• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * User interface for Resource Alloction in Resource Director Technology(RDT)
4  *
5  * Copyright (C) 2016 Intel Corporation
6  *
7  * Author: Fenghua Yu <fenghua.yu@intel.com>
8  *
9  * More information about RDT be found in the Intel (R) x86 Architecture
10  * Software Developer Manual.
11  */
12 
13 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29 
30 #include <uapi/linux/magic.h>
31 
32 #include <asm/resctrl_sched.h>
33 #include "internal.h"
34 
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41 
42 /* Kernel fs node for "info" directory under root */
43 static struct kernfs_node *kn_info;
44 
45 /* Kernel fs node for "mon_groups" directory under root */
46 static struct kernfs_node *kn_mongrp;
47 
48 /* Kernel fs node for "mon_data" directory under root */
49 static struct kernfs_node *kn_mondata;
50 
51 static struct seq_buf last_cmd_status;
52 static char last_cmd_status_buf[512];
53 
54 struct dentry *debugfs_resctrl;
55 
rdt_last_cmd_clear(void)56 void rdt_last_cmd_clear(void)
57 {
58 	lockdep_assert_held(&rdtgroup_mutex);
59 	seq_buf_clear(&last_cmd_status);
60 }
61 
rdt_last_cmd_puts(const char * s)62 void rdt_last_cmd_puts(const char *s)
63 {
64 	lockdep_assert_held(&rdtgroup_mutex);
65 	seq_buf_puts(&last_cmd_status, s);
66 }
67 
rdt_last_cmd_printf(const char * fmt,...)68 void rdt_last_cmd_printf(const char *fmt, ...)
69 {
70 	va_list ap;
71 
72 	va_start(ap, fmt);
73 	lockdep_assert_held(&rdtgroup_mutex);
74 	seq_buf_vprintf(&last_cmd_status, fmt, ap);
75 	va_end(ap);
76 }
77 
78 /*
79  * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
80  * we can keep a bitmap of free CLOSIDs in a single integer.
81  *
82  * Using a global CLOSID across all resources has some advantages and
83  * some drawbacks:
84  * + We can simply set "current->closid" to assign a task to a resource
85  *   group.
86  * + Context switch code can avoid extra memory references deciding which
87  *   CLOSID to load into the PQR_ASSOC MSR
88  * - We give up some options in configuring resource groups across multi-socket
89  *   systems.
90  * - Our choices on how to configure each resource become progressively more
91  *   limited as the number of resources grows.
92  */
93 static int closid_free_map;
94 static int closid_free_map_len;
95 
closids_supported(void)96 int closids_supported(void)
97 {
98 	return closid_free_map_len;
99 }
100 
closid_init(void)101 static void closid_init(void)
102 {
103 	struct rdt_resource *r;
104 	int rdt_min_closid = 32;
105 
106 	/* Compute rdt_min_closid across all resources */
107 	for_each_alloc_enabled_rdt_resource(r)
108 		rdt_min_closid = min(rdt_min_closid, r->num_closid);
109 
110 	closid_free_map = BIT_MASK(rdt_min_closid) - 1;
111 
112 	/* CLOSID 0 is always reserved for the default group */
113 	closid_free_map &= ~1;
114 	closid_free_map_len = rdt_min_closid;
115 }
116 
closid_alloc(void)117 static int closid_alloc(void)
118 {
119 	u32 closid = ffs(closid_free_map);
120 
121 	if (closid == 0)
122 		return -ENOSPC;
123 	closid--;
124 	closid_free_map &= ~(1 << closid);
125 
126 	return closid;
127 }
128 
closid_free(int closid)129 void closid_free(int closid)
130 {
131 	closid_free_map |= 1 << closid;
132 }
133 
134 /**
135  * closid_allocated - test if provided closid is in use
136  * @closid: closid to be tested
137  *
138  * Return: true if @closid is currently associated with a resource group,
139  * false if @closid is free
140  */
closid_allocated(unsigned int closid)141 static bool closid_allocated(unsigned int closid)
142 {
143 	return (closid_free_map & (1 << closid)) == 0;
144 }
145 
146 /**
147  * rdtgroup_mode_by_closid - Return mode of resource group with closid
148  * @closid: closid if the resource group
149  *
150  * Each resource group is associated with a @closid. Here the mode
151  * of a resource group can be queried by searching for it using its closid.
152  *
153  * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
154  */
rdtgroup_mode_by_closid(int closid)155 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
156 {
157 	struct rdtgroup *rdtgrp;
158 
159 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
160 		if (rdtgrp->closid == closid)
161 			return rdtgrp->mode;
162 	}
163 
164 	return RDT_NUM_MODES;
165 }
166 
167 static const char * const rdt_mode_str[] = {
168 	[RDT_MODE_SHAREABLE]		= "shareable",
169 	[RDT_MODE_EXCLUSIVE]		= "exclusive",
170 	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
171 	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
172 };
173 
174 /**
175  * rdtgroup_mode_str - Return the string representation of mode
176  * @mode: the resource group mode as &enum rdtgroup_mode
177  *
178  * Return: string representation of valid mode, "unknown" otherwise
179  */
rdtgroup_mode_str(enum rdtgrp_mode mode)180 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
181 {
182 	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
183 		return "unknown";
184 
185 	return rdt_mode_str[mode];
186 }
187 
188 /* set uid and gid of rdtgroup dirs and files to that of the creator */
rdtgroup_kn_set_ugid(struct kernfs_node * kn)189 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
190 {
191 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
192 				.ia_uid = current_fsuid(),
193 				.ia_gid = current_fsgid(), };
194 
195 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
196 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
197 		return 0;
198 
199 	return kernfs_setattr(kn, &iattr);
200 }
201 
rdtgroup_add_file(struct kernfs_node * parent_kn,struct rftype * rft)202 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
203 {
204 	struct kernfs_node *kn;
205 	int ret;
206 
207 	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
208 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
209 				  0, rft->kf_ops, rft, NULL, NULL);
210 	if (IS_ERR(kn))
211 		return PTR_ERR(kn);
212 
213 	ret = rdtgroup_kn_set_ugid(kn);
214 	if (ret) {
215 		kernfs_remove(kn);
216 		return ret;
217 	}
218 
219 	return 0;
220 }
221 
rdtgroup_seqfile_show(struct seq_file * m,void * arg)222 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
223 {
224 	struct kernfs_open_file *of = m->private;
225 	struct rftype *rft = of->kn->priv;
226 
227 	if (rft->seq_show)
228 		return rft->seq_show(of, m, arg);
229 	return 0;
230 }
231 
rdtgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)232 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
233 				   size_t nbytes, loff_t off)
234 {
235 	struct rftype *rft = of->kn->priv;
236 
237 	if (rft->write)
238 		return rft->write(of, buf, nbytes, off);
239 
240 	return -EINVAL;
241 }
242 
243 static struct kernfs_ops rdtgroup_kf_single_ops = {
244 	.atomic_write_len	= PAGE_SIZE,
245 	.write			= rdtgroup_file_write,
246 	.seq_show		= rdtgroup_seqfile_show,
247 };
248 
249 static struct kernfs_ops kf_mondata_ops = {
250 	.atomic_write_len	= PAGE_SIZE,
251 	.seq_show		= rdtgroup_mondata_show,
252 };
253 
is_cpu_list(struct kernfs_open_file * of)254 static bool is_cpu_list(struct kernfs_open_file *of)
255 {
256 	struct rftype *rft = of->kn->priv;
257 
258 	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
259 }
260 
rdtgroup_cpus_show(struct kernfs_open_file * of,struct seq_file * s,void * v)261 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
262 			      struct seq_file *s, void *v)
263 {
264 	struct rdtgroup *rdtgrp;
265 	struct cpumask *mask;
266 	int ret = 0;
267 
268 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
269 
270 	if (rdtgrp) {
271 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
272 			if (!rdtgrp->plr->d) {
273 				rdt_last_cmd_clear();
274 				rdt_last_cmd_puts("Cache domain offline\n");
275 				ret = -ENODEV;
276 			} else {
277 				mask = &rdtgrp->plr->d->cpu_mask;
278 				seq_printf(s, is_cpu_list(of) ?
279 					   "%*pbl\n" : "%*pb\n",
280 					   cpumask_pr_args(mask));
281 			}
282 		} else {
283 			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
284 				   cpumask_pr_args(&rdtgrp->cpu_mask));
285 		}
286 	} else {
287 		ret = -ENOENT;
288 	}
289 	rdtgroup_kn_unlock(of->kn);
290 
291 	return ret;
292 }
293 
294 /*
295  * This is safe against resctrl_sched_in() called from __switch_to()
296  * because __switch_to() is executed with interrupts disabled. A local call
297  * from update_closid_rmid() is proteced against __switch_to() because
298  * preemption is disabled.
299  */
update_cpu_closid_rmid(void * info)300 static void update_cpu_closid_rmid(void *info)
301 {
302 	struct rdtgroup *r = info;
303 
304 	if (r) {
305 		this_cpu_write(pqr_state.default_closid, r->closid);
306 		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
307 	}
308 
309 	/*
310 	 * We cannot unconditionally write the MSR because the current
311 	 * executing task might have its own closid selected. Just reuse
312 	 * the context switch code.
313 	 */
314 	resctrl_sched_in(current);
315 }
316 
317 /*
318  * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
319  *
320  * Per task closids/rmids must have been set up before calling this function.
321  */
322 static void
update_closid_rmid(const struct cpumask * cpu_mask,struct rdtgroup * r)323 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
324 {
325 	int cpu = get_cpu();
326 
327 	if (cpumask_test_cpu(cpu, cpu_mask))
328 		update_cpu_closid_rmid(r);
329 	smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
330 	put_cpu();
331 }
332 
cpus_mon_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask)333 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
334 			  cpumask_var_t tmpmask)
335 {
336 	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
337 	struct list_head *head;
338 
339 	/* Check whether cpus belong to parent ctrl group */
340 	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
341 	if (cpumask_weight(tmpmask)) {
342 		rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
343 		return -EINVAL;
344 	}
345 
346 	/* Check whether cpus are dropped from this group */
347 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
348 	if (cpumask_weight(tmpmask)) {
349 		/* Give any dropped cpus to parent rdtgroup */
350 		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
351 		update_closid_rmid(tmpmask, prgrp);
352 	}
353 
354 	/*
355 	 * If we added cpus, remove them from previous group that owned them
356 	 * and update per-cpu rmid
357 	 */
358 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
359 	if (cpumask_weight(tmpmask)) {
360 		head = &prgrp->mon.crdtgrp_list;
361 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
362 			if (crgrp == rdtgrp)
363 				continue;
364 			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
365 				       tmpmask);
366 		}
367 		update_closid_rmid(tmpmask, rdtgrp);
368 	}
369 
370 	/* Done pushing/pulling - update this group with new mask */
371 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
372 
373 	return 0;
374 }
375 
cpumask_rdtgrp_clear(struct rdtgroup * r,struct cpumask * m)376 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
377 {
378 	struct rdtgroup *crgrp;
379 
380 	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
381 	/* update the child mon group masks as well*/
382 	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
383 		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
384 }
385 
cpus_ctrl_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask,cpumask_var_t tmpmask1)386 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
387 			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
388 {
389 	struct rdtgroup *r, *crgrp;
390 	struct list_head *head;
391 
392 	/* Check whether cpus are dropped from this group */
393 	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
394 	if (cpumask_weight(tmpmask)) {
395 		/* Can't drop from default group */
396 		if (rdtgrp == &rdtgroup_default) {
397 			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
398 			return -EINVAL;
399 		}
400 
401 		/* Give any dropped cpus to rdtgroup_default */
402 		cpumask_or(&rdtgroup_default.cpu_mask,
403 			   &rdtgroup_default.cpu_mask, tmpmask);
404 		update_closid_rmid(tmpmask, &rdtgroup_default);
405 	}
406 
407 	/*
408 	 * If we added cpus, remove them from previous group and
409 	 * the prev group's child groups that owned them
410 	 * and update per-cpu closid/rmid.
411 	 */
412 	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
413 	if (cpumask_weight(tmpmask)) {
414 		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
415 			if (r == rdtgrp)
416 				continue;
417 			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
418 			if (cpumask_weight(tmpmask1))
419 				cpumask_rdtgrp_clear(r, tmpmask1);
420 		}
421 		update_closid_rmid(tmpmask, rdtgrp);
422 	}
423 
424 	/* Done pushing/pulling - update this group with new mask */
425 	cpumask_copy(&rdtgrp->cpu_mask, newmask);
426 
427 	/*
428 	 * Clear child mon group masks since there is a new parent mask
429 	 * now and update the rmid for the cpus the child lost.
430 	 */
431 	head = &rdtgrp->mon.crdtgrp_list;
432 	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
433 		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
434 		update_closid_rmid(tmpmask, rdtgrp);
435 		cpumask_clear(&crgrp->cpu_mask);
436 	}
437 
438 	return 0;
439 }
440 
rdtgroup_cpus_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)441 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
442 				   char *buf, size_t nbytes, loff_t off)
443 {
444 	cpumask_var_t tmpmask, newmask, tmpmask1;
445 	struct rdtgroup *rdtgrp;
446 	int ret;
447 
448 	if (!buf)
449 		return -EINVAL;
450 
451 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
452 		return -ENOMEM;
453 	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
454 		free_cpumask_var(tmpmask);
455 		return -ENOMEM;
456 	}
457 	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
458 		free_cpumask_var(tmpmask);
459 		free_cpumask_var(newmask);
460 		return -ENOMEM;
461 	}
462 
463 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
464 	if (!rdtgrp) {
465 		ret = -ENOENT;
466 		goto unlock;
467 	}
468 
469 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
470 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
471 		ret = -EINVAL;
472 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
473 		goto unlock;
474 	}
475 
476 	if (is_cpu_list(of))
477 		ret = cpulist_parse(buf, newmask);
478 	else
479 		ret = cpumask_parse(buf, newmask);
480 
481 	if (ret) {
482 		rdt_last_cmd_puts("Bad CPU list/mask\n");
483 		goto unlock;
484 	}
485 
486 	/* check that user didn't specify any offline cpus */
487 	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
488 	if (cpumask_weight(tmpmask)) {
489 		ret = -EINVAL;
490 		rdt_last_cmd_puts("Can only assign online CPUs\n");
491 		goto unlock;
492 	}
493 
494 	if (rdtgrp->type == RDTCTRL_GROUP)
495 		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
496 	else if (rdtgrp->type == RDTMON_GROUP)
497 		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
498 	else
499 		ret = -EINVAL;
500 
501 unlock:
502 	rdtgroup_kn_unlock(of->kn);
503 	free_cpumask_var(tmpmask);
504 	free_cpumask_var(newmask);
505 	free_cpumask_var(tmpmask1);
506 
507 	return ret ?: nbytes;
508 }
509 
510 /**
511  * rdtgroup_remove - the helper to remove resource group safely
512  * @rdtgrp: resource group to remove
513  *
514  * On resource group creation via a mkdir, an extra kernfs_node reference is
515  * taken to ensure that the rdtgroup structure remains accessible for the
516  * rdtgroup_kn_unlock() calls where it is removed.
517  *
518  * Drop the extra reference here, then free the rdtgroup structure.
519  *
520  * Return: void
521  */
rdtgroup_remove(struct rdtgroup * rdtgrp)522 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
523 {
524 	kernfs_put(rdtgrp->kn);
525 	kfree(rdtgrp);
526 }
527 
_update_task_closid_rmid(void * task)528 static void _update_task_closid_rmid(void *task)
529 {
530 	/*
531 	 * If the task is still current on this CPU, update PQR_ASSOC MSR.
532 	 * Otherwise, the MSR is updated when the task is scheduled in.
533 	 */
534 	if (task == current)
535 		resctrl_sched_in(task);
536 }
537 
update_task_closid_rmid(struct task_struct * t)538 static void update_task_closid_rmid(struct task_struct *t)
539 {
540 	if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
541 		smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
542 	else
543 		_update_task_closid_rmid(t);
544 }
545 
__rdtgroup_move_task(struct task_struct * tsk,struct rdtgroup * rdtgrp)546 static int __rdtgroup_move_task(struct task_struct *tsk,
547 				struct rdtgroup *rdtgrp)
548 {
549 	/* If the task is already in rdtgrp, no need to move the task. */
550 	if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid &&
551 	     tsk->rmid == rdtgrp->mon.rmid) ||
552 	    (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid &&
553 	     tsk->closid == rdtgrp->mon.parent->closid))
554 		return 0;
555 
556 	/*
557 	 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
558 	 * updated by them.
559 	 *
560 	 * For ctrl_mon groups, move both closid and rmid.
561 	 * For monitor groups, can move the tasks only from
562 	 * their parent CTRL group.
563 	 */
564 
565 	if (rdtgrp->type == RDTCTRL_GROUP) {
566 		WRITE_ONCE(tsk->closid, rdtgrp->closid);
567 		WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
568 	} else if (rdtgrp->type == RDTMON_GROUP) {
569 		if (rdtgrp->mon.parent->closid == tsk->closid) {
570 			WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
571 		} else {
572 			rdt_last_cmd_puts("Can't move task to different control group\n");
573 			return -EINVAL;
574 		}
575 	}
576 
577 	/*
578 	 * Ensure the task's closid and rmid are written before determining if
579 	 * the task is current that will decide if it will be interrupted.
580 	 * This pairs with the full barrier between the rq->curr update and
581 	 * resctrl_sched_in() during context switch.
582 	 */
583 	smp_mb();
584 
585 	/*
586 	 * By now, the task's closid and rmid are set. If the task is current
587 	 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
588 	 * group go into effect. If the task is not current, the MSR will be
589 	 * updated when the task is scheduled in.
590 	 */
591 	update_task_closid_rmid(tsk);
592 
593 	return 0;
594 }
595 
is_closid_match(struct task_struct * t,struct rdtgroup * r)596 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
597 {
598 	return (rdt_alloc_capable &&
599 	       (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
600 }
601 
is_rmid_match(struct task_struct * t,struct rdtgroup * r)602 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
603 {
604 	return (rdt_mon_capable &&
605 	       (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
606 }
607 
608 /**
609  * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
610  * @r: Resource group
611  *
612  * Return: 1 if tasks have been assigned to @r, 0 otherwise
613  */
rdtgroup_tasks_assigned(struct rdtgroup * r)614 int rdtgroup_tasks_assigned(struct rdtgroup *r)
615 {
616 	struct task_struct *p, *t;
617 	int ret = 0;
618 
619 	lockdep_assert_held(&rdtgroup_mutex);
620 
621 	rcu_read_lock();
622 	for_each_process_thread(p, t) {
623 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
624 			ret = 1;
625 			break;
626 		}
627 	}
628 	rcu_read_unlock();
629 
630 	return ret;
631 }
632 
rdtgroup_task_write_permission(struct task_struct * task,struct kernfs_open_file * of)633 static int rdtgroup_task_write_permission(struct task_struct *task,
634 					  struct kernfs_open_file *of)
635 {
636 	const struct cred *tcred = get_task_cred(task);
637 	const struct cred *cred = current_cred();
638 	int ret = 0;
639 
640 	/*
641 	 * Even if we're attaching all tasks in the thread group, we only
642 	 * need to check permissions on one of them.
643 	 */
644 	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
645 	    !uid_eq(cred->euid, tcred->uid) &&
646 	    !uid_eq(cred->euid, tcred->suid)) {
647 		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
648 		ret = -EPERM;
649 	}
650 
651 	put_cred(tcred);
652 	return ret;
653 }
654 
rdtgroup_move_task(pid_t pid,struct rdtgroup * rdtgrp,struct kernfs_open_file * of)655 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
656 			      struct kernfs_open_file *of)
657 {
658 	struct task_struct *tsk;
659 	int ret;
660 
661 	rcu_read_lock();
662 	if (pid) {
663 		tsk = find_task_by_vpid(pid);
664 		if (!tsk) {
665 			rcu_read_unlock();
666 			rdt_last_cmd_printf("No task %d\n", pid);
667 			return -ESRCH;
668 		}
669 	} else {
670 		tsk = current;
671 	}
672 
673 	get_task_struct(tsk);
674 	rcu_read_unlock();
675 
676 	ret = rdtgroup_task_write_permission(tsk, of);
677 	if (!ret)
678 		ret = __rdtgroup_move_task(tsk, rdtgrp);
679 
680 	put_task_struct(tsk);
681 	return ret;
682 }
683 
rdtgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)684 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
685 				    char *buf, size_t nbytes, loff_t off)
686 {
687 	struct rdtgroup *rdtgrp;
688 	int ret = 0;
689 	pid_t pid;
690 
691 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
692 		return -EINVAL;
693 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
694 	if (!rdtgrp) {
695 		rdtgroup_kn_unlock(of->kn);
696 		return -ENOENT;
697 	}
698 	rdt_last_cmd_clear();
699 
700 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
701 	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
702 		ret = -EINVAL;
703 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
704 		goto unlock;
705 	}
706 
707 	ret = rdtgroup_move_task(pid, rdtgrp, of);
708 
709 unlock:
710 	rdtgroup_kn_unlock(of->kn);
711 
712 	return ret ?: nbytes;
713 }
714 
show_rdt_tasks(struct rdtgroup * r,struct seq_file * s)715 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
716 {
717 	struct task_struct *p, *t;
718 	pid_t pid;
719 
720 	rcu_read_lock();
721 	for_each_process_thread(p, t) {
722 		if (is_closid_match(t, r) || is_rmid_match(t, r)) {
723 			pid = task_pid_vnr(t);
724 			if (pid)
725 				seq_printf(s, "%d\n", pid);
726 		}
727 	}
728 	rcu_read_unlock();
729 }
730 
rdtgroup_tasks_show(struct kernfs_open_file * of,struct seq_file * s,void * v)731 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
732 			       struct seq_file *s, void *v)
733 {
734 	struct rdtgroup *rdtgrp;
735 	int ret = 0;
736 
737 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
738 	if (rdtgrp)
739 		show_rdt_tasks(rdtgrp, s);
740 	else
741 		ret = -ENOENT;
742 	rdtgroup_kn_unlock(of->kn);
743 
744 	return ret;
745 }
746 
rdt_last_cmd_status_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)747 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
748 				    struct seq_file *seq, void *v)
749 {
750 	int len;
751 
752 	mutex_lock(&rdtgroup_mutex);
753 	len = seq_buf_used(&last_cmd_status);
754 	if (len)
755 		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
756 	else
757 		seq_puts(seq, "ok\n");
758 	mutex_unlock(&rdtgroup_mutex);
759 	return 0;
760 }
761 
rdt_num_closids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)762 static int rdt_num_closids_show(struct kernfs_open_file *of,
763 				struct seq_file *seq, void *v)
764 {
765 	struct rdt_resource *r = of->kn->parent->priv;
766 
767 	seq_printf(seq, "%d\n", r->num_closid);
768 	return 0;
769 }
770 
rdt_default_ctrl_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)771 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
772 			     struct seq_file *seq, void *v)
773 {
774 	struct rdt_resource *r = of->kn->parent->priv;
775 
776 	seq_printf(seq, "%x\n", r->default_ctrl);
777 	return 0;
778 }
779 
rdt_min_cbm_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)780 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
781 			     struct seq_file *seq, void *v)
782 {
783 	struct rdt_resource *r = of->kn->parent->priv;
784 
785 	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
786 	return 0;
787 }
788 
rdt_shareable_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)789 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
790 				   struct seq_file *seq, void *v)
791 {
792 	struct rdt_resource *r = of->kn->parent->priv;
793 
794 	seq_printf(seq, "%x\n", r->cache.shareable_bits);
795 	return 0;
796 }
797 
798 /**
799  * rdt_bit_usage_show - Display current usage of resources
800  *
801  * A domain is a shared resource that can now be allocated differently. Here
802  * we display the current regions of the domain as an annotated bitmask.
803  * For each domain of this resource its allocation bitmask
804  * is annotated as below to indicate the current usage of the corresponding bit:
805  *   0 - currently unused
806  *   X - currently available for sharing and used by software and hardware
807  *   H - currently used by hardware only but available for software use
808  *   S - currently used and shareable by software only
809  *   E - currently used exclusively by one resource group
810  *   P - currently pseudo-locked by one resource group
811  */
rdt_bit_usage_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)812 static int rdt_bit_usage_show(struct kernfs_open_file *of,
813 			      struct seq_file *seq, void *v)
814 {
815 	struct rdt_resource *r = of->kn->parent->priv;
816 	/*
817 	 * Use unsigned long even though only 32 bits are used to ensure
818 	 * test_bit() is used safely.
819 	 */
820 	unsigned long sw_shareable = 0, hw_shareable = 0;
821 	unsigned long exclusive = 0, pseudo_locked = 0;
822 	struct rdt_domain *dom;
823 	int i, hwb, swb, excl, psl;
824 	enum rdtgrp_mode mode;
825 	bool sep = false;
826 	u32 *ctrl;
827 
828 	mutex_lock(&rdtgroup_mutex);
829 	hw_shareable = r->cache.shareable_bits;
830 	list_for_each_entry(dom, &r->domains, list) {
831 		if (sep)
832 			seq_putc(seq, ';');
833 		ctrl = dom->ctrl_val;
834 		sw_shareable = 0;
835 		exclusive = 0;
836 		seq_printf(seq, "%d=", dom->id);
837 		for (i = 0; i < closids_supported(); i++, ctrl++) {
838 			if (!closid_allocated(i))
839 				continue;
840 			mode = rdtgroup_mode_by_closid(i);
841 			switch (mode) {
842 			case RDT_MODE_SHAREABLE:
843 				sw_shareable |= *ctrl;
844 				break;
845 			case RDT_MODE_EXCLUSIVE:
846 				exclusive |= *ctrl;
847 				break;
848 			case RDT_MODE_PSEUDO_LOCKSETUP:
849 			/*
850 			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
851 			 * here but not included since the CBM
852 			 * associated with this CLOSID in this mode
853 			 * is not initialized and no task or cpu can be
854 			 * assigned this CLOSID.
855 			 */
856 				break;
857 			case RDT_MODE_PSEUDO_LOCKED:
858 			case RDT_NUM_MODES:
859 				WARN(1,
860 				     "invalid mode for closid %d\n", i);
861 				break;
862 			}
863 		}
864 		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
865 			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
866 			hwb = test_bit(i, &hw_shareable);
867 			swb = test_bit(i, &sw_shareable);
868 			excl = test_bit(i, &exclusive);
869 			psl = test_bit(i, &pseudo_locked);
870 			if (hwb && swb)
871 				seq_putc(seq, 'X');
872 			else if (hwb && !swb)
873 				seq_putc(seq, 'H');
874 			else if (!hwb && swb)
875 				seq_putc(seq, 'S');
876 			else if (excl)
877 				seq_putc(seq, 'E');
878 			else if (psl)
879 				seq_putc(seq, 'P');
880 			else /* Unused bits remain */
881 				seq_putc(seq, '0');
882 		}
883 		sep = true;
884 	}
885 	seq_putc(seq, '\n');
886 	mutex_unlock(&rdtgroup_mutex);
887 	return 0;
888 }
889 
rdt_min_bw_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)890 static int rdt_min_bw_show(struct kernfs_open_file *of,
891 			     struct seq_file *seq, void *v)
892 {
893 	struct rdt_resource *r = of->kn->parent->priv;
894 
895 	seq_printf(seq, "%u\n", r->membw.min_bw);
896 	return 0;
897 }
898 
rdt_num_rmids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)899 static int rdt_num_rmids_show(struct kernfs_open_file *of,
900 			      struct seq_file *seq, void *v)
901 {
902 	struct rdt_resource *r = of->kn->parent->priv;
903 
904 	seq_printf(seq, "%d\n", r->num_rmid);
905 
906 	return 0;
907 }
908 
rdt_mon_features_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)909 static int rdt_mon_features_show(struct kernfs_open_file *of,
910 				 struct seq_file *seq, void *v)
911 {
912 	struct rdt_resource *r = of->kn->parent->priv;
913 	struct mon_evt *mevt;
914 
915 	list_for_each_entry(mevt, &r->evt_list, list)
916 		seq_printf(seq, "%s\n", mevt->name);
917 
918 	return 0;
919 }
920 
rdt_bw_gran_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)921 static int rdt_bw_gran_show(struct kernfs_open_file *of,
922 			     struct seq_file *seq, void *v)
923 {
924 	struct rdt_resource *r = of->kn->parent->priv;
925 
926 	seq_printf(seq, "%u\n", r->membw.bw_gran);
927 	return 0;
928 }
929 
rdt_delay_linear_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)930 static int rdt_delay_linear_show(struct kernfs_open_file *of,
931 			     struct seq_file *seq, void *v)
932 {
933 	struct rdt_resource *r = of->kn->parent->priv;
934 
935 	seq_printf(seq, "%u\n", r->membw.delay_linear);
936 	return 0;
937 }
938 
max_threshold_occ_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)939 static int max_threshold_occ_show(struct kernfs_open_file *of,
940 				  struct seq_file *seq, void *v)
941 {
942 	struct rdt_resource *r = of->kn->parent->priv;
943 
944 	seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale);
945 
946 	return 0;
947 }
948 
max_threshold_occ_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)949 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
950 				       char *buf, size_t nbytes, loff_t off)
951 {
952 	struct rdt_resource *r = of->kn->parent->priv;
953 	unsigned int bytes;
954 	int ret;
955 
956 	ret = kstrtouint(buf, 0, &bytes);
957 	if (ret)
958 		return ret;
959 
960 	if (bytes > (boot_cpu_data.x86_cache_size * 1024))
961 		return -EINVAL;
962 
963 	resctrl_cqm_threshold = bytes / r->mon_scale;
964 
965 	return nbytes;
966 }
967 
968 /*
969  * rdtgroup_mode_show - Display mode of this resource group
970  */
rdtgroup_mode_show(struct kernfs_open_file * of,struct seq_file * s,void * v)971 static int rdtgroup_mode_show(struct kernfs_open_file *of,
972 			      struct seq_file *s, void *v)
973 {
974 	struct rdtgroup *rdtgrp;
975 
976 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
977 	if (!rdtgrp) {
978 		rdtgroup_kn_unlock(of->kn);
979 		return -ENOENT;
980 	}
981 
982 	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
983 
984 	rdtgroup_kn_unlock(of->kn);
985 	return 0;
986 }
987 
988 /**
989  * rdt_cdp_peer_get - Retrieve CDP peer if it exists
990  * @r: RDT resource to which RDT domain @d belongs
991  * @d: Cache instance for which a CDP peer is requested
992  * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
993  *         Used to return the result.
994  * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
995  *         Used to return the result.
996  *
997  * RDT resources are managed independently and by extension the RDT domains
998  * (RDT resource instances) are managed independently also. The Code and
999  * Data Prioritization (CDP) RDT resources, while managed independently,
1000  * could refer to the same underlying hardware. For example,
1001  * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
1002  *
1003  * When provided with an RDT resource @r and an instance of that RDT
1004  * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
1005  * resource and the exact instance that shares the same hardware.
1006  *
1007  * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
1008  *         If a CDP peer was found, @r_cdp will point to the peer RDT resource
1009  *         and @d_cdp will point to the peer RDT domain.
1010  */
rdt_cdp_peer_get(struct rdt_resource * r,struct rdt_domain * d,struct rdt_resource ** r_cdp,struct rdt_domain ** d_cdp)1011 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
1012 			    struct rdt_resource **r_cdp,
1013 			    struct rdt_domain **d_cdp)
1014 {
1015 	struct rdt_resource *_r_cdp = NULL;
1016 	struct rdt_domain *_d_cdp = NULL;
1017 	int ret = 0;
1018 
1019 	switch (r->rid) {
1020 	case RDT_RESOURCE_L3DATA:
1021 		_r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1022 		break;
1023 	case RDT_RESOURCE_L3CODE:
1024 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L3DATA];
1025 		break;
1026 	case RDT_RESOURCE_L2DATA:
1027 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2CODE];
1028 		break;
1029 	case RDT_RESOURCE_L2CODE:
1030 		_r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2DATA];
1031 		break;
1032 	default:
1033 		ret = -ENOENT;
1034 		goto out;
1035 	}
1036 
1037 	/*
1038 	 * When a new CPU comes online and CDP is enabled then the new
1039 	 * RDT domains (if any) associated with both CDP RDT resources
1040 	 * are added in the same CPU online routine while the
1041 	 * rdtgroup_mutex is held. It should thus not happen for one
1042 	 * RDT domain to exist and be associated with its RDT CDP
1043 	 * resource but there is no RDT domain associated with the
1044 	 * peer RDT CDP resource. Hence the WARN.
1045 	 */
1046 	_d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1047 	if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
1048 		_r_cdp = NULL;
1049 		_d_cdp = NULL;
1050 		ret = -EINVAL;
1051 	}
1052 
1053 out:
1054 	*r_cdp = _r_cdp;
1055 	*d_cdp = _d_cdp;
1056 
1057 	return ret;
1058 }
1059 
1060 /**
1061  * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1062  * @r: Resource to which domain instance @d belongs.
1063  * @d: The domain instance for which @closid is being tested.
1064  * @cbm: Capacity bitmask being tested.
1065  * @closid: Intended closid for @cbm.
1066  * @exclusive: Only check if overlaps with exclusive resource groups
1067  *
1068  * Checks if provided @cbm intended to be used for @closid on domain
1069  * @d overlaps with any other closids or other hardware usage associated
1070  * with this domain. If @exclusive is true then only overlaps with
1071  * resource groups in exclusive mode will be considered. If @exclusive
1072  * is false then overlaps with any resource group or hardware entities
1073  * will be considered.
1074  *
1075  * @cbm is unsigned long, even if only 32 bits are used, to make the
1076  * bitmap functions work correctly.
1077  *
1078  * Return: false if CBM does not overlap, true if it does.
1079  */
__rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm,int closid,bool exclusive)1080 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1081 				    unsigned long cbm, int closid, bool exclusive)
1082 {
1083 	enum rdtgrp_mode mode;
1084 	unsigned long ctrl_b;
1085 	u32 *ctrl;
1086 	int i;
1087 
1088 	/* Check for any overlap with regions used by hardware directly */
1089 	if (!exclusive) {
1090 		ctrl_b = r->cache.shareable_bits;
1091 		if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1092 			return true;
1093 	}
1094 
1095 	/* Check for overlap with other resource groups */
1096 	ctrl = d->ctrl_val;
1097 	for (i = 0; i < closids_supported(); i++, ctrl++) {
1098 		ctrl_b = *ctrl;
1099 		mode = rdtgroup_mode_by_closid(i);
1100 		if (closid_allocated(i) && i != closid &&
1101 		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1102 			if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1103 				if (exclusive) {
1104 					if (mode == RDT_MODE_EXCLUSIVE)
1105 						return true;
1106 					continue;
1107 				}
1108 				return true;
1109 			}
1110 		}
1111 	}
1112 
1113 	return false;
1114 }
1115 
1116 /**
1117  * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1118  * @r: Resource to which domain instance @d belongs.
1119  * @d: The domain instance for which @closid is being tested.
1120  * @cbm: Capacity bitmask being tested.
1121  * @closid: Intended closid for @cbm.
1122  * @exclusive: Only check if overlaps with exclusive resource groups
1123  *
1124  * Resources that can be allocated using a CBM can use the CBM to control
1125  * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1126  * for overlap. Overlap test is not limited to the specific resource for
1127  * which the CBM is intended though - when dealing with CDP resources that
1128  * share the underlying hardware the overlap check should be performed on
1129  * the CDP resource sharing the hardware also.
1130  *
1131  * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1132  * overlap test.
1133  *
1134  * Return: true if CBM overlap detected, false if there is no overlap
1135  */
rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm,int closid,bool exclusive)1136 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1137 			   unsigned long cbm, int closid, bool exclusive)
1138 {
1139 	struct rdt_resource *r_cdp;
1140 	struct rdt_domain *d_cdp;
1141 
1142 	if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1143 		return true;
1144 
1145 	if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1146 		return false;
1147 
1148 	return  __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1149 }
1150 
1151 /**
1152  * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1153  *
1154  * An exclusive resource group implies that there should be no sharing of
1155  * its allocated resources. At the time this group is considered to be
1156  * exclusive this test can determine if its current schemata supports this
1157  * setting by testing for overlap with all other resource groups.
1158  *
1159  * Return: true if resource group can be exclusive, false if there is overlap
1160  * with allocations of other resource groups and thus this resource group
1161  * cannot be exclusive.
1162  */
rdtgroup_mode_test_exclusive(struct rdtgroup * rdtgrp)1163 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1164 {
1165 	int closid = rdtgrp->closid;
1166 	struct rdt_resource *r;
1167 	bool has_cache = false;
1168 	struct rdt_domain *d;
1169 
1170 	for_each_alloc_enabled_rdt_resource(r) {
1171 		if (r->rid == RDT_RESOURCE_MBA)
1172 			continue;
1173 		has_cache = true;
1174 		list_for_each_entry(d, &r->domains, list) {
1175 			if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1176 						  rdtgrp->closid, false)) {
1177 				rdt_last_cmd_puts("Schemata overlaps\n");
1178 				return false;
1179 			}
1180 		}
1181 	}
1182 
1183 	if (!has_cache) {
1184 		rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1185 		return false;
1186 	}
1187 
1188 	return true;
1189 }
1190 
1191 /**
1192  * rdtgroup_mode_write - Modify the resource group's mode
1193  *
1194  */
rdtgroup_mode_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1195 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1196 				   char *buf, size_t nbytes, loff_t off)
1197 {
1198 	struct rdtgroup *rdtgrp;
1199 	enum rdtgrp_mode mode;
1200 	int ret = 0;
1201 
1202 	/* Valid input requires a trailing newline */
1203 	if (nbytes == 0 || buf[nbytes - 1] != '\n')
1204 		return -EINVAL;
1205 	buf[nbytes - 1] = '\0';
1206 
1207 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1208 	if (!rdtgrp) {
1209 		rdtgroup_kn_unlock(of->kn);
1210 		return -ENOENT;
1211 	}
1212 
1213 	rdt_last_cmd_clear();
1214 
1215 	mode = rdtgrp->mode;
1216 
1217 	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1218 	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1219 	    (!strcmp(buf, "pseudo-locksetup") &&
1220 	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1221 	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1222 		goto out;
1223 
1224 	if (mode == RDT_MODE_PSEUDO_LOCKED) {
1225 		rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1226 		ret = -EINVAL;
1227 		goto out;
1228 	}
1229 
1230 	if (!strcmp(buf, "shareable")) {
1231 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1232 			ret = rdtgroup_locksetup_exit(rdtgrp);
1233 			if (ret)
1234 				goto out;
1235 		}
1236 		rdtgrp->mode = RDT_MODE_SHAREABLE;
1237 	} else if (!strcmp(buf, "exclusive")) {
1238 		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1239 			ret = -EINVAL;
1240 			goto out;
1241 		}
1242 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1243 			ret = rdtgroup_locksetup_exit(rdtgrp);
1244 			if (ret)
1245 				goto out;
1246 		}
1247 		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1248 	} else if (!strcmp(buf, "pseudo-locksetup")) {
1249 		ret = rdtgroup_locksetup_enter(rdtgrp);
1250 		if (ret)
1251 			goto out;
1252 		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1253 	} else {
1254 		rdt_last_cmd_puts("Unknown or unsupported mode\n");
1255 		ret = -EINVAL;
1256 	}
1257 
1258 out:
1259 	rdtgroup_kn_unlock(of->kn);
1260 	return ret ?: nbytes;
1261 }
1262 
1263 /**
1264  * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1265  * @r: RDT resource to which @d belongs.
1266  * @d: RDT domain instance.
1267  * @cbm: bitmask for which the size should be computed.
1268  *
1269  * The bitmask provided associated with the RDT domain instance @d will be
1270  * translated into how many bytes it represents. The size in bytes is
1271  * computed by first dividing the total cache size by the CBM length to
1272  * determine how many bytes each bit in the bitmask represents. The result
1273  * is multiplied with the number of bits set in the bitmask.
1274  *
1275  * @cbm is unsigned long, even if only 32 bits are used to make the
1276  * bitmap functions work correctly.
1277  */
rdtgroup_cbm_to_size(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm)1278 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1279 				  struct rdt_domain *d, unsigned long cbm)
1280 {
1281 	struct cpu_cacheinfo *ci;
1282 	unsigned int size = 0;
1283 	int num_b, i;
1284 
1285 	num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1286 	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1287 	for (i = 0; i < ci->num_leaves; i++) {
1288 		if (ci->info_list[i].level == r->cache_level) {
1289 			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1290 			break;
1291 		}
1292 	}
1293 
1294 	return size;
1295 }
1296 
1297 /**
1298  * rdtgroup_size_show - Display size in bytes of allocated regions
1299  *
1300  * The "size" file mirrors the layout of the "schemata" file, printing the
1301  * size in bytes of each region instead of the capacity bitmask.
1302  *
1303  */
rdtgroup_size_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1304 static int rdtgroup_size_show(struct kernfs_open_file *of,
1305 			      struct seq_file *s, void *v)
1306 {
1307 	struct rdtgroup *rdtgrp;
1308 	struct rdt_resource *r;
1309 	struct rdt_domain *d;
1310 	unsigned int size;
1311 	int ret = 0;
1312 	bool sep;
1313 	u32 ctrl;
1314 
1315 	rdtgrp = rdtgroup_kn_lock_live(of->kn);
1316 	if (!rdtgrp) {
1317 		rdtgroup_kn_unlock(of->kn);
1318 		return -ENOENT;
1319 	}
1320 
1321 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1322 		if (!rdtgrp->plr->d) {
1323 			rdt_last_cmd_clear();
1324 			rdt_last_cmd_puts("Cache domain offline\n");
1325 			ret = -ENODEV;
1326 		} else {
1327 			seq_printf(s, "%*s:", max_name_width,
1328 				   rdtgrp->plr->r->name);
1329 			size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1330 						    rdtgrp->plr->d,
1331 						    rdtgrp->plr->cbm);
1332 			seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1333 		}
1334 		goto out;
1335 	}
1336 
1337 	for_each_alloc_enabled_rdt_resource(r) {
1338 		sep = false;
1339 		seq_printf(s, "%*s:", max_name_width, r->name);
1340 		list_for_each_entry(d, &r->domains, list) {
1341 			if (sep)
1342 				seq_putc(s, ';');
1343 			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1344 				size = 0;
1345 			} else {
1346 				ctrl = (!is_mba_sc(r) ?
1347 						d->ctrl_val[rdtgrp->closid] :
1348 						d->mbps_val[rdtgrp->closid]);
1349 				if (r->rid == RDT_RESOURCE_MBA)
1350 					size = ctrl;
1351 				else
1352 					size = rdtgroup_cbm_to_size(r, d, ctrl);
1353 			}
1354 			seq_printf(s, "%d=%u", d->id, size);
1355 			sep = true;
1356 		}
1357 		seq_putc(s, '\n');
1358 	}
1359 
1360 out:
1361 	rdtgroup_kn_unlock(of->kn);
1362 
1363 	return ret;
1364 }
1365 
1366 /* rdtgroup information files for one cache resource. */
1367 static struct rftype res_common_files[] = {
1368 	{
1369 		.name		= "last_cmd_status",
1370 		.mode		= 0444,
1371 		.kf_ops		= &rdtgroup_kf_single_ops,
1372 		.seq_show	= rdt_last_cmd_status_show,
1373 		.fflags		= RF_TOP_INFO,
1374 	},
1375 	{
1376 		.name		= "num_closids",
1377 		.mode		= 0444,
1378 		.kf_ops		= &rdtgroup_kf_single_ops,
1379 		.seq_show	= rdt_num_closids_show,
1380 		.fflags		= RF_CTRL_INFO,
1381 	},
1382 	{
1383 		.name		= "mon_features",
1384 		.mode		= 0444,
1385 		.kf_ops		= &rdtgroup_kf_single_ops,
1386 		.seq_show	= rdt_mon_features_show,
1387 		.fflags		= RF_MON_INFO,
1388 	},
1389 	{
1390 		.name		= "num_rmids",
1391 		.mode		= 0444,
1392 		.kf_ops		= &rdtgroup_kf_single_ops,
1393 		.seq_show	= rdt_num_rmids_show,
1394 		.fflags		= RF_MON_INFO,
1395 	},
1396 	{
1397 		.name		= "cbm_mask",
1398 		.mode		= 0444,
1399 		.kf_ops		= &rdtgroup_kf_single_ops,
1400 		.seq_show	= rdt_default_ctrl_show,
1401 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1402 	},
1403 	{
1404 		.name		= "min_cbm_bits",
1405 		.mode		= 0444,
1406 		.kf_ops		= &rdtgroup_kf_single_ops,
1407 		.seq_show	= rdt_min_cbm_bits_show,
1408 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1409 	},
1410 	{
1411 		.name		= "shareable_bits",
1412 		.mode		= 0444,
1413 		.kf_ops		= &rdtgroup_kf_single_ops,
1414 		.seq_show	= rdt_shareable_bits_show,
1415 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1416 	},
1417 	{
1418 		.name		= "bit_usage",
1419 		.mode		= 0444,
1420 		.kf_ops		= &rdtgroup_kf_single_ops,
1421 		.seq_show	= rdt_bit_usage_show,
1422 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1423 	},
1424 	{
1425 		.name		= "min_bandwidth",
1426 		.mode		= 0444,
1427 		.kf_ops		= &rdtgroup_kf_single_ops,
1428 		.seq_show	= rdt_min_bw_show,
1429 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1430 	},
1431 	{
1432 		.name		= "bandwidth_gran",
1433 		.mode		= 0444,
1434 		.kf_ops		= &rdtgroup_kf_single_ops,
1435 		.seq_show	= rdt_bw_gran_show,
1436 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1437 	},
1438 	{
1439 		.name		= "delay_linear",
1440 		.mode		= 0444,
1441 		.kf_ops		= &rdtgroup_kf_single_ops,
1442 		.seq_show	= rdt_delay_linear_show,
1443 		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1444 	},
1445 	{
1446 		.name		= "max_threshold_occupancy",
1447 		.mode		= 0644,
1448 		.kf_ops		= &rdtgroup_kf_single_ops,
1449 		.write		= max_threshold_occ_write,
1450 		.seq_show	= max_threshold_occ_show,
1451 		.fflags		= RF_MON_INFO | RFTYPE_RES_CACHE,
1452 	},
1453 	{
1454 		.name		= "cpus",
1455 		.mode		= 0644,
1456 		.kf_ops		= &rdtgroup_kf_single_ops,
1457 		.write		= rdtgroup_cpus_write,
1458 		.seq_show	= rdtgroup_cpus_show,
1459 		.fflags		= RFTYPE_BASE,
1460 	},
1461 	{
1462 		.name		= "cpus_list",
1463 		.mode		= 0644,
1464 		.kf_ops		= &rdtgroup_kf_single_ops,
1465 		.write		= rdtgroup_cpus_write,
1466 		.seq_show	= rdtgroup_cpus_show,
1467 		.flags		= RFTYPE_FLAGS_CPUS_LIST,
1468 		.fflags		= RFTYPE_BASE,
1469 	},
1470 	{
1471 		.name		= "tasks",
1472 		.mode		= 0644,
1473 		.kf_ops		= &rdtgroup_kf_single_ops,
1474 		.write		= rdtgroup_tasks_write,
1475 		.seq_show	= rdtgroup_tasks_show,
1476 		.fflags		= RFTYPE_BASE,
1477 	},
1478 	{
1479 		.name		= "schemata",
1480 		.mode		= 0644,
1481 		.kf_ops		= &rdtgroup_kf_single_ops,
1482 		.write		= rdtgroup_schemata_write,
1483 		.seq_show	= rdtgroup_schemata_show,
1484 		.fflags		= RF_CTRL_BASE,
1485 	},
1486 	{
1487 		.name		= "mode",
1488 		.mode		= 0644,
1489 		.kf_ops		= &rdtgroup_kf_single_ops,
1490 		.write		= rdtgroup_mode_write,
1491 		.seq_show	= rdtgroup_mode_show,
1492 		.fflags		= RF_CTRL_BASE,
1493 	},
1494 	{
1495 		.name		= "size",
1496 		.mode		= 0444,
1497 		.kf_ops		= &rdtgroup_kf_single_ops,
1498 		.seq_show	= rdtgroup_size_show,
1499 		.fflags		= RF_CTRL_BASE,
1500 	},
1501 
1502 };
1503 
rdtgroup_add_files(struct kernfs_node * kn,unsigned long fflags)1504 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1505 {
1506 	struct rftype *rfts, *rft;
1507 	int ret, len;
1508 
1509 	rfts = res_common_files;
1510 	len = ARRAY_SIZE(res_common_files);
1511 
1512 	lockdep_assert_held(&rdtgroup_mutex);
1513 
1514 	for (rft = rfts; rft < rfts + len; rft++) {
1515 		if ((fflags & rft->fflags) == rft->fflags) {
1516 			ret = rdtgroup_add_file(kn, rft);
1517 			if (ret)
1518 				goto error;
1519 		}
1520 	}
1521 
1522 	return 0;
1523 error:
1524 	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1525 	while (--rft >= rfts) {
1526 		if ((fflags & rft->fflags) == rft->fflags)
1527 			kernfs_remove_by_name(kn, rft->name);
1528 	}
1529 	return ret;
1530 }
1531 
1532 /**
1533  * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1534  * @r: The resource group with which the file is associated.
1535  * @name: Name of the file
1536  *
1537  * The permissions of named resctrl file, directory, or link are modified
1538  * to not allow read, write, or execute by any user.
1539  *
1540  * WARNING: This function is intended to communicate to the user that the
1541  * resctrl file has been locked down - that it is not relevant to the
1542  * particular state the system finds itself in. It should not be relied
1543  * on to protect from user access because after the file's permissions
1544  * are restricted the user can still change the permissions using chmod
1545  * from the command line.
1546  *
1547  * Return: 0 on success, <0 on failure.
1548  */
rdtgroup_kn_mode_restrict(struct rdtgroup * r,const char * name)1549 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1550 {
1551 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1552 	struct kernfs_node *kn;
1553 	int ret = 0;
1554 
1555 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1556 	if (!kn)
1557 		return -ENOENT;
1558 
1559 	switch (kernfs_type(kn)) {
1560 	case KERNFS_DIR:
1561 		iattr.ia_mode = S_IFDIR;
1562 		break;
1563 	case KERNFS_FILE:
1564 		iattr.ia_mode = S_IFREG;
1565 		break;
1566 	case KERNFS_LINK:
1567 		iattr.ia_mode = S_IFLNK;
1568 		break;
1569 	}
1570 
1571 	ret = kernfs_setattr(kn, &iattr);
1572 	kernfs_put(kn);
1573 	return ret;
1574 }
1575 
1576 /**
1577  * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1578  * @r: The resource group with which the file is associated.
1579  * @name: Name of the file
1580  * @mask: Mask of permissions that should be restored
1581  *
1582  * Restore the permissions of the named file. If @name is a directory the
1583  * permissions of its parent will be used.
1584  *
1585  * Return: 0 on success, <0 on failure.
1586  */
rdtgroup_kn_mode_restore(struct rdtgroup * r,const char * name,umode_t mask)1587 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1588 			     umode_t mask)
1589 {
1590 	struct iattr iattr = {.ia_valid = ATTR_MODE,};
1591 	struct kernfs_node *kn, *parent;
1592 	struct rftype *rfts, *rft;
1593 	int ret, len;
1594 
1595 	rfts = res_common_files;
1596 	len = ARRAY_SIZE(res_common_files);
1597 
1598 	for (rft = rfts; rft < rfts + len; rft++) {
1599 		if (!strcmp(rft->name, name))
1600 			iattr.ia_mode = rft->mode & mask;
1601 	}
1602 
1603 	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1604 	if (!kn)
1605 		return -ENOENT;
1606 
1607 	switch (kernfs_type(kn)) {
1608 	case KERNFS_DIR:
1609 		parent = kernfs_get_parent(kn);
1610 		if (parent) {
1611 			iattr.ia_mode |= parent->mode;
1612 			kernfs_put(parent);
1613 		}
1614 		iattr.ia_mode |= S_IFDIR;
1615 		break;
1616 	case KERNFS_FILE:
1617 		iattr.ia_mode |= S_IFREG;
1618 		break;
1619 	case KERNFS_LINK:
1620 		iattr.ia_mode |= S_IFLNK;
1621 		break;
1622 	}
1623 
1624 	ret = kernfs_setattr(kn, &iattr);
1625 	kernfs_put(kn);
1626 	return ret;
1627 }
1628 
rdtgroup_mkdir_info_resdir(struct rdt_resource * r,char * name,unsigned long fflags)1629 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1630 				      unsigned long fflags)
1631 {
1632 	struct kernfs_node *kn_subdir;
1633 	int ret;
1634 
1635 	kn_subdir = kernfs_create_dir(kn_info, name,
1636 				      kn_info->mode, r);
1637 	if (IS_ERR(kn_subdir))
1638 		return PTR_ERR(kn_subdir);
1639 
1640 	ret = rdtgroup_kn_set_ugid(kn_subdir);
1641 	if (ret)
1642 		return ret;
1643 
1644 	ret = rdtgroup_add_files(kn_subdir, fflags);
1645 	if (!ret)
1646 		kernfs_activate(kn_subdir);
1647 
1648 	return ret;
1649 }
1650 
rdtgroup_create_info_dir(struct kernfs_node * parent_kn)1651 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1652 {
1653 	struct rdt_resource *r;
1654 	unsigned long fflags;
1655 	char name[32];
1656 	int ret;
1657 
1658 	/* create the directory */
1659 	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1660 	if (IS_ERR(kn_info))
1661 		return PTR_ERR(kn_info);
1662 
1663 	ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1664 	if (ret)
1665 		goto out_destroy;
1666 
1667 	for_each_alloc_enabled_rdt_resource(r) {
1668 		fflags =  r->fflags | RF_CTRL_INFO;
1669 		ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1670 		if (ret)
1671 			goto out_destroy;
1672 	}
1673 
1674 	for_each_mon_enabled_rdt_resource(r) {
1675 		fflags =  r->fflags | RF_MON_INFO;
1676 		sprintf(name, "%s_MON", r->name);
1677 		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1678 		if (ret)
1679 			goto out_destroy;
1680 	}
1681 
1682 	ret = rdtgroup_kn_set_ugid(kn_info);
1683 	if (ret)
1684 		goto out_destroy;
1685 
1686 	kernfs_activate(kn_info);
1687 
1688 	return 0;
1689 
1690 out_destroy:
1691 	kernfs_remove(kn_info);
1692 	return ret;
1693 }
1694 
1695 static int
mongroup_create_dir(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,char * name,struct kernfs_node ** dest_kn)1696 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1697 		    char *name, struct kernfs_node **dest_kn)
1698 {
1699 	struct kernfs_node *kn;
1700 	int ret;
1701 
1702 	/* create the directory */
1703 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1704 	if (IS_ERR(kn))
1705 		return PTR_ERR(kn);
1706 
1707 	if (dest_kn)
1708 		*dest_kn = kn;
1709 
1710 	ret = rdtgroup_kn_set_ugid(kn);
1711 	if (ret)
1712 		goto out_destroy;
1713 
1714 	kernfs_activate(kn);
1715 
1716 	return 0;
1717 
1718 out_destroy:
1719 	kernfs_remove(kn);
1720 	return ret;
1721 }
1722 
l3_qos_cfg_update(void * arg)1723 static void l3_qos_cfg_update(void *arg)
1724 {
1725 	bool *enable = arg;
1726 
1727 	wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1728 }
1729 
l2_qos_cfg_update(void * arg)1730 static void l2_qos_cfg_update(void *arg)
1731 {
1732 	bool *enable = arg;
1733 
1734 	wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1735 }
1736 
is_mba_linear(void)1737 static inline bool is_mba_linear(void)
1738 {
1739 	return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1740 }
1741 
set_cache_qos_cfg(int level,bool enable)1742 static int set_cache_qos_cfg(int level, bool enable)
1743 {
1744 	void (*update)(void *arg);
1745 	struct rdt_resource *r_l;
1746 	cpumask_var_t cpu_mask;
1747 	struct rdt_domain *d;
1748 	int cpu;
1749 
1750 	if (level == RDT_RESOURCE_L3)
1751 		update = l3_qos_cfg_update;
1752 	else if (level == RDT_RESOURCE_L2)
1753 		update = l2_qos_cfg_update;
1754 	else
1755 		return -EINVAL;
1756 
1757 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1758 		return -ENOMEM;
1759 
1760 	r_l = &rdt_resources_all[level];
1761 	list_for_each_entry(d, &r_l->domains, list) {
1762 		/* Pick one CPU from each domain instance to update MSR */
1763 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1764 	}
1765 	cpu = get_cpu();
1766 	/* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1767 	if (cpumask_test_cpu(cpu, cpu_mask))
1768 		update(&enable);
1769 	/* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1770 	smp_call_function_many(cpu_mask, update, &enable, 1);
1771 	put_cpu();
1772 
1773 	free_cpumask_var(cpu_mask);
1774 
1775 	return 0;
1776 }
1777 
1778 /* Restore the qos cfg state when a domain comes online */
rdt_domain_reconfigure_cdp(struct rdt_resource * r)1779 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
1780 {
1781 	if (!r->alloc_capable)
1782 		return;
1783 
1784 	if (r == &rdt_resources_all[RDT_RESOURCE_L2DATA])
1785 		l2_qos_cfg_update(&r->alloc_enabled);
1786 
1787 	if (r == &rdt_resources_all[RDT_RESOURCE_L3DATA])
1788 		l3_qos_cfg_update(&r->alloc_enabled);
1789 }
1790 
1791 /*
1792  * Enable or disable the MBA software controller
1793  * which helps user specify bandwidth in MBps.
1794  * MBA software controller is supported only if
1795  * MBM is supported and MBA is in linear scale.
1796  */
set_mba_sc(bool mba_sc)1797 static int set_mba_sc(bool mba_sc)
1798 {
1799 	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1800 	struct rdt_domain *d;
1801 
1802 	if (!is_mbm_enabled() || !is_mba_linear() ||
1803 	    mba_sc == is_mba_sc(r))
1804 		return -EINVAL;
1805 
1806 	r->membw.mba_sc = mba_sc;
1807 	list_for_each_entry(d, &r->domains, list)
1808 		setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1809 
1810 	return 0;
1811 }
1812 
cdp_enable(int level,int data_type,int code_type)1813 static int cdp_enable(int level, int data_type, int code_type)
1814 {
1815 	struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1816 	struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1817 	struct rdt_resource *r_l = &rdt_resources_all[level];
1818 	int ret;
1819 
1820 	if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1821 	    !r_lcode->alloc_capable)
1822 		return -EINVAL;
1823 
1824 	ret = set_cache_qos_cfg(level, true);
1825 	if (!ret) {
1826 		r_l->alloc_enabled = false;
1827 		r_ldata->alloc_enabled = true;
1828 		r_lcode->alloc_enabled = true;
1829 	}
1830 	return ret;
1831 }
1832 
cdpl3_enable(void)1833 static int cdpl3_enable(void)
1834 {
1835 	return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1836 			  RDT_RESOURCE_L3CODE);
1837 }
1838 
cdpl2_enable(void)1839 static int cdpl2_enable(void)
1840 {
1841 	return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1842 			  RDT_RESOURCE_L2CODE);
1843 }
1844 
cdp_disable(int level,int data_type,int code_type)1845 static void cdp_disable(int level, int data_type, int code_type)
1846 {
1847 	struct rdt_resource *r = &rdt_resources_all[level];
1848 
1849 	r->alloc_enabled = r->alloc_capable;
1850 
1851 	if (rdt_resources_all[data_type].alloc_enabled) {
1852 		rdt_resources_all[data_type].alloc_enabled = false;
1853 		rdt_resources_all[code_type].alloc_enabled = false;
1854 		set_cache_qos_cfg(level, false);
1855 	}
1856 }
1857 
cdpl3_disable(void)1858 static void cdpl3_disable(void)
1859 {
1860 	cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1861 }
1862 
cdpl2_disable(void)1863 static void cdpl2_disable(void)
1864 {
1865 	cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
1866 }
1867 
cdp_disable_all(void)1868 static void cdp_disable_all(void)
1869 {
1870 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
1871 		cdpl3_disable();
1872 	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
1873 		cdpl2_disable();
1874 }
1875 
1876 /*
1877  * We don't allow rdtgroup directories to be created anywhere
1878  * except the root directory. Thus when looking for the rdtgroup
1879  * structure for a kernfs node we are either looking at a directory,
1880  * in which case the rdtgroup structure is pointed at by the "priv"
1881  * field, otherwise we have a file, and need only look to the parent
1882  * to find the rdtgroup.
1883  */
kernfs_to_rdtgroup(struct kernfs_node * kn)1884 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
1885 {
1886 	if (kernfs_type(kn) == KERNFS_DIR) {
1887 		/*
1888 		 * All the resource directories use "kn->priv"
1889 		 * to point to the "struct rdtgroup" for the
1890 		 * resource. "info" and its subdirectories don't
1891 		 * have rdtgroup structures, so return NULL here.
1892 		 */
1893 		if (kn == kn_info || kn->parent == kn_info)
1894 			return NULL;
1895 		else
1896 			return kn->priv;
1897 	} else {
1898 		return kn->parent->priv;
1899 	}
1900 }
1901 
rdtgroup_kn_lock_live(struct kernfs_node * kn)1902 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
1903 {
1904 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1905 
1906 	if (!rdtgrp)
1907 		return NULL;
1908 
1909 	atomic_inc(&rdtgrp->waitcount);
1910 	kernfs_break_active_protection(kn);
1911 
1912 	mutex_lock(&rdtgroup_mutex);
1913 
1914 	/* Was this group deleted while we waited? */
1915 	if (rdtgrp->flags & RDT_DELETED)
1916 		return NULL;
1917 
1918 	return rdtgrp;
1919 }
1920 
rdtgroup_kn_unlock(struct kernfs_node * kn)1921 void rdtgroup_kn_unlock(struct kernfs_node *kn)
1922 {
1923 	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1924 
1925 	if (!rdtgrp)
1926 		return;
1927 
1928 	mutex_unlock(&rdtgroup_mutex);
1929 
1930 	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
1931 	    (rdtgrp->flags & RDT_DELETED)) {
1932 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
1933 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
1934 			rdtgroup_pseudo_lock_remove(rdtgrp);
1935 		kernfs_unbreak_active_protection(kn);
1936 		rdtgroup_remove(rdtgrp);
1937 	} else {
1938 		kernfs_unbreak_active_protection(kn);
1939 	}
1940 }
1941 
1942 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
1943 			     struct rdtgroup *prgrp,
1944 			     struct kernfs_node **mon_data_kn);
1945 
rdt_enable_ctx(struct rdt_fs_context * ctx)1946 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
1947 {
1948 	int ret = 0;
1949 
1950 	if (ctx->enable_cdpl2)
1951 		ret = cdpl2_enable();
1952 
1953 	if (!ret && ctx->enable_cdpl3)
1954 		ret = cdpl3_enable();
1955 
1956 	if (!ret && ctx->enable_mba_mbps)
1957 		ret = set_mba_sc(true);
1958 
1959 	return ret;
1960 }
1961 
rdt_get_tree(struct fs_context * fc)1962 static int rdt_get_tree(struct fs_context *fc)
1963 {
1964 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
1965 	struct rdt_domain *dom;
1966 	struct rdt_resource *r;
1967 	int ret;
1968 
1969 	cpus_read_lock();
1970 	mutex_lock(&rdtgroup_mutex);
1971 	/*
1972 	 * resctrl file system can only be mounted once.
1973 	 */
1974 	if (static_branch_unlikely(&rdt_enable_key)) {
1975 		ret = -EBUSY;
1976 		goto out;
1977 	}
1978 
1979 	ret = rdt_enable_ctx(ctx);
1980 	if (ret < 0)
1981 		goto out_cdp;
1982 
1983 	closid_init();
1984 
1985 	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
1986 	if (ret < 0)
1987 		goto out_mba;
1988 
1989 	if (rdt_mon_capable) {
1990 		ret = mongroup_create_dir(rdtgroup_default.kn,
1991 					  &rdtgroup_default, "mon_groups",
1992 					  &kn_mongrp);
1993 		if (ret < 0)
1994 			goto out_info;
1995 
1996 		ret = mkdir_mondata_all(rdtgroup_default.kn,
1997 					&rdtgroup_default, &kn_mondata);
1998 		if (ret < 0)
1999 			goto out_mongrp;
2000 		rdtgroup_default.mon.mon_data_kn = kn_mondata;
2001 	}
2002 
2003 	ret = rdt_pseudo_lock_init();
2004 	if (ret)
2005 		goto out_mondata;
2006 
2007 	ret = kernfs_get_tree(fc);
2008 	if (ret < 0)
2009 		goto out_psl;
2010 
2011 	if (rdt_alloc_capable)
2012 		static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2013 	if (rdt_mon_capable)
2014 		static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2015 
2016 	if (rdt_alloc_capable || rdt_mon_capable)
2017 		static_branch_enable_cpuslocked(&rdt_enable_key);
2018 
2019 	if (is_mbm_enabled()) {
2020 		r = &rdt_resources_all[RDT_RESOURCE_L3];
2021 		list_for_each_entry(dom, &r->domains, list)
2022 			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2023 	}
2024 
2025 	goto out;
2026 
2027 out_psl:
2028 	rdt_pseudo_lock_release();
2029 out_mondata:
2030 	if (rdt_mon_capable)
2031 		kernfs_remove(kn_mondata);
2032 out_mongrp:
2033 	if (rdt_mon_capable)
2034 		kernfs_remove(kn_mongrp);
2035 out_info:
2036 	kernfs_remove(kn_info);
2037 out_mba:
2038 	if (ctx->enable_mba_mbps)
2039 		set_mba_sc(false);
2040 out_cdp:
2041 	cdp_disable_all();
2042 out:
2043 	rdt_last_cmd_clear();
2044 	mutex_unlock(&rdtgroup_mutex);
2045 	cpus_read_unlock();
2046 	return ret;
2047 }
2048 
2049 enum rdt_param {
2050 	Opt_cdp,
2051 	Opt_cdpl2,
2052 	Opt_mba_mbps,
2053 	nr__rdt_params
2054 };
2055 
2056 static const struct fs_parameter_spec rdt_param_specs[] = {
2057 	fsparam_flag("cdp",		Opt_cdp),
2058 	fsparam_flag("cdpl2",		Opt_cdpl2),
2059 	fsparam_flag("mba_MBps",	Opt_mba_mbps),
2060 	{}
2061 };
2062 
2063 static const struct fs_parameter_description rdt_fs_parameters = {
2064 	.name		= "rdt",
2065 	.specs		= rdt_param_specs,
2066 };
2067 
rdt_parse_param(struct fs_context * fc,struct fs_parameter * param)2068 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2069 {
2070 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2071 	struct fs_parse_result result;
2072 	int opt;
2073 
2074 	opt = fs_parse(fc, &rdt_fs_parameters, param, &result);
2075 	if (opt < 0)
2076 		return opt;
2077 
2078 	switch (opt) {
2079 	case Opt_cdp:
2080 		ctx->enable_cdpl3 = true;
2081 		return 0;
2082 	case Opt_cdpl2:
2083 		ctx->enable_cdpl2 = true;
2084 		return 0;
2085 	case Opt_mba_mbps:
2086 		if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2087 			return -EINVAL;
2088 		ctx->enable_mba_mbps = true;
2089 		return 0;
2090 	}
2091 
2092 	return -EINVAL;
2093 }
2094 
rdt_fs_context_free(struct fs_context * fc)2095 static void rdt_fs_context_free(struct fs_context *fc)
2096 {
2097 	struct rdt_fs_context *ctx = rdt_fc2context(fc);
2098 
2099 	kernfs_free_fs_context(fc);
2100 	kfree(ctx);
2101 }
2102 
2103 static const struct fs_context_operations rdt_fs_context_ops = {
2104 	.free		= rdt_fs_context_free,
2105 	.parse_param	= rdt_parse_param,
2106 	.get_tree	= rdt_get_tree,
2107 };
2108 
rdt_init_fs_context(struct fs_context * fc)2109 static int rdt_init_fs_context(struct fs_context *fc)
2110 {
2111 	struct rdt_fs_context *ctx;
2112 
2113 	ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2114 	if (!ctx)
2115 		return -ENOMEM;
2116 
2117 	ctx->kfc.root = rdt_root;
2118 	ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2119 	fc->fs_private = &ctx->kfc;
2120 	fc->ops = &rdt_fs_context_ops;
2121 	put_user_ns(fc->user_ns);
2122 	fc->user_ns = get_user_ns(&init_user_ns);
2123 	fc->global = true;
2124 	return 0;
2125 }
2126 
reset_all_ctrls(struct rdt_resource * r)2127 static int reset_all_ctrls(struct rdt_resource *r)
2128 {
2129 	struct msr_param msr_param;
2130 	cpumask_var_t cpu_mask;
2131 	struct rdt_domain *d;
2132 	int i, cpu;
2133 
2134 	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2135 		return -ENOMEM;
2136 
2137 	msr_param.res = r;
2138 	msr_param.low = 0;
2139 	msr_param.high = r->num_closid;
2140 
2141 	/*
2142 	 * Disable resource control for this resource by setting all
2143 	 * CBMs in all domains to the maximum mask value. Pick one CPU
2144 	 * from each domain to update the MSRs below.
2145 	 */
2146 	list_for_each_entry(d, &r->domains, list) {
2147 		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2148 
2149 		for (i = 0; i < r->num_closid; i++)
2150 			d->ctrl_val[i] = r->default_ctrl;
2151 	}
2152 	cpu = get_cpu();
2153 	/* Update CBM on this cpu if it's in cpu_mask. */
2154 	if (cpumask_test_cpu(cpu, cpu_mask))
2155 		rdt_ctrl_update(&msr_param);
2156 	/* Update CBM on all other cpus in cpu_mask. */
2157 	smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2158 	put_cpu();
2159 
2160 	free_cpumask_var(cpu_mask);
2161 
2162 	return 0;
2163 }
2164 
2165 /*
2166  * Move tasks from one to the other group. If @from is NULL, then all tasks
2167  * in the systems are moved unconditionally (used for teardown).
2168  *
2169  * If @mask is not NULL the cpus on which moved tasks are running are set
2170  * in that mask so the update smp function call is restricted to affected
2171  * cpus.
2172  */
rdt_move_group_tasks(struct rdtgroup * from,struct rdtgroup * to,struct cpumask * mask)2173 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2174 				 struct cpumask *mask)
2175 {
2176 	struct task_struct *p, *t;
2177 
2178 	read_lock(&tasklist_lock);
2179 	for_each_process_thread(p, t) {
2180 		if (!from || is_closid_match(t, from) ||
2181 		    is_rmid_match(t, from)) {
2182 			WRITE_ONCE(t->closid, to->closid);
2183 			WRITE_ONCE(t->rmid, to->mon.rmid);
2184 
2185 			/*
2186 			 * Order the closid/rmid stores above before the loads
2187 			 * in task_curr(). This pairs with the full barrier
2188 			 * between the rq->curr update and resctrl_sched_in()
2189 			 * during context switch.
2190 			 */
2191 			smp_mb();
2192 
2193 			/*
2194 			 * If the task is on a CPU, set the CPU in the mask.
2195 			 * The detection is inaccurate as tasks might move or
2196 			 * schedule before the smp function call takes place.
2197 			 * In such a case the function call is pointless, but
2198 			 * there is no other side effect.
2199 			 */
2200 			if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2201 				cpumask_set_cpu(task_cpu(t), mask);
2202 		}
2203 	}
2204 	read_unlock(&tasklist_lock);
2205 }
2206 
free_all_child_rdtgrp(struct rdtgroup * rdtgrp)2207 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2208 {
2209 	struct rdtgroup *sentry, *stmp;
2210 	struct list_head *head;
2211 
2212 	head = &rdtgrp->mon.crdtgrp_list;
2213 	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2214 		free_rmid(sentry->mon.rmid);
2215 		list_del(&sentry->mon.crdtgrp_list);
2216 
2217 		if (atomic_read(&sentry->waitcount) != 0)
2218 			sentry->flags = RDT_DELETED;
2219 		else
2220 			rdtgroup_remove(sentry);
2221 	}
2222 }
2223 
2224 /*
2225  * Forcibly remove all of subdirectories under root.
2226  */
rmdir_all_sub(void)2227 static void rmdir_all_sub(void)
2228 {
2229 	struct rdtgroup *rdtgrp, *tmp;
2230 
2231 	/* Move all tasks to the default resource group */
2232 	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2233 
2234 	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2235 		/* Free any child rmids */
2236 		free_all_child_rdtgrp(rdtgrp);
2237 
2238 		/* Remove each rdtgroup other than root */
2239 		if (rdtgrp == &rdtgroup_default)
2240 			continue;
2241 
2242 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2243 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2244 			rdtgroup_pseudo_lock_remove(rdtgrp);
2245 
2246 		/*
2247 		 * Give any CPUs back to the default group. We cannot copy
2248 		 * cpu_online_mask because a CPU might have executed the
2249 		 * offline callback already, but is still marked online.
2250 		 */
2251 		cpumask_or(&rdtgroup_default.cpu_mask,
2252 			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2253 
2254 		free_rmid(rdtgrp->mon.rmid);
2255 
2256 		kernfs_remove(rdtgrp->kn);
2257 		list_del(&rdtgrp->rdtgroup_list);
2258 
2259 		if (atomic_read(&rdtgrp->waitcount) != 0)
2260 			rdtgrp->flags = RDT_DELETED;
2261 		else
2262 			rdtgroup_remove(rdtgrp);
2263 	}
2264 	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2265 	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2266 
2267 	kernfs_remove(kn_info);
2268 	kernfs_remove(kn_mongrp);
2269 	kernfs_remove(kn_mondata);
2270 }
2271 
rdt_kill_sb(struct super_block * sb)2272 static void rdt_kill_sb(struct super_block *sb)
2273 {
2274 	struct rdt_resource *r;
2275 
2276 	cpus_read_lock();
2277 	mutex_lock(&rdtgroup_mutex);
2278 
2279 	set_mba_sc(false);
2280 
2281 	/*Put everything back to default values. */
2282 	for_each_alloc_enabled_rdt_resource(r)
2283 		reset_all_ctrls(r);
2284 	cdp_disable_all();
2285 	rmdir_all_sub();
2286 	rdt_pseudo_lock_release();
2287 	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2288 	static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2289 	static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2290 	static_branch_disable_cpuslocked(&rdt_enable_key);
2291 	kernfs_kill_sb(sb);
2292 	mutex_unlock(&rdtgroup_mutex);
2293 	cpus_read_unlock();
2294 }
2295 
2296 static struct file_system_type rdt_fs_type = {
2297 	.name			= "resctrl",
2298 	.init_fs_context	= rdt_init_fs_context,
2299 	.parameters		= &rdt_fs_parameters,
2300 	.kill_sb		= rdt_kill_sb,
2301 };
2302 
mon_addfile(struct kernfs_node * parent_kn,const char * name,void * priv)2303 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2304 		       void *priv)
2305 {
2306 	struct kernfs_node *kn;
2307 	int ret = 0;
2308 
2309 	kn = __kernfs_create_file(parent_kn, name, 0444,
2310 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2311 				  &kf_mondata_ops, priv, NULL, NULL);
2312 	if (IS_ERR(kn))
2313 		return PTR_ERR(kn);
2314 
2315 	ret = rdtgroup_kn_set_ugid(kn);
2316 	if (ret) {
2317 		kernfs_remove(kn);
2318 		return ret;
2319 	}
2320 
2321 	return ret;
2322 }
2323 
2324 /*
2325  * Remove all subdirectories of mon_data of ctrl_mon groups
2326  * and monitor groups with given domain id.
2327  */
rmdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,unsigned int dom_id)2328 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2329 {
2330 	struct rdtgroup *prgrp, *crgrp;
2331 	char name[32];
2332 
2333 	if (!r->mon_enabled)
2334 		return;
2335 
2336 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2337 		sprintf(name, "mon_%s_%02d", r->name, dom_id);
2338 		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2339 
2340 		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2341 			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2342 	}
2343 }
2344 
mkdir_mondata_subdir(struct kernfs_node * parent_kn,struct rdt_domain * d,struct rdt_resource * r,struct rdtgroup * prgrp)2345 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2346 				struct rdt_domain *d,
2347 				struct rdt_resource *r, struct rdtgroup *prgrp)
2348 {
2349 	union mon_data_bits priv;
2350 	struct kernfs_node *kn;
2351 	struct mon_evt *mevt;
2352 	struct rmid_read rr;
2353 	char name[32];
2354 	int ret;
2355 
2356 	sprintf(name, "mon_%s_%02d", r->name, d->id);
2357 	/* create the directory */
2358 	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2359 	if (IS_ERR(kn))
2360 		return PTR_ERR(kn);
2361 
2362 	ret = rdtgroup_kn_set_ugid(kn);
2363 	if (ret)
2364 		goto out_destroy;
2365 
2366 	if (WARN_ON(list_empty(&r->evt_list))) {
2367 		ret = -EPERM;
2368 		goto out_destroy;
2369 	}
2370 
2371 	priv.u.rid = r->rid;
2372 	priv.u.domid = d->id;
2373 	list_for_each_entry(mevt, &r->evt_list, list) {
2374 		priv.u.evtid = mevt->evtid;
2375 		ret = mon_addfile(kn, mevt->name, priv.priv);
2376 		if (ret)
2377 			goto out_destroy;
2378 
2379 		if (is_mbm_event(mevt->evtid))
2380 			mon_event_read(&rr, d, prgrp, mevt->evtid, true);
2381 	}
2382 	kernfs_activate(kn);
2383 	return 0;
2384 
2385 out_destroy:
2386 	kernfs_remove(kn);
2387 	return ret;
2388 }
2389 
2390 /*
2391  * Add all subdirectories of mon_data for "ctrl_mon" groups
2392  * and "monitor" groups with given domain id.
2393  */
mkdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,struct rdt_domain * d)2394 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2395 				    struct rdt_domain *d)
2396 {
2397 	struct kernfs_node *parent_kn;
2398 	struct rdtgroup *prgrp, *crgrp;
2399 	struct list_head *head;
2400 
2401 	if (!r->mon_enabled)
2402 		return;
2403 
2404 	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2405 		parent_kn = prgrp->mon.mon_data_kn;
2406 		mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2407 
2408 		head = &prgrp->mon.crdtgrp_list;
2409 		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2410 			parent_kn = crgrp->mon.mon_data_kn;
2411 			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2412 		}
2413 	}
2414 }
2415 
mkdir_mondata_subdir_alldom(struct kernfs_node * parent_kn,struct rdt_resource * r,struct rdtgroup * prgrp)2416 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2417 				       struct rdt_resource *r,
2418 				       struct rdtgroup *prgrp)
2419 {
2420 	struct rdt_domain *dom;
2421 	int ret;
2422 
2423 	list_for_each_entry(dom, &r->domains, list) {
2424 		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2425 		if (ret)
2426 			return ret;
2427 	}
2428 
2429 	return 0;
2430 }
2431 
2432 /*
2433  * This creates a directory mon_data which contains the monitored data.
2434  *
2435  * mon_data has one directory for each domain whic are named
2436  * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2437  * with L3 domain looks as below:
2438  * ./mon_data:
2439  * mon_L3_00
2440  * mon_L3_01
2441  * mon_L3_02
2442  * ...
2443  *
2444  * Each domain directory has one file per event:
2445  * ./mon_L3_00/:
2446  * llc_occupancy
2447  *
2448  */
mkdir_mondata_all(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,struct kernfs_node ** dest_kn)2449 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2450 			     struct rdtgroup *prgrp,
2451 			     struct kernfs_node **dest_kn)
2452 {
2453 	struct rdt_resource *r;
2454 	struct kernfs_node *kn;
2455 	int ret;
2456 
2457 	/*
2458 	 * Create the mon_data directory first.
2459 	 */
2460 	ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
2461 	if (ret)
2462 		return ret;
2463 
2464 	if (dest_kn)
2465 		*dest_kn = kn;
2466 
2467 	/*
2468 	 * Create the subdirectories for each domain. Note that all events
2469 	 * in a domain like L3 are grouped into a resource whose domain is L3
2470 	 */
2471 	for_each_mon_enabled_rdt_resource(r) {
2472 		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2473 		if (ret)
2474 			goto out_destroy;
2475 	}
2476 
2477 	return 0;
2478 
2479 out_destroy:
2480 	kernfs_remove(kn);
2481 	return ret;
2482 }
2483 
2484 /**
2485  * cbm_ensure_valid - Enforce validity on provided CBM
2486  * @_val:	Candidate CBM
2487  * @r:		RDT resource to which the CBM belongs
2488  *
2489  * The provided CBM represents all cache portions available for use. This
2490  * may be represented by a bitmap that does not consist of contiguous ones
2491  * and thus be an invalid CBM.
2492  * Here the provided CBM is forced to be a valid CBM by only considering
2493  * the first set of contiguous bits as valid and clearing all bits.
2494  * The intention here is to provide a valid default CBM with which a new
2495  * resource group is initialized. The user can follow this with a
2496  * modification to the CBM if the default does not satisfy the
2497  * requirements.
2498  */
cbm_ensure_valid(u32 _val,struct rdt_resource * r)2499 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
2500 {
2501 	unsigned int cbm_len = r->cache.cbm_len;
2502 	unsigned long first_bit, zero_bit;
2503 	unsigned long val = _val;
2504 
2505 	if (!val)
2506 		return 0;
2507 
2508 	first_bit = find_first_bit(&val, cbm_len);
2509 	zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2510 
2511 	/* Clear any remaining bits to ensure contiguous region */
2512 	bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2513 	return (u32)val;
2514 }
2515 
2516 /*
2517  * Initialize cache resources per RDT domain
2518  *
2519  * Set the RDT domain up to start off with all usable allocations. That is,
2520  * all shareable and unused bits. All-zero CBM is invalid.
2521  */
__init_one_rdt_domain(struct rdt_domain * d,struct rdt_resource * r,u32 closid)2522 static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r,
2523 				 u32 closid)
2524 {
2525 	struct rdt_resource *r_cdp = NULL;
2526 	struct rdt_domain *d_cdp = NULL;
2527 	u32 used_b = 0, unused_b = 0;
2528 	unsigned long tmp_cbm;
2529 	enum rdtgrp_mode mode;
2530 	u32 peer_ctl, *ctrl;
2531 	int i;
2532 
2533 	rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp);
2534 	d->have_new_ctrl = false;
2535 	d->new_ctrl = r->cache.shareable_bits;
2536 	used_b = r->cache.shareable_bits;
2537 	ctrl = d->ctrl_val;
2538 	for (i = 0; i < closids_supported(); i++, ctrl++) {
2539 		if (closid_allocated(i) && i != closid) {
2540 			mode = rdtgroup_mode_by_closid(i);
2541 			if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2542 				/*
2543 				 * ctrl values for locksetup aren't relevant
2544 				 * until the schemata is written, and the mode
2545 				 * becomes RDT_MODE_PSEUDO_LOCKED.
2546 				 */
2547 				continue;
2548 			/*
2549 			 * If CDP is active include peer domain's
2550 			 * usage to ensure there is no overlap
2551 			 * with an exclusive group.
2552 			 */
2553 			if (d_cdp)
2554 				peer_ctl = d_cdp->ctrl_val[i];
2555 			else
2556 				peer_ctl = 0;
2557 			used_b |= *ctrl | peer_ctl;
2558 			if (mode == RDT_MODE_SHAREABLE)
2559 				d->new_ctrl |= *ctrl | peer_ctl;
2560 		}
2561 	}
2562 	if (d->plr && d->plr->cbm > 0)
2563 		used_b |= d->plr->cbm;
2564 	unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2565 	unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2566 	d->new_ctrl |= unused_b;
2567 	/*
2568 	 * Force the initial CBM to be valid, user can
2569 	 * modify the CBM based on system availability.
2570 	 */
2571 	d->new_ctrl = cbm_ensure_valid(d->new_ctrl, r);
2572 	/*
2573 	 * Assign the u32 CBM to an unsigned long to ensure that
2574 	 * bitmap_weight() does not access out-of-bound memory.
2575 	 */
2576 	tmp_cbm = d->new_ctrl;
2577 	if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2578 		rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id);
2579 		return -ENOSPC;
2580 	}
2581 	d->have_new_ctrl = true;
2582 
2583 	return 0;
2584 }
2585 
2586 /*
2587  * Initialize cache resources with default values.
2588  *
2589  * A new RDT group is being created on an allocation capable (CAT)
2590  * supporting system. Set this group up to start off with all usable
2591  * allocations.
2592  *
2593  * If there are no more shareable bits available on any domain then
2594  * the entire allocation will fail.
2595  */
rdtgroup_init_cat(struct rdt_resource * r,u32 closid)2596 static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid)
2597 {
2598 	struct rdt_domain *d;
2599 	int ret;
2600 
2601 	list_for_each_entry(d, &r->domains, list) {
2602 		ret = __init_one_rdt_domain(d, r, closid);
2603 		if (ret < 0)
2604 			return ret;
2605 	}
2606 
2607 	return 0;
2608 }
2609 
2610 /* Initialize MBA resource with default values. */
rdtgroup_init_mba(struct rdt_resource * r)2611 static void rdtgroup_init_mba(struct rdt_resource *r)
2612 {
2613 	struct rdt_domain *d;
2614 
2615 	list_for_each_entry(d, &r->domains, list) {
2616 		d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl;
2617 		d->have_new_ctrl = true;
2618 	}
2619 }
2620 
2621 /* Initialize the RDT group's allocations. */
rdtgroup_init_alloc(struct rdtgroup * rdtgrp)2622 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2623 {
2624 	struct rdt_resource *r;
2625 	int ret;
2626 
2627 	for_each_alloc_enabled_rdt_resource(r) {
2628 		if (r->rid == RDT_RESOURCE_MBA) {
2629 			rdtgroup_init_mba(r);
2630 		} else {
2631 			ret = rdtgroup_init_cat(r, rdtgrp->closid);
2632 			if (ret < 0)
2633 				return ret;
2634 		}
2635 
2636 		ret = update_domains(r, rdtgrp->closid);
2637 		if (ret < 0) {
2638 			rdt_last_cmd_puts("Failed to initialize allocations\n");
2639 			return ret;
2640 		}
2641 
2642 	}
2643 
2644 	rdtgrp->mode = RDT_MODE_SHAREABLE;
2645 
2646 	return 0;
2647 }
2648 
mkdir_rdt_prepare(struct kernfs_node * parent_kn,struct kernfs_node * prgrp_kn,const char * name,umode_t mode,enum rdt_group_type rtype,struct rdtgroup ** r)2649 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2650 			     struct kernfs_node *prgrp_kn,
2651 			     const char *name, umode_t mode,
2652 			     enum rdt_group_type rtype, struct rdtgroup **r)
2653 {
2654 	struct rdtgroup *prdtgrp, *rdtgrp;
2655 	struct kernfs_node *kn;
2656 	uint files = 0;
2657 	int ret;
2658 
2659 	prdtgrp = rdtgroup_kn_lock_live(parent_kn);
2660 	if (!prdtgrp) {
2661 		ret = -ENODEV;
2662 		goto out_unlock;
2663 	}
2664 
2665 	if (rtype == RDTMON_GROUP &&
2666 	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2667 	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2668 		ret = -EINVAL;
2669 		rdt_last_cmd_puts("Pseudo-locking in progress\n");
2670 		goto out_unlock;
2671 	}
2672 
2673 	/* allocate the rdtgroup. */
2674 	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2675 	if (!rdtgrp) {
2676 		ret = -ENOSPC;
2677 		rdt_last_cmd_puts("Kernel out of memory\n");
2678 		goto out_unlock;
2679 	}
2680 	*r = rdtgrp;
2681 	rdtgrp->mon.parent = prdtgrp;
2682 	rdtgrp->type = rtype;
2683 	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2684 
2685 	/* kernfs creates the directory for rdtgrp */
2686 	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2687 	if (IS_ERR(kn)) {
2688 		ret = PTR_ERR(kn);
2689 		rdt_last_cmd_puts("kernfs create error\n");
2690 		goto out_free_rgrp;
2691 	}
2692 	rdtgrp->kn = kn;
2693 
2694 	/*
2695 	 * kernfs_remove() will drop the reference count on "kn" which
2696 	 * will free it. But we still need it to stick around for the
2697 	 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
2698 	 * which will be dropped by kernfs_put() in rdtgroup_remove().
2699 	 */
2700 	kernfs_get(kn);
2701 
2702 	ret = rdtgroup_kn_set_ugid(kn);
2703 	if (ret) {
2704 		rdt_last_cmd_puts("kernfs perm error\n");
2705 		goto out_destroy;
2706 	}
2707 
2708 	files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2709 	ret = rdtgroup_add_files(kn, files);
2710 	if (ret) {
2711 		rdt_last_cmd_puts("kernfs fill error\n");
2712 		goto out_destroy;
2713 	}
2714 
2715 	if (rdt_mon_capable) {
2716 		ret = alloc_rmid();
2717 		if (ret < 0) {
2718 			rdt_last_cmd_puts("Out of RMIDs\n");
2719 			goto out_destroy;
2720 		}
2721 		rdtgrp->mon.rmid = ret;
2722 
2723 		ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2724 		if (ret) {
2725 			rdt_last_cmd_puts("kernfs subdir error\n");
2726 			goto out_idfree;
2727 		}
2728 	}
2729 	kernfs_activate(kn);
2730 
2731 	/*
2732 	 * The caller unlocks the parent_kn upon success.
2733 	 */
2734 	return 0;
2735 
2736 out_idfree:
2737 	free_rmid(rdtgrp->mon.rmid);
2738 out_destroy:
2739 	kernfs_put(rdtgrp->kn);
2740 	kernfs_remove(rdtgrp->kn);
2741 out_free_rgrp:
2742 	kfree(rdtgrp);
2743 out_unlock:
2744 	rdtgroup_kn_unlock(parent_kn);
2745 	return ret;
2746 }
2747 
mkdir_rdt_prepare_clean(struct rdtgroup * rgrp)2748 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2749 {
2750 	kernfs_remove(rgrp->kn);
2751 	free_rmid(rgrp->mon.rmid);
2752 	rdtgroup_remove(rgrp);
2753 }
2754 
2755 /*
2756  * Create a monitor group under "mon_groups" directory of a control
2757  * and monitor group(ctrl_mon). This is a resource group
2758  * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2759  */
rdtgroup_mkdir_mon(struct kernfs_node * parent_kn,struct kernfs_node * prgrp_kn,const char * name,umode_t mode)2760 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2761 			      struct kernfs_node *prgrp_kn,
2762 			      const char *name,
2763 			      umode_t mode)
2764 {
2765 	struct rdtgroup *rdtgrp, *prgrp;
2766 	int ret;
2767 
2768 	ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
2769 				&rdtgrp);
2770 	if (ret)
2771 		return ret;
2772 
2773 	prgrp = rdtgrp->mon.parent;
2774 	rdtgrp->closid = prgrp->closid;
2775 
2776 	/*
2777 	 * Add the rdtgrp to the list of rdtgrps the parent
2778 	 * ctrl_mon group has to track.
2779 	 */
2780 	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2781 
2782 	rdtgroup_kn_unlock(parent_kn);
2783 	return ret;
2784 }
2785 
2786 /*
2787  * These are rdtgroups created under the root directory. Can be used
2788  * to allocate and monitor resources.
2789  */
rdtgroup_mkdir_ctrl_mon(struct kernfs_node * parent_kn,struct kernfs_node * prgrp_kn,const char * name,umode_t mode)2790 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2791 				   struct kernfs_node *prgrp_kn,
2792 				   const char *name, umode_t mode)
2793 {
2794 	struct rdtgroup *rdtgrp;
2795 	struct kernfs_node *kn;
2796 	u32 closid;
2797 	int ret;
2798 
2799 	ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
2800 				&rdtgrp);
2801 	if (ret)
2802 		return ret;
2803 
2804 	kn = rdtgrp->kn;
2805 	ret = closid_alloc();
2806 	if (ret < 0) {
2807 		rdt_last_cmd_puts("Out of CLOSIDs\n");
2808 		goto out_common_fail;
2809 	}
2810 	closid = ret;
2811 	ret = 0;
2812 
2813 	rdtgrp->closid = closid;
2814 	ret = rdtgroup_init_alloc(rdtgrp);
2815 	if (ret < 0)
2816 		goto out_id_free;
2817 
2818 	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2819 
2820 	if (rdt_mon_capable) {
2821 		/*
2822 		 * Create an empty mon_groups directory to hold the subset
2823 		 * of tasks and cpus to monitor.
2824 		 */
2825 		ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
2826 		if (ret) {
2827 			rdt_last_cmd_puts("kernfs subdir error\n");
2828 			goto out_del_list;
2829 		}
2830 	}
2831 
2832 	goto out_unlock;
2833 
2834 out_del_list:
2835 	list_del(&rdtgrp->rdtgroup_list);
2836 out_id_free:
2837 	closid_free(closid);
2838 out_common_fail:
2839 	mkdir_rdt_prepare_clean(rdtgrp);
2840 out_unlock:
2841 	rdtgroup_kn_unlock(parent_kn);
2842 	return ret;
2843 }
2844 
2845 /*
2846  * We allow creating mon groups only with in a directory called "mon_groups"
2847  * which is present in every ctrl_mon group. Check if this is a valid
2848  * "mon_groups" directory.
2849  *
2850  * 1. The directory should be named "mon_groups".
2851  * 2. The mon group itself should "not" be named "mon_groups".
2852  *   This makes sure "mon_groups" directory always has a ctrl_mon group
2853  *   as parent.
2854  */
is_mon_groups(struct kernfs_node * kn,const char * name)2855 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2856 {
2857 	return (!strcmp(kn->name, "mon_groups") &&
2858 		strcmp(name, "mon_groups"));
2859 }
2860 
rdtgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)2861 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2862 			  umode_t mode)
2863 {
2864 	/* Do not accept '\n' to avoid unparsable situation. */
2865 	if (strchr(name, '\n'))
2866 		return -EINVAL;
2867 
2868 	/*
2869 	 * If the parent directory is the root directory and RDT
2870 	 * allocation is supported, add a control and monitoring
2871 	 * subdirectory
2872 	 */
2873 	if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2874 		return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);
2875 
2876 	/*
2877 	 * If RDT monitoring is supported and the parent directory is a valid
2878 	 * "mon_groups" directory, add a monitoring subdirectory.
2879 	 */
2880 	if (rdt_mon_capable && is_mon_groups(parent_kn, name))
2881 		return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
2882 
2883 	return -EPERM;
2884 }
2885 
rdtgroup_rmdir_mon(struct kernfs_node * kn,struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)2886 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2887 			      cpumask_var_t tmpmask)
2888 {
2889 	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
2890 	int cpu;
2891 
2892 	/* Give any tasks back to the parent group */
2893 	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
2894 
2895 	/* Update per cpu rmid of the moved CPUs first */
2896 	for_each_cpu(cpu, &rdtgrp->cpu_mask)
2897 		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
2898 	/*
2899 	 * Update the MSR on moved CPUs and CPUs which have moved
2900 	 * task running on them.
2901 	 */
2902 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2903 	update_closid_rmid(tmpmask, NULL);
2904 
2905 	rdtgrp->flags = RDT_DELETED;
2906 	free_rmid(rdtgrp->mon.rmid);
2907 
2908 	/*
2909 	 * Remove the rdtgrp from the parent ctrl_mon group's list
2910 	 */
2911 	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
2912 	list_del(&rdtgrp->mon.crdtgrp_list);
2913 
2914 	kernfs_remove(rdtgrp->kn);
2915 
2916 	return 0;
2917 }
2918 
rdtgroup_ctrl_remove(struct kernfs_node * kn,struct rdtgroup * rdtgrp)2919 static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
2920 				struct rdtgroup *rdtgrp)
2921 {
2922 	rdtgrp->flags = RDT_DELETED;
2923 	list_del(&rdtgrp->rdtgroup_list);
2924 
2925 	kernfs_remove(rdtgrp->kn);
2926 	return 0;
2927 }
2928 
rdtgroup_rmdir_ctrl(struct kernfs_node * kn,struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)2929 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2930 			       cpumask_var_t tmpmask)
2931 {
2932 	int cpu;
2933 
2934 	/* Give any tasks back to the default group */
2935 	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
2936 
2937 	/* Give any CPUs back to the default group */
2938 	cpumask_or(&rdtgroup_default.cpu_mask,
2939 		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2940 
2941 	/* Update per cpu closid and rmid of the moved CPUs first */
2942 	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
2943 		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
2944 		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
2945 	}
2946 
2947 	/*
2948 	 * Update the MSR on moved CPUs and CPUs which have moved
2949 	 * task running on them.
2950 	 */
2951 	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2952 	update_closid_rmid(tmpmask, NULL);
2953 
2954 	closid_free(rdtgrp->closid);
2955 	free_rmid(rdtgrp->mon.rmid);
2956 
2957 	rdtgroup_ctrl_remove(kn, rdtgrp);
2958 
2959 	/*
2960 	 * Free all the child monitor group rmids.
2961 	 */
2962 	free_all_child_rdtgrp(rdtgrp);
2963 
2964 	return 0;
2965 }
2966 
rdtgroup_rmdir(struct kernfs_node * kn)2967 static int rdtgroup_rmdir(struct kernfs_node *kn)
2968 {
2969 	struct kernfs_node *parent_kn = kn->parent;
2970 	struct rdtgroup *rdtgrp;
2971 	cpumask_var_t tmpmask;
2972 	int ret = 0;
2973 
2974 	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
2975 		return -ENOMEM;
2976 
2977 	rdtgrp = rdtgroup_kn_lock_live(kn);
2978 	if (!rdtgrp) {
2979 		ret = -EPERM;
2980 		goto out;
2981 	}
2982 
2983 	/*
2984 	 * If the rdtgroup is a ctrl_mon group and parent directory
2985 	 * is the root directory, remove the ctrl_mon group.
2986 	 *
2987 	 * If the rdtgroup is a mon group and parent directory
2988 	 * is a valid "mon_groups" directory, remove the mon group.
2989 	 */
2990 	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
2991 	    rdtgrp != &rdtgroup_default) {
2992 		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2993 		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
2994 			ret = rdtgroup_ctrl_remove(kn, rdtgrp);
2995 		} else {
2996 			ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
2997 		}
2998 	} else if (rdtgrp->type == RDTMON_GROUP &&
2999 		 is_mon_groups(parent_kn, kn->name)) {
3000 		ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
3001 	} else {
3002 		ret = -EPERM;
3003 	}
3004 
3005 out:
3006 	rdtgroup_kn_unlock(kn);
3007 	free_cpumask_var(tmpmask);
3008 	return ret;
3009 }
3010 
rdtgroup_show_options(struct seq_file * seq,struct kernfs_root * kf)3011 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3012 {
3013 	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
3014 		seq_puts(seq, ",cdp");
3015 
3016 	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
3017 		seq_puts(seq, ",cdpl2");
3018 
3019 	if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
3020 		seq_puts(seq, ",mba_MBps");
3021 
3022 	return 0;
3023 }
3024 
3025 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3026 	.mkdir		= rdtgroup_mkdir,
3027 	.rmdir		= rdtgroup_rmdir,
3028 	.show_options	= rdtgroup_show_options,
3029 };
3030 
rdtgroup_setup_root(void)3031 static int __init rdtgroup_setup_root(void)
3032 {
3033 	int ret;
3034 
3035 	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3036 				      KERNFS_ROOT_CREATE_DEACTIVATED |
3037 				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3038 				      &rdtgroup_default);
3039 	if (IS_ERR(rdt_root))
3040 		return PTR_ERR(rdt_root);
3041 
3042 	mutex_lock(&rdtgroup_mutex);
3043 
3044 	rdtgroup_default.closid = 0;
3045 	rdtgroup_default.mon.rmid = 0;
3046 	rdtgroup_default.type = RDTCTRL_GROUP;
3047 	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3048 
3049 	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3050 
3051 	ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
3052 	if (ret) {
3053 		kernfs_destroy_root(rdt_root);
3054 		goto out;
3055 	}
3056 
3057 	rdtgroup_default.kn = rdt_root->kn;
3058 	kernfs_activate(rdtgroup_default.kn);
3059 
3060 out:
3061 	mutex_unlock(&rdtgroup_mutex);
3062 
3063 	return ret;
3064 }
3065 
3066 /*
3067  * rdtgroup_init - rdtgroup initialization
3068  *
3069  * Setup resctrl file system including set up root, create mount point,
3070  * register rdtgroup filesystem, and initialize files under root directory.
3071  *
3072  * Return: 0 on success or -errno
3073  */
rdtgroup_init(void)3074 int __init rdtgroup_init(void)
3075 {
3076 	int ret = 0;
3077 
3078 	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3079 		     sizeof(last_cmd_status_buf));
3080 
3081 	ret = rdtgroup_setup_root();
3082 	if (ret)
3083 		return ret;
3084 
3085 	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3086 	if (ret)
3087 		goto cleanup_root;
3088 
3089 	ret = register_filesystem(&rdt_fs_type);
3090 	if (ret)
3091 		goto cleanup_mountpoint;
3092 
3093 	/*
3094 	 * Adding the resctrl debugfs directory here may not be ideal since
3095 	 * it would let the resctrl debugfs directory appear on the debugfs
3096 	 * filesystem before the resctrl filesystem is mounted.
3097 	 * It may also be ok since that would enable debugging of RDT before
3098 	 * resctrl is mounted.
3099 	 * The reason why the debugfs directory is created here and not in
3100 	 * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and
3101 	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3102 	 * (the lockdep class of inode->i_rwsem). Other filesystem
3103 	 * interactions (eg. SyS_getdents) have the lock ordering:
3104 	 * &sb->s_type->i_mutex_key --> &mm->mmap_sem
3105 	 * During mmap(), called with &mm->mmap_sem, the rdtgroup_mutex
3106 	 * is taken, thus creating dependency:
3107 	 * &mm->mmap_sem --> rdtgroup_mutex for the latter that can cause
3108 	 * issues considering the other two lock dependencies.
3109 	 * By creating the debugfs directory here we avoid a dependency
3110 	 * that may cause deadlock (even though file operations cannot
3111 	 * occur until the filesystem is mounted, but I do not know how to
3112 	 * tell lockdep that).
3113 	 */
3114 	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3115 
3116 	return 0;
3117 
3118 cleanup_mountpoint:
3119 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3120 cleanup_root:
3121 	kernfs_destroy_root(rdt_root);
3122 
3123 	return ret;
3124 }
3125 
rdtgroup_exit(void)3126 void __exit rdtgroup_exit(void)
3127 {
3128 	debugfs_remove_recursive(debugfs_resctrl);
3129 	unregister_filesystem(&rdt_fs_type);
3130 	sysfs_remove_mount_point(fs_kobj, "resctrl");
3131 	kernfs_destroy_root(rdt_root);
3132 }
3133