1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * kernel/sched/loadavg.c
4 *
5 * This file contains the magic bits required to compute the global loadavg
6 * figure. Its a silly number but people think its important. We go through
7 * great pains to make it work on big machines and tickless kernels.
8 */
9 #include "sched.h"
10
11 /*
12 * Global load-average calculations
13 *
14 * We take a distributed and async approach to calculating the global load-avg
15 * in order to minimize overhead.
16 *
17 * The global load average is an exponentially decaying average of nr_running +
18 * nr_uninterruptible.
19 *
20 * Once every LOAD_FREQ:
21 *
22 * nr_active = 0;
23 * for_each_possible_cpu(cpu)
24 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
25 *
26 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
27 *
28 * Due to a number of reasons the above turns in the mess below:
29 *
30 * - for_each_possible_cpu() is prohibitively expensive on machines with
31 * serious number of CPUs, therefore we need to take a distributed approach
32 * to calculating nr_active.
33 *
34 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
35 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
36 *
37 * So assuming nr_active := 0 when we start out -- true per definition, we
38 * can simply take per-CPU deltas and fold those into a global accumulate
39 * to obtain the same result. See calc_load_fold_active().
40 *
41 * Furthermore, in order to avoid synchronizing all per-CPU delta folding
42 * across the machine, we assume 10 ticks is sufficient time for every
43 * CPU to have completed this task.
44 *
45 * This places an upper-bound on the IRQ-off latency of the machine. Then
46 * again, being late doesn't loose the delta, just wrecks the sample.
47 *
48 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-CPU because
49 * this would add another cross-CPU cacheline miss and atomic operation
50 * to the wakeup path. Instead we increment on whatever CPU the task ran
51 * when it went into uninterruptible state and decrement on whatever CPU
52 * did the wakeup. This means that only the sum of nr_uninterruptible over
53 * all CPUs yields the correct result.
54 *
55 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
56 */
57
58 /* Variables and functions for calc_load */
59 atomic_long_t calc_load_tasks;
60 unsigned long calc_load_update;
61 unsigned long avenrun[3];
62 EXPORT_SYMBOL(avenrun); /* should be removed */
63
64 /**
65 * get_avenrun - get the load average array
66 * @loads: pointer to dest load array
67 * @offset: offset to add
68 * @shift: shift count to shift the result left
69 *
70 * These values are estimates at best, so no need for locking.
71 */
get_avenrun(unsigned long * loads,unsigned long offset,int shift)72 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
73 {
74 loads[0] = (avenrun[0] + offset) << shift;
75 loads[1] = (avenrun[1] + offset) << shift;
76 loads[2] = (avenrun[2] + offset) << shift;
77 }
78 EXPORT_SYMBOL_GPL(get_avenrun);
79
calc_load_fold_active(struct rq * this_rq,long adjust)80 long calc_load_fold_active(struct rq *this_rq, long adjust)
81 {
82 long nr_active, delta = 0;
83
84 nr_active = this_rq->nr_running - adjust;
85 nr_active += (long)this_rq->nr_uninterruptible;
86
87 if (nr_active != this_rq->calc_load_active) {
88 delta = nr_active - this_rq->calc_load_active;
89 this_rq->calc_load_active = nr_active;
90 }
91
92 return delta;
93 }
94
95 /**
96 * fixed_power_int - compute: x^n, in O(log n) time
97 *
98 * @x: base of the power
99 * @frac_bits: fractional bits of @x
100 * @n: power to raise @x to.
101 *
102 * By exploiting the relation between the definition of the natural power
103 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
104 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
105 * (where: n_i \elem {0, 1}, the binary vector representing n),
106 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
107 * of course trivially computable in O(log_2 n), the length of our binary
108 * vector.
109 */
110 static unsigned long
fixed_power_int(unsigned long x,unsigned int frac_bits,unsigned int n)111 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
112 {
113 unsigned long result = 1UL << frac_bits;
114
115 if (n) {
116 for (;;) {
117 if (n & 1) {
118 result *= x;
119 result += 1UL << (frac_bits - 1);
120 result >>= frac_bits;
121 }
122 n >>= 1;
123 if (!n)
124 break;
125 x *= x;
126 x += 1UL << (frac_bits - 1);
127 x >>= frac_bits;
128 }
129 }
130
131 return result;
132 }
133
134 /*
135 * a1 = a0 * e + a * (1 - e)
136 *
137 * a2 = a1 * e + a * (1 - e)
138 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
139 * = a0 * e^2 + a * (1 - e) * (1 + e)
140 *
141 * a3 = a2 * e + a * (1 - e)
142 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
143 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
144 *
145 * ...
146 *
147 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
148 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
149 * = a0 * e^n + a * (1 - e^n)
150 *
151 * [1] application of the geometric series:
152 *
153 * n 1 - x^(n+1)
154 * S_n := \Sum x^i = -------------
155 * i=0 1 - x
156 */
157 unsigned long
calc_load_n(unsigned long load,unsigned long exp,unsigned long active,unsigned int n)158 calc_load_n(unsigned long load, unsigned long exp,
159 unsigned long active, unsigned int n)
160 {
161 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
162 }
163
164 #ifdef CONFIG_NO_HZ_COMMON
165 /*
166 * Handle NO_HZ for the global load-average.
167 *
168 * Since the above described distributed algorithm to compute the global
169 * load-average relies on per-CPU sampling from the tick, it is affected by
170 * NO_HZ.
171 *
172 * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon
173 * entering NO_HZ state such that we can include this as an 'extra' CPU delta
174 * when we read the global state.
175 *
176 * Obviously reality has to ruin such a delightfully simple scheme:
177 *
178 * - When we go NO_HZ idle during the window, we can negate our sample
179 * contribution, causing under-accounting.
180 *
181 * We avoid this by keeping two NO_HZ-delta counters and flipping them
182 * when the window starts, thus separating old and new NO_HZ load.
183 *
184 * The only trick is the slight shift in index flip for read vs write.
185 *
186 * 0s 5s 10s 15s
187 * +10 +10 +10 +10
188 * |-|-----------|-|-----------|-|-----------|-|
189 * r:0 0 1 1 0 0 1 1 0
190 * w:0 1 1 0 0 1 1 0 0
191 *
192 * This ensures we'll fold the old NO_HZ contribution in this window while
193 * accumlating the new one.
194 *
195 * - When we wake up from NO_HZ during the window, we push up our
196 * contribution, since we effectively move our sample point to a known
197 * busy state.
198 *
199 * This is solved by pushing the window forward, and thus skipping the
200 * sample, for this CPU (effectively using the NO_HZ-delta for this CPU which
201 * was in effect at the time the window opened). This also solves the issue
202 * of having to deal with a CPU having been in NO_HZ for multiple LOAD_FREQ
203 * intervals.
204 *
205 * When making the ILB scale, we should try to pull this in as well.
206 */
207 static atomic_long_t calc_load_nohz[2];
208 static int calc_load_idx;
209
calc_load_write_idx(void)210 static inline int calc_load_write_idx(void)
211 {
212 int idx = calc_load_idx;
213
214 /*
215 * See calc_global_nohz(), if we observe the new index, we also
216 * need to observe the new update time.
217 */
218 smp_rmb();
219
220 /*
221 * If the folding window started, make sure we start writing in the
222 * next NO_HZ-delta.
223 */
224 if (!time_before(jiffies, READ_ONCE(calc_load_update)))
225 idx++;
226
227 return idx & 1;
228 }
229
calc_load_read_idx(void)230 static inline int calc_load_read_idx(void)
231 {
232 return calc_load_idx & 1;
233 }
234
calc_load_nohz_fold(struct rq * rq)235 static void calc_load_nohz_fold(struct rq *rq)
236 {
237 long delta;
238
239 delta = calc_load_fold_active(rq, 0);
240 if (delta) {
241 int idx = calc_load_write_idx();
242
243 atomic_long_add(delta, &calc_load_nohz[idx]);
244 }
245 }
246
calc_load_nohz_start(void)247 void calc_load_nohz_start(void)
248 {
249 /*
250 * We're going into NO_HZ mode, if there's any pending delta, fold it
251 * into the pending NO_HZ delta.
252 */
253 calc_load_nohz_fold(this_rq());
254 }
255
256 /*
257 * Keep track of the load for NOHZ_FULL, must be called between
258 * calc_load_nohz_{start,stop}().
259 */
calc_load_nohz_remote(struct rq * rq)260 void calc_load_nohz_remote(struct rq *rq)
261 {
262 calc_load_nohz_fold(rq);
263 }
264
calc_load_nohz_stop(void)265 void calc_load_nohz_stop(void)
266 {
267 struct rq *this_rq = this_rq();
268
269 /*
270 * If we're still before the pending sample window, we're done.
271 */
272 this_rq->calc_load_update = READ_ONCE(calc_load_update);
273 if (time_before(jiffies, this_rq->calc_load_update))
274 return;
275
276 /*
277 * We woke inside or after the sample window, this means we're already
278 * accounted through the nohz accounting, so skip the entire deal and
279 * sync up for the next window.
280 */
281 if (time_before(jiffies, this_rq->calc_load_update + 10))
282 this_rq->calc_load_update += LOAD_FREQ;
283 }
284
calc_load_nohz_read(void)285 static long calc_load_nohz_read(void)
286 {
287 int idx = calc_load_read_idx();
288 long delta = 0;
289
290 if (atomic_long_read(&calc_load_nohz[idx]))
291 delta = atomic_long_xchg(&calc_load_nohz[idx], 0);
292
293 return delta;
294 }
295
296 /*
297 * NO_HZ can leave us missing all per-CPU ticks calling
298 * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into
299 * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold
300 * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary.
301 *
302 * Once we've updated the global active value, we need to apply the exponential
303 * weights adjusted to the number of cycles missed.
304 */
calc_global_nohz(void)305 static void calc_global_nohz(void)
306 {
307 unsigned long sample_window;
308 long delta, active, n;
309
310 sample_window = READ_ONCE(calc_load_update);
311 if (!time_before(jiffies, sample_window + 10)) {
312 /*
313 * Catch-up, fold however many we are behind still
314 */
315 delta = jiffies - sample_window - 10;
316 n = 1 + (delta / LOAD_FREQ);
317
318 active = atomic_long_read(&calc_load_tasks);
319 active = active > 0 ? active * FIXED_1 : 0;
320
321 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
322 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
323 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
324
325 WRITE_ONCE(calc_load_update, sample_window + n * LOAD_FREQ);
326 }
327
328 /*
329 * Flip the NO_HZ index...
330 *
331 * Make sure we first write the new time then flip the index, so that
332 * calc_load_write_idx() will see the new time when it reads the new
333 * index, this avoids a double flip messing things up.
334 */
335 smp_wmb();
336 calc_load_idx++;
337 }
338 #else /* !CONFIG_NO_HZ_COMMON */
339
calc_load_nohz_read(void)340 static inline long calc_load_nohz_read(void) { return 0; }
calc_global_nohz(void)341 static inline void calc_global_nohz(void) { }
342
343 #endif /* CONFIG_NO_HZ_COMMON */
344
345 /*
346 * calc_load - update the avenrun load estimates 10 ticks after the
347 * CPUs have updated calc_load_tasks.
348 *
349 * Called from the global timer code.
350 */
calc_global_load(unsigned long ticks)351 void calc_global_load(unsigned long ticks)
352 {
353 unsigned long sample_window;
354 long active, delta;
355
356 sample_window = READ_ONCE(calc_load_update);
357 if (time_before(jiffies, sample_window + 10))
358 return;
359
360 /*
361 * Fold the 'old' NO_HZ-delta to include all NO_HZ CPUs.
362 */
363 delta = calc_load_nohz_read();
364 if (delta)
365 atomic_long_add(delta, &calc_load_tasks);
366
367 active = atomic_long_read(&calc_load_tasks);
368 active = active > 0 ? active * FIXED_1 : 0;
369
370 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
371 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
372 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
373
374 WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ);
375
376 /*
377 * In case we went to NO_HZ for multiple LOAD_FREQ intervals
378 * catch up in bulk.
379 */
380 calc_global_nohz();
381 }
382
383 /*
384 * Called from scheduler_tick() to periodically update this CPU's
385 * active count.
386 */
calc_global_load_tick(struct rq * this_rq)387 void calc_global_load_tick(struct rq *this_rq)
388 {
389 long delta;
390
391 if (time_before(jiffies, this_rq->calc_load_update))
392 return;
393
394 delta = calc_load_fold_active(this_rq, 0);
395 if (delta)
396 atomic_long_add(delta, &calc_load_tasks);
397
398 this_rq->calc_load_update += LOAD_FREQ;
399 }
400