• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * pSeries NUMA support
4  *
5  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6  */
7 #define pr_fmt(fmt) "numa: " fmt
8 
9 #include <linux/threads.h>
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/mmzone.h>
14 #include <linux/export.h>
15 #include <linux/nodemask.h>
16 #include <linux/cpu.h>
17 #include <linux/notifier.h>
18 #include <linux/of.h>
19 #include <linux/pfn.h>
20 #include <linux/cpuset.h>
21 #include <linux/node.h>
22 #include <linux/stop_machine.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <asm/cputhreads.h>
28 #include <asm/sparsemem.h>
29 #include <asm/prom.h>
30 #include <asm/smp.h>
31 #include <asm/topology.h>
32 #include <asm/firmware.h>
33 #include <asm/paca.h>
34 #include <asm/hvcall.h>
35 #include <asm/setup.h>
36 #include <asm/vdso.h>
37 #include <asm/drmem.h>
38 
39 static int numa_enabled = 1;
40 
41 static char *cmdline __initdata;
42 
43 static int numa_debug;
44 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
45 
46 int numa_cpu_lookup_table[NR_CPUS];
47 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
48 struct pglist_data *node_data[MAX_NUMNODES];
49 
50 EXPORT_SYMBOL(numa_cpu_lookup_table);
51 EXPORT_SYMBOL(node_to_cpumask_map);
52 EXPORT_SYMBOL(node_data);
53 
54 static int min_common_depth;
55 static int n_mem_addr_cells, n_mem_size_cells;
56 static int form1_affinity;
57 
58 #define MAX_DISTANCE_REF_POINTS 4
59 static int distance_ref_points_depth;
60 static const __be32 *distance_ref_points;
61 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
62 
63 /*
64  * Allocate node_to_cpumask_map based on number of available nodes
65  * Requires node_possible_map to be valid.
66  *
67  * Note: cpumask_of_node() is not valid until after this is done.
68  */
setup_node_to_cpumask_map(void)69 static void __init setup_node_to_cpumask_map(void)
70 {
71 	unsigned int node;
72 
73 	/* setup nr_node_ids if not done yet */
74 	if (nr_node_ids == MAX_NUMNODES)
75 		setup_nr_node_ids();
76 
77 	/* allocate the map */
78 	for_each_node(node)
79 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
80 
81 	/* cpumask_of_node() will now work */
82 	dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
83 }
84 
fake_numa_create_new_node(unsigned long end_pfn,unsigned int * nid)85 static int __init fake_numa_create_new_node(unsigned long end_pfn,
86 						unsigned int *nid)
87 {
88 	unsigned long long mem;
89 	char *p = cmdline;
90 	static unsigned int fake_nid;
91 	static unsigned long long curr_boundary;
92 
93 	/*
94 	 * Modify node id, iff we started creating NUMA nodes
95 	 * We want to continue from where we left of the last time
96 	 */
97 	if (fake_nid)
98 		*nid = fake_nid;
99 	/*
100 	 * In case there are no more arguments to parse, the
101 	 * node_id should be the same as the last fake node id
102 	 * (we've handled this above).
103 	 */
104 	if (!p)
105 		return 0;
106 
107 	mem = memparse(p, &p);
108 	if (!mem)
109 		return 0;
110 
111 	if (mem < curr_boundary)
112 		return 0;
113 
114 	curr_boundary = mem;
115 
116 	if ((end_pfn << PAGE_SHIFT) > mem) {
117 		/*
118 		 * Skip commas and spaces
119 		 */
120 		while (*p == ',' || *p == ' ' || *p == '\t')
121 			p++;
122 
123 		cmdline = p;
124 		fake_nid++;
125 		*nid = fake_nid;
126 		dbg("created new fake_node with id %d\n", fake_nid);
127 		return 1;
128 	}
129 	return 0;
130 }
131 
reset_numa_cpu_lookup_table(void)132 static void reset_numa_cpu_lookup_table(void)
133 {
134 	unsigned int cpu;
135 
136 	for_each_possible_cpu(cpu)
137 		numa_cpu_lookup_table[cpu] = -1;
138 }
139 
map_cpu_to_node(int cpu,int node)140 static void map_cpu_to_node(int cpu, int node)
141 {
142 	update_numa_cpu_lookup_table(cpu, node);
143 
144 	dbg("adding cpu %d to node %d\n", cpu, node);
145 
146 	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
147 		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
148 }
149 
150 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
unmap_cpu_from_node(unsigned long cpu)151 static void unmap_cpu_from_node(unsigned long cpu)
152 {
153 	int node = numa_cpu_lookup_table[cpu];
154 
155 	dbg("removing cpu %lu from node %d\n", cpu, node);
156 
157 	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
158 		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
159 	} else {
160 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
161 		       cpu, node);
162 	}
163 }
164 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
165 
cpu_distance(__be32 * cpu1_assoc,__be32 * cpu2_assoc)166 int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
167 {
168 	int dist = 0;
169 
170 	int i, index;
171 
172 	for (i = 0; i < distance_ref_points_depth; i++) {
173 		index = be32_to_cpu(distance_ref_points[i]);
174 		if (cpu1_assoc[index] == cpu2_assoc[index])
175 			break;
176 		dist++;
177 	}
178 
179 	return dist;
180 }
181 
182 /* must hold reference to node during call */
of_get_associativity(struct device_node * dev)183 static const __be32 *of_get_associativity(struct device_node *dev)
184 {
185 	return of_get_property(dev, "ibm,associativity", NULL);
186 }
187 
__node_distance(int a,int b)188 int __node_distance(int a, int b)
189 {
190 	int i;
191 	int distance = LOCAL_DISTANCE;
192 
193 	if (!form1_affinity)
194 		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
195 
196 	for (i = 0; i < distance_ref_points_depth; i++) {
197 		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
198 			break;
199 
200 		/* Double the distance for each NUMA level */
201 		distance *= 2;
202 	}
203 
204 	return distance;
205 }
206 EXPORT_SYMBOL(__node_distance);
207 
initialize_distance_lookup_table(int nid,const __be32 * associativity)208 static void initialize_distance_lookup_table(int nid,
209 		const __be32 *associativity)
210 {
211 	int i;
212 
213 	if (!form1_affinity)
214 		return;
215 
216 	for (i = 0; i < distance_ref_points_depth; i++) {
217 		const __be32 *entry;
218 
219 		entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
220 		distance_lookup_table[nid][i] = of_read_number(entry, 1);
221 	}
222 }
223 
224 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
225  * info is found.
226  */
associativity_to_nid(const __be32 * associativity)227 static int associativity_to_nid(const __be32 *associativity)
228 {
229 	int nid = NUMA_NO_NODE;
230 
231 	if (!numa_enabled)
232 		goto out;
233 
234 	if (of_read_number(associativity, 1) >= min_common_depth)
235 		nid = of_read_number(&associativity[min_common_depth], 1);
236 
237 	/* POWER4 LPAR uses 0xffff as invalid node */
238 	if (nid == 0xffff || nid >= MAX_NUMNODES)
239 		nid = NUMA_NO_NODE;
240 
241 	if (nid > 0 &&
242 		of_read_number(associativity, 1) >= distance_ref_points_depth) {
243 		/*
244 		 * Skip the length field and send start of associativity array
245 		 */
246 		initialize_distance_lookup_table(nid, associativity + 1);
247 	}
248 
249 out:
250 	return nid;
251 }
252 
253 /* Returns the nid associated with the given device tree node,
254  * or -1 if not found.
255  */
of_node_to_nid_single(struct device_node * device)256 static int of_node_to_nid_single(struct device_node *device)
257 {
258 	int nid = NUMA_NO_NODE;
259 	const __be32 *tmp;
260 
261 	tmp = of_get_associativity(device);
262 	if (tmp)
263 		nid = associativity_to_nid(tmp);
264 	return nid;
265 }
266 
267 /* Walk the device tree upwards, looking for an associativity id */
of_node_to_nid(struct device_node * device)268 int of_node_to_nid(struct device_node *device)
269 {
270 	int nid = NUMA_NO_NODE;
271 
272 	of_node_get(device);
273 	while (device) {
274 		nid = of_node_to_nid_single(device);
275 		if (nid != -1)
276 			break;
277 
278 		device = of_get_next_parent(device);
279 	}
280 	of_node_put(device);
281 
282 	return nid;
283 }
284 EXPORT_SYMBOL(of_node_to_nid);
285 
find_min_common_depth(void)286 static int __init find_min_common_depth(void)
287 {
288 	int depth;
289 	struct device_node *root;
290 
291 	if (firmware_has_feature(FW_FEATURE_OPAL))
292 		root = of_find_node_by_path("/ibm,opal");
293 	else
294 		root = of_find_node_by_path("/rtas");
295 	if (!root)
296 		root = of_find_node_by_path("/");
297 
298 	/*
299 	 * This property is a set of 32-bit integers, each representing
300 	 * an index into the ibm,associativity nodes.
301 	 *
302 	 * With form 0 affinity the first integer is for an SMP configuration
303 	 * (should be all 0's) and the second is for a normal NUMA
304 	 * configuration. We have only one level of NUMA.
305 	 *
306 	 * With form 1 affinity the first integer is the most significant
307 	 * NUMA boundary and the following are progressively less significant
308 	 * boundaries. There can be more than one level of NUMA.
309 	 */
310 	distance_ref_points = of_get_property(root,
311 					"ibm,associativity-reference-points",
312 					&distance_ref_points_depth);
313 
314 	if (!distance_ref_points) {
315 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
316 		goto err;
317 	}
318 
319 	distance_ref_points_depth /= sizeof(int);
320 
321 	if (firmware_has_feature(FW_FEATURE_OPAL) ||
322 	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
323 		dbg("Using form 1 affinity\n");
324 		form1_affinity = 1;
325 	}
326 
327 	if (form1_affinity) {
328 		depth = of_read_number(distance_ref_points, 1);
329 	} else {
330 		if (distance_ref_points_depth < 2) {
331 			printk(KERN_WARNING "NUMA: "
332 				"short ibm,associativity-reference-points\n");
333 			goto err;
334 		}
335 
336 		depth = of_read_number(&distance_ref_points[1], 1);
337 	}
338 
339 	/*
340 	 * Warn and cap if the hardware supports more than
341 	 * MAX_DISTANCE_REF_POINTS domains.
342 	 */
343 	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
344 		printk(KERN_WARNING "NUMA: distance array capped at "
345 			"%d entries\n", MAX_DISTANCE_REF_POINTS);
346 		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
347 	}
348 
349 	of_node_put(root);
350 	return depth;
351 
352 err:
353 	of_node_put(root);
354 	return -1;
355 }
356 
get_n_mem_cells(int * n_addr_cells,int * n_size_cells)357 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
358 {
359 	struct device_node *memory = NULL;
360 
361 	memory = of_find_node_by_type(memory, "memory");
362 	if (!memory)
363 		panic("numa.c: No memory nodes found!");
364 
365 	*n_addr_cells = of_n_addr_cells(memory);
366 	*n_size_cells = of_n_size_cells(memory);
367 	of_node_put(memory);
368 }
369 
read_n_cells(int n,const __be32 ** buf)370 static unsigned long read_n_cells(int n, const __be32 **buf)
371 {
372 	unsigned long result = 0;
373 
374 	while (n--) {
375 		result = (result << 32) | of_read_number(*buf, 1);
376 		(*buf)++;
377 	}
378 	return result;
379 }
380 
381 struct assoc_arrays {
382 	u32	n_arrays;
383 	u32	array_sz;
384 	const __be32 *arrays;
385 };
386 
387 /*
388  * Retrieve and validate the list of associativity arrays for drconf
389  * memory from the ibm,associativity-lookup-arrays property of the
390  * device tree..
391  *
392  * The layout of the ibm,associativity-lookup-arrays property is a number N
393  * indicating the number of associativity arrays, followed by a number M
394  * indicating the size of each associativity array, followed by a list
395  * of N associativity arrays.
396  */
of_get_assoc_arrays(struct assoc_arrays * aa)397 static int of_get_assoc_arrays(struct assoc_arrays *aa)
398 {
399 	struct device_node *memory;
400 	const __be32 *prop;
401 	u32 len;
402 
403 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
404 	if (!memory)
405 		return -1;
406 
407 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
408 	if (!prop || len < 2 * sizeof(unsigned int)) {
409 		of_node_put(memory);
410 		return -1;
411 	}
412 
413 	aa->n_arrays = of_read_number(prop++, 1);
414 	aa->array_sz = of_read_number(prop++, 1);
415 
416 	of_node_put(memory);
417 
418 	/* Now that we know the number of arrays and size of each array,
419 	 * revalidate the size of the property read in.
420 	 */
421 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
422 		return -1;
423 
424 	aa->arrays = prop;
425 	return 0;
426 }
427 
428 /*
429  * This is like of_node_to_nid_single() for memory represented in the
430  * ibm,dynamic-reconfiguration-memory node.
431  */
of_drconf_to_nid_single(struct drmem_lmb * lmb)432 static int of_drconf_to_nid_single(struct drmem_lmb *lmb)
433 {
434 	struct assoc_arrays aa = { .arrays = NULL };
435 	int default_nid = NUMA_NO_NODE;
436 	int nid = default_nid;
437 	int rc, index;
438 
439 	if ((min_common_depth < 0) || !numa_enabled)
440 		return default_nid;
441 
442 	rc = of_get_assoc_arrays(&aa);
443 	if (rc)
444 		return default_nid;
445 
446 	if (min_common_depth <= aa.array_sz &&
447 	    !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
448 		index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
449 		nid = of_read_number(&aa.arrays[index], 1);
450 
451 		if (nid == 0xffff || nid >= MAX_NUMNODES)
452 			nid = default_nid;
453 
454 		if (nid > 0) {
455 			index = lmb->aa_index * aa.array_sz;
456 			initialize_distance_lookup_table(nid,
457 							&aa.arrays[index]);
458 		}
459 	}
460 
461 	return nid;
462 }
463 
464 /*
465  * Figure out to which domain a cpu belongs and stick it there.
466  * Return the id of the domain used.
467  */
numa_setup_cpu(unsigned long lcpu)468 static int numa_setup_cpu(unsigned long lcpu)
469 {
470 	int nid = NUMA_NO_NODE;
471 	struct device_node *cpu;
472 
473 	/*
474 	 * If a valid cpu-to-node mapping is already available, use it
475 	 * directly instead of querying the firmware, since it represents
476 	 * the most recent mapping notified to us by the platform (eg: VPHN).
477 	 */
478 	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
479 		map_cpu_to_node(lcpu, nid);
480 		return nid;
481 	}
482 
483 	cpu = of_get_cpu_node(lcpu, NULL);
484 
485 	if (!cpu) {
486 		WARN_ON(1);
487 		if (cpu_present(lcpu))
488 			goto out_present;
489 		else
490 			goto out;
491 	}
492 
493 	nid = of_node_to_nid_single(cpu);
494 
495 out_present:
496 	if (nid < 0 || !node_possible(nid))
497 		nid = first_online_node;
498 
499 	map_cpu_to_node(lcpu, nid);
500 	of_node_put(cpu);
501 out:
502 	return nid;
503 }
504 
verify_cpu_node_mapping(int cpu,int node)505 static void verify_cpu_node_mapping(int cpu, int node)
506 {
507 	int base, sibling, i;
508 
509 	/* Verify that all the threads in the core belong to the same node */
510 	base = cpu_first_thread_sibling(cpu);
511 
512 	for (i = 0; i < threads_per_core; i++) {
513 		sibling = base + i;
514 
515 		if (sibling == cpu || cpu_is_offline(sibling))
516 			continue;
517 
518 		if (cpu_to_node(sibling) != node) {
519 			WARN(1, "CPU thread siblings %d and %d don't belong"
520 				" to the same node!\n", cpu, sibling);
521 			break;
522 		}
523 	}
524 }
525 
526 /* Must run before sched domains notifier. */
ppc_numa_cpu_prepare(unsigned int cpu)527 static int ppc_numa_cpu_prepare(unsigned int cpu)
528 {
529 	int nid;
530 
531 	nid = numa_setup_cpu(cpu);
532 	verify_cpu_node_mapping(cpu, nid);
533 	return 0;
534 }
535 
ppc_numa_cpu_dead(unsigned int cpu)536 static int ppc_numa_cpu_dead(unsigned int cpu)
537 {
538 #ifdef CONFIG_HOTPLUG_CPU
539 	unmap_cpu_from_node(cpu);
540 #endif
541 	return 0;
542 }
543 
544 /*
545  * Check and possibly modify a memory region to enforce the memory limit.
546  *
547  * Returns the size the region should have to enforce the memory limit.
548  * This will either be the original value of size, a truncated value,
549  * or zero. If the returned value of size is 0 the region should be
550  * discarded as it lies wholly above the memory limit.
551  */
numa_enforce_memory_limit(unsigned long start,unsigned long size)552 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
553 						      unsigned long size)
554 {
555 	/*
556 	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
557 	 * we've already adjusted it for the limit and it takes care of
558 	 * having memory holes below the limit.  Also, in the case of
559 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
560 	 */
561 
562 	if (start + size <= memblock_end_of_DRAM())
563 		return size;
564 
565 	if (start >= memblock_end_of_DRAM())
566 		return 0;
567 
568 	return memblock_end_of_DRAM() - start;
569 }
570 
571 /*
572  * Reads the counter for a given entry in
573  * linux,drconf-usable-memory property
574  */
read_usm_ranges(const __be32 ** usm)575 static inline int __init read_usm_ranges(const __be32 **usm)
576 {
577 	/*
578 	 * For each lmb in ibm,dynamic-memory a corresponding
579 	 * entry in linux,drconf-usable-memory property contains
580 	 * a counter followed by that many (base, size) duple.
581 	 * read the counter from linux,drconf-usable-memory
582 	 */
583 	return read_n_cells(n_mem_size_cells, usm);
584 }
585 
586 /*
587  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
588  * node.  This assumes n_mem_{addr,size}_cells have been set.
589  */
numa_setup_drmem_lmb(struct drmem_lmb * lmb,const __be32 ** usm)590 static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
591 					const __be32 **usm)
592 {
593 	unsigned int ranges, is_kexec_kdump = 0;
594 	unsigned long base, size, sz;
595 	int nid;
596 
597 	/*
598 	 * Skip this block if the reserved bit is set in flags (0x80)
599 	 * or if the block is not assigned to this partition (0x8)
600 	 */
601 	if ((lmb->flags & DRCONF_MEM_RESERVED)
602 	    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
603 		return;
604 
605 	if (*usm)
606 		is_kexec_kdump = 1;
607 
608 	base = lmb->base_addr;
609 	size = drmem_lmb_size();
610 	ranges = 1;
611 
612 	if (is_kexec_kdump) {
613 		ranges = read_usm_ranges(usm);
614 		if (!ranges) /* there are no (base, size) duple */
615 			return;
616 	}
617 
618 	do {
619 		if (is_kexec_kdump) {
620 			base = read_n_cells(n_mem_addr_cells, usm);
621 			size = read_n_cells(n_mem_size_cells, usm);
622 		}
623 
624 		nid = of_drconf_to_nid_single(lmb);
625 		fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
626 					  &nid);
627 		node_set_online(nid);
628 		sz = numa_enforce_memory_limit(base, size);
629 		if (sz)
630 			memblock_set_node(base, sz, &memblock.memory, nid);
631 	} while (--ranges);
632 }
633 
parse_numa_properties(void)634 static int __init parse_numa_properties(void)
635 {
636 	struct device_node *memory;
637 	int default_nid = 0;
638 	unsigned long i;
639 
640 	if (numa_enabled == 0) {
641 		printk(KERN_WARNING "NUMA disabled by user\n");
642 		return -1;
643 	}
644 
645 	min_common_depth = find_min_common_depth();
646 
647 	if (min_common_depth < 0) {
648 		/*
649 		 * if we fail to parse min_common_depth from device tree
650 		 * mark the numa disabled, boot with numa disabled.
651 		 */
652 		numa_enabled = false;
653 		return min_common_depth;
654 	}
655 
656 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
657 
658 	/*
659 	 * Even though we connect cpus to numa domains later in SMP
660 	 * init, we need to know the node ids now. This is because
661 	 * each node to be onlined must have NODE_DATA etc backing it.
662 	 */
663 	for_each_present_cpu(i) {
664 		struct device_node *cpu;
665 		int nid;
666 
667 		cpu = of_get_cpu_node(i, NULL);
668 		BUG_ON(!cpu);
669 		nid = of_node_to_nid_single(cpu);
670 		of_node_put(cpu);
671 
672 		/*
673 		 * Don't fall back to default_nid yet -- we will plug
674 		 * cpus into nodes once the memory scan has discovered
675 		 * the topology.
676 		 */
677 		if (nid < 0)
678 			continue;
679 		node_set_online(nid);
680 	}
681 
682 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
683 
684 	for_each_node_by_type(memory, "memory") {
685 		unsigned long start;
686 		unsigned long size;
687 		int nid;
688 		int ranges;
689 		const __be32 *memcell_buf;
690 		unsigned int len;
691 
692 		memcell_buf = of_get_property(memory,
693 			"linux,usable-memory", &len);
694 		if (!memcell_buf || len <= 0)
695 			memcell_buf = of_get_property(memory, "reg", &len);
696 		if (!memcell_buf || len <= 0)
697 			continue;
698 
699 		/* ranges in cell */
700 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
701 new_range:
702 		/* these are order-sensitive, and modify the buffer pointer */
703 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
704 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
705 
706 		/*
707 		 * Assumption: either all memory nodes or none will
708 		 * have associativity properties.  If none, then
709 		 * everything goes to default_nid.
710 		 */
711 		nid = of_node_to_nid_single(memory);
712 		if (nid < 0)
713 			nid = default_nid;
714 
715 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
716 		node_set_online(nid);
717 
718 		size = numa_enforce_memory_limit(start, size);
719 		if (size)
720 			memblock_set_node(start, size, &memblock.memory, nid);
721 
722 		if (--ranges)
723 			goto new_range;
724 	}
725 
726 	/*
727 	 * Now do the same thing for each MEMBLOCK listed in the
728 	 * ibm,dynamic-memory property in the
729 	 * ibm,dynamic-reconfiguration-memory node.
730 	 */
731 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
732 	if (memory) {
733 		walk_drmem_lmbs(memory, numa_setup_drmem_lmb);
734 		of_node_put(memory);
735 	}
736 
737 	return 0;
738 }
739 
setup_nonnuma(void)740 static void __init setup_nonnuma(void)
741 {
742 	unsigned long top_of_ram = memblock_end_of_DRAM();
743 	unsigned long total_ram = memblock_phys_mem_size();
744 	unsigned long start_pfn, end_pfn;
745 	unsigned int nid = 0;
746 	struct memblock_region *reg;
747 
748 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
749 	       top_of_ram, total_ram);
750 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
751 	       (top_of_ram - total_ram) >> 20);
752 
753 	for_each_memblock(memory, reg) {
754 		start_pfn = memblock_region_memory_base_pfn(reg);
755 		end_pfn = memblock_region_memory_end_pfn(reg);
756 
757 		fake_numa_create_new_node(end_pfn, &nid);
758 		memblock_set_node(PFN_PHYS(start_pfn),
759 				  PFN_PHYS(end_pfn - start_pfn),
760 				  &memblock.memory, nid);
761 		node_set_online(nid);
762 	}
763 }
764 
dump_numa_cpu_topology(void)765 void __init dump_numa_cpu_topology(void)
766 {
767 	unsigned int node;
768 	unsigned int cpu, count;
769 
770 	if (!numa_enabled)
771 		return;
772 
773 	for_each_online_node(node) {
774 		pr_info("Node %d CPUs:", node);
775 
776 		count = 0;
777 		/*
778 		 * If we used a CPU iterator here we would miss printing
779 		 * the holes in the cpumap.
780 		 */
781 		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
782 			if (cpumask_test_cpu(cpu,
783 					node_to_cpumask_map[node])) {
784 				if (count == 0)
785 					pr_cont(" %u", cpu);
786 				++count;
787 			} else {
788 				if (count > 1)
789 					pr_cont("-%u", cpu - 1);
790 				count = 0;
791 			}
792 		}
793 
794 		if (count > 1)
795 			pr_cont("-%u", nr_cpu_ids - 1);
796 		pr_cont("\n");
797 	}
798 }
799 
800 /* Initialize NODE_DATA for a node on the local memory */
setup_node_data(int nid,u64 start_pfn,u64 end_pfn)801 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
802 {
803 	u64 spanned_pages = end_pfn - start_pfn;
804 	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
805 	u64 nd_pa;
806 	void *nd;
807 	int tnid;
808 
809 	nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
810 	if (!nd_pa)
811 		panic("Cannot allocate %zu bytes for node %d data\n",
812 		      nd_size, nid);
813 
814 	nd = __va(nd_pa);
815 
816 	/* report and initialize */
817 	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
818 		nd_pa, nd_pa + nd_size - 1);
819 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
820 	if (tnid != nid)
821 		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
822 
823 	node_data[nid] = nd;
824 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
825 	NODE_DATA(nid)->node_id = nid;
826 	NODE_DATA(nid)->node_start_pfn = start_pfn;
827 	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
828 }
829 
find_possible_nodes(void)830 static void __init find_possible_nodes(void)
831 {
832 	struct device_node *rtas;
833 	u32 numnodes, i;
834 
835 	if (!numa_enabled)
836 		return;
837 
838 	rtas = of_find_node_by_path("/rtas");
839 	if (!rtas)
840 		return;
841 
842 	if (of_property_read_u32_index(rtas,
843 				"ibm,max-associativity-domains",
844 				min_common_depth, &numnodes))
845 		goto out;
846 
847 	for (i = 0; i < numnodes; i++) {
848 		if (!node_possible(i))
849 			node_set(i, node_possible_map);
850 	}
851 
852 out:
853 	of_node_put(rtas);
854 }
855 
mem_topology_setup(void)856 void __init mem_topology_setup(void)
857 {
858 	int cpu;
859 
860 	if (parse_numa_properties())
861 		setup_nonnuma();
862 
863 	/*
864 	 * Modify the set of possible NUMA nodes to reflect information
865 	 * available about the set of online nodes, and the set of nodes
866 	 * that we expect to make use of for this platform's affinity
867 	 * calculations.
868 	 */
869 	nodes_and(node_possible_map, node_possible_map, node_online_map);
870 
871 	find_possible_nodes();
872 
873 	setup_node_to_cpumask_map();
874 
875 	reset_numa_cpu_lookup_table();
876 
877 	for_each_present_cpu(cpu)
878 		numa_setup_cpu(cpu);
879 }
880 
initmem_init(void)881 void __init initmem_init(void)
882 {
883 	int nid;
884 
885 	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
886 	max_pfn = max_low_pfn;
887 
888 	memblock_dump_all();
889 
890 	for_each_online_node(nid) {
891 		unsigned long start_pfn, end_pfn;
892 
893 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
894 		setup_node_data(nid, start_pfn, end_pfn);
895 		sparse_memory_present_with_active_regions(nid);
896 	}
897 
898 	sparse_init();
899 
900 	/*
901 	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
902 	 * even before we online them, so that we can use cpu_to_{node,mem}
903 	 * early in boot, cf. smp_prepare_cpus().
904 	 * _nocalls() + manual invocation is used because cpuhp is not yet
905 	 * initialized for the boot CPU.
906 	 */
907 	cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
908 				  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
909 }
910 
early_numa(char * p)911 static int __init early_numa(char *p)
912 {
913 	if (!p)
914 		return 0;
915 
916 	if (strstr(p, "off"))
917 		numa_enabled = 0;
918 
919 	if (strstr(p, "debug"))
920 		numa_debug = 1;
921 
922 	p = strstr(p, "fake=");
923 	if (p)
924 		cmdline = p + strlen("fake=");
925 
926 	return 0;
927 }
928 early_param("numa", early_numa);
929 
930 /*
931  * The platform can inform us through one of several mechanisms
932  * (post-migration device tree updates, PRRN or VPHN) that the NUMA
933  * assignment of a resource has changed. This controls whether we act
934  * on that. Disabled by default.
935  */
936 static bool topology_updates_enabled;
937 
early_topology_updates(char * p)938 static int __init early_topology_updates(char *p)
939 {
940 	if (!p)
941 		return 0;
942 
943 	if (!strcmp(p, "on")) {
944 		pr_warn("Caution: enabling topology updates\n");
945 		topology_updates_enabled = true;
946 	}
947 
948 	return 0;
949 }
950 early_param("topology_updates", early_topology_updates);
951 
952 #ifdef CONFIG_MEMORY_HOTPLUG
953 /*
954  * Find the node associated with a hot added memory section for
955  * memory represented in the device tree by the property
956  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
957  */
hot_add_drconf_scn_to_nid(unsigned long scn_addr)958 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
959 {
960 	struct drmem_lmb *lmb;
961 	unsigned long lmb_size;
962 	int nid = NUMA_NO_NODE;
963 
964 	lmb_size = drmem_lmb_size();
965 
966 	for_each_drmem_lmb(lmb) {
967 		/* skip this block if it is reserved or not assigned to
968 		 * this partition */
969 		if ((lmb->flags & DRCONF_MEM_RESERVED)
970 		    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
971 			continue;
972 
973 		if ((scn_addr < lmb->base_addr)
974 		    || (scn_addr >= (lmb->base_addr + lmb_size)))
975 			continue;
976 
977 		nid = of_drconf_to_nid_single(lmb);
978 		break;
979 	}
980 
981 	return nid;
982 }
983 
984 /*
985  * Find the node associated with a hot added memory section for memory
986  * represented in the device tree as a node (i.e. memory@XXXX) for
987  * each memblock.
988  */
hot_add_node_scn_to_nid(unsigned long scn_addr)989 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
990 {
991 	struct device_node *memory;
992 	int nid = NUMA_NO_NODE;
993 
994 	for_each_node_by_type(memory, "memory") {
995 		unsigned long start, size;
996 		int ranges;
997 		const __be32 *memcell_buf;
998 		unsigned int len;
999 
1000 		memcell_buf = of_get_property(memory, "reg", &len);
1001 		if (!memcell_buf || len <= 0)
1002 			continue;
1003 
1004 		/* ranges in cell */
1005 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1006 
1007 		while (ranges--) {
1008 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1009 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
1010 
1011 			if ((scn_addr < start) || (scn_addr >= (start + size)))
1012 				continue;
1013 
1014 			nid = of_node_to_nid_single(memory);
1015 			break;
1016 		}
1017 
1018 		if (nid >= 0)
1019 			break;
1020 	}
1021 
1022 	of_node_put(memory);
1023 
1024 	return nid;
1025 }
1026 
1027 /*
1028  * Find the node associated with a hot added memory section.  Section
1029  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1030  * sections are fully contained within a single MEMBLOCK.
1031  */
hot_add_scn_to_nid(unsigned long scn_addr)1032 int hot_add_scn_to_nid(unsigned long scn_addr)
1033 {
1034 	struct device_node *memory = NULL;
1035 	int nid;
1036 
1037 	if (!numa_enabled)
1038 		return first_online_node;
1039 
1040 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1041 	if (memory) {
1042 		nid = hot_add_drconf_scn_to_nid(scn_addr);
1043 		of_node_put(memory);
1044 	} else {
1045 		nid = hot_add_node_scn_to_nid(scn_addr);
1046 	}
1047 
1048 	if (nid < 0 || !node_possible(nid))
1049 		nid = first_online_node;
1050 
1051 	return nid;
1052 }
1053 
hot_add_drconf_memory_max(void)1054 static u64 hot_add_drconf_memory_max(void)
1055 {
1056 	struct device_node *memory = NULL;
1057 	struct device_node *dn = NULL;
1058 	const __be64 *lrdr = NULL;
1059 
1060 	dn = of_find_node_by_path("/rtas");
1061 	if (dn) {
1062 		lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1063 		of_node_put(dn);
1064 		if (lrdr)
1065 			return be64_to_cpup(lrdr);
1066 	}
1067 
1068 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1069 	if (memory) {
1070 		of_node_put(memory);
1071 		return drmem_lmb_memory_max();
1072 	}
1073 	return 0;
1074 }
1075 
1076 /*
1077  * memory_hotplug_max - return max address of memory that may be added
1078  *
1079  * This is currently only used on systems that support drconfig memory
1080  * hotplug.
1081  */
memory_hotplug_max(void)1082 u64 memory_hotplug_max(void)
1083 {
1084         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1085 }
1086 #endif /* CONFIG_MEMORY_HOTPLUG */
1087 
1088 /* Virtual Processor Home Node (VPHN) support */
1089 #ifdef CONFIG_PPC_SPLPAR
1090 struct topology_update_data {
1091 	struct topology_update_data *next;
1092 	unsigned int cpu;
1093 	int old_nid;
1094 	int new_nid;
1095 };
1096 
1097 #define TOPOLOGY_DEF_TIMER_SECS	60
1098 
1099 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1100 static cpumask_t cpu_associativity_changes_mask;
1101 static int vphn_enabled;
1102 static int prrn_enabled;
1103 static void reset_topology_timer(void);
1104 static int topology_timer_secs = 1;
1105 static int topology_inited;
1106 
1107 /*
1108  * Change polling interval for associativity changes.
1109  */
timed_topology_update(int nsecs)1110 int timed_topology_update(int nsecs)
1111 {
1112 	if (vphn_enabled) {
1113 		if (nsecs > 0)
1114 			topology_timer_secs = nsecs;
1115 		else
1116 			topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS;
1117 
1118 		reset_topology_timer();
1119 	}
1120 
1121 	return 0;
1122 }
1123 
1124 /*
1125  * Store the current values of the associativity change counters in the
1126  * hypervisor.
1127  */
setup_cpu_associativity_change_counters(void)1128 static void setup_cpu_associativity_change_counters(void)
1129 {
1130 	int cpu;
1131 
1132 	/* The VPHN feature supports a maximum of 8 reference points */
1133 	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1134 
1135 	for_each_possible_cpu(cpu) {
1136 		int i;
1137 		u8 *counts = vphn_cpu_change_counts[cpu];
1138 		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1139 
1140 		for (i = 0; i < distance_ref_points_depth; i++)
1141 			counts[i] = hypervisor_counts[i];
1142 	}
1143 }
1144 
1145 /*
1146  * The hypervisor maintains a set of 8 associativity change counters in
1147  * the VPA of each cpu that correspond to the associativity levels in the
1148  * ibm,associativity-reference-points property. When an associativity
1149  * level changes, the corresponding counter is incremented.
1150  *
1151  * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1152  * node associativity levels have changed.
1153  *
1154  * Returns the number of cpus with unhandled associativity changes.
1155  */
update_cpu_associativity_changes_mask(void)1156 static int update_cpu_associativity_changes_mask(void)
1157 {
1158 	int cpu;
1159 	cpumask_t *changes = &cpu_associativity_changes_mask;
1160 
1161 	for_each_possible_cpu(cpu) {
1162 		int i, changed = 0;
1163 		u8 *counts = vphn_cpu_change_counts[cpu];
1164 		volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts;
1165 
1166 		for (i = 0; i < distance_ref_points_depth; i++) {
1167 			if (hypervisor_counts[i] != counts[i]) {
1168 				counts[i] = hypervisor_counts[i];
1169 				changed = 1;
1170 			}
1171 		}
1172 		if (changed) {
1173 			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1174 			cpu = cpu_last_thread_sibling(cpu);
1175 		}
1176 	}
1177 
1178 	return cpumask_weight(changes);
1179 }
1180 
1181 /*
1182  * Retrieve the new associativity information for a virtual processor's
1183  * home node.
1184  */
vphn_get_associativity(unsigned long cpu,__be32 * associativity)1185 static long vphn_get_associativity(unsigned long cpu,
1186 					__be32 *associativity)
1187 {
1188 	long rc;
1189 
1190 	rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1191 				VPHN_FLAG_VCPU, associativity);
1192 
1193 	switch (rc) {
1194 	case H_FUNCTION:
1195 		printk_once(KERN_INFO
1196 			"VPHN is not supported. Disabling polling...\n");
1197 		stop_topology_update();
1198 		break;
1199 	case H_HARDWARE:
1200 		printk(KERN_ERR
1201 			"hcall_vphn() experienced a hardware fault "
1202 			"preventing VPHN. Disabling polling...\n");
1203 		stop_topology_update();
1204 		break;
1205 	case H_SUCCESS:
1206 		dbg("VPHN hcall succeeded. Reset polling...\n");
1207 		timed_topology_update(0);
1208 		break;
1209 	}
1210 
1211 	return rc;
1212 }
1213 
find_and_online_cpu_nid(int cpu)1214 int find_and_online_cpu_nid(int cpu)
1215 {
1216 	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1217 	int new_nid;
1218 
1219 	/* Use associativity from first thread for all siblings */
1220 	if (vphn_get_associativity(cpu, associativity))
1221 		return cpu_to_node(cpu);
1222 
1223 	new_nid = associativity_to_nid(associativity);
1224 	if (new_nid < 0 || !node_possible(new_nid))
1225 		new_nid = first_online_node;
1226 
1227 	if (NODE_DATA(new_nid) == NULL) {
1228 #ifdef CONFIG_MEMORY_HOTPLUG
1229 		/*
1230 		 * Need to ensure that NODE_DATA is initialized for a node from
1231 		 * available memory (see memblock_alloc_try_nid). If unable to
1232 		 * init the node, then default to nearest node that has memory
1233 		 * installed. Skip onlining a node if the subsystems are not
1234 		 * yet initialized.
1235 		 */
1236 		if (!topology_inited || try_online_node(new_nid))
1237 			new_nid = first_online_node;
1238 #else
1239 		/*
1240 		 * Default to using the nearest node that has memory installed.
1241 		 * Otherwise, it would be necessary to patch the kernel MM code
1242 		 * to deal with more memoryless-node error conditions.
1243 		 */
1244 		new_nid = first_online_node;
1245 #endif
1246 	}
1247 
1248 	pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1249 		cpu, new_nid);
1250 	return new_nid;
1251 }
1252 
1253 /*
1254  * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1255  * characteristics change. This function doesn't perform any locking and is
1256  * only safe to call from stop_machine().
1257  */
update_cpu_topology(void * data)1258 static int update_cpu_topology(void *data)
1259 {
1260 	struct topology_update_data *update;
1261 	unsigned long cpu;
1262 
1263 	if (!data)
1264 		return -EINVAL;
1265 
1266 	cpu = smp_processor_id();
1267 
1268 	for (update = data; update; update = update->next) {
1269 		int new_nid = update->new_nid;
1270 		if (cpu != update->cpu)
1271 			continue;
1272 
1273 		unmap_cpu_from_node(cpu);
1274 		map_cpu_to_node(cpu, new_nid);
1275 		set_cpu_numa_node(cpu, new_nid);
1276 		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1277 		vdso_getcpu_init();
1278 	}
1279 
1280 	return 0;
1281 }
1282 
update_lookup_table(void * data)1283 static int update_lookup_table(void *data)
1284 {
1285 	struct topology_update_data *update;
1286 
1287 	if (!data)
1288 		return -EINVAL;
1289 
1290 	/*
1291 	 * Upon topology update, the numa-cpu lookup table needs to be updated
1292 	 * for all threads in the core, including offline CPUs, to ensure that
1293 	 * future hotplug operations respect the cpu-to-node associativity
1294 	 * properly.
1295 	 */
1296 	for (update = data; update; update = update->next) {
1297 		int nid, base, j;
1298 
1299 		nid = update->new_nid;
1300 		base = cpu_first_thread_sibling(update->cpu);
1301 
1302 		for (j = 0; j < threads_per_core; j++) {
1303 			update_numa_cpu_lookup_table(base + j, nid);
1304 		}
1305 	}
1306 
1307 	return 0;
1308 }
1309 
1310 /*
1311  * Update the node maps and sysfs entries for each cpu whose home node
1312  * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1313  *
1314  * cpus_locked says whether we already hold cpu_hotplug_lock.
1315  */
numa_update_cpu_topology(bool cpus_locked)1316 int numa_update_cpu_topology(bool cpus_locked)
1317 {
1318 	unsigned int cpu, sibling, changed = 0;
1319 	struct topology_update_data *updates, *ud;
1320 	cpumask_t updated_cpus;
1321 	struct device *dev;
1322 	int weight, new_nid, i = 0;
1323 
1324 	if (!prrn_enabled && !vphn_enabled && topology_inited)
1325 		return 0;
1326 
1327 	weight = cpumask_weight(&cpu_associativity_changes_mask);
1328 	if (!weight)
1329 		return 0;
1330 
1331 	updates = kcalloc(weight, sizeof(*updates), GFP_KERNEL);
1332 	if (!updates)
1333 		return 0;
1334 
1335 	cpumask_clear(&updated_cpus);
1336 
1337 	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1338 		/*
1339 		 * If siblings aren't flagged for changes, updates list
1340 		 * will be too short. Skip on this update and set for next
1341 		 * update.
1342 		 */
1343 		if (!cpumask_subset(cpu_sibling_mask(cpu),
1344 					&cpu_associativity_changes_mask)) {
1345 			pr_info("Sibling bits not set for associativity "
1346 					"change, cpu%d\n", cpu);
1347 			cpumask_or(&cpu_associativity_changes_mask,
1348 					&cpu_associativity_changes_mask,
1349 					cpu_sibling_mask(cpu));
1350 			cpu = cpu_last_thread_sibling(cpu);
1351 			continue;
1352 		}
1353 
1354 		new_nid = find_and_online_cpu_nid(cpu);
1355 
1356 		if (new_nid == numa_cpu_lookup_table[cpu]) {
1357 			cpumask_andnot(&cpu_associativity_changes_mask,
1358 					&cpu_associativity_changes_mask,
1359 					cpu_sibling_mask(cpu));
1360 			dbg("Assoc chg gives same node %d for cpu%d\n",
1361 					new_nid, cpu);
1362 			cpu = cpu_last_thread_sibling(cpu);
1363 			continue;
1364 		}
1365 
1366 		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1367 			ud = &updates[i++];
1368 			ud->next = &updates[i];
1369 			ud->cpu = sibling;
1370 			ud->new_nid = new_nid;
1371 			ud->old_nid = numa_cpu_lookup_table[sibling];
1372 			cpumask_set_cpu(sibling, &updated_cpus);
1373 		}
1374 		cpu = cpu_last_thread_sibling(cpu);
1375 	}
1376 
1377 	/*
1378 	 * Prevent processing of 'updates' from overflowing array
1379 	 * where last entry filled in a 'next' pointer.
1380 	 */
1381 	if (i)
1382 		updates[i-1].next = NULL;
1383 
1384 	pr_debug("Topology update for the following CPUs:\n");
1385 	if (cpumask_weight(&updated_cpus)) {
1386 		for (ud = &updates[0]; ud; ud = ud->next) {
1387 			pr_debug("cpu %d moving from node %d "
1388 					  "to %d\n", ud->cpu,
1389 					  ud->old_nid, ud->new_nid);
1390 		}
1391 	}
1392 
1393 	/*
1394 	 * In cases where we have nothing to update (because the updates list
1395 	 * is too short or because the new topology is same as the old one),
1396 	 * skip invoking update_cpu_topology() via stop-machine(). This is
1397 	 * necessary (and not just a fast-path optimization) since stop-machine
1398 	 * can end up electing a random CPU to run update_cpu_topology(), and
1399 	 * thus trick us into setting up incorrect cpu-node mappings (since
1400 	 * 'updates' is kzalloc()'ed).
1401 	 *
1402 	 * And for the similar reason, we will skip all the following updating.
1403 	 */
1404 	if (!cpumask_weight(&updated_cpus))
1405 		goto out;
1406 
1407 	if (cpus_locked)
1408 		stop_machine_cpuslocked(update_cpu_topology, &updates[0],
1409 					&updated_cpus);
1410 	else
1411 		stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1412 
1413 	/*
1414 	 * Update the numa-cpu lookup table with the new mappings, even for
1415 	 * offline CPUs. It is best to perform this update from the stop-
1416 	 * machine context.
1417 	 */
1418 	if (cpus_locked)
1419 		stop_machine_cpuslocked(update_lookup_table, &updates[0],
1420 					cpumask_of(raw_smp_processor_id()));
1421 	else
1422 		stop_machine(update_lookup_table, &updates[0],
1423 			     cpumask_of(raw_smp_processor_id()));
1424 
1425 	for (ud = &updates[0]; ud; ud = ud->next) {
1426 		unregister_cpu_under_node(ud->cpu, ud->old_nid);
1427 		register_cpu_under_node(ud->cpu, ud->new_nid);
1428 
1429 		dev = get_cpu_device(ud->cpu);
1430 		if (dev)
1431 			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1432 		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1433 		changed = 1;
1434 	}
1435 
1436 out:
1437 	kfree(updates);
1438 	return changed;
1439 }
1440 
arch_update_cpu_topology(void)1441 int arch_update_cpu_topology(void)
1442 {
1443 	return numa_update_cpu_topology(true);
1444 }
1445 
topology_work_fn(struct work_struct * work)1446 static void topology_work_fn(struct work_struct *work)
1447 {
1448 	rebuild_sched_domains();
1449 }
1450 static DECLARE_WORK(topology_work, topology_work_fn);
1451 
topology_schedule_update(void)1452 static void topology_schedule_update(void)
1453 {
1454 	schedule_work(&topology_work);
1455 }
1456 
topology_timer_fn(struct timer_list * unused)1457 static void topology_timer_fn(struct timer_list *unused)
1458 {
1459 	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1460 		topology_schedule_update();
1461 	else if (vphn_enabled) {
1462 		if (update_cpu_associativity_changes_mask() > 0)
1463 			topology_schedule_update();
1464 		reset_topology_timer();
1465 	}
1466 }
1467 static struct timer_list topology_timer;
1468 
reset_topology_timer(void)1469 static void reset_topology_timer(void)
1470 {
1471 	if (vphn_enabled)
1472 		mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ);
1473 }
1474 
1475 #ifdef CONFIG_SMP
1476 
dt_update_callback(struct notifier_block * nb,unsigned long action,void * data)1477 static int dt_update_callback(struct notifier_block *nb,
1478 				unsigned long action, void *data)
1479 {
1480 	struct of_reconfig_data *update = data;
1481 	int rc = NOTIFY_DONE;
1482 
1483 	switch (action) {
1484 	case OF_RECONFIG_UPDATE_PROPERTY:
1485 		if (of_node_is_type(update->dn, "cpu") &&
1486 		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1487 			u32 core_id;
1488 			of_property_read_u32(update->dn, "reg", &core_id);
1489 			rc = dlpar_cpu_readd(core_id);
1490 			rc = NOTIFY_OK;
1491 		}
1492 		break;
1493 	}
1494 
1495 	return rc;
1496 }
1497 
1498 static struct notifier_block dt_update_nb = {
1499 	.notifier_call = dt_update_callback,
1500 };
1501 
1502 #endif
1503 
1504 /*
1505  * Start polling for associativity changes.
1506  */
start_topology_update(void)1507 int start_topology_update(void)
1508 {
1509 	int rc = 0;
1510 
1511 	if (!topology_updates_enabled)
1512 		return 0;
1513 
1514 	if (firmware_has_feature(FW_FEATURE_PRRN)) {
1515 		if (!prrn_enabled) {
1516 			prrn_enabled = 1;
1517 #ifdef CONFIG_SMP
1518 			rc = of_reconfig_notifier_register(&dt_update_nb);
1519 #endif
1520 		}
1521 	}
1522 	if (firmware_has_feature(FW_FEATURE_VPHN) &&
1523 		   lppaca_shared_proc(get_lppaca())) {
1524 		if (!vphn_enabled) {
1525 			vphn_enabled = 1;
1526 			setup_cpu_associativity_change_counters();
1527 			timer_setup(&topology_timer, topology_timer_fn,
1528 				    TIMER_DEFERRABLE);
1529 			reset_topology_timer();
1530 		}
1531 	}
1532 
1533 	pr_info("Starting topology update%s%s\n",
1534 		(prrn_enabled ? " prrn_enabled" : ""),
1535 		(vphn_enabled ? " vphn_enabled" : ""));
1536 
1537 	return rc;
1538 }
1539 
1540 /*
1541  * Disable polling for VPHN associativity changes.
1542  */
stop_topology_update(void)1543 int stop_topology_update(void)
1544 {
1545 	int rc = 0;
1546 
1547 	if (!topology_updates_enabled)
1548 		return 0;
1549 
1550 	if (prrn_enabled) {
1551 		prrn_enabled = 0;
1552 #ifdef CONFIG_SMP
1553 		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1554 #endif
1555 	}
1556 	if (vphn_enabled) {
1557 		vphn_enabled = 0;
1558 		rc = del_timer_sync(&topology_timer);
1559 	}
1560 
1561 	pr_info("Stopping topology update\n");
1562 
1563 	return rc;
1564 }
1565 
prrn_is_enabled(void)1566 int prrn_is_enabled(void)
1567 {
1568 	return prrn_enabled;
1569 }
1570 
shared_proc_topology_init(void)1571 void __init shared_proc_topology_init(void)
1572 {
1573 	if (lppaca_shared_proc(get_lppaca())) {
1574 		bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask),
1575 			    nr_cpumask_bits);
1576 		numa_update_cpu_topology(false);
1577 	}
1578 }
1579 
topology_read(struct seq_file * file,void * v)1580 static int topology_read(struct seq_file *file, void *v)
1581 {
1582 	if (vphn_enabled || prrn_enabled)
1583 		seq_puts(file, "on\n");
1584 	else
1585 		seq_puts(file, "off\n");
1586 
1587 	return 0;
1588 }
1589 
topology_open(struct inode * inode,struct file * file)1590 static int topology_open(struct inode *inode, struct file *file)
1591 {
1592 	return single_open(file, topology_read, NULL);
1593 }
1594 
topology_write(struct file * file,const char __user * buf,size_t count,loff_t * off)1595 static ssize_t topology_write(struct file *file, const char __user *buf,
1596 			      size_t count, loff_t *off)
1597 {
1598 	char kbuf[4]; /* "on" or "off" plus null. */
1599 	int read_len;
1600 
1601 	read_len = count < 3 ? count : 3;
1602 	if (copy_from_user(kbuf, buf, read_len))
1603 		return -EINVAL;
1604 
1605 	kbuf[read_len] = '\0';
1606 
1607 	if (!strncmp(kbuf, "on", 2)) {
1608 		topology_updates_enabled = true;
1609 		start_topology_update();
1610 	} else if (!strncmp(kbuf, "off", 3)) {
1611 		stop_topology_update();
1612 		topology_updates_enabled = false;
1613 	} else
1614 		return -EINVAL;
1615 
1616 	return count;
1617 }
1618 
1619 static const struct file_operations topology_ops = {
1620 	.read = seq_read,
1621 	.write = topology_write,
1622 	.open = topology_open,
1623 	.release = single_release
1624 };
1625 
topology_update_init(void)1626 static int topology_update_init(void)
1627 {
1628 	start_topology_update();
1629 
1630 	if (vphn_enabled)
1631 		topology_schedule_update();
1632 
1633 	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1634 		return -ENOMEM;
1635 
1636 	topology_inited = 1;
1637 	return 0;
1638 }
1639 device_initcall(topology_update_init);
1640 #endif /* CONFIG_PPC_SPLPAR */
1641