• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/cpu.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/psi.h>
61 #include <net/sock.h>
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/cgroup.h>
65 
66 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
67 					 MAX_CFTYPE_NAME + 2)
68 /* let's not notify more than 100 times per second */
69 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
70 
71 /*
72  * cgroup_mutex is the master lock.  Any modification to cgroup or its
73  * hierarchy must be performed while holding it.
74  *
75  * css_set_lock protects task->cgroups pointer, the list of css_set
76  * objects, and the chain of tasks off each css_set.
77  *
78  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
79  * cgroup.h can use them for lockdep annotations.
80  */
81 DEFINE_MUTEX(cgroup_mutex);
82 DEFINE_SPINLOCK(css_set_lock);
83 
84 #ifdef CONFIG_PROVE_RCU
85 EXPORT_SYMBOL_GPL(cgroup_mutex);
86 EXPORT_SYMBOL_GPL(css_set_lock);
87 #endif
88 
89 DEFINE_SPINLOCK(trace_cgroup_path_lock);
90 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
91 bool cgroup_debug __read_mostly;
92 
93 /*
94  * Protects cgroup_idr and css_idr so that IDs can be released without
95  * grabbing cgroup_mutex.
96  */
97 static DEFINE_SPINLOCK(cgroup_idr_lock);
98 
99 /*
100  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
101  * against file removal/re-creation across css hiding.
102  */
103 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
104 
105 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
106 
107 #define cgroup_assert_mutex_or_rcu_locked()				\
108 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
109 			   !lockdep_is_held(&cgroup_mutex),		\
110 			   "cgroup_mutex or RCU read lock required");
111 
112 /*
113  * cgroup destruction makes heavy use of work items and there can be a lot
114  * of concurrent destructions.  Use a separate workqueue so that cgroup
115  * destruction work items don't end up filling up max_active of system_wq
116  * which may lead to deadlock.
117  */
118 static struct workqueue_struct *cgroup_destroy_wq;
119 
120 /* generate an array of cgroup subsystem pointers */
121 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
122 struct cgroup_subsys *cgroup_subsys[] = {
123 #include <linux/cgroup_subsys.h>
124 };
125 #undef SUBSYS
126 
127 /* array of cgroup subsystem names */
128 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
129 static const char *cgroup_subsys_name[] = {
130 #include <linux/cgroup_subsys.h>
131 };
132 #undef SUBSYS
133 
134 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
135 #define SUBSYS(_x)								\
136 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
137 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
138 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
139 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
140 #include <linux/cgroup_subsys.h>
141 #undef SUBSYS
142 
143 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
144 static struct static_key_true *cgroup_subsys_enabled_key[] = {
145 #include <linux/cgroup_subsys.h>
146 };
147 #undef SUBSYS
148 
149 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
150 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
151 #include <linux/cgroup_subsys.h>
152 };
153 #undef SUBSYS
154 
155 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
156 
157 /*
158  * The default hierarchy, reserved for the subsystems that are otherwise
159  * unattached - it never has more than a single cgroup, and all tasks are
160  * part of that cgroup.
161  */
162 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
163 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
164 
165 /*
166  * The default hierarchy always exists but is hidden until mounted for the
167  * first time.  This is for backward compatibility.
168  */
169 static bool cgrp_dfl_visible;
170 
171 /* some controllers are not supported in the default hierarchy */
172 static u16 cgrp_dfl_inhibit_ss_mask;
173 
174 /* some controllers are implicitly enabled on the default hierarchy */
175 static u16 cgrp_dfl_implicit_ss_mask;
176 
177 /* some controllers can be threaded on the default hierarchy */
178 static u16 cgrp_dfl_threaded_ss_mask;
179 
180 /* The list of hierarchy roots */
181 LIST_HEAD(cgroup_roots);
182 static int cgroup_root_count;
183 
184 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
185 static DEFINE_IDR(cgroup_hierarchy_idr);
186 
187 /*
188  * Assign a monotonically increasing serial number to csses.  It guarantees
189  * cgroups with bigger numbers are newer than those with smaller numbers.
190  * Also, as csses are always appended to the parent's ->children list, it
191  * guarantees that sibling csses are always sorted in the ascending serial
192  * number order on the list.  Protected by cgroup_mutex.
193  */
194 static u64 css_serial_nr_next = 1;
195 
196 /*
197  * These bitmasks identify subsystems with specific features to avoid
198  * having to do iterative checks repeatedly.
199  */
200 static u16 have_fork_callback __read_mostly;
201 static u16 have_exit_callback __read_mostly;
202 static u16 have_release_callback __read_mostly;
203 static u16 have_canfork_callback __read_mostly;
204 
205 /* cgroup namespace for init task */
206 struct cgroup_namespace init_cgroup_ns = {
207 	.count		= REFCOUNT_INIT(2),
208 	.user_ns	= &init_user_ns,
209 	.ns.ops		= &cgroupns_operations,
210 	.ns.inum	= PROC_CGROUP_INIT_INO,
211 	.root_cset	= &init_css_set,
212 };
213 
214 static struct file_system_type cgroup2_fs_type;
215 static struct cftype cgroup_base_files[];
216 
217 static int cgroup_apply_control(struct cgroup *cgrp);
218 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
219 static void css_task_iter_skip(struct css_task_iter *it,
220 			       struct task_struct *task);
221 static int cgroup_destroy_locked(struct cgroup *cgrp);
222 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
223 					      struct cgroup_subsys *ss);
224 static void css_release(struct percpu_ref *ref);
225 static void kill_css(struct cgroup_subsys_state *css);
226 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
227 			      struct cgroup *cgrp, struct cftype cfts[],
228 			      bool is_add);
229 
230 /**
231  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
232  * @ssid: subsys ID of interest
233  *
234  * cgroup_subsys_enabled() can only be used with literal subsys names which
235  * is fine for individual subsystems but unsuitable for cgroup core.  This
236  * is slower static_key_enabled() based test indexed by @ssid.
237  */
cgroup_ssid_enabled(int ssid)238 bool cgroup_ssid_enabled(int ssid)
239 {
240 	if (CGROUP_SUBSYS_COUNT == 0)
241 		return false;
242 
243 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
244 }
245 
246 /**
247  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
248  * @cgrp: the cgroup of interest
249  *
250  * The default hierarchy is the v2 interface of cgroup and this function
251  * can be used to test whether a cgroup is on the default hierarchy for
252  * cases where a subsystem should behave differnetly depending on the
253  * interface version.
254  *
255  * The set of behaviors which change on the default hierarchy are still
256  * being determined and the mount option is prefixed with __DEVEL__.
257  *
258  * List of changed behaviors:
259  *
260  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
261  *   and "name" are disallowed.
262  *
263  * - When mounting an existing superblock, mount options should match.
264  *
265  * - Remount is disallowed.
266  *
267  * - rename(2) is disallowed.
268  *
269  * - "tasks" is removed.  Everything should be at process granularity.  Use
270  *   "cgroup.procs" instead.
271  *
272  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
273  *   recycled inbetween reads.
274  *
275  * - "release_agent" and "notify_on_release" are removed.  Replacement
276  *   notification mechanism will be implemented.
277  *
278  * - "cgroup.clone_children" is removed.
279  *
280  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
281  *   and its descendants contain no task; otherwise, 1.  The file also
282  *   generates kernfs notification which can be monitored through poll and
283  *   [di]notify when the value of the file changes.
284  *
285  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
286  *   take masks of ancestors with non-empty cpus/mems, instead of being
287  *   moved to an ancestor.
288  *
289  * - cpuset: a task can be moved into an empty cpuset, and again it takes
290  *   masks of ancestors.
291  *
292  * - memcg: use_hierarchy is on by default and the cgroup file for the flag
293  *   is not created.
294  *
295  * - blkcg: blk-throttle becomes properly hierarchical.
296  *
297  * - debug: disallowed on the default hierarchy.
298  */
cgroup_on_dfl(const struct cgroup * cgrp)299 bool cgroup_on_dfl(const struct cgroup *cgrp)
300 {
301 	return cgrp->root == &cgrp_dfl_root;
302 }
303 
304 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)305 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
306 			    gfp_t gfp_mask)
307 {
308 	int ret;
309 
310 	idr_preload(gfp_mask);
311 	spin_lock_bh(&cgroup_idr_lock);
312 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
313 	spin_unlock_bh(&cgroup_idr_lock);
314 	idr_preload_end();
315 	return ret;
316 }
317 
cgroup_idr_replace(struct idr * idr,void * ptr,int id)318 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
319 {
320 	void *ret;
321 
322 	spin_lock_bh(&cgroup_idr_lock);
323 	ret = idr_replace(idr, ptr, id);
324 	spin_unlock_bh(&cgroup_idr_lock);
325 	return ret;
326 }
327 
cgroup_idr_remove(struct idr * idr,int id)328 static void cgroup_idr_remove(struct idr *idr, int id)
329 {
330 	spin_lock_bh(&cgroup_idr_lock);
331 	idr_remove(idr, id);
332 	spin_unlock_bh(&cgroup_idr_lock);
333 }
334 
cgroup_has_tasks(struct cgroup * cgrp)335 static bool cgroup_has_tasks(struct cgroup *cgrp)
336 {
337 	return cgrp->nr_populated_csets;
338 }
339 
cgroup_is_threaded(struct cgroup * cgrp)340 bool cgroup_is_threaded(struct cgroup *cgrp)
341 {
342 	return cgrp->dom_cgrp != cgrp;
343 }
344 
345 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)346 static bool cgroup_is_mixable(struct cgroup *cgrp)
347 {
348 	/*
349 	 * Root isn't under domain level resource control exempting it from
350 	 * the no-internal-process constraint, so it can serve as a thread
351 	 * root and a parent of resource domains at the same time.
352 	 */
353 	return !cgroup_parent(cgrp);
354 }
355 
356 /* can @cgrp become a thread root? should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)357 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
358 {
359 	/* mixables don't care */
360 	if (cgroup_is_mixable(cgrp))
361 		return true;
362 
363 	/* domain roots can't be nested under threaded */
364 	if (cgroup_is_threaded(cgrp))
365 		return false;
366 
367 	/* can only have either domain or threaded children */
368 	if (cgrp->nr_populated_domain_children)
369 		return false;
370 
371 	/* and no domain controllers can be enabled */
372 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
373 		return false;
374 
375 	return true;
376 }
377 
378 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)379 bool cgroup_is_thread_root(struct cgroup *cgrp)
380 {
381 	/* thread root should be a domain */
382 	if (cgroup_is_threaded(cgrp))
383 		return false;
384 
385 	/* a domain w/ threaded children is a thread root */
386 	if (cgrp->nr_threaded_children)
387 		return true;
388 
389 	/*
390 	 * A domain which has tasks and explicit threaded controllers
391 	 * enabled is a thread root.
392 	 */
393 	if (cgroup_has_tasks(cgrp) &&
394 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
395 		return true;
396 
397 	return false;
398 }
399 
400 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)401 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
402 {
403 	/* the cgroup itself can be a thread root */
404 	if (cgroup_is_threaded(cgrp))
405 		return false;
406 
407 	/* but the ancestors can't be unless mixable */
408 	while ((cgrp = cgroup_parent(cgrp))) {
409 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
410 			return false;
411 		if (cgroup_is_threaded(cgrp))
412 			return false;
413 	}
414 
415 	return true;
416 }
417 
418 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)419 static u16 cgroup_control(struct cgroup *cgrp)
420 {
421 	struct cgroup *parent = cgroup_parent(cgrp);
422 	u16 root_ss_mask = cgrp->root->subsys_mask;
423 
424 	if (parent) {
425 		u16 ss_mask = parent->subtree_control;
426 
427 		/* threaded cgroups can only have threaded controllers */
428 		if (cgroup_is_threaded(cgrp))
429 			ss_mask &= cgrp_dfl_threaded_ss_mask;
430 		return ss_mask;
431 	}
432 
433 	if (cgroup_on_dfl(cgrp))
434 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
435 				  cgrp_dfl_implicit_ss_mask);
436 	return root_ss_mask;
437 }
438 
439 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)440 static u16 cgroup_ss_mask(struct cgroup *cgrp)
441 {
442 	struct cgroup *parent = cgroup_parent(cgrp);
443 
444 	if (parent) {
445 		u16 ss_mask = parent->subtree_ss_mask;
446 
447 		/* threaded cgroups can only have threaded controllers */
448 		if (cgroup_is_threaded(cgrp))
449 			ss_mask &= cgrp_dfl_threaded_ss_mask;
450 		return ss_mask;
451 	}
452 
453 	return cgrp->root->subsys_mask;
454 }
455 
456 /**
457  * cgroup_css - obtain a cgroup's css for the specified subsystem
458  * @cgrp: the cgroup of interest
459  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
460  *
461  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
462  * function must be called either under cgroup_mutex or rcu_read_lock() and
463  * the caller is responsible for pinning the returned css if it wants to
464  * keep accessing it outside the said locks.  This function may return
465  * %NULL if @cgrp doesn't have @subsys_id enabled.
466  */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)467 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
468 					      struct cgroup_subsys *ss)
469 {
470 	if (ss)
471 		return rcu_dereference_check(cgrp->subsys[ss->id],
472 					lockdep_is_held(&cgroup_mutex));
473 	else
474 		return &cgrp->self;
475 }
476 
477 /**
478  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
479  * @cgrp: the cgroup of interest
480  * @ss: the subsystem of interest
481  *
482  * Find and get @cgrp's css assocaited with @ss.  If the css doesn't exist
483  * or is offline, %NULL is returned.
484  */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)485 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
486 						     struct cgroup_subsys *ss)
487 {
488 	struct cgroup_subsys_state *css;
489 
490 	rcu_read_lock();
491 	css = cgroup_css(cgrp, ss);
492 	if (css && !css_tryget_online(css))
493 		css = NULL;
494 	rcu_read_unlock();
495 
496 	return css;
497 }
498 
499 /**
500  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
501  * @cgrp: the cgroup of interest
502  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
503  *
504  * Similar to cgroup_css() but returns the effective css, which is defined
505  * as the matching css of the nearest ancestor including self which has @ss
506  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
507  * function is guaranteed to return non-NULL css.
508  */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)509 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
510 							struct cgroup_subsys *ss)
511 {
512 	lockdep_assert_held(&cgroup_mutex);
513 
514 	if (!ss)
515 		return &cgrp->self;
516 
517 	/*
518 	 * This function is used while updating css associations and thus
519 	 * can't test the csses directly.  Test ss_mask.
520 	 */
521 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
522 		cgrp = cgroup_parent(cgrp);
523 		if (!cgrp)
524 			return NULL;
525 	}
526 
527 	return cgroup_css(cgrp, ss);
528 }
529 
530 /**
531  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
532  * @cgrp: the cgroup of interest
533  * @ss: the subsystem of interest
534  *
535  * Find and get the effective css of @cgrp for @ss.  The effective css is
536  * defined as the matching css of the nearest ancestor including self which
537  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
538  * the root css is returned, so this function always returns a valid css.
539  *
540  * The returned css is not guaranteed to be online, and therefore it is the
541  * callers responsiblity to tryget a reference for it.
542  */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)543 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
544 					 struct cgroup_subsys *ss)
545 {
546 	struct cgroup_subsys_state *css;
547 
548 	do {
549 		css = cgroup_css(cgrp, ss);
550 
551 		if (css)
552 			return css;
553 		cgrp = cgroup_parent(cgrp);
554 	} while (cgrp);
555 
556 	return init_css_set.subsys[ss->id];
557 }
558 
559 /**
560  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
561  * @cgrp: the cgroup of interest
562  * @ss: the subsystem of interest
563  *
564  * Find and get the effective css of @cgrp for @ss.  The effective css is
565  * defined as the matching css of the nearest ancestor including self which
566  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
567  * the root css is returned, so this function always returns a valid css.
568  * The returned css must be put using css_put().
569  */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)570 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
571 					     struct cgroup_subsys *ss)
572 {
573 	struct cgroup_subsys_state *css;
574 
575 	rcu_read_lock();
576 
577 	do {
578 		css = cgroup_css(cgrp, ss);
579 
580 		if (css && css_tryget_online(css))
581 			goto out_unlock;
582 		cgrp = cgroup_parent(cgrp);
583 	} while (cgrp);
584 
585 	css = init_css_set.subsys[ss->id];
586 	css_get(css);
587 out_unlock:
588 	rcu_read_unlock();
589 	return css;
590 }
591 
cgroup_get_live(struct cgroup * cgrp)592 static void cgroup_get_live(struct cgroup *cgrp)
593 {
594 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
595 	css_get(&cgrp->self);
596 }
597 
598 /**
599  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
600  * is responsible for taking the css_set_lock.
601  * @cgrp: the cgroup in question
602  */
__cgroup_task_count(const struct cgroup * cgrp)603 int __cgroup_task_count(const struct cgroup *cgrp)
604 {
605 	int count = 0;
606 	struct cgrp_cset_link *link;
607 
608 	lockdep_assert_held(&css_set_lock);
609 
610 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
611 		count += link->cset->nr_tasks;
612 
613 	return count;
614 }
615 
616 /**
617  * cgroup_task_count - count the number of tasks in a cgroup.
618  * @cgrp: the cgroup in question
619  */
cgroup_task_count(const struct cgroup * cgrp)620 int cgroup_task_count(const struct cgroup *cgrp)
621 {
622 	int count;
623 
624 	spin_lock_irq(&css_set_lock);
625 	count = __cgroup_task_count(cgrp);
626 	spin_unlock_irq(&css_set_lock);
627 
628 	return count;
629 }
630 
of_css(struct kernfs_open_file * of)631 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
632 {
633 	struct cgroup *cgrp = of->kn->parent->priv;
634 	struct cftype *cft = of_cft(of);
635 
636 	/*
637 	 * This is open and unprotected implementation of cgroup_css().
638 	 * seq_css() is only called from a kernfs file operation which has
639 	 * an active reference on the file.  Because all the subsystem
640 	 * files are drained before a css is disassociated with a cgroup,
641 	 * the matching css from the cgroup's subsys table is guaranteed to
642 	 * be and stay valid until the enclosing operation is complete.
643 	 */
644 	if (cft->ss)
645 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
646 	else
647 		return &cgrp->self;
648 }
649 EXPORT_SYMBOL_GPL(of_css);
650 
651 /**
652  * for_each_css - iterate all css's of a cgroup
653  * @css: the iteration cursor
654  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
655  * @cgrp: the target cgroup to iterate css's of
656  *
657  * Should be called under cgroup_[tree_]mutex.
658  */
659 #define for_each_css(css, ssid, cgrp)					\
660 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
661 		if (!((css) = rcu_dereference_check(			\
662 				(cgrp)->subsys[(ssid)],			\
663 				lockdep_is_held(&cgroup_mutex)))) { }	\
664 		else
665 
666 /**
667  * for_each_e_css - iterate all effective css's of a cgroup
668  * @css: the iteration cursor
669  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
670  * @cgrp: the target cgroup to iterate css's of
671  *
672  * Should be called under cgroup_[tree_]mutex.
673  */
674 #define for_each_e_css(css, ssid, cgrp)					    \
675 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
676 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
677 						   cgroup_subsys[(ssid)]))) \
678 			;						    \
679 		else
680 
681 /**
682  * do_each_subsys_mask - filter for_each_subsys with a bitmask
683  * @ss: the iteration cursor
684  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
685  * @ss_mask: the bitmask
686  *
687  * The block will only run for cases where the ssid-th bit (1 << ssid) of
688  * @ss_mask is set.
689  */
690 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
691 	unsigned long __ss_mask = (ss_mask);				\
692 	if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */	\
693 		(ssid) = 0;						\
694 		break;							\
695 	}								\
696 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
697 		(ss) = cgroup_subsys[ssid];				\
698 		{
699 
700 #define while_each_subsys_mask()					\
701 		}							\
702 	}								\
703 } while (false)
704 
705 /* iterate over child cgrps, lock should be held throughout iteration */
706 #define cgroup_for_each_live_child(child, cgrp)				\
707 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
708 		if (({ lockdep_assert_held(&cgroup_mutex);		\
709 		       cgroup_is_dead(child); }))			\
710 			;						\
711 		else
712 
713 /* walk live descendants in preorder */
714 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
715 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
716 		if (({ lockdep_assert_held(&cgroup_mutex);		\
717 		       (dsct) = (d_css)->cgroup;			\
718 		       cgroup_is_dead(dsct); }))			\
719 			;						\
720 		else
721 
722 /* walk live descendants in postorder */
723 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
724 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
725 		if (({ lockdep_assert_held(&cgroup_mutex);		\
726 		       (dsct) = (d_css)->cgroup;			\
727 		       cgroup_is_dead(dsct); }))			\
728 			;						\
729 		else
730 
731 /*
732  * The default css_set - used by init and its children prior to any
733  * hierarchies being mounted. It contains a pointer to the root state
734  * for each subsystem. Also used to anchor the list of css_sets. Not
735  * reference-counted, to improve performance when child cgroups
736  * haven't been created.
737  */
738 struct ext_css_set init_ext_css_set = {
739 	.cset = {
740 		.refcount               = REFCOUNT_INIT(1),
741 		.dom_cset               = &init_css_set,
742 		.tasks                  = LIST_HEAD_INIT(init_css_set.tasks),
743 		.mg_tasks               = LIST_HEAD_INIT(init_css_set.mg_tasks),
744 		.dying_tasks            = LIST_HEAD_INIT(init_css_set.dying_tasks),
745 		.task_iters             = LIST_HEAD_INIT(init_css_set.task_iters),
746 		.threaded_csets         = LIST_HEAD_INIT(init_css_set.threaded_csets),
747 		.cgrp_links             = LIST_HEAD_INIT(init_css_set.cgrp_links),
748 		.mg_preload_node        = LIST_HEAD_INIT(init_css_set.mg_preload_node),
749 		.mg_node                = LIST_HEAD_INIT(init_css_set.mg_node),
750 		/*
751 		 * The following field is re-initialized when this cset gets linked
752 		 * in cgroup_init().  However, let's initialize the field
753 		 * statically too so that the default cgroup can be accessed safely
754 		 * early during boot.
755 		 */
756 		.dfl_cgrp               = &cgrp_dfl_root.cgrp,
757 	},
758 	.mg_src_preload_node	= LIST_HEAD_INIT(init_ext_css_set.mg_src_preload_node),
759 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_ext_css_set.mg_dst_preload_node),
760 };
761 
762 static int css_set_count	= 1;	/* 1 for init_css_set */
763 
css_set_threaded(struct css_set * cset)764 static bool css_set_threaded(struct css_set *cset)
765 {
766 	return cset->dom_cset != cset;
767 }
768 
769 /**
770  * css_set_populated - does a css_set contain any tasks?
771  * @cset: target css_set
772  *
773  * css_set_populated() should be the same as !!cset->nr_tasks at steady
774  * state. However, css_set_populated() can be called while a task is being
775  * added to or removed from the linked list before the nr_tasks is
776  * properly updated. Hence, we can't just look at ->nr_tasks here.
777  */
css_set_populated(struct css_set * cset)778 static bool css_set_populated(struct css_set *cset)
779 {
780 	lockdep_assert_held(&css_set_lock);
781 
782 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
783 }
784 
785 /**
786  * cgroup_update_populated - update the populated count of a cgroup
787  * @cgrp: the target cgroup
788  * @populated: inc or dec populated count
789  *
790  * One of the css_sets associated with @cgrp is either getting its first
791  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
792  * count is propagated towards root so that a given cgroup's
793  * nr_populated_children is zero iff none of its descendants contain any
794  * tasks.
795  *
796  * @cgrp's interface file "cgroup.populated" is zero if both
797  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
798  * 1 otherwise.  When the sum changes from or to zero, userland is notified
799  * that the content of the interface file has changed.  This can be used to
800  * detect when @cgrp and its descendants become populated or empty.
801  */
cgroup_update_populated(struct cgroup * cgrp,bool populated)802 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
803 {
804 	struct cgroup *child = NULL;
805 	int adj = populated ? 1 : -1;
806 
807 	lockdep_assert_held(&css_set_lock);
808 
809 	do {
810 		bool was_populated = cgroup_is_populated(cgrp);
811 
812 		if (!child) {
813 			cgrp->nr_populated_csets += adj;
814 		} else {
815 			if (cgroup_is_threaded(child))
816 				cgrp->nr_populated_threaded_children += adj;
817 			else
818 				cgrp->nr_populated_domain_children += adj;
819 		}
820 
821 		if (was_populated == cgroup_is_populated(cgrp))
822 			break;
823 
824 		cgroup1_check_for_release(cgrp);
825 		TRACE_CGROUP_PATH(notify_populated, cgrp,
826 				  cgroup_is_populated(cgrp));
827 		cgroup_file_notify(&cgrp->events_file);
828 
829 		child = cgrp;
830 		cgrp = cgroup_parent(cgrp);
831 	} while (cgrp);
832 }
833 
834 /**
835  * css_set_update_populated - update populated state of a css_set
836  * @cset: target css_set
837  * @populated: whether @cset is populated or depopulated
838  *
839  * @cset is either getting the first task or losing the last.  Update the
840  * populated counters of all associated cgroups accordingly.
841  */
css_set_update_populated(struct css_set * cset,bool populated)842 static void css_set_update_populated(struct css_set *cset, bool populated)
843 {
844 	struct cgrp_cset_link *link;
845 
846 	lockdep_assert_held(&css_set_lock);
847 
848 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
849 		cgroup_update_populated(link->cgrp, populated);
850 }
851 
852 /*
853  * @task is leaving, advance task iterators which are pointing to it so
854  * that they can resume at the next position.  Advancing an iterator might
855  * remove it from the list, use safe walk.  See css_task_iter_skip() for
856  * details.
857  */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)858 static void css_set_skip_task_iters(struct css_set *cset,
859 				    struct task_struct *task)
860 {
861 	struct css_task_iter *it, *pos;
862 
863 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
864 		css_task_iter_skip(it, task);
865 }
866 
867 /**
868  * css_set_move_task - move a task from one css_set to another
869  * @task: task being moved
870  * @from_cset: css_set @task currently belongs to (may be NULL)
871  * @to_cset: new css_set @task is being moved to (may be NULL)
872  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
873  *
874  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
875  * css_set, @from_cset can be NULL.  If @task is being disassociated
876  * instead of moved, @to_cset can be NULL.
877  *
878  * This function automatically handles populated counter updates and
879  * css_task_iter adjustments but the caller is responsible for managing
880  * @from_cset and @to_cset's reference counts.
881  */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)882 static void css_set_move_task(struct task_struct *task,
883 			      struct css_set *from_cset, struct css_set *to_cset,
884 			      bool use_mg_tasks)
885 {
886 	lockdep_assert_held(&css_set_lock);
887 
888 	if (to_cset && !css_set_populated(to_cset))
889 		css_set_update_populated(to_cset, true);
890 
891 	if (from_cset) {
892 		WARN_ON_ONCE(list_empty(&task->cg_list));
893 
894 		css_set_skip_task_iters(from_cset, task);
895 		list_del_init(&task->cg_list);
896 		if (!css_set_populated(from_cset))
897 			css_set_update_populated(from_cset, false);
898 	} else {
899 		WARN_ON_ONCE(!list_empty(&task->cg_list));
900 	}
901 
902 	if (to_cset) {
903 		/*
904 		 * We are synchronized through cgroup_threadgroup_rwsem
905 		 * against PF_EXITING setting such that we can't race
906 		 * against cgroup_exit() changing the css_set to
907 		 * init_css_set and dropping the old one.
908 		 */
909 		WARN_ON_ONCE(task->flags & PF_EXITING);
910 
911 		cgroup_move_task(task, to_cset);
912 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
913 							     &to_cset->tasks);
914 	}
915 }
916 
917 /*
918  * hash table for cgroup groups. This improves the performance to find
919  * an existing css_set. This hash doesn't (currently) take into
920  * account cgroups in empty hierarchies.
921  */
922 #define CSS_SET_HASH_BITS	7
923 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
924 
css_set_hash(struct cgroup_subsys_state * css[])925 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
926 {
927 	unsigned long key = 0UL;
928 	struct cgroup_subsys *ss;
929 	int i;
930 
931 	for_each_subsys(ss, i)
932 		key += (unsigned long)css[i];
933 	key = (key >> 16) ^ key;
934 
935 	return key;
936 }
937 
put_css_set_locked(struct css_set * cset)938 void put_css_set_locked(struct css_set *cset)
939 {
940 	struct cgrp_cset_link *link, *tmp_link;
941 	struct cgroup_subsys *ss;
942 	int ssid;
943 
944 	lockdep_assert_held(&css_set_lock);
945 
946 	if (!refcount_dec_and_test(&cset->refcount))
947 		return;
948 
949 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
950 
951 	/* This css_set is dead. unlink it and release cgroup and css refs */
952 	for_each_subsys(ss, ssid) {
953 		list_del(&cset->e_cset_node[ssid]);
954 		css_put(cset->subsys[ssid]);
955 	}
956 	hash_del(&cset->hlist);
957 	css_set_count--;
958 
959 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
960 		list_del(&link->cset_link);
961 		list_del(&link->cgrp_link);
962 		if (cgroup_parent(link->cgrp))
963 			cgroup_put(link->cgrp);
964 		kfree(link);
965 	}
966 
967 	if (css_set_threaded(cset)) {
968 		list_del(&cset->threaded_csets_node);
969 		put_css_set_locked(cset->dom_cset);
970 	}
971 
972 	kfree_rcu(cset, rcu_head);
973 }
974 
975 /**
976  * compare_css_sets - helper function for find_existing_css_set().
977  * @cset: candidate css_set being tested
978  * @old_cset: existing css_set for a task
979  * @new_cgrp: cgroup that's being entered by the task
980  * @template: desired set of css pointers in css_set (pre-calculated)
981  *
982  * Returns true if "cset" matches "old_cset" except for the hierarchy
983  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
984  */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])985 static bool compare_css_sets(struct css_set *cset,
986 			     struct css_set *old_cset,
987 			     struct cgroup *new_cgrp,
988 			     struct cgroup_subsys_state *template[])
989 {
990 	struct cgroup *new_dfl_cgrp;
991 	struct list_head *l1, *l2;
992 
993 	/*
994 	 * On the default hierarchy, there can be csets which are
995 	 * associated with the same set of cgroups but different csses.
996 	 * Let's first ensure that csses match.
997 	 */
998 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
999 		return false;
1000 
1001 
1002 	/* @cset's domain should match the default cgroup's */
1003 	if (cgroup_on_dfl(new_cgrp))
1004 		new_dfl_cgrp = new_cgrp;
1005 	else
1006 		new_dfl_cgrp = old_cset->dfl_cgrp;
1007 
1008 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1009 		return false;
1010 
1011 	/*
1012 	 * Compare cgroup pointers in order to distinguish between
1013 	 * different cgroups in hierarchies.  As different cgroups may
1014 	 * share the same effective css, this comparison is always
1015 	 * necessary.
1016 	 */
1017 	l1 = &cset->cgrp_links;
1018 	l2 = &old_cset->cgrp_links;
1019 	while (1) {
1020 		struct cgrp_cset_link *link1, *link2;
1021 		struct cgroup *cgrp1, *cgrp2;
1022 
1023 		l1 = l1->next;
1024 		l2 = l2->next;
1025 		/* See if we reached the end - both lists are equal length. */
1026 		if (l1 == &cset->cgrp_links) {
1027 			BUG_ON(l2 != &old_cset->cgrp_links);
1028 			break;
1029 		} else {
1030 			BUG_ON(l2 == &old_cset->cgrp_links);
1031 		}
1032 		/* Locate the cgroups associated with these links. */
1033 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1034 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1035 		cgrp1 = link1->cgrp;
1036 		cgrp2 = link2->cgrp;
1037 		/* Hierarchies should be linked in the same order. */
1038 		BUG_ON(cgrp1->root != cgrp2->root);
1039 
1040 		/*
1041 		 * If this hierarchy is the hierarchy of the cgroup
1042 		 * that's changing, then we need to check that this
1043 		 * css_set points to the new cgroup; if it's any other
1044 		 * hierarchy, then this css_set should point to the
1045 		 * same cgroup as the old css_set.
1046 		 */
1047 		if (cgrp1->root == new_cgrp->root) {
1048 			if (cgrp1 != new_cgrp)
1049 				return false;
1050 		} else {
1051 			if (cgrp1 != cgrp2)
1052 				return false;
1053 		}
1054 	}
1055 	return true;
1056 }
1057 
1058 /**
1059  * find_existing_css_set - init css array and find the matching css_set
1060  * @old_cset: the css_set that we're using before the cgroup transition
1061  * @cgrp: the cgroup that we're moving into
1062  * @template: out param for the new set of csses, should be clear on entry
1063  */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])1064 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1065 					struct cgroup *cgrp,
1066 					struct cgroup_subsys_state *template[])
1067 {
1068 	struct cgroup_root *root = cgrp->root;
1069 	struct cgroup_subsys *ss;
1070 	struct css_set *cset;
1071 	unsigned long key;
1072 	int i;
1073 
1074 	/*
1075 	 * Build the set of subsystem state objects that we want to see in the
1076 	 * new css_set. while subsystems can change globally, the entries here
1077 	 * won't change, so no need for locking.
1078 	 */
1079 	for_each_subsys(ss, i) {
1080 		if (root->subsys_mask & (1UL << i)) {
1081 			/*
1082 			 * @ss is in this hierarchy, so we want the
1083 			 * effective css from @cgrp.
1084 			 */
1085 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1086 		} else {
1087 			/*
1088 			 * @ss is not in this hierarchy, so we don't want
1089 			 * to change the css.
1090 			 */
1091 			template[i] = old_cset->subsys[i];
1092 		}
1093 	}
1094 
1095 	key = css_set_hash(template);
1096 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1097 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1098 			continue;
1099 
1100 		/* This css_set matches what we need */
1101 		return cset;
1102 	}
1103 
1104 	/* No existing cgroup group matched */
1105 	return NULL;
1106 }
1107 
free_cgrp_cset_links(struct list_head * links_to_free)1108 static void free_cgrp_cset_links(struct list_head *links_to_free)
1109 {
1110 	struct cgrp_cset_link *link, *tmp_link;
1111 
1112 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1113 		list_del(&link->cset_link);
1114 		kfree(link);
1115 	}
1116 }
1117 
1118 /**
1119  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1120  * @count: the number of links to allocate
1121  * @tmp_links: list_head the allocated links are put on
1122  *
1123  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1124  * through ->cset_link.  Returns 0 on success or -errno.
1125  */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1126 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1127 {
1128 	struct cgrp_cset_link *link;
1129 	int i;
1130 
1131 	INIT_LIST_HEAD(tmp_links);
1132 
1133 	for (i = 0; i < count; i++) {
1134 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1135 		if (!link) {
1136 			free_cgrp_cset_links(tmp_links);
1137 			return -ENOMEM;
1138 		}
1139 		list_add(&link->cset_link, tmp_links);
1140 	}
1141 	return 0;
1142 }
1143 
1144 /**
1145  * link_css_set - a helper function to link a css_set to a cgroup
1146  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1147  * @cset: the css_set to be linked
1148  * @cgrp: the destination cgroup
1149  */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1150 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1151 			 struct cgroup *cgrp)
1152 {
1153 	struct cgrp_cset_link *link;
1154 
1155 	BUG_ON(list_empty(tmp_links));
1156 
1157 	if (cgroup_on_dfl(cgrp))
1158 		cset->dfl_cgrp = cgrp;
1159 
1160 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1161 	link->cset = cset;
1162 	link->cgrp = cgrp;
1163 
1164 	/*
1165 	 * Always add links to the tail of the lists so that the lists are
1166 	 * in choronological order.
1167 	 */
1168 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1169 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1170 
1171 	if (cgroup_parent(cgrp))
1172 		cgroup_get_live(cgrp);
1173 }
1174 
1175 /**
1176  * find_css_set - return a new css_set with one cgroup updated
1177  * @old_cset: the baseline css_set
1178  * @cgrp: the cgroup to be updated
1179  *
1180  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1181  * substituted into the appropriate hierarchy.
1182  */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1183 static struct css_set *find_css_set(struct css_set *old_cset,
1184 				    struct cgroup *cgrp)
1185 {
1186 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1187 	struct ext_css_set *ext_cset;
1188 	struct css_set *cset;
1189 	struct list_head tmp_links;
1190 	struct cgrp_cset_link *link;
1191 	struct cgroup_subsys *ss;
1192 	unsigned long key;
1193 	int ssid;
1194 
1195 	lockdep_assert_held(&cgroup_mutex);
1196 
1197 	/* First see if we already have a cgroup group that matches
1198 	 * the desired set */
1199 	spin_lock_irq(&css_set_lock);
1200 	cset = find_existing_css_set(old_cset, cgrp, template);
1201 	if (cset)
1202 		get_css_set(cset);
1203 	spin_unlock_irq(&css_set_lock);
1204 
1205 	if (cset)
1206 		return cset;
1207 
1208 	ext_cset = kzalloc(sizeof(*ext_cset), GFP_KERNEL);
1209 	if (!ext_cset)
1210 		return NULL;
1211 	cset = &ext_cset->cset;
1212 
1213 	/* Allocate all the cgrp_cset_link objects that we'll need */
1214 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1215 		kfree(cset);
1216 		return NULL;
1217 	}
1218 
1219 	refcount_set(&cset->refcount, 1);
1220 	cset->dom_cset = cset;
1221 	INIT_LIST_HEAD(&cset->tasks);
1222 	INIT_LIST_HEAD(&cset->mg_tasks);
1223 	INIT_LIST_HEAD(&cset->dying_tasks);
1224 	INIT_LIST_HEAD(&cset->task_iters);
1225 	INIT_LIST_HEAD(&cset->threaded_csets);
1226 	INIT_HLIST_NODE(&cset->hlist);
1227 	INIT_LIST_HEAD(&cset->cgrp_links);
1228 	INIT_LIST_HEAD(&cset->mg_preload_node);
1229 	INIT_LIST_HEAD(&ext_cset->mg_src_preload_node);
1230 	INIT_LIST_HEAD(&ext_cset->mg_dst_preload_node);
1231 	INIT_LIST_HEAD(&cset->mg_node);
1232 
1233 	/* Copy the set of subsystem state objects generated in
1234 	 * find_existing_css_set() */
1235 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1236 
1237 	spin_lock_irq(&css_set_lock);
1238 	/* Add reference counts and links from the new css_set. */
1239 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1240 		struct cgroup *c = link->cgrp;
1241 
1242 		if (c->root == cgrp->root)
1243 			c = cgrp;
1244 		link_css_set(&tmp_links, cset, c);
1245 	}
1246 
1247 	BUG_ON(!list_empty(&tmp_links));
1248 
1249 	css_set_count++;
1250 
1251 	/* Add @cset to the hash table */
1252 	key = css_set_hash(cset->subsys);
1253 	hash_add(css_set_table, &cset->hlist, key);
1254 
1255 	for_each_subsys(ss, ssid) {
1256 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1257 
1258 		list_add_tail(&cset->e_cset_node[ssid],
1259 			      &css->cgroup->e_csets[ssid]);
1260 		css_get(css);
1261 	}
1262 
1263 	spin_unlock_irq(&css_set_lock);
1264 
1265 	/*
1266 	 * If @cset should be threaded, look up the matching dom_cset and
1267 	 * link them up.  We first fully initialize @cset then look for the
1268 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1269 	 * to stay empty until we return.
1270 	 */
1271 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1272 		struct css_set *dcset;
1273 
1274 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1275 		if (!dcset) {
1276 			put_css_set(cset);
1277 			return NULL;
1278 		}
1279 
1280 		spin_lock_irq(&css_set_lock);
1281 		cset->dom_cset = dcset;
1282 		list_add_tail(&cset->threaded_csets_node,
1283 			      &dcset->threaded_csets);
1284 		spin_unlock_irq(&css_set_lock);
1285 	}
1286 
1287 	return cset;
1288 }
1289 
cgroup_root_from_kf(struct kernfs_root * kf_root)1290 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1291 {
1292 	struct cgroup *root_cgrp = kf_root->kn->priv;
1293 
1294 	return root_cgrp->root;
1295 }
1296 
cgroup_init_root_id(struct cgroup_root * root)1297 static int cgroup_init_root_id(struct cgroup_root *root)
1298 {
1299 	int id;
1300 
1301 	lockdep_assert_held(&cgroup_mutex);
1302 
1303 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1304 	if (id < 0)
1305 		return id;
1306 
1307 	root->hierarchy_id = id;
1308 	return 0;
1309 }
1310 
cgroup_exit_root_id(struct cgroup_root * root)1311 static void cgroup_exit_root_id(struct cgroup_root *root)
1312 {
1313 	lockdep_assert_held(&cgroup_mutex);
1314 
1315 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1316 }
1317 
cgroup_free_root(struct cgroup_root * root)1318 void cgroup_free_root(struct cgroup_root *root)
1319 {
1320 	if (root) {
1321 		idr_destroy(&root->cgroup_idr);
1322 		kfree(root);
1323 	}
1324 }
1325 
cgroup_destroy_root(struct cgroup_root * root)1326 static void cgroup_destroy_root(struct cgroup_root *root)
1327 {
1328 	struct cgroup *cgrp = &root->cgrp;
1329 	struct cgrp_cset_link *link, *tmp_link;
1330 
1331 	trace_cgroup_destroy_root(root);
1332 
1333 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1334 
1335 	BUG_ON(atomic_read(&root->nr_cgrps));
1336 	BUG_ON(!list_empty(&cgrp->self.children));
1337 
1338 	/* Rebind all subsystems back to the default hierarchy */
1339 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1340 
1341 	/*
1342 	 * Release all the links from cset_links to this hierarchy's
1343 	 * root cgroup
1344 	 */
1345 	spin_lock_irq(&css_set_lock);
1346 
1347 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1348 		list_del(&link->cset_link);
1349 		list_del(&link->cgrp_link);
1350 		kfree(link);
1351 	}
1352 
1353 	spin_unlock_irq(&css_set_lock);
1354 
1355 	if (!list_empty(&root->root_list)) {
1356 		list_del(&root->root_list);
1357 		cgroup_root_count--;
1358 	}
1359 
1360 	cgroup_exit_root_id(root);
1361 
1362 	mutex_unlock(&cgroup_mutex);
1363 
1364 	kernfs_destroy_root(root->kf_root);
1365 	cgroup_free_root(root);
1366 }
1367 
1368 /*
1369  * look up cgroup associated with current task's cgroup namespace on the
1370  * specified hierarchy
1371  */
1372 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1373 current_cgns_cgroup_from_root(struct cgroup_root *root)
1374 {
1375 	struct cgroup *res = NULL;
1376 	struct css_set *cset;
1377 
1378 	lockdep_assert_held(&css_set_lock);
1379 
1380 	rcu_read_lock();
1381 
1382 	cset = current->nsproxy->cgroup_ns->root_cset;
1383 	if (cset == &init_css_set) {
1384 		res = &root->cgrp;
1385 	} else {
1386 		struct cgrp_cset_link *link;
1387 
1388 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1389 			struct cgroup *c = link->cgrp;
1390 
1391 			if (c->root == root) {
1392 				res = c;
1393 				break;
1394 			}
1395 		}
1396 	}
1397 	rcu_read_unlock();
1398 
1399 	BUG_ON(!res);
1400 	return res;
1401 }
1402 
1403 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1404 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1405 					    struct cgroup_root *root)
1406 {
1407 	struct cgroup *res = NULL;
1408 
1409 	lockdep_assert_held(&cgroup_mutex);
1410 	lockdep_assert_held(&css_set_lock);
1411 
1412 	if (cset == &init_css_set) {
1413 		res = &root->cgrp;
1414 	} else if (root == &cgrp_dfl_root) {
1415 		res = cset->dfl_cgrp;
1416 	} else {
1417 		struct cgrp_cset_link *link;
1418 
1419 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1420 			struct cgroup *c = link->cgrp;
1421 
1422 			if (c->root == root) {
1423 				res = c;
1424 				break;
1425 			}
1426 		}
1427 	}
1428 
1429 	BUG_ON(!res);
1430 	return res;
1431 }
1432 
1433 /*
1434  * Return the cgroup for "task" from the given hierarchy. Must be
1435  * called with cgroup_mutex and css_set_lock held.
1436  */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1437 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1438 				     struct cgroup_root *root)
1439 {
1440 	/*
1441 	 * No need to lock the task - since we hold cgroup_mutex the
1442 	 * task can't change groups, so the only thing that can happen
1443 	 * is that it exits and its css is set back to init_css_set.
1444 	 */
1445 	return cset_cgroup_from_root(task_css_set(task), root);
1446 }
1447 
1448 /*
1449  * A task must hold cgroup_mutex to modify cgroups.
1450  *
1451  * Any task can increment and decrement the count field without lock.
1452  * So in general, code holding cgroup_mutex can't rely on the count
1453  * field not changing.  However, if the count goes to zero, then only
1454  * cgroup_attach_task() can increment it again.  Because a count of zero
1455  * means that no tasks are currently attached, therefore there is no
1456  * way a task attached to that cgroup can fork (the other way to
1457  * increment the count).  So code holding cgroup_mutex can safely
1458  * assume that if the count is zero, it will stay zero. Similarly, if
1459  * a task holds cgroup_mutex on a cgroup with zero count, it
1460  * knows that the cgroup won't be removed, as cgroup_rmdir()
1461  * needs that mutex.
1462  *
1463  * A cgroup can only be deleted if both its 'count' of using tasks
1464  * is zero, and its list of 'children' cgroups is empty.  Since all
1465  * tasks in the system use _some_ cgroup, and since there is always at
1466  * least one task in the system (init, pid == 1), therefore, root cgroup
1467  * always has either children cgroups and/or using tasks.  So we don't
1468  * need a special hack to ensure that root cgroup cannot be deleted.
1469  *
1470  * P.S.  One more locking exception.  RCU is used to guard the
1471  * update of a tasks cgroup pointer by cgroup_attach_task()
1472  */
1473 
1474 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1475 
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1476 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1477 			      char *buf)
1478 {
1479 	struct cgroup_subsys *ss = cft->ss;
1480 
1481 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1482 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1483 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1484 
1485 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1486 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1487 			 cft->name);
1488 	} else {
1489 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1490 	}
1491 	return buf;
1492 }
1493 
1494 /**
1495  * cgroup_file_mode - deduce file mode of a control file
1496  * @cft: the control file in question
1497  *
1498  * S_IRUGO for read, S_IWUSR for write.
1499  */
cgroup_file_mode(const struct cftype * cft)1500 static umode_t cgroup_file_mode(const struct cftype *cft)
1501 {
1502 	umode_t mode = 0;
1503 
1504 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1505 		mode |= S_IRUGO;
1506 
1507 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1508 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1509 			mode |= S_IWUGO;
1510 		else
1511 			mode |= S_IWUSR;
1512 	}
1513 
1514 	return mode;
1515 }
1516 
1517 /**
1518  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1519  * @subtree_control: the new subtree_control mask to consider
1520  * @this_ss_mask: available subsystems
1521  *
1522  * On the default hierarchy, a subsystem may request other subsystems to be
1523  * enabled together through its ->depends_on mask.  In such cases, more
1524  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1525  *
1526  * This function calculates which subsystems need to be enabled if
1527  * @subtree_control is to be applied while restricted to @this_ss_mask.
1528  */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1529 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1530 {
1531 	u16 cur_ss_mask = subtree_control;
1532 	struct cgroup_subsys *ss;
1533 	int ssid;
1534 
1535 	lockdep_assert_held(&cgroup_mutex);
1536 
1537 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1538 
1539 	while (true) {
1540 		u16 new_ss_mask = cur_ss_mask;
1541 
1542 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1543 			new_ss_mask |= ss->depends_on;
1544 		} while_each_subsys_mask();
1545 
1546 		/*
1547 		 * Mask out subsystems which aren't available.  This can
1548 		 * happen only if some depended-upon subsystems were bound
1549 		 * to non-default hierarchies.
1550 		 */
1551 		new_ss_mask &= this_ss_mask;
1552 
1553 		if (new_ss_mask == cur_ss_mask)
1554 			break;
1555 		cur_ss_mask = new_ss_mask;
1556 	}
1557 
1558 	return cur_ss_mask;
1559 }
1560 
1561 /**
1562  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1563  * @kn: the kernfs_node being serviced
1564  *
1565  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1566  * the method finishes if locking succeeded.  Note that once this function
1567  * returns the cgroup returned by cgroup_kn_lock_live() may become
1568  * inaccessible any time.  If the caller intends to continue to access the
1569  * cgroup, it should pin it before invoking this function.
1570  */
cgroup_kn_unlock(struct kernfs_node * kn)1571 void cgroup_kn_unlock(struct kernfs_node *kn)
1572 {
1573 	struct cgroup *cgrp;
1574 
1575 	if (kernfs_type(kn) == KERNFS_DIR)
1576 		cgrp = kn->priv;
1577 	else
1578 		cgrp = kn->parent->priv;
1579 
1580 	mutex_unlock(&cgroup_mutex);
1581 
1582 	kernfs_unbreak_active_protection(kn);
1583 	cgroup_put(cgrp);
1584 }
1585 
1586 /**
1587  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1588  * @kn: the kernfs_node being serviced
1589  * @drain_offline: perform offline draining on the cgroup
1590  *
1591  * This helper is to be used by a cgroup kernfs method currently servicing
1592  * @kn.  It breaks the active protection, performs cgroup locking and
1593  * verifies that the associated cgroup is alive.  Returns the cgroup if
1594  * alive; otherwise, %NULL.  A successful return should be undone by a
1595  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1596  * cgroup is drained of offlining csses before return.
1597  *
1598  * Any cgroup kernfs method implementation which requires locking the
1599  * associated cgroup should use this helper.  It avoids nesting cgroup
1600  * locking under kernfs active protection and allows all kernfs operations
1601  * including self-removal.
1602  */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1603 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1604 {
1605 	struct cgroup *cgrp;
1606 
1607 	if (kernfs_type(kn) == KERNFS_DIR)
1608 		cgrp = kn->priv;
1609 	else
1610 		cgrp = kn->parent->priv;
1611 
1612 	/*
1613 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1614 	 * active_ref.  cgroup liveliness check alone provides enough
1615 	 * protection against removal.  Ensure @cgrp stays accessible and
1616 	 * break the active_ref protection.
1617 	 */
1618 	if (!cgroup_tryget(cgrp))
1619 		return NULL;
1620 	kernfs_break_active_protection(kn);
1621 
1622 	if (drain_offline)
1623 		cgroup_lock_and_drain_offline(cgrp);
1624 	else
1625 		mutex_lock(&cgroup_mutex);
1626 
1627 	if (!cgroup_is_dead(cgrp))
1628 		return cgrp;
1629 
1630 	cgroup_kn_unlock(kn);
1631 	return NULL;
1632 }
1633 
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1634 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1635 {
1636 	char name[CGROUP_FILE_NAME_MAX];
1637 
1638 	lockdep_assert_held(&cgroup_mutex);
1639 
1640 	if (cft->file_offset) {
1641 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1642 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1643 
1644 		spin_lock_irq(&cgroup_file_kn_lock);
1645 		cfile->kn = NULL;
1646 		spin_unlock_irq(&cgroup_file_kn_lock);
1647 
1648 		del_timer_sync(&cfile->notify_timer);
1649 	}
1650 
1651 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1652 }
1653 
1654 /**
1655  * css_clear_dir - remove subsys files in a cgroup directory
1656  * @css: taget css
1657  */
css_clear_dir(struct cgroup_subsys_state * css)1658 static void css_clear_dir(struct cgroup_subsys_state *css)
1659 {
1660 	struct cgroup *cgrp = css->cgroup;
1661 	struct cftype *cfts;
1662 
1663 	if (!(css->flags & CSS_VISIBLE))
1664 		return;
1665 
1666 	css->flags &= ~CSS_VISIBLE;
1667 
1668 	if (!css->ss) {
1669 		if (cgroup_on_dfl(cgrp))
1670 			cfts = cgroup_base_files;
1671 		else
1672 			cfts = cgroup1_base_files;
1673 
1674 		cgroup_addrm_files(css, cgrp, cfts, false);
1675 	} else {
1676 		list_for_each_entry(cfts, &css->ss->cfts, node)
1677 			cgroup_addrm_files(css, cgrp, cfts, false);
1678 	}
1679 }
1680 
1681 /**
1682  * css_populate_dir - create subsys files in a cgroup directory
1683  * @css: target css
1684  *
1685  * On failure, no file is added.
1686  */
css_populate_dir(struct cgroup_subsys_state * css)1687 static int css_populate_dir(struct cgroup_subsys_state *css)
1688 {
1689 	struct cgroup *cgrp = css->cgroup;
1690 	struct cftype *cfts, *failed_cfts;
1691 	int ret;
1692 
1693 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1694 		return 0;
1695 
1696 	if (!css->ss) {
1697 		if (cgroup_on_dfl(cgrp))
1698 			cfts = cgroup_base_files;
1699 		else
1700 			cfts = cgroup1_base_files;
1701 
1702 		ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1703 		if (ret < 0)
1704 			return ret;
1705 	} else {
1706 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1707 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1708 			if (ret < 0) {
1709 				failed_cfts = cfts;
1710 				goto err;
1711 			}
1712 		}
1713 	}
1714 
1715 	css->flags |= CSS_VISIBLE;
1716 
1717 	return 0;
1718 err:
1719 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1720 		if (cfts == failed_cfts)
1721 			break;
1722 		cgroup_addrm_files(css, cgrp, cfts, false);
1723 	}
1724 	return ret;
1725 }
1726 
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1727 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1728 {
1729 	struct cgroup *dcgrp = &dst_root->cgrp;
1730 	struct cgroup_subsys *ss;
1731 	int ssid, ret;
1732 	u16 dfl_disable_ss_mask = 0;
1733 
1734 	lockdep_assert_held(&cgroup_mutex);
1735 
1736 	do_each_subsys_mask(ss, ssid, ss_mask) {
1737 		/*
1738 		 * If @ss has non-root csses attached to it, can't move.
1739 		 * If @ss is an implicit controller, it is exempt from this
1740 		 * rule and can be stolen.
1741 		 */
1742 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1743 		    !ss->implicit_on_dfl)
1744 			return -EBUSY;
1745 
1746 		/* can't move between two non-dummy roots either */
1747 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1748 			return -EBUSY;
1749 
1750 		/*
1751 		 * Collect ssid's that need to be disabled from default
1752 		 * hierarchy.
1753 		 */
1754 		if (ss->root == &cgrp_dfl_root)
1755 			dfl_disable_ss_mask |= 1 << ssid;
1756 
1757 	} while_each_subsys_mask();
1758 
1759 	if (dfl_disable_ss_mask) {
1760 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1761 
1762 		/*
1763 		 * Controllers from default hierarchy that need to be rebound
1764 		 * are all disabled together in one go.
1765 		 */
1766 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1767 		WARN_ON(cgroup_apply_control(scgrp));
1768 		cgroup_finalize_control(scgrp, 0);
1769 	}
1770 
1771 	do_each_subsys_mask(ss, ssid, ss_mask) {
1772 		struct cgroup_root *src_root = ss->root;
1773 		struct cgroup *scgrp = &src_root->cgrp;
1774 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1775 		struct css_set *cset, *cset_pos;
1776 		struct css_task_iter *it;
1777 
1778 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1779 
1780 		if (src_root != &cgrp_dfl_root) {
1781 			/* disable from the source */
1782 			src_root->subsys_mask &= ~(1 << ssid);
1783 			WARN_ON(cgroup_apply_control(scgrp));
1784 			cgroup_finalize_control(scgrp, 0);
1785 		}
1786 
1787 		/* rebind */
1788 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1789 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1790 		ss->root = dst_root;
1791 		css->cgroup = dcgrp;
1792 
1793 		spin_lock_irq(&css_set_lock);
1794 		WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1795 		list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1796 					 e_cset_node[ss->id]) {
1797 			list_move_tail(&cset->e_cset_node[ss->id],
1798 				       &dcgrp->e_csets[ss->id]);
1799 			/*
1800 			 * all css_sets of scgrp together in same order to dcgrp,
1801 			 * patch in-flight iterators to preserve correct iteration.
1802 			 * since the iterator is always advanced right away and
1803 			 * finished when it->cset_pos meets it->cset_head, so only
1804 			 * update it->cset_head is enough here.
1805 			 */
1806 			list_for_each_entry(it, &cset->task_iters, iters_node)
1807 				if (it->cset_head == &scgrp->e_csets[ss->id])
1808 					it->cset_head = &dcgrp->e_csets[ss->id];
1809 		}
1810 		spin_unlock_irq(&css_set_lock);
1811 
1812 		/* default hierarchy doesn't enable controllers by default */
1813 		dst_root->subsys_mask |= 1 << ssid;
1814 		if (dst_root == &cgrp_dfl_root) {
1815 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1816 		} else {
1817 			dcgrp->subtree_control |= 1 << ssid;
1818 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1819 		}
1820 
1821 		ret = cgroup_apply_control(dcgrp);
1822 		if (ret)
1823 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1824 				ss->name, ret);
1825 
1826 		if (ss->bind)
1827 			ss->bind(css);
1828 	} while_each_subsys_mask();
1829 
1830 	kernfs_activate(dcgrp->kn);
1831 	return 0;
1832 }
1833 
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1834 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1835 		     struct kernfs_root *kf_root)
1836 {
1837 	int len = 0;
1838 	char *buf = NULL;
1839 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1840 	struct cgroup *ns_cgroup;
1841 
1842 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1843 	if (!buf)
1844 		return -ENOMEM;
1845 
1846 	spin_lock_irq(&css_set_lock);
1847 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1848 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1849 	spin_unlock_irq(&css_set_lock);
1850 
1851 	if (len >= PATH_MAX)
1852 		len = -ERANGE;
1853 	else if (len > 0) {
1854 		seq_escape(sf, buf, " \t\n\\");
1855 		len = 0;
1856 	}
1857 	kfree(buf);
1858 	return len;
1859 }
1860 
1861 enum cgroup2_param {
1862 	Opt_nsdelegate,
1863 	Opt_memory_localevents,
1864 	nr__cgroup2_params
1865 };
1866 
1867 static const struct fs_parameter_spec cgroup2_param_specs[] = {
1868 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1869 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1870 	{}
1871 };
1872 
1873 static const struct fs_parameter_description cgroup2_fs_parameters = {
1874 	.name		= "cgroup2",
1875 	.specs		= cgroup2_param_specs,
1876 };
1877 
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1878 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1879 {
1880 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1881 	struct fs_parse_result result;
1882 	int opt;
1883 
1884 	opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result);
1885 	if (opt < 0)
1886 		return opt;
1887 
1888 	switch (opt) {
1889 	case Opt_nsdelegate:
1890 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1891 		return 0;
1892 	case Opt_memory_localevents:
1893 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1894 		return 0;
1895 	}
1896 	return -EINVAL;
1897 }
1898 
apply_cgroup_root_flags(unsigned int root_flags)1899 static void apply_cgroup_root_flags(unsigned int root_flags)
1900 {
1901 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1902 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1903 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1904 		else
1905 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1906 
1907 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1908 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1909 		else
1910 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1911 	}
1912 }
1913 
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1914 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1915 {
1916 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1917 		seq_puts(seq, ",nsdelegate");
1918 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1919 		seq_puts(seq, ",memory_localevents");
1920 	return 0;
1921 }
1922 
cgroup_reconfigure(struct fs_context * fc)1923 static int cgroup_reconfigure(struct fs_context *fc)
1924 {
1925 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1926 
1927 	apply_cgroup_root_flags(ctx->flags);
1928 	return 0;
1929 }
1930 
1931 /*
1932  * To reduce the fork() overhead for systems that are not actually using
1933  * their cgroups capability, we don't maintain the lists running through
1934  * each css_set to its tasks until we see the list actually used - in other
1935  * words after the first mount.
1936  */
1937 static bool use_task_css_set_links __read_mostly;
1938 
cgroup_enable_task_cg_lists(void)1939 void cgroup_enable_task_cg_lists(void)
1940 {
1941 	struct task_struct *p, *g;
1942 
1943 	/*
1944 	 * We need tasklist_lock because RCU is not safe against
1945 	 * while_each_thread(). Besides, a forking task that has passed
1946 	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1947 	 * is not guaranteed to have its child immediately visible in the
1948 	 * tasklist if we walk through it with RCU.
1949 	 */
1950 	read_lock(&tasklist_lock);
1951 	spin_lock_irq(&css_set_lock);
1952 
1953 	if (use_task_css_set_links)
1954 		goto out_unlock;
1955 
1956 	use_task_css_set_links = true;
1957 
1958 	do_each_thread(g, p) {
1959 		WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1960 			     task_css_set(p) != &init_css_set);
1961 
1962 		/*
1963 		 * We should check if the process is exiting, otherwise
1964 		 * it will race with cgroup_exit() in that the list
1965 		 * entry won't be deleted though the process has exited.
1966 		 * Do it while holding siglock so that we don't end up
1967 		 * racing against cgroup_exit().
1968 		 *
1969 		 * Interrupts were already disabled while acquiring
1970 		 * the css_set_lock, so we do not need to disable it
1971 		 * again when acquiring the sighand->siglock here.
1972 		 */
1973 		spin_lock(&p->sighand->siglock);
1974 		if (!(p->flags & PF_EXITING)) {
1975 			struct css_set *cset = task_css_set(p);
1976 
1977 			if (!css_set_populated(cset))
1978 				css_set_update_populated(cset, true);
1979 			list_add_tail(&p->cg_list, &cset->tasks);
1980 			get_css_set(cset);
1981 			cset->nr_tasks++;
1982 		}
1983 		spin_unlock(&p->sighand->siglock);
1984 	} while_each_thread(g, p);
1985 out_unlock:
1986 	spin_unlock_irq(&css_set_lock);
1987 	read_unlock(&tasklist_lock);
1988 }
1989 
init_cgroup_housekeeping(struct cgroup * cgrp)1990 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1991 {
1992 	struct cgroup_subsys *ss;
1993 	int ssid;
1994 
1995 	INIT_LIST_HEAD(&cgrp->self.sibling);
1996 	INIT_LIST_HEAD(&cgrp->self.children);
1997 	INIT_LIST_HEAD(&cgrp->cset_links);
1998 	INIT_LIST_HEAD(&cgrp->pidlists);
1999 	mutex_init(&cgrp->pidlist_mutex);
2000 	cgrp->self.cgroup = cgrp;
2001 	cgrp->self.flags |= CSS_ONLINE;
2002 	cgrp->dom_cgrp = cgrp;
2003 	cgrp->max_descendants = INT_MAX;
2004 	cgrp->max_depth = INT_MAX;
2005 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
2006 	prev_cputime_init(&cgrp->prev_cputime);
2007 
2008 	for_each_subsys(ss, ssid)
2009 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2010 
2011 	init_waitqueue_head(&cgrp->offline_waitq);
2012 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2013 }
2014 
init_cgroup_root(struct cgroup_fs_context * ctx)2015 void init_cgroup_root(struct cgroup_fs_context *ctx)
2016 {
2017 	struct cgroup_root *root = ctx->root;
2018 	struct cgroup *cgrp = &root->cgrp;
2019 
2020 	INIT_LIST_HEAD(&root->root_list);
2021 	atomic_set(&root->nr_cgrps, 1);
2022 	cgrp->root = root;
2023 	init_cgroup_housekeeping(cgrp);
2024 	idr_init(&root->cgroup_idr);
2025 
2026 	root->flags = ctx->flags;
2027 	if (ctx->release_agent)
2028 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2029 	if (ctx->name)
2030 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2031 	if (ctx->cpuset_clone_children)
2032 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2033 }
2034 
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)2035 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2036 {
2037 	LIST_HEAD(tmp_links);
2038 	struct cgroup *root_cgrp = &root->cgrp;
2039 	struct kernfs_syscall_ops *kf_sops;
2040 	struct css_set *cset;
2041 	int i, ret;
2042 
2043 	lockdep_assert_held(&cgroup_mutex);
2044 
2045 	ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
2046 	if (ret < 0)
2047 		goto out;
2048 	root_cgrp->id = ret;
2049 	root_cgrp->ancestor_ids[0] = ret;
2050 
2051 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2052 			      0, GFP_KERNEL);
2053 	if (ret)
2054 		goto out;
2055 
2056 	/*
2057 	 * We're accessing css_set_count without locking css_set_lock here,
2058 	 * but that's OK - it can only be increased by someone holding
2059 	 * cgroup_lock, and that's us.  Later rebinding may disable
2060 	 * controllers on the default hierarchy and thus create new csets,
2061 	 * which can't be more than the existing ones.  Allocate 2x.
2062 	 */
2063 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2064 	if (ret)
2065 		goto cancel_ref;
2066 
2067 	ret = cgroup_init_root_id(root);
2068 	if (ret)
2069 		goto cancel_ref;
2070 
2071 	kf_sops = root == &cgrp_dfl_root ?
2072 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2073 
2074 	root->kf_root = kernfs_create_root(kf_sops,
2075 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2076 					   KERNFS_ROOT_SUPPORT_EXPORTOP,
2077 					   root_cgrp);
2078 	if (IS_ERR(root->kf_root)) {
2079 		ret = PTR_ERR(root->kf_root);
2080 		goto exit_root_id;
2081 	}
2082 	root_cgrp->kn = root->kf_root->kn;
2083 
2084 	ret = css_populate_dir(&root_cgrp->self);
2085 	if (ret)
2086 		goto destroy_root;
2087 
2088 	ret = rebind_subsystems(root, ss_mask);
2089 	if (ret)
2090 		goto destroy_root;
2091 
2092 	ret = cgroup_bpf_inherit(root_cgrp);
2093 	WARN_ON_ONCE(ret);
2094 
2095 	trace_cgroup_setup_root(root);
2096 
2097 	/*
2098 	 * There must be no failure case after here, since rebinding takes
2099 	 * care of subsystems' refcounts, which are explicitly dropped in
2100 	 * the failure exit path.
2101 	 */
2102 	list_add(&root->root_list, &cgroup_roots);
2103 	cgroup_root_count++;
2104 
2105 	/*
2106 	 * Link the root cgroup in this hierarchy into all the css_set
2107 	 * objects.
2108 	 */
2109 	spin_lock_irq(&css_set_lock);
2110 	hash_for_each(css_set_table, i, cset, hlist) {
2111 		link_css_set(&tmp_links, cset, root_cgrp);
2112 		if (css_set_populated(cset))
2113 			cgroup_update_populated(root_cgrp, true);
2114 	}
2115 	spin_unlock_irq(&css_set_lock);
2116 
2117 	BUG_ON(!list_empty(&root_cgrp->self.children));
2118 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2119 
2120 	kernfs_activate(root_cgrp->kn);
2121 	ret = 0;
2122 	goto out;
2123 
2124 destroy_root:
2125 	kernfs_destroy_root(root->kf_root);
2126 	root->kf_root = NULL;
2127 exit_root_id:
2128 	cgroup_exit_root_id(root);
2129 cancel_ref:
2130 	percpu_ref_exit(&root_cgrp->self.refcnt);
2131 out:
2132 	free_cgrp_cset_links(&tmp_links);
2133 	return ret;
2134 }
2135 
cgroup_do_get_tree(struct fs_context * fc)2136 int cgroup_do_get_tree(struct fs_context *fc)
2137 {
2138 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2139 	int ret;
2140 
2141 	ctx->kfc.root = ctx->root->kf_root;
2142 	if (fc->fs_type == &cgroup2_fs_type)
2143 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2144 	else
2145 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2146 	ret = kernfs_get_tree(fc);
2147 
2148 	/*
2149 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2150 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2151 	 */
2152 	if (!ret && ctx->ns != &init_cgroup_ns) {
2153 		struct dentry *nsdentry;
2154 		struct super_block *sb = fc->root->d_sb;
2155 		struct cgroup *cgrp;
2156 
2157 		mutex_lock(&cgroup_mutex);
2158 		spin_lock_irq(&css_set_lock);
2159 
2160 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2161 
2162 		spin_unlock_irq(&css_set_lock);
2163 		mutex_unlock(&cgroup_mutex);
2164 
2165 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2166 		dput(fc->root);
2167 		if (IS_ERR(nsdentry)) {
2168 			deactivate_locked_super(sb);
2169 			ret = PTR_ERR(nsdentry);
2170 			nsdentry = NULL;
2171 		}
2172 		fc->root = nsdentry;
2173 	}
2174 
2175 	if (!ctx->kfc.new_sb_created)
2176 		cgroup_put(&ctx->root->cgrp);
2177 
2178 	return ret;
2179 }
2180 
2181 /*
2182  * Destroy a cgroup filesystem context.
2183  */
cgroup_fs_context_free(struct fs_context * fc)2184 static void cgroup_fs_context_free(struct fs_context *fc)
2185 {
2186 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2187 
2188 	kfree(ctx->name);
2189 	kfree(ctx->release_agent);
2190 	put_cgroup_ns(ctx->ns);
2191 	kernfs_free_fs_context(fc);
2192 	kfree(ctx);
2193 }
2194 
cgroup_get_tree(struct fs_context * fc)2195 static int cgroup_get_tree(struct fs_context *fc)
2196 {
2197 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2198 	int ret;
2199 
2200 	cgrp_dfl_visible = true;
2201 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2202 	ctx->root = &cgrp_dfl_root;
2203 
2204 	ret = cgroup_do_get_tree(fc);
2205 	if (!ret)
2206 		apply_cgroup_root_flags(ctx->flags);
2207 	return ret;
2208 }
2209 
2210 static const struct fs_context_operations cgroup_fs_context_ops = {
2211 	.free		= cgroup_fs_context_free,
2212 	.parse_param	= cgroup2_parse_param,
2213 	.get_tree	= cgroup_get_tree,
2214 	.reconfigure	= cgroup_reconfigure,
2215 };
2216 
2217 static const struct fs_context_operations cgroup1_fs_context_ops = {
2218 	.free		= cgroup_fs_context_free,
2219 	.parse_param	= cgroup1_parse_param,
2220 	.get_tree	= cgroup1_get_tree,
2221 	.reconfigure	= cgroup1_reconfigure,
2222 };
2223 
2224 /*
2225  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2226  * we select the namespace we're going to use.
2227  */
cgroup_init_fs_context(struct fs_context * fc)2228 static int cgroup_init_fs_context(struct fs_context *fc)
2229 {
2230 	struct cgroup_fs_context *ctx;
2231 
2232 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2233 	if (!ctx)
2234 		return -ENOMEM;
2235 
2236 	/*
2237 	 * The first time anyone tries to mount a cgroup, enable the list
2238 	 * linking each css_set to its tasks and fix up all existing tasks.
2239 	 */
2240 	if (!use_task_css_set_links)
2241 		cgroup_enable_task_cg_lists();
2242 
2243 	ctx->ns = current->nsproxy->cgroup_ns;
2244 	get_cgroup_ns(ctx->ns);
2245 	fc->fs_private = &ctx->kfc;
2246 	if (fc->fs_type == &cgroup2_fs_type)
2247 		fc->ops = &cgroup_fs_context_ops;
2248 	else
2249 		fc->ops = &cgroup1_fs_context_ops;
2250 	put_user_ns(fc->user_ns);
2251 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2252 	fc->global = true;
2253 	return 0;
2254 }
2255 
cgroup_kill_sb(struct super_block * sb)2256 static void cgroup_kill_sb(struct super_block *sb)
2257 {
2258 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2259 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2260 
2261 	/*
2262 	 * If @root doesn't have any children, start killing it.
2263 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2264 	 * cgroup_mount() may wait for @root's release.
2265 	 *
2266 	 * And don't kill the default root.
2267 	 */
2268 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2269 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2270 		percpu_ref_kill(&root->cgrp.self.refcnt);
2271 	cgroup_put(&root->cgrp);
2272 	kernfs_kill_sb(sb);
2273 }
2274 
2275 struct file_system_type cgroup_fs_type = {
2276 	.name			= "cgroup",
2277 	.init_fs_context	= cgroup_init_fs_context,
2278 	.parameters		= &cgroup1_fs_parameters,
2279 	.kill_sb		= cgroup_kill_sb,
2280 	.fs_flags		= FS_USERNS_MOUNT,
2281 };
2282 
2283 static struct file_system_type cgroup2_fs_type = {
2284 	.name			= "cgroup2",
2285 	.init_fs_context	= cgroup_init_fs_context,
2286 	.parameters		= &cgroup2_fs_parameters,
2287 	.kill_sb		= cgroup_kill_sb,
2288 	.fs_flags		= FS_USERNS_MOUNT,
2289 };
2290 
2291 #ifdef CONFIG_CPUSETS
2292 static const struct fs_context_operations cpuset_fs_context_ops = {
2293 	.get_tree	= cgroup1_get_tree,
2294 	.free		= cgroup_fs_context_free,
2295 };
2296 
2297 /*
2298  * This is ugly, but preserves the userspace API for existing cpuset
2299  * users. If someone tries to mount the "cpuset" filesystem, we
2300  * silently switch it to mount "cgroup" instead
2301  */
cpuset_init_fs_context(struct fs_context * fc)2302 static int cpuset_init_fs_context(struct fs_context *fc)
2303 {
2304 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2305 	struct cgroup_fs_context *ctx;
2306 	int err;
2307 
2308 	err = cgroup_init_fs_context(fc);
2309 	if (err) {
2310 		kfree(agent);
2311 		return err;
2312 	}
2313 
2314 	fc->ops = &cpuset_fs_context_ops;
2315 
2316 	ctx = cgroup_fc2context(fc);
2317 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2318 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2319 	ctx->release_agent = agent;
2320 
2321 	get_filesystem(&cgroup_fs_type);
2322 	put_filesystem(fc->fs_type);
2323 	fc->fs_type = &cgroup_fs_type;
2324 
2325 	return 0;
2326 }
2327 
2328 static struct file_system_type cpuset_fs_type = {
2329 	.name			= "cpuset",
2330 	.init_fs_context	= cpuset_init_fs_context,
2331 	.fs_flags		= FS_USERNS_MOUNT,
2332 };
2333 #endif
2334 
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2335 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2336 			  struct cgroup_namespace *ns)
2337 {
2338 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2339 
2340 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2341 }
2342 
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2343 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2344 		   struct cgroup_namespace *ns)
2345 {
2346 	int ret;
2347 
2348 	mutex_lock(&cgroup_mutex);
2349 	spin_lock_irq(&css_set_lock);
2350 
2351 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2352 
2353 	spin_unlock_irq(&css_set_lock);
2354 	mutex_unlock(&cgroup_mutex);
2355 
2356 	return ret;
2357 }
2358 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2359 
2360 /**
2361  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2362  * @task: target task
2363  * @buf: the buffer to write the path into
2364  * @buflen: the length of the buffer
2365  *
2366  * Determine @task's cgroup on the first (the one with the lowest non-zero
2367  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2368  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2369  * cgroup controller callbacks.
2370  *
2371  * Return value is the same as kernfs_path().
2372  */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2373 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2374 {
2375 	struct cgroup_root *root;
2376 	struct cgroup *cgrp;
2377 	int hierarchy_id = 1;
2378 	int ret;
2379 
2380 	mutex_lock(&cgroup_mutex);
2381 	spin_lock_irq(&css_set_lock);
2382 
2383 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2384 
2385 	if (root) {
2386 		cgrp = task_cgroup_from_root(task, root);
2387 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2388 	} else {
2389 		/* if no hierarchy exists, everyone is in "/" */
2390 		ret = strlcpy(buf, "/", buflen);
2391 	}
2392 
2393 	spin_unlock_irq(&css_set_lock);
2394 	mutex_unlock(&cgroup_mutex);
2395 	return ret;
2396 }
2397 EXPORT_SYMBOL_GPL(task_cgroup_path);
2398 
2399 /**
2400  * cgroup_attach_lock - Lock for ->attach()
2401  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2402  *
2403  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2404  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2405  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2406  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2407  * lead to deadlocks.
2408  *
2409  * Bringing up a CPU may involve creating and destroying tasks which requires
2410  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2411  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2412  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2413  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2414  * the threadgroup_rwsem to be released to create new tasks. For more details:
2415  *
2416  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2417  *
2418  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2419  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2420  * CPU hotplug is disabled on entry.
2421  */
cgroup_attach_lock(bool lock_threadgroup)2422 static void cgroup_attach_lock(bool lock_threadgroup)
2423 {
2424 	cpus_read_lock();
2425 	if (lock_threadgroup)
2426 		percpu_down_write(&cgroup_threadgroup_rwsem);
2427 }
2428 
2429 /**
2430  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2431  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2432  */
cgroup_attach_unlock(bool lock_threadgroup)2433 static void cgroup_attach_unlock(bool lock_threadgroup)
2434 {
2435 	if (lock_threadgroup)
2436 		percpu_up_write(&cgroup_threadgroup_rwsem);
2437 	cpus_read_unlock();
2438 }
2439 
2440 /**
2441  * cgroup_migrate_add_task - add a migration target task to a migration context
2442  * @task: target task
2443  * @mgctx: target migration context
2444  *
2445  * Add @task, which is a migration target, to @mgctx->tset.  This function
2446  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2447  * should have been added as a migration source and @task->cg_list will be
2448  * moved from the css_set's tasks list to mg_tasks one.
2449  */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2450 static void cgroup_migrate_add_task(struct task_struct *task,
2451 				    struct cgroup_mgctx *mgctx)
2452 {
2453 	struct css_set *cset;
2454 
2455 	lockdep_assert_held(&css_set_lock);
2456 
2457 	/* @task either already exited or can't exit until the end */
2458 	if (task->flags & PF_EXITING)
2459 		return;
2460 
2461 	/* leave @task alone if post_fork() hasn't linked it yet */
2462 	if (list_empty(&task->cg_list))
2463 		return;
2464 
2465 	cset = task_css_set(task);
2466 	if (!cset->mg_src_cgrp)
2467 		return;
2468 
2469 	mgctx->tset.nr_tasks++;
2470 
2471 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2472 	if (list_empty(&cset->mg_node))
2473 		list_add_tail(&cset->mg_node,
2474 			      &mgctx->tset.src_csets);
2475 	if (list_empty(&cset->mg_dst_cset->mg_node))
2476 		list_add_tail(&cset->mg_dst_cset->mg_node,
2477 			      &mgctx->tset.dst_csets);
2478 }
2479 
2480 /**
2481  * cgroup_taskset_first - reset taskset and return the first task
2482  * @tset: taskset of interest
2483  * @dst_cssp: output variable for the destination css
2484  *
2485  * @tset iteration is initialized and the first task is returned.
2486  */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2487 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2488 					 struct cgroup_subsys_state **dst_cssp)
2489 {
2490 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2491 	tset->cur_task = NULL;
2492 
2493 	return cgroup_taskset_next(tset, dst_cssp);
2494 }
2495 
2496 /**
2497  * cgroup_taskset_next - iterate to the next task in taskset
2498  * @tset: taskset of interest
2499  * @dst_cssp: output variable for the destination css
2500  *
2501  * Return the next task in @tset.  Iteration must have been initialized
2502  * with cgroup_taskset_first().
2503  */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2504 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2505 					struct cgroup_subsys_state **dst_cssp)
2506 {
2507 	struct css_set *cset = tset->cur_cset;
2508 	struct task_struct *task = tset->cur_task;
2509 
2510 	while (&cset->mg_node != tset->csets) {
2511 		if (!task)
2512 			task = list_first_entry(&cset->mg_tasks,
2513 						struct task_struct, cg_list);
2514 		else
2515 			task = list_next_entry(task, cg_list);
2516 
2517 		if (&task->cg_list != &cset->mg_tasks) {
2518 			tset->cur_cset = cset;
2519 			tset->cur_task = task;
2520 
2521 			/*
2522 			 * This function may be called both before and
2523 			 * after cgroup_taskset_migrate().  The two cases
2524 			 * can be distinguished by looking at whether @cset
2525 			 * has its ->mg_dst_cset set.
2526 			 */
2527 			if (cset->mg_dst_cset)
2528 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2529 			else
2530 				*dst_cssp = cset->subsys[tset->ssid];
2531 
2532 			return task;
2533 		}
2534 
2535 		cset = list_next_entry(cset, mg_node);
2536 		task = NULL;
2537 	}
2538 
2539 	return NULL;
2540 }
2541 
2542 /**
2543  * cgroup_taskset_migrate - migrate a taskset
2544  * @mgctx: migration context
2545  *
2546  * Migrate tasks in @mgctx as setup by migration preparation functions.
2547  * This function fails iff one of the ->can_attach callbacks fails and
2548  * guarantees that either all or none of the tasks in @mgctx are migrated.
2549  * @mgctx is consumed regardless of success.
2550  */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2551 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2552 {
2553 	struct cgroup_taskset *tset = &mgctx->tset;
2554 	struct cgroup_subsys *ss;
2555 	struct task_struct *task, *tmp_task;
2556 	struct css_set *cset, *tmp_cset;
2557 	int ssid, failed_ssid, ret;
2558 
2559 	/* check that we can legitimately attach to the cgroup */
2560 	if (tset->nr_tasks) {
2561 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2562 			if (ss->can_attach) {
2563 				tset->ssid = ssid;
2564 				ret = ss->can_attach(tset);
2565 				if (ret) {
2566 					failed_ssid = ssid;
2567 					goto out_cancel_attach;
2568 				}
2569 			}
2570 		} while_each_subsys_mask();
2571 	}
2572 
2573 	/*
2574 	 * Now that we're guaranteed success, proceed to move all tasks to
2575 	 * the new cgroup.  There are no failure cases after here, so this
2576 	 * is the commit point.
2577 	 */
2578 	spin_lock_irq(&css_set_lock);
2579 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2580 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2581 			struct css_set *from_cset = task_css_set(task);
2582 			struct css_set *to_cset = cset->mg_dst_cset;
2583 
2584 			get_css_set(to_cset);
2585 			to_cset->nr_tasks++;
2586 			css_set_move_task(task, from_cset, to_cset, true);
2587 			from_cset->nr_tasks--;
2588 			/*
2589 			 * If the source or destination cgroup is frozen,
2590 			 * the task might require to change its state.
2591 			 */
2592 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2593 						    to_cset->dfl_cgrp);
2594 			put_css_set_locked(from_cset);
2595 
2596 		}
2597 	}
2598 	spin_unlock_irq(&css_set_lock);
2599 
2600 	/*
2601 	 * Migration is committed, all target tasks are now on dst_csets.
2602 	 * Nothing is sensitive to fork() after this point.  Notify
2603 	 * controllers that migration is complete.
2604 	 */
2605 	tset->csets = &tset->dst_csets;
2606 
2607 	if (tset->nr_tasks) {
2608 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2609 			if (ss->attach) {
2610 				tset->ssid = ssid;
2611 				ss->attach(tset);
2612 			}
2613 		} while_each_subsys_mask();
2614 	}
2615 
2616 	ret = 0;
2617 	goto out_release_tset;
2618 
2619 out_cancel_attach:
2620 	if (tset->nr_tasks) {
2621 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2622 			if (ssid == failed_ssid)
2623 				break;
2624 			if (ss->cancel_attach) {
2625 				tset->ssid = ssid;
2626 				ss->cancel_attach(tset);
2627 			}
2628 		} while_each_subsys_mask();
2629 	}
2630 out_release_tset:
2631 	spin_lock_irq(&css_set_lock);
2632 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2633 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2634 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2635 		list_del_init(&cset->mg_node);
2636 	}
2637 	spin_unlock_irq(&css_set_lock);
2638 
2639 	/*
2640 	 * Re-initialize the cgroup_taskset structure in case it is reused
2641 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2642 	 * iteration.
2643 	 */
2644 	tset->nr_tasks = 0;
2645 	tset->csets    = &tset->src_csets;
2646 	return ret;
2647 }
2648 
2649 /**
2650  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2651  * @dst_cgrp: destination cgroup to test
2652  *
2653  * On the default hierarchy, except for the mixable, (possible) thread root
2654  * and threaded cgroups, subtree_control must be zero for migration
2655  * destination cgroups with tasks so that child cgroups don't compete
2656  * against tasks.
2657  */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2658 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2659 {
2660 	/* v1 doesn't have any restriction */
2661 	if (!cgroup_on_dfl(dst_cgrp))
2662 		return 0;
2663 
2664 	/* verify @dst_cgrp can host resources */
2665 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2666 		return -EOPNOTSUPP;
2667 
2668 	/* mixables don't care */
2669 	if (cgroup_is_mixable(dst_cgrp))
2670 		return 0;
2671 
2672 	/*
2673 	 * If @dst_cgrp is already or can become a thread root or is
2674 	 * threaded, it doesn't matter.
2675 	 */
2676 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2677 		return 0;
2678 
2679 	/* apply no-internal-process constraint */
2680 	if (dst_cgrp->subtree_control)
2681 		return -EBUSY;
2682 
2683 	return 0;
2684 }
2685 
2686 /**
2687  * cgroup_migrate_finish - cleanup after attach
2688  * @mgctx: migration context
2689  *
2690  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2691  * those functions for details.
2692  */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2693 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2694 {
2695 	struct ext_css_set *cset, *tmp_cset;
2696 
2697 	lockdep_assert_held(&cgroup_mutex);
2698 
2699 	spin_lock_irq(&css_set_lock);
2700 
2701 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2702 				 mg_src_preload_node) {
2703 		cset->cset.mg_src_cgrp = NULL;
2704 		cset->cset.mg_dst_cgrp = NULL;
2705 		cset->cset.mg_dst_cset = NULL;
2706 		list_del_init(&cset->mg_src_preload_node);
2707 		put_css_set_locked(&cset->cset);
2708 	}
2709 
2710 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2711 				 mg_dst_preload_node) {
2712 		cset->cset.mg_src_cgrp = NULL;
2713 		cset->cset.mg_dst_cgrp = NULL;
2714 		cset->cset.mg_dst_cset = NULL;
2715 		list_del_init(&cset->mg_dst_preload_node);
2716 		put_css_set_locked(&cset->cset);
2717 	}
2718 
2719 	spin_unlock_irq(&css_set_lock);
2720 }
2721 
2722 /**
2723  * cgroup_migrate_add_src - add a migration source css_set
2724  * @src_cset: the source css_set to add
2725  * @dst_cgrp: the destination cgroup
2726  * @mgctx: migration context
2727  *
2728  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2729  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2730  * up by cgroup_migrate_finish().
2731  *
2732  * This function may be called without holding cgroup_threadgroup_rwsem
2733  * even if the target is a process.  Threads may be created and destroyed
2734  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2735  * into play and the preloaded css_sets are guaranteed to cover all
2736  * migrations.
2737  */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2738 void cgroup_migrate_add_src(struct css_set *src_cset,
2739 			    struct cgroup *dst_cgrp,
2740 			    struct cgroup_mgctx *mgctx)
2741 {
2742 	struct cgroup *src_cgrp;
2743 	struct ext_css_set *ext_src_cset;
2744 
2745 	lockdep_assert_held(&cgroup_mutex);
2746 	lockdep_assert_held(&css_set_lock);
2747 
2748 	/*
2749 	 * If ->dead, @src_set is associated with one or more dead cgroups
2750 	 * and doesn't contain any migratable tasks.  Ignore it early so
2751 	 * that the rest of migration path doesn't get confused by it.
2752 	 */
2753 	if (src_cset->dead)
2754 		return;
2755 
2756 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2757 	ext_src_cset = container_of(src_cset, struct ext_css_set, cset);
2758 
2759 	if (!list_empty(&ext_src_cset->mg_src_preload_node))
2760 		return;
2761 
2762 	WARN_ON(src_cset->mg_src_cgrp);
2763 	WARN_ON(src_cset->mg_dst_cgrp);
2764 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2765 	WARN_ON(!list_empty(&src_cset->mg_node));
2766 
2767 	src_cset->mg_src_cgrp = src_cgrp;
2768 	src_cset->mg_dst_cgrp = dst_cgrp;
2769 	get_css_set(src_cset);
2770 	list_add_tail(&ext_src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2771 }
2772 
2773 /**
2774  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2775  * @mgctx: migration context
2776  *
2777  * Tasks are about to be moved and all the source css_sets have been
2778  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2779  * pins all destination css_sets, links each to its source, and append them
2780  * to @mgctx->preloaded_dst_csets.
2781  *
2782  * This function must be called after cgroup_migrate_add_src() has been
2783  * called on each migration source css_set.  After migration is performed
2784  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2785  * @mgctx.
2786  */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2787 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2788 {
2789 	struct ext_css_set *ext_src_set, *tmp_cset;
2790 
2791 	lockdep_assert_held(&cgroup_mutex);
2792 
2793 	/* look up the dst cset for each src cset and link it to src */
2794 	list_for_each_entry_safe(ext_src_set, tmp_cset, &mgctx->preloaded_src_csets,
2795 				 mg_src_preload_node) {
2796 		struct css_set *src_cset = &ext_src_set->cset;
2797 		struct css_set *dst_cset;
2798 		struct ext_css_set *ext_dst_cset;
2799 		struct cgroup_subsys *ss;
2800 		int ssid;
2801 
2802 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2803 		if (!dst_cset)
2804 			return -ENOMEM;
2805 		ext_dst_cset = container_of(dst_cset, struct ext_css_set, cset);
2806 
2807 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2808 
2809 		/*
2810 		 * If src cset equals dst, it's noop.  Drop the src.
2811 		 * cgroup_migrate() will skip the cset too.  Note that we
2812 		 * can't handle src == dst as some nodes are used by both.
2813 		 */
2814 		if (src_cset == dst_cset) {
2815 			src_cset->mg_src_cgrp = NULL;
2816 			src_cset->mg_dst_cgrp = NULL;
2817 			list_del_init(&ext_src_set->mg_src_preload_node);
2818 			put_css_set(src_cset);
2819 			put_css_set(dst_cset);
2820 			continue;
2821 		}
2822 
2823 		src_cset->mg_dst_cset = dst_cset;
2824 
2825 		if (list_empty(&ext_dst_cset->mg_dst_preload_node))
2826 			list_add_tail(&ext_dst_cset->mg_dst_preload_node,
2827 				      &mgctx->preloaded_dst_csets);
2828 		else
2829 			put_css_set(dst_cset);
2830 
2831 		for_each_subsys(ss, ssid)
2832 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2833 				mgctx->ss_mask |= 1 << ssid;
2834 	}
2835 
2836 	return 0;
2837 }
2838 
2839 /**
2840  * cgroup_migrate - migrate a process or task to a cgroup
2841  * @leader: the leader of the process or the task to migrate
2842  * @threadgroup: whether @leader points to the whole process or a single task
2843  * @mgctx: migration context
2844  *
2845  * Migrate a process or task denoted by @leader.  If migrating a process,
2846  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2847  * responsible for invoking cgroup_migrate_add_src() and
2848  * cgroup_migrate_prepare_dst() on the targets before invoking this
2849  * function and following up with cgroup_migrate_finish().
2850  *
2851  * As long as a controller's ->can_attach() doesn't fail, this function is
2852  * guaranteed to succeed.  This means that, excluding ->can_attach()
2853  * failure, when migrating multiple targets, the success or failure can be
2854  * decided for all targets by invoking group_migrate_prepare_dst() before
2855  * actually starting migrating.
2856  */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2857 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2858 		   struct cgroup_mgctx *mgctx)
2859 {
2860 	struct task_struct *task;
2861 
2862 	/*
2863 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2864 	 * already PF_EXITING could be freed from underneath us unless we
2865 	 * take an rcu_read_lock.
2866 	 */
2867 	spin_lock_irq(&css_set_lock);
2868 	rcu_read_lock();
2869 	task = leader;
2870 	do {
2871 		cgroup_migrate_add_task(task, mgctx);
2872 		if (!threadgroup)
2873 			break;
2874 	} while_each_thread(leader, task);
2875 	rcu_read_unlock();
2876 	spin_unlock_irq(&css_set_lock);
2877 
2878 	return cgroup_migrate_execute(mgctx);
2879 }
2880 
2881 /**
2882  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2883  * @dst_cgrp: the cgroup to attach to
2884  * @leader: the task or the leader of the threadgroup to be attached
2885  * @threadgroup: attach the whole threadgroup?
2886  *
2887  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2888  */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2889 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2890 		       bool threadgroup)
2891 {
2892 	DEFINE_CGROUP_MGCTX(mgctx);
2893 	struct task_struct *task;
2894 	int ret;
2895 
2896 	ret = cgroup_migrate_vet_dst(dst_cgrp);
2897 	if (ret)
2898 		return ret;
2899 
2900 	/* look up all src csets */
2901 	spin_lock_irq(&css_set_lock);
2902 	rcu_read_lock();
2903 	task = leader;
2904 	do {
2905 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2906 		if (!threadgroup)
2907 			break;
2908 	} while_each_thread(leader, task);
2909 	rcu_read_unlock();
2910 	spin_unlock_irq(&css_set_lock);
2911 
2912 	/* prepare dst csets and commit */
2913 	ret = cgroup_migrate_prepare_dst(&mgctx);
2914 	if (!ret)
2915 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2916 
2917 	cgroup_migrate_finish(&mgctx);
2918 
2919 	if (!ret)
2920 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2921 
2922 	return ret;
2923 }
2924 
cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked)2925 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2926 					     bool *threadgroup_locked)
2927 {
2928 	struct task_struct *tsk;
2929 	pid_t pid;
2930 
2931 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2932 		return ERR_PTR(-EINVAL);
2933 
2934 	/*
2935 	 * If we migrate a single thread, we don't care about threadgroup
2936 	 * stability. If the thread is `current`, it won't exit(2) under our
2937 	 * hands or change PID through exec(2). We exclude
2938 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2939 	 * callers by cgroup_mutex.
2940 	 * Therefore, we can skip the global lock.
2941 	 */
2942 	lockdep_assert_held(&cgroup_mutex);
2943 	*threadgroup_locked = pid || threadgroup;
2944 	cgroup_attach_lock(*threadgroup_locked);
2945 
2946 	rcu_read_lock();
2947 	if (pid) {
2948 		tsk = find_task_by_vpid(pid);
2949 		if (!tsk) {
2950 			tsk = ERR_PTR(-ESRCH);
2951 			goto out_unlock_threadgroup;
2952 		}
2953 	} else {
2954 		tsk = current;
2955 	}
2956 
2957 	if (threadgroup)
2958 		tsk = tsk->group_leader;
2959 
2960 	/*
2961 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2962 	 * If userland migrates such a kthread to a non-root cgroup, it can
2963 	 * become trapped in a cpuset, or RT kthread may be born in a
2964 	 * cgroup with no rt_runtime allocated.  Just say no.
2965 	 */
2966 	if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2967 		tsk = ERR_PTR(-EINVAL);
2968 		goto out_unlock_threadgroup;
2969 	}
2970 
2971 	get_task_struct(tsk);
2972 	goto out_unlock_rcu;
2973 
2974 out_unlock_threadgroup:
2975 	cgroup_attach_unlock(*threadgroup_locked);
2976 	*threadgroup_locked = false;
2977 out_unlock_rcu:
2978 	rcu_read_unlock();
2979 	return tsk;
2980 }
2981 
cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)2982 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2983 {
2984 	struct cgroup_subsys *ss;
2985 	int ssid;
2986 
2987 	/* release reference from cgroup_procs_write_start() */
2988 	put_task_struct(task);
2989 
2990 	cgroup_attach_unlock(threadgroup_locked);
2991 
2992 	for_each_subsys(ss, ssid)
2993 		if (ss->post_attach)
2994 			ss->post_attach();
2995 }
2996 
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2997 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2998 {
2999 	struct cgroup_subsys *ss;
3000 	bool printed = false;
3001 	int ssid;
3002 
3003 	do_each_subsys_mask(ss, ssid, ss_mask) {
3004 		if (printed)
3005 			seq_putc(seq, ' ');
3006 		seq_puts(seq, ss->name);
3007 		printed = true;
3008 	} while_each_subsys_mask();
3009 	if (printed)
3010 		seq_putc(seq, '\n');
3011 }
3012 
3013 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)3014 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3015 {
3016 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3017 
3018 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3019 	return 0;
3020 }
3021 
3022 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)3023 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3024 {
3025 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3026 
3027 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
3028 	return 0;
3029 }
3030 
3031 /**
3032  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3033  * @cgrp: root of the subtree to update csses for
3034  *
3035  * @cgrp's control masks have changed and its subtree's css associations
3036  * need to be updated accordingly.  This function looks up all css_sets
3037  * which are attached to the subtree, creates the matching updated css_sets
3038  * and migrates the tasks to the new ones.
3039  */
cgroup_update_dfl_csses(struct cgroup * cgrp)3040 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3041 {
3042 	DEFINE_CGROUP_MGCTX(mgctx);
3043 	struct cgroup_subsys_state *d_css;
3044 	struct cgroup *dsct;
3045 	struct ext_css_set *ext_src_set;
3046 	bool has_tasks;
3047 	int ret;
3048 
3049 	lockdep_assert_held(&cgroup_mutex);
3050 
3051 	/* look up all csses currently attached to @cgrp's subtree */
3052 	spin_lock_irq(&css_set_lock);
3053 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3054 		struct cgrp_cset_link *link;
3055 
3056 		list_for_each_entry(link, &dsct->cset_links, cset_link)
3057 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3058 	}
3059 	spin_unlock_irq(&css_set_lock);
3060 
3061 	/*
3062 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3063 	 * However, if there are no source csets for @cgrp, changing its
3064 	 * controllers isn't gonna produce any task migrations and the
3065 	 * write-locking can be skipped safely.
3066 	 */
3067 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3068 	cgroup_attach_lock(has_tasks);
3069 
3070 	/* NULL dst indicates self on default hierarchy */
3071 	ret = cgroup_migrate_prepare_dst(&mgctx);
3072 	if (ret)
3073 		goto out_finish;
3074 
3075 	spin_lock_irq(&css_set_lock);
3076 	list_for_each_entry(ext_src_set, &mgctx.preloaded_src_csets,
3077 			    mg_src_preload_node) {
3078 		struct task_struct *task, *ntask;
3079 
3080 		/* all tasks in src_csets need to be migrated */
3081 		list_for_each_entry_safe(task, ntask, &ext_src_set->cset.tasks, cg_list)
3082 			cgroup_migrate_add_task(task, &mgctx);
3083 	}
3084 	spin_unlock_irq(&css_set_lock);
3085 
3086 	ret = cgroup_migrate_execute(&mgctx);
3087 out_finish:
3088 	cgroup_migrate_finish(&mgctx);
3089 	cgroup_attach_unlock(has_tasks);
3090 	return ret;
3091 }
3092 
3093 /**
3094  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3095  * @cgrp: root of the target subtree
3096  *
3097  * Because css offlining is asynchronous, userland may try to re-enable a
3098  * controller while the previous css is still around.  This function grabs
3099  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3100  */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3101 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3102 	__acquires(&cgroup_mutex)
3103 {
3104 	struct cgroup *dsct;
3105 	struct cgroup_subsys_state *d_css;
3106 	struct cgroup_subsys *ss;
3107 	int ssid;
3108 
3109 restart:
3110 	mutex_lock(&cgroup_mutex);
3111 
3112 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3113 		for_each_subsys(ss, ssid) {
3114 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3115 			DEFINE_WAIT(wait);
3116 
3117 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3118 				continue;
3119 
3120 			cgroup_get_live(dsct);
3121 			prepare_to_wait(&dsct->offline_waitq, &wait,
3122 					TASK_UNINTERRUPTIBLE);
3123 
3124 			mutex_unlock(&cgroup_mutex);
3125 			schedule();
3126 			finish_wait(&dsct->offline_waitq, &wait);
3127 
3128 			cgroup_put(dsct);
3129 			goto restart;
3130 		}
3131 	}
3132 }
3133 
3134 /**
3135  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3136  * @cgrp: root of the target subtree
3137  *
3138  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3139  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3140  * itself.
3141  */
cgroup_save_control(struct cgroup * cgrp)3142 static void cgroup_save_control(struct cgroup *cgrp)
3143 {
3144 	struct cgroup *dsct;
3145 	struct cgroup_subsys_state *d_css;
3146 
3147 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3148 		dsct->old_subtree_control = dsct->subtree_control;
3149 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3150 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3151 	}
3152 }
3153 
3154 /**
3155  * cgroup_propagate_control - refresh control masks of a subtree
3156  * @cgrp: root of the target subtree
3157  *
3158  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3159  * ->subtree_control and propagate controller availability through the
3160  * subtree so that descendants don't have unavailable controllers enabled.
3161  */
cgroup_propagate_control(struct cgroup * cgrp)3162 static void cgroup_propagate_control(struct cgroup *cgrp)
3163 {
3164 	struct cgroup *dsct;
3165 	struct cgroup_subsys_state *d_css;
3166 
3167 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3168 		dsct->subtree_control &= cgroup_control(dsct);
3169 		dsct->subtree_ss_mask =
3170 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3171 						    cgroup_ss_mask(dsct));
3172 	}
3173 }
3174 
3175 /**
3176  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3177  * @cgrp: root of the target subtree
3178  *
3179  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3180  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3181  * itself.
3182  */
cgroup_restore_control(struct cgroup * cgrp)3183 static void cgroup_restore_control(struct cgroup *cgrp)
3184 {
3185 	struct cgroup *dsct;
3186 	struct cgroup_subsys_state *d_css;
3187 
3188 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3189 		dsct->subtree_control = dsct->old_subtree_control;
3190 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3191 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3192 	}
3193 }
3194 
css_visible(struct cgroup_subsys_state * css)3195 static bool css_visible(struct cgroup_subsys_state *css)
3196 {
3197 	struct cgroup_subsys *ss = css->ss;
3198 	struct cgroup *cgrp = css->cgroup;
3199 
3200 	if (cgroup_control(cgrp) & (1 << ss->id))
3201 		return true;
3202 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3203 		return false;
3204 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3205 }
3206 
3207 /**
3208  * cgroup_apply_control_enable - enable or show csses according to control
3209  * @cgrp: root of the target subtree
3210  *
3211  * Walk @cgrp's subtree and create new csses or make the existing ones
3212  * visible.  A css is created invisible if it's being implicitly enabled
3213  * through dependency.  An invisible css is made visible when the userland
3214  * explicitly enables it.
3215  *
3216  * Returns 0 on success, -errno on failure.  On failure, csses which have
3217  * been processed already aren't cleaned up.  The caller is responsible for
3218  * cleaning up with cgroup_apply_control_disable().
3219  */
cgroup_apply_control_enable(struct cgroup * cgrp)3220 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3221 {
3222 	struct cgroup *dsct;
3223 	struct cgroup_subsys_state *d_css;
3224 	struct cgroup_subsys *ss;
3225 	int ssid, ret;
3226 
3227 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3228 		for_each_subsys(ss, ssid) {
3229 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3230 
3231 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3232 				continue;
3233 
3234 			if (!css) {
3235 				css = css_create(dsct, ss);
3236 				if (IS_ERR(css))
3237 					return PTR_ERR(css);
3238 			}
3239 
3240 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3241 
3242 			if (css_visible(css)) {
3243 				ret = css_populate_dir(css);
3244 				if (ret)
3245 					return ret;
3246 			}
3247 		}
3248 	}
3249 
3250 	return 0;
3251 }
3252 
3253 /**
3254  * cgroup_apply_control_disable - kill or hide csses according to control
3255  * @cgrp: root of the target subtree
3256  *
3257  * Walk @cgrp's subtree and kill and hide csses so that they match
3258  * cgroup_ss_mask() and cgroup_visible_mask().
3259  *
3260  * A css is hidden when the userland requests it to be disabled while other
3261  * subsystems are still depending on it.  The css must not actively control
3262  * resources and be in the vanilla state if it's made visible again later.
3263  * Controllers which may be depended upon should provide ->css_reset() for
3264  * this purpose.
3265  */
cgroup_apply_control_disable(struct cgroup * cgrp)3266 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3267 {
3268 	struct cgroup *dsct;
3269 	struct cgroup_subsys_state *d_css;
3270 	struct cgroup_subsys *ss;
3271 	int ssid;
3272 
3273 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3274 		for_each_subsys(ss, ssid) {
3275 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3276 
3277 			if (!css)
3278 				continue;
3279 
3280 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3281 
3282 			if (css->parent &&
3283 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3284 				kill_css(css);
3285 			} else if (!css_visible(css)) {
3286 				css_clear_dir(css);
3287 				if (ss->css_reset)
3288 					ss->css_reset(css);
3289 			}
3290 		}
3291 	}
3292 }
3293 
3294 /**
3295  * cgroup_apply_control - apply control mask updates to the subtree
3296  * @cgrp: root of the target subtree
3297  *
3298  * subsystems can be enabled and disabled in a subtree using the following
3299  * steps.
3300  *
3301  * 1. Call cgroup_save_control() to stash the current state.
3302  * 2. Update ->subtree_control masks in the subtree as desired.
3303  * 3. Call cgroup_apply_control() to apply the changes.
3304  * 4. Optionally perform other related operations.
3305  * 5. Call cgroup_finalize_control() to finish up.
3306  *
3307  * This function implements step 3 and propagates the mask changes
3308  * throughout @cgrp's subtree, updates csses accordingly and perform
3309  * process migrations.
3310  */
cgroup_apply_control(struct cgroup * cgrp)3311 static int cgroup_apply_control(struct cgroup *cgrp)
3312 {
3313 	int ret;
3314 
3315 	cgroup_propagate_control(cgrp);
3316 
3317 	ret = cgroup_apply_control_enable(cgrp);
3318 	if (ret)
3319 		return ret;
3320 
3321 	/*
3322 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3323 	 * making the following cgroup_update_dfl_csses() properly update
3324 	 * css associations of all tasks in the subtree.
3325 	 */
3326 	ret = cgroup_update_dfl_csses(cgrp);
3327 	if (ret)
3328 		return ret;
3329 
3330 	return 0;
3331 }
3332 
3333 /**
3334  * cgroup_finalize_control - finalize control mask update
3335  * @cgrp: root of the target subtree
3336  * @ret: the result of the update
3337  *
3338  * Finalize control mask update.  See cgroup_apply_control() for more info.
3339  */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3340 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3341 {
3342 	if (ret) {
3343 		cgroup_restore_control(cgrp);
3344 		cgroup_propagate_control(cgrp);
3345 	}
3346 
3347 	cgroup_apply_control_disable(cgrp);
3348 }
3349 
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3350 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3351 {
3352 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3353 
3354 	/* if nothing is getting enabled, nothing to worry about */
3355 	if (!enable)
3356 		return 0;
3357 
3358 	/* can @cgrp host any resources? */
3359 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3360 		return -EOPNOTSUPP;
3361 
3362 	/* mixables don't care */
3363 	if (cgroup_is_mixable(cgrp))
3364 		return 0;
3365 
3366 	if (domain_enable) {
3367 		/* can't enable domain controllers inside a thread subtree */
3368 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3369 			return -EOPNOTSUPP;
3370 	} else {
3371 		/*
3372 		 * Threaded controllers can handle internal competitions
3373 		 * and are always allowed inside a (prospective) thread
3374 		 * subtree.
3375 		 */
3376 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3377 			return 0;
3378 	}
3379 
3380 	/*
3381 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3382 	 * child cgroups competing against tasks.
3383 	 */
3384 	if (cgroup_has_tasks(cgrp))
3385 		return -EBUSY;
3386 
3387 	return 0;
3388 }
3389 
3390 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3391 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3392 					    char *buf, size_t nbytes,
3393 					    loff_t off)
3394 {
3395 	u16 enable = 0, disable = 0;
3396 	struct cgroup *cgrp, *child;
3397 	struct cgroup_subsys *ss;
3398 	char *tok;
3399 	int ssid, ret;
3400 
3401 	/*
3402 	 * Parse input - space separated list of subsystem names prefixed
3403 	 * with either + or -.
3404 	 */
3405 	buf = strstrip(buf);
3406 	while ((tok = strsep(&buf, " "))) {
3407 		if (tok[0] == '\0')
3408 			continue;
3409 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3410 			if (!cgroup_ssid_enabled(ssid) ||
3411 			    strcmp(tok + 1, ss->name))
3412 				continue;
3413 
3414 			if (*tok == '+') {
3415 				enable |= 1 << ssid;
3416 				disable &= ~(1 << ssid);
3417 			} else if (*tok == '-') {
3418 				disable |= 1 << ssid;
3419 				enable &= ~(1 << ssid);
3420 			} else {
3421 				return -EINVAL;
3422 			}
3423 			break;
3424 		} while_each_subsys_mask();
3425 		if (ssid == CGROUP_SUBSYS_COUNT)
3426 			return -EINVAL;
3427 	}
3428 
3429 	cgrp = cgroup_kn_lock_live(of->kn, true);
3430 	if (!cgrp)
3431 		return -ENODEV;
3432 
3433 	for_each_subsys(ss, ssid) {
3434 		if (enable & (1 << ssid)) {
3435 			if (cgrp->subtree_control & (1 << ssid)) {
3436 				enable &= ~(1 << ssid);
3437 				continue;
3438 			}
3439 
3440 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3441 				ret = -ENOENT;
3442 				goto out_unlock;
3443 			}
3444 		} else if (disable & (1 << ssid)) {
3445 			if (!(cgrp->subtree_control & (1 << ssid))) {
3446 				disable &= ~(1 << ssid);
3447 				continue;
3448 			}
3449 
3450 			/* a child has it enabled? */
3451 			cgroup_for_each_live_child(child, cgrp) {
3452 				if (child->subtree_control & (1 << ssid)) {
3453 					ret = -EBUSY;
3454 					goto out_unlock;
3455 				}
3456 			}
3457 		}
3458 	}
3459 
3460 	if (!enable && !disable) {
3461 		ret = 0;
3462 		goto out_unlock;
3463 	}
3464 
3465 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3466 	if (ret)
3467 		goto out_unlock;
3468 
3469 	/* save and update control masks and prepare csses */
3470 	cgroup_save_control(cgrp);
3471 
3472 	cgrp->subtree_control |= enable;
3473 	cgrp->subtree_control &= ~disable;
3474 
3475 	ret = cgroup_apply_control(cgrp);
3476 	cgroup_finalize_control(cgrp, ret);
3477 	if (ret)
3478 		goto out_unlock;
3479 
3480 	kernfs_activate(cgrp->kn);
3481 out_unlock:
3482 	cgroup_kn_unlock(of->kn);
3483 	return ret ?: nbytes;
3484 }
3485 
3486 /**
3487  * cgroup_enable_threaded - make @cgrp threaded
3488  * @cgrp: the target cgroup
3489  *
3490  * Called when "threaded" is written to the cgroup.type interface file and
3491  * tries to make @cgrp threaded and join the parent's resource domain.
3492  * This function is never called on the root cgroup as cgroup.type doesn't
3493  * exist on it.
3494  */
cgroup_enable_threaded(struct cgroup * cgrp)3495 static int cgroup_enable_threaded(struct cgroup *cgrp)
3496 {
3497 	struct cgroup *parent = cgroup_parent(cgrp);
3498 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3499 	struct cgroup *dsct;
3500 	struct cgroup_subsys_state *d_css;
3501 	int ret;
3502 
3503 	lockdep_assert_held(&cgroup_mutex);
3504 
3505 	/* noop if already threaded */
3506 	if (cgroup_is_threaded(cgrp))
3507 		return 0;
3508 
3509 	/*
3510 	 * If @cgroup is populated or has domain controllers enabled, it
3511 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3512 	 * test can catch the same conditions, that's only when @parent is
3513 	 * not mixable, so let's check it explicitly.
3514 	 */
3515 	if (cgroup_is_populated(cgrp) ||
3516 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3517 		return -EOPNOTSUPP;
3518 
3519 	/* we're joining the parent's domain, ensure its validity */
3520 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3521 	    !cgroup_can_be_thread_root(dom_cgrp))
3522 		return -EOPNOTSUPP;
3523 
3524 	/*
3525 	 * The following shouldn't cause actual migrations and should
3526 	 * always succeed.
3527 	 */
3528 	cgroup_save_control(cgrp);
3529 
3530 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3531 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3532 			dsct->dom_cgrp = dom_cgrp;
3533 
3534 	ret = cgroup_apply_control(cgrp);
3535 	if (!ret)
3536 		parent->nr_threaded_children++;
3537 
3538 	cgroup_finalize_control(cgrp, ret);
3539 	return ret;
3540 }
3541 
cgroup_type_show(struct seq_file * seq,void * v)3542 static int cgroup_type_show(struct seq_file *seq, void *v)
3543 {
3544 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3545 
3546 	if (cgroup_is_threaded(cgrp))
3547 		seq_puts(seq, "threaded\n");
3548 	else if (!cgroup_is_valid_domain(cgrp))
3549 		seq_puts(seq, "domain invalid\n");
3550 	else if (cgroup_is_thread_root(cgrp))
3551 		seq_puts(seq, "domain threaded\n");
3552 	else
3553 		seq_puts(seq, "domain\n");
3554 
3555 	return 0;
3556 }
3557 
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3558 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3559 				 size_t nbytes, loff_t off)
3560 {
3561 	struct cgroup *cgrp;
3562 	int ret;
3563 
3564 	/* only switching to threaded mode is supported */
3565 	if (strcmp(strstrip(buf), "threaded"))
3566 		return -EINVAL;
3567 
3568 	/* drain dying csses before we re-apply (threaded) subtree control */
3569 	cgrp = cgroup_kn_lock_live(of->kn, true);
3570 	if (!cgrp)
3571 		return -ENOENT;
3572 
3573 	/* threaded can only be enabled */
3574 	ret = cgroup_enable_threaded(cgrp);
3575 
3576 	cgroup_kn_unlock(of->kn);
3577 	return ret ?: nbytes;
3578 }
3579 
cgroup_max_descendants_show(struct seq_file * seq,void * v)3580 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3581 {
3582 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3583 	int descendants = READ_ONCE(cgrp->max_descendants);
3584 
3585 	if (descendants == INT_MAX)
3586 		seq_puts(seq, "max\n");
3587 	else
3588 		seq_printf(seq, "%d\n", descendants);
3589 
3590 	return 0;
3591 }
3592 
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3593 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3594 					   char *buf, size_t nbytes, loff_t off)
3595 {
3596 	struct cgroup *cgrp;
3597 	int descendants;
3598 	ssize_t ret;
3599 
3600 	buf = strstrip(buf);
3601 	if (!strcmp(buf, "max")) {
3602 		descendants = INT_MAX;
3603 	} else {
3604 		ret = kstrtoint(buf, 0, &descendants);
3605 		if (ret)
3606 			return ret;
3607 	}
3608 
3609 	if (descendants < 0)
3610 		return -ERANGE;
3611 
3612 	cgrp = cgroup_kn_lock_live(of->kn, false);
3613 	if (!cgrp)
3614 		return -ENOENT;
3615 
3616 	cgrp->max_descendants = descendants;
3617 
3618 	cgroup_kn_unlock(of->kn);
3619 
3620 	return nbytes;
3621 }
3622 
cgroup_max_depth_show(struct seq_file * seq,void * v)3623 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3624 {
3625 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3626 	int depth = READ_ONCE(cgrp->max_depth);
3627 
3628 	if (depth == INT_MAX)
3629 		seq_puts(seq, "max\n");
3630 	else
3631 		seq_printf(seq, "%d\n", depth);
3632 
3633 	return 0;
3634 }
3635 
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3636 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3637 				      char *buf, size_t nbytes, loff_t off)
3638 {
3639 	struct cgroup *cgrp;
3640 	ssize_t ret;
3641 	int depth;
3642 
3643 	buf = strstrip(buf);
3644 	if (!strcmp(buf, "max")) {
3645 		depth = INT_MAX;
3646 	} else {
3647 		ret = kstrtoint(buf, 0, &depth);
3648 		if (ret)
3649 			return ret;
3650 	}
3651 
3652 	if (depth < 0)
3653 		return -ERANGE;
3654 
3655 	cgrp = cgroup_kn_lock_live(of->kn, false);
3656 	if (!cgrp)
3657 		return -ENOENT;
3658 
3659 	cgrp->max_depth = depth;
3660 
3661 	cgroup_kn_unlock(of->kn);
3662 
3663 	return nbytes;
3664 }
3665 
cgroup_events_show(struct seq_file * seq,void * v)3666 static int cgroup_events_show(struct seq_file *seq, void *v)
3667 {
3668 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3669 
3670 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3671 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3672 
3673 	return 0;
3674 }
3675 
cgroup_stat_show(struct seq_file * seq,void * v)3676 static int cgroup_stat_show(struct seq_file *seq, void *v)
3677 {
3678 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3679 
3680 	seq_printf(seq, "nr_descendants %d\n",
3681 		   cgroup->nr_descendants);
3682 	seq_printf(seq, "nr_dying_descendants %d\n",
3683 		   cgroup->nr_dying_descendants);
3684 
3685 	return 0;
3686 }
3687 
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3688 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3689 						 struct cgroup *cgrp, int ssid)
3690 {
3691 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3692 	struct cgroup_subsys_state *css;
3693 	int ret;
3694 
3695 	if (!ss->css_extra_stat_show)
3696 		return 0;
3697 
3698 	css = cgroup_tryget_css(cgrp, ss);
3699 	if (!css)
3700 		return 0;
3701 
3702 	ret = ss->css_extra_stat_show(seq, css);
3703 	css_put(css);
3704 	return ret;
3705 }
3706 
cpu_stat_show(struct seq_file * seq,void * v)3707 static int cpu_stat_show(struct seq_file *seq, void *v)
3708 {
3709 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3710 	int ret = 0;
3711 
3712 	cgroup_base_stat_cputime_show(seq);
3713 #ifdef CONFIG_CGROUP_SCHED
3714 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3715 #endif
3716 	return ret;
3717 }
3718 
3719 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3720 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3721 {
3722 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3723 	struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3724 
3725 	return psi_show(seq, psi, PSI_IO);
3726 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3727 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3728 {
3729 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3730 	struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3731 
3732 	return psi_show(seq, psi, PSI_MEM);
3733 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3734 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3735 {
3736 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3737 	struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3738 
3739 	return psi_show(seq, psi, PSI_CPU);
3740 }
3741 
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3742 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3743 					  size_t nbytes, enum psi_res res)
3744 {
3745 	struct cgroup_file_ctx *ctx = of->priv;
3746 	struct psi_trigger *new;
3747 	struct cgroup *cgrp;
3748 	struct psi_group *psi;
3749 
3750 	cgrp = cgroup_kn_lock_live(of->kn, false);
3751 	if (!cgrp)
3752 		return -ENODEV;
3753 
3754 	cgroup_get(cgrp);
3755 	cgroup_kn_unlock(of->kn);
3756 
3757 	/* Allow only one trigger per file descriptor */
3758 	if (ctx->psi.trigger) {
3759 		cgroup_put(cgrp);
3760 		return -EBUSY;
3761 	}
3762 
3763 	psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3764 	new = psi_trigger_create(psi, buf, nbytes, res);
3765 	if (IS_ERR(new)) {
3766 		cgroup_put(cgrp);
3767 		return PTR_ERR(new);
3768 	}
3769 
3770 	smp_store_release(&ctx->psi.trigger, new);
3771 	cgroup_put(cgrp);
3772 
3773 	return nbytes;
3774 }
3775 
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3776 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3777 					  char *buf, size_t nbytes,
3778 					  loff_t off)
3779 {
3780 	return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3781 }
3782 
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3783 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3784 					  char *buf, size_t nbytes,
3785 					  loff_t off)
3786 {
3787 	return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3788 }
3789 
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3790 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3791 					  char *buf, size_t nbytes,
3792 					  loff_t off)
3793 {
3794 	return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3795 }
3796 
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3797 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3798 					  poll_table *pt)
3799 {
3800 	struct cgroup_file_ctx *ctx = of->priv;
3801 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3802 }
3803 
cgroup_pressure_release(struct kernfs_open_file * of)3804 static void cgroup_pressure_release(struct kernfs_open_file *of)
3805 {
3806 	struct cgroup_file_ctx *ctx = of->priv;
3807 
3808 	psi_trigger_destroy(ctx->psi.trigger);
3809 }
3810 #endif /* CONFIG_PSI */
3811 
cgroup_freeze_show(struct seq_file * seq,void * v)3812 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3813 {
3814 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3815 
3816 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3817 
3818 	return 0;
3819 }
3820 
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3821 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3822 				   char *buf, size_t nbytes, loff_t off)
3823 {
3824 	struct cgroup *cgrp;
3825 	ssize_t ret;
3826 	int freeze;
3827 
3828 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3829 	if (ret)
3830 		return ret;
3831 
3832 	if (freeze < 0 || freeze > 1)
3833 		return -ERANGE;
3834 
3835 	cgrp = cgroup_kn_lock_live(of->kn, false);
3836 	if (!cgrp)
3837 		return -ENOENT;
3838 
3839 	cgroup_freeze(cgrp, freeze);
3840 
3841 	cgroup_kn_unlock(of->kn);
3842 
3843 	return nbytes;
3844 }
3845 
cgroup_file_open(struct kernfs_open_file * of)3846 static int cgroup_file_open(struct kernfs_open_file *of)
3847 {
3848 	struct cftype *cft = of->kn->priv;
3849 	struct cgroup_file_ctx *ctx;
3850 	int ret;
3851 
3852 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3853 	if (!ctx)
3854 		return -ENOMEM;
3855 
3856 	ctx->ns = current->nsproxy->cgroup_ns;
3857 	get_cgroup_ns(ctx->ns);
3858 	of->priv = ctx;
3859 
3860 	if (!cft->open)
3861 		return 0;
3862 
3863 	ret = cft->open(of);
3864 	if (ret) {
3865 		put_cgroup_ns(ctx->ns);
3866 		kfree(ctx);
3867 	}
3868 	return ret;
3869 }
3870 
cgroup_file_release(struct kernfs_open_file * of)3871 static void cgroup_file_release(struct kernfs_open_file *of)
3872 {
3873 	struct cftype *cft = of->kn->priv;
3874 	struct cgroup_file_ctx *ctx = of->priv;
3875 
3876 	if (cft->release)
3877 		cft->release(of);
3878 	put_cgroup_ns(ctx->ns);
3879 	kfree(ctx);
3880 }
3881 
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3882 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3883 				 size_t nbytes, loff_t off)
3884 {
3885 	struct cgroup_file_ctx *ctx = of->priv;
3886 	struct cgroup *cgrp = of->kn->parent->priv;
3887 	struct cftype *cft = of->kn->priv;
3888 	struct cgroup_subsys_state *css;
3889 	int ret;
3890 
3891 	/*
3892 	 * If namespaces are delegation boundaries, disallow writes to
3893 	 * files in an non-init namespace root from inside the namespace
3894 	 * except for the files explicitly marked delegatable -
3895 	 * cgroup.procs and cgroup.subtree_control.
3896 	 */
3897 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3898 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3899 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3900 		return -EPERM;
3901 
3902 	if (cft->write)
3903 		return cft->write(of, buf, nbytes, off);
3904 
3905 	/*
3906 	 * kernfs guarantees that a file isn't deleted with operations in
3907 	 * flight, which means that the matching css is and stays alive and
3908 	 * doesn't need to be pinned.  The RCU locking is not necessary
3909 	 * either.  It's just for the convenience of using cgroup_css().
3910 	 */
3911 	rcu_read_lock();
3912 	css = cgroup_css(cgrp, cft->ss);
3913 	rcu_read_unlock();
3914 
3915 	if (cft->write_u64) {
3916 		unsigned long long v;
3917 		ret = kstrtoull(buf, 0, &v);
3918 		if (!ret)
3919 			ret = cft->write_u64(css, cft, v);
3920 	} else if (cft->write_s64) {
3921 		long long v;
3922 		ret = kstrtoll(buf, 0, &v);
3923 		if (!ret)
3924 			ret = cft->write_s64(css, cft, v);
3925 	} else {
3926 		ret = -EINVAL;
3927 	}
3928 
3929 	return ret ?: nbytes;
3930 }
3931 
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)3932 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3933 {
3934 	struct cftype *cft = of->kn->priv;
3935 
3936 	if (cft->poll)
3937 		return cft->poll(of, pt);
3938 
3939 	return kernfs_generic_poll(of, pt);
3940 }
3941 
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3942 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3943 {
3944 	return seq_cft(seq)->seq_start(seq, ppos);
3945 }
3946 
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3947 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3948 {
3949 	return seq_cft(seq)->seq_next(seq, v, ppos);
3950 }
3951 
cgroup_seqfile_stop(struct seq_file * seq,void * v)3952 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3953 {
3954 	if (seq_cft(seq)->seq_stop)
3955 		seq_cft(seq)->seq_stop(seq, v);
3956 }
3957 
cgroup_seqfile_show(struct seq_file * m,void * arg)3958 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3959 {
3960 	struct cftype *cft = seq_cft(m);
3961 	struct cgroup_subsys_state *css = seq_css(m);
3962 
3963 	if (cft->seq_show)
3964 		return cft->seq_show(m, arg);
3965 
3966 	if (cft->read_u64)
3967 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3968 	else if (cft->read_s64)
3969 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3970 	else
3971 		return -EINVAL;
3972 	return 0;
3973 }
3974 
3975 static struct kernfs_ops cgroup_kf_single_ops = {
3976 	.atomic_write_len	= PAGE_SIZE,
3977 	.open			= cgroup_file_open,
3978 	.release		= cgroup_file_release,
3979 	.write			= cgroup_file_write,
3980 	.poll			= cgroup_file_poll,
3981 	.seq_show		= cgroup_seqfile_show,
3982 };
3983 
3984 static struct kernfs_ops cgroup_kf_ops = {
3985 	.atomic_write_len	= PAGE_SIZE,
3986 	.open			= cgroup_file_open,
3987 	.release		= cgroup_file_release,
3988 	.write			= cgroup_file_write,
3989 	.poll			= cgroup_file_poll,
3990 	.seq_start		= cgroup_seqfile_start,
3991 	.seq_next		= cgroup_seqfile_next,
3992 	.seq_stop		= cgroup_seqfile_stop,
3993 	.seq_show		= cgroup_seqfile_show,
3994 };
3995 
3996 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3997 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3998 {
3999 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
4000 			       .ia_uid = current_fsuid(),
4001 			       .ia_gid = current_fsgid(), };
4002 
4003 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
4004 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
4005 		return 0;
4006 
4007 	return kernfs_setattr(kn, &iattr);
4008 }
4009 
cgroup_file_notify_timer(struct timer_list * timer)4010 static void cgroup_file_notify_timer(struct timer_list *timer)
4011 {
4012 	cgroup_file_notify(container_of(timer, struct cgroup_file,
4013 					notify_timer));
4014 }
4015 
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)4016 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4017 			   struct cftype *cft)
4018 {
4019 	char name[CGROUP_FILE_NAME_MAX];
4020 	struct kernfs_node *kn;
4021 	struct lock_class_key *key = NULL;
4022 	int ret;
4023 
4024 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4025 	key = &cft->lockdep_key;
4026 #endif
4027 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4028 				  cgroup_file_mode(cft),
4029 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4030 				  0, cft->kf_ops, cft,
4031 				  NULL, key);
4032 	if (IS_ERR(kn))
4033 		return PTR_ERR(kn);
4034 
4035 	ret = cgroup_kn_set_ugid(kn);
4036 	if (ret) {
4037 		kernfs_remove(kn);
4038 		return ret;
4039 	}
4040 
4041 	if (cft->file_offset) {
4042 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4043 
4044 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4045 
4046 		spin_lock_irq(&cgroup_file_kn_lock);
4047 		cfile->kn = kn;
4048 		spin_unlock_irq(&cgroup_file_kn_lock);
4049 	}
4050 
4051 	return 0;
4052 }
4053 
4054 /**
4055  * cgroup_addrm_files - add or remove files to a cgroup directory
4056  * @css: the target css
4057  * @cgrp: the target cgroup (usually css->cgroup)
4058  * @cfts: array of cftypes to be added
4059  * @is_add: whether to add or remove
4060  *
4061  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4062  * For removals, this function never fails.
4063  */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)4064 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4065 			      struct cgroup *cgrp, struct cftype cfts[],
4066 			      bool is_add)
4067 {
4068 	struct cftype *cft, *cft_end = NULL;
4069 	int ret = 0;
4070 
4071 	lockdep_assert_held(&cgroup_mutex);
4072 
4073 restart:
4074 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4075 		/* does cft->flags tell us to skip this file on @cgrp? */
4076 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4077 			continue;
4078 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4079 			continue;
4080 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4081 			continue;
4082 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4083 			continue;
4084 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4085 			continue;
4086 		if (is_add) {
4087 			ret = cgroup_add_file(css, cgrp, cft);
4088 			if (ret) {
4089 				pr_warn("%s: failed to add %s, err=%d\n",
4090 					__func__, cft->name, ret);
4091 				cft_end = cft;
4092 				is_add = false;
4093 				goto restart;
4094 			}
4095 		} else {
4096 			cgroup_rm_file(cgrp, cft);
4097 		}
4098 	}
4099 	return ret;
4100 }
4101 
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4102 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4103 {
4104 	struct cgroup_subsys *ss = cfts[0].ss;
4105 	struct cgroup *root = &ss->root->cgrp;
4106 	struct cgroup_subsys_state *css;
4107 	int ret = 0;
4108 
4109 	lockdep_assert_held(&cgroup_mutex);
4110 
4111 	/* add/rm files for all cgroups created before */
4112 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4113 		struct cgroup *cgrp = css->cgroup;
4114 
4115 		if (!(css->flags & CSS_VISIBLE))
4116 			continue;
4117 
4118 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4119 		if (ret)
4120 			break;
4121 	}
4122 
4123 	if (is_add && !ret)
4124 		kernfs_activate(root->kn);
4125 	return ret;
4126 }
4127 
cgroup_exit_cftypes(struct cftype * cfts)4128 static void cgroup_exit_cftypes(struct cftype *cfts)
4129 {
4130 	struct cftype *cft;
4131 
4132 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4133 		/* free copy for custom atomic_write_len, see init_cftypes() */
4134 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4135 			kfree(cft->kf_ops);
4136 		cft->kf_ops = NULL;
4137 		cft->ss = NULL;
4138 
4139 		/* revert flags set by cgroup core while adding @cfts */
4140 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4141 	}
4142 }
4143 
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4144 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4145 {
4146 	struct cftype *cft;
4147 
4148 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4149 		struct kernfs_ops *kf_ops;
4150 
4151 		WARN_ON(cft->ss || cft->kf_ops);
4152 
4153 		if (cft->seq_start)
4154 			kf_ops = &cgroup_kf_ops;
4155 		else
4156 			kf_ops = &cgroup_kf_single_ops;
4157 
4158 		/*
4159 		 * Ugh... if @cft wants a custom max_write_len, we need to
4160 		 * make a copy of kf_ops to set its atomic_write_len.
4161 		 */
4162 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4163 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4164 			if (!kf_ops) {
4165 				cgroup_exit_cftypes(cfts);
4166 				return -ENOMEM;
4167 			}
4168 			kf_ops->atomic_write_len = cft->max_write_len;
4169 		}
4170 
4171 		cft->kf_ops = kf_ops;
4172 		cft->ss = ss;
4173 	}
4174 
4175 	return 0;
4176 }
4177 
cgroup_rm_cftypes_locked(struct cftype * cfts)4178 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4179 {
4180 	lockdep_assert_held(&cgroup_mutex);
4181 
4182 	if (!cfts || !cfts[0].ss)
4183 		return -ENOENT;
4184 
4185 	list_del(&cfts->node);
4186 	cgroup_apply_cftypes(cfts, false);
4187 	cgroup_exit_cftypes(cfts);
4188 	return 0;
4189 }
4190 
4191 /**
4192  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4193  * @cfts: zero-length name terminated array of cftypes
4194  *
4195  * Unregister @cfts.  Files described by @cfts are removed from all
4196  * existing cgroups and all future cgroups won't have them either.  This
4197  * function can be called anytime whether @cfts' subsys is attached or not.
4198  *
4199  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4200  * registered.
4201  */
cgroup_rm_cftypes(struct cftype * cfts)4202 int cgroup_rm_cftypes(struct cftype *cfts)
4203 {
4204 	int ret;
4205 
4206 	mutex_lock(&cgroup_mutex);
4207 	ret = cgroup_rm_cftypes_locked(cfts);
4208 	mutex_unlock(&cgroup_mutex);
4209 	return ret;
4210 }
4211 
4212 /**
4213  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4214  * @ss: target cgroup subsystem
4215  * @cfts: zero-length name terminated array of cftypes
4216  *
4217  * Register @cfts to @ss.  Files described by @cfts are created for all
4218  * existing cgroups to which @ss is attached and all future cgroups will
4219  * have them too.  This function can be called anytime whether @ss is
4220  * attached or not.
4221  *
4222  * Returns 0 on successful registration, -errno on failure.  Note that this
4223  * function currently returns 0 as long as @cfts registration is successful
4224  * even if some file creation attempts on existing cgroups fail.
4225  */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4226 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4227 {
4228 	int ret;
4229 
4230 	if (!cgroup_ssid_enabled(ss->id))
4231 		return 0;
4232 
4233 	if (!cfts || cfts[0].name[0] == '\0')
4234 		return 0;
4235 
4236 	ret = cgroup_init_cftypes(ss, cfts);
4237 	if (ret)
4238 		return ret;
4239 
4240 	mutex_lock(&cgroup_mutex);
4241 
4242 	list_add_tail(&cfts->node, &ss->cfts);
4243 	ret = cgroup_apply_cftypes(cfts, true);
4244 	if (ret)
4245 		cgroup_rm_cftypes_locked(cfts);
4246 
4247 	mutex_unlock(&cgroup_mutex);
4248 	return ret;
4249 }
4250 
4251 /**
4252  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4253  * @ss: target cgroup subsystem
4254  * @cfts: zero-length name terminated array of cftypes
4255  *
4256  * Similar to cgroup_add_cftypes() but the added files are only used for
4257  * the default hierarchy.
4258  */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4259 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4260 {
4261 	struct cftype *cft;
4262 
4263 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4264 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4265 	return cgroup_add_cftypes(ss, cfts);
4266 }
4267 
4268 /**
4269  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4270  * @ss: target cgroup subsystem
4271  * @cfts: zero-length name terminated array of cftypes
4272  *
4273  * Similar to cgroup_add_cftypes() but the added files are only used for
4274  * the legacy hierarchies.
4275  */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4276 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4277 {
4278 	struct cftype *cft;
4279 
4280 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4281 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4282 	return cgroup_add_cftypes(ss, cfts);
4283 }
4284 
4285 /**
4286  * cgroup_file_notify - generate a file modified event for a cgroup_file
4287  * @cfile: target cgroup_file
4288  *
4289  * @cfile must have been obtained by setting cftype->file_offset.
4290  */
cgroup_file_notify(struct cgroup_file * cfile)4291 void cgroup_file_notify(struct cgroup_file *cfile)
4292 {
4293 	unsigned long flags;
4294 
4295 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4296 	if (cfile->kn) {
4297 		unsigned long last = cfile->notified_at;
4298 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4299 
4300 		if (time_in_range(jiffies, last, next)) {
4301 			timer_reduce(&cfile->notify_timer, next);
4302 		} else {
4303 			kernfs_notify(cfile->kn);
4304 			cfile->notified_at = jiffies;
4305 		}
4306 	}
4307 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4308 }
4309 
4310 /**
4311  * css_next_child - find the next child of a given css
4312  * @pos: the current position (%NULL to initiate traversal)
4313  * @parent: css whose children to walk
4314  *
4315  * This function returns the next child of @parent and should be called
4316  * under either cgroup_mutex or RCU read lock.  The only requirement is
4317  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4318  * be returned regardless of their states.
4319  *
4320  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4321  * css which finished ->css_online() is guaranteed to be visible in the
4322  * future iterations and will stay visible until the last reference is put.
4323  * A css which hasn't finished ->css_online() or already finished
4324  * ->css_offline() may show up during traversal.  It's each subsystem's
4325  * responsibility to synchronize against on/offlining.
4326  */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4327 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4328 					   struct cgroup_subsys_state *parent)
4329 {
4330 	struct cgroup_subsys_state *next;
4331 
4332 	cgroup_assert_mutex_or_rcu_locked();
4333 
4334 	/*
4335 	 * @pos could already have been unlinked from the sibling list.
4336 	 * Once a cgroup is removed, its ->sibling.next is no longer
4337 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4338 	 * @pos is taken off list, at which time its next pointer is valid,
4339 	 * and, as releases are serialized, the one pointed to by the next
4340 	 * pointer is guaranteed to not have started release yet.  This
4341 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4342 	 * critical section, the one pointed to by its next pointer is
4343 	 * guaranteed to not have finished its RCU grace period even if we
4344 	 * have dropped rcu_read_lock() inbetween iterations.
4345 	 *
4346 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4347 	 * dereferenced; however, as each css is given a monotonically
4348 	 * increasing unique serial number and always appended to the
4349 	 * sibling list, the next one can be found by walking the parent's
4350 	 * children until the first css with higher serial number than
4351 	 * @pos's.  While this path can be slower, it happens iff iteration
4352 	 * races against release and the race window is very small.
4353 	 */
4354 	if (!pos) {
4355 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4356 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4357 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4358 	} else {
4359 		list_for_each_entry_rcu(next, &parent->children, sibling)
4360 			if (next->serial_nr > pos->serial_nr)
4361 				break;
4362 	}
4363 
4364 	/*
4365 	 * @next, if not pointing to the head, can be dereferenced and is
4366 	 * the next sibling.
4367 	 */
4368 	if (&next->sibling != &parent->children)
4369 		return next;
4370 	return NULL;
4371 }
4372 
4373 /**
4374  * css_next_descendant_pre - find the next descendant for pre-order walk
4375  * @pos: the current position (%NULL to initiate traversal)
4376  * @root: css whose descendants to walk
4377  *
4378  * To be used by css_for_each_descendant_pre().  Find the next descendant
4379  * to visit for pre-order traversal of @root's descendants.  @root is
4380  * included in the iteration and the first node to be visited.
4381  *
4382  * While this function requires cgroup_mutex or RCU read locking, it
4383  * doesn't require the whole traversal to be contained in a single critical
4384  * section.  This function will return the correct next descendant as long
4385  * as both @pos and @root are accessible and @pos is a descendant of @root.
4386  *
4387  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4388  * css which finished ->css_online() is guaranteed to be visible in the
4389  * future iterations and will stay visible until the last reference is put.
4390  * A css which hasn't finished ->css_online() or already finished
4391  * ->css_offline() may show up during traversal.  It's each subsystem's
4392  * responsibility to synchronize against on/offlining.
4393  */
4394 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4395 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4396 			struct cgroup_subsys_state *root)
4397 {
4398 	struct cgroup_subsys_state *next;
4399 
4400 	cgroup_assert_mutex_or_rcu_locked();
4401 
4402 	/* if first iteration, visit @root */
4403 	if (!pos)
4404 		return root;
4405 
4406 	/* visit the first child if exists */
4407 	next = css_next_child(NULL, pos);
4408 	if (next)
4409 		return next;
4410 
4411 	/* no child, visit my or the closest ancestor's next sibling */
4412 	while (pos != root) {
4413 		next = css_next_child(pos, pos->parent);
4414 		if (next)
4415 			return next;
4416 		pos = pos->parent;
4417 	}
4418 
4419 	return NULL;
4420 }
4421 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4422 
4423 /**
4424  * css_rightmost_descendant - return the rightmost descendant of a css
4425  * @pos: css of interest
4426  *
4427  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4428  * is returned.  This can be used during pre-order traversal to skip
4429  * subtree of @pos.
4430  *
4431  * While this function requires cgroup_mutex or RCU read locking, it
4432  * doesn't require the whole traversal to be contained in a single critical
4433  * section.  This function will return the correct rightmost descendant as
4434  * long as @pos is accessible.
4435  */
4436 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4437 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4438 {
4439 	struct cgroup_subsys_state *last, *tmp;
4440 
4441 	cgroup_assert_mutex_or_rcu_locked();
4442 
4443 	do {
4444 		last = pos;
4445 		/* ->prev isn't RCU safe, walk ->next till the end */
4446 		pos = NULL;
4447 		css_for_each_child(tmp, last)
4448 			pos = tmp;
4449 	} while (pos);
4450 
4451 	return last;
4452 }
4453 
4454 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4455 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4456 {
4457 	struct cgroup_subsys_state *last;
4458 
4459 	do {
4460 		last = pos;
4461 		pos = css_next_child(NULL, pos);
4462 	} while (pos);
4463 
4464 	return last;
4465 }
4466 
4467 /**
4468  * css_next_descendant_post - find the next descendant for post-order walk
4469  * @pos: the current position (%NULL to initiate traversal)
4470  * @root: css whose descendants to walk
4471  *
4472  * To be used by css_for_each_descendant_post().  Find the next descendant
4473  * to visit for post-order traversal of @root's descendants.  @root is
4474  * included in the iteration and the last node to be visited.
4475  *
4476  * While this function requires cgroup_mutex or RCU read locking, it
4477  * doesn't require the whole traversal to be contained in a single critical
4478  * section.  This function will return the correct next descendant as long
4479  * as both @pos and @cgroup are accessible and @pos is a descendant of
4480  * @cgroup.
4481  *
4482  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4483  * css which finished ->css_online() is guaranteed to be visible in the
4484  * future iterations and will stay visible until the last reference is put.
4485  * A css which hasn't finished ->css_online() or already finished
4486  * ->css_offline() may show up during traversal.  It's each subsystem's
4487  * responsibility to synchronize against on/offlining.
4488  */
4489 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4490 css_next_descendant_post(struct cgroup_subsys_state *pos,
4491 			 struct cgroup_subsys_state *root)
4492 {
4493 	struct cgroup_subsys_state *next;
4494 
4495 	cgroup_assert_mutex_or_rcu_locked();
4496 
4497 	/* if first iteration, visit leftmost descendant which may be @root */
4498 	if (!pos)
4499 		return css_leftmost_descendant(root);
4500 
4501 	/* if we visited @root, we're done */
4502 	if (pos == root)
4503 		return NULL;
4504 
4505 	/* if there's an unvisited sibling, visit its leftmost descendant */
4506 	next = css_next_child(pos, pos->parent);
4507 	if (next)
4508 		return css_leftmost_descendant(next);
4509 
4510 	/* no sibling left, visit parent */
4511 	return pos->parent;
4512 }
4513 
4514 /**
4515  * css_has_online_children - does a css have online children
4516  * @css: the target css
4517  *
4518  * Returns %true if @css has any online children; otherwise, %false.  This
4519  * function can be called from any context but the caller is responsible
4520  * for synchronizing against on/offlining as necessary.
4521  */
css_has_online_children(struct cgroup_subsys_state * css)4522 bool css_has_online_children(struct cgroup_subsys_state *css)
4523 {
4524 	struct cgroup_subsys_state *child;
4525 	bool ret = false;
4526 
4527 	rcu_read_lock();
4528 	css_for_each_child(child, css) {
4529 		if (child->flags & CSS_ONLINE) {
4530 			ret = true;
4531 			break;
4532 		}
4533 	}
4534 	rcu_read_unlock();
4535 	return ret;
4536 }
4537 
css_task_iter_next_css_set(struct css_task_iter * it)4538 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4539 {
4540 	struct list_head *l;
4541 	struct cgrp_cset_link *link;
4542 	struct css_set *cset;
4543 
4544 	lockdep_assert_held(&css_set_lock);
4545 
4546 	/* find the next threaded cset */
4547 	if (it->tcset_pos) {
4548 		l = it->tcset_pos->next;
4549 
4550 		if (l != it->tcset_head) {
4551 			it->tcset_pos = l;
4552 			return container_of(l, struct css_set,
4553 					    threaded_csets_node);
4554 		}
4555 
4556 		it->tcset_pos = NULL;
4557 	}
4558 
4559 	/* find the next cset */
4560 	l = it->cset_pos;
4561 	l = l->next;
4562 	if (l == it->cset_head) {
4563 		it->cset_pos = NULL;
4564 		return NULL;
4565 	}
4566 
4567 	if (it->ss) {
4568 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4569 	} else {
4570 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4571 		cset = link->cset;
4572 	}
4573 
4574 	it->cset_pos = l;
4575 
4576 	/* initialize threaded css_set walking */
4577 	if (it->flags & CSS_TASK_ITER_THREADED) {
4578 		if (it->cur_dcset)
4579 			put_css_set_locked(it->cur_dcset);
4580 		it->cur_dcset = cset;
4581 		get_css_set(cset);
4582 
4583 		it->tcset_head = &cset->threaded_csets;
4584 		it->tcset_pos = &cset->threaded_csets;
4585 	}
4586 
4587 	return cset;
4588 }
4589 
4590 /**
4591  * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4592  * @it: the iterator to advance
4593  *
4594  * Advance @it to the next css_set to walk.
4595  */
css_task_iter_advance_css_set(struct css_task_iter * it)4596 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4597 {
4598 	struct css_set *cset;
4599 
4600 	lockdep_assert_held(&css_set_lock);
4601 
4602 	/* Advance to the next non-empty css_set */
4603 	do {
4604 		cset = css_task_iter_next_css_set(it);
4605 		if (!cset) {
4606 			it->task_pos = NULL;
4607 			return;
4608 		}
4609 	} while (!css_set_populated(cset) && list_empty(&cset->dying_tasks));
4610 
4611 	if (!list_empty(&cset->tasks)) {
4612 		it->task_pos = cset->tasks.next;
4613 		it->cur_tasks_head = &cset->tasks;
4614 	} else if (!list_empty(&cset->mg_tasks)) {
4615 		it->task_pos = cset->mg_tasks.next;
4616 		it->cur_tasks_head = &cset->mg_tasks;
4617 	} else {
4618 		it->task_pos = cset->dying_tasks.next;
4619 		it->cur_tasks_head = &cset->dying_tasks;
4620 	}
4621 
4622 	it->tasks_head = &cset->tasks;
4623 	it->mg_tasks_head = &cset->mg_tasks;
4624 	it->dying_tasks_head = &cset->dying_tasks;
4625 
4626 	/*
4627 	 * We don't keep css_sets locked across iteration steps and thus
4628 	 * need to take steps to ensure that iteration can be resumed after
4629 	 * the lock is re-acquired.  Iteration is performed at two levels -
4630 	 * css_sets and tasks in them.
4631 	 *
4632 	 * Once created, a css_set never leaves its cgroup lists, so a
4633 	 * pinned css_set is guaranteed to stay put and we can resume
4634 	 * iteration afterwards.
4635 	 *
4636 	 * Tasks may leave @cset across iteration steps.  This is resolved
4637 	 * by registering each iterator with the css_set currently being
4638 	 * walked and making css_set_move_task() advance iterators whose
4639 	 * next task is leaving.
4640 	 */
4641 	if (it->cur_cset) {
4642 		list_del(&it->iters_node);
4643 		put_css_set_locked(it->cur_cset);
4644 	}
4645 	get_css_set(cset);
4646 	it->cur_cset = cset;
4647 	list_add(&it->iters_node, &cset->task_iters);
4648 }
4649 
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4650 static void css_task_iter_skip(struct css_task_iter *it,
4651 			       struct task_struct *task)
4652 {
4653 	lockdep_assert_held(&css_set_lock);
4654 
4655 	if (it->task_pos == &task->cg_list) {
4656 		it->task_pos = it->task_pos->next;
4657 		it->flags |= CSS_TASK_ITER_SKIPPED;
4658 	}
4659 }
4660 
css_task_iter_advance(struct css_task_iter * it)4661 static void css_task_iter_advance(struct css_task_iter *it)
4662 {
4663 	struct task_struct *task;
4664 
4665 	lockdep_assert_held(&css_set_lock);
4666 repeat:
4667 	if (it->task_pos) {
4668 		/*
4669 		 * Advance iterator to find next entry.  cset->tasks is
4670 		 * consumed first and then ->mg_tasks.  After ->mg_tasks,
4671 		 * we move onto the next cset.
4672 		 */
4673 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4674 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4675 		else
4676 			it->task_pos = it->task_pos->next;
4677 
4678 		if (it->task_pos == it->tasks_head) {
4679 			it->task_pos = it->mg_tasks_head->next;
4680 			it->cur_tasks_head = it->mg_tasks_head;
4681 		}
4682 		if (it->task_pos == it->mg_tasks_head) {
4683 			it->task_pos = it->dying_tasks_head->next;
4684 			it->cur_tasks_head = it->dying_tasks_head;
4685 		}
4686 		if (it->task_pos == it->dying_tasks_head)
4687 			css_task_iter_advance_css_set(it);
4688 	} else {
4689 		/* called from start, proceed to the first cset */
4690 		css_task_iter_advance_css_set(it);
4691 	}
4692 
4693 	if (!it->task_pos)
4694 		return;
4695 
4696 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4697 
4698 	if (it->flags & CSS_TASK_ITER_PROCS) {
4699 		/* if PROCS, skip over tasks which aren't group leaders */
4700 		if (!thread_group_leader(task))
4701 			goto repeat;
4702 
4703 		/* and dying leaders w/o live member threads */
4704 		if (it->cur_tasks_head == it->dying_tasks_head &&
4705 		    !atomic_read(&task->signal->live))
4706 			goto repeat;
4707 	} else {
4708 		/* skip all dying ones */
4709 		if (it->cur_tasks_head == it->dying_tasks_head)
4710 			goto repeat;
4711 	}
4712 }
4713 
4714 /**
4715  * css_task_iter_start - initiate task iteration
4716  * @css: the css to walk tasks of
4717  * @flags: CSS_TASK_ITER_* flags
4718  * @it: the task iterator to use
4719  *
4720  * Initiate iteration through the tasks of @css.  The caller can call
4721  * css_task_iter_next() to walk through the tasks until the function
4722  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4723  * called.
4724  */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4725 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4726 			 struct css_task_iter *it)
4727 {
4728 	/* no one should try to iterate before mounting cgroups */
4729 	WARN_ON_ONCE(!use_task_css_set_links);
4730 
4731 	memset(it, 0, sizeof(*it));
4732 
4733 	spin_lock_irq(&css_set_lock);
4734 
4735 	it->ss = css->ss;
4736 	it->flags = flags;
4737 
4738 	if (it->ss)
4739 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4740 	else
4741 		it->cset_pos = &css->cgroup->cset_links;
4742 
4743 	it->cset_head = it->cset_pos;
4744 
4745 	css_task_iter_advance(it);
4746 
4747 	spin_unlock_irq(&css_set_lock);
4748 }
4749 
4750 /**
4751  * css_task_iter_next - return the next task for the iterator
4752  * @it: the task iterator being iterated
4753  *
4754  * The "next" function for task iteration.  @it should have been
4755  * initialized via css_task_iter_start().  Returns NULL when the iteration
4756  * reaches the end.
4757  */
css_task_iter_next(struct css_task_iter * it)4758 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4759 {
4760 	if (it->cur_task) {
4761 		put_task_struct(it->cur_task);
4762 		it->cur_task = NULL;
4763 	}
4764 
4765 	spin_lock_irq(&css_set_lock);
4766 
4767 	/* @it may be half-advanced by skips, finish advancing */
4768 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4769 		css_task_iter_advance(it);
4770 
4771 	if (it->task_pos) {
4772 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4773 					  cg_list);
4774 		get_task_struct(it->cur_task);
4775 		css_task_iter_advance(it);
4776 	}
4777 
4778 	spin_unlock_irq(&css_set_lock);
4779 
4780 	return it->cur_task;
4781 }
4782 
4783 /**
4784  * css_task_iter_end - finish task iteration
4785  * @it: the task iterator to finish
4786  *
4787  * Finish task iteration started by css_task_iter_start().
4788  */
css_task_iter_end(struct css_task_iter * it)4789 void css_task_iter_end(struct css_task_iter *it)
4790 {
4791 	if (it->cur_cset) {
4792 		spin_lock_irq(&css_set_lock);
4793 		list_del(&it->iters_node);
4794 		put_css_set_locked(it->cur_cset);
4795 		spin_unlock_irq(&css_set_lock);
4796 	}
4797 
4798 	if (it->cur_dcset)
4799 		put_css_set(it->cur_dcset);
4800 
4801 	if (it->cur_task)
4802 		put_task_struct(it->cur_task);
4803 }
4804 
cgroup_procs_release(struct kernfs_open_file * of)4805 static void cgroup_procs_release(struct kernfs_open_file *of)
4806 {
4807 	struct cgroup_file_ctx *ctx = of->priv;
4808 
4809 	if (ctx->procs.started)
4810 		css_task_iter_end(&ctx->procs.iter);
4811 }
4812 
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4813 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4814 {
4815 	struct kernfs_open_file *of = s->private;
4816 	struct cgroup_file_ctx *ctx = of->priv;
4817 
4818 	if (pos)
4819 		(*pos)++;
4820 
4821 	return css_task_iter_next(&ctx->procs.iter);
4822 }
4823 
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4824 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4825 				  unsigned int iter_flags)
4826 {
4827 	struct kernfs_open_file *of = s->private;
4828 	struct cgroup *cgrp = seq_css(s)->cgroup;
4829 	struct cgroup_file_ctx *ctx = of->priv;
4830 	struct css_task_iter *it = &ctx->procs.iter;
4831 
4832 	/*
4833 	 * When a seq_file is seeked, it's always traversed sequentially
4834 	 * from position 0, so we can simply keep iterating on !0 *pos.
4835 	 */
4836 	if (!ctx->procs.started) {
4837 		if (WARN_ON_ONCE((*pos)))
4838 			return ERR_PTR(-EINVAL);
4839 		css_task_iter_start(&cgrp->self, iter_flags, it);
4840 		ctx->procs.started = true;
4841 	} else if (!(*pos)) {
4842 		css_task_iter_end(it);
4843 		css_task_iter_start(&cgrp->self, iter_flags, it);
4844 	} else
4845 		return it->cur_task;
4846 
4847 	return cgroup_procs_next(s, NULL, NULL);
4848 }
4849 
cgroup_procs_start(struct seq_file * s,loff_t * pos)4850 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4851 {
4852 	struct cgroup *cgrp = seq_css(s)->cgroup;
4853 
4854 	/*
4855 	 * All processes of a threaded subtree belong to the domain cgroup
4856 	 * of the subtree.  Only threads can be distributed across the
4857 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
4858 	 * They're always empty anyway.
4859 	 */
4860 	if (cgroup_is_threaded(cgrp))
4861 		return ERR_PTR(-EOPNOTSUPP);
4862 
4863 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4864 					    CSS_TASK_ITER_THREADED);
4865 }
4866 
cgroup_procs_show(struct seq_file * s,void * v)4867 static int cgroup_procs_show(struct seq_file *s, void *v)
4868 {
4869 	seq_printf(s, "%d\n", task_pid_vnr(v));
4870 	return 0;
4871 }
4872 
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)4873 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4874 					 struct cgroup *dst_cgrp,
4875 					 struct super_block *sb,
4876 					 struct cgroup_namespace *ns)
4877 {
4878 	struct cgroup *com_cgrp = src_cgrp;
4879 	struct inode *inode;
4880 	int ret;
4881 
4882 	lockdep_assert_held(&cgroup_mutex);
4883 
4884 	/* find the common ancestor */
4885 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4886 		com_cgrp = cgroup_parent(com_cgrp);
4887 
4888 	/* %current should be authorized to migrate to the common ancestor */
4889 	inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4890 	if (!inode)
4891 		return -ENOMEM;
4892 
4893 	ret = inode_permission(inode, MAY_WRITE);
4894 	iput(inode);
4895 	if (ret)
4896 		return ret;
4897 
4898 	/*
4899 	 * If namespaces are delegation boundaries, %current must be able
4900 	 * to see both source and destination cgroups from its namespace.
4901 	 */
4902 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4903 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4904 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4905 		return -ENOENT;
4906 
4907 	return 0;
4908 }
4909 
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4910 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4911 				  char *buf, size_t nbytes, loff_t off)
4912 {
4913 	struct cgroup_file_ctx *ctx = of->priv;
4914 	struct cgroup *src_cgrp, *dst_cgrp;
4915 	struct task_struct *task;
4916 	const struct cred *saved_cred;
4917 	ssize_t ret;
4918 	bool threadgroup_locked;
4919 
4920 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4921 	if (!dst_cgrp)
4922 		return -ENODEV;
4923 
4924 	task = cgroup_procs_write_start(buf, true, &threadgroup_locked);
4925 	ret = PTR_ERR_OR_ZERO(task);
4926 	if (ret)
4927 		goto out_unlock;
4928 
4929 	/* find the source cgroup */
4930 	spin_lock_irq(&css_set_lock);
4931 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4932 	spin_unlock_irq(&css_set_lock);
4933 
4934 	/*
4935 	 * Process and thread migrations follow same delegation rule. Check
4936 	 * permissions using the credentials from file open to protect against
4937 	 * inherited fd attacks.
4938 	 */
4939 	saved_cred = override_creds(of->file->f_cred);
4940 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4941 					    of->file->f_path.dentry->d_sb,
4942 					    ctx->ns);
4943 	revert_creds(saved_cred);
4944 	if (ret)
4945 		goto out_finish;
4946 
4947 	ret = cgroup_attach_task(dst_cgrp, task, true);
4948 
4949 out_finish:
4950 	cgroup_procs_write_finish(task, threadgroup_locked);
4951 out_unlock:
4952 	cgroup_kn_unlock(of->kn);
4953 
4954 	return ret ?: nbytes;
4955 }
4956 
cgroup_threads_start(struct seq_file * s,loff_t * pos)4957 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4958 {
4959 	return __cgroup_procs_start(s, pos, 0);
4960 }
4961 
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4962 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4963 				    char *buf, size_t nbytes, loff_t off)
4964 {
4965 	struct cgroup_file_ctx *ctx = of->priv;
4966 	struct cgroup *src_cgrp, *dst_cgrp;
4967 	struct task_struct *task;
4968 	const struct cred *saved_cred;
4969 	ssize_t ret;
4970 	bool locked;
4971 
4972 	buf = strstrip(buf);
4973 
4974 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4975 	if (!dst_cgrp)
4976 		return -ENODEV;
4977 
4978 	task = cgroup_procs_write_start(buf, false, &locked);
4979 	ret = PTR_ERR_OR_ZERO(task);
4980 	if (ret)
4981 		goto out_unlock;
4982 
4983 	/* find the source cgroup */
4984 	spin_lock_irq(&css_set_lock);
4985 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4986 	spin_unlock_irq(&css_set_lock);
4987 
4988 	/*
4989 	 * Process and thread migrations follow same delegation rule. Check
4990 	 * permissions using the credentials from file open to protect against
4991 	 * inherited fd attacks.
4992 	 */
4993 	saved_cred = override_creds(of->file->f_cred);
4994 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4995 					    of->file->f_path.dentry->d_sb,
4996 					    ctx->ns);
4997 	revert_creds(saved_cred);
4998 	if (ret)
4999 		goto out_finish;
5000 
5001 	/* and must be contained in the same domain */
5002 	ret = -EOPNOTSUPP;
5003 	if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
5004 		goto out_finish;
5005 
5006 	ret = cgroup_attach_task(dst_cgrp, task, false);
5007 
5008 out_finish:
5009 	cgroup_procs_write_finish(task, locked);
5010 out_unlock:
5011 	cgroup_kn_unlock(of->kn);
5012 
5013 	return ret ?: nbytes;
5014 }
5015 
5016 /* cgroup core interface files for the default hierarchy */
5017 static struct cftype cgroup_base_files[] = {
5018 	{
5019 		.name = "cgroup.type",
5020 		.flags = CFTYPE_NOT_ON_ROOT,
5021 		.seq_show = cgroup_type_show,
5022 		.write = cgroup_type_write,
5023 	},
5024 	{
5025 		.name = "cgroup.procs",
5026 		.flags = CFTYPE_NS_DELEGATABLE,
5027 		.file_offset = offsetof(struct cgroup, procs_file),
5028 		.release = cgroup_procs_release,
5029 		.seq_start = cgroup_procs_start,
5030 		.seq_next = cgroup_procs_next,
5031 		.seq_show = cgroup_procs_show,
5032 		.write = cgroup_procs_write,
5033 	},
5034 	{
5035 		.name = "cgroup.threads",
5036 		.flags = CFTYPE_NS_DELEGATABLE,
5037 		.release = cgroup_procs_release,
5038 		.seq_start = cgroup_threads_start,
5039 		.seq_next = cgroup_procs_next,
5040 		.seq_show = cgroup_procs_show,
5041 		.write = cgroup_threads_write,
5042 	},
5043 	{
5044 		.name = "cgroup.controllers",
5045 		.seq_show = cgroup_controllers_show,
5046 	},
5047 	{
5048 		.name = "cgroup.subtree_control",
5049 		.flags = CFTYPE_NS_DELEGATABLE,
5050 		.seq_show = cgroup_subtree_control_show,
5051 		.write = cgroup_subtree_control_write,
5052 	},
5053 	{
5054 		.name = "cgroup.events",
5055 		.flags = CFTYPE_NOT_ON_ROOT,
5056 		.file_offset = offsetof(struct cgroup, events_file),
5057 		.seq_show = cgroup_events_show,
5058 	},
5059 	{
5060 		.name = "cgroup.max.descendants",
5061 		.seq_show = cgroup_max_descendants_show,
5062 		.write = cgroup_max_descendants_write,
5063 	},
5064 	{
5065 		.name = "cgroup.max.depth",
5066 		.seq_show = cgroup_max_depth_show,
5067 		.write = cgroup_max_depth_write,
5068 	},
5069 	{
5070 		.name = "cgroup.stat",
5071 		.seq_show = cgroup_stat_show,
5072 	},
5073 	{
5074 		.name = "cgroup.freeze",
5075 		.flags = CFTYPE_NOT_ON_ROOT,
5076 		.seq_show = cgroup_freeze_show,
5077 		.write = cgroup_freeze_write,
5078 	},
5079 	{
5080 		.name = "cpu.stat",
5081 		.flags = CFTYPE_NOT_ON_ROOT,
5082 		.seq_show = cpu_stat_show,
5083 	},
5084 #ifdef CONFIG_PSI
5085 	{
5086 		.name = "io.pressure",
5087 		.seq_show = cgroup_io_pressure_show,
5088 		.write = cgroup_io_pressure_write,
5089 		.poll = cgroup_pressure_poll,
5090 		.release = cgroup_pressure_release,
5091 	},
5092 	{
5093 		.name = "memory.pressure",
5094 		.seq_show = cgroup_memory_pressure_show,
5095 		.write = cgroup_memory_pressure_write,
5096 		.poll = cgroup_pressure_poll,
5097 		.release = cgroup_pressure_release,
5098 	},
5099 	{
5100 		.name = "cpu.pressure",
5101 		.seq_show = cgroup_cpu_pressure_show,
5102 		.write = cgroup_cpu_pressure_write,
5103 		.poll = cgroup_pressure_poll,
5104 		.release = cgroup_pressure_release,
5105 	},
5106 #endif /* CONFIG_PSI */
5107 	{ }	/* terminate */
5108 };
5109 
5110 /*
5111  * css destruction is four-stage process.
5112  *
5113  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5114  *    Implemented in kill_css().
5115  *
5116  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5117  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5118  *    offlined by invoking offline_css().  After offlining, the base ref is
5119  *    put.  Implemented in css_killed_work_fn().
5120  *
5121  * 3. When the percpu_ref reaches zero, the only possible remaining
5122  *    accessors are inside RCU read sections.  css_release() schedules the
5123  *    RCU callback.
5124  *
5125  * 4. After the grace period, the css can be freed.  Implemented in
5126  *    css_free_work_fn().
5127  *
5128  * It is actually hairier because both step 2 and 4 require process context
5129  * and thus involve punting to css->destroy_work adding two additional
5130  * steps to the already complex sequence.
5131  */
css_free_rwork_fn(struct work_struct * work)5132 static void css_free_rwork_fn(struct work_struct *work)
5133 {
5134 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5135 				struct cgroup_subsys_state, destroy_rwork);
5136 	struct cgroup_subsys *ss = css->ss;
5137 	struct cgroup *cgrp = css->cgroup;
5138 
5139 	percpu_ref_exit(&css->refcnt);
5140 
5141 	if (ss) {
5142 		/* css free path */
5143 		struct cgroup_subsys_state *parent = css->parent;
5144 		int id = css->id;
5145 
5146 		ss->css_free(css);
5147 		cgroup_idr_remove(&ss->css_idr, id);
5148 		cgroup_put(cgrp);
5149 
5150 		if (parent)
5151 			css_put(parent);
5152 	} else {
5153 		/* cgroup free path */
5154 		atomic_dec(&cgrp->root->nr_cgrps);
5155 		cgroup1_pidlist_destroy_all(cgrp);
5156 		cancel_work_sync(&cgrp->release_agent_work);
5157 
5158 		if (cgroup_parent(cgrp)) {
5159 			/*
5160 			 * We get a ref to the parent, and put the ref when
5161 			 * this cgroup is being freed, so it's guaranteed
5162 			 * that the parent won't be destroyed before its
5163 			 * children.
5164 			 */
5165 			cgroup_put(cgroup_parent(cgrp));
5166 			kernfs_put(cgrp->kn);
5167 			psi_cgroup_free(cgrp);
5168 			if (cgroup_on_dfl(cgrp))
5169 				cgroup_rstat_exit(cgrp);
5170 			kfree(cgrp);
5171 		} else {
5172 			/*
5173 			 * This is root cgroup's refcnt reaching zero,
5174 			 * which indicates that the root should be
5175 			 * released.
5176 			 */
5177 			cgroup_destroy_root(cgrp->root);
5178 		}
5179 	}
5180 }
5181 
css_release_work_fn(struct work_struct * work)5182 static void css_release_work_fn(struct work_struct *work)
5183 {
5184 	struct cgroup_subsys_state *css =
5185 		container_of(work, struct cgroup_subsys_state, destroy_work);
5186 	struct cgroup_subsys *ss = css->ss;
5187 	struct cgroup *cgrp = css->cgroup;
5188 
5189 	mutex_lock(&cgroup_mutex);
5190 
5191 	css->flags |= CSS_RELEASED;
5192 	list_del_rcu(&css->sibling);
5193 
5194 	if (ss) {
5195 		/* css release path */
5196 		if (!list_empty(&css->rstat_css_node)) {
5197 			cgroup_rstat_flush(cgrp);
5198 			list_del_rcu(&css->rstat_css_node);
5199 		}
5200 
5201 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5202 		if (ss->css_released)
5203 			ss->css_released(css);
5204 	} else {
5205 		struct cgroup *tcgrp;
5206 
5207 		/* cgroup release path */
5208 		TRACE_CGROUP_PATH(release, cgrp);
5209 
5210 		if (cgroup_on_dfl(cgrp))
5211 			cgroup_rstat_flush(cgrp);
5212 
5213 		spin_lock_irq(&css_set_lock);
5214 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5215 		     tcgrp = cgroup_parent(tcgrp))
5216 			tcgrp->nr_dying_descendants--;
5217 		spin_unlock_irq(&css_set_lock);
5218 
5219 		cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5220 		cgrp->id = -1;
5221 
5222 		/*
5223 		 * There are two control paths which try to determine
5224 		 * cgroup from dentry without going through kernfs -
5225 		 * cgroupstats_build() and css_tryget_online_from_dir().
5226 		 * Those are supported by RCU protecting clearing of
5227 		 * cgrp->kn->priv backpointer.
5228 		 */
5229 		if (cgrp->kn)
5230 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5231 					 NULL);
5232 	}
5233 
5234 	mutex_unlock(&cgroup_mutex);
5235 
5236 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5237 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5238 }
5239 
css_release(struct percpu_ref * ref)5240 static void css_release(struct percpu_ref *ref)
5241 {
5242 	struct cgroup_subsys_state *css =
5243 		container_of(ref, struct cgroup_subsys_state, refcnt);
5244 
5245 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5246 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5247 }
5248 
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5249 static void init_and_link_css(struct cgroup_subsys_state *css,
5250 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5251 {
5252 	lockdep_assert_held(&cgroup_mutex);
5253 
5254 	cgroup_get_live(cgrp);
5255 
5256 	memset(css, 0, sizeof(*css));
5257 	css->cgroup = cgrp;
5258 	css->ss = ss;
5259 	css->id = -1;
5260 	INIT_LIST_HEAD(&css->sibling);
5261 	INIT_LIST_HEAD(&css->children);
5262 	INIT_LIST_HEAD(&css->rstat_css_node);
5263 	css->serial_nr = css_serial_nr_next++;
5264 	atomic_set(&css->online_cnt, 0);
5265 
5266 	if (cgroup_parent(cgrp)) {
5267 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5268 		css_get(css->parent);
5269 	}
5270 
5271 	if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5272 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5273 
5274 	BUG_ON(cgroup_css(cgrp, ss));
5275 }
5276 
5277 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5278 static int online_css(struct cgroup_subsys_state *css)
5279 {
5280 	struct cgroup_subsys *ss = css->ss;
5281 	int ret = 0;
5282 
5283 	lockdep_assert_held(&cgroup_mutex);
5284 
5285 	if (ss->css_online)
5286 		ret = ss->css_online(css);
5287 	if (!ret) {
5288 		css->flags |= CSS_ONLINE;
5289 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5290 
5291 		atomic_inc(&css->online_cnt);
5292 		if (css->parent)
5293 			atomic_inc(&css->parent->online_cnt);
5294 	}
5295 	return ret;
5296 }
5297 
5298 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5299 static void offline_css(struct cgroup_subsys_state *css)
5300 {
5301 	struct cgroup_subsys *ss = css->ss;
5302 
5303 	lockdep_assert_held(&cgroup_mutex);
5304 
5305 	if (!(css->flags & CSS_ONLINE))
5306 		return;
5307 
5308 	if (ss->css_offline)
5309 		ss->css_offline(css);
5310 
5311 	css->flags &= ~CSS_ONLINE;
5312 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5313 
5314 	wake_up_all(&css->cgroup->offline_waitq);
5315 }
5316 
5317 /**
5318  * css_create - create a cgroup_subsys_state
5319  * @cgrp: the cgroup new css will be associated with
5320  * @ss: the subsys of new css
5321  *
5322  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5323  * css is online and installed in @cgrp.  This function doesn't create the
5324  * interface files.  Returns 0 on success, -errno on failure.
5325  */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5326 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5327 					      struct cgroup_subsys *ss)
5328 {
5329 	struct cgroup *parent = cgroup_parent(cgrp);
5330 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5331 	struct cgroup_subsys_state *css;
5332 	int err;
5333 
5334 	lockdep_assert_held(&cgroup_mutex);
5335 
5336 	css = ss->css_alloc(parent_css);
5337 	if (!css)
5338 		css = ERR_PTR(-ENOMEM);
5339 	if (IS_ERR(css))
5340 		return css;
5341 
5342 	init_and_link_css(css, ss, cgrp);
5343 
5344 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5345 	if (err)
5346 		goto err_free_css;
5347 
5348 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5349 	if (err < 0)
5350 		goto err_free_css;
5351 	css->id = err;
5352 
5353 	/* @css is ready to be brought online now, make it visible */
5354 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5355 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5356 
5357 	err = online_css(css);
5358 	if (err)
5359 		goto err_list_del;
5360 
5361 	if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5362 	    cgroup_parent(parent)) {
5363 		pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5364 			current->comm, current->pid, ss->name);
5365 		if (!strcmp(ss->name, "memory"))
5366 			pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5367 		ss->warned_broken_hierarchy = true;
5368 	}
5369 
5370 	return css;
5371 
5372 err_list_del:
5373 	list_del_rcu(&css->sibling);
5374 err_free_css:
5375 	list_del_rcu(&css->rstat_css_node);
5376 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5377 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5378 	return ERR_PTR(err);
5379 }
5380 
5381 /*
5382  * The returned cgroup is fully initialized including its control mask, but
5383  * it isn't associated with its kernfs_node and doesn't have the control
5384  * mask applied.
5385  */
cgroup_create(struct cgroup * parent)5386 static struct cgroup *cgroup_create(struct cgroup *parent)
5387 {
5388 	struct cgroup_root *root = parent->root;
5389 	struct cgroup *cgrp, *tcgrp;
5390 	int level = parent->level + 1;
5391 	int ret;
5392 
5393 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5394 	cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5395 		       GFP_KERNEL);
5396 	if (!cgrp)
5397 		return ERR_PTR(-ENOMEM);
5398 
5399 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5400 	if (ret)
5401 		goto out_free_cgrp;
5402 
5403 	if (cgroup_on_dfl(parent)) {
5404 		ret = cgroup_rstat_init(cgrp);
5405 		if (ret)
5406 			goto out_cancel_ref;
5407 	}
5408 
5409 	/*
5410 	 * Temporarily set the pointer to NULL, so idr_find() won't return
5411 	 * a half-baked cgroup.
5412 	 */
5413 	cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5414 	if (cgrp->id < 0) {
5415 		ret = -ENOMEM;
5416 		goto out_stat_exit;
5417 	}
5418 
5419 	init_cgroup_housekeeping(cgrp);
5420 
5421 	cgrp->self.parent = &parent->self;
5422 	cgrp->root = root;
5423 	cgrp->level = level;
5424 
5425 	ret = psi_cgroup_alloc(cgrp);
5426 	if (ret)
5427 		goto out_idr_free;
5428 
5429 	ret = cgroup_bpf_inherit(cgrp);
5430 	if (ret)
5431 		goto out_psi_free;
5432 
5433 	/*
5434 	 * New cgroup inherits effective freeze counter, and
5435 	 * if the parent has to be frozen, the child has too.
5436 	 */
5437 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5438 	if (cgrp->freezer.e_freeze) {
5439 		/*
5440 		 * Set the CGRP_FREEZE flag, so when a process will be
5441 		 * attached to the child cgroup, it will become frozen.
5442 		 * At this point the new cgroup is unpopulated, so we can
5443 		 * consider it frozen immediately.
5444 		 */
5445 		set_bit(CGRP_FREEZE, &cgrp->flags);
5446 		set_bit(CGRP_FROZEN, &cgrp->flags);
5447 	}
5448 
5449 	spin_lock_irq(&css_set_lock);
5450 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5451 		cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5452 
5453 		if (tcgrp != cgrp) {
5454 			tcgrp->nr_descendants++;
5455 
5456 			/*
5457 			 * If the new cgroup is frozen, all ancestor cgroups
5458 			 * get a new frozen descendant, but their state can't
5459 			 * change because of this.
5460 			 */
5461 			if (cgrp->freezer.e_freeze)
5462 				tcgrp->freezer.nr_frozen_descendants++;
5463 		}
5464 	}
5465 	spin_unlock_irq(&css_set_lock);
5466 
5467 	if (notify_on_release(parent))
5468 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5469 
5470 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5471 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5472 
5473 	cgrp->self.serial_nr = css_serial_nr_next++;
5474 
5475 	/* allocation complete, commit to creation */
5476 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5477 	atomic_inc(&root->nr_cgrps);
5478 	cgroup_get_live(parent);
5479 
5480 	/*
5481 	 * @cgrp is now fully operational.  If something fails after this
5482 	 * point, it'll be released via the normal destruction path.
5483 	 */
5484 	cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5485 
5486 	/*
5487 	 * On the default hierarchy, a child doesn't automatically inherit
5488 	 * subtree_control from the parent.  Each is configured manually.
5489 	 */
5490 	if (!cgroup_on_dfl(cgrp))
5491 		cgrp->subtree_control = cgroup_control(cgrp);
5492 
5493 	cgroup_propagate_control(cgrp);
5494 
5495 	return cgrp;
5496 
5497 out_psi_free:
5498 	psi_cgroup_free(cgrp);
5499 out_idr_free:
5500 	cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5501 out_stat_exit:
5502 	if (cgroup_on_dfl(parent))
5503 		cgroup_rstat_exit(cgrp);
5504 out_cancel_ref:
5505 	percpu_ref_exit(&cgrp->self.refcnt);
5506 out_free_cgrp:
5507 	kfree(cgrp);
5508 	return ERR_PTR(ret);
5509 }
5510 
cgroup_check_hierarchy_limits(struct cgroup * parent)5511 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5512 {
5513 	struct cgroup *cgroup;
5514 	int ret = false;
5515 	int level = 1;
5516 
5517 	lockdep_assert_held(&cgroup_mutex);
5518 
5519 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5520 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5521 			goto fail;
5522 
5523 		if (level > cgroup->max_depth)
5524 			goto fail;
5525 
5526 		level++;
5527 	}
5528 
5529 	ret = true;
5530 fail:
5531 	return ret;
5532 }
5533 
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5534 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5535 {
5536 	struct cgroup *parent, *cgrp;
5537 	struct kernfs_node *kn;
5538 	int ret;
5539 
5540 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5541 	if (strchr(name, '\n'))
5542 		return -EINVAL;
5543 
5544 	parent = cgroup_kn_lock_live(parent_kn, false);
5545 	if (!parent)
5546 		return -ENODEV;
5547 
5548 	if (!cgroup_check_hierarchy_limits(parent)) {
5549 		ret = -EAGAIN;
5550 		goto out_unlock;
5551 	}
5552 
5553 	cgrp = cgroup_create(parent);
5554 	if (IS_ERR(cgrp)) {
5555 		ret = PTR_ERR(cgrp);
5556 		goto out_unlock;
5557 	}
5558 
5559 	/* create the directory */
5560 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5561 	if (IS_ERR(kn)) {
5562 		ret = PTR_ERR(kn);
5563 		goto out_destroy;
5564 	}
5565 	cgrp->kn = kn;
5566 
5567 	/*
5568 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5569 	 * that @cgrp->kn is always accessible.
5570 	 */
5571 	kernfs_get(kn);
5572 
5573 	ret = cgroup_kn_set_ugid(kn);
5574 	if (ret)
5575 		goto out_destroy;
5576 
5577 	ret = css_populate_dir(&cgrp->self);
5578 	if (ret)
5579 		goto out_destroy;
5580 
5581 	ret = cgroup_apply_control_enable(cgrp);
5582 	if (ret)
5583 		goto out_destroy;
5584 
5585 	TRACE_CGROUP_PATH(mkdir, cgrp);
5586 
5587 	/* let's create and online css's */
5588 	kernfs_activate(kn);
5589 
5590 	ret = 0;
5591 	goto out_unlock;
5592 
5593 out_destroy:
5594 	cgroup_destroy_locked(cgrp);
5595 out_unlock:
5596 	cgroup_kn_unlock(parent_kn);
5597 	return ret;
5598 }
5599 
5600 /*
5601  * This is called when the refcnt of a css is confirmed to be killed.
5602  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5603  * initate destruction and put the css ref from kill_css().
5604  */
css_killed_work_fn(struct work_struct * work)5605 static void css_killed_work_fn(struct work_struct *work)
5606 {
5607 	struct cgroup_subsys_state *css =
5608 		container_of(work, struct cgroup_subsys_state, destroy_work);
5609 
5610 	mutex_lock(&cgroup_mutex);
5611 
5612 	do {
5613 		offline_css(css);
5614 		css_put(css);
5615 		/* @css can't go away while we're holding cgroup_mutex */
5616 		css = css->parent;
5617 	} while (css && atomic_dec_and_test(&css->online_cnt));
5618 
5619 	mutex_unlock(&cgroup_mutex);
5620 }
5621 
5622 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5623 static void css_killed_ref_fn(struct percpu_ref *ref)
5624 {
5625 	struct cgroup_subsys_state *css =
5626 		container_of(ref, struct cgroup_subsys_state, refcnt);
5627 
5628 	if (atomic_dec_and_test(&css->online_cnt)) {
5629 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5630 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5631 	}
5632 }
5633 
5634 /**
5635  * kill_css - destroy a css
5636  * @css: css to destroy
5637  *
5638  * This function initiates destruction of @css by removing cgroup interface
5639  * files and putting its base reference.  ->css_offline() will be invoked
5640  * asynchronously once css_tryget_online() is guaranteed to fail and when
5641  * the reference count reaches zero, @css will be released.
5642  */
kill_css(struct cgroup_subsys_state * css)5643 static void kill_css(struct cgroup_subsys_state *css)
5644 {
5645 	lockdep_assert_held(&cgroup_mutex);
5646 
5647 	if (css->flags & CSS_DYING)
5648 		return;
5649 
5650 	css->flags |= CSS_DYING;
5651 
5652 	/*
5653 	 * This must happen before css is disassociated with its cgroup.
5654 	 * See seq_css() for details.
5655 	 */
5656 	css_clear_dir(css);
5657 
5658 	/*
5659 	 * Killing would put the base ref, but we need to keep it alive
5660 	 * until after ->css_offline().
5661 	 */
5662 	css_get(css);
5663 
5664 	/*
5665 	 * cgroup core guarantees that, by the time ->css_offline() is
5666 	 * invoked, no new css reference will be given out via
5667 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5668 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5669 	 * guarantee that the ref is seen as killed on all CPUs on return.
5670 	 *
5671 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5672 	 * css is confirmed to be seen as killed on all CPUs.
5673 	 */
5674 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5675 }
5676 
5677 /**
5678  * cgroup_destroy_locked - the first stage of cgroup destruction
5679  * @cgrp: cgroup to be destroyed
5680  *
5681  * css's make use of percpu refcnts whose killing latency shouldn't be
5682  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5683  * guarantee that css_tryget_online() won't succeed by the time
5684  * ->css_offline() is invoked.  To satisfy all the requirements,
5685  * destruction is implemented in the following two steps.
5686  *
5687  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5688  *     userland visible parts and start killing the percpu refcnts of
5689  *     css's.  Set up so that the next stage will be kicked off once all
5690  *     the percpu refcnts are confirmed to be killed.
5691  *
5692  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5693  *     rest of destruction.  Once all cgroup references are gone, the
5694  *     cgroup is RCU-freed.
5695  *
5696  * This function implements s1.  After this step, @cgrp is gone as far as
5697  * the userland is concerned and a new cgroup with the same name may be
5698  * created.  As cgroup doesn't care about the names internally, this
5699  * doesn't cause any problem.
5700  */
cgroup_destroy_locked(struct cgroup * cgrp)5701 static int cgroup_destroy_locked(struct cgroup *cgrp)
5702 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5703 {
5704 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5705 	struct cgroup_subsys_state *css;
5706 	struct cgrp_cset_link *link;
5707 	int ssid;
5708 
5709 	lockdep_assert_held(&cgroup_mutex);
5710 
5711 	/*
5712 	 * Only migration can raise populated from zero and we're already
5713 	 * holding cgroup_mutex.
5714 	 */
5715 	if (cgroup_is_populated(cgrp))
5716 		return -EBUSY;
5717 
5718 	/*
5719 	 * Make sure there's no live children.  We can't test emptiness of
5720 	 * ->self.children as dead children linger on it while being
5721 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5722 	 */
5723 	if (css_has_online_children(&cgrp->self))
5724 		return -EBUSY;
5725 
5726 	/*
5727 	 * Mark @cgrp and the associated csets dead.  The former prevents
5728 	 * further task migration and child creation by disabling
5729 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5730 	 * the migration path.
5731 	 */
5732 	cgrp->self.flags &= ~CSS_ONLINE;
5733 
5734 	spin_lock_irq(&css_set_lock);
5735 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5736 		link->cset->dead = true;
5737 	spin_unlock_irq(&css_set_lock);
5738 
5739 	/* initiate massacre of all css's */
5740 	for_each_css(css, ssid, cgrp)
5741 		kill_css(css);
5742 
5743 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5744 	css_clear_dir(&cgrp->self);
5745 	kernfs_remove(cgrp->kn);
5746 
5747 	if (parent && cgroup_is_threaded(cgrp))
5748 		parent->nr_threaded_children--;
5749 
5750 	spin_lock_irq(&css_set_lock);
5751 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5752 		tcgrp->nr_descendants--;
5753 		tcgrp->nr_dying_descendants++;
5754 		/*
5755 		 * If the dying cgroup is frozen, decrease frozen descendants
5756 		 * counters of ancestor cgroups.
5757 		 */
5758 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5759 			tcgrp->freezer.nr_frozen_descendants--;
5760 	}
5761 	spin_unlock_irq(&css_set_lock);
5762 
5763 	cgroup1_check_for_release(parent);
5764 
5765 	cgroup_bpf_offline(cgrp);
5766 
5767 	/* put the base reference */
5768 	percpu_ref_kill(&cgrp->self.refcnt);
5769 
5770 	return 0;
5771 };
5772 
cgroup_rmdir(struct kernfs_node * kn)5773 int cgroup_rmdir(struct kernfs_node *kn)
5774 {
5775 	struct cgroup *cgrp;
5776 	int ret = 0;
5777 
5778 	cgrp = cgroup_kn_lock_live(kn, false);
5779 	if (!cgrp)
5780 		return 0;
5781 
5782 	ret = cgroup_destroy_locked(cgrp);
5783 	if (!ret)
5784 		TRACE_CGROUP_PATH(rmdir, cgrp);
5785 
5786 	cgroup_kn_unlock(kn);
5787 	return ret;
5788 }
5789 
5790 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5791 	.show_options		= cgroup_show_options,
5792 	.mkdir			= cgroup_mkdir,
5793 	.rmdir			= cgroup_rmdir,
5794 	.show_path		= cgroup_show_path,
5795 };
5796 
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5797 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5798 {
5799 	struct cgroup_subsys_state *css;
5800 
5801 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
5802 
5803 	mutex_lock(&cgroup_mutex);
5804 
5805 	idr_init(&ss->css_idr);
5806 	INIT_LIST_HEAD(&ss->cfts);
5807 
5808 	/* Create the root cgroup state for this subsystem */
5809 	ss->root = &cgrp_dfl_root;
5810 	css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5811 	/* We don't handle early failures gracefully */
5812 	BUG_ON(IS_ERR(css));
5813 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5814 
5815 	/*
5816 	 * Root csses are never destroyed and we can't initialize
5817 	 * percpu_ref during early init.  Disable refcnting.
5818 	 */
5819 	css->flags |= CSS_NO_REF;
5820 
5821 	if (early) {
5822 		/* allocation can't be done safely during early init */
5823 		css->id = 1;
5824 	} else {
5825 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5826 		BUG_ON(css->id < 0);
5827 	}
5828 
5829 	/* Update the init_css_set to contain a subsys
5830 	 * pointer to this state - since the subsystem is
5831 	 * newly registered, all tasks and hence the
5832 	 * init_css_set is in the subsystem's root cgroup. */
5833 	init_css_set.subsys[ss->id] = css;
5834 
5835 	have_fork_callback |= (bool)ss->fork << ss->id;
5836 	have_exit_callback |= (bool)ss->exit << ss->id;
5837 	have_release_callback |= (bool)ss->release << ss->id;
5838 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
5839 
5840 	/* At system boot, before all subsystems have been
5841 	 * registered, no tasks have been forked, so we don't
5842 	 * need to invoke fork callbacks here. */
5843 	BUG_ON(!list_empty(&init_task.tasks));
5844 
5845 	BUG_ON(online_css(css));
5846 
5847 	mutex_unlock(&cgroup_mutex);
5848 }
5849 
5850 /**
5851  * cgroup_init_early - cgroup initialization at system boot
5852  *
5853  * Initialize cgroups at system boot, and initialize any
5854  * subsystems that request early init.
5855  */
cgroup_init_early(void)5856 int __init cgroup_init_early(void)
5857 {
5858 	static struct cgroup_fs_context __initdata ctx;
5859 	struct cgroup_subsys *ss;
5860 	int i;
5861 
5862 	ctx.root = &cgrp_dfl_root;
5863 	init_cgroup_root(&ctx);
5864 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5865 
5866 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5867 
5868 	for_each_subsys(ss, i) {
5869 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5870 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5871 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5872 		     ss->id, ss->name);
5873 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5874 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5875 
5876 		ss->id = i;
5877 		ss->name = cgroup_subsys_name[i];
5878 		if (!ss->legacy_name)
5879 			ss->legacy_name = cgroup_subsys_name[i];
5880 
5881 		if (ss->early_init)
5882 			cgroup_init_subsys(ss, true);
5883 	}
5884 	return 0;
5885 }
5886 
5887 /**
5888  * cgroup_init - cgroup initialization
5889  *
5890  * Register cgroup filesystem and /proc file, and initialize
5891  * any subsystems that didn't request early init.
5892  */
cgroup_init(void)5893 int __init cgroup_init(void)
5894 {
5895 	struct cgroup_subsys *ss;
5896 	int ssid;
5897 
5898 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5899 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5900 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5901 
5902 	cgroup_rstat_boot();
5903 
5904 	/*
5905 	 * The latency of the synchronize_rcu() is too high for cgroups,
5906 	 * avoid it at the cost of forcing all readers into the slow path.
5907 	 */
5908 	rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5909 
5910 	get_user_ns(init_cgroup_ns.user_ns);
5911 
5912 	mutex_lock(&cgroup_mutex);
5913 
5914 	/*
5915 	 * Add init_css_set to the hash table so that dfl_root can link to
5916 	 * it during init.
5917 	 */
5918 	hash_add(css_set_table, &init_css_set.hlist,
5919 		 css_set_hash(init_css_set.subsys));
5920 
5921 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5922 
5923 	mutex_unlock(&cgroup_mutex);
5924 
5925 	for_each_subsys(ss, ssid) {
5926 		if (ss->early_init) {
5927 			struct cgroup_subsys_state *css =
5928 				init_css_set.subsys[ss->id];
5929 
5930 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5931 						   GFP_KERNEL);
5932 			BUG_ON(css->id < 0);
5933 		} else {
5934 			cgroup_init_subsys(ss, false);
5935 		}
5936 
5937 		list_add_tail(&init_css_set.e_cset_node[ssid],
5938 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
5939 
5940 		/*
5941 		 * Setting dfl_root subsys_mask needs to consider the
5942 		 * disabled flag and cftype registration needs kmalloc,
5943 		 * both of which aren't available during early_init.
5944 		 */
5945 		if (!cgroup_ssid_enabled(ssid))
5946 			continue;
5947 
5948 		if (cgroup1_ssid_disabled(ssid))
5949 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5950 			       ss->name);
5951 
5952 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5953 
5954 		/* implicit controllers must be threaded too */
5955 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5956 
5957 		if (ss->implicit_on_dfl)
5958 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5959 		else if (!ss->dfl_cftypes)
5960 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5961 
5962 		if (ss->threaded)
5963 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5964 
5965 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
5966 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5967 		} else {
5968 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5969 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5970 		}
5971 
5972 		if (ss->bind)
5973 			ss->bind(init_css_set.subsys[ssid]);
5974 
5975 		mutex_lock(&cgroup_mutex);
5976 		css_populate_dir(init_css_set.subsys[ssid]);
5977 		mutex_unlock(&cgroup_mutex);
5978 	}
5979 
5980 	/* init_css_set.subsys[] has been updated, re-hash */
5981 	hash_del(&init_css_set.hlist);
5982 	hash_add(css_set_table, &init_css_set.hlist,
5983 		 css_set_hash(init_css_set.subsys));
5984 
5985 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5986 	WARN_ON(register_filesystem(&cgroup_fs_type));
5987 	WARN_ON(register_filesystem(&cgroup2_fs_type));
5988 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5989 #ifdef CONFIG_CPUSETS
5990 	WARN_ON(register_filesystem(&cpuset_fs_type));
5991 #endif
5992 
5993 	return 0;
5994 }
5995 
cgroup_wq_init(void)5996 static int __init cgroup_wq_init(void)
5997 {
5998 	/*
5999 	 * There isn't much point in executing destruction path in
6000 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6001 	 * Use 1 for @max_active.
6002 	 *
6003 	 * We would prefer to do this in cgroup_init() above, but that
6004 	 * is called before init_workqueues(): so leave this until after.
6005 	 */
6006 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6007 	BUG_ON(!cgroup_destroy_wq);
6008 	return 0;
6009 }
6010 core_initcall(cgroup_wq_init);
6011 
cgroup_path_from_kernfs_id(const union kernfs_node_id * id,char * buf,size_t buflen)6012 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
6013 					char *buf, size_t buflen)
6014 {
6015 	struct kernfs_node *kn;
6016 
6017 	kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
6018 	if (!kn)
6019 		return;
6020 	kernfs_path(kn, buf, buflen);
6021 	kernfs_put(kn);
6022 }
6023 
6024 /*
6025  * proc_cgroup_show()
6026  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6027  *  - Used for /proc/<pid>/cgroup.
6028  */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)6029 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6030 		     struct pid *pid, struct task_struct *tsk)
6031 {
6032 	char *buf;
6033 	int retval;
6034 	struct cgroup_root *root;
6035 
6036 	retval = -ENOMEM;
6037 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6038 	if (!buf)
6039 		goto out;
6040 
6041 	mutex_lock(&cgroup_mutex);
6042 	spin_lock_irq(&css_set_lock);
6043 
6044 	for_each_root(root) {
6045 		struct cgroup_subsys *ss;
6046 		struct cgroup *cgrp;
6047 		int ssid, count = 0;
6048 
6049 		if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
6050 			continue;
6051 
6052 		seq_printf(m, "%d:", root->hierarchy_id);
6053 		if (root != &cgrp_dfl_root)
6054 			for_each_subsys(ss, ssid)
6055 				if (root->subsys_mask & (1 << ssid))
6056 					seq_printf(m, "%s%s", count++ ? "," : "",
6057 						   ss->legacy_name);
6058 		if (strlen(root->name))
6059 			seq_printf(m, "%sname=%s", count ? "," : "",
6060 				   root->name);
6061 		seq_putc(m, ':');
6062 
6063 		cgrp = task_cgroup_from_root(tsk, root);
6064 
6065 		/*
6066 		 * On traditional hierarchies, all zombie tasks show up as
6067 		 * belonging to the root cgroup.  On the default hierarchy,
6068 		 * while a zombie doesn't show up in "cgroup.procs" and
6069 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6070 		 * reporting the cgroup it belonged to before exiting.  If
6071 		 * the cgroup is removed before the zombie is reaped,
6072 		 * " (deleted)" is appended to the cgroup path.
6073 		 */
6074 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6075 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6076 						current->nsproxy->cgroup_ns);
6077 			if (retval >= PATH_MAX)
6078 				retval = -ENAMETOOLONG;
6079 			if (retval < 0)
6080 				goto out_unlock;
6081 
6082 			seq_puts(m, buf);
6083 		} else {
6084 			seq_puts(m, "/");
6085 		}
6086 
6087 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6088 			seq_puts(m, " (deleted)\n");
6089 		else
6090 			seq_putc(m, '\n');
6091 	}
6092 
6093 	retval = 0;
6094 out_unlock:
6095 	spin_unlock_irq(&css_set_lock);
6096 	mutex_unlock(&cgroup_mutex);
6097 	kfree(buf);
6098 out:
6099 	return retval;
6100 }
6101 
6102 /**
6103  * cgroup_fork - initialize cgroup related fields during copy_process()
6104  * @child: pointer to task_struct of forking parent process.
6105  *
6106  * A task is associated with the init_css_set until cgroup_post_fork()
6107  * attaches it to the parent's css_set.  Empty cg_list indicates that
6108  * @child isn't holding reference to its css_set.
6109  */
cgroup_fork(struct task_struct * child)6110 void cgroup_fork(struct task_struct *child)
6111 {
6112 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6113 	INIT_LIST_HEAD(&child->cg_list);
6114 }
6115 
6116 /**
6117  * cgroup_can_fork - called on a new task before the process is exposed
6118  * @child: the task in question.
6119  *
6120  * This calls the subsystem can_fork() callbacks. If the can_fork() callback
6121  * returns an error, the fork aborts with that error code. This allows for
6122  * a cgroup subsystem to conditionally allow or deny new forks.
6123  */
cgroup_can_fork(struct task_struct * child)6124 int cgroup_can_fork(struct task_struct *child)
6125 {
6126 	struct cgroup_subsys *ss;
6127 	int i, j, ret;
6128 
6129 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6130 		ret = ss->can_fork(child);
6131 		if (ret)
6132 			goto out_revert;
6133 	} while_each_subsys_mask();
6134 
6135 	return 0;
6136 
6137 out_revert:
6138 	for_each_subsys(ss, j) {
6139 		if (j >= i)
6140 			break;
6141 		if (ss->cancel_fork)
6142 			ss->cancel_fork(child);
6143 	}
6144 
6145 	return ret;
6146 }
6147 
6148 /**
6149  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6150  * @child: the task in question
6151  *
6152  * This calls the cancel_fork() callbacks if a fork failed *after*
6153  * cgroup_can_fork() succeded.
6154  */
cgroup_cancel_fork(struct task_struct * child)6155 void cgroup_cancel_fork(struct task_struct *child)
6156 {
6157 	struct cgroup_subsys *ss;
6158 	int i;
6159 
6160 	for_each_subsys(ss, i)
6161 		if (ss->cancel_fork)
6162 			ss->cancel_fork(child);
6163 }
6164 
6165 /**
6166  * cgroup_post_fork - called on a new task after adding it to the task list
6167  * @child: the task in question
6168  *
6169  * Adds the task to the list running through its css_set if necessary and
6170  * call the subsystem fork() callbacks.  Has to be after the task is
6171  * visible on the task list in case we race with the first call to
6172  * cgroup_task_iter_start() - to guarantee that the new task ends up on its
6173  * list.
6174  */
cgroup_post_fork(struct task_struct * child)6175 void cgroup_post_fork(struct task_struct *child)
6176 {
6177 	struct cgroup_subsys *ss;
6178 	int i;
6179 
6180 	/*
6181 	 * This may race against cgroup_enable_task_cg_lists().  As that
6182 	 * function sets use_task_css_set_links before grabbing
6183 	 * tasklist_lock and we just went through tasklist_lock to add
6184 	 * @child, it's guaranteed that either we see the set
6185 	 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
6186 	 * @child during its iteration.
6187 	 *
6188 	 * If we won the race, @child is associated with %current's
6189 	 * css_set.  Grabbing css_set_lock guarantees both that the
6190 	 * association is stable, and, on completion of the parent's
6191 	 * migration, @child is visible in the source of migration or
6192 	 * already in the destination cgroup.  This guarantee is necessary
6193 	 * when implementing operations which need to migrate all tasks of
6194 	 * a cgroup to another.
6195 	 *
6196 	 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
6197 	 * will remain in init_css_set.  This is safe because all tasks are
6198 	 * in the init_css_set before cg_links is enabled and there's no
6199 	 * operation which transfers all tasks out of init_css_set.
6200 	 */
6201 	if (use_task_css_set_links) {
6202 		struct css_set *cset;
6203 
6204 		spin_lock_irq(&css_set_lock);
6205 		cset = task_css_set(current);
6206 		if (list_empty(&child->cg_list)) {
6207 			get_css_set(cset);
6208 			cset->nr_tasks++;
6209 			css_set_move_task(child, NULL, cset, false);
6210 		}
6211 
6212 		/*
6213 		 * If the cgroup has to be frozen, the new task has too.
6214 		 * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get
6215 		 * the task into the frozen state.
6216 		 */
6217 		if (unlikely(cgroup_task_freeze(child))) {
6218 			spin_lock(&child->sighand->siglock);
6219 			WARN_ON_ONCE(child->frozen);
6220 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6221 			spin_unlock(&child->sighand->siglock);
6222 
6223 			/*
6224 			 * Calling cgroup_update_frozen() isn't required here,
6225 			 * because it will be called anyway a bit later
6226 			 * from do_freezer_trap(). So we avoid cgroup's
6227 			 * transient switch from the frozen state and back.
6228 			 */
6229 		}
6230 
6231 		spin_unlock_irq(&css_set_lock);
6232 	}
6233 
6234 	/*
6235 	 * Call ss->fork().  This must happen after @child is linked on
6236 	 * css_set; otherwise, @child might change state between ->fork()
6237 	 * and addition to css_set.
6238 	 */
6239 	do_each_subsys_mask(ss, i, have_fork_callback) {
6240 		ss->fork(child);
6241 	} while_each_subsys_mask();
6242 }
6243 
6244 /**
6245  * cgroup_exit - detach cgroup from exiting task
6246  * @tsk: pointer to task_struct of exiting process
6247  *
6248  * Description: Detach cgroup from @tsk and release it.
6249  *
6250  * Note that cgroups marked notify_on_release force every task in
6251  * them to take the global cgroup_mutex mutex when exiting.
6252  * This could impact scaling on very large systems.  Be reluctant to
6253  * use notify_on_release cgroups where very high task exit scaling
6254  * is required on large systems.
6255  *
6256  * We set the exiting tasks cgroup to the root cgroup (top_cgroup).  We
6257  * call cgroup_exit() while the task is still competent to handle
6258  * notify_on_release(), then leave the task attached to the root cgroup in
6259  * each hierarchy for the remainder of its exit.  No need to bother with
6260  * init_css_set refcnting.  init_css_set never goes away and we can't race
6261  * with migration path - PF_EXITING is visible to migration path.
6262  */
cgroup_exit(struct task_struct * tsk)6263 void cgroup_exit(struct task_struct *tsk)
6264 {
6265 	struct cgroup_subsys *ss;
6266 	struct css_set *cset;
6267 	int i;
6268 
6269 	/*
6270 	 * Unlink from @tsk from its css_set.  As migration path can't race
6271 	 * with us, we can check css_set and cg_list without synchronization.
6272 	 */
6273 	cset = task_css_set(tsk);
6274 
6275 	if (!list_empty(&tsk->cg_list)) {
6276 		spin_lock_irq(&css_set_lock);
6277 		css_set_move_task(tsk, cset, NULL, false);
6278 		list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6279 		cset->nr_tasks--;
6280 
6281 		WARN_ON_ONCE(cgroup_task_frozen(tsk));
6282 		if (unlikely(cgroup_task_freeze(tsk)))
6283 			cgroup_update_frozen(task_dfl_cgroup(tsk));
6284 
6285 		spin_unlock_irq(&css_set_lock);
6286 	} else {
6287 		get_css_set(cset);
6288 	}
6289 
6290 	/* see cgroup_post_fork() for details */
6291 	do_each_subsys_mask(ss, i, have_exit_callback) {
6292 		ss->exit(tsk);
6293 	} while_each_subsys_mask();
6294 }
6295 
cgroup_release(struct task_struct * task)6296 void cgroup_release(struct task_struct *task)
6297 {
6298 	struct cgroup_subsys *ss;
6299 	int ssid;
6300 
6301 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6302 		ss->release(task);
6303 	} while_each_subsys_mask();
6304 
6305 	if (use_task_css_set_links) {
6306 		spin_lock_irq(&css_set_lock);
6307 		css_set_skip_task_iters(task_css_set(task), task);
6308 		list_del_init(&task->cg_list);
6309 		spin_unlock_irq(&css_set_lock);
6310 	}
6311 }
6312 
cgroup_free(struct task_struct * task)6313 void cgroup_free(struct task_struct *task)
6314 {
6315 	struct css_set *cset = task_css_set(task);
6316 	put_css_set(cset);
6317 }
6318 
cgroup_disable(char * str)6319 static int __init cgroup_disable(char *str)
6320 {
6321 	struct cgroup_subsys *ss;
6322 	char *token;
6323 	int i;
6324 
6325 	while ((token = strsep(&str, ",")) != NULL) {
6326 		if (!*token)
6327 			continue;
6328 
6329 		for_each_subsys(ss, i) {
6330 			if (strcmp(token, ss->name) &&
6331 			    strcmp(token, ss->legacy_name))
6332 				continue;
6333 
6334 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6335 			pr_info("Disabling %s control group subsystem\n",
6336 				ss->name);
6337 		}
6338 	}
6339 	return 1;
6340 }
6341 __setup("cgroup_disable=", cgroup_disable);
6342 
enable_debug_cgroup(void)6343 void __init __weak enable_debug_cgroup(void) { }
6344 
enable_cgroup_debug(char * str)6345 static int __init enable_cgroup_debug(char *str)
6346 {
6347 	cgroup_debug = true;
6348 	enable_debug_cgroup();
6349 	return 1;
6350 }
6351 __setup("cgroup_debug", enable_cgroup_debug);
6352 
6353 /**
6354  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6355  * @dentry: directory dentry of interest
6356  * @ss: subsystem of interest
6357  *
6358  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6359  * to get the corresponding css and return it.  If such css doesn't exist
6360  * or can't be pinned, an ERR_PTR value is returned.
6361  */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6362 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6363 						       struct cgroup_subsys *ss)
6364 {
6365 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6366 	struct file_system_type *s_type = dentry->d_sb->s_type;
6367 	struct cgroup_subsys_state *css = NULL;
6368 	struct cgroup *cgrp;
6369 
6370 	/* is @dentry a cgroup dir? */
6371 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6372 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6373 		return ERR_PTR(-EBADF);
6374 
6375 	rcu_read_lock();
6376 
6377 	/*
6378 	 * This path doesn't originate from kernfs and @kn could already
6379 	 * have been or be removed at any point.  @kn->priv is RCU
6380 	 * protected for this access.  See css_release_work_fn() for details.
6381 	 */
6382 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6383 	if (cgrp)
6384 		css = cgroup_css(cgrp, ss);
6385 
6386 	if (!css || !css_tryget_online(css))
6387 		css = ERR_PTR(-ENOENT);
6388 
6389 	rcu_read_unlock();
6390 	return css;
6391 }
6392 
6393 /**
6394  * css_from_id - lookup css by id
6395  * @id: the cgroup id
6396  * @ss: cgroup subsys to be looked into
6397  *
6398  * Returns the css if there's valid one with @id, otherwise returns NULL.
6399  * Should be called under rcu_read_lock().
6400  */
css_from_id(int id,struct cgroup_subsys * ss)6401 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6402 {
6403 	WARN_ON_ONCE(!rcu_read_lock_held());
6404 	return idr_find(&ss->css_idr, id);
6405 }
6406 
6407 /**
6408  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6409  * @path: path on the default hierarchy
6410  *
6411  * Find the cgroup at @path on the default hierarchy, increment its
6412  * reference count and return it.  Returns pointer to the found cgroup on
6413  * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6414  * if @path points to a non-directory.
6415  */
cgroup_get_from_path(const char * path)6416 struct cgroup *cgroup_get_from_path(const char *path)
6417 {
6418 	struct kernfs_node *kn;
6419 	struct cgroup *cgrp;
6420 
6421 	mutex_lock(&cgroup_mutex);
6422 
6423 	kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6424 	if (kn) {
6425 		if (kernfs_type(kn) == KERNFS_DIR) {
6426 			cgrp = kn->priv;
6427 			cgroup_get_live(cgrp);
6428 		} else {
6429 			cgrp = ERR_PTR(-ENOTDIR);
6430 		}
6431 		kernfs_put(kn);
6432 	} else {
6433 		cgrp = ERR_PTR(-ENOENT);
6434 	}
6435 
6436 	mutex_unlock(&cgroup_mutex);
6437 	return cgrp;
6438 }
6439 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6440 
6441 /**
6442  * cgroup_get_from_fd - get a cgroup pointer from a fd
6443  * @fd: fd obtained by open(cgroup2_dir)
6444  *
6445  * Find the cgroup from a fd which should be obtained
6446  * by opening a cgroup directory.  Returns a pointer to the
6447  * cgroup on success. ERR_PTR is returned if the cgroup
6448  * cannot be found.
6449  */
cgroup_get_from_fd(int fd)6450 struct cgroup *cgroup_get_from_fd(int fd)
6451 {
6452 	struct cgroup_subsys_state *css;
6453 	struct cgroup *cgrp;
6454 	struct file *f;
6455 
6456 	f = fget_raw(fd);
6457 	if (!f)
6458 		return ERR_PTR(-EBADF);
6459 
6460 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6461 	fput(f);
6462 	if (IS_ERR(css))
6463 		return ERR_CAST(css);
6464 
6465 	cgrp = css->cgroup;
6466 	if (!cgroup_on_dfl(cgrp)) {
6467 		cgroup_put(cgrp);
6468 		return ERR_PTR(-EBADF);
6469 	}
6470 
6471 	return cgrp;
6472 }
6473 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6474 
power_of_ten(int power)6475 static u64 power_of_ten(int power)
6476 {
6477 	u64 v = 1;
6478 	while (power--)
6479 		v *= 10;
6480 	return v;
6481 }
6482 
6483 /**
6484  * cgroup_parse_float - parse a floating number
6485  * @input: input string
6486  * @dec_shift: number of decimal digits to shift
6487  * @v: output
6488  *
6489  * Parse a decimal floating point number in @input and store the result in
6490  * @v with decimal point right shifted @dec_shift times.  For example, if
6491  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6492  * Returns 0 on success, -errno otherwise.
6493  *
6494  * There's nothing cgroup specific about this function except that it's
6495  * currently the only user.
6496  */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)6497 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6498 {
6499 	s64 whole, frac = 0;
6500 	int fstart = 0, fend = 0, flen;
6501 
6502 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6503 		return -EINVAL;
6504 	if (frac < 0)
6505 		return -EINVAL;
6506 
6507 	flen = fend > fstart ? fend - fstart : 0;
6508 	if (flen < dec_shift)
6509 		frac *= power_of_ten(dec_shift - flen);
6510 	else
6511 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6512 
6513 	*v = whole * power_of_ten(dec_shift) + frac;
6514 	return 0;
6515 }
6516 
6517 /*
6518  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6519  * definition in cgroup-defs.h.
6520  */
6521 #ifdef CONFIG_SOCK_CGROUP_DATA
6522 
6523 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6524 
6525 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6526 static bool cgroup_sk_alloc_disabled __read_mostly;
6527 
cgroup_sk_alloc_disable(void)6528 void cgroup_sk_alloc_disable(void)
6529 {
6530 	if (cgroup_sk_alloc_disabled)
6531 		return;
6532 	pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6533 	cgroup_sk_alloc_disabled = true;
6534 }
6535 
6536 #else
6537 
6538 #define cgroup_sk_alloc_disabled	false
6539 
6540 #endif
6541 
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6542 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6543 {
6544 	if (cgroup_sk_alloc_disabled) {
6545 		skcd->no_refcnt = 1;
6546 		return;
6547 	}
6548 
6549 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6550 	if (in_interrupt())
6551 		return;
6552 
6553 	rcu_read_lock();
6554 
6555 	while (true) {
6556 		struct css_set *cset;
6557 
6558 		cset = task_css_set(current);
6559 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6560 			skcd->val = (unsigned long)cset->dfl_cgrp;
6561 			cgroup_bpf_get(cset->dfl_cgrp);
6562 			break;
6563 		}
6564 		cpu_relax();
6565 	}
6566 
6567 	rcu_read_unlock();
6568 }
6569 
cgroup_sk_clone(struct sock_cgroup_data * skcd)6570 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6571 {
6572 	if (skcd->val) {
6573 		if (skcd->no_refcnt)
6574 			return;
6575 		/*
6576 		 * We might be cloning a socket which is left in an empty
6577 		 * cgroup and the cgroup might have already been rmdir'd.
6578 		 * Don't use cgroup_get_live().
6579 		 */
6580 		cgroup_get(sock_cgroup_ptr(skcd));
6581 		cgroup_bpf_get(sock_cgroup_ptr(skcd));
6582 	}
6583 }
6584 
cgroup_sk_free(struct sock_cgroup_data * skcd)6585 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6586 {
6587 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6588 
6589 	if (skcd->no_refcnt)
6590 		return;
6591 	cgroup_bpf_put(cgrp);
6592 	cgroup_put(cgrp);
6593 }
6594 
6595 #endif	/* CONFIG_SOCK_CGROUP_DATA */
6596 
6597 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type,u32 flags)6598 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
6599 		      enum bpf_attach_type type, u32 flags)
6600 {
6601 	int ret;
6602 
6603 	mutex_lock(&cgroup_mutex);
6604 	ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
6605 	mutex_unlock(&cgroup_mutex);
6606 	return ret;
6607 }
cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type,u32 flags)6608 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6609 		      enum bpf_attach_type type, u32 flags)
6610 {
6611 	int ret;
6612 
6613 	mutex_lock(&cgroup_mutex);
6614 	ret = __cgroup_bpf_detach(cgrp, prog, type);
6615 	mutex_unlock(&cgroup_mutex);
6616 	return ret;
6617 }
cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)6618 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6619 		     union bpf_attr __user *uattr)
6620 {
6621 	int ret;
6622 
6623 	mutex_lock(&cgroup_mutex);
6624 	ret = __cgroup_bpf_query(cgrp, attr, uattr);
6625 	mutex_unlock(&cgroup_mutex);
6626 	return ret;
6627 }
6628 #endif /* CONFIG_CGROUP_BPF */
6629 
6630 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)6631 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6632 				      ssize_t size, const char *prefix)
6633 {
6634 	struct cftype *cft;
6635 	ssize_t ret = 0;
6636 
6637 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6638 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6639 			continue;
6640 
6641 		if (prefix)
6642 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6643 
6644 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6645 
6646 		if (WARN_ON(ret >= size))
6647 			break;
6648 	}
6649 
6650 	return ret;
6651 }
6652 
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6653 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6654 			      char *buf)
6655 {
6656 	struct cgroup_subsys *ss;
6657 	int ssid;
6658 	ssize_t ret = 0;
6659 
6660 	ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6661 				     NULL);
6662 
6663 	for_each_subsys(ss, ssid)
6664 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6665 					      PAGE_SIZE - ret,
6666 					      cgroup_subsys_name[ssid]);
6667 
6668 	return ret;
6669 }
6670 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6671 
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6672 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6673 			     char *buf)
6674 {
6675 	return snprintf(buf, PAGE_SIZE, "nsdelegate\nmemory_localevents\n");
6676 }
6677 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6678 
6679 static struct attribute *cgroup_sysfs_attrs[] = {
6680 	&cgroup_delegate_attr.attr,
6681 	&cgroup_features_attr.attr,
6682 	NULL,
6683 };
6684 
6685 static const struct attribute_group cgroup_sysfs_attr_group = {
6686 	.attrs = cgroup_sysfs_attrs,
6687 	.name = "cgroup",
6688 };
6689 
cgroup_sysfs_init(void)6690 static int __init cgroup_sysfs_init(void)
6691 {
6692 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6693 }
6694 subsys_initcall(cgroup_sysfs_init);
6695 
6696 #endif /* CONFIG_SYSFS */
6697