1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2019 Intel Corporation
9 */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <net/arp.h>
18 #include <net/cfg80211.h>
19 #include <net/cfg80211-wext.h>
20 #include <net/iw_handler.h>
21 #include "core.h"
22 #include "nl80211.h"
23 #include "wext-compat.h"
24 #include "rdev-ops.h"
25
26 /**
27 * DOC: BSS tree/list structure
28 *
29 * At the top level, the BSS list is kept in both a list in each
30 * registered device (@bss_list) as well as an RB-tree for faster
31 * lookup. In the RB-tree, entries can be looked up using their
32 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
33 * for other BSSes.
34 *
35 * Due to the possibility of hidden SSIDs, there's a second level
36 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
37 * The hidden_list connects all BSSes belonging to a single AP
38 * that has a hidden SSID, and connects beacon and probe response
39 * entries. For a probe response entry for a hidden SSID, the
40 * hidden_beacon_bss pointer points to the BSS struct holding the
41 * beacon's information.
42 *
43 * Reference counting is done for all these references except for
44 * the hidden_list, so that a beacon BSS struct that is otherwise
45 * not referenced has one reference for being on the bss_list and
46 * one for each probe response entry that points to it using the
47 * hidden_beacon_bss pointer. When a BSS struct that has such a
48 * pointer is get/put, the refcount update is also propagated to
49 * the referenced struct, this ensure that it cannot get removed
50 * while somebody is using the probe response version.
51 *
52 * Note that the hidden_beacon_bss pointer never changes, due to
53 * the reference counting. Therefore, no locking is needed for
54 * it.
55 *
56 * Also note that the hidden_beacon_bss pointer is only relevant
57 * if the driver uses something other than the IEs, e.g. private
58 * data stored stored in the BSS struct, since the beacon IEs are
59 * also linked into the probe response struct.
60 */
61
62 /*
63 * Limit the number of BSS entries stored in mac80211. Each one is
64 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
65 * If somebody wants to really attack this though, they'd likely
66 * use small beacons, and only one type of frame, limiting each of
67 * the entries to a much smaller size (in order to generate more
68 * entries in total, so overhead is bigger.)
69 */
70 static int bss_entries_limit = 1000;
71 module_param(bss_entries_limit, int, 0644);
72 MODULE_PARM_DESC(bss_entries_limit,
73 "limit to number of scan BSS entries (per wiphy, default 1000)");
74
75 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
76
bss_free(struct cfg80211_internal_bss * bss)77 static void bss_free(struct cfg80211_internal_bss *bss)
78 {
79 struct cfg80211_bss_ies *ies;
80
81 if (WARN_ON(atomic_read(&bss->hold)))
82 return;
83
84 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
85 if (ies && !bss->pub.hidden_beacon_bss)
86 kfree_rcu(ies, rcu_head);
87 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
88 if (ies)
89 kfree_rcu(ies, rcu_head);
90
91 /*
92 * This happens when the module is removed, it doesn't
93 * really matter any more save for completeness
94 */
95 if (!list_empty(&bss->hidden_list))
96 list_del(&bss->hidden_list);
97
98 kfree(bss);
99 }
100
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)101 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
102 struct cfg80211_internal_bss *bss)
103 {
104 lockdep_assert_held(&rdev->bss_lock);
105
106 bss->refcount++;
107
108 if (bss->pub.hidden_beacon_bss)
109 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
110
111 if (bss->pub.transmitted_bss)
112 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
113 }
114
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)115 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
116 struct cfg80211_internal_bss *bss)
117 {
118 lockdep_assert_held(&rdev->bss_lock);
119
120 if (bss->pub.hidden_beacon_bss) {
121 struct cfg80211_internal_bss *hbss;
122 hbss = container_of(bss->pub.hidden_beacon_bss,
123 struct cfg80211_internal_bss,
124 pub);
125 hbss->refcount--;
126 if (hbss->refcount == 0)
127 bss_free(hbss);
128 }
129
130 if (bss->pub.transmitted_bss) {
131 struct cfg80211_internal_bss *tbss;
132
133 tbss = container_of(bss->pub.transmitted_bss,
134 struct cfg80211_internal_bss,
135 pub);
136 tbss->refcount--;
137 if (tbss->refcount == 0)
138 bss_free(tbss);
139 }
140
141 bss->refcount--;
142 if (bss->refcount == 0)
143 bss_free(bss);
144 }
145
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)146 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 struct cfg80211_internal_bss *bss)
148 {
149 lockdep_assert_held(&rdev->bss_lock);
150
151 if (!list_empty(&bss->hidden_list)) {
152 /*
153 * don't remove the beacon entry if it has
154 * probe responses associated with it
155 */
156 if (!bss->pub.hidden_beacon_bss)
157 return false;
158 /*
159 * if it's a probe response entry break its
160 * link to the other entries in the group
161 */
162 list_del_init(&bss->hidden_list);
163 }
164
165 list_del_init(&bss->list);
166 list_del_init(&bss->pub.nontrans_list);
167 rb_erase(&bss->rbn, &rdev->bss_tree);
168 rdev->bss_entries--;
169 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 rdev->bss_entries, list_empty(&rdev->bss_list));
172 bss_ref_put(rdev, bss);
173 return true;
174 }
175
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)176 bool cfg80211_is_element_inherited(const struct element *elem,
177 const struct element *non_inherit_elem)
178 {
179 u8 id_len, ext_id_len, i, loop_len, id;
180 const u8 *list;
181
182 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 return false;
184
185 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
186 return true;
187
188 /*
189 * non inheritance element format is:
190 * ext ID (56) | IDs list len | list | extension IDs list len | list
191 * Both lists are optional. Both lengths are mandatory.
192 * This means valid length is:
193 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
194 */
195 id_len = non_inherit_elem->data[1];
196 if (non_inherit_elem->datalen < 3 + id_len)
197 return true;
198
199 ext_id_len = non_inherit_elem->data[2 + id_len];
200 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
201 return true;
202
203 if (elem->id == WLAN_EID_EXTENSION) {
204 if (!ext_id_len)
205 return true;
206 loop_len = ext_id_len;
207 list = &non_inherit_elem->data[3 + id_len];
208 id = elem->data[0];
209 } else {
210 if (!id_len)
211 return true;
212 loop_len = id_len;
213 list = &non_inherit_elem->data[2];
214 id = elem->id;
215 }
216
217 for (i = 0; i < loop_len; i++) {
218 if (list[i] == id)
219 return false;
220 }
221
222 return true;
223 }
224 EXPORT_SYMBOL(cfg80211_is_element_inherited);
225
cfg80211_copy_elem_with_frags(const struct element * elem,const u8 * ie,size_t ie_len,u8 ** pos,u8 * buf,size_t buf_len)226 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
227 const u8 *ie, size_t ie_len,
228 u8 **pos, u8 *buf, size_t buf_len)
229 {
230 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
231 elem->data + elem->datalen > ie + ie_len))
232 return 0;
233
234 if (elem->datalen + 2 > buf + buf_len - *pos)
235 return 0;
236
237 memcpy(*pos, elem, elem->datalen + 2);
238 *pos += elem->datalen + 2;
239
240 /* Finish if it is not fragmented */
241 if (elem->datalen != 255)
242 return *pos - buf;
243
244 ie_len = ie + ie_len - elem->data - elem->datalen;
245 ie = (const u8 *)elem->data + elem->datalen;
246
247 for_each_element(elem, ie, ie_len) {
248 if (elem->id != WLAN_EID_FRAGMENT)
249 break;
250
251 if (elem->datalen + 2 > buf + buf_len - *pos)
252 return 0;
253
254 memcpy(*pos, elem, elem->datalen + 2);
255 *pos += elem->datalen + 2;
256
257 if (elem->datalen != 255)
258 break;
259 }
260
261 return *pos - buf;
262 }
263
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subie,size_t subie_len,u8 * new_ie,size_t new_ie_len)264 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
265 const u8 *subie, size_t subie_len,
266 u8 *new_ie, size_t new_ie_len)
267 {
268 const struct element *non_inherit_elem, *parent, *sub;
269 u8 *pos = new_ie;
270 u8 id, ext_id;
271 unsigned int match_len;
272
273 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
274 subie, subie_len);
275
276 /* We copy the elements one by one from the parent to the generated
277 * elements.
278 * If they are not inherited (included in subie or in the non
279 * inheritance element), then we copy all occurrences the first time
280 * we see this element type.
281 */
282 for_each_element(parent, ie, ielen) {
283 if (parent->id == WLAN_EID_FRAGMENT)
284 continue;
285
286 if (parent->id == WLAN_EID_EXTENSION) {
287 if (parent->datalen < 1)
288 continue;
289
290 id = WLAN_EID_EXTENSION;
291 ext_id = parent->data[0];
292 match_len = 1;
293 } else {
294 id = parent->id;
295 match_len = 0;
296 }
297
298 /* Find first occurrence in subie */
299 sub = cfg80211_find_elem_match(id, subie, subie_len,
300 &ext_id, match_len, 0);
301
302 /* Copy from parent if not in subie and inherited */
303 if (!sub &&
304 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
305 if (!cfg80211_copy_elem_with_frags(parent,
306 ie, ielen,
307 &pos, new_ie,
308 new_ie_len))
309 return 0;
310
311 continue;
312 }
313
314 /* Already copied if an earlier element had the same type */
315 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
316 &ext_id, match_len, 0))
317 continue;
318
319 /* Not inheriting, copy all similar elements from subie */
320 while (sub) {
321 if (!cfg80211_copy_elem_with_frags(sub,
322 subie, subie_len,
323 &pos, new_ie,
324 new_ie_len))
325 return 0;
326
327 sub = cfg80211_find_elem_match(id,
328 sub->data + sub->datalen,
329 subie_len + subie -
330 (sub->data +
331 sub->datalen),
332 &ext_id, match_len, 0);
333 }
334 }
335
336 /* The above misses elements that are included in subie but not in the
337 * parent, so do a pass over subie and append those.
338 * Skip the non-tx BSSID caps and non-inheritance element.
339 */
340 for_each_element(sub, subie, subie_len) {
341 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
342 continue;
343
344 if (sub->id == WLAN_EID_FRAGMENT)
345 continue;
346
347 if (sub->id == WLAN_EID_EXTENSION) {
348 if (sub->datalen < 1)
349 continue;
350
351 id = WLAN_EID_EXTENSION;
352 ext_id = sub->data[0];
353 match_len = 1;
354
355 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
356 continue;
357 } else {
358 id = sub->id;
359 match_len = 0;
360 }
361
362 /* Processed if one was included in the parent */
363 if (cfg80211_find_elem_match(id, ie, ielen,
364 &ext_id, match_len, 0))
365 continue;
366
367 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
368 &pos, new_ie, new_ie_len))
369 return 0;
370 }
371
372 return pos - new_ie;
373 }
374
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)375 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
376 const u8 *ssid, size_t ssid_len)
377 {
378 const struct cfg80211_bss_ies *ies;
379 const u8 *ssidie;
380
381 if (bssid && !ether_addr_equal(a->bssid, bssid))
382 return false;
383
384 if (!ssid)
385 return true;
386
387 ies = rcu_access_pointer(a->ies);
388 if (!ies)
389 return false;
390 ssidie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
391 if (!ssidie)
392 return false;
393 if (ssidie[1] != ssid_len)
394 return false;
395 return memcmp(ssidie + 2, ssid, ssid_len) == 0;
396 }
397
398 static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)399 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
400 struct cfg80211_bss *nontrans_bss)
401 {
402 const u8 *ssid;
403 size_t ssid_len;
404 struct cfg80211_bss *bss = NULL;
405
406 rcu_read_lock();
407 ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
408 if (!ssid) {
409 rcu_read_unlock();
410 return -EINVAL;
411 }
412 ssid_len = ssid[1];
413 ssid = ssid + 2;
414
415 /* check if nontrans_bss is in the list */
416 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
417 if (is_bss(bss, nontrans_bss->bssid, ssid, ssid_len)) {
418 rcu_read_unlock();
419 return 0;
420 }
421 }
422
423 rcu_read_unlock();
424
425 /*
426 * This is a bit weird - it's not on the list, but already on another
427 * one! The only way that could happen is if there's some BSSID/SSID
428 * shared by multiple APs in their multi-BSSID profiles, potentially
429 * with hidden SSID mixed in ... ignore it.
430 */
431 if (!list_empty(&nontrans_bss->nontrans_list))
432 return -EINVAL;
433
434 /* add to the list */
435 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
436 return 0;
437 }
438
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)439 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
440 unsigned long expire_time)
441 {
442 struct cfg80211_internal_bss *bss, *tmp;
443 bool expired = false;
444
445 lockdep_assert_held(&rdev->bss_lock);
446
447 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
448 if (atomic_read(&bss->hold))
449 continue;
450 if (!time_after(expire_time, bss->ts))
451 continue;
452
453 if (__cfg80211_unlink_bss(rdev, bss))
454 expired = true;
455 }
456
457 if (expired)
458 rdev->bss_generation++;
459 }
460
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)461 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
462 {
463 struct cfg80211_internal_bss *bss, *oldest = NULL;
464 bool ret;
465
466 lockdep_assert_held(&rdev->bss_lock);
467
468 list_for_each_entry(bss, &rdev->bss_list, list) {
469 if (atomic_read(&bss->hold))
470 continue;
471
472 if (!list_empty(&bss->hidden_list) &&
473 !bss->pub.hidden_beacon_bss)
474 continue;
475
476 if (oldest && time_before(oldest->ts, bss->ts))
477 continue;
478 oldest = bss;
479 }
480
481 if (WARN_ON(!oldest))
482 return false;
483
484 /*
485 * The callers make sure to increase rdev->bss_generation if anything
486 * gets removed (and a new entry added), so there's no need to also do
487 * it here.
488 */
489
490 ret = __cfg80211_unlink_bss(rdev, oldest);
491 WARN_ON(!ret);
492 return ret;
493 }
494
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)495 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
496 bool send_message)
497 {
498 struct cfg80211_scan_request *request;
499 struct wireless_dev *wdev;
500 struct sk_buff *msg;
501 #ifdef CONFIG_CFG80211_WEXT
502 union iwreq_data wrqu;
503 #endif
504
505 ASSERT_RTNL();
506
507 if (rdev->scan_msg) {
508 nl80211_send_scan_msg(rdev, rdev->scan_msg);
509 rdev->scan_msg = NULL;
510 return;
511 }
512
513 request = rdev->scan_req;
514 if (!request)
515 return;
516
517 wdev = request->wdev;
518
519 /*
520 * This must be before sending the other events!
521 * Otherwise, wpa_supplicant gets completely confused with
522 * wext events.
523 */
524 if (wdev->netdev)
525 cfg80211_sme_scan_done(wdev->netdev);
526
527 if (!request->info.aborted &&
528 request->flags & NL80211_SCAN_FLAG_FLUSH) {
529 /* flush entries from previous scans */
530 spin_lock_bh(&rdev->bss_lock);
531 __cfg80211_bss_expire(rdev, request->scan_start);
532 spin_unlock_bh(&rdev->bss_lock);
533 }
534
535 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
536
537 #ifdef CONFIG_CFG80211_WEXT
538 if (wdev->netdev && !request->info.aborted) {
539 memset(&wrqu, 0, sizeof(wrqu));
540
541 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
542 }
543 #endif
544
545 if (wdev->netdev)
546 dev_put(wdev->netdev);
547
548 rdev->scan_req = NULL;
549 kfree(request);
550
551 if (!send_message)
552 rdev->scan_msg = msg;
553 else
554 nl80211_send_scan_msg(rdev, msg);
555 }
556
__cfg80211_scan_done(struct work_struct * wk)557 void __cfg80211_scan_done(struct work_struct *wk)
558 {
559 struct cfg80211_registered_device *rdev;
560
561 rdev = container_of(wk, struct cfg80211_registered_device,
562 scan_done_wk);
563
564 rtnl_lock();
565 ___cfg80211_scan_done(rdev, true);
566 rtnl_unlock();
567 }
568
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)569 void cfg80211_scan_done(struct cfg80211_scan_request *request,
570 struct cfg80211_scan_info *info)
571 {
572 trace_cfg80211_scan_done(request, info);
573 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req);
574
575 request->info = *info;
576 request->notified = true;
577 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
578 }
579 EXPORT_SYMBOL(cfg80211_scan_done);
580
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)581 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
582 struct cfg80211_sched_scan_request *req)
583 {
584 ASSERT_RTNL();
585
586 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
587 }
588
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)589 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
590 struct cfg80211_sched_scan_request *req)
591 {
592 ASSERT_RTNL();
593
594 list_del_rcu(&req->list);
595 kfree_rcu(req, rcu_head);
596 }
597
598 static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)599 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
600 {
601 struct cfg80211_sched_scan_request *pos;
602
603 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
604
605 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list) {
606 if (pos->reqid == reqid)
607 return pos;
608 }
609 return NULL;
610 }
611
612 /*
613 * Determines if a scheduled scan request can be handled. When a legacy
614 * scheduled scan is running no other scheduled scan is allowed regardless
615 * whether the request is for legacy or multi-support scan. When a multi-support
616 * scheduled scan is running a request for legacy scan is not allowed. In this
617 * case a request for multi-support scan can be handled if resources are
618 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
619 */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)620 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
621 bool want_multi)
622 {
623 struct cfg80211_sched_scan_request *pos;
624 int i = 0;
625
626 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
627 /* request id zero means legacy in progress */
628 if (!i && !pos->reqid)
629 return -EINPROGRESS;
630 i++;
631 }
632
633 if (i) {
634 /* no legacy allowed when multi request(s) are active */
635 if (!want_multi)
636 return -EINPROGRESS;
637
638 /* resource limit reached */
639 if (i == rdev->wiphy.max_sched_scan_reqs)
640 return -ENOSPC;
641 }
642 return 0;
643 }
644
cfg80211_sched_scan_results_wk(struct work_struct * work)645 void cfg80211_sched_scan_results_wk(struct work_struct *work)
646 {
647 struct cfg80211_registered_device *rdev;
648 struct cfg80211_sched_scan_request *req, *tmp;
649
650 rdev = container_of(work, struct cfg80211_registered_device,
651 sched_scan_res_wk);
652
653 rtnl_lock();
654 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
655 if (req->report_results) {
656 req->report_results = false;
657 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
658 /* flush entries from previous scans */
659 spin_lock_bh(&rdev->bss_lock);
660 __cfg80211_bss_expire(rdev, req->scan_start);
661 spin_unlock_bh(&rdev->bss_lock);
662 req->scan_start = jiffies;
663 }
664 nl80211_send_sched_scan(req,
665 NL80211_CMD_SCHED_SCAN_RESULTS);
666 }
667 }
668 rtnl_unlock();
669 }
670
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)671 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
672 {
673 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
674 struct cfg80211_sched_scan_request *request;
675
676 trace_cfg80211_sched_scan_results(wiphy, reqid);
677 /* ignore if we're not scanning */
678
679 rcu_read_lock();
680 request = cfg80211_find_sched_scan_req(rdev, reqid);
681 if (request) {
682 request->report_results = true;
683 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
684 }
685 rcu_read_unlock();
686 }
687 EXPORT_SYMBOL(cfg80211_sched_scan_results);
688
cfg80211_sched_scan_stopped_rtnl(struct wiphy * wiphy,u64 reqid)689 void cfg80211_sched_scan_stopped_rtnl(struct wiphy *wiphy, u64 reqid)
690 {
691 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
692
693 ASSERT_RTNL();
694
695 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
696
697 __cfg80211_stop_sched_scan(rdev, reqid, true);
698 }
699 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_rtnl);
700
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)701 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
702 {
703 rtnl_lock();
704 cfg80211_sched_scan_stopped_rtnl(wiphy, reqid);
705 rtnl_unlock();
706 }
707 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
708
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)709 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
710 struct cfg80211_sched_scan_request *req,
711 bool driver_initiated)
712 {
713 ASSERT_RTNL();
714
715 if (!driver_initiated) {
716 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
717 if (err)
718 return err;
719 }
720
721 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
722
723 cfg80211_del_sched_scan_req(rdev, req);
724
725 return 0;
726 }
727
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)728 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
729 u64 reqid, bool driver_initiated)
730 {
731 struct cfg80211_sched_scan_request *sched_scan_req;
732
733 ASSERT_RTNL();
734
735 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
736 if (!sched_scan_req)
737 return -ENOENT;
738
739 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
740 driver_initiated);
741 }
742
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)743 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
744 unsigned long age_secs)
745 {
746 struct cfg80211_internal_bss *bss;
747 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
748
749 spin_lock_bh(&rdev->bss_lock);
750 list_for_each_entry(bss, &rdev->bss_list, list)
751 bss->ts -= age_jiffies;
752 spin_unlock_bh(&rdev->bss_lock);
753 }
754
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)755 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
756 {
757 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
758 }
759
760 const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)761 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
762 const u8 *match, unsigned int match_len,
763 unsigned int match_offset)
764 {
765 const struct element *elem;
766
767 for_each_element_id(elem, eid, ies, len) {
768 if (elem->datalen >= match_offset + match_len &&
769 !memcmp(elem->data + match_offset, match, match_len))
770 return elem;
771 }
772
773 return NULL;
774 }
775 EXPORT_SYMBOL(cfg80211_find_elem_match);
776
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)777 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
778 const u8 *ies,
779 unsigned int len)
780 {
781 const struct element *elem;
782 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
783 int match_len = (oui_type < 0) ? 3 : sizeof(match);
784
785 if (WARN_ON(oui_type > 0xff))
786 return NULL;
787
788 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
789 match, match_len, 0);
790
791 if (!elem || elem->datalen < 4)
792 return NULL;
793
794 return elem;
795 }
796 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
797
798 /**
799 * enum bss_compare_mode - BSS compare mode
800 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
801 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
802 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
803 */
804 enum bss_compare_mode {
805 BSS_CMP_REGULAR,
806 BSS_CMP_HIDE_ZLEN,
807 BSS_CMP_HIDE_NUL,
808 };
809
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)810 static int cmp_bss(struct cfg80211_bss *a,
811 struct cfg80211_bss *b,
812 enum bss_compare_mode mode)
813 {
814 const struct cfg80211_bss_ies *a_ies, *b_ies;
815 const u8 *ie1 = NULL;
816 const u8 *ie2 = NULL;
817 int i, r;
818
819 if (a->channel != b->channel)
820 return b->channel->center_freq - a->channel->center_freq;
821
822 a_ies = rcu_access_pointer(a->ies);
823 if (!a_ies)
824 return -1;
825 b_ies = rcu_access_pointer(b->ies);
826 if (!b_ies)
827 return 1;
828
829 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
830 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
831 a_ies->data, a_ies->len);
832 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
833 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
834 b_ies->data, b_ies->len);
835 if (ie1 && ie2) {
836 int mesh_id_cmp;
837
838 if (ie1[1] == ie2[1])
839 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
840 else
841 mesh_id_cmp = ie2[1] - ie1[1];
842
843 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
844 a_ies->data, a_ies->len);
845 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
846 b_ies->data, b_ies->len);
847 if (ie1 && ie2) {
848 if (mesh_id_cmp)
849 return mesh_id_cmp;
850 if (ie1[1] != ie2[1])
851 return ie2[1] - ie1[1];
852 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
853 }
854 }
855
856 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
857 if (r)
858 return r;
859
860 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
861 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
862
863 if (!ie1 && !ie2)
864 return 0;
865
866 /*
867 * Note that with "hide_ssid", the function returns a match if
868 * the already-present BSS ("b") is a hidden SSID beacon for
869 * the new BSS ("a").
870 */
871
872 /* sort missing IE before (left of) present IE */
873 if (!ie1)
874 return -1;
875 if (!ie2)
876 return 1;
877
878 switch (mode) {
879 case BSS_CMP_HIDE_ZLEN:
880 /*
881 * In ZLEN mode we assume the BSS entry we're
882 * looking for has a zero-length SSID. So if
883 * the one we're looking at right now has that,
884 * return 0. Otherwise, return the difference
885 * in length, but since we're looking for the
886 * 0-length it's really equivalent to returning
887 * the length of the one we're looking at.
888 *
889 * No content comparison is needed as we assume
890 * the content length is zero.
891 */
892 return ie2[1];
893 case BSS_CMP_REGULAR:
894 default:
895 /* sort by length first, then by contents */
896 if (ie1[1] != ie2[1])
897 return ie2[1] - ie1[1];
898 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
899 case BSS_CMP_HIDE_NUL:
900 if (ie1[1] != ie2[1])
901 return ie2[1] - ie1[1];
902 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
903 for (i = 0; i < ie2[1]; i++)
904 if (ie2[i + 2])
905 return -1;
906 return 0;
907 }
908 }
909
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)910 static bool cfg80211_bss_type_match(u16 capability,
911 enum nl80211_band band,
912 enum ieee80211_bss_type bss_type)
913 {
914 bool ret = true;
915 u16 mask, val;
916
917 if (bss_type == IEEE80211_BSS_TYPE_ANY)
918 return ret;
919
920 if (band == NL80211_BAND_60GHZ) {
921 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
922 switch (bss_type) {
923 case IEEE80211_BSS_TYPE_ESS:
924 val = WLAN_CAPABILITY_DMG_TYPE_AP;
925 break;
926 case IEEE80211_BSS_TYPE_PBSS:
927 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
928 break;
929 case IEEE80211_BSS_TYPE_IBSS:
930 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
931 break;
932 default:
933 return false;
934 }
935 } else {
936 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
937 switch (bss_type) {
938 case IEEE80211_BSS_TYPE_ESS:
939 val = WLAN_CAPABILITY_ESS;
940 break;
941 case IEEE80211_BSS_TYPE_IBSS:
942 val = WLAN_CAPABILITY_IBSS;
943 break;
944 case IEEE80211_BSS_TYPE_MBSS:
945 val = 0;
946 break;
947 default:
948 return false;
949 }
950 }
951
952 ret = ((capability & mask) == val);
953 return ret;
954 }
955
956 /* Returned bss is reference counted and must be cleaned up appropriately. */
cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy)957 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
958 struct ieee80211_channel *channel,
959 const u8 *bssid,
960 const u8 *ssid, size_t ssid_len,
961 enum ieee80211_bss_type bss_type,
962 enum ieee80211_privacy privacy)
963 {
964 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
965 struct cfg80211_internal_bss *bss, *res = NULL;
966 unsigned long now = jiffies;
967 int bss_privacy;
968
969 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
970 privacy);
971
972 spin_lock_bh(&rdev->bss_lock);
973
974 list_for_each_entry(bss, &rdev->bss_list, list) {
975 if (!cfg80211_bss_type_match(bss->pub.capability,
976 bss->pub.channel->band, bss_type))
977 continue;
978
979 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
980 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
981 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
982 continue;
983 if (channel && bss->pub.channel != channel)
984 continue;
985 if (!is_valid_ether_addr(bss->pub.bssid))
986 continue;
987 /* Don't get expired BSS structs */
988 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
989 !atomic_read(&bss->hold))
990 continue;
991 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
992 res = bss;
993 bss_ref_get(rdev, res);
994 break;
995 }
996 }
997
998 spin_unlock_bh(&rdev->bss_lock);
999 if (!res)
1000 return NULL;
1001 trace_cfg80211_return_bss(&res->pub);
1002 return &res->pub;
1003 }
1004 EXPORT_SYMBOL(cfg80211_get_bss);
1005
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1006 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1007 struct cfg80211_internal_bss *bss)
1008 {
1009 struct rb_node **p = &rdev->bss_tree.rb_node;
1010 struct rb_node *parent = NULL;
1011 struct cfg80211_internal_bss *tbss;
1012 int cmp;
1013
1014 while (*p) {
1015 parent = *p;
1016 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1017
1018 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1019
1020 if (WARN_ON(!cmp)) {
1021 /* will sort of leak this BSS */
1022 return;
1023 }
1024
1025 if (cmp < 0)
1026 p = &(*p)->rb_left;
1027 else
1028 p = &(*p)->rb_right;
1029 }
1030
1031 rb_link_node(&bss->rbn, parent, p);
1032 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1033 }
1034
1035 static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1036 rb_find_bss(struct cfg80211_registered_device *rdev,
1037 struct cfg80211_internal_bss *res,
1038 enum bss_compare_mode mode)
1039 {
1040 struct rb_node *n = rdev->bss_tree.rb_node;
1041 struct cfg80211_internal_bss *bss;
1042 int r;
1043
1044 while (n) {
1045 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1046 r = cmp_bss(&res->pub, &bss->pub, mode);
1047
1048 if (r == 0)
1049 return bss;
1050 else if (r < 0)
1051 n = n->rb_left;
1052 else
1053 n = n->rb_right;
1054 }
1055
1056 return NULL;
1057 }
1058
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1059 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1060 struct cfg80211_internal_bss *new)
1061 {
1062 const struct cfg80211_bss_ies *ies;
1063 struct cfg80211_internal_bss *bss;
1064 const u8 *ie;
1065 int i, ssidlen;
1066 u8 fold = 0;
1067 u32 n_entries = 0;
1068
1069 ies = rcu_access_pointer(new->pub.beacon_ies);
1070 if (WARN_ON(!ies))
1071 return false;
1072
1073 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1074 if (!ie) {
1075 /* nothing to do */
1076 return true;
1077 }
1078
1079 ssidlen = ie[1];
1080 for (i = 0; i < ssidlen; i++)
1081 fold |= ie[2 + i];
1082
1083 if (fold) {
1084 /* not a hidden SSID */
1085 return true;
1086 }
1087
1088 /* This is the bad part ... */
1089
1090 list_for_each_entry(bss, &rdev->bss_list, list) {
1091 /*
1092 * we're iterating all the entries anyway, so take the
1093 * opportunity to validate the list length accounting
1094 */
1095 n_entries++;
1096
1097 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1098 continue;
1099 if (bss->pub.channel != new->pub.channel)
1100 continue;
1101 if (bss->pub.scan_width != new->pub.scan_width)
1102 continue;
1103 if (rcu_access_pointer(bss->pub.beacon_ies))
1104 continue;
1105 ies = rcu_access_pointer(bss->pub.ies);
1106 if (!ies)
1107 continue;
1108 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1109 if (!ie)
1110 continue;
1111 if (ssidlen && ie[1] != ssidlen)
1112 continue;
1113 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1114 continue;
1115 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1116 list_del(&bss->hidden_list);
1117 /* combine them */
1118 list_add(&bss->hidden_list, &new->hidden_list);
1119 bss->pub.hidden_beacon_bss = &new->pub;
1120 new->refcount += bss->refcount;
1121 rcu_assign_pointer(bss->pub.beacon_ies,
1122 new->pub.beacon_ies);
1123 }
1124
1125 WARN_ONCE(n_entries != rdev->bss_entries,
1126 "rdev bss entries[%d]/list[len:%d] corruption\n",
1127 rdev->bss_entries, n_entries);
1128
1129 return true;
1130 }
1131
1132 struct cfg80211_non_tx_bss {
1133 struct cfg80211_bss *tx_bss;
1134 u8 max_bssid_indicator;
1135 u8 bssid_index;
1136 };
1137
cfg80211_update_hidden_bsses(struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * new_ies,const struct cfg80211_bss_ies * old_ies)1138 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1139 const struct cfg80211_bss_ies *new_ies,
1140 const struct cfg80211_bss_ies *old_ies)
1141 {
1142 struct cfg80211_internal_bss *bss;
1143
1144 /* Assign beacon IEs to all sub entries */
1145 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1146 const struct cfg80211_bss_ies *ies;
1147
1148 ies = rcu_access_pointer(bss->pub.beacon_ies);
1149 WARN_ON(ies != old_ies);
1150
1151 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1152 }
1153 }
1154
1155 static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1156 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1157 struct cfg80211_internal_bss *known,
1158 struct cfg80211_internal_bss *new,
1159 bool signal_valid)
1160 {
1161 lockdep_assert_held(&rdev->bss_lock);
1162
1163 /* Update IEs */
1164 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1165 const struct cfg80211_bss_ies *old;
1166
1167 old = rcu_access_pointer(known->pub.proberesp_ies);
1168
1169 rcu_assign_pointer(known->pub.proberesp_ies,
1170 new->pub.proberesp_ies);
1171 /* Override possible earlier Beacon frame IEs */
1172 rcu_assign_pointer(known->pub.ies,
1173 new->pub.proberesp_ies);
1174 if (old)
1175 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1176 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1177 const struct cfg80211_bss_ies *old;
1178
1179 if (known->pub.hidden_beacon_bss &&
1180 !list_empty(&known->hidden_list)) {
1181 const struct cfg80211_bss_ies *f;
1182
1183 /* The known BSS struct is one of the probe
1184 * response members of a group, but we're
1185 * receiving a beacon (beacon_ies in the new
1186 * bss is used). This can only mean that the
1187 * AP changed its beacon from not having an
1188 * SSID to showing it, which is confusing so
1189 * drop this information.
1190 */
1191
1192 f = rcu_access_pointer(new->pub.beacon_ies);
1193 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1194 return false;
1195 }
1196
1197 old = rcu_access_pointer(known->pub.beacon_ies);
1198
1199 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1200
1201 /* Override IEs if they were from a beacon before */
1202 if (old == rcu_access_pointer(known->pub.ies))
1203 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1204
1205 cfg80211_update_hidden_bsses(known,
1206 rcu_access_pointer(new->pub.beacon_ies),
1207 old);
1208
1209 if (old)
1210 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1211 }
1212
1213 known->pub.beacon_interval = new->pub.beacon_interval;
1214
1215 /* don't update the signal if beacon was heard on
1216 * adjacent channel.
1217 */
1218 if (signal_valid)
1219 known->pub.signal = new->pub.signal;
1220 known->pub.capability = new->pub.capability;
1221 known->ts = new->ts;
1222 known->ts_boottime = new->ts_boottime;
1223 known->parent_tsf = new->parent_tsf;
1224 known->pub.chains = new->pub.chains;
1225 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1226 IEEE80211_MAX_CHAINS);
1227 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1228 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1229 known->pub.bssid_index = new->pub.bssid_index;
1230
1231 return true;
1232 }
1233
1234 /* Returned bss is reference counted and must be cleaned up appropriately. */
1235 struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1236 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1237 struct cfg80211_internal_bss *tmp,
1238 bool signal_valid, unsigned long ts)
1239 {
1240 struct cfg80211_internal_bss *found = NULL;
1241
1242 if (WARN_ON(!tmp->pub.channel))
1243 return NULL;
1244
1245 tmp->ts = ts;
1246
1247 spin_lock_bh(&rdev->bss_lock);
1248
1249 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1250 spin_unlock_bh(&rdev->bss_lock);
1251 return NULL;
1252 }
1253
1254 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1255
1256 if (found) {
1257 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1258 goto drop;
1259 } else {
1260 struct cfg80211_internal_bss *new;
1261 struct cfg80211_internal_bss *hidden;
1262 struct cfg80211_bss_ies *ies;
1263
1264 /*
1265 * create a copy -- the "res" variable that is passed in
1266 * is allocated on the stack since it's not needed in the
1267 * more common case of an update
1268 */
1269 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1270 GFP_ATOMIC);
1271 if (!new) {
1272 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1273 if (ies)
1274 kfree_rcu(ies, rcu_head);
1275 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1276 if (ies)
1277 kfree_rcu(ies, rcu_head);
1278 goto drop;
1279 }
1280 memcpy(new, tmp, sizeof(*new));
1281 new->refcount = 1;
1282 INIT_LIST_HEAD(&new->hidden_list);
1283 INIT_LIST_HEAD(&new->pub.nontrans_list);
1284 /* we'll set this later if it was non-NULL */
1285 new->pub.transmitted_bss = NULL;
1286
1287 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1288 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1289 if (!hidden)
1290 hidden = rb_find_bss(rdev, tmp,
1291 BSS_CMP_HIDE_NUL);
1292 if (hidden) {
1293 new->pub.hidden_beacon_bss = &hidden->pub;
1294 list_add(&new->hidden_list,
1295 &hidden->hidden_list);
1296 hidden->refcount++;
1297
1298 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1299 rcu_assign_pointer(new->pub.beacon_ies,
1300 hidden->pub.beacon_ies);
1301 if (ies)
1302 kfree_rcu(ies, rcu_head);
1303 }
1304 } else {
1305 /*
1306 * Ok so we found a beacon, and don't have an entry. If
1307 * it's a beacon with hidden SSID, we might be in for an
1308 * expensive search for any probe responses that should
1309 * be grouped with this beacon for updates ...
1310 */
1311 if (!cfg80211_combine_bsses(rdev, new)) {
1312 bss_ref_put(rdev, new);
1313 goto drop;
1314 }
1315 }
1316
1317 if (rdev->bss_entries >= bss_entries_limit &&
1318 !cfg80211_bss_expire_oldest(rdev)) {
1319 bss_ref_put(rdev, new);
1320 goto drop;
1321 }
1322
1323 /* This must be before the call to bss_ref_get */
1324 if (tmp->pub.transmitted_bss) {
1325 struct cfg80211_internal_bss *pbss =
1326 container_of(tmp->pub.transmitted_bss,
1327 struct cfg80211_internal_bss,
1328 pub);
1329
1330 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1331 bss_ref_get(rdev, pbss);
1332 }
1333
1334 list_add_tail(&new->list, &rdev->bss_list);
1335 rdev->bss_entries++;
1336 rb_insert_bss(rdev, new);
1337 found = new;
1338 }
1339
1340 rdev->bss_generation++;
1341 bss_ref_get(rdev, found);
1342 spin_unlock_bh(&rdev->bss_lock);
1343
1344 return found;
1345 drop:
1346 spin_unlock_bh(&rdev->bss_lock);
1347 return NULL;
1348 }
1349
1350 /*
1351 * Update RX channel information based on the available frame payload
1352 * information. This is mainly for the 2.4 GHz band where frames can be received
1353 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1354 * element to indicate the current (transmitting) channel, but this might also
1355 * be needed on other bands if RX frequency does not match with the actual
1356 * operating channel of a BSS.
1357 */
1358 static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel,enum nl80211_bss_scan_width scan_width)1359 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1360 struct ieee80211_channel *channel,
1361 enum nl80211_bss_scan_width scan_width)
1362 {
1363 const u8 *tmp;
1364 u32 freq;
1365 int channel_number = -1;
1366 struct ieee80211_channel *alt_channel;
1367
1368 tmp = cfg80211_find_ie(WLAN_EID_DS_PARAMS, ie, ielen);
1369 if (tmp && tmp[1] == 1) {
1370 channel_number = tmp[2];
1371 } else {
1372 tmp = cfg80211_find_ie(WLAN_EID_HT_OPERATION, ie, ielen);
1373 if (tmp && tmp[1] >= sizeof(struct ieee80211_ht_operation)) {
1374 struct ieee80211_ht_operation *htop = (void *)(tmp + 2);
1375
1376 channel_number = htop->primary_chan;
1377 }
1378 }
1379
1380 if (channel_number < 0) {
1381 /* No channel information in frame payload */
1382 return channel;
1383 }
1384
1385 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1386 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1387 if (!alt_channel) {
1388 if (channel->band == NL80211_BAND_2GHZ) {
1389 /*
1390 * Better not allow unexpected channels when that could
1391 * be going beyond the 1-11 range (e.g., discovering
1392 * BSS on channel 12 when radio is configured for
1393 * channel 11.
1394 */
1395 return NULL;
1396 }
1397
1398 /* No match for the payload channel number - ignore it */
1399 return channel;
1400 }
1401
1402 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1403 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1404 /*
1405 * Ignore channel number in 5 and 10 MHz channels where there
1406 * may not be an n:1 or 1:n mapping between frequencies and
1407 * channel numbers.
1408 */
1409 return channel;
1410 }
1411
1412 /*
1413 * Use the channel determined through the payload channel number
1414 * instead of the RX channel reported by the driver.
1415 */
1416 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1417 return NULL;
1418 return alt_channel;
1419 }
1420
1421 /* Returned bss is reference counted and must be cleaned up appropriately. */
1422 static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)1423 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1424 struct cfg80211_inform_bss *data,
1425 enum cfg80211_bss_frame_type ftype,
1426 const u8 *bssid, u64 tsf, u16 capability,
1427 u16 beacon_interval, const u8 *ie, size_t ielen,
1428 struct cfg80211_non_tx_bss *non_tx_data,
1429 gfp_t gfp)
1430 {
1431 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1432 struct cfg80211_bss_ies *ies;
1433 struct ieee80211_channel *channel;
1434 struct cfg80211_internal_bss tmp = {}, *res;
1435 int bss_type;
1436 bool signal_valid;
1437 unsigned long ts;
1438
1439 if (WARN_ON(!wiphy))
1440 return NULL;
1441
1442 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1443 (data->signal < 0 || data->signal > 100)))
1444 return NULL;
1445
1446 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1447 data->scan_width);
1448 if (!channel)
1449 return NULL;
1450
1451 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1452 tmp.pub.channel = channel;
1453 tmp.pub.scan_width = data->scan_width;
1454 tmp.pub.signal = data->signal;
1455 tmp.pub.beacon_interval = beacon_interval;
1456 tmp.pub.capability = capability;
1457 tmp.ts_boottime = data->boottime_ns;
1458 if (non_tx_data) {
1459 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1460 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1461 tmp.pub.bssid_index = non_tx_data->bssid_index;
1462 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1463 } else {
1464 ts = jiffies;
1465 }
1466
1467 /*
1468 * If we do not know here whether the IEs are from a Beacon or Probe
1469 * Response frame, we need to pick one of the options and only use it
1470 * with the driver that does not provide the full Beacon/Probe Response
1471 * frame. Use Beacon frame pointer to avoid indicating that this should
1472 * override the IEs pointer should we have received an earlier
1473 * indication of Probe Response data.
1474 */
1475 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1476 if (!ies)
1477 return NULL;
1478 ies->len = ielen;
1479 ies->tsf = tsf;
1480 ies->from_beacon = false;
1481 memcpy(ies->data, ie, ielen);
1482
1483 switch (ftype) {
1484 case CFG80211_BSS_FTYPE_BEACON:
1485 ies->from_beacon = true;
1486 /* fall through */
1487 case CFG80211_BSS_FTYPE_UNKNOWN:
1488 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1489 break;
1490 case CFG80211_BSS_FTYPE_PRESP:
1491 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1492 break;
1493 }
1494 rcu_assign_pointer(tmp.pub.ies, ies);
1495
1496 signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1497 wiphy->max_adj_channel_rssi_comp;
1498 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
1499 if (!res)
1500 return NULL;
1501
1502 if (channel->band == NL80211_BAND_60GHZ) {
1503 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1504 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1505 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1506 regulatory_hint_found_beacon(wiphy, channel, gfp);
1507 } else {
1508 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1509 regulatory_hint_found_beacon(wiphy, channel, gfp);
1510 }
1511
1512 if (non_tx_data) {
1513 /* this is a nontransmitting bss, we need to add it to
1514 * transmitting bss' list if it is not there
1515 */
1516 spin_lock_bh(&rdev->bss_lock);
1517 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
1518 &res->pub)) {
1519 if (__cfg80211_unlink_bss(rdev, res)) {
1520 rdev->bss_generation++;
1521 res = NULL;
1522 }
1523 }
1524 spin_unlock_bh(&rdev->bss_lock);
1525
1526 if (!res)
1527 return NULL;
1528 }
1529
1530 trace_cfg80211_return_bss(&res->pub);
1531 /* cfg80211_bss_update gives us a referenced result */
1532 return &res->pub;
1533 }
1534
1535 static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)1536 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
1537 const struct element *mbssid_elem,
1538 const struct element *sub_elem)
1539 {
1540 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
1541 const struct element *next_mbssid;
1542 const struct element *next_sub;
1543
1544 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
1545 mbssid_end,
1546 ielen - (mbssid_end - ie));
1547
1548 /*
1549 * If is is not the last subelement in current MBSSID IE or there isn't
1550 * a next MBSSID IE - profile is complete.
1551 */
1552 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
1553 !next_mbssid)
1554 return NULL;
1555
1556 /* For any length error, just return NULL */
1557
1558 if (next_mbssid->datalen < 4)
1559 return NULL;
1560
1561 next_sub = (void *)&next_mbssid->data[1];
1562
1563 if (next_mbssid->data + next_mbssid->datalen <
1564 next_sub->data + next_sub->datalen)
1565 return NULL;
1566
1567 if (next_sub->id != 0 || next_sub->datalen < 2)
1568 return NULL;
1569
1570 /*
1571 * Check if the first element in the next sub element is a start
1572 * of a new profile
1573 */
1574 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
1575 NULL : next_mbssid;
1576 }
1577
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)1578 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
1579 const struct element *mbssid_elem,
1580 const struct element *sub_elem,
1581 u8 *merged_ie, size_t max_copy_len)
1582 {
1583 size_t copied_len = sub_elem->datalen;
1584 const struct element *next_mbssid;
1585
1586 if (sub_elem->datalen > max_copy_len)
1587 return 0;
1588
1589 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
1590
1591 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
1592 mbssid_elem,
1593 sub_elem))) {
1594 const struct element *next_sub = (void *)&next_mbssid->data[1];
1595
1596 if (copied_len + next_sub->datalen > max_copy_len)
1597 break;
1598 memcpy(merged_ie + copied_len, next_sub->data,
1599 next_sub->datalen);
1600 copied_len += next_sub->datalen;
1601 }
1602
1603 return copied_len;
1604 }
1605 EXPORT_SYMBOL(cfg80211_merge_profile);
1606
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)1607 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
1608 struct cfg80211_inform_bss *data,
1609 enum cfg80211_bss_frame_type ftype,
1610 const u8 *bssid, u64 tsf,
1611 u16 beacon_interval, const u8 *ie,
1612 size_t ielen,
1613 struct cfg80211_non_tx_bss *non_tx_data,
1614 gfp_t gfp)
1615 {
1616 const u8 *mbssid_index_ie;
1617 const struct element *elem, *sub;
1618 size_t new_ie_len;
1619 u8 new_bssid[ETH_ALEN];
1620 u8 *new_ie, *profile;
1621 u64 seen_indices = 0;
1622 u16 capability;
1623 struct cfg80211_bss *bss;
1624
1625 if (!non_tx_data)
1626 return;
1627 if (!cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
1628 return;
1629 if (!wiphy->support_mbssid)
1630 return;
1631 if (wiphy->support_only_he_mbssid &&
1632 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
1633 return;
1634
1635 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
1636 if (!new_ie)
1637 return;
1638
1639 profile = kmalloc(ielen, gfp);
1640 if (!profile)
1641 goto out;
1642
1643 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
1644 if (elem->datalen < 4)
1645 continue;
1646 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
1647 continue;
1648 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
1649 u8 profile_len;
1650
1651 if (sub->id != 0 || sub->datalen < 4) {
1652 /* not a valid BSS profile */
1653 continue;
1654 }
1655
1656 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
1657 sub->data[1] != 2) {
1658 /* The first element within the Nontransmitted
1659 * BSSID Profile is not the Nontransmitted
1660 * BSSID Capability element.
1661 */
1662 continue;
1663 }
1664
1665 memset(profile, 0, ielen);
1666 profile_len = cfg80211_merge_profile(ie, ielen,
1667 elem,
1668 sub,
1669 profile,
1670 ielen);
1671
1672 /* found a Nontransmitted BSSID Profile */
1673 mbssid_index_ie = cfg80211_find_ie
1674 (WLAN_EID_MULTI_BSSID_IDX,
1675 profile, profile_len);
1676 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
1677 mbssid_index_ie[2] == 0 ||
1678 mbssid_index_ie[2] > 46) {
1679 /* No valid Multiple BSSID-Index element */
1680 continue;
1681 }
1682
1683 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
1684 /* We don't support legacy split of a profile */
1685 net_dbg_ratelimited("Partial info for BSSID index %d\n",
1686 mbssid_index_ie[2]);
1687
1688 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
1689
1690 non_tx_data->bssid_index = mbssid_index_ie[2];
1691 non_tx_data->max_bssid_indicator = elem->data[0];
1692
1693 cfg80211_gen_new_bssid(bssid,
1694 non_tx_data->max_bssid_indicator,
1695 non_tx_data->bssid_index,
1696 new_bssid);
1697 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
1698 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
1699 profile,
1700 profile_len, new_ie,
1701 IEEE80211_MAX_DATA_LEN);
1702 if (!new_ie_len)
1703 continue;
1704
1705 capability = get_unaligned_le16(profile + 2);
1706 bss = cfg80211_inform_single_bss_data(wiphy, data,
1707 ftype,
1708 new_bssid, tsf,
1709 capability,
1710 beacon_interval,
1711 new_ie,
1712 new_ie_len,
1713 non_tx_data,
1714 gfp);
1715 if (!bss)
1716 break;
1717 cfg80211_put_bss(wiphy, bss);
1718 }
1719 }
1720
1721 out:
1722 kfree(new_ie);
1723 kfree(profile);
1724 }
1725
1726 struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)1727 cfg80211_inform_bss_data(struct wiphy *wiphy,
1728 struct cfg80211_inform_bss *data,
1729 enum cfg80211_bss_frame_type ftype,
1730 const u8 *bssid, u64 tsf, u16 capability,
1731 u16 beacon_interval, const u8 *ie, size_t ielen,
1732 gfp_t gfp)
1733 {
1734 struct cfg80211_bss *res;
1735 struct cfg80211_non_tx_bss non_tx_data;
1736
1737 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
1738 capability, beacon_interval, ie,
1739 ielen, NULL, gfp);
1740 if (!res)
1741 return NULL;
1742 non_tx_data.tx_bss = res;
1743 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
1744 beacon_interval, ie, ielen, &non_tx_data,
1745 gfp);
1746 return res;
1747 }
1748 EXPORT_SYMBOL(cfg80211_inform_bss_data);
1749
1750 static void
cfg80211_parse_mbssid_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)1751 cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
1752 struct cfg80211_inform_bss *data,
1753 struct ieee80211_mgmt *mgmt, size_t len,
1754 struct cfg80211_non_tx_bss *non_tx_data,
1755 gfp_t gfp)
1756 {
1757 enum cfg80211_bss_frame_type ftype;
1758 const u8 *ie = mgmt->u.probe_resp.variable;
1759 size_t ielen = len - offsetof(struct ieee80211_mgmt,
1760 u.probe_resp.variable);
1761
1762 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
1763 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
1764
1765 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
1766 le64_to_cpu(mgmt->u.probe_resp.timestamp),
1767 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
1768 ie, ielen, non_tx_data, gfp);
1769 }
1770
1771 static void
cfg80211_update_notlisted_nontrans(struct wiphy * wiphy,struct cfg80211_bss * nontrans_bss,struct ieee80211_mgmt * mgmt,size_t len)1772 cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
1773 struct cfg80211_bss *nontrans_bss,
1774 struct ieee80211_mgmt *mgmt, size_t len)
1775 {
1776 u8 *ie, *new_ie, *pos;
1777 const u8 *nontrans_ssid, *trans_ssid, *mbssid;
1778 size_t ielen = len - offsetof(struct ieee80211_mgmt,
1779 u.probe_resp.variable);
1780 size_t new_ie_len;
1781 struct cfg80211_bss_ies *new_ies;
1782 const struct cfg80211_bss_ies *old;
1783 size_t cpy_len;
1784
1785 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
1786
1787 ie = mgmt->u.probe_resp.variable;
1788
1789 new_ie_len = ielen;
1790 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
1791 if (!trans_ssid)
1792 return;
1793 new_ie_len -= trans_ssid[1];
1794 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
1795 /*
1796 * It's not valid to have the MBSSID element before SSID
1797 * ignore if that happens - the code below assumes it is
1798 * after (while copying things inbetween).
1799 */
1800 if (!mbssid || mbssid < trans_ssid)
1801 return;
1802 new_ie_len -= mbssid[1];
1803
1804 nontrans_ssid = ieee80211_bss_get_ie(nontrans_bss, WLAN_EID_SSID);
1805 if (!nontrans_ssid)
1806 return;
1807
1808 new_ie_len += nontrans_ssid[1];
1809
1810 /* generate new ie for nontrans BSS
1811 * 1. replace SSID with nontrans BSS' SSID
1812 * 2. skip MBSSID IE
1813 */
1814 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
1815 if (!new_ie)
1816 return;
1817
1818 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
1819 if (!new_ies)
1820 goto out_free;
1821
1822 pos = new_ie;
1823
1824 /* copy the nontransmitted SSID */
1825 cpy_len = nontrans_ssid[1] + 2;
1826 memcpy(pos, nontrans_ssid, cpy_len);
1827 pos += cpy_len;
1828 /* copy the IEs between SSID and MBSSID */
1829 cpy_len = trans_ssid[1] + 2;
1830 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
1831 pos += (mbssid - (trans_ssid + cpy_len));
1832 /* copy the IEs after MBSSID */
1833 cpy_len = mbssid[1] + 2;
1834 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
1835
1836 /* update ie */
1837 new_ies->len = new_ie_len;
1838 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1839 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1840 memcpy(new_ies->data, new_ie, new_ie_len);
1841 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
1842 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
1843 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
1844 rcu_assign_pointer(nontrans_bss->ies, new_ies);
1845 if (old)
1846 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1847 } else {
1848 old = rcu_access_pointer(nontrans_bss->beacon_ies);
1849 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
1850 cfg80211_update_hidden_bsses(bss_from_pub(nontrans_bss),
1851 new_ies, old);
1852 rcu_assign_pointer(nontrans_bss->ies, new_ies);
1853 if (old)
1854 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1855 }
1856
1857 out_free:
1858 kfree(new_ie);
1859 }
1860
1861 /* cfg80211_inform_bss_width_frame helper */
1862 static struct cfg80211_bss *
cfg80211_inform_single_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)1863 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
1864 struct cfg80211_inform_bss *data,
1865 struct ieee80211_mgmt *mgmt, size_t len,
1866 gfp_t gfp)
1867 {
1868 struct cfg80211_internal_bss tmp = {}, *res;
1869 struct cfg80211_bss_ies *ies;
1870 struct ieee80211_channel *channel;
1871 bool signal_valid;
1872 size_t ielen = len - offsetof(struct ieee80211_mgmt,
1873 u.probe_resp.variable);
1874 int bss_type;
1875
1876 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
1877 offsetof(struct ieee80211_mgmt, u.beacon.variable));
1878
1879 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
1880
1881 if (WARN_ON(!mgmt))
1882 return NULL;
1883
1884 if (WARN_ON(!wiphy))
1885 return NULL;
1886
1887 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1888 (data->signal < 0 || data->signal > 100)))
1889 return NULL;
1890
1891 if (WARN_ON(len < offsetof(struct ieee80211_mgmt, u.probe_resp.variable)))
1892 return NULL;
1893
1894 channel = cfg80211_get_bss_channel(wiphy, mgmt->u.beacon.variable,
1895 ielen, data->chan, data->scan_width);
1896 if (!channel)
1897 return NULL;
1898
1899 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1900 if (!ies)
1901 return NULL;
1902 ies->len = ielen;
1903 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
1904 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
1905 memcpy(ies->data, mgmt->u.probe_resp.variable, ielen);
1906
1907 if (ieee80211_is_probe_resp(mgmt->frame_control))
1908 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
1909 else
1910 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
1911 rcu_assign_pointer(tmp.pub.ies, ies);
1912
1913 memcpy(tmp.pub.bssid, mgmt->bssid, ETH_ALEN);
1914 tmp.pub.channel = channel;
1915 tmp.pub.scan_width = data->scan_width;
1916 tmp.pub.signal = data->signal;
1917 tmp.pub.beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
1918 tmp.pub.capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
1919 tmp.ts_boottime = data->boottime_ns;
1920 tmp.parent_tsf = data->parent_tsf;
1921 tmp.pub.chains = data->chains;
1922 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
1923 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1924
1925 signal_valid = abs(data->chan->center_freq - channel->center_freq) <=
1926 wiphy->max_adj_channel_rssi_comp;
1927 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
1928 jiffies);
1929 if (!res)
1930 return NULL;
1931
1932 if (channel->band == NL80211_BAND_60GHZ) {
1933 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
1934 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
1935 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
1936 regulatory_hint_found_beacon(wiphy, channel, gfp);
1937 } else {
1938 if (res->pub.capability & WLAN_CAPABILITY_ESS)
1939 regulatory_hint_found_beacon(wiphy, channel, gfp);
1940 }
1941
1942 trace_cfg80211_return_bss(&res->pub);
1943 /* cfg80211_bss_update gives us a referenced result */
1944 return &res->pub;
1945 }
1946
1947 struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)1948 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
1949 struct cfg80211_inform_bss *data,
1950 struct ieee80211_mgmt *mgmt, size_t len,
1951 gfp_t gfp)
1952 {
1953 struct cfg80211_bss *res, *tmp_bss;
1954 const u8 *ie = mgmt->u.probe_resp.variable;
1955 const struct cfg80211_bss_ies *ies1, *ies2;
1956 size_t ielen = len - offsetof(struct ieee80211_mgmt,
1957 u.probe_resp.variable);
1958 struct cfg80211_non_tx_bss non_tx_data;
1959
1960 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
1961 len, gfp);
1962 if (!res || !wiphy->support_mbssid ||
1963 !cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
1964 return res;
1965 if (wiphy->support_only_he_mbssid &&
1966 !cfg80211_find_ext_ie(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
1967 return res;
1968
1969 non_tx_data.tx_bss = res;
1970 /* process each non-transmitting bss */
1971 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
1972 &non_tx_data, gfp);
1973
1974 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
1975
1976 /* check if the res has other nontransmitting bss which is not
1977 * in MBSSID IE
1978 */
1979 ies1 = rcu_access_pointer(res->ies);
1980
1981 /* go through nontrans_list, if the timestamp of the BSS is
1982 * earlier than the timestamp of the transmitting BSS then
1983 * update it
1984 */
1985 list_for_each_entry(tmp_bss, &res->nontrans_list,
1986 nontrans_list) {
1987 ies2 = rcu_access_pointer(tmp_bss->ies);
1988 if (ies2->tsf < ies1->tsf)
1989 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
1990 mgmt, len);
1991 }
1992 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
1993
1994 return res;
1995 }
1996 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
1997
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)1998 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
1999 {
2000 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2001 struct cfg80211_internal_bss *bss;
2002
2003 if (!pub)
2004 return;
2005
2006 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2007
2008 spin_lock_bh(&rdev->bss_lock);
2009 bss_ref_get(rdev, bss);
2010 spin_unlock_bh(&rdev->bss_lock);
2011 }
2012 EXPORT_SYMBOL(cfg80211_ref_bss);
2013
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2014 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2015 {
2016 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2017 struct cfg80211_internal_bss *bss;
2018
2019 if (!pub)
2020 return;
2021
2022 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2023
2024 spin_lock_bh(&rdev->bss_lock);
2025 bss_ref_put(rdev, bss);
2026 spin_unlock_bh(&rdev->bss_lock);
2027 }
2028 EXPORT_SYMBOL(cfg80211_put_bss);
2029
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2030 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2031 {
2032 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2033 struct cfg80211_internal_bss *bss, *tmp1;
2034 struct cfg80211_bss *nontrans_bss, *tmp;
2035
2036 if (WARN_ON(!pub))
2037 return;
2038
2039 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2040
2041 spin_lock_bh(&rdev->bss_lock);
2042 if (list_empty(&bss->list))
2043 goto out;
2044
2045 list_for_each_entry_safe(nontrans_bss, tmp,
2046 &pub->nontrans_list,
2047 nontrans_list) {
2048 tmp1 = container_of(nontrans_bss,
2049 struct cfg80211_internal_bss, pub);
2050 if (__cfg80211_unlink_bss(rdev, tmp1))
2051 rdev->bss_generation++;
2052 }
2053
2054 if (__cfg80211_unlink_bss(rdev, bss))
2055 rdev->bss_generation++;
2056 out:
2057 spin_unlock_bh(&rdev->bss_lock);
2058 }
2059 EXPORT_SYMBOL(cfg80211_unlink_bss);
2060
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)2061 void cfg80211_bss_iter(struct wiphy *wiphy,
2062 struct cfg80211_chan_def *chandef,
2063 void (*iter)(struct wiphy *wiphy,
2064 struct cfg80211_bss *bss,
2065 void *data),
2066 void *iter_data)
2067 {
2068 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2069 struct cfg80211_internal_bss *bss;
2070
2071 spin_lock_bh(&rdev->bss_lock);
2072
2073 list_for_each_entry(bss, &rdev->bss_list, list) {
2074 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel))
2075 iter(wiphy, &bss->pub, iter_data);
2076 }
2077
2078 spin_unlock_bh(&rdev->bss_lock);
2079 }
2080 EXPORT_SYMBOL(cfg80211_bss_iter);
2081
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,struct ieee80211_channel * chan)2082 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2083 struct ieee80211_channel *chan)
2084 {
2085 struct wiphy *wiphy = wdev->wiphy;
2086 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2087 struct cfg80211_internal_bss *cbss = wdev->current_bss;
2088 struct cfg80211_internal_bss *new = NULL;
2089 struct cfg80211_internal_bss *bss;
2090 struct cfg80211_bss *nontrans_bss;
2091 struct cfg80211_bss *tmp;
2092
2093 spin_lock_bh(&rdev->bss_lock);
2094
2095 /*
2096 * Some APs use CSA also for bandwidth changes, i.e., without actually
2097 * changing the control channel, so no need to update in such a case.
2098 */
2099 if (cbss->pub.channel == chan)
2100 goto done;
2101
2102 /* use transmitting bss */
2103 if (cbss->pub.transmitted_bss)
2104 cbss = container_of(cbss->pub.transmitted_bss,
2105 struct cfg80211_internal_bss,
2106 pub);
2107
2108 cbss->pub.channel = chan;
2109
2110 list_for_each_entry(bss, &rdev->bss_list, list) {
2111 if (!cfg80211_bss_type_match(bss->pub.capability,
2112 bss->pub.channel->band,
2113 wdev->conn_bss_type))
2114 continue;
2115
2116 if (bss == cbss)
2117 continue;
2118
2119 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2120 new = bss;
2121 break;
2122 }
2123 }
2124
2125 if (new) {
2126 /* to save time, update IEs for transmitting bss only */
2127 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2128 new->pub.proberesp_ies = NULL;
2129 new->pub.beacon_ies = NULL;
2130 }
2131
2132 list_for_each_entry_safe(nontrans_bss, tmp,
2133 &new->pub.nontrans_list,
2134 nontrans_list) {
2135 bss = container_of(nontrans_bss,
2136 struct cfg80211_internal_bss, pub);
2137 if (__cfg80211_unlink_bss(rdev, bss))
2138 rdev->bss_generation++;
2139 }
2140
2141 WARN_ON(atomic_read(&new->hold));
2142 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2143 rdev->bss_generation++;
2144 }
2145
2146 rb_erase(&cbss->rbn, &rdev->bss_tree);
2147 rb_insert_bss(rdev, cbss);
2148 rdev->bss_generation++;
2149
2150 list_for_each_entry_safe(nontrans_bss, tmp,
2151 &cbss->pub.nontrans_list,
2152 nontrans_list) {
2153 bss = container_of(nontrans_bss,
2154 struct cfg80211_internal_bss, pub);
2155 bss->pub.channel = chan;
2156 rb_erase(&bss->rbn, &rdev->bss_tree);
2157 rb_insert_bss(rdev, bss);
2158 rdev->bss_generation++;
2159 }
2160
2161 done:
2162 spin_unlock_bh(&rdev->bss_lock);
2163 }
2164
2165 #ifdef CONFIG_CFG80211_WEXT
2166 static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)2167 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2168 {
2169 struct cfg80211_registered_device *rdev;
2170 struct net_device *dev;
2171
2172 ASSERT_RTNL();
2173
2174 dev = dev_get_by_index(net, ifindex);
2175 if (!dev)
2176 return ERR_PTR(-ENODEV);
2177 if (dev->ieee80211_ptr)
2178 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2179 else
2180 rdev = ERR_PTR(-ENODEV);
2181 dev_put(dev);
2182 return rdev;
2183 }
2184
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)2185 int cfg80211_wext_siwscan(struct net_device *dev,
2186 struct iw_request_info *info,
2187 union iwreq_data *wrqu, char *extra)
2188 {
2189 struct cfg80211_registered_device *rdev;
2190 struct wiphy *wiphy;
2191 struct iw_scan_req *wreq = NULL;
2192 struct cfg80211_scan_request *creq = NULL;
2193 int i, err, n_channels = 0;
2194 enum nl80211_band band;
2195
2196 if (!netif_running(dev))
2197 return -ENETDOWN;
2198
2199 if (wrqu->data.length == sizeof(struct iw_scan_req))
2200 wreq = (struct iw_scan_req *)extra;
2201
2202 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2203
2204 if (IS_ERR(rdev))
2205 return PTR_ERR(rdev);
2206
2207 if (rdev->scan_req || rdev->scan_msg) {
2208 err = -EBUSY;
2209 goto out;
2210 }
2211
2212 wiphy = &rdev->wiphy;
2213
2214 /* Determine number of channels, needed to allocate creq */
2215 if (wreq && wreq->num_channels)
2216 n_channels = wreq->num_channels;
2217 else
2218 n_channels = ieee80211_get_num_supported_channels(wiphy);
2219
2220 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2221 n_channels * sizeof(void *),
2222 GFP_ATOMIC);
2223 if (!creq) {
2224 err = -ENOMEM;
2225 goto out;
2226 }
2227
2228 creq->wiphy = wiphy;
2229 creq->wdev = dev->ieee80211_ptr;
2230 /* SSIDs come after channels */
2231 creq->ssids = (void *)&creq->channels[n_channels];
2232 creq->n_channels = n_channels;
2233 creq->n_ssids = 1;
2234 creq->scan_start = jiffies;
2235
2236 /* translate "Scan on frequencies" request */
2237 i = 0;
2238 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2239 int j;
2240
2241 if (!wiphy->bands[band])
2242 continue;
2243
2244 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2245 /* ignore disabled channels */
2246 if (wiphy->bands[band]->channels[j].flags &
2247 IEEE80211_CHAN_DISABLED)
2248 continue;
2249
2250 /* If we have a wireless request structure and the
2251 * wireless request specifies frequencies, then search
2252 * for the matching hardware channel.
2253 */
2254 if (wreq && wreq->num_channels) {
2255 int k;
2256 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2257 for (k = 0; k < wreq->num_channels; k++) {
2258 struct iw_freq *freq =
2259 &wreq->channel_list[k];
2260 int wext_freq =
2261 cfg80211_wext_freq(freq);
2262
2263 if (wext_freq == wiphy_freq)
2264 goto wext_freq_found;
2265 }
2266 goto wext_freq_not_found;
2267 }
2268
2269 wext_freq_found:
2270 creq->channels[i] = &wiphy->bands[band]->channels[j];
2271 i++;
2272 wext_freq_not_found: ;
2273 }
2274 }
2275 /* No channels found? */
2276 if (!i) {
2277 err = -EINVAL;
2278 goto out;
2279 }
2280
2281 /* Set real number of channels specified in creq->channels[] */
2282 creq->n_channels = i;
2283
2284 /* translate "Scan for SSID" request */
2285 if (wreq) {
2286 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2287 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2288 err = -EINVAL;
2289 goto out;
2290 }
2291 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2292 creq->ssids[0].ssid_len = wreq->essid_len;
2293 }
2294 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2295 creq->n_ssids = 0;
2296 }
2297
2298 for (i = 0; i < NUM_NL80211_BANDS; i++)
2299 if (wiphy->bands[i])
2300 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2301
2302 eth_broadcast_addr(creq->bssid);
2303
2304 rdev->scan_req = creq;
2305 err = rdev_scan(rdev, creq);
2306 if (err) {
2307 rdev->scan_req = NULL;
2308 /* creq will be freed below */
2309 } else {
2310 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2311 /* creq now owned by driver */
2312 creq = NULL;
2313 dev_hold(dev);
2314 }
2315 out:
2316 kfree(creq);
2317 return err;
2318 }
2319 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2320
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)2321 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2322 const struct cfg80211_bss_ies *ies,
2323 char *current_ev, char *end_buf)
2324 {
2325 const u8 *pos, *end, *next;
2326 struct iw_event iwe;
2327
2328 if (!ies)
2329 return current_ev;
2330
2331 /*
2332 * If needed, fragment the IEs buffer (at IE boundaries) into short
2333 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2334 */
2335 pos = ies->data;
2336 end = pos + ies->len;
2337
2338 while (end - pos > IW_GENERIC_IE_MAX) {
2339 next = pos + 2 + pos[1];
2340 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2341 next = next + 2 + next[1];
2342
2343 memset(&iwe, 0, sizeof(iwe));
2344 iwe.cmd = IWEVGENIE;
2345 iwe.u.data.length = next - pos;
2346 current_ev = iwe_stream_add_point_check(info, current_ev,
2347 end_buf, &iwe,
2348 (void *)pos);
2349 if (IS_ERR(current_ev))
2350 return current_ev;
2351 pos = next;
2352 }
2353
2354 if (end > pos) {
2355 memset(&iwe, 0, sizeof(iwe));
2356 iwe.cmd = IWEVGENIE;
2357 iwe.u.data.length = end - pos;
2358 current_ev = iwe_stream_add_point_check(info, current_ev,
2359 end_buf, &iwe,
2360 (void *)pos);
2361 if (IS_ERR(current_ev))
2362 return current_ev;
2363 }
2364
2365 return current_ev;
2366 }
2367
2368 static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)2369 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2370 struct cfg80211_internal_bss *bss, char *current_ev,
2371 char *end_buf)
2372 {
2373 const struct cfg80211_bss_ies *ies;
2374 struct iw_event iwe;
2375 const u8 *ie;
2376 u8 buf[50];
2377 u8 *cfg, *p, *tmp;
2378 int rem, i, sig;
2379 bool ismesh = false;
2380
2381 memset(&iwe, 0, sizeof(iwe));
2382 iwe.cmd = SIOCGIWAP;
2383 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2384 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2385 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2386 IW_EV_ADDR_LEN);
2387 if (IS_ERR(current_ev))
2388 return current_ev;
2389
2390 memset(&iwe, 0, sizeof(iwe));
2391 iwe.cmd = SIOCGIWFREQ;
2392 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2393 iwe.u.freq.e = 0;
2394 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2395 IW_EV_FREQ_LEN);
2396 if (IS_ERR(current_ev))
2397 return current_ev;
2398
2399 memset(&iwe, 0, sizeof(iwe));
2400 iwe.cmd = SIOCGIWFREQ;
2401 iwe.u.freq.m = bss->pub.channel->center_freq;
2402 iwe.u.freq.e = 6;
2403 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2404 IW_EV_FREQ_LEN);
2405 if (IS_ERR(current_ev))
2406 return current_ev;
2407
2408 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2409 memset(&iwe, 0, sizeof(iwe));
2410 iwe.cmd = IWEVQUAL;
2411 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2412 IW_QUAL_NOISE_INVALID |
2413 IW_QUAL_QUAL_UPDATED;
2414 switch (wiphy->signal_type) {
2415 case CFG80211_SIGNAL_TYPE_MBM:
2416 sig = bss->pub.signal / 100;
2417 iwe.u.qual.level = sig;
2418 iwe.u.qual.updated |= IW_QUAL_DBM;
2419 if (sig < -110) /* rather bad */
2420 sig = -110;
2421 else if (sig > -40) /* perfect */
2422 sig = -40;
2423 /* will give a range of 0 .. 70 */
2424 iwe.u.qual.qual = sig + 110;
2425 break;
2426 case CFG80211_SIGNAL_TYPE_UNSPEC:
2427 iwe.u.qual.level = bss->pub.signal;
2428 /* will give range 0 .. 100 */
2429 iwe.u.qual.qual = bss->pub.signal;
2430 break;
2431 default:
2432 /* not reached */
2433 break;
2434 }
2435 current_ev = iwe_stream_add_event_check(info, current_ev,
2436 end_buf, &iwe,
2437 IW_EV_QUAL_LEN);
2438 if (IS_ERR(current_ev))
2439 return current_ev;
2440 }
2441
2442 memset(&iwe, 0, sizeof(iwe));
2443 iwe.cmd = SIOCGIWENCODE;
2444 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2445 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2446 else
2447 iwe.u.data.flags = IW_ENCODE_DISABLED;
2448 iwe.u.data.length = 0;
2449 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2450 &iwe, "");
2451 if (IS_ERR(current_ev))
2452 return current_ev;
2453
2454 rcu_read_lock();
2455 ies = rcu_dereference(bss->pub.ies);
2456 rem = ies->len;
2457 ie = ies->data;
2458
2459 while (rem >= 2) {
2460 /* invalid data */
2461 if (ie[1] > rem - 2)
2462 break;
2463
2464 switch (ie[0]) {
2465 case WLAN_EID_SSID:
2466 memset(&iwe, 0, sizeof(iwe));
2467 iwe.cmd = SIOCGIWESSID;
2468 iwe.u.data.length = ie[1];
2469 iwe.u.data.flags = 1;
2470 current_ev = iwe_stream_add_point_check(info,
2471 current_ev,
2472 end_buf, &iwe,
2473 (u8 *)ie + 2);
2474 if (IS_ERR(current_ev))
2475 goto unlock;
2476 break;
2477 case WLAN_EID_MESH_ID:
2478 memset(&iwe, 0, sizeof(iwe));
2479 iwe.cmd = SIOCGIWESSID;
2480 iwe.u.data.length = ie[1];
2481 iwe.u.data.flags = 1;
2482 current_ev = iwe_stream_add_point_check(info,
2483 current_ev,
2484 end_buf, &iwe,
2485 (u8 *)ie + 2);
2486 if (IS_ERR(current_ev))
2487 goto unlock;
2488 break;
2489 case WLAN_EID_MESH_CONFIG:
2490 ismesh = true;
2491 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2492 break;
2493 cfg = (u8 *)ie + 2;
2494 memset(&iwe, 0, sizeof(iwe));
2495 iwe.cmd = IWEVCUSTOM;
2496 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2497 "0x%02X", cfg[0]);
2498 iwe.u.data.length = strlen(buf);
2499 current_ev = iwe_stream_add_point_check(info,
2500 current_ev,
2501 end_buf,
2502 &iwe, buf);
2503 if (IS_ERR(current_ev))
2504 goto unlock;
2505 sprintf(buf, "Path Selection Metric ID: 0x%02X",
2506 cfg[1]);
2507 iwe.u.data.length = strlen(buf);
2508 current_ev = iwe_stream_add_point_check(info,
2509 current_ev,
2510 end_buf,
2511 &iwe, buf);
2512 if (IS_ERR(current_ev))
2513 goto unlock;
2514 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
2515 cfg[2]);
2516 iwe.u.data.length = strlen(buf);
2517 current_ev = iwe_stream_add_point_check(info,
2518 current_ev,
2519 end_buf,
2520 &iwe, buf);
2521 if (IS_ERR(current_ev))
2522 goto unlock;
2523 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
2524 iwe.u.data.length = strlen(buf);
2525 current_ev = iwe_stream_add_point_check(info,
2526 current_ev,
2527 end_buf,
2528 &iwe, buf);
2529 if (IS_ERR(current_ev))
2530 goto unlock;
2531 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
2532 iwe.u.data.length = strlen(buf);
2533 current_ev = iwe_stream_add_point_check(info,
2534 current_ev,
2535 end_buf,
2536 &iwe, buf);
2537 if (IS_ERR(current_ev))
2538 goto unlock;
2539 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
2540 iwe.u.data.length = strlen(buf);
2541 current_ev = iwe_stream_add_point_check(info,
2542 current_ev,
2543 end_buf,
2544 &iwe, buf);
2545 if (IS_ERR(current_ev))
2546 goto unlock;
2547 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
2548 iwe.u.data.length = strlen(buf);
2549 current_ev = iwe_stream_add_point_check(info,
2550 current_ev,
2551 end_buf,
2552 &iwe, buf);
2553 if (IS_ERR(current_ev))
2554 goto unlock;
2555 break;
2556 case WLAN_EID_SUPP_RATES:
2557 case WLAN_EID_EXT_SUPP_RATES:
2558 /* display all supported rates in readable format */
2559 p = current_ev + iwe_stream_lcp_len(info);
2560
2561 memset(&iwe, 0, sizeof(iwe));
2562 iwe.cmd = SIOCGIWRATE;
2563 /* Those two flags are ignored... */
2564 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
2565
2566 for (i = 0; i < ie[1]; i++) {
2567 iwe.u.bitrate.value =
2568 ((ie[i + 2] & 0x7f) * 500000);
2569 tmp = p;
2570 p = iwe_stream_add_value(info, current_ev, p,
2571 end_buf, &iwe,
2572 IW_EV_PARAM_LEN);
2573 if (p == tmp) {
2574 current_ev = ERR_PTR(-E2BIG);
2575 goto unlock;
2576 }
2577 }
2578 current_ev = p;
2579 break;
2580 }
2581 rem -= ie[1] + 2;
2582 ie += ie[1] + 2;
2583 }
2584
2585 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
2586 ismesh) {
2587 memset(&iwe, 0, sizeof(iwe));
2588 iwe.cmd = SIOCGIWMODE;
2589 if (ismesh)
2590 iwe.u.mode = IW_MODE_MESH;
2591 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
2592 iwe.u.mode = IW_MODE_MASTER;
2593 else
2594 iwe.u.mode = IW_MODE_ADHOC;
2595 current_ev = iwe_stream_add_event_check(info, current_ev,
2596 end_buf, &iwe,
2597 IW_EV_UINT_LEN);
2598 if (IS_ERR(current_ev))
2599 goto unlock;
2600 }
2601
2602 memset(&iwe, 0, sizeof(iwe));
2603 iwe.cmd = IWEVCUSTOM;
2604 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
2605 iwe.u.data.length = strlen(buf);
2606 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2607 &iwe, buf);
2608 if (IS_ERR(current_ev))
2609 goto unlock;
2610 memset(&iwe, 0, sizeof(iwe));
2611 iwe.cmd = IWEVCUSTOM;
2612 sprintf(buf, " Last beacon: %ums ago",
2613 elapsed_jiffies_msecs(bss->ts));
2614 iwe.u.data.length = strlen(buf);
2615 current_ev = iwe_stream_add_point_check(info, current_ev,
2616 end_buf, &iwe, buf);
2617 if (IS_ERR(current_ev))
2618 goto unlock;
2619
2620 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
2621
2622 unlock:
2623 rcu_read_unlock();
2624 return current_ev;
2625 }
2626
2627
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)2628 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
2629 struct iw_request_info *info,
2630 char *buf, size_t len)
2631 {
2632 char *current_ev = buf;
2633 char *end_buf = buf + len;
2634 struct cfg80211_internal_bss *bss;
2635 int err = 0;
2636
2637 spin_lock_bh(&rdev->bss_lock);
2638 cfg80211_bss_expire(rdev);
2639
2640 list_for_each_entry(bss, &rdev->bss_list, list) {
2641 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
2642 err = -E2BIG;
2643 break;
2644 }
2645 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
2646 current_ev, end_buf);
2647 if (IS_ERR(current_ev)) {
2648 err = PTR_ERR(current_ev);
2649 break;
2650 }
2651 }
2652 spin_unlock_bh(&rdev->bss_lock);
2653
2654 if (err)
2655 return err;
2656 return current_ev - buf;
2657 }
2658
2659
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,struct iw_point * data,char * extra)2660 int cfg80211_wext_giwscan(struct net_device *dev,
2661 struct iw_request_info *info,
2662 struct iw_point *data, char *extra)
2663 {
2664 struct cfg80211_registered_device *rdev;
2665 int res;
2666
2667 if (!netif_running(dev))
2668 return -ENETDOWN;
2669
2670 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2671
2672 if (IS_ERR(rdev))
2673 return PTR_ERR(rdev);
2674
2675 if (rdev->scan_req || rdev->scan_msg)
2676 return -EAGAIN;
2677
2678 res = ieee80211_scan_results(rdev, info, extra, data->length);
2679 data->length = 0;
2680 if (res >= 0) {
2681 data->length = res;
2682 res = 0;
2683 }
2684
2685 return res;
2686 }
2687 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
2688 #endif
2689