6292 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6293 if (ret)
6294 goto nopos;
6295 addr = private->filldir_buf;
6296 entries = 0;
6297 total_len = 0;
6298 goto again;
6299 }
6300
6301 entry = addr;
6302 put_unaligned(name_len, &entry->name_len);
6303 name_ptr = (char *)(entry + 1);
6304 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6305 name_len);
6306 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6307 &entry->type);
6308 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6309 put_unaligned(location.objectid, &entry->ino);
6310 put_unaligned(found_key.offset, &entry->offset);
6311 entries++;
6312 addr += sizeof(struct dir_entry) + name_len;
6313 total_len += sizeof(struct dir_entry) + name_len;
6314 next:
6315 path->slots[0]++;
6316 }
6317 btrfs_release_path(path);
6318
6319 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6320 if (ret)
6321 goto nopos;
6322
6323 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6324 if (ret)
6325 goto nopos;
6326
6327 /*
6328 * Stop new entries from being returned after we return the last
6329 * entry.
6330 *
6331 * New directory entries are assigned a strictly increasing
6332 * offset. This means that new entries created during readdir
6333 * are *guaranteed* to be seen in the future by that readdir.
6334 * This has broken buggy programs which operate on names as
6335 * they're returned by readdir. Until we re-use freed offsets
6336 * we have this hack to stop new entries from being returned
6337 * under the assumption that they'll never reach this huge
6338 * offset.
6339 *
6340 * This is being careful not to overflow 32bit loff_t unless the
6341 * last entry requires it because doing so has broken 32bit apps
6342 * in the past.
6343 */
6344 if (ctx->pos >= INT_MAX)
6345 ctx->pos = LLONG_MAX;
6346 else
6347 ctx->pos = INT_MAX;
6348 nopos:
6349 ret = 0;
6350 err:
6351 if (put)
6352 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6353 btrfs_free_path(path);
6354 return ret;
6355 }
6356
6357 /*
6358 * This is somewhat expensive, updating the tree every time the
6359 * inode changes. But, it is most likely to find the inode in cache.
6360 * FIXME, needs more benchmarking...there are no reasons other than performance
6361 * to keep or drop this code.
6362 */
btrfs_dirty_inode(struct inode * inode)6363 static int btrfs_dirty_inode(struct inode *inode)
6364 {
6365 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6366 struct btrfs_root *root = BTRFS_I(inode)->root;
6367 struct btrfs_trans_handle *trans;
6368 int ret;
6369
6370 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6371 return 0;
6372
6373 trans = btrfs_join_transaction(root);
6374 if (IS_ERR(trans))
6375 return PTR_ERR(trans);
6376
6377 ret = btrfs_update_inode(trans, root, inode);
6378 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6379 /* whoops, lets try again with the full transaction */
6380 btrfs_end_transaction(trans);
6381 trans = btrfs_start_transaction(root, 1);
6382 if (IS_ERR(trans))
6383 return PTR_ERR(trans);
6384
6385 ret = btrfs_update_inode(trans, root, inode);
6386 }
6387 btrfs_end_transaction(trans);
6388 if (BTRFS_I(inode)->delayed_node)
6389 btrfs_balance_delayed_items(fs_info);
6390
6391 return ret;
6392 }
6393
6394 /*
6395 * This is a copy of file_update_time. We need this so we can return error on
6396 * ENOSPC for updating the inode in the case of file write and mmap writes.
6397 */
btrfs_update_time(struct inode * inode,struct timespec64 * now,int flags)6398 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6399 int flags)
6400 {
6401 struct btrfs_root *root = BTRFS_I(inode)->root;
6402 bool dirty = flags & ~S_VERSION;
6403
6404 if (btrfs_root_readonly(root))
6405 return -EROFS;
6406
6407 if (flags & S_VERSION)
6408 dirty |= inode_maybe_inc_iversion(inode, dirty);
6409 if (flags & S_CTIME)
6410 inode->i_ctime = *now;
6411 if (flags & S_MTIME)
6412 inode->i_mtime = *now;
6413 if (flags & S_ATIME)
6414 inode->i_atime = *now;
6415 return dirty ? btrfs_dirty_inode(inode) : 0;
6416 }
6417
6418 /*
6419 * find the highest existing sequence number in a directory
6420 * and then set the in-memory index_cnt variable to reflect
6421 * free sequence numbers
6422 */
btrfs_set_inode_index_count(struct btrfs_inode * inode)6423 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6424 {
6425 struct btrfs_root *root = inode->root;
6426 struct btrfs_key key, found_key;
6427 struct btrfs_path *path;
6428 struct extent_buffer *leaf;
6429 int ret;
6430
6431 key.objectid = btrfs_ino(inode);
6432 key.type = BTRFS_DIR_INDEX_KEY;
6433 key.offset = (u64)-1;
6434
6435 path = btrfs_alloc_path();
6436 if (!path)
6437 return -ENOMEM;
6438
6439 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6440 if (ret < 0)
6441 goto out;
6442 /* FIXME: we should be able to handle this */
6443 if (ret == 0)
6444 goto out;
6445 ret = 0;
6446
6447 /*
6448 * MAGIC NUMBER EXPLANATION:
6449 * since we search a directory based on f_pos we have to start at 2
6450 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6451 * else has to start at 2
6452 */
6453 if (path->slots[0] == 0) {
6454 inode->index_cnt = 2;
6455 goto out;
6456 }
6457
6458 path->slots[0]--;
6459
6460 leaf = path->nodes[0];
6461 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6462
6463 if (found_key.objectid != btrfs_ino(inode) ||
6464 found_key.type != BTRFS_DIR_INDEX_KEY) {
6465 inode->index_cnt = 2;
6466 goto out;
6467 }
6468
6469 inode->index_cnt = found_key.offset + 1;
6470 out:
6471 btrfs_free_path(path);
6472 return ret;
6473 }
6474
6475 /*
6476 * helper to find a free sequence number in a given directory. This current
6477 * code is very simple, later versions will do smarter things in the btree
6478 */
btrfs_set_inode_index(struct btrfs_inode * dir,u64 * index)6479 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6480 {
6481 int ret = 0;
6482
6483 if (dir->index_cnt == (u64)-1) {
6484 ret = btrfs_inode_delayed_dir_index_count(dir);
6485 if (ret) {
6486 ret = btrfs_set_inode_index_count(dir);
6487 if (ret)
6488 return ret;
6489 }
6490 }
6491
6492 *index = dir->index_cnt;
6493 dir->index_cnt++;
6494
6495 return ret;
6496 }
6497
btrfs_insert_inode_locked(struct inode * inode)6498 static int btrfs_insert_inode_locked(struct inode *inode)
6499 {
6500 struct btrfs_iget_args args;
6501 args.location = &BTRFS_I(inode)->location;
6502 args.root = BTRFS_I(inode)->root;
6503
6504 return insert_inode_locked4(inode,
6505 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6506 btrfs_find_actor, &args);
6507 }
6508
6509 /*
6510 * Inherit flags from the parent inode.
6511 *
6512 * Currently only the compression flags and the cow flags are inherited.
6513 */
btrfs_inherit_iflags(struct inode * inode,struct inode * dir)6514 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6515 {
6516 unsigned int flags;
6517
6518 if (!dir)
6519 return;
6520
6521 flags = BTRFS_I(dir)->flags;
6522
6523 if (flags & BTRFS_INODE_NOCOMPRESS) {
6524 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6525 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6526 } else if (flags & BTRFS_INODE_COMPRESS) {
6527 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6528 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6529 }
6530
6531 if (flags & BTRFS_INODE_NODATACOW) {
6532 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6533 if (S_ISREG(inode->i_mode))
6534 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6535 }
6536
6537 btrfs_sync_inode_flags_to_i_flags(inode);
6538 }
6539
btrfs_new_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,const char * name,int name_len,u64 ref_objectid,u64 objectid,umode_t mode,u64 * index)6540 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6541 struct btrfs_root *root,
6542 struct inode *dir,
6543 const char *name, int name_len,
6544 u64 ref_objectid, u64 objectid,
6545 umode_t mode, u64 *index)
6546 {
6547 struct btrfs_fs_info *fs_info = root->fs_info;
6548 struct inode *inode;
6549 struct btrfs_inode_item *inode_item;
6550 struct btrfs_key *location;
6551 struct btrfs_path *path;
6552 struct btrfs_inode_ref *ref;
6553 struct btrfs_key key[2];
6554 u32 sizes[2];
6555 int nitems = name ? 2 : 1;
6556 unsigned long ptr;
6557 unsigned int nofs_flag;
6558 int ret;
6559
6560 path = btrfs_alloc_path();
6561 if (!path)
6562 return ERR_PTR(-ENOMEM);
6563
6564 nofs_flag = memalloc_nofs_save();
6565 inode = new_inode(fs_info->sb);
6566 memalloc_nofs_restore(nofs_flag);
6567 if (!inode) {
6568 btrfs_free_path(path);
6569 return ERR_PTR(-ENOMEM);
6570 }
6571
6572 /*
6573 * O_TMPFILE, set link count to 0, so that after this point,
6574 * we fill in an inode item with the correct link count.
6575 */
6576 if (!name)
6577 set_nlink(inode, 0);
6578
6579 /*
6580 * we have to initialize this early, so we can reclaim the inode
6581 * number if we fail afterwards in this function.
6582 */
6583 inode->i_ino = objectid;
6584
6585 if (dir && name) {
6586 trace_btrfs_inode_request(dir);
6587
6588 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6589 if (ret) {
6590 btrfs_free_path(path);
6591 iput(inode);
6592 return ERR_PTR(ret);
6593 }
6594 } else if (dir) {
6595 *index = 0;
6596 }
6597 /*
6598 * index_cnt is ignored for everything but a dir,
6599 * btrfs_set_inode_index_count has an explanation for the magic
6600 * number
6601 */
6602 BTRFS_I(inode)->index_cnt = 2;
6603 BTRFS_I(inode)->dir_index = *index;
6604 BTRFS_I(inode)->root = root;
6605 BTRFS_I(inode)->generation = trans->transid;
6606 inode->i_generation = BTRFS_I(inode)->generation;
6607
6608 /*
6609 * We could have gotten an inode number from somebody who was fsynced
6610 * and then removed in this same transaction, so let's just set full
6611 * sync since it will be a full sync anyway and this will blow away the
6612 * old info in the log.
6613 */
6614 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6615
6616 key[0].objectid = objectid;
6617 key[0].type = BTRFS_INODE_ITEM_KEY;
6618 key[0].offset = 0;
6619
6620 sizes[0] = sizeof(struct btrfs_inode_item);
6621
6622 if (name) {
6623 /*
6624 * Start new inodes with an inode_ref. This is slightly more
6625 * efficient for small numbers of hard links since they will
6626 * be packed into one item. Extended refs will kick in if we
6627 * add more hard links than can fit in the ref item.
6628 */
6629 key[1].objectid = objectid;
6630 key[1].type = BTRFS_INODE_REF_KEY;
6631 key[1].offset = ref_objectid;
6632
6633 sizes[1] = name_len + sizeof(*ref);
6634 }
6635
6636 location = &BTRFS_I(inode)->location;
6637 location->objectid = objectid;
6638 location->offset = 0;
6639 location->type = BTRFS_INODE_ITEM_KEY;
6640
6641 ret = btrfs_insert_inode_locked(inode);
6642 if (ret < 0) {
6643 iput(inode);
6644 goto fail;
6645 }
6646
6647 path->leave_spinning = 1;
6648 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6649 if (ret != 0)
6650 goto fail_unlock;
6651
6652 inode_init_owner(inode, dir, mode);
6653 inode_set_bytes(inode, 0);
6654
6655 inode->i_mtime = current_time(inode);
6656 inode->i_atime = inode->i_mtime;
6657 inode->i_ctime = inode->i_mtime;
6658 BTRFS_I(inode)->i_otime = inode->i_mtime;
6659
6660 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6661 struct btrfs_inode_item);
6662 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6663 sizeof(*inode_item));
6664 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6665
6666 if (name) {
6667 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6668 struct btrfs_inode_ref);
6669 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6670 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6671 ptr = (unsigned long)(ref + 1);
6672 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6673 }
6674
6675 btrfs_mark_buffer_dirty(path->nodes[0]);
6676 btrfs_free_path(path);
6677
6678 btrfs_inherit_iflags(inode, dir);
6679
6680 if (S_ISREG(mode)) {
6681 if (btrfs_test_opt(fs_info, NODATASUM))
6682 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6683 if (btrfs_test_opt(fs_info, NODATACOW))
6684 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6685 BTRFS_INODE_NODATASUM;
6686 }
6687
6688 inode_tree_add(inode);
6689
6690 trace_btrfs_inode_new(inode);
6691 btrfs_set_inode_last_trans(trans, inode);
6692
6693 btrfs_update_root_times(trans, root);
6694
6695 ret = btrfs_inode_inherit_props(trans, inode, dir);
6696 if (ret)
6697 btrfs_err(fs_info,
6698 "error inheriting props for ino %llu (root %llu): %d",
6699 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6700
6701 return inode;
6702
6703 fail_unlock:
6704 discard_new_inode(inode);
6705 fail:
6706 if (dir && name)
6707 BTRFS_I(dir)->index_cnt--;
6708 btrfs_free_path(path);
6709 return ERR_PTR(ret);
6710 }
6711
6712 /*
6713 * utility function to add 'inode' into 'parent_inode' with
6714 * a give name and a given sequence number.
6715 * if 'add_backref' is true, also insert a backref from the
6716 * inode to the parent directory.
6717 */
btrfs_add_link(struct btrfs_trans_handle * trans,struct btrfs_inode * parent_inode,struct btrfs_inode * inode,const char * name,int name_len,int add_backref,u64 index)6718 int btrfs_add_link(struct btrfs_trans_handle *trans,
6719 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6720 const char *name, int name_len, int add_backref, u64 index)
6721 {
6722 int ret = 0;
6723 struct btrfs_key key;
6724 struct btrfs_root *root = parent_inode->root;
6725 u64 ino = btrfs_ino(inode);
6726 u64 parent_ino = btrfs_ino(parent_inode);
6727
6728 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6729 memcpy(&key, &inode->root->root_key, sizeof(key));
6730 } else {
6731 key.objectid = ino;
6732 key.type = BTRFS_INODE_ITEM_KEY;
6733 key.offset = 0;
6734 }
6735
6736 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6737 ret = btrfs_add_root_ref(trans, key.objectid,
6738 root->root_key.objectid, parent_ino,
6739 index, name, name_len);
6740 } else if (add_backref) {
6741 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6742 parent_ino, index);
6743 }
6744
6745 /* Nothing to clean up yet */
6746 if (ret)
6747 return ret;
6748
6749 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6750 btrfs_inode_type(&inode->vfs_inode), index);
6751 if (ret == -EEXIST || ret == -EOVERFLOW)
6752 goto fail_dir_item;
6753 else if (ret) {
6754 btrfs_abort_transaction(trans, ret);
6755 return ret;
6756 }
6757
6758 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6759 name_len * 2);
6760 inode_inc_iversion(&parent_inode->vfs_inode);
6761 /*
6762 * If we are replaying a log tree, we do not want to update the mtime
6763 * and ctime of the parent directory with the current time, since the
6764 * log replay procedure is responsible for setting them to their correct
6765 * values (the ones it had when the fsync was done).
6766 */
6767 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6768 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6769
6770 parent_inode->vfs_inode.i_mtime = now;
6771 parent_inode->vfs_inode.i_ctime = now;
6772 }
6773 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6774 if (ret)
6775 btrfs_abort_transaction(trans, ret);
6776 return ret;
6777
6778 fail_dir_item:
6779 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6780 u64 local_index;
6781 int err;
6782 err = btrfs_del_root_ref(trans, key.objectid,
6783 root->root_key.objectid, parent_ino,
6784 &local_index, name, name_len);
6785 if (err)
6786 btrfs_abort_transaction(trans, err);
6787 } else if (add_backref) {
6788 u64 local_index;
6789 int err;
6790
6791 err = btrfs_del_inode_ref(trans, root, name, name_len,
6792 ino, parent_ino, &local_index);
6793 if (err)
6794 btrfs_abort_transaction(trans, err);
6795 }
6796
6797 /* Return the original error code */
6798 return ret;
6799 }
6800
btrfs_add_nondir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct dentry * dentry,struct btrfs_inode * inode,int backref,u64 index)6801 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6802 struct btrfs_inode *dir, struct dentry *dentry,
6803 struct btrfs_inode *inode, int backref, u64 index)
6804 {
6805 int err = btrfs_add_link(trans, dir, inode,
6806 dentry->d_name.name, dentry->d_name.len,
6807 backref, index);
6808 if (err > 0)
6809 err = -EEXIST;
6810 return err;
6811 }
6812
btrfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)6813 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6814 umode_t mode, dev_t rdev)
6815 {
6816 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6817 struct btrfs_trans_handle *trans;
6818 struct btrfs_root *root = BTRFS_I(dir)->root;
6819 struct inode *inode = NULL;
6820 int err;
6821 u64 objectid;
6822 u64 index = 0;
6823
6824 /*
6825 * 2 for inode item and ref
6826 * 2 for dir items
6827 * 1 for xattr if selinux is on
6828 */
6829 trans = btrfs_start_transaction(root, 5);
6830 if (IS_ERR(trans))
6831 return PTR_ERR(trans);
6832
6833 err = btrfs_find_free_objectid(root, &objectid);
6834 if (err)
6835 goto out_unlock;
6836
6837 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6838 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6839 mode, &index);
6840 if (IS_ERR(inode)) {
6841 err = PTR_ERR(inode);
6842 inode = NULL;
6843 goto out_unlock;
6844 }
6845
6846 /*
6847 * If the active LSM wants to access the inode during
6848 * d_instantiate it needs these. Smack checks to see
6849 * if the filesystem supports xattrs by looking at the
6850 * ops vector.
6851 */
6852 inode->i_op = &btrfs_special_inode_operations;
6853 init_special_inode(inode, inode->i_mode, rdev);
6854
6855 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6856 if (err)
6857 goto out_unlock;
6858
6859 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6860 0, index);
6861 if (err)
6862 goto out_unlock;
6863
6864 btrfs_update_inode(trans, root, inode);
6865 d_instantiate_new(dentry, inode);
6866
6867 out_unlock:
6868 btrfs_end_transaction(trans);
6869 btrfs_btree_balance_dirty(fs_info);
6870 if (err && inode) {
6871 inode_dec_link_count(inode);
6872 discard_new_inode(inode);
6873 }
6874 return err;
6875 }
6876
btrfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)6877 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6878 umode_t mode, bool excl)
6879 {
6880 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6881 struct btrfs_trans_handle *trans;
6882 struct btrfs_root *root = BTRFS_I(dir)->root;
6883 struct inode *inode = NULL;
6884 int err;
6885 u64 objectid;
6886 u64 index = 0;
6887
6888 /*
6889 * 2 for inode item and ref
6890 * 2 for dir items
6891 * 1 for xattr if selinux is on
6892 */
6893 trans = btrfs_start_transaction(root, 5);
6894 if (IS_ERR(trans))
6895 return PTR_ERR(trans);
6896
6897 err = btrfs_find_free_objectid(root, &objectid);
6898 if (err)
6899 goto out_unlock;
6900
6901 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6902 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6903 mode, &index);
6904 if (IS_ERR(inode)) {
6905 err = PTR_ERR(inode);
6906 inode = NULL;
6907 goto out_unlock;
6908 }
6909 /*
6910 * If the active LSM wants to access the inode during
6911 * d_instantiate it needs these. Smack checks to see
6912 * if the filesystem supports xattrs by looking at the
6913 * ops vector.
6914 */
6915 inode->i_fop = &btrfs_file_operations;
6916 inode->i_op = &btrfs_file_inode_operations;
6917 inode->i_mapping->a_ops = &btrfs_aops;
6918
6919 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6920 if (err)
6921 goto out_unlock;
6922
6923 err = btrfs_update_inode(trans, root, inode);
6924 if (err)
6925 goto out_unlock;
6926
6927 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6928 0, index);
6929 if (err)
6930 goto out_unlock;
6931
6932 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6933 d_instantiate_new(dentry, inode);
6934
6935 out_unlock:
6936 btrfs_end_transaction(trans);
6937 if (err && inode) {
6938 inode_dec_link_count(inode);
6939 discard_new_inode(inode);
6940 }
6941 btrfs_btree_balance_dirty(fs_info);
6942 return err;
6943 }
6944
btrfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)6945 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6946 struct dentry *dentry)
6947 {
6948 struct btrfs_trans_handle *trans = NULL;
6949 struct btrfs_root *root = BTRFS_I(dir)->root;
6950 struct inode *inode = d_inode(old_dentry);
6951 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6952 u64 index;
6953 int err;
6954 int drop_inode = 0;
6955
6956 /* do not allow sys_link's with other subvols of the same device */
6957 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6958 return -EXDEV;
6959
6960 if (inode->i_nlink >= BTRFS_LINK_MAX)
6961 return -EMLINK;
6962
6963 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6964 if (err)
6965 goto fail;
6966
6967 /*
6968 * 2 items for inode and inode ref
6969 * 2 items for dir items
6970 * 1 item for parent inode
6971 * 1 item for orphan item deletion if O_TMPFILE
6972 */
6973 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6974 if (IS_ERR(trans)) {
6975 err = PTR_ERR(trans);
6976 trans = NULL;
6977 goto fail;
6978 }
6979
6980 /* There are several dir indexes for this inode, clear the cache. */
6981 BTRFS_I(inode)->dir_index = 0ULL;
6982 inc_nlink(inode);
6983 inode_inc_iversion(inode);
6984 inode->i_ctime = current_time(inode);
6985 ihold(inode);
6986 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6987
6988 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6989 1, index);
6990
6991 if (err) {
6992 drop_inode = 1;
6993 } else {
6994 struct dentry *parent = dentry->d_parent;
6995
6996 err = btrfs_update_inode(trans, root, inode);
6997 if (err)
6998 goto fail;
6999 if (inode->i_nlink == 1) {
7000 /*
7001 * If new hard link count is 1, it's a file created
7002 * with open(2) O_TMPFILE flag.
7003 */
7004 err = btrfs_orphan_del(trans, BTRFS_I(inode));
7005 if (err)
7006 goto fail;
7007 }
7008 d_instantiate(dentry, inode);
7009 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
7010 }
7011
7012 fail:
7013 if (trans)
7014 btrfs_end_transaction(trans);
7015 if (drop_inode) {
7016 inode_dec_link_count(inode);
7017 iput(inode);
7018 }
7019 btrfs_btree_balance_dirty(fs_info);
7020 return err;
7021 }
7022
btrfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)7023 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
7024 {
7025 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
7026 struct inode *inode = NULL;
7027 struct btrfs_trans_handle *trans;
7028 struct btrfs_root *root = BTRFS_I(dir)->root;
7029 int err = 0;
7030 u64 objectid = 0;
7031 u64 index = 0;
7032
7033 /*
7034 * 2 items for inode and ref
7035 * 2 items for dir items
7036 * 1 for xattr if selinux is on
7037 */
7038 trans = btrfs_start_transaction(root, 5);
7039 if (IS_ERR(trans))
7040 return PTR_ERR(trans);
7041
7042 err = btrfs_find_free_objectid(root, &objectid);
7043 if (err)
7044 goto out_fail;
7045
7046 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7047 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
7048 S_IFDIR | mode, &index);
7049 if (IS_ERR(inode)) {
7050 err = PTR_ERR(inode);
7051 inode = NULL;
7052 goto out_fail;
7053 }
7054
7055 /* these must be set before we unlock the inode */
7056 inode->i_op = &btrfs_dir_inode_operations;
7057 inode->i_fop = &btrfs_dir_file_operations;
7058
7059 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7060 if (err)
7061 goto out_fail;
7062
7063 btrfs_i_size_write(BTRFS_I(inode), 0);
7064 err = btrfs_update_inode(trans, root, inode);
7065 if (err)
7066 goto out_fail;
7067
7068 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
7069 dentry->d_name.name,
7070 dentry->d_name.len, 0, index);
7071 if (err)
7072 goto out_fail;
7073
7074 d_instantiate_new(dentry, inode);
7075
7076 out_fail:
7077 btrfs_end_transaction(trans);
7078 if (err && inode) {
7079 inode_dec_link_count(inode);
7080 discard_new_inode(inode);
7081 }
7082 btrfs_btree_balance_dirty(fs_info);
7083 return err;
7084 }
7085
uncompress_inline(struct btrfs_path * path,struct page * page,size_t pg_offset,u64 extent_offset,struct btrfs_file_extent_item * item)7086 static noinline int uncompress_inline(struct btrfs_path *path,
7087 struct page *page,
7088 size_t pg_offset, u64 extent_offset,
7089 struct btrfs_file_extent_item *item)
7090 {
7091 int ret;
7092 struct extent_buffer *leaf = path->nodes[0];
7093 char *tmp;
7094 size_t max_size;
7095 unsigned long inline_size;
7096 unsigned long ptr;
7097 int compress_type;
7098
7099 WARN_ON(pg_offset != 0);
7100 compress_type = btrfs_file_extent_compression(leaf, item);
7101 max_size = btrfs_file_extent_ram_bytes(leaf, item);
7102 inline_size = btrfs_file_extent_inline_item_len(leaf,
7103 btrfs_item_nr(path->slots[0]));
7104 tmp = kmalloc(inline_size, GFP_NOFS);
7105 if (!tmp)
7106 return -ENOMEM;
7107 ptr = btrfs_file_extent_inline_start(item);
7108
7109 read_extent_buffer(leaf, tmp, ptr, inline_size);
7110
7111 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
7112 ret = btrfs_decompress(compress_type, tmp, page,
7113 extent_offset, inline_size, max_size);
7114
7115 /*
7116 * decompression code contains a memset to fill in any space between the end
7117 * of the uncompressed data and the end of max_size in case the decompressed
7118 * data ends up shorter than ram_bytes. That doesn't cover the hole between
7119 * the end of an inline extent and the beginning of the next block, so we
7120 * cover that region here.
7121 */
7122
7123 if (max_size + pg_offset < PAGE_SIZE) {
7124 char *map = kmap(page);
7125 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
7126 kunmap(page);
7127 }
7128 kfree(tmp);
7129 return ret;
7130 }
7131
7132 /*
7133 * a bit scary, this does extent mapping from logical file offset to the disk.
7134 * the ugly parts come from merging extents from the disk with the in-ram
7135 * representation. This gets more complex because of the data=ordered code,
7136 * where the in-ram extents might be locked pending data=ordered completion.
7137 *
7138 * This also copies inline extents directly into the page.
7139 */
btrfs_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)7140 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
7141 struct page *page,
7142 size_t pg_offset, u64 start, u64 len,
7143 int create)
7144 {
7145 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7146 int ret;
7147 int err = 0;
7148 u64 extent_start = 0;
7149 u64 extent_end = 0;
7150 u64 objectid = btrfs_ino(inode);
7151 int extent_type = -1;
7152 struct btrfs_path *path = NULL;
7153 struct btrfs_root *root = inode->root;
7154 struct btrfs_file_extent_item *item;
7155 struct extent_buffer *leaf;
7156 struct btrfs_key found_key;
7157 struct extent_map *em = NULL;
7158 struct extent_map_tree *em_tree = &inode->extent_tree;
7159 struct extent_io_tree *io_tree = &inode->io_tree;
7160 const bool new_inline = !page || create;
7161
7162 read_lock(&em_tree->lock);
7163 em = lookup_extent_mapping(em_tree, start, len);
7164 if (em)
7165 em->bdev = fs_info->fs_devices->latest_bdev;
7166 read_unlock(&em_tree->lock);
7167
7168 if (em) {
7169 if (em->start > start || em->start + em->len <= start)
7170 free_extent_map(em);
7171 else if (em->block_start == EXTENT_MAP_INLINE && page)
7172 free_extent_map(em);
7173 else
7174 goto out;
7175 }
7176 em = alloc_extent_map();
7177 if (!em) {
7178 err = -ENOMEM;
7179 goto out;
7180 }
7181 em->bdev = fs_info->fs_devices->latest_bdev;
7182 em->start = EXTENT_MAP_HOLE;
7183 em->orig_start = EXTENT_MAP_HOLE;
7184 em->len = (u64)-1;
7185 em->block_len = (u64)-1;
7186
7187 path = btrfs_alloc_path();
7188 if (!path) {
7189 err = -ENOMEM;
7190 goto out;
7191 }
7192
7193 /* Chances are we'll be called again, so go ahead and do readahead */
7194 path->reada = READA_FORWARD;
7195
7196 /*
7197 * Unless we're going to uncompress the inline extent, no sleep would
7198 * happen.
7199 */
7200 path->leave_spinning = 1;
7201
7202 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7203 if (ret < 0) {
7204 err = ret;
7205 goto out;
7206 } else if (ret > 0) {
7207 if (path->slots[0] == 0)
7208 goto not_found;
7209 path->slots[0]--;
7210 }
7211
7212 leaf = path->nodes[0];
7213 item = btrfs_item_ptr(leaf, path->slots[0],
7214 struct btrfs_file_extent_item);
7215 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7216 if (found_key.objectid != objectid ||
7217 found_key.type != BTRFS_EXTENT_DATA_KEY) {
7218 /*
7219 * If we backup past the first extent we want to move forward
7220 * and see if there is an extent in front of us, otherwise we'll
7221 * say there is a hole for our whole search range which can
7222 * cause problems.
7223 */
7224 extent_end = start;
7225 goto next;
7226 }
7227
7228 extent_type = btrfs_file_extent_type(leaf, item);
7229 extent_start = found_key.offset;
7230 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7231 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7232 /* Only regular file could have regular/prealloc extent */
7233 if (!S_ISREG(inode->vfs_inode.i_mode)) {
7234 err = -EUCLEAN;
7235 btrfs_crit(fs_info,
7236 "regular/prealloc extent found for non-regular inode %llu",
7237 btrfs_ino(inode));
7238 goto out;
7239 }
7240 extent_end = extent_start +
7241 btrfs_file_extent_num_bytes(leaf, item);
7242
7243 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7244 extent_start);
7245 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7246 size_t size;
7247
7248 size = btrfs_file_extent_ram_bytes(leaf, item);
7249 extent_end = ALIGN(extent_start + size,
7250 fs_info->sectorsize);
7251
7252 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7253 path->slots[0],
7254 extent_start);
7255 }
7256 next:
7257 if (start >= extent_end) {
7258 path->slots[0]++;
7259 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7260 ret = btrfs_next_leaf(root, path);
7261 if (ret < 0) {
7262 err = ret;
7263 goto out;
7264 } else if (ret > 0) {
7265 goto not_found;
7266 }
7267 leaf = path->nodes[0];
7268 }
7269 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7270 if (found_key.objectid != objectid ||
7271 found_key.type != BTRFS_EXTENT_DATA_KEY)
7272 goto not_found;
7273 if (start + len <= found_key.offset)
7274 goto not_found;
7275 if (start > found_key.offset)
7276 goto next;
7277
7278 /* New extent overlaps with existing one */
7279 em->start = start;
7280 em->orig_start = start;
7281 em->len = found_key.offset - start;
7282 em->block_start = EXTENT_MAP_HOLE;
7283 goto insert;
7284 }
7285
7286 btrfs_extent_item_to_extent_map(inode, path, item,
7287 new_inline, em);
7288
7289 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7290 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7291 goto insert;
7292 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7293 unsigned long ptr;
7294 char *map;
7295 size_t size;
7296 size_t extent_offset;
7297 size_t copy_size;
7298
7299 if (new_inline)
7300 goto out;
7301
7302 size = btrfs_file_extent_ram_bytes(leaf, item);
7303 extent_offset = page_offset(page) + pg_offset - extent_start;
7304 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7305 size - extent_offset);
7306 em->start = extent_start + extent_offset;
7307 em->len = ALIGN(copy_size, fs_info->sectorsize);
7308 em->orig_block_len = em->len;
7309 em->orig_start = em->start;
7310 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7311
7312 btrfs_set_path_blocking(path);
7313 if (!PageUptodate(page)) {
7314 if (btrfs_file_extent_compression(leaf, item) !=
7315 BTRFS_COMPRESS_NONE) {
7316 ret = uncompress_inline(path, page, pg_offset,
7317 extent_offset, item);
7318 if (ret) {
7319 err = ret;
7320 goto out;
7321 }
7322 } else {
7323 map = kmap(page);
7324 read_extent_buffer(leaf, map + pg_offset, ptr,
7325 copy_size);
7326 if (pg_offset + copy_size < PAGE_SIZE) {
7327 memset(map + pg_offset + copy_size, 0,
7328 PAGE_SIZE - pg_offset -
7329 copy_size);
7330 }
7331 kunmap(page);
7332 }
7333 flush_dcache_page(page);
7334 }
7335 set_extent_uptodate(io_tree, em->start,
7336 extent_map_end(em) - 1, NULL, GFP_NOFS);
7337 goto insert;
7338 }
7339 not_found:
7340 em->start = start;
7341 em->orig_start = start;
7342 em->len = len;
7343 em->block_start = EXTENT_MAP_HOLE;
7344 insert:
7345 btrfs_release_path(path);
7346 if (em->start > start || extent_map_end(em) <= start) {
7347 btrfs_err(fs_info,
7348 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7349 em->start, em->len, start, len);
7350 err = -EIO;
7351 goto out;
7352 }
7353
7354 err = 0;
7355 write_lock(&em_tree->lock);
7356 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7357 write_unlock(&em_tree->lock);
7358 out:
7359 btrfs_free_path(path);
7360
7361 trace_btrfs_get_extent(root, inode, em);
7362
7363 if (err) {
7364 free_extent_map(em);
7365 return ERR_PTR(err);
7366 }
7367 BUG_ON(!em); /* Error is always set */
7368 return em;
7369 }
7370
btrfs_get_extent_fiemap(struct btrfs_inode * inode,u64 start,u64 len)7371 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7372 u64 start, u64 len)
7373 {
7374 struct extent_map *em;
7375 struct extent_map *hole_em = NULL;
7376 u64 delalloc_start = start;
7377 u64 end;
7378 u64 delalloc_len;
7379 u64 delalloc_end;
7380 int err = 0;
7381
7382 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7383 if (IS_ERR(em))
7384 return em;
7385 /*
7386 * If our em maps to:
7387 * - a hole or
7388 * - a pre-alloc extent,
7389 * there might actually be delalloc bytes behind it.
7390 */
7391 if (em->block_start != EXTENT_MAP_HOLE &&
7392 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7393 return em;
7394 else
7395 hole_em = em;
7396
7397 /* check to see if we've wrapped (len == -1 or similar) */
7398 end = start + len;
7399 if (end < start)
7400 end = (u64)-1;
7401 else
7402 end -= 1;
7403
7404 em = NULL;
7405
7406 /* ok, we didn't find anything, lets look for delalloc */
7407 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7408 end, len, EXTENT_DELALLOC, 1);
7409 delalloc_end = delalloc_start + delalloc_len;
7410 if (delalloc_end < delalloc_start)
7411 delalloc_end = (u64)-1;
7412
7413 /*
7414 * We didn't find anything useful, return the original results from
7415 * get_extent()
7416 */
7417 if (delalloc_start > end || delalloc_end <= start) {
7418 em = hole_em;
7419 hole_em = NULL;
7420 goto out;
7421 }
7422
7423 /*
7424 * Adjust the delalloc_start to make sure it doesn't go backwards from
7425 * the start they passed in
7426 */
7427 delalloc_start = max(start, delalloc_start);
7428 delalloc_len = delalloc_end - delalloc_start;
7429
7430 if (delalloc_len > 0) {
7431 u64 hole_start;
7432 u64 hole_len;
7433 const u64 hole_end = extent_map_end(hole_em);
7434
7435 em = alloc_extent_map();
7436 if (!em) {
7437 err = -ENOMEM;
7438 goto out;
7439 }
7440 em->bdev = NULL;
7441
7442 ASSERT(hole_em);
7443 /*
7444 * When btrfs_get_extent can't find anything it returns one
7445 * huge hole
7446 *
7447 * Make sure what it found really fits our range, and adjust to
7448 * make sure it is based on the start from the caller
7449 */
7450 if (hole_end <= start || hole_em->start > end) {
7451 free_extent_map(hole_em);
7452 hole_em = NULL;
7453 } else {
7454 hole_start = max(hole_em->start, start);
7455 hole_len = hole_end - hole_start;
7456 }
7457
7458 if (hole_em && delalloc_start > hole_start) {
7459 /*
7460 * Our hole starts before our delalloc, so we have to
7461 * return just the parts of the hole that go until the
7462 * delalloc starts
7463 */
7464 em->len = min(hole_len, delalloc_start - hole_start);
7465 em->start = hole_start;
7466 em->orig_start = hole_start;
7467 /*
7468 * Don't adjust block start at all, it is fixed at
7469 * EXTENT_MAP_HOLE
7470 */
7471 em->block_start = hole_em->block_start;
7472 em->block_len = hole_len;
7473 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7474 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7475 } else {
7476 /*
7477 * Hole is out of passed range or it starts after
7478 * delalloc range
7479 */
7480 em->start = delalloc_start;
7481 em->len = delalloc_len;
7482 em->orig_start = delalloc_start;
7483 em->block_start = EXTENT_MAP_DELALLOC;
7484 em->block_len = delalloc_len;
7485 }
7486 } else {
7487 return hole_em;
7488 }
7489 out:
7490
7491 free_extent_map(hole_em);
7492 if (err) {
7493 free_extent_map(em);
7494 return ERR_PTR(err);
7495 }
7496 return em;
7497 }
7498
btrfs_create_dio_extent(struct inode * inode,const u64 start,const u64 len,const u64 orig_start,const u64 block_start,const u64 block_len,const u64 orig_block_len,const u64 ram_bytes,const int type)7499 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7500 const u64 start,
7501 const u64 len,
7502 const u64 orig_start,
7503 const u64 block_start,
7504 const u64 block_len,
7505 const u64 orig_block_len,
7506 const u64 ram_bytes,
7507 const int type)
7508 {
7509 struct extent_map *em = NULL;
7510 int ret;
7511
7512 if (type != BTRFS_ORDERED_NOCOW) {
7513 em = create_io_em(inode, start, len, orig_start,
7514 block_start, block_len, orig_block_len,
7515 ram_bytes,
7516 BTRFS_COMPRESS_NONE, /* compress_type */
7517 type);
7518 if (IS_ERR(em))
7519 goto out;
7520 }
7521 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7522 len, block_len, type);
7523 if (ret) {
7524 if (em) {
7525 free_extent_map(em);
7526 btrfs_drop_extent_cache(BTRFS_I(inode), start,
7527 start + len - 1, 0);
7528 }
7529 em = ERR_PTR(ret);
7530 }
7531 out:
7532
7533 return em;
7534 }
7535
btrfs_new_extent_direct(struct inode * inode,u64 start,u64 len)7536 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7537 u64 start, u64 len)
7538 {
7539 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7540 struct btrfs_root *root = BTRFS_I(inode)->root;
7541 struct extent_map *em;
7542 struct btrfs_key ins;
7543 u64 alloc_hint;
7544 int ret;
7545
7546 alloc_hint = get_extent_allocation_hint(inode, start, len);
7547 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7548 0, alloc_hint, &ins, 1, 1);
7549 if (ret)
7550 return ERR_PTR(ret);
7551
7552 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7553 ins.objectid, ins.offset, ins.offset,
7554 ins.offset, BTRFS_ORDERED_REGULAR);
7555 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7556 if (IS_ERR(em))
7557 btrfs_free_reserved_extent(fs_info, ins.objectid,
7558 ins.offset, 1);
7559
7560 return em;
7561 }
7562
7563 /*
7564 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7565 * block must be cow'd
7566 */
can_nocow_extent(struct inode * inode,u64 offset,u64 * len,u64 * orig_start,u64 * orig_block_len,u64 * ram_bytes,bool strict)7567 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7568 u64 *orig_start, u64 *orig_block_len,
7569 u64 *ram_bytes, bool strict)
7570 {
7571 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7572 struct btrfs_path *path;
7573 int ret;
7574 struct extent_buffer *leaf;
7575 struct btrfs_root *root = BTRFS_I(inode)->root;
7576 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7577 struct btrfs_file_extent_item *fi;
7578 struct btrfs_key key;
7579 u64 disk_bytenr;
7580 u64 backref_offset;
7581 u64 extent_end;
7582 u64 num_bytes;
7583 int slot;
7584 int found_type;
7585 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7586
7587 path = btrfs_alloc_path();
7588 if (!path)
7589 return -ENOMEM;
7590
7591 ret = btrfs_lookup_file_extent(NULL, root, path,
7592 btrfs_ino(BTRFS_I(inode)), offset, 0);
7593 if (ret < 0)
7594 goto out;
7595
7596 slot = path->slots[0];
7597 if (ret == 1) {
7598 if (slot == 0) {
7599 /* can't find the item, must cow */
7600 ret = 0;
7601 goto out;
7602 }
7603 slot--;
7604 }
7605 ret = 0;
7606 leaf = path->nodes[0];
7607 btrfs_item_key_to_cpu(leaf, &key, slot);
7608 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7609 key.type != BTRFS_EXTENT_DATA_KEY) {
7610 /* not our file or wrong item type, must cow */
7611 goto out;
7612 }
7613
7614 if (key.offset > offset) {
7615 /* Wrong offset, must cow */
7616 goto out;
7617 }
7618
7619 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7620 found_type = btrfs_file_extent_type(leaf, fi);
7621 if (found_type != BTRFS_FILE_EXTENT_REG &&
7622 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7623 /* not a regular extent, must cow */
7624 goto out;
7625 }
7626
7627 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7628 goto out;
7629
7630 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7631 if (extent_end <= offset)
7632 goto out;
7633
7634 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7635 if (disk_bytenr == 0)
7636 goto out;
7637
7638 if (btrfs_file_extent_compression(leaf, fi) ||
7639 btrfs_file_extent_encryption(leaf, fi) ||
7640 btrfs_file_extent_other_encoding(leaf, fi))
7641 goto out;
7642
7643 /*
7644 * Do the same check as in btrfs_cross_ref_exist but without the
7645 * unnecessary search.
7646 */
7647 if (!strict &&
7648 (btrfs_file_extent_generation(leaf, fi) <=
7649 btrfs_root_last_snapshot(&root->root_item)))
7650 goto out;
7651
7652 backref_offset = btrfs_file_extent_offset(leaf, fi);
7653
7654 if (orig_start) {
7655 *orig_start = key.offset - backref_offset;
7656 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7657 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7658 }
7659
7660 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7661 goto out;
7662
7663 num_bytes = min(offset + *len, extent_end) - offset;
7664 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7665 u64 range_end;
7666
7667 range_end = round_up(offset + num_bytes,
7668 root->fs_info->sectorsize) - 1;
7669 ret = test_range_bit(io_tree, offset, range_end,
7670 EXTENT_DELALLOC, 0, NULL);
7671 if (ret) {
7672 ret = -EAGAIN;
7673 goto out;
7674 }
7675 }
7676
7677 btrfs_release_path(path);
7678
7679 /*
7680 * look for other files referencing this extent, if we
7681 * find any we must cow
7682 */
7683
7684 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7685 key.offset - backref_offset, disk_bytenr,
7686 strict);
7687 if (ret) {
7688 ret = 0;
7689 goto out;
7690 }
7691
7692 /*
7693 * adjust disk_bytenr and num_bytes to cover just the bytes
7694 * in this extent we are about to write. If there
7695 * are any csums in that range we have to cow in order
7696 * to keep the csums correct
7697 */
7698 disk_bytenr += backref_offset;
7699 disk_bytenr += offset - key.offset;
7700 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7701 goto out;
7702 /*
7703 * all of the above have passed, it is safe to overwrite this extent
7704 * without cow
7705 */
7706 *len = num_bytes;
7707 ret = 1;
7708 out:
7709 btrfs_free_path(path);
7710 return ret;
7711 }
7712
lock_extent_direct(struct inode * inode,u64 lockstart,u64 lockend,struct extent_state ** cached_state,int writing)7713 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7714 struct extent_state **cached_state, int writing)
7715 {
7716 struct btrfs_ordered_extent *ordered;
7717 int ret = 0;
7718
7719 while (1) {
7720 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7721 cached_state);
7722 /*
7723 * We're concerned with the entire range that we're going to be
7724 * doing DIO to, so we need to make sure there's no ordered
7725 * extents in this range.
7726 */
7727 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7728 lockend - lockstart + 1);
7729
7730 /*
7731 * We need to make sure there are no buffered pages in this
7732 * range either, we could have raced between the invalidate in
7733 * generic_file_direct_write and locking the extent. The
7734 * invalidate needs to happen so that reads after a write do not
7735 * get stale data.
7736 */
7737 if (!ordered &&
7738 (!writing || !filemap_range_has_page(inode->i_mapping,
7739 lockstart, lockend)))
7740 break;
7741
7742 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7743 cached_state);
7744
7745 if (ordered) {
7746 /*
7747 * If we are doing a DIO read and the ordered extent we
7748 * found is for a buffered write, we can not wait for it
7749 * to complete and retry, because if we do so we can
7750 * deadlock with concurrent buffered writes on page
7751 * locks. This happens only if our DIO read covers more
7752 * than one extent map, if at this point has already
7753 * created an ordered extent for a previous extent map
7754 * and locked its range in the inode's io tree, and a
7755 * concurrent write against that previous extent map's
7756 * range and this range started (we unlock the ranges
7757 * in the io tree only when the bios complete and
7758 * buffered writes always lock pages before attempting
7759 * to lock range in the io tree).
7760 */
7761 if (writing ||
7762 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7763 btrfs_start_ordered_extent(inode, ordered, 1);
7764 else
7765 ret = -ENOTBLK;
7766 btrfs_put_ordered_extent(ordered);
7767 } else {
7768 /*
7769 * We could trigger writeback for this range (and wait
7770 * for it to complete) and then invalidate the pages for
7771 * this range (through invalidate_inode_pages2_range()),
7772 * but that can lead us to a deadlock with a concurrent
7773 * call to readpages() (a buffered read or a defrag call
7774 * triggered a readahead) on a page lock due to an
7775 * ordered dio extent we created before but did not have
7776 * yet a corresponding bio submitted (whence it can not
7777 * complete), which makes readpages() wait for that
7778 * ordered extent to complete while holding a lock on
7779 * that page.
7780 */
7781 ret = -ENOTBLK;
7782 }
7783
7784 if (ret)
7785 break;
7786
7787 cond_resched();
7788 }
7789
7790 return ret;
7791 }
7792
7793 /* The callers of this must take lock_extent() */
create_io_em(struct inode * inode,u64 start,u64 len,u64 orig_start,u64 block_start,u64 block_len,u64 orig_block_len,u64 ram_bytes,int compress_type,int type)7794 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7795 u64 orig_start, u64 block_start,
7796 u64 block_len, u64 orig_block_len,
7797 u64 ram_bytes, int compress_type,
7798 int type)
7799 {
7800 struct extent_map_tree *em_tree;
7801 struct extent_map *em;
7802 struct btrfs_root *root = BTRFS_I(inode)->root;
7803 int ret;
7804
7805 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7806 type == BTRFS_ORDERED_COMPRESSED ||
7807 type == BTRFS_ORDERED_NOCOW ||
7808 type == BTRFS_ORDERED_REGULAR);
7809
7810 em_tree = &BTRFS_I(inode)->extent_tree;
7811 em = alloc_extent_map();
7812 if (!em)
7813 return ERR_PTR(-ENOMEM);
7814
7815 em->start = start;
7816 em->orig_start = orig_start;
7817 em->len = len;
7818 em->block_len = block_len;
7819 em->block_start = block_start;
7820 em->bdev = root->fs_info->fs_devices->latest_bdev;
7821 em->orig_block_len = orig_block_len;
7822 em->ram_bytes = ram_bytes;
7823 em->generation = -1;
7824 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7825 if (type == BTRFS_ORDERED_PREALLOC) {
7826 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7827 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7828 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7829 em->compress_type = compress_type;
7830 }
7831
7832 do {
7833 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7834 em->start + em->len - 1, 0);
7835 write_lock(&em_tree->lock);
7836 ret = add_extent_mapping(em_tree, em, 1);
7837 write_unlock(&em_tree->lock);
7838 /*
7839 * The caller has taken lock_extent(), who could race with us
7840 * to add em?
7841 */
7842 } while (ret == -EEXIST);
7843
7844 if (ret) {
7845 free_extent_map(em);
7846 return ERR_PTR(ret);
7847 }
7848
7849 /* em got 2 refs now, callers needs to do free_extent_map once. */
7850 return em;
7851 }
7852
7853
btrfs_get_blocks_direct_read(struct extent_map * em,struct buffer_head * bh_result,struct inode * inode,u64 start,u64 len)7854 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7855 struct buffer_head *bh_result,
7856 struct inode *inode,
7857 u64 start, u64 len)
7858 {
7859 if (em->block_start == EXTENT_MAP_HOLE ||
7860 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7861 return -ENOENT;
7862
7863 len = min(len, em->len - (start - em->start));
7864
7865 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7866 inode->i_blkbits;
7867 bh_result->b_size = len;
7868 bh_result->b_bdev = em->bdev;
7869 set_buffer_mapped(bh_result);
7870
7871 return 0;
7872 }
7873
btrfs_get_blocks_direct_write(struct extent_map ** map,struct buffer_head * bh_result,struct inode * inode,struct btrfs_dio_data * dio_data,u64 start,u64 len)7874 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7875 struct buffer_head *bh_result,
7876 struct inode *inode,
7877 struct btrfs_dio_data *dio_data,
7878 u64 start, u64 len)
7879 {
7880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7881 struct extent_map *em = *map;
7882 int ret = 0;
7883
7884 /*
7885 * We don't allocate a new extent in the following cases
7886 *
7887 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7888 * existing extent.
7889 * 2) The extent is marked as PREALLOC. We're good to go here and can
7890 * just use the extent.
7891 *
7892 */
7893 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7894 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7895 em->block_start != EXTENT_MAP_HOLE)) {
7896 int type;
7897 u64 block_start, orig_start, orig_block_len, ram_bytes;
7898
7899 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7900 type = BTRFS_ORDERED_PREALLOC;
7901 else
7902 type = BTRFS_ORDERED_NOCOW;
7903 len = min(len, em->len - (start - em->start));
7904 block_start = em->block_start + (start - em->start);
7905
7906 if (can_nocow_extent(inode, start, &len, &orig_start,
7907 &orig_block_len, &ram_bytes, false) == 1 &&
7908 btrfs_inc_nocow_writers(fs_info, block_start)) {
7909 struct extent_map *em2;
7910
7911 em2 = btrfs_create_dio_extent(inode, start, len,
7912 orig_start, block_start,
7913 len, orig_block_len,
7914 ram_bytes, type);
7915 btrfs_dec_nocow_writers(fs_info, block_start);
7916 if (type == BTRFS_ORDERED_PREALLOC) {
7917 free_extent_map(em);
7918 *map = em = em2;
7919 }
7920
7921 if (em2 && IS_ERR(em2)) {
7922 ret = PTR_ERR(em2);
7923 goto out;
7924 }
7925 /*
7926 * For inode marked NODATACOW or extent marked PREALLOC,
7927 * use the existing or preallocated extent, so does not
7928 * need to adjust btrfs_space_info's bytes_may_use.
7929 */
7930 btrfs_free_reserved_data_space_noquota(inode, start,
7931 len);
7932 goto skip_cow;
7933 }
7934 }
7935
7936 /* this will cow the extent */
7937 len = bh_result->b_size;
7938 free_extent_map(em);
7939 *map = em = btrfs_new_extent_direct(inode, start, len);
7940 if (IS_ERR(em)) {
7941 ret = PTR_ERR(em);
7942 goto out;
7943 }
7944
7945 len = min(len, em->len - (start - em->start));
7946
7947 skip_cow:
7948 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7949 inode->i_blkbits;
7950 bh_result->b_size = len;
7951 bh_result->b_bdev = em->bdev;
7952 set_buffer_mapped(bh_result);
7953
7954 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7955 set_buffer_new(bh_result);
7956
7957 /*
7958 * Need to update the i_size under the extent lock so buffered
7959 * readers will get the updated i_size when we unlock.
7960 */
7961 if (!dio_data->overwrite && start + len > i_size_read(inode))
7962 i_size_write(inode, start + len);
7963
7964 WARN_ON(dio_data->reserve < len);
7965 dio_data->reserve -= len;
7966 dio_data->unsubmitted_oe_range_end = start + len;
7967 current->journal_info = dio_data;
7968 out:
7969 return ret;
7970 }
7971
btrfs_get_blocks_direct(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)7972 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7973 struct buffer_head *bh_result, int create)
7974 {
7975 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7976 struct extent_map *em;
7977 struct extent_state *cached_state = NULL;
7978 struct btrfs_dio_data *dio_data = NULL;
7979 u64 start = iblock << inode->i_blkbits;
7980 u64 lockstart, lockend;
7981 u64 len = bh_result->b_size;
7982 int ret = 0;
7983
7984 if (!create)
7985 len = min_t(u64, len, fs_info->sectorsize);
7986
7987 lockstart = start;
7988 lockend = start + len - 1;
7989
7990 if (current->journal_info) {
7991 /*
7992 * Need to pull our outstanding extents and set journal_info to NULL so
7993 * that anything that needs to check if there's a transaction doesn't get
7994 * confused.
7995 */
7996 dio_data = current->journal_info;
7997 current->journal_info = NULL;
7998 }
7999
8000 /*
8001 * If this errors out it's because we couldn't invalidate pagecache for
8002 * this range and we need to fallback to buffered.
8003 */
8004 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
8005 create)) {
8006 ret = -ENOTBLK;
8007 goto err;
8008 }
8009
8010 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
8011 if (IS_ERR(em)) {
8012 ret = PTR_ERR(em);
8013 goto unlock_err;
8014 }
8015
8016 /*
8017 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
8018 * io. INLINE is special, and we could probably kludge it in here, but
8019 * it's still buffered so for safety lets just fall back to the generic
8020 * buffered path.
8021 *
8022 * For COMPRESSED we _have_ to read the entire extent in so we can
8023 * decompress it, so there will be buffering required no matter what we
8024 * do, so go ahead and fallback to buffered.
8025 *
8026 * We return -ENOTBLK because that's what makes DIO go ahead and go back
8027 * to buffered IO. Don't blame me, this is the price we pay for using
8028 * the generic code.
8029 */
8030 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
8031 em->block_start == EXTENT_MAP_INLINE) {
8032 free_extent_map(em);
8033 ret = -ENOTBLK;
8034 goto unlock_err;
8035 }
8036
8037 if (create) {
8038 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
8039 dio_data, start, len);
8040 if (ret < 0)
8041 goto unlock_err;
8042
8043 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
8044 lockend, &cached_state);
8045 } else {
8046 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
8047 start, len);
8048 /* Can be negative only if we read from a hole */
8049 if (ret < 0) {
8050 ret = 0;
8051 free_extent_map(em);
8052 goto unlock_err;
8053 }
8054 /*
8055 * We need to unlock only the end area that we aren't using.
8056 * The rest is going to be unlocked by the endio routine.
8057 */
8058 lockstart = start + bh_result->b_size;
8059 if (lockstart < lockend) {
8060 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
8061 lockstart, lockend, &cached_state);
8062 } else {
8063 free_extent_state(cached_state);
8064 }
8065 }
8066
8067 free_extent_map(em);
8068
8069 return 0;
8070
8071 unlock_err:
8072 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
8073 &cached_state);
8074 err:
8075 if (dio_data)
8076 current->journal_info = dio_data;
8077 return ret;
8078 }
8079
submit_dio_repair_bio(struct inode * inode,struct bio * bio,int mirror_num)8080 static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
8081 struct bio *bio,
8082 int mirror_num)
8083 {
8084 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8085 blk_status_t ret;
8086
8087 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8088
8089 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8090 if (ret)
8091 return ret;
8092
8093 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
8094
8095 return ret;
8096 }
8097
btrfs_check_dio_repairable(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,int failed_mirror)8098 static int btrfs_check_dio_repairable(struct inode *inode,
8099 struct bio *failed_bio,
8100 struct io_failure_record *failrec,
8101 int failed_mirror)
8102 {
8103 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8104 int num_copies;
8105
8106 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8107 if (num_copies == 1) {
8108 /*
8109 * we only have a single copy of the data, so don't bother with
8110 * all the retry and error correction code that follows. no
8111 * matter what the error is, it is very likely to persist.
8112 */
8113 btrfs_debug(fs_info,
8114 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
8115 num_copies, failrec->this_mirror, failed_mirror);
8116 return 0;
8117 }
8118
8119 failrec->failed_mirror = failed_mirror;
8120 failrec->this_mirror++;
8121 if (failrec->this_mirror == failed_mirror)
8122 failrec->this_mirror++;
8123
8124 if (failrec->this_mirror > num_copies) {
8125 btrfs_debug(fs_info,
8126 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
8127 num_copies, failrec->this_mirror, failed_mirror);
8128 return 0;
8129 }
8130
8131 return 1;
8132 }
8133
dio_read_error(struct inode * inode,struct bio * failed_bio,struct page * page,unsigned int pgoff,u64 start,u64 end,int failed_mirror,bio_end_io_t * repair_endio,void * repair_arg)8134 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
8135 struct page *page, unsigned int pgoff,
8136 u64 start, u64 end, int failed_mirror,
8137 bio_end_io_t *repair_endio, void *repair_arg)
8138 {
8139 struct io_failure_record *failrec;
8140 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8141 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8142 struct bio *bio;
8143 int isector;
8144 unsigned int read_mode = 0;
8145 int segs;
8146 int ret;
8147 blk_status_t status;
8148 struct bio_vec bvec;
8149
8150 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8151
8152 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
8153 if (ret)
8154 return errno_to_blk_status(ret);
8155
8156 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
8157 failed_mirror);
8158 if (!ret) {
8159 free_io_failure(failure_tree, io_tree, failrec);
8160 return BLK_STS_IOERR;
8161 }
8162
8163 segs = bio_segments(failed_bio);
8164 bio_get_first_bvec(failed_bio, &bvec);
8165 if (segs > 1 ||
8166 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
8167 read_mode |= REQ_FAILFAST_DEV;
8168
8169 isector = start - btrfs_io_bio(failed_bio)->logical;
8170 isector >>= inode->i_sb->s_blocksize_bits;
8171 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
8172 pgoff, isector, repair_endio, repair_arg);
8173 bio->bi_opf = REQ_OP_READ | read_mode;
8174
8175 btrfs_debug(BTRFS_I(inode)->root->fs_info,
8176 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8177 read_mode, failrec->this_mirror, failrec->in_validation);
8178
8179 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8180 if (status) {
8181 free_io_failure(failure_tree, io_tree, failrec);
8182 bio_put(bio);
8183 }
8184
8185 return status;
8186 }
8187
8188 struct btrfs_retry_complete {
8189 struct completion done;
8190 struct inode *inode;
8191 u64 start;
8192 int uptodate;
8193 };
8194
btrfs_retry_endio_nocsum(struct bio * bio)8195 static void btrfs_retry_endio_nocsum(struct bio *bio)
8196 {
8197 struct btrfs_retry_complete *done = bio->bi_private;
8198 struct inode *inode = done->inode;
8199 struct bio_vec *bvec;
8200 struct extent_io_tree *io_tree, *failure_tree;
8201 struct bvec_iter_all iter_all;
8202
8203 if (bio->bi_status)
8204 goto end;
8205
8206 ASSERT(bio->bi_vcnt == 1);
8207 io_tree = &BTRFS_I(inode)->io_tree;
8208 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8209 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
8210
8211 done->uptodate = 1;
8212 ASSERT(!bio_flagged(bio, BIO_CLONED));
8213 bio_for_each_segment_all(bvec, bio, iter_all)
8214 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8215 io_tree, done->start, bvec->bv_page,
8216 btrfs_ino(BTRFS_I(inode)), 0);
8217 end:
8218 complete(&done->done);
8219 bio_put(bio);
8220 }
8221
__btrfs_correct_data_nocsum(struct inode * inode,struct btrfs_io_bio * io_bio)8222 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8223 struct btrfs_io_bio *io_bio)
8224 {
8225 struct btrfs_fs_info *fs_info;
8226 struct bio_vec bvec;
8227 struct bvec_iter iter;
8228 struct btrfs_retry_complete done;
8229 u64 start;
8230 unsigned int pgoff;
8231 u32 sectorsize;
8232 int nr_sectors;
8233 blk_status_t ret;
8234 blk_status_t err = BLK_STS_OK;
8235
8236 fs_info = BTRFS_I(inode)->root->fs_info;
8237 sectorsize = fs_info->sectorsize;
8238
8239 start = io_bio->logical;
8240 done.inode = inode;
8241 io_bio->bio.bi_iter = io_bio->iter;
8242
8243 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8244 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8245 pgoff = bvec.bv_offset;
8246
8247 next_block_or_try_again:
8248 done.uptodate = 0;
8249 done.start = start;
8250 init_completion(&done.done);
8251
8252 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8253 pgoff, start, start + sectorsize - 1,
8254 io_bio->mirror_num,
8255 btrfs_retry_endio_nocsum, &done);
8256 if (ret) {
8257 err = ret;
8258 goto next;
8259 }
8260
8261 wait_for_completion_io(&done.done);
8262
8263 if (!done.uptodate) {
8264 /* We might have another mirror, so try again */
8265 goto next_block_or_try_again;
8266 }
8267
8268 next:
8269 start += sectorsize;
8270
8271 nr_sectors--;
8272 if (nr_sectors) {
8273 pgoff += sectorsize;
8274 ASSERT(pgoff < PAGE_SIZE);
8275 goto next_block_or_try_again;
8276 }
8277 }
8278
8279 return err;
8280 }
8281
btrfs_retry_endio(struct bio * bio)8282 static void btrfs_retry_endio(struct bio *bio)
8283 {
8284 struct btrfs_retry_complete *done = bio->bi_private;
8285 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8286 struct extent_io_tree *io_tree, *failure_tree;
8287 struct inode *inode = done->inode;
8288 struct bio_vec *bvec;
8289 int uptodate;
8290 int ret;
8291 int i = 0;
8292 struct bvec_iter_all iter_all;
8293
8294 if (bio->bi_status)
8295 goto end;
8296
8297 uptodate = 1;
8298
8299 ASSERT(bio->bi_vcnt == 1);
8300 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
8301
8302 io_tree = &BTRFS_I(inode)->io_tree;
8303 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8304
8305 ASSERT(!bio_flagged(bio, BIO_CLONED));
8306 bio_for_each_segment_all(bvec, bio, iter_all) {
8307 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8308 bvec->bv_offset, done->start,
8309 bvec->bv_len);
8310 if (!ret)
8311 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8312 failure_tree, io_tree, done->start,
8313 bvec->bv_page,
8314 btrfs_ino(BTRFS_I(inode)),
8315 bvec->bv_offset);
8316 else
8317 uptodate = 0;
8318 i++;
8319 }
8320
8321 done->uptodate = uptodate;
8322 end:
8323 complete(&done->done);
8324 bio_put(bio);
8325 }
8326
__btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,blk_status_t err)8327 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8328 struct btrfs_io_bio *io_bio, blk_status_t err)
8329 {
8330 struct btrfs_fs_info *fs_info;
8331 struct bio_vec bvec;
8332 struct bvec_iter iter;
8333 struct btrfs_retry_complete done;
8334 u64 start;
8335 u64 offset = 0;
8336 u32 sectorsize;
8337 int nr_sectors;
8338 unsigned int pgoff;
8339 int csum_pos;
8340 bool uptodate = (err == 0);
8341 int ret;
8342 blk_status_t status;
8343
8344 fs_info = BTRFS_I(inode)->root->fs_info;
8345 sectorsize = fs_info->sectorsize;
8346
8347 err = BLK_STS_OK;
8348 start = io_bio->logical;
8349 done.inode = inode;
8350 io_bio->bio.bi_iter = io_bio->iter;
8351
8352 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8353 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8354
8355 pgoff = bvec.bv_offset;
8356 next_block:
8357 if (uptodate) {
8358 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8359 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8360 bvec.bv_page, pgoff, start, sectorsize);
8361 if (likely(!ret))
8362 goto next;
8363 }
8364 try_again:
8365 done.uptodate = 0;
8366 done.start = start;
8367 init_completion(&done.done);
8368
8369 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8370 pgoff, start, start + sectorsize - 1,
8371 io_bio->mirror_num, btrfs_retry_endio,
8372 &done);
8373 if (status) {
8374 err = status;
8375 goto next;
8376 }
8377
8378 wait_for_completion_io(&done.done);
8379
8380 if (!done.uptodate) {
8381 /* We might have another mirror, so try again */
8382 goto try_again;
8383 }
8384 next:
8385 offset += sectorsize;
8386 start += sectorsize;
8387
8388 ASSERT(nr_sectors);
8389
8390 nr_sectors--;
8391 if (nr_sectors) {
8392 pgoff += sectorsize;
8393 ASSERT(pgoff < PAGE_SIZE);
8394 goto next_block;
8395 }
8396 }
8397
8398 return err;
8399 }
8400
btrfs_subio_endio_read(struct inode * inode,struct btrfs_io_bio * io_bio,blk_status_t err)8401 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8402 struct btrfs_io_bio *io_bio, blk_status_t err)
8403 {
8404 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8405
8406 if (skip_csum) {
8407 if (unlikely(err))
8408 return __btrfs_correct_data_nocsum(inode, io_bio);
8409 else
8410 return BLK_STS_OK;
8411 } else {
8412 return __btrfs_subio_endio_read(inode, io_bio, err);
8413 }
8414 }
8415
btrfs_endio_direct_read(struct bio * bio)8416 static void btrfs_endio_direct_read(struct bio *bio)
8417 {
8418 struct btrfs_dio_private *dip = bio->bi_private;
8419 struct inode *inode = dip->inode;
8420 struct bio *dio_bio;
8421 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8422 blk_status_t err = bio->bi_status;
8423
8424 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8425 err = btrfs_subio_endio_read(inode, io_bio, err);
8426
8427 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8428 dip->logical_offset + dip->bytes - 1);
8429 dio_bio = dip->dio_bio;
8430
8431 kfree(dip);
8432
8433 dio_bio->bi_status = err;
8434 dio_end_io(dio_bio);
8435 btrfs_io_bio_free_csum(io_bio);
8436 bio_put(bio);
8437 }
8438
__endio_write_update_ordered(struct inode * inode,const u64 offset,const u64 bytes,const bool uptodate)8439 static void __endio_write_update_ordered(struct inode *inode,
8440 const u64 offset, const u64 bytes,
8441 const bool uptodate)
8442 {
8443 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8444 struct btrfs_ordered_extent *ordered = NULL;
8445 struct btrfs_workqueue *wq;
8446 u64 ordered_offset = offset;
8447 u64 ordered_bytes = bytes;
8448 u64 last_offset;
8449
8450 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
8451 wq = fs_info->endio_freespace_worker;
8452 else
8453 wq = fs_info->endio_write_workers;
8454
8455 while (ordered_offset < offset + bytes) {
8456 last_offset = ordered_offset;
8457 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8458 &ordered_offset,
8459 ordered_bytes,
8460 uptodate)) {
8461 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
8462 NULL);
8463 btrfs_queue_work(wq, &ordered->work);
8464 }
8465 /*
8466 * If btrfs_dec_test_ordered_pending does not find any ordered
8467 * extent in the range, we can exit.
8468 */
8469 if (ordered_offset == last_offset)
8470 return;
8471 /*
8472 * Our bio might span multiple ordered extents. In this case
8473 * we keep going until we have accounted the whole dio.
8474 */
8475 if (ordered_offset < offset + bytes) {
8476 ordered_bytes = offset + bytes - ordered_offset;
8477 ordered = NULL;
8478 }
8479 }
8480 }
8481
btrfs_endio_direct_write(struct bio * bio)8482 static void btrfs_endio_direct_write(struct bio *bio)
8483 {
8484 struct btrfs_dio_private *dip = bio->bi_private;
8485 struct bio *dio_bio = dip->dio_bio;
8486
8487 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8488 dip->bytes, !bio->bi_status);
8489
8490 kfree(dip);
8491
8492 dio_bio->bi_status = bio->bi_status;
8493 dio_end_io(dio_bio);
8494 bio_put(bio);
8495 }
8496
btrfs_submit_bio_start_direct_io(void * private_data,struct bio * bio,u64 offset)8497 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8498 struct bio *bio, u64 offset)
8499 {
8500 struct inode *inode = private_data;
8501 blk_status_t ret;
8502 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8503 BUG_ON(ret); /* -ENOMEM */
8504 return 0;
8505 }
8506
btrfs_end_dio_bio(struct bio * bio)8507 static void btrfs_end_dio_bio(struct bio *bio)
8508 {
8509 struct btrfs_dio_private *dip = bio->bi_private;
8510 blk_status_t err = bio->bi_status;
8511
8512 if (err)
8513 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8514 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8515 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8516 bio->bi_opf,
8517 (unsigned long long)bio->bi_iter.bi_sector,
8518 bio->bi_iter.bi_size, err);
8519
8520 if (dip->subio_endio)
8521 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8522
8523 if (err) {
8524 /*
8525 * We want to perceive the errors flag being set before
8526 * decrementing the reference count. We don't need a barrier
8527 * since atomic operations with a return value are fully
8528 * ordered as per atomic_t.txt
8529 */
8530 dip->errors = 1;
8531 }
8532
8533 /* if there are more bios still pending for this dio, just exit */
8534 if (!atomic_dec_and_test(&dip->pending_bios))
8535 goto out;
8536
8537 if (dip->errors) {
8538 bio_io_error(dip->orig_bio);
8539 } else {
8540 dip->dio_bio->bi_status = BLK_STS_OK;
8541 bio_endio(dip->orig_bio);
8542 }
8543 out:
8544 bio_put(bio);
8545 }
8546
btrfs_lookup_and_bind_dio_csum(struct inode * inode,struct btrfs_dio_private * dip,struct bio * bio,u64 file_offset)8547 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8548 struct btrfs_dio_private *dip,
8549 struct bio *bio,
8550 u64 file_offset)
8551 {
8552 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8553 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8554 u16 csum_size;
8555 blk_status_t ret;
8556
8557 /*
8558 * We load all the csum data we need when we submit
8559 * the first bio to reduce the csum tree search and
8560 * contention.
8561 */
8562 if (dip->logical_offset == file_offset) {
8563 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8564 file_offset);
8565 if (ret)
8566 return ret;
8567 }
8568
8569 if (bio == dip->orig_bio)
8570 return 0;
8571
8572 file_offset -= dip->logical_offset;
8573 file_offset >>= inode->i_sb->s_blocksize_bits;
8574 csum_size = btrfs_super_csum_size(btrfs_sb(inode->i_sb)->super_copy);
8575 io_bio->csum = orig_io_bio->csum + csum_size * file_offset;
8576
8577 return 0;
8578 }
8579
btrfs_submit_dio_bio(struct bio * bio,struct inode * inode,u64 file_offset,int async_submit)8580 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8581 struct inode *inode, u64 file_offset, int async_submit)
8582 {
8583 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8584 struct btrfs_dio_private *dip = bio->bi_private;
8585 bool write = bio_op(bio) == REQ_OP_WRITE;
8586 blk_status_t ret;
8587
8588 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8589 if (async_submit)
8590 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8591
8592 if (!write) {
8593 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8594 if (ret)
8595 goto err;
8596 }
8597
8598 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8599 goto map;
8600
8601 if (write && async_submit) {
8602 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8603 file_offset, inode,
8604 btrfs_submit_bio_start_direct_io);
8605 goto err;
8606 } else if (write) {
8607 /*
8608 * If we aren't doing async submit, calculate the csum of the
8609 * bio now.
8610 */
8611 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8612 if (ret)
8613 goto err;
8614 } else {
8615 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8616 file_offset);
8617 if (ret)
8618 goto err;
8619 }
8620 map:
8621 ret = btrfs_map_bio(fs_info, bio, 0, 0);
8622 err:
8623 return ret;
8624 }
8625
8626 /*
8627 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
8628 * or ordered extents whether or not we submit any bios.
8629 */
btrfs_create_dio_private(struct bio * dio_bio,struct inode * inode,loff_t file_offset)8630 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
8631 struct inode *inode,
8632 loff_t file_offset)
8633 {
8634 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8635 struct btrfs_dio_private *dip;
8636 struct bio *bio;
8637
8638 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8639 if (!dip)
8640 return NULL;
8641
8642 bio = btrfs_bio_clone(dio_bio);
8643 bio->bi_private = dip;
8644 btrfs_io_bio(bio)->logical = file_offset;
8645
8646 dip->private = dio_bio->bi_private;
8647 dip->inode = inode;
8648 dip->logical_offset = file_offset;
8649 dip->bytes = dio_bio->bi_iter.bi_size;
8650 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8651 dip->orig_bio = bio;
8652 dip->dio_bio = dio_bio;
8653 atomic_set(&dip->pending_bios, 1);
8654
8655 if (write) {
8656 struct btrfs_dio_data *dio_data = current->journal_info;
8657
8658 /*
8659 * Setting range start and end to the same value means that
8660 * no cleanup will happen in btrfs_direct_IO
8661 */
8662 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8663 dip->bytes;
8664 dio_data->unsubmitted_oe_range_start =
8665 dio_data->unsubmitted_oe_range_end;
8666
8667 bio->bi_end_io = btrfs_endio_direct_write;
8668 } else {
8669 bio->bi_end_io = btrfs_endio_direct_read;
8670 dip->subio_endio = btrfs_subio_endio_read;
8671 }
8672 return dip;
8673 }
8674
btrfs_submit_direct(struct bio * dio_bio,struct inode * inode,loff_t file_offset)8675 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8676 loff_t file_offset)
8677 {
8678 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8679 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8680 struct btrfs_dio_private *dip;
8681 struct bio *bio;
8682 struct bio *orig_bio;
8683 u64 start_sector;
8684 int async_submit = 0;
8685 u64 submit_len;
8686 int clone_offset = 0;
8687 int clone_len;
8688 int ret;
8689 blk_status_t status;
8690 struct btrfs_io_geometry geom;
8691
8692 dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
8693 if (!dip) {
8694 if (!write) {
8695 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8696 file_offset + dio_bio->bi_iter.bi_size - 1);
8697 }
8698 dio_bio->bi_status = BLK_STS_RESOURCE;
8699 dio_end_io(dio_bio);
8700 return;
8701 }
8702
8703 orig_bio = dip->orig_bio;
8704 start_sector = orig_bio->bi_iter.bi_sector;
8705 submit_len = orig_bio->bi_iter.bi_size;
8706 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8707 start_sector << 9, submit_len, &geom);
8708 if (ret)
8709 goto out_err;
8710
8711 if (geom.len >= submit_len) {
8712 bio = orig_bio;
8713 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8714 goto submit;
8715 }
8716
8717 /* async crcs make it difficult to collect full stripe writes. */
8718 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8719 async_submit = 0;
8720 else
8721 async_submit = 1;
8722
8723 /* bio split */
8724 ASSERT(geom.len <= INT_MAX);
8725 do {
8726 clone_len = min_t(int, submit_len, geom.len);
8727
8728 /*
8729 * This will never fail as it's passing GPF_NOFS and
8730 * the allocation is backed by btrfs_bioset.
8731 */
8732 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8733 clone_len);
8734 bio->bi_private = dip;
8735 bio->bi_end_io = btrfs_end_dio_bio;
8736 btrfs_io_bio(bio)->logical = file_offset;
8737
8738 ASSERT(submit_len >= clone_len);
8739 submit_len -= clone_len;
8740 if (submit_len == 0)
8741 break;
8742
8743 /*
8744 * Increase the count before we submit the bio so we know
8745 * the end IO handler won't happen before we increase the
8746 * count. Otherwise, the dip might get freed before we're
8747 * done setting it up.
8748 */
8749 atomic_inc(&dip->pending_bios);
8750
8751 status = btrfs_submit_dio_bio(bio, inode, file_offset,
8752 async_submit);
8753 if (status) {
8754 bio_put(bio);
8755 atomic_dec(&dip->pending_bios);
8756 goto out_err;
8757 }
8758
8759 clone_offset += clone_len;
8760 start_sector += clone_len >> 9;
8761 file_offset += clone_len;
8762
8763 ret = btrfs_get_io_geometry(fs_info, btrfs_op(orig_bio),
8764 start_sector << 9, submit_len, &geom);
8765 if (ret)
8766 goto out_err;
8767 } while (submit_len > 0);
8768
8769 submit:
8770 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8771 if (!status)
8772 return;
8773
8774 if (bio != orig_bio)
8775 bio_put(bio);
8776 out_err:
8777 dip->errors = 1;
8778 /*
8779 * Before atomic variable goto zero, we must make sure dip->errors is
8780 * perceived to be set. This ordering is ensured by the fact that an
8781 * atomic operations with a return value are fully ordered as per
8782 * atomic_t.txt
8783 */
8784 if (atomic_dec_and_test(&dip->pending_bios))
8785 bio_io_error(dip->orig_bio);
8786 }
8787
check_direct_IO(struct btrfs_fs_info * fs_info,const struct iov_iter * iter,loff_t offset)8788 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8789 const struct iov_iter *iter, loff_t offset)
8790 {
8791 int seg;
8792 int i;
8793 unsigned int blocksize_mask = fs_info->sectorsize - 1;
8794 ssize_t retval = -EINVAL;
8795
8796 if (offset & blocksize_mask)
8797 goto out;
8798
8799 if (iov_iter_alignment(iter) & blocksize_mask)
8800 goto out;
8801
8802 /* If this is a write we don't need to check anymore */
8803 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8804 return 0;
8805 /*
8806 * Check to make sure we don't have duplicate iov_base's in this
8807 * iovec, if so return EINVAL, otherwise we'll get csum errors
8808 * when reading back.
8809 */
8810 for (seg = 0; seg < iter->nr_segs; seg++) {
8811 for (i = seg + 1; i < iter->nr_segs; i++) {
8812 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8813 goto out;
8814 }
8815 }
8816 retval = 0;
8817 out:
8818 return retval;
8819 }
8820
btrfs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)8821 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8822 {
8823 struct file *file = iocb->ki_filp;
8824 struct inode *inode = file->f_mapping->host;
8825 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8826 struct btrfs_dio_data dio_data = { 0 };
8827 struct extent_changeset *data_reserved = NULL;
8828 loff_t offset = iocb->ki_pos;
8829 size_t count = 0;
8830 int flags = 0;
8831 bool wakeup = true;
8832 bool relock = false;
8833 ssize_t ret;
8834
8835 if (check_direct_IO(fs_info, iter, offset))
8836 return 0;
8837
8838 inode_dio_begin(inode);
8839
8840 /*
8841 * The generic stuff only does filemap_write_and_wait_range, which
8842 * isn't enough if we've written compressed pages to this area, so
8843 * we need to flush the dirty pages again to make absolutely sure
8844 * that any outstanding dirty pages are on disk.
8845 */
8846 count = iov_iter_count(iter);
8847 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8848 &BTRFS_I(inode)->runtime_flags))
8849 filemap_fdatawrite_range(inode->i_mapping, offset,
8850 offset + count - 1);
8851
8852 if (iov_iter_rw(iter) == WRITE) {
8853 /*
8854 * If the write DIO is beyond the EOF, we need update
8855 * the isize, but it is protected by i_mutex. So we can
8856 * not unlock the i_mutex at this case.
8857 */
8858 if (offset + count <= inode->i_size) {
8859 dio_data.overwrite = 1;
8860 inode_unlock(inode);
8861 relock = true;
8862 }
8863 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8864 offset, count);
8865 if (ret)
8866 goto out;
8867
8868 /*
8869 * We need to know how many extents we reserved so that we can
8870 * do the accounting properly if we go over the number we
8871 * originally calculated. Abuse current->journal_info for this.
8872 */
8873 dio_data.reserve = round_up(count,
8874 fs_info->sectorsize);
8875 dio_data.unsubmitted_oe_range_start = (u64)offset;
8876 dio_data.unsubmitted_oe_range_end = (u64)offset;
8877 current->journal_info = &dio_data;
8878 down_read(&BTRFS_I(inode)->dio_sem);
8879 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8880 &BTRFS_I(inode)->runtime_flags)) {
8881 inode_dio_end(inode);
8882 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8883 wakeup = false;
8884 }
8885
8886 ret = __blockdev_direct_IO(iocb, inode,
8887 fs_info->fs_devices->latest_bdev,
8888 iter, btrfs_get_blocks_direct, NULL,
8889 btrfs_submit_direct, flags);
8890 if (iov_iter_rw(iter) == WRITE) {
8891 up_read(&BTRFS_I(inode)->dio_sem);
8892 current->journal_info = NULL;
8893 if (ret < 0 && ret != -EIOCBQUEUED) {
8894 if (dio_data.reserve)
8895 btrfs_delalloc_release_space(inode, data_reserved,
8896 offset, dio_data.reserve, true);
8897 /*
8898 * On error we might have left some ordered extents
8899 * without submitting corresponding bios for them, so
8900 * cleanup them up to avoid other tasks getting them
8901 * and waiting for them to complete forever.
8902 */
8903 if (dio_data.unsubmitted_oe_range_start <
8904 dio_data.unsubmitted_oe_range_end)
8905 __endio_write_update_ordered(inode,
8906 dio_data.unsubmitted_oe_range_start,
8907 dio_data.unsubmitted_oe_range_end -
8908 dio_data.unsubmitted_oe_range_start,
8909 false);
8910 } else if (ret >= 0 && (size_t)ret < count)
8911 btrfs_delalloc_release_space(inode, data_reserved,
8912 offset, count - (size_t)ret, true);
8913 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
8914 }
8915 out:
8916 if (wakeup)
8917 inode_dio_end(inode);
8918 if (relock)
8919 inode_lock(inode);
8920
8921 extent_changeset_free(data_reserved);
8922 return ret;
8923 }
8924
8925 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8926
btrfs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)8927 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8928 __u64 start, __u64 len)
8929 {
8930 int ret;
8931
8932 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8933 if (ret)
8934 return ret;
8935
8936 return extent_fiemap(inode, fieinfo, start, len);
8937 }
8938
btrfs_readpage(struct file * file,struct page * page)8939 int btrfs_readpage(struct file *file, struct page *page)
8940 {
8941 struct extent_io_tree *tree;
8942 tree = &BTRFS_I(page->mapping->host)->io_tree;
8943 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8944 }
8945
btrfs_writepage(struct page * page,struct writeback_control * wbc)8946 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8947 {
8948 struct inode *inode = page->mapping->host;
8949 int ret;
8950
8951 if (current->flags & PF_MEMALLOC) {
8952 redirty_page_for_writepage(wbc, page);
8953 unlock_page(page);
8954 return 0;
8955 }
8956
8957 /*
8958 * If we are under memory pressure we will call this directly from the
8959 * VM, we need to make sure we have the inode referenced for the ordered
8960 * extent. If not just return like we didn't do anything.
8961 */
8962 if (!igrab(inode)) {
8963 redirty_page_for_writepage(wbc, page);
8964 return AOP_WRITEPAGE_ACTIVATE;
8965 }
8966 ret = extent_write_full_page(page, wbc);
8967 btrfs_add_delayed_iput(inode);
8968 return ret;
8969 }
8970
btrfs_writepages(struct address_space * mapping,struct writeback_control * wbc)8971 static int btrfs_writepages(struct address_space *mapping,
8972 struct writeback_control *wbc)
8973 {
8974 return extent_writepages(mapping, wbc);
8975 }
8976
8977 static int
btrfs_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)8978 btrfs_readpages(struct file *file, struct address_space *mapping,
8979 struct list_head *pages, unsigned nr_pages)
8980 {
8981 return extent_readpages(mapping, pages, nr_pages);
8982 }
8983
__btrfs_releasepage(struct page * page,gfp_t gfp_flags)8984 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8985 {
8986 int ret = try_release_extent_mapping(page, gfp_flags);
8987 if (ret == 1) {
8988 ClearPagePrivate(page);
8989 set_page_private(page, 0);
8990 put_page(page);
8991 }
8992 return ret;
8993 }
8994
btrfs_releasepage(struct page * page,gfp_t gfp_flags)8995 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8996 {
8997 if (PageWriteback(page) || PageDirty(page))
8998 return 0;
8999 return __btrfs_releasepage(page, gfp_flags);
9000 }
9001
btrfs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)9002 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
9003 unsigned int length)
9004 {
9005 struct inode *inode = page->mapping->host;
9006 struct extent_io_tree *tree;
9007 struct btrfs_ordered_extent *ordered;
9008 struct extent_state *cached_state = NULL;
9009 u64 page_start = page_offset(page);
9010 u64 page_end = page_start + PAGE_SIZE - 1;
9011 u64 start;
9012 u64 end;
9013 int inode_evicting = inode->i_state & I_FREEING;
9014
9015 /*
9016 * we have the page locked, so new writeback can't start,
9017 * and the dirty bit won't be cleared while we are here.
9018 *
9019 * Wait for IO on this page so that we can safely clear
9020 * the PagePrivate2 bit and do ordered accounting
9021 */
9022 wait_on_page_writeback(page);
9023
9024 tree = &BTRFS_I(inode)->io_tree;
9025 if (offset) {
9026 btrfs_releasepage(page, GFP_NOFS);
9027 return;
9028 }
9029
9030 if (!inode_evicting)
9031 lock_extent_bits(tree, page_start, page_end, &cached_state);
9032 again:
9033 start = page_start;
9034 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9035 page_end - start + 1);
9036 if (ordered) {
9037 end = min(page_end, ordered->file_offset + ordered->len - 1);
9038 /*
9039 * IO on this page will never be started, so we need
9040 * to account for any ordered extents now
9041 */
9042 if (!inode_evicting)
9043 clear_extent_bit(tree, start, end,
9044 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9045 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
9046 EXTENT_DEFRAG, 1, 0, &cached_state);
9047 /*
9048 * whoever cleared the private bit is responsible
9049 * for the finish_ordered_io
9050 */
9051 if (TestClearPagePrivate2(page)) {
9052 struct btrfs_ordered_inode_tree *tree;
9053 u64 new_len;
9054
9055 tree = &BTRFS_I(inode)->ordered_tree;
9056
9057 spin_lock_irq(&tree->lock);
9058 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
9059 new_len = start - ordered->file_offset;
9060 if (new_len < ordered->truncated_len)
9061 ordered->truncated_len = new_len;
9062 spin_unlock_irq(&tree->lock);
9063
9064 if (btrfs_dec_test_ordered_pending(inode, &ordered,
9065 start,
9066 end - start + 1, 1))
9067 btrfs_finish_ordered_io(ordered);
9068 }
9069 btrfs_put_ordered_extent(ordered);
9070 if (!inode_evicting) {
9071 cached_state = NULL;
9072 lock_extent_bits(tree, start, end,
9073 &cached_state);
9074 }
9075
9076 start = end + 1;
9077 if (start < page_end)
9078 goto again;
9079 }
9080
9081 /*
9082 * Qgroup reserved space handler
9083 * Page here will be either
9084 * 1) Already written to disk or ordered extent already submitted
9085 * Then its QGROUP_RESERVED bit in io_tree is already cleaned.
9086 * Qgroup will be handled by its qgroup_record then.
9087 * btrfs_qgroup_free_data() call will do nothing here.
9088 *
9089 * 2) Not written to disk yet
9090 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
9091 * bit of its io_tree, and free the qgroup reserved data space.
9092 * Since the IO will never happen for this page.
9093 */
9094 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
9095 if (!inode_evicting) {
9096 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
9097 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9098 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
9099 &cached_state);
9100
9101 __btrfs_releasepage(page, GFP_NOFS);
9102 }
9103
9104 ClearPageChecked(page);
9105 if (PagePrivate(page)) {
9106 ClearPagePrivate(page);
9107 set_page_private(page, 0);
9108 put_page(page);
9109 }
9110 }
9111
9112 /*
9113 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9114 * called from a page fault handler when a page is first dirtied. Hence we must
9115 * be careful to check for EOF conditions here. We set the page up correctly
9116 * for a written page which means we get ENOSPC checking when writing into
9117 * holes and correct delalloc and unwritten extent mapping on filesystems that
9118 * support these features.
9119 *
9120 * We are not allowed to take the i_mutex here so we have to play games to
9121 * protect against truncate races as the page could now be beyond EOF. Because
9122 * truncate_setsize() writes the inode size before removing pages, once we have
9123 * the page lock we can determine safely if the page is beyond EOF. If it is not
9124 * beyond EOF, then the page is guaranteed safe against truncation until we
9125 * unlock the page.
9126 */
btrfs_page_mkwrite(struct vm_fault * vmf)9127 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9128 {
9129 struct page *page = vmf->page;
9130 struct inode *inode = file_inode(vmf->vma->vm_file);
9131 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9132 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9133 struct btrfs_ordered_extent *ordered;
9134 struct extent_state *cached_state = NULL;
9135 struct extent_changeset *data_reserved = NULL;
9136 char *kaddr;
9137 unsigned long zero_start;
9138 loff_t size;
9139 vm_fault_t ret;
9140 int ret2;
9141 int reserved = 0;
9142 u64 reserved_space;
9143 u64 page_start;
9144 u64 page_end;
9145 u64 end;
9146
9147 reserved_space = PAGE_SIZE;
9148
9149 sb_start_pagefault(inode->i_sb);
9150 page_start = page_offset(page);
9151 page_end = page_start + PAGE_SIZE - 1;
9152 end = page_end;
9153
9154 /*
9155 * Reserving delalloc space after obtaining the page lock can lead to
9156 * deadlock. For example, if a dirty page is locked by this function
9157 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9158 * dirty page write out, then the btrfs_writepage() function could
9159 * end up waiting indefinitely to get a lock on the page currently
9160 * being processed by btrfs_page_mkwrite() function.
9161 */
9162 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
9163 reserved_space);
9164 if (!ret2) {
9165 ret2 = file_update_time(vmf->vma->vm_file);
9166 reserved = 1;
9167 }
9168 if (ret2) {
9169 ret = vmf_error(ret2);
9170 if (reserved)
9171 goto out;
9172 goto out_noreserve;
9173 }
9174
9175 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9176 again:
9177 lock_page(page);
9178 size = i_size_read(inode);
9179
9180 if ((page->mapping != inode->i_mapping) ||
9181 (page_start >= size)) {
9182 /* page got truncated out from underneath us */
9183 goto out_unlock;
9184 }
9185 wait_on_page_writeback(page);
9186
9187 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9188 set_page_extent_mapped(page);
9189
9190 /*
9191 * we can't set the delalloc bits if there are pending ordered
9192 * extents. Drop our locks and wait for them to finish
9193 */
9194 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9195 PAGE_SIZE);
9196 if (ordered) {
9197 unlock_extent_cached(io_tree, page_start, page_end,
9198 &cached_state);
9199 unlock_page(page);
9200 btrfs_start_ordered_extent(inode, ordered, 1);
9201 btrfs_put_ordered_extent(ordered);
9202 goto again;
9203 }
9204
9205 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9206 reserved_space = round_up(size - page_start,
9207 fs_info->sectorsize);
9208 if (reserved_space < PAGE_SIZE) {
9209 end = page_start + reserved_space - 1;
9210 btrfs_delalloc_release_space(inode, data_reserved,
9211 page_start, PAGE_SIZE - reserved_space,
9212 true);
9213 }
9214 }
9215
9216 /*
9217 * page_mkwrite gets called when the page is firstly dirtied after it's
9218 * faulted in, but write(2) could also dirty a page and set delalloc
9219 * bits, thus in this case for space account reason, we still need to
9220 * clear any delalloc bits within this page range since we have to
9221 * reserve data&meta space before lock_page() (see above comments).
9222 */
9223 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9224 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
9225 EXTENT_DEFRAG, 0, 0, &cached_state);
9226
9227 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
9228 &cached_state);
9229 if (ret2) {
9230 unlock_extent_cached(io_tree, page_start, page_end,
9231 &cached_state);
9232 ret = VM_FAULT_SIGBUS;
9233 goto out_unlock;
9234 }
9235 ret2 = 0;
9236
9237 /* page is wholly or partially inside EOF */
9238 if (page_start + PAGE_SIZE > size)
9239 zero_start = offset_in_page(size);
9240 else
9241 zero_start = PAGE_SIZE;
9242
9243 if (zero_start != PAGE_SIZE) {
9244 kaddr = kmap(page);
9245 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9246 flush_dcache_page(page);
9247 kunmap(page);
9248 }
9249 ClearPageChecked(page);
9250 set_page_dirty(page);
9251 SetPageUptodate(page);
9252
9253 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
9254
9255 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9256
9257 if (!ret2) {
9258 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9259 sb_end_pagefault(inode->i_sb);
9260 extent_changeset_free(data_reserved);
9261 return VM_FAULT_LOCKED;
9262 }
9263
9264 out_unlock:
9265 unlock_page(page);
9266 out:
9267 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
9268 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9269 reserved_space, (ret != 0));
9270 out_noreserve:
9271 sb_end_pagefault(inode->i_sb);
9272 extent_changeset_free(data_reserved);
9273 return ret;
9274 }
9275
btrfs_truncate(struct inode * inode,bool skip_writeback)9276 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
9277 {
9278 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9279 struct btrfs_root *root = BTRFS_I(inode)->root;
9280 struct btrfs_block_rsv *rsv;
9281 int ret;
9282 struct btrfs_trans_handle *trans;
9283 u64 mask = fs_info->sectorsize - 1;
9284 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
9285
9286 if (!skip_writeback) {
9287 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9288 (u64)-1);
9289 if (ret)
9290 return ret;
9291 }
9292
9293 /*
9294 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
9295 * things going on here:
9296 *
9297 * 1) We need to reserve space to update our inode.
9298 *
9299 * 2) We need to have something to cache all the space that is going to
9300 * be free'd up by the truncate operation, but also have some slack
9301 * space reserved in case it uses space during the truncate (thank you
9302 * very much snapshotting).
9303 *
9304 * And we need these to be separate. The fact is we can use a lot of
9305 * space doing the truncate, and we have no earthly idea how much space
9306 * we will use, so we need the truncate reservation to be separate so it
9307 * doesn't end up using space reserved for updating the inode. We also
9308 * need to be able to stop the transaction and start a new one, which
9309 * means we need to be able to update the inode several times, and we
9310 * have no idea of knowing how many times that will be, so we can't just
9311 * reserve 1 item for the entirety of the operation, so that has to be
9312 * done separately as well.
9313 *
9314 * So that leaves us with
9315 *
9316 * 1) rsv - for the truncate reservation, which we will steal from the
9317 * transaction reservation.
9318 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9319 * updating the inode.
9320 */
9321 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9322 if (!rsv)
9323 return -ENOMEM;
9324 rsv->size = min_size;
9325 rsv->failfast = 1;
9326
9327 /*
9328 * 1 for the truncate slack space
9329 * 1 for updating the inode.
9330 */
9331 trans = btrfs_start_transaction(root, 2);
9332 if (IS_ERR(trans)) {
9333 ret = PTR_ERR(trans);
9334 goto out;
9335 }
9336
9337 /* Migrate the slack space for the truncate to our reserve */
9338 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9339 min_size, false);
9340 BUG_ON(ret);
9341
9342 /*
9343 * So if we truncate and then write and fsync we normally would just
9344 * write the extents that changed, which is a problem if we need to
9345 * first truncate that entire inode. So set this flag so we write out
9346 * all of the extents in the inode to the sync log so we're completely
9347 * safe.
9348 */
9349 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9350 trans->block_rsv = rsv;
9351
9352 while (1) {
9353 ret = btrfs_truncate_inode_items(trans, root, inode,
9354 inode->i_size,
9355 BTRFS_EXTENT_DATA_KEY);
9356 trans->block_rsv = &fs_info->trans_block_rsv;
9357 if (ret != -ENOSPC && ret != -EAGAIN)
9358 break;
9359
9360 ret = btrfs_update_inode(trans, root, inode);
9361 if (ret)
9362 break;
9363
9364 btrfs_end_transaction(trans);
9365 btrfs_btree_balance_dirty(fs_info);
9366
9367 trans = btrfs_start_transaction(root, 2);
9368 if (IS_ERR(trans)) {
9369 ret = PTR_ERR(trans);
9370 trans = NULL;
9371 break;
9372 }
9373
9374 btrfs_block_rsv_release(fs_info, rsv, -1);
9375 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9376 rsv, min_size, false);
9377 BUG_ON(ret); /* shouldn't happen */
9378 trans->block_rsv = rsv;
9379 }
9380
9381 /*
9382 * We can't call btrfs_truncate_block inside a trans handle as we could
9383 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9384 * we've truncated everything except the last little bit, and can do
9385 * btrfs_truncate_block and then update the disk_i_size.
9386 */
9387 if (ret == NEED_TRUNCATE_BLOCK) {
9388 btrfs_end_transaction(trans);
9389 btrfs_btree_balance_dirty(fs_info);
9390
9391 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9392 if (ret)
9393 goto out;
9394 trans = btrfs_start_transaction(root, 1);
9395 if (IS_ERR(trans)) {
9396 ret = PTR_ERR(trans);
9397 goto out;
9398 }
9399 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9400 }
9401
9402 if (trans) {
9403 int ret2;
9404
9405 trans->block_rsv = &fs_info->trans_block_rsv;
9406 ret2 = btrfs_update_inode(trans, root, inode);
9407 if (ret2 && !ret)
9408 ret = ret2;
9409
9410 ret2 = btrfs_end_transaction(trans);
9411 if (ret2 && !ret)
9412 ret = ret2;
9413 btrfs_btree_balance_dirty(fs_info);
9414 }
9415 out:
9416 btrfs_free_block_rsv(fs_info, rsv);
9417
9418 return ret;
9419 }
9420
9421 /*
9422 * create a new subvolume directory/inode (helper for the ioctl).
9423 */
btrfs_create_subvol_root(struct btrfs_trans_handle * trans,struct btrfs_root * new_root,struct btrfs_root * parent_root,u64 new_dirid)9424 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9425 struct btrfs_root *new_root,
9426 struct btrfs_root *parent_root,
9427 u64 new_dirid)
9428 {
9429 struct inode *inode;
9430 int err;
9431 u64 index = 0;
9432
9433 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9434 new_dirid, new_dirid,
9435 S_IFDIR | (~current_umask() & S_IRWXUGO),
9436 &index);
9437 if (IS_ERR(inode))
9438 return PTR_ERR(inode);
9439 inode->i_op = &btrfs_dir_inode_operations;
9440 inode->i_fop = &btrfs_dir_file_operations;
9441
9442 set_nlink(inode, 1);
9443 btrfs_i_size_write(BTRFS_I(inode), 0);
9444 unlock_new_inode(inode);
9445
9446 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9447 if (err)
9448 btrfs_err(new_root->fs_info,
9449 "error inheriting subvolume %llu properties: %d",
9450 new_root->root_key.objectid, err);
9451
9452 err = btrfs_update_inode(trans, new_root, inode);
9453
9454 iput(inode);
9455 return err;
9456 }
9457
btrfs_alloc_inode(struct super_block * sb)9458 struct inode *btrfs_alloc_inode(struct super_block *sb)
9459 {
9460 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9461 struct btrfs_inode *ei;
9462 struct inode *inode;
9463
9464 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9465 if (!ei)
9466 return NULL;
9467
9468 ei->root = NULL;
9469 ei->generation = 0;
9470 ei->last_trans = 0;
9471 ei->last_sub_trans = 0;
9472 ei->logged_trans = 0;
9473 ei->delalloc_bytes = 0;
9474 ei->new_delalloc_bytes = 0;
9475 ei->defrag_bytes = 0;
9476 ei->disk_i_size = 0;
9477 ei->flags = 0;
9478 ei->csum_bytes = 0;
9479 ei->index_cnt = (u64)-1;
9480 ei->dir_index = 0;
9481 ei->last_unlink_trans = 0;
9482 ei->last_log_commit = 0;
9483
9484 spin_lock_init(&ei->lock);
9485 ei->outstanding_extents = 0;
9486 if (sb->s_magic != BTRFS_TEST_MAGIC)
9487 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9488 BTRFS_BLOCK_RSV_DELALLOC);
9489 ei->runtime_flags = 0;
9490 ei->prop_compress = BTRFS_COMPRESS_NONE;
9491 ei->defrag_compress = BTRFS_COMPRESS_NONE;
9492
9493 ei->delayed_node = NULL;
9494
9495 ei->i_otime.tv_sec = 0;
9496 ei->i_otime.tv_nsec = 0;
9497
9498 inode = &ei->vfs_inode;
9499 extent_map_tree_init(&ei->extent_tree);
9500 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9501 extent_io_tree_init(fs_info, &ei->io_failure_tree,
9502 IO_TREE_INODE_IO_FAILURE, inode);
9503 ei->io_tree.track_uptodate = true;
9504 ei->io_failure_tree.track_uptodate = true;
9505 atomic_set(&ei->sync_writers, 0);
9506 mutex_init(&ei->log_mutex);
9507 mutex_init(&ei->delalloc_mutex);
9508 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9509 INIT_LIST_HEAD(&ei->delalloc_inodes);
9510 INIT_LIST_HEAD(&ei->delayed_iput);
9511 RB_CLEAR_NODE(&ei->rb_node);
9512 init_rwsem(&ei->dio_sem);
9513
9514 return inode;
9515 }
9516
9517 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
btrfs_test_destroy_inode(struct inode * inode)9518 void btrfs_test_destroy_inode(struct inode *inode)
9519 {
9520 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9521 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9522 }
9523 #endif
9524
btrfs_free_inode(struct inode * inode)9525 void btrfs_free_inode(struct inode *inode)
9526 {
9527 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9528 }
9529
btrfs_destroy_inode(struct inode * inode)9530 void btrfs_destroy_inode(struct inode *inode)
9531 {
9532 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9533 struct btrfs_ordered_extent *ordered;
9534 struct btrfs_root *root = BTRFS_I(inode)->root;
9535
9536 WARN_ON(!hlist_empty(&inode->i_dentry));
9537 WARN_ON(inode->i_data.nrpages);
9538 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9539 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9540 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9541 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9542 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9543 WARN_ON(BTRFS_I(inode)->csum_bytes);
9544 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9545
9546 /*
9547 * This can happen where we create an inode, but somebody else also
9548 * created the same inode and we need to destroy the one we already
9549 * created.
9550 */
9551 if (!root)
9552 return;
9553
9554 while (1) {
9555 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9556 if (!ordered)
9557 break;
9558 else {
9559 btrfs_err(fs_info,
9560 "found ordered extent %llu %llu on inode cleanup",
9561 ordered->file_offset, ordered->len);
9562 btrfs_remove_ordered_extent(inode, ordered);
9563 btrfs_put_ordered_extent(ordered);
9564 btrfs_put_ordered_extent(ordered);
9565 }
9566 }
9567 btrfs_qgroup_check_reserved_leak(BTRFS_I(inode));
9568 inode_tree_del(inode);
9569 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9570 }
9571
btrfs_drop_inode(struct inode * inode)9572 int btrfs_drop_inode(struct inode *inode)
9573 {
9574 struct btrfs_root *root = BTRFS_I(inode)->root;
9575
9576 if (root == NULL)
9577 return 1;
9578
9579 /* the snap/subvol tree is on deleting */
9580 if (btrfs_root_refs(&root->root_item) == 0)
9581 return 1;
9582 else
9583 return generic_drop_inode(inode);
9584 }
9585
init_once(void * foo)9586 static void init_once(void *foo)
9587 {
9588 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9589
9590 inode_init_once(&ei->vfs_inode);
9591 }
9592
btrfs_destroy_cachep(void)9593 void __cold btrfs_destroy_cachep(void)
9594 {
9595 /*
9596 * Make sure all delayed rcu free inodes are flushed before we
9597 * destroy cache.
9598 */
9599 rcu_barrier();
9600 kmem_cache_destroy(btrfs_inode_cachep);
9601 kmem_cache_destroy(btrfs_trans_handle_cachep);
9602 kmem_cache_destroy(btrfs_path_cachep);
9603 kmem_cache_destroy(btrfs_free_space_cachep);
9604 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9605 }
9606
btrfs_init_cachep(void)9607 int __init btrfs_init_cachep(void)
9608 {
9609 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9610 sizeof(struct btrfs_inode), 0,
9611 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9612 init_once);
9613 if (!btrfs_inode_cachep)
9614 goto fail;
9615
9616 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9617 sizeof(struct btrfs_trans_handle), 0,
9618 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9619 if (!btrfs_trans_handle_cachep)
9620 goto fail;
9621
9622 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9623 sizeof(struct btrfs_path), 0,
9624 SLAB_MEM_SPREAD, NULL);
9625 if (!btrfs_path_cachep)
9626 goto fail;
9627
9628 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9629 sizeof(struct btrfs_free_space), 0,
9630 SLAB_MEM_SPREAD, NULL);
9631 if (!btrfs_free_space_cachep)
9632 goto fail;
9633
9634 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9635 PAGE_SIZE, PAGE_SIZE,
9636 SLAB_MEM_SPREAD, NULL);
9637 if (!btrfs_free_space_bitmap_cachep)
9638 goto fail;
9639
9640 return 0;
9641 fail:
9642 btrfs_destroy_cachep();
9643 return -ENOMEM;
9644 }
9645
btrfs_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int flags)9646 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9647 u32 request_mask, unsigned int flags)
9648 {
9649 u64 delalloc_bytes;
9650 struct inode *inode = d_inode(path->dentry);
9651 u32 blocksize = inode->i_sb->s_blocksize;
9652 u32 bi_flags = BTRFS_I(inode)->flags;
9653
9654 stat->result_mask |= STATX_BTIME;
9655 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9656 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9657 if (bi_flags & BTRFS_INODE_APPEND)
9658 stat->attributes |= STATX_ATTR_APPEND;
9659 if (bi_flags & BTRFS_INODE_COMPRESS)
9660 stat->attributes |= STATX_ATTR_COMPRESSED;
9661 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9662 stat->attributes |= STATX_ATTR_IMMUTABLE;
9663 if (bi_flags & BTRFS_INODE_NODUMP)
9664 stat->attributes |= STATX_ATTR_NODUMP;
9665
9666 stat->attributes_mask |= (STATX_ATTR_APPEND |
9667 STATX_ATTR_COMPRESSED |
9668 STATX_ATTR_IMMUTABLE |
9669 STATX_ATTR_NODUMP);
9670
9671 generic_fillattr(inode, stat);
9672 stat->dev = BTRFS_I(inode)->root->anon_dev;
9673
9674 spin_lock(&BTRFS_I(inode)->lock);
9675 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9676 spin_unlock(&BTRFS_I(inode)->lock);
9677 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9678 ALIGN(delalloc_bytes, blocksize)) >> 9;
9679 return 0;
9680 }
9681
btrfs_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)9682 static int btrfs_rename_exchange(struct inode *old_dir,
9683 struct dentry *old_dentry,
9684 struct inode *new_dir,
9685 struct dentry *new_dentry)
9686 {
9687 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9688 struct btrfs_trans_handle *trans;
9689 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9690 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9691 struct inode *new_inode = new_dentry->d_inode;
9692 struct inode *old_inode = old_dentry->d_inode;
9693 struct timespec64 ctime = current_time(old_inode);
9694 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9695 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9696 u64 old_idx = 0;
9697 u64 new_idx = 0;
9698 int ret;
9699 int ret2;
9700 bool root_log_pinned = false;
9701 bool dest_log_pinned = false;
9702
9703 /*
9704 * For non-subvolumes allow exchange only within one subvolume, in the
9705 * same inode namespace. Two subvolumes (represented as directory) can
9706 * be exchanged as they're a logical link and have a fixed inode number.
9707 */
9708 if (root != dest &&
9709 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9710 new_ino != BTRFS_FIRST_FREE_OBJECTID))
9711 return -EXDEV;
9712
9713 /* close the race window with snapshot create/destroy ioctl */
9714 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9715 new_ino == BTRFS_FIRST_FREE_OBJECTID)
9716 down_read(&fs_info->subvol_sem);
9717
9718 /*
9719 * We want to reserve the absolute worst case amount of items. So if
9720 * both inodes are subvols and we need to unlink them then that would
9721 * require 4 item modifications, but if they are both normal inodes it
9722 * would require 5 item modifications, so we'll assume their normal
9723 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9724 * should cover the worst case number of items we'll modify.
9725 */
9726 trans = btrfs_start_transaction(root, 12);
9727 if (IS_ERR(trans)) {
9728 ret = PTR_ERR(trans);
9729 goto out_notrans;
9730 }
9731
9732 if (dest != root)
9733 btrfs_record_root_in_trans(trans, dest);
9734
9735 /*
9736 * We need to find a free sequence number both in the source and
9737 * in the destination directory for the exchange.
9738 */
9739 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9740 if (ret)
9741 goto out_fail;
9742 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9743 if (ret)
9744 goto out_fail;
9745
9746 BTRFS_I(old_inode)->dir_index = 0ULL;
9747 BTRFS_I(new_inode)->dir_index = 0ULL;
9748
9749 /* Reference for the source. */
9750 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9751 /* force full log commit if subvolume involved. */
9752 btrfs_set_log_full_commit(trans);
9753 } else {
9754 ret = btrfs_insert_inode_ref(trans, dest,
9755 new_dentry->d_name.name,
9756 new_dentry->d_name.len,
9757 old_ino,
9758 btrfs_ino(BTRFS_I(new_dir)),
9759 old_idx);
9760 if (ret)
9761 goto out_fail;
9762 }
9763
9764 /* And now for the dest. */
9765 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9766 /* force full log commit if subvolume involved. */
9767 btrfs_set_log_full_commit(trans);
9768 } else {
9769 ret = btrfs_insert_inode_ref(trans, root,
9770 old_dentry->d_name.name,
9771 old_dentry->d_name.len,
9772 new_ino,
9773 btrfs_ino(BTRFS_I(old_dir)),
9774 new_idx);
9775 if (ret)
9776 goto out_fail;
9777 }
9778
9779 /* Update inode version and ctime/mtime. */
9780 inode_inc_iversion(old_dir);
9781 inode_inc_iversion(new_dir);
9782 inode_inc_iversion(old_inode);
9783 inode_inc_iversion(new_inode);
9784 old_dir->i_ctime = old_dir->i_mtime = ctime;
9785 new_dir->i_ctime = new_dir->i_mtime = ctime;
9786 old_inode->i_ctime = ctime;
9787 new_inode->i_ctime = ctime;
9788
9789 if (old_dentry->d_parent != new_dentry->d_parent) {
9790 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9791 BTRFS_I(old_inode), 1);
9792 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9793 BTRFS_I(new_inode), 1);
9794 }
9795
9796 /*
9797 * Now pin the logs of the roots. We do it to ensure that no other task
9798 * can sync the logs while we are in progress with the rename, because
9799 * that could result in an inconsistency in case any of the inodes that
9800 * are part of this rename operation were logged before.
9801 *
9802 * We pin the logs even if at this precise moment none of the inodes was
9803 * logged before. This is because right after we checked for that, some
9804 * other task fsyncing some other inode not involved with this rename
9805 * operation could log that one of our inodes exists.
9806 *
9807 * We don't need to pin the logs before the above calls to
9808 * btrfs_insert_inode_ref(), since those don't ever need to change a log.
9809 */
9810 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9811 btrfs_pin_log_trans(root);
9812 root_log_pinned = true;
9813 }
9814 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) {
9815 btrfs_pin_log_trans(dest);
9816 dest_log_pinned = true;
9817 }
9818
9819 /* src is a subvolume */
9820 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9821 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9822 } else { /* src is an inode */
9823 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9824 BTRFS_I(old_dentry->d_inode),
9825 old_dentry->d_name.name,
9826 old_dentry->d_name.len);
9827 if (!ret)
9828 ret = btrfs_update_inode(trans, root, old_inode);
9829 }
9830 if (ret) {
9831 btrfs_abort_transaction(trans, ret);
9832 goto out_fail;
9833 }
9834
9835 /* dest is a subvolume */
9836 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9837 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9838 } else { /* dest is an inode */
9839 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9840 BTRFS_I(new_dentry->d_inode),
9841 new_dentry->d_name.name,
9842 new_dentry->d_name.len);
9843 if (!ret)
9844 ret = btrfs_update_inode(trans, dest, new_inode);
9845 }
9846 if (ret) {
9847 btrfs_abort_transaction(trans, ret);
9848 goto out_fail;
9849 }
9850
9851 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9852 new_dentry->d_name.name,
9853 new_dentry->d_name.len, 0, old_idx);
9854 if (ret) {
9855 btrfs_abort_transaction(trans, ret);
9856 goto out_fail;
9857 }
9858
9859 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9860 old_dentry->d_name.name,
9861 old_dentry->d_name.len, 0, new_idx);
9862 if (ret) {
9863 btrfs_abort_transaction(trans, ret);
9864 goto out_fail;
9865 }
9866
9867 if (old_inode->i_nlink == 1)
9868 BTRFS_I(old_inode)->dir_index = old_idx;
9869 if (new_inode->i_nlink == 1)
9870 BTRFS_I(new_inode)->dir_index = new_idx;
9871
9872 if (root_log_pinned) {
9873 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9874 new_dentry->d_parent);
9875 btrfs_end_log_trans(root);
9876 root_log_pinned = false;
9877 }
9878 if (dest_log_pinned) {
9879 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9880 old_dentry->d_parent);
9881 btrfs_end_log_trans(dest);
9882 dest_log_pinned = false;
9883 }
9884 out_fail:
9885 /*
9886 * If we have pinned a log and an error happened, we unpin tasks
9887 * trying to sync the log and force them to fallback to a transaction
9888 * commit if the log currently contains any of the inodes involved in
9889 * this rename operation (to ensure we do not persist a log with an
9890 * inconsistent state for any of these inodes or leading to any
9891 * inconsistencies when replayed). If the transaction was aborted, the
9892 * abortion reason is propagated to userspace when attempting to commit
9893 * the transaction. If the log does not contain any of these inodes, we
9894 * allow the tasks to sync it.
9895 */
9896 if (ret && (root_log_pinned || dest_log_pinned)) {
9897 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9898 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9899 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9900 (new_inode &&
9901 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9902 btrfs_set_log_full_commit(trans);
9903
9904 if (root_log_pinned) {
9905 btrfs_end_log_trans(root);
9906 root_log_pinned = false;
9907 }
9908 if (dest_log_pinned) {
9909 btrfs_end_log_trans(dest);
9910 dest_log_pinned = false;
9911 }
9912 }
9913 ret2 = btrfs_end_transaction(trans);
9914 ret = ret ? ret : ret2;
9915 out_notrans:
9916 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9917 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9918 up_read(&fs_info->subvol_sem);
9919
9920 return ret;
9921 }
9922
btrfs_whiteout_for_rename(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,struct dentry * dentry)9923 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9924 struct btrfs_root *root,
9925 struct inode *dir,
9926 struct dentry *dentry)
9927 {
9928 int ret;
9929 struct inode *inode;
9930 u64 objectid;
9931 u64 index;
9932
9933 ret = btrfs_find_free_objectid(root, &objectid);
9934 if (ret)
9935 return ret;
9936
9937 inode = btrfs_new_inode(trans, root, dir,
9938 dentry->d_name.name,
9939 dentry->d_name.len,
9940 btrfs_ino(BTRFS_I(dir)),
9941 objectid,
9942 S_IFCHR | WHITEOUT_MODE,
9943 &index);
9944
9945 if (IS_ERR(inode)) {
9946 ret = PTR_ERR(inode);
9947 return ret;
9948 }
9949
9950 inode->i_op = &btrfs_special_inode_operations;
9951 init_special_inode(inode, inode->i_mode,
9952 WHITEOUT_DEV);
9953
9954 ret = btrfs_init_inode_security(trans, inode, dir,
9955 &dentry->d_name);
9956 if (ret)
9957 goto out;
9958
9959 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9960 BTRFS_I(inode), 0, index);
9961 if (ret)
9962 goto out;
9963
9964 ret = btrfs_update_inode(trans, root, inode);
9965 out:
9966 unlock_new_inode(inode);
9967 if (ret)
9968 inode_dec_link_count(inode);
9969 iput(inode);
9970
9971 return ret;
9972 }
9973
btrfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)9974 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9975 struct inode *new_dir, struct dentry *new_dentry,
9976 unsigned int flags)
9977 {
9978 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9979 struct btrfs_trans_handle *trans;
9980 unsigned int trans_num_items;
9981 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9982 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9983 struct inode *new_inode = d_inode(new_dentry);
9984 struct inode *old_inode = d_inode(old_dentry);
9985 u64 index = 0;
9986 int ret;
9987 int ret2;
9988 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9989 bool log_pinned = false;
9990
9991 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9992 return -EPERM;
9993
9994 /* we only allow rename subvolume link between subvolumes */
9995 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9996 return -EXDEV;
9997
9998 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9999 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
10000 return -ENOTEMPTY;
10001
10002 if (S_ISDIR(old_inode->i_mode) && new_inode &&
10003 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
10004 return -ENOTEMPTY;
10005
10006
10007 /* check for collisions, even if the name isn't there */
10008 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
10009 new_dentry->d_name.name,
10010 new_dentry->d_name.len);
10011
10012 if (ret) {
10013 if (ret == -EEXIST) {
10014 /* we shouldn't get
10015 * eexist without a new_inode */
10016 if (WARN_ON(!new_inode)) {
10017 return ret;
10018 }
10019 } else {
10020 /* maybe -EOVERFLOW */
10021 return ret;
10022 }
10023 }
10024 ret = 0;
10025
10026 /*
10027 * we're using rename to replace one file with another. Start IO on it
10028 * now so we don't add too much work to the end of the transaction
10029 */
10030 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
10031 filemap_flush(old_inode->i_mapping);
10032
10033 /* close the racy window with snapshot create/destroy ioctl */
10034 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10035 down_read(&fs_info->subvol_sem);
10036 /*
10037 * We want to reserve the absolute worst case amount of items. So if
10038 * both inodes are subvols and we need to unlink them then that would
10039 * require 4 item modifications, but if they are both normal inodes it
10040 * would require 5 item modifications, so we'll assume they are normal
10041 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
10042 * should cover the worst case number of items we'll modify.
10043 * If our rename has the whiteout flag, we need more 5 units for the
10044 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
10045 * when selinux is enabled).
10046 */
10047 trans_num_items = 11;
10048 if (flags & RENAME_WHITEOUT)
10049 trans_num_items += 5;
10050 trans = btrfs_start_transaction(root, trans_num_items);
10051 if (IS_ERR(trans)) {
10052 ret = PTR_ERR(trans);
10053 goto out_notrans;
10054 }
10055
10056 if (dest != root)
10057 btrfs_record_root_in_trans(trans, dest);
10058
10059 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
10060 if (ret)
10061 goto out_fail;
10062
10063 BTRFS_I(old_inode)->dir_index = 0ULL;
10064 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
10065 /* force full log commit if subvolume involved. */
10066 btrfs_set_log_full_commit(trans);
10067 } else {
10068 ret = btrfs_insert_inode_ref(trans, dest,
10069 new_dentry->d_name.name,
10070 new_dentry->d_name.len,
10071 old_ino,
10072 btrfs_ino(BTRFS_I(new_dir)), index);
10073 if (ret)
10074 goto out_fail;
10075 }
10076
10077 inode_inc_iversion(old_dir);
10078 inode_inc_iversion(new_dir);
10079 inode_inc_iversion(old_inode);
10080 old_dir->i_ctime = old_dir->i_mtime =
10081 new_dir->i_ctime = new_dir->i_mtime =
10082 old_inode->i_ctime = current_time(old_dir);
10083
10084 if (old_dentry->d_parent != new_dentry->d_parent)
10085 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
10086 BTRFS_I(old_inode), 1);
10087
10088 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
10089 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
10090 } else {
10091 /*
10092 * Now pin the log. We do it to ensure that no other task can
10093 * sync the log while we are in progress with the rename, as
10094 * that could result in an inconsistency in case any of the
10095 * inodes that are part of this rename operation were logged
10096 * before.
10097 *
10098 * We pin the log even if at this precise moment none of the
10099 * inodes was logged before. This is because right after we
10100 * checked for that, some other task fsyncing some other inode
10101 * not involved with this rename operation could log that one of
10102 * our inodes exists.
10103 *
10104 * We don't need to pin the logs before the above call to
10105 * btrfs_insert_inode_ref(), since that does not need to change
10106 * a log.
10107 */
10108 btrfs_pin_log_trans(root);
10109 log_pinned = true;
10110 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
10111 BTRFS_I(d_inode(old_dentry)),
10112 old_dentry->d_name.name,
10113 old_dentry->d_name.len);
10114 if (!ret)
10115 ret = btrfs_update_inode(trans, root, old_inode);
10116 }
10117 if (ret) {
10118 btrfs_abort_transaction(trans, ret);
10119 goto out_fail;
10120 }
10121
10122 if (new_inode) {
10123 inode_inc_iversion(new_inode);
10124 new_inode->i_ctime = current_time(new_inode);
10125 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
10126 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10127 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
10128 BUG_ON(new_inode->i_nlink == 0);
10129 } else {
10130 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10131 BTRFS_I(d_inode(new_dentry)),
10132 new_dentry->d_name.name,
10133 new_dentry->d_name.len);
10134 }
10135 if (!ret && new_inode->i_nlink == 0)
10136 ret = btrfs_orphan_add(trans,
10137 BTRFS_I(d_inode(new_dentry)));
10138 if (ret) {
10139 btrfs_abort_transaction(trans, ret);
10140 goto out_fail;
10141 }
10142 }
10143
10144 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
10145 new_dentry->d_name.name,
10146 new_dentry->d_name.len, 0, index);
10147 if (ret) {
10148 btrfs_abort_transaction(trans, ret);
10149 goto out_fail;
10150 }
10151
10152 if (old_inode->i_nlink == 1)
10153 BTRFS_I(old_inode)->dir_index = index;
10154
10155 if (log_pinned) {
10156 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10157 new_dentry->d_parent);
10158 btrfs_end_log_trans(root);
10159 log_pinned = false;
10160 }
10161
10162 if (flags & RENAME_WHITEOUT) {
10163 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10164 old_dentry);
10165
10166 if (ret) {
10167 btrfs_abort_transaction(trans, ret);
10168 goto out_fail;
10169 }
10170 }
10171 out_fail:
10172 /*
10173 * If we have pinned the log and an error happened, we unpin tasks
10174 * trying to sync the log and force them to fallback to a transaction
10175 * commit if the log currently contains any of the inodes involved in
10176 * this rename operation (to ensure we do not persist a log with an
10177 * inconsistent state for any of these inodes or leading to any
10178 * inconsistencies when replayed). If the transaction was aborted, the
10179 * abortion reason is propagated to userspace when attempting to commit
10180 * the transaction. If the log does not contain any of these inodes, we
10181 * allow the tasks to sync it.
10182 */
10183 if (ret && log_pinned) {
10184 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10185 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10186 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10187 (new_inode &&
10188 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10189 btrfs_set_log_full_commit(trans);
10190
10191 btrfs_end_log_trans(root);
10192 log_pinned = false;
10193 }
10194 ret2 = btrfs_end_transaction(trans);
10195 ret = ret ? ret : ret2;
10196 out_notrans:
10197 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10198 up_read(&fs_info->subvol_sem);
10199
10200 return ret;
10201 }
10202
btrfs_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)10203 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10204 struct inode *new_dir, struct dentry *new_dentry,
10205 unsigned int flags)
10206 {
10207 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10208 return -EINVAL;
10209
10210 if (flags & RENAME_EXCHANGE)
10211 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10212 new_dentry);
10213
10214 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10215 }
10216
10217 struct btrfs_delalloc_work {
10218 struct inode *inode;
10219 struct completion completion;
10220 struct list_head list;
10221 struct btrfs_work work;
10222 };
10223
btrfs_run_delalloc_work(struct btrfs_work * work)10224 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10225 {
10226 struct btrfs_delalloc_work *delalloc_work;
10227 struct inode *inode;
10228
10229 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10230 work);
10231 inode = delalloc_work->inode;
10232 filemap_flush(inode->i_mapping);
10233 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10234 &BTRFS_I(inode)->runtime_flags))
10235 filemap_flush(inode->i_mapping);
10236
10237 iput(inode);
10238 complete(&delalloc_work->completion);
10239 }
10240
btrfs_alloc_delalloc_work(struct inode * inode)10241 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
10242 {
10243 struct btrfs_delalloc_work *work;
10244
10245 work = kmalloc(sizeof(*work), GFP_NOFS);
10246 if (!work)
10247 return NULL;
10248
10249 init_completion(&work->completion);
10250 INIT_LIST_HEAD(&work->list);
10251 work->inode = inode;
10252 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
10253
10254 return work;
10255 }
10256
10257 /*
10258 * some fairly slow code that needs optimization. This walks the list
10259 * of all the inodes with pending delalloc and forces them to disk.
10260 */
start_delalloc_inodes(struct btrfs_root * root,int nr,bool snapshot)10261 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
10262 {
10263 struct btrfs_inode *binode;
10264 struct inode *inode;
10265 struct btrfs_delalloc_work *work, *next;
10266 struct list_head works;
10267 struct list_head splice;
10268 int ret = 0;
10269
10270 INIT_LIST_HEAD(&works);
10271 INIT_LIST_HEAD(&splice);
10272
10273 mutex_lock(&root->delalloc_mutex);
10274 spin_lock(&root->delalloc_lock);
10275 list_splice_init(&root->delalloc_inodes, &splice);
10276 while (!list_empty(&splice)) {
10277 binode = list_entry(splice.next, struct btrfs_inode,
10278 delalloc_inodes);
10279
10280 list_move_tail(&binode->delalloc_inodes,
10281 &root->delalloc_inodes);
10282 inode = igrab(&binode->vfs_inode);
10283 if (!inode) {
10284 cond_resched_lock(&root->delalloc_lock);
10285 continue;
10286 }
10287 spin_unlock(&root->delalloc_lock);
10288
10289 if (snapshot)
10290 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
10291 &binode->runtime_flags);
10292 work = btrfs_alloc_delalloc_work(inode);
10293 if (!work) {
10294 iput(inode);
10295 ret = -ENOMEM;
10296 goto out;
10297 }
10298 list_add_tail(&work->list, &works);
10299 btrfs_queue_work(root->fs_info->flush_workers,
10300 &work->work);
10301 ret++;
10302 if (nr != -1 && ret >= nr)
10303 goto out;
10304 cond_resched();
10305 spin_lock(&root->delalloc_lock);
10306 }
10307 spin_unlock(&root->delalloc_lock);
10308
10309 out:
10310 list_for_each_entry_safe(work, next, &works, list) {
10311 list_del_init(&work->list);
10312 wait_for_completion(&work->completion);
10313 kfree(work);
10314 }
10315
10316 if (!list_empty(&splice)) {
10317 spin_lock(&root->delalloc_lock);
10318 list_splice_tail(&splice, &root->delalloc_inodes);
10319 spin_unlock(&root->delalloc_lock);
10320 }
10321 mutex_unlock(&root->delalloc_mutex);
10322 return ret;
10323 }
10324
btrfs_start_delalloc_snapshot(struct btrfs_root * root)10325 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
10326 {
10327 struct btrfs_fs_info *fs_info = root->fs_info;
10328 int ret;
10329
10330 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10331 return -EROFS;
10332
10333 ret = start_delalloc_inodes(root, -1, true);
10334 if (ret > 0)
10335 ret = 0;
10336 return ret;
10337 }
10338
btrfs_start_delalloc_roots(struct btrfs_fs_info * fs_info,int nr)10339 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10340 {
10341 struct btrfs_root *root;
10342 struct list_head splice;
10343 int ret;
10344
10345 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10346 return -EROFS;
10347
10348 INIT_LIST_HEAD(&splice);
10349
10350 mutex_lock(&fs_info->delalloc_root_mutex);
10351 spin_lock(&fs_info->delalloc_root_lock);
10352 list_splice_init(&fs_info->delalloc_roots, &splice);
10353 while (!list_empty(&splice) && nr) {
10354 root = list_first_entry(&splice, struct btrfs_root,
10355 delalloc_root);
10356 root = btrfs_grab_fs_root(root);
10357 BUG_ON(!root);
10358 list_move_tail(&root->delalloc_root,
10359 &fs_info->delalloc_roots);
10360 spin_unlock(&fs_info->delalloc_root_lock);
10361
10362 ret = start_delalloc_inodes(root, nr, false);
10363 btrfs_put_fs_root(root);
10364 if (ret < 0)
10365 goto out;
10366
10367 if (nr != -1) {
10368 nr -= ret;
10369 WARN_ON(nr < 0);
10370 }
10371 spin_lock(&fs_info->delalloc_root_lock);
10372 }
10373 spin_unlock(&fs_info->delalloc_root_lock);
10374
10375 ret = 0;
10376 out:
10377 if (!list_empty(&splice)) {
10378 spin_lock(&fs_info->delalloc_root_lock);
10379 list_splice_tail(&splice, &fs_info->delalloc_roots);
10380 spin_unlock(&fs_info->delalloc_root_lock);
10381 }
10382 mutex_unlock(&fs_info->delalloc_root_mutex);
10383 return ret;
10384 }
10385
btrfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)10386 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10387 const char *symname)
10388 {
10389 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10390 struct btrfs_trans_handle *trans;
10391 struct btrfs_root *root = BTRFS_I(dir)->root;
10392 struct btrfs_path *path;
10393 struct btrfs_key key;
10394 struct inode *inode = NULL;
10395 int err;
10396 u64 objectid;
10397 u64 index = 0;
10398 int name_len;
10399 int datasize;
10400 unsigned long ptr;
10401 struct btrfs_file_extent_item *ei;
10402 struct extent_buffer *leaf;
10403
10404 name_len = strlen(symname);
10405 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10406 return -ENAMETOOLONG;
10407
10408 /*
10409 * 2 items for inode item and ref
10410 * 2 items for dir items
10411 * 1 item for updating parent inode item
10412 * 1 item for the inline extent item
10413 * 1 item for xattr if selinux is on
10414 */
10415 trans = btrfs_start_transaction(root, 7);
10416 if (IS_ERR(trans))
10417 return PTR_ERR(trans);
10418
10419 err = btrfs_find_free_objectid(root, &objectid);
10420 if (err)
10421 goto out_unlock;
10422
10423 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10424 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10425 objectid, S_IFLNK|S_IRWXUGO, &index);
10426 if (IS_ERR(inode)) {
10427 err = PTR_ERR(inode);
10428 inode = NULL;
10429 goto out_unlock;
10430 }
10431
10432 /*
10433 * If the active LSM wants to access the inode during
10434 * d_instantiate it needs these. Smack checks to see
10435 * if the filesystem supports xattrs by looking at the
10436 * ops vector.
10437 */
10438 inode->i_fop = &btrfs_file_operations;
10439 inode->i_op = &btrfs_file_inode_operations;
10440 inode->i_mapping->a_ops = &btrfs_aops;
10441 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10442
10443 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10444 if (err)
10445 goto out_unlock;
10446
10447 path = btrfs_alloc_path();
10448 if (!path) {
10449 err = -ENOMEM;
10450 goto out_unlock;
10451 }
10452 key.objectid = btrfs_ino(BTRFS_I(inode));
10453 key.offset = 0;
10454 key.type = BTRFS_EXTENT_DATA_KEY;
10455 datasize = btrfs_file_extent_calc_inline_size(name_len);
10456 err = btrfs_insert_empty_item(trans, root, path, &key,
10457 datasize);
10458 if (err) {
10459 btrfs_free_path(path);
10460 goto out_unlock;
10461 }
10462 leaf = path->nodes[0];
10463 ei = btrfs_item_ptr(leaf, path->slots[0],
10464 struct btrfs_file_extent_item);
10465 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10466 btrfs_set_file_extent_type(leaf, ei,
10467 BTRFS_FILE_EXTENT_INLINE);
10468 btrfs_set_file_extent_encryption(leaf, ei, 0);
10469 btrfs_set_file_extent_compression(leaf, ei, 0);
10470 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10471 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10472
10473 ptr = btrfs_file_extent_inline_start(ei);
10474 write_extent_buffer(leaf, symname, ptr, name_len);
10475 btrfs_mark_buffer_dirty(leaf);
10476 btrfs_free_path(path);
10477
10478 inode->i_op = &btrfs_symlink_inode_operations;
10479 inode_nohighmem(inode);
10480 inode_set_bytes(inode, name_len);
10481 btrfs_i_size_write(BTRFS_I(inode), name_len);
10482 err = btrfs_update_inode(trans, root, inode);
10483 /*
10484 * Last step, add directory indexes for our symlink inode. This is the
10485 * last step to avoid extra cleanup of these indexes if an error happens
10486 * elsewhere above.
10487 */
10488 if (!err)
10489 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10490 BTRFS_I(inode), 0, index);
10491 if (err)
10492 goto out_unlock;
10493
10494 d_instantiate_new(dentry, inode);
10495
10496 out_unlock:
10497 btrfs_end_transaction(trans);
10498 if (err && inode) {
10499 inode_dec_link_count(inode);
10500 discard_new_inode(inode);
10501 }
10502 btrfs_btree_balance_dirty(fs_info);
10503 return err;
10504 }
10505
__btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint,struct btrfs_trans_handle * trans)10506 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10507 u64 start, u64 num_bytes, u64 min_size,
10508 loff_t actual_len, u64 *alloc_hint,
10509 struct btrfs_trans_handle *trans)
10510 {
10511 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10512 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10513 struct extent_map *em;
10514 struct btrfs_root *root = BTRFS_I(inode)->root;
10515 struct btrfs_key ins;
10516 u64 cur_offset = start;
10517 u64 clear_offset = start;
10518 u64 i_size;
10519 u64 cur_bytes;
10520 u64 last_alloc = (u64)-1;
10521 int ret = 0;
10522 bool own_trans = true;
10523 u64 end = start + num_bytes - 1;
10524
10525 if (trans)
10526 own_trans = false;
10527 while (num_bytes > 0) {
10528 if (own_trans) {
10529 trans = btrfs_start_transaction(root, 3);
10530 if (IS_ERR(trans)) {
10531 ret = PTR_ERR(trans);
10532 break;
10533 }
10534 }
10535
10536 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10537 cur_bytes = max(cur_bytes, min_size);
10538 /*
10539 * If we are severely fragmented we could end up with really
10540 * small allocations, so if the allocator is returning small
10541 * chunks lets make its job easier by only searching for those
10542 * sized chunks.
10543 */
10544 cur_bytes = min(cur_bytes, last_alloc);
10545 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10546 min_size, 0, *alloc_hint, &ins, 1, 0);
10547 if (ret) {
10548 if (own_trans)
10549 btrfs_end_transaction(trans);
10550 break;
10551 }
10552
10553 /*
10554 * We've reserved this space, and thus converted it from
10555 * ->bytes_may_use to ->bytes_reserved. Any error that happens
10556 * from here on out we will only need to clear our reservation
10557 * for the remaining unreserved area, so advance our
10558 * clear_offset by our extent size.
10559 */
10560 clear_offset += ins.offset;
10561 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10562
10563 last_alloc = ins.offset;
10564 ret = insert_reserved_file_extent(trans, inode,
10565 cur_offset, ins.objectid,
10566 ins.offset, ins.offset,
10567 ins.offset, 0, 0, 0,
10568 BTRFS_FILE_EXTENT_PREALLOC);
10569 if (ret) {
10570 btrfs_free_reserved_extent(fs_info, ins.objectid,
10571 ins.offset, 0);
10572 btrfs_abort_transaction(trans, ret);
10573 if (own_trans)
10574 btrfs_end_transaction(trans);
10575 break;
10576 }
10577
10578 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10579 cur_offset + ins.offset -1, 0);
10580
10581 em = alloc_extent_map();
10582 if (!em) {
10583 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10584 &BTRFS_I(inode)->runtime_flags);
10585 goto next;
10586 }
10587
10588 em->start = cur_offset;
10589 em->orig_start = cur_offset;
10590 em->len = ins.offset;
10591 em->block_start = ins.objectid;
10592 em->block_len = ins.offset;
10593 em->orig_block_len = ins.offset;
10594 em->ram_bytes = ins.offset;
10595 em->bdev = fs_info->fs_devices->latest_bdev;
10596 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10597 em->generation = trans->transid;
10598
10599 while (1) {
10600 write_lock(&em_tree->lock);
10601 ret = add_extent_mapping(em_tree, em, 1);
10602 write_unlock(&em_tree->lock);
10603 if (ret != -EEXIST)
10604 break;
10605 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10606 cur_offset + ins.offset - 1,
10607 0);
10608 }
10609 free_extent_map(em);
10610 next:
10611 num_bytes -= ins.offset;
10612 cur_offset += ins.offset;
10613 *alloc_hint = ins.objectid + ins.offset;
10614
10615 inode_inc_iversion(inode);
10616 inode->i_ctime = current_time(inode);
10617 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10618 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10619 (actual_len > inode->i_size) &&
10620 (cur_offset > inode->i_size)) {
10621 if (cur_offset > actual_len)
10622 i_size = actual_len;
10623 else
10624 i_size = cur_offset;
10625 i_size_write(inode, i_size);
10626 btrfs_ordered_update_i_size(inode, i_size, NULL);
10627 }
10628
10629 ret = btrfs_update_inode(trans, root, inode);
10630
10631 if (ret) {
10632 btrfs_abort_transaction(trans, ret);
10633 if (own_trans)
10634 btrfs_end_transaction(trans);
10635 break;
10636 }
10637
10638 if (own_trans)
10639 btrfs_end_transaction(trans);
10640 }
10641 if (clear_offset < end)
10642 btrfs_free_reserved_data_space(inode, NULL, clear_offset,
10643 end - clear_offset + 1);
10644 return ret;
10645 }
10646
btrfs_prealloc_file_range(struct inode * inode,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10647 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10648 u64 start, u64 num_bytes, u64 min_size,
10649 loff_t actual_len, u64 *alloc_hint)
10650 {
10651 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10652 min_size, actual_len, alloc_hint,
10653 NULL);
10654 }
10655
btrfs_prealloc_file_range_trans(struct inode * inode,struct btrfs_trans_handle * trans,int mode,u64 start,u64 num_bytes,u64 min_size,loff_t actual_len,u64 * alloc_hint)10656 int btrfs_prealloc_file_range_trans(struct inode *inode,
10657 struct btrfs_trans_handle *trans, int mode,
10658 u64 start, u64 num_bytes, u64 min_size,
10659 loff_t actual_len, u64 *alloc_hint)
10660 {
10661 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10662 min_size, actual_len, alloc_hint, trans);
10663 }
10664
btrfs_set_page_dirty(struct page * page)10665 static int btrfs_set_page_dirty(struct page *page)
10666 {
10667 return __set_page_dirty_nobuffers(page);
10668 }
10669
btrfs_permission(struct inode * inode,int mask)10670 static int btrfs_permission(struct inode *inode, int mask)
10671 {
10672 struct btrfs_root *root = BTRFS_I(inode)->root;
10673 umode_t mode = inode->i_mode;
10674
10675 if (mask & MAY_WRITE &&
10676 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10677 if (btrfs_root_readonly(root))
10678 return -EROFS;
10679 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10680 return -EACCES;
10681 }
10682 return generic_permission(inode, mask);
10683 }
10684
btrfs_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)10685 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10686 {
10687 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10688 struct btrfs_trans_handle *trans;
10689 struct btrfs_root *root = BTRFS_I(dir)->root;
10690 struct inode *inode = NULL;
10691 u64 objectid;
10692 u64 index;
10693 int ret = 0;
10694
10695 /*
10696 * 5 units required for adding orphan entry
10697 */
10698 trans = btrfs_start_transaction(root, 5);
10699 if (IS_ERR(trans))
10700 return PTR_ERR(trans);
10701
10702 ret = btrfs_find_free_objectid(root, &objectid);
10703 if (ret)
10704 goto out;
10705
10706 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10707 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10708 if (IS_ERR(inode)) {
10709 ret = PTR_ERR(inode);
10710 inode = NULL;
10711 goto out;
10712 }
10713
10714 inode->i_fop = &btrfs_file_operations;
10715 inode->i_op = &btrfs_file_inode_operations;
10716
10717 inode->i_mapping->a_ops = &btrfs_aops;
10718 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10719
10720 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10721 if (ret)
10722 goto out;
10723
10724 ret = btrfs_update_inode(trans, root, inode);
10725 if (ret)
10726 goto out;
10727 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10728 if (ret)
10729 goto out;
10730
10731 /*
10732 * We set number of links to 0 in btrfs_new_inode(), and here we set
10733 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10734 * through:
10735 *
10736 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10737 */
10738 set_nlink(inode, 1);
10739 d_tmpfile(dentry, inode);
10740 unlock_new_inode(inode);
10741 mark_inode_dirty(inode);
10742 out:
10743 btrfs_end_transaction(trans);
10744 if (ret && inode)
10745 discard_new_inode(inode);
10746 btrfs_btree_balance_dirty(fs_info);
10747 return ret;
10748 }
10749
btrfs_set_range_writeback(struct extent_io_tree * tree,u64 start,u64 end)10750 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10751 {
10752 struct inode *inode = tree->private_data;
10753 unsigned long index = start >> PAGE_SHIFT;
10754 unsigned long end_index = end >> PAGE_SHIFT;
10755 struct page *page;
10756
10757 while (index <= end_index) {
10758 page = find_get_page(inode->i_mapping, index);
10759 ASSERT(page); /* Pages should be in the extent_io_tree */
10760 set_page_writeback(page);
10761 put_page(page);
10762 index++;
10763 }
10764 }
10765
10766 #ifdef CONFIG_SWAP
10767 /*
10768 * Add an entry indicating a block group or device which is pinned by a
10769 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10770 * negative errno on failure.
10771 */
btrfs_add_swapfile_pin(struct inode * inode,void * ptr,bool is_block_group)10772 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10773 bool is_block_group)
10774 {
10775 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10776 struct btrfs_swapfile_pin *sp, *entry;
10777 struct rb_node **p;
10778 struct rb_node *parent = NULL;
10779
10780 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10781 if (!sp)
10782 return -ENOMEM;
10783 sp->ptr = ptr;
10784 sp->inode = inode;
10785 sp->is_block_group = is_block_group;
10786
10787 spin_lock(&fs_info->swapfile_pins_lock);
10788 p = &fs_info->swapfile_pins.rb_node;
10789 while (*p) {
10790 parent = *p;
10791 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10792 if (sp->ptr < entry->ptr ||
10793 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10794 p = &(*p)->rb_left;
10795 } else if (sp->ptr > entry->ptr ||
10796 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10797 p = &(*p)->rb_right;
10798 } else {
10799 spin_unlock(&fs_info->swapfile_pins_lock);
10800 kfree(sp);
10801 return 1;
10802 }
10803 }
10804 rb_link_node(&sp->node, parent, p);
10805 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10806 spin_unlock(&fs_info->swapfile_pins_lock);
10807 return 0;
10808 }
10809
10810 /* Free all of the entries pinned by this swapfile. */
btrfs_free_swapfile_pins(struct inode * inode)10811 static void btrfs_free_swapfile_pins(struct inode *inode)
10812 {
10813 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10814 struct btrfs_swapfile_pin *sp;
10815 struct rb_node *node, *next;
10816
10817 spin_lock(&fs_info->swapfile_pins_lock);
10818 node = rb_first(&fs_info->swapfile_pins);
10819 while (node) {
10820 next = rb_next(node);
10821 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10822 if (sp->inode == inode) {
10823 rb_erase(&sp->node, &fs_info->swapfile_pins);
10824 if (sp->is_block_group)
10825 btrfs_put_block_group(sp->ptr);
10826 kfree(sp);
10827 }
10828 node = next;
10829 }
10830 spin_unlock(&fs_info->swapfile_pins_lock);
10831 }
10832
10833 struct btrfs_swap_info {
10834 u64 start;
10835 u64 block_start;
10836 u64 block_len;
10837 u64 lowest_ppage;
10838 u64 highest_ppage;
10839 unsigned long nr_pages;
10840 int nr_extents;
10841 };
10842
btrfs_add_swap_extent(struct swap_info_struct * sis,struct btrfs_swap_info * bsi)10843 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10844 struct btrfs_swap_info *bsi)
10845 {
10846 unsigned long nr_pages;
10847 unsigned long max_pages;
10848 u64 first_ppage, first_ppage_reported, next_ppage;
10849 int ret;
10850
10851 /*
10852 * Our swapfile may have had its size extended after the swap header was
10853 * written. In that case activating the swapfile should not go beyond
10854 * the max size set in the swap header.
10855 */
10856 if (bsi->nr_pages >= sis->max)
10857 return 0;
10858
10859 max_pages = sis->max - bsi->nr_pages;
10860 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10861 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10862 PAGE_SIZE) >> PAGE_SHIFT;
10863
10864 if (first_ppage >= next_ppage)
10865 return 0;
10866 nr_pages = next_ppage - first_ppage;
10867 nr_pages = min(nr_pages, max_pages);
10868
10869 first_ppage_reported = first_ppage;
10870 if (bsi->start == 0)
10871 first_ppage_reported++;
10872 if (bsi->lowest_ppage > first_ppage_reported)
10873 bsi->lowest_ppage = first_ppage_reported;
10874 if (bsi->highest_ppage < (next_ppage - 1))
10875 bsi->highest_ppage = next_ppage - 1;
10876
10877 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10878 if (ret < 0)
10879 return ret;
10880 bsi->nr_extents += ret;
10881 bsi->nr_pages += nr_pages;
10882 return 0;
10883 }
10884
btrfs_swap_deactivate(struct file * file)10885 static void btrfs_swap_deactivate(struct file *file)
10886 {
10887 struct inode *inode = file_inode(file);
10888
10889 btrfs_free_swapfile_pins(inode);
10890 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10891 }
10892
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)10893 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10894 sector_t *span)
10895 {
10896 struct inode *inode = file_inode(file);
10897 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10898 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10899 struct extent_state *cached_state = NULL;
10900 struct extent_map *em = NULL;
10901 struct btrfs_device *device = NULL;
10902 struct btrfs_swap_info bsi = {
10903 .lowest_ppage = (sector_t)-1ULL,
10904 };
10905 int ret = 0;
10906 u64 isize;
10907 u64 start;
10908
10909 /*
10910 * If the swap file was just created, make sure delalloc is done. If the
10911 * file changes again after this, the user is doing something stupid and
10912 * we don't really care.
10913 */
10914 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10915 if (ret)
10916 return ret;
10917
10918 /*
10919 * The inode is locked, so these flags won't change after we check them.
10920 */
10921 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10922 btrfs_warn(fs_info, "swapfile must not be compressed");
10923 return -EINVAL;
10924 }
10925 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10926 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10927 return -EINVAL;
10928 }
10929 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10930 btrfs_warn(fs_info, "swapfile must not be checksummed");
10931 return -EINVAL;
10932 }
10933
10934 /*
10935 * Balance or device remove/replace/resize can move stuff around from
10936 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10937 * concurrently while we are mapping the swap extents, and
10938 * fs_info->swapfile_pins prevents them from running while the swap file
10939 * is active and moving the extents. Note that this also prevents a
10940 * concurrent device add which isn't actually necessary, but it's not
10941 * really worth the trouble to allow it.
10942 */
10943 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10944 btrfs_warn(fs_info,
10945 "cannot activate swapfile while exclusive operation is running");
10946 return -EBUSY;
10947 }
10948 /*
10949 * Snapshots can create extents which require COW even if NODATACOW is
10950 * set. We use this counter to prevent snapshots. We must increment it
10951 * before walking the extents because we don't want a concurrent
10952 * snapshot to run after we've already checked the extents.
10953 */
10954 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10955
10956 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10957
10958 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10959 start = 0;
10960 while (start < isize) {
10961 u64 logical_block_start, physical_block_start;
10962 struct btrfs_block_group_cache *bg;
10963 u64 len = isize - start;
10964
10965 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10966 if (IS_ERR(em)) {
10967 ret = PTR_ERR(em);
10968 goto out;
10969 }
10970
10971 if (em->block_start == EXTENT_MAP_HOLE) {
10972 btrfs_warn(fs_info, "swapfile must not have holes");
10973 ret = -EINVAL;
10974 goto out;
10975 }
10976 if (em->block_start == EXTENT_MAP_INLINE) {
10977 /*
10978 * It's unlikely we'll ever actually find ourselves
10979 * here, as a file small enough to fit inline won't be
10980 * big enough to store more than the swap header, but in
10981 * case something changes in the future, let's catch it
10982 * here rather than later.
10983 */
10984 btrfs_warn(fs_info, "swapfile must not be inline");
10985 ret = -EINVAL;
10986 goto out;
10987 }
10988 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10989 btrfs_warn(fs_info, "swapfile must not be compressed");
10990 ret = -EINVAL;
10991 goto out;
10992 }
10993
10994 logical_block_start = em->block_start + (start - em->start);
10995 len = min(len, em->len - (start - em->start));
10996 free_extent_map(em);
10997 em = NULL;
10998
10999 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
11000 if (ret < 0) {
11001 goto out;
11002 } else if (ret) {
11003 ret = 0;
11004 } else {
11005 btrfs_warn(fs_info,
11006 "swapfile must not be copy-on-write");
11007 ret = -EINVAL;
11008 goto out;
11009 }
11010
11011 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
11012 if (IS_ERR(em)) {
11013 ret = PTR_ERR(em);
11014 goto out;
11015 }
11016
11017 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
11018 btrfs_warn(fs_info,
11019 "swapfile must have single data profile");
11020 ret = -EINVAL;
11021 goto out;
11022 }
11023
11024 if (device == NULL) {
11025 device = em->map_lookup->stripes[0].dev;
11026 ret = btrfs_add_swapfile_pin(inode, device, false);
11027 if (ret == 1)
11028 ret = 0;
11029 else if (ret)
11030 goto out;
11031 } else if (device != em->map_lookup->stripes[0].dev) {
11032 btrfs_warn(fs_info, "swapfile must be on one device");
11033 ret = -EINVAL;
11034 goto out;
11035 }
11036
11037 physical_block_start = (em->map_lookup->stripes[0].physical +
11038 (logical_block_start - em->start));
11039 len = min(len, em->len - (logical_block_start - em->start));
11040 free_extent_map(em);
11041 em = NULL;
11042
11043 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
11044 if (!bg) {
11045 btrfs_warn(fs_info,
11046 "could not find block group containing swapfile");
11047 ret = -EINVAL;
11048 goto out;
11049 }
11050
11051 ret = btrfs_add_swapfile_pin(inode, bg, true);
11052 if (ret) {
11053 btrfs_put_block_group(bg);
11054 if (ret == 1)
11055 ret = 0;
11056 else
11057 goto out;
11058 }
11059
11060 if (bsi.block_len &&
11061 bsi.block_start + bsi.block_len == physical_block_start) {
11062 bsi.block_len += len;
11063 } else {
11064 if (bsi.block_len) {
11065 ret = btrfs_add_swap_extent(sis, &bsi);
11066 if (ret)
11067 goto out;
11068 }
11069 bsi.start = start;
11070 bsi.block_start = physical_block_start;
11071 bsi.block_len = len;
11072 }
11073
11074 start += len;
11075 }
11076
11077 if (bsi.block_len)
11078 ret = btrfs_add_swap_extent(sis, &bsi);
11079
11080 out:
11081 if (!IS_ERR_OR_NULL(em))
11082 free_extent_map(em);
11083
11084 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
11085
11086 if (ret)
11087 btrfs_swap_deactivate(file);
11088
11089 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
11090
11091 if (ret)
11092 return ret;
11093
11094 if (device)
11095 sis->bdev = device->bdev;
11096 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
11097 sis->max = bsi.nr_pages;
11098 sis->pages = bsi.nr_pages - 1;
11099 sis->highest_bit = bsi.nr_pages - 1;
11100 return bsi.nr_extents;
11101 }
11102 #else
btrfs_swap_deactivate(struct file * file)11103 static void btrfs_swap_deactivate(struct file *file)
11104 {
11105 }
11106
btrfs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)11107 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11108 sector_t *span)
11109 {
11110 return -EOPNOTSUPP;
11111 }
11112 #endif
11113
11114 static const struct inode_operations btrfs_dir_inode_operations = {
11115 .getattr = btrfs_getattr,
11116 .lookup = btrfs_lookup,
11117 .create = btrfs_create,
11118 .unlink = btrfs_unlink,
11119 .link = btrfs_link,
11120 .mkdir = btrfs_mkdir,
11121 .rmdir = btrfs_rmdir,
11122 .rename = btrfs_rename2,
11123 .symlink = btrfs_symlink,
11124 .setattr = btrfs_setattr,
11125 .mknod = btrfs_mknod,
11126 .listxattr = btrfs_listxattr,
11127 .permission = btrfs_permission,
11128 .get_acl = btrfs_get_acl,
11129 .set_acl = btrfs_set_acl,
11130 .update_time = btrfs_update_time,
11131 .tmpfile = btrfs_tmpfile,
11132 };
11133 static const struct inode_operations btrfs_dir_ro_inode_operations = {
11134 .lookup = btrfs_lookup,
11135 .permission = btrfs_permission,
11136 .update_time = btrfs_update_time,
11137 };
11138
11139 static const struct file_operations btrfs_dir_file_operations = {
11140 .llseek = generic_file_llseek,
11141 .read = generic_read_dir,
11142 .iterate_shared = btrfs_real_readdir,
11143 .open = btrfs_opendir,
11144 .unlocked_ioctl = btrfs_ioctl,
11145 #ifdef CONFIG_COMPAT
11146 .compat_ioctl = btrfs_compat_ioctl,
11147 #endif
11148 .release = btrfs_release_file,
11149 .fsync = btrfs_sync_file,
11150 };
11151
11152 static const struct extent_io_ops btrfs_extent_io_ops = {
11153 /* mandatory callbacks */
11154 .submit_bio_hook = btrfs_submit_bio_hook,
11155 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
11156 };
11157
11158 /*
11159 * btrfs doesn't support the bmap operation because swapfiles
11160 * use bmap to make a mapping of extents in the file. They assume
11161 * these extents won't change over the life of the file and they
11162 * use the bmap result to do IO directly to the drive.
11163 *
11164 * the btrfs bmap call would return logical addresses that aren't
11165 * suitable for IO and they also will change frequently as COW
11166 * operations happen. So, swapfile + btrfs == corruption.
11167 *
11168 * For now we're avoiding this by dropping bmap.
11169 */
11170 static const struct address_space_operations btrfs_aops = {
11171 .readpage = btrfs_readpage,
11172 .writepage = btrfs_writepage,
11173 .writepages = btrfs_writepages,
11174 .readpages = btrfs_readpages,
11175 .direct_IO = btrfs_direct_IO,
11176 .invalidatepage = btrfs_invalidatepage,
11177 .releasepage = btrfs_releasepage,
11178 .set_page_dirty = btrfs_set_page_dirty,
11179 .error_remove_page = generic_error_remove_page,
11180 .swap_activate = btrfs_swap_activate,
11181 .swap_deactivate = btrfs_swap_deactivate,
11182 };
11183
11184 static const struct inode_operations btrfs_file_inode_operations = {
11185 .getattr = btrfs_getattr,
11186 .setattr = btrfs_setattr,
11187 .listxattr = btrfs_listxattr,
11188 .permission = btrfs_permission,
11189 .fiemap = btrfs_fiemap,
11190 .get_acl = btrfs_get_acl,
11191 .set_acl = btrfs_set_acl,
11192 .update_time = btrfs_update_time,
11193 };
11194 static const struct inode_operations btrfs_special_inode_operations = {
11195 .getattr = btrfs_getattr,
11196 .setattr = btrfs_setattr,
11197 .permission = btrfs_permission,
11198 .listxattr = btrfs_listxattr,
11199 .get_acl = btrfs_get_acl,
11200 .set_acl = btrfs_set_acl,
11201 .update_time = btrfs_update_time,
11202 };
11203 static const struct inode_operations btrfs_symlink_inode_operations = {
11204 .get_link = page_get_link,
11205 .getattr = btrfs_getattr,
11206 .setattr = btrfs_setattr,
11207 .permission = btrfs_permission,
11208 .listxattr = btrfs_listxattr,
11209 .update_time = btrfs_update_time,
11210 };
11211
11212 const struct dentry_operations btrfs_dentry_operations = {
11213 .d_delete = btrfs_dentry_delete,
11214 };
11215