1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * User interface for Resource Alloction in Resource Director Technology(RDT)
4 *
5 * Copyright (C) 2016 Intel Corporation
6 *
7 * Author: Fenghua Yu <fenghua.yu@intel.com>
8 *
9 * More information about RDT be found in the Intel (R) x86 Architecture
10 * Software Developer Manual.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29
30 #include <uapi/linux/magic.h>
31
32 #include <asm/resctrl_sched.h>
33 #include "internal.h"
34
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41
42 /* Kernel fs node for "info" directory under root */
43 static struct kernfs_node *kn_info;
44
45 /* Kernel fs node for "mon_groups" directory under root */
46 static struct kernfs_node *kn_mongrp;
47
48 /* Kernel fs node for "mon_data" directory under root */
49 static struct kernfs_node *kn_mondata;
50
51 static struct seq_buf last_cmd_status;
52 static char last_cmd_status_buf[512];
53
54 struct dentry *debugfs_resctrl;
55
rdt_last_cmd_clear(void)56 void rdt_last_cmd_clear(void)
57 {
58 lockdep_assert_held(&rdtgroup_mutex);
59 seq_buf_clear(&last_cmd_status);
60 }
61
rdt_last_cmd_puts(const char * s)62 void rdt_last_cmd_puts(const char *s)
63 {
64 lockdep_assert_held(&rdtgroup_mutex);
65 seq_buf_puts(&last_cmd_status, s);
66 }
67
rdt_last_cmd_printf(const char * fmt,...)68 void rdt_last_cmd_printf(const char *fmt, ...)
69 {
70 va_list ap;
71
72 va_start(ap, fmt);
73 lockdep_assert_held(&rdtgroup_mutex);
74 seq_buf_vprintf(&last_cmd_status, fmt, ap);
75 va_end(ap);
76 }
77
78 /*
79 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
80 * we can keep a bitmap of free CLOSIDs in a single integer.
81 *
82 * Using a global CLOSID across all resources has some advantages and
83 * some drawbacks:
84 * + We can simply set "current->closid" to assign a task to a resource
85 * group.
86 * + Context switch code can avoid extra memory references deciding which
87 * CLOSID to load into the PQR_ASSOC MSR
88 * - We give up some options in configuring resource groups across multi-socket
89 * systems.
90 * - Our choices on how to configure each resource become progressively more
91 * limited as the number of resources grows.
92 */
93 static int closid_free_map;
94 static int closid_free_map_len;
95
closids_supported(void)96 int closids_supported(void)
97 {
98 return closid_free_map_len;
99 }
100
closid_init(void)101 static void closid_init(void)
102 {
103 struct rdt_resource *r;
104 int rdt_min_closid = 32;
105
106 /* Compute rdt_min_closid across all resources */
107 for_each_alloc_enabled_rdt_resource(r)
108 rdt_min_closid = min(rdt_min_closid, r->num_closid);
109
110 closid_free_map = BIT_MASK(rdt_min_closid) - 1;
111
112 /* CLOSID 0 is always reserved for the default group */
113 closid_free_map &= ~1;
114 closid_free_map_len = rdt_min_closid;
115 }
116
closid_alloc(void)117 static int closid_alloc(void)
118 {
119 u32 closid = ffs(closid_free_map);
120
121 if (closid == 0)
122 return -ENOSPC;
123 closid--;
124 closid_free_map &= ~(1 << closid);
125
126 return closid;
127 }
128
closid_free(int closid)129 void closid_free(int closid)
130 {
131 closid_free_map |= 1 << closid;
132 }
133
134 /**
135 * closid_allocated - test if provided closid is in use
136 * @closid: closid to be tested
137 *
138 * Return: true if @closid is currently associated with a resource group,
139 * false if @closid is free
140 */
closid_allocated(unsigned int closid)141 static bool closid_allocated(unsigned int closid)
142 {
143 return (closid_free_map & (1 << closid)) == 0;
144 }
145
146 /**
147 * rdtgroup_mode_by_closid - Return mode of resource group with closid
148 * @closid: closid if the resource group
149 *
150 * Each resource group is associated with a @closid. Here the mode
151 * of a resource group can be queried by searching for it using its closid.
152 *
153 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
154 */
rdtgroup_mode_by_closid(int closid)155 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
156 {
157 struct rdtgroup *rdtgrp;
158
159 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
160 if (rdtgrp->closid == closid)
161 return rdtgrp->mode;
162 }
163
164 return RDT_NUM_MODES;
165 }
166
167 static const char * const rdt_mode_str[] = {
168 [RDT_MODE_SHAREABLE] = "shareable",
169 [RDT_MODE_EXCLUSIVE] = "exclusive",
170 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup",
171 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked",
172 };
173
174 /**
175 * rdtgroup_mode_str - Return the string representation of mode
176 * @mode: the resource group mode as &enum rdtgroup_mode
177 *
178 * Return: string representation of valid mode, "unknown" otherwise
179 */
rdtgroup_mode_str(enum rdtgrp_mode mode)180 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
181 {
182 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
183 return "unknown";
184
185 return rdt_mode_str[mode];
186 }
187
188 /* set uid and gid of rdtgroup dirs and files to that of the creator */
rdtgroup_kn_set_ugid(struct kernfs_node * kn)189 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
190 {
191 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
192 .ia_uid = current_fsuid(),
193 .ia_gid = current_fsgid(), };
194
195 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
196 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
197 return 0;
198
199 return kernfs_setattr(kn, &iattr);
200 }
201
rdtgroup_add_file(struct kernfs_node * parent_kn,struct rftype * rft)202 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
203 {
204 struct kernfs_node *kn;
205 int ret;
206
207 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
208 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
209 0, rft->kf_ops, rft, NULL, NULL);
210 if (IS_ERR(kn))
211 return PTR_ERR(kn);
212
213 ret = rdtgroup_kn_set_ugid(kn);
214 if (ret) {
215 kernfs_remove(kn);
216 return ret;
217 }
218
219 return 0;
220 }
221
rdtgroup_seqfile_show(struct seq_file * m,void * arg)222 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
223 {
224 struct kernfs_open_file *of = m->private;
225 struct rftype *rft = of->kn->priv;
226
227 if (rft->seq_show)
228 return rft->seq_show(of, m, arg);
229 return 0;
230 }
231
rdtgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)232 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
233 size_t nbytes, loff_t off)
234 {
235 struct rftype *rft = of->kn->priv;
236
237 if (rft->write)
238 return rft->write(of, buf, nbytes, off);
239
240 return -EINVAL;
241 }
242
243 static struct kernfs_ops rdtgroup_kf_single_ops = {
244 .atomic_write_len = PAGE_SIZE,
245 .write = rdtgroup_file_write,
246 .seq_show = rdtgroup_seqfile_show,
247 };
248
249 static struct kernfs_ops kf_mondata_ops = {
250 .atomic_write_len = PAGE_SIZE,
251 .seq_show = rdtgroup_mondata_show,
252 };
253
is_cpu_list(struct kernfs_open_file * of)254 static bool is_cpu_list(struct kernfs_open_file *of)
255 {
256 struct rftype *rft = of->kn->priv;
257
258 return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
259 }
260
rdtgroup_cpus_show(struct kernfs_open_file * of,struct seq_file * s,void * v)261 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
262 struct seq_file *s, void *v)
263 {
264 struct rdtgroup *rdtgrp;
265 struct cpumask *mask;
266 int ret = 0;
267
268 rdtgrp = rdtgroup_kn_lock_live(of->kn);
269
270 if (rdtgrp) {
271 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
272 if (!rdtgrp->plr->d) {
273 rdt_last_cmd_clear();
274 rdt_last_cmd_puts("Cache domain offline\n");
275 ret = -ENODEV;
276 } else {
277 mask = &rdtgrp->plr->d->cpu_mask;
278 seq_printf(s, is_cpu_list(of) ?
279 "%*pbl\n" : "%*pb\n",
280 cpumask_pr_args(mask));
281 }
282 } else {
283 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
284 cpumask_pr_args(&rdtgrp->cpu_mask));
285 }
286 } else {
287 ret = -ENOENT;
288 }
289 rdtgroup_kn_unlock(of->kn);
290
291 return ret;
292 }
293
294 /*
295 * This is safe against resctrl_sched_in() called from __switch_to()
296 * because __switch_to() is executed with interrupts disabled. A local call
297 * from update_closid_rmid() is proteced against __switch_to() because
298 * preemption is disabled.
299 */
update_cpu_closid_rmid(void * info)300 static void update_cpu_closid_rmid(void *info)
301 {
302 struct rdtgroup *r = info;
303
304 if (r) {
305 this_cpu_write(pqr_state.default_closid, r->closid);
306 this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
307 }
308
309 /*
310 * We cannot unconditionally write the MSR because the current
311 * executing task might have its own closid selected. Just reuse
312 * the context switch code.
313 */
314 resctrl_sched_in(current);
315 }
316
317 /*
318 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
319 *
320 * Per task closids/rmids must have been set up before calling this function.
321 */
322 static void
update_closid_rmid(const struct cpumask * cpu_mask,struct rdtgroup * r)323 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
324 {
325 int cpu = get_cpu();
326
327 if (cpumask_test_cpu(cpu, cpu_mask))
328 update_cpu_closid_rmid(r);
329 smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
330 put_cpu();
331 }
332
cpus_mon_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask)333 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
334 cpumask_var_t tmpmask)
335 {
336 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
337 struct list_head *head;
338
339 /* Check whether cpus belong to parent ctrl group */
340 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
341 if (cpumask_weight(tmpmask)) {
342 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
343 return -EINVAL;
344 }
345
346 /* Check whether cpus are dropped from this group */
347 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
348 if (cpumask_weight(tmpmask)) {
349 /* Give any dropped cpus to parent rdtgroup */
350 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
351 update_closid_rmid(tmpmask, prgrp);
352 }
353
354 /*
355 * If we added cpus, remove them from previous group that owned them
356 * and update per-cpu rmid
357 */
358 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
359 if (cpumask_weight(tmpmask)) {
360 head = &prgrp->mon.crdtgrp_list;
361 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
362 if (crgrp == rdtgrp)
363 continue;
364 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
365 tmpmask);
366 }
367 update_closid_rmid(tmpmask, rdtgrp);
368 }
369
370 /* Done pushing/pulling - update this group with new mask */
371 cpumask_copy(&rdtgrp->cpu_mask, newmask);
372
373 return 0;
374 }
375
cpumask_rdtgrp_clear(struct rdtgroup * r,struct cpumask * m)376 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
377 {
378 struct rdtgroup *crgrp;
379
380 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
381 /* update the child mon group masks as well*/
382 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
383 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
384 }
385
cpus_ctrl_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask,cpumask_var_t tmpmask1)386 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
387 cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
388 {
389 struct rdtgroup *r, *crgrp;
390 struct list_head *head;
391
392 /* Check whether cpus are dropped from this group */
393 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
394 if (cpumask_weight(tmpmask)) {
395 /* Can't drop from default group */
396 if (rdtgrp == &rdtgroup_default) {
397 rdt_last_cmd_puts("Can't drop CPUs from default group\n");
398 return -EINVAL;
399 }
400
401 /* Give any dropped cpus to rdtgroup_default */
402 cpumask_or(&rdtgroup_default.cpu_mask,
403 &rdtgroup_default.cpu_mask, tmpmask);
404 update_closid_rmid(tmpmask, &rdtgroup_default);
405 }
406
407 /*
408 * If we added cpus, remove them from previous group and
409 * the prev group's child groups that owned them
410 * and update per-cpu closid/rmid.
411 */
412 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
413 if (cpumask_weight(tmpmask)) {
414 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
415 if (r == rdtgrp)
416 continue;
417 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
418 if (cpumask_weight(tmpmask1))
419 cpumask_rdtgrp_clear(r, tmpmask1);
420 }
421 update_closid_rmid(tmpmask, rdtgrp);
422 }
423
424 /* Done pushing/pulling - update this group with new mask */
425 cpumask_copy(&rdtgrp->cpu_mask, newmask);
426
427 /*
428 * Clear child mon group masks since there is a new parent mask
429 * now and update the rmid for the cpus the child lost.
430 */
431 head = &rdtgrp->mon.crdtgrp_list;
432 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
433 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
434 update_closid_rmid(tmpmask, rdtgrp);
435 cpumask_clear(&crgrp->cpu_mask);
436 }
437
438 return 0;
439 }
440
rdtgroup_cpus_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)441 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
442 char *buf, size_t nbytes, loff_t off)
443 {
444 cpumask_var_t tmpmask, newmask, tmpmask1;
445 struct rdtgroup *rdtgrp;
446 int ret;
447
448 if (!buf)
449 return -EINVAL;
450
451 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
452 return -ENOMEM;
453 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
454 free_cpumask_var(tmpmask);
455 return -ENOMEM;
456 }
457 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
458 free_cpumask_var(tmpmask);
459 free_cpumask_var(newmask);
460 return -ENOMEM;
461 }
462
463 rdtgrp = rdtgroup_kn_lock_live(of->kn);
464 if (!rdtgrp) {
465 ret = -ENOENT;
466 goto unlock;
467 }
468
469 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
470 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
471 ret = -EINVAL;
472 rdt_last_cmd_puts("Pseudo-locking in progress\n");
473 goto unlock;
474 }
475
476 if (is_cpu_list(of))
477 ret = cpulist_parse(buf, newmask);
478 else
479 ret = cpumask_parse(buf, newmask);
480
481 if (ret) {
482 rdt_last_cmd_puts("Bad CPU list/mask\n");
483 goto unlock;
484 }
485
486 /* check that user didn't specify any offline cpus */
487 cpumask_andnot(tmpmask, newmask, cpu_online_mask);
488 if (cpumask_weight(tmpmask)) {
489 ret = -EINVAL;
490 rdt_last_cmd_puts("Can only assign online CPUs\n");
491 goto unlock;
492 }
493
494 if (rdtgrp->type == RDTCTRL_GROUP)
495 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
496 else if (rdtgrp->type == RDTMON_GROUP)
497 ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
498 else
499 ret = -EINVAL;
500
501 unlock:
502 rdtgroup_kn_unlock(of->kn);
503 free_cpumask_var(tmpmask);
504 free_cpumask_var(newmask);
505 free_cpumask_var(tmpmask1);
506
507 return ret ?: nbytes;
508 }
509
510 /**
511 * rdtgroup_remove - the helper to remove resource group safely
512 * @rdtgrp: resource group to remove
513 *
514 * On resource group creation via a mkdir, an extra kernfs_node reference is
515 * taken to ensure that the rdtgroup structure remains accessible for the
516 * rdtgroup_kn_unlock() calls where it is removed.
517 *
518 * Drop the extra reference here, then free the rdtgroup structure.
519 *
520 * Return: void
521 */
rdtgroup_remove(struct rdtgroup * rdtgrp)522 static void rdtgroup_remove(struct rdtgroup *rdtgrp)
523 {
524 kernfs_put(rdtgrp->kn);
525 kfree(rdtgrp);
526 }
527
_update_task_closid_rmid(void * task)528 static void _update_task_closid_rmid(void *task)
529 {
530 /*
531 * If the task is still current on this CPU, update PQR_ASSOC MSR.
532 * Otherwise, the MSR is updated when the task is scheduled in.
533 */
534 if (task == current)
535 resctrl_sched_in(task);
536 }
537
update_task_closid_rmid(struct task_struct * t)538 static void update_task_closid_rmid(struct task_struct *t)
539 {
540 if (IS_ENABLED(CONFIG_SMP) && task_curr(t))
541 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1);
542 else
543 _update_task_closid_rmid(t);
544 }
545
__rdtgroup_move_task(struct task_struct * tsk,struct rdtgroup * rdtgrp)546 static int __rdtgroup_move_task(struct task_struct *tsk,
547 struct rdtgroup *rdtgrp)
548 {
549 /* If the task is already in rdtgrp, no need to move the task. */
550 if ((rdtgrp->type == RDTCTRL_GROUP && tsk->closid == rdtgrp->closid &&
551 tsk->rmid == rdtgrp->mon.rmid) ||
552 (rdtgrp->type == RDTMON_GROUP && tsk->rmid == rdtgrp->mon.rmid &&
553 tsk->closid == rdtgrp->mon.parent->closid))
554 return 0;
555
556 /*
557 * Set the task's closid/rmid before the PQR_ASSOC MSR can be
558 * updated by them.
559 *
560 * For ctrl_mon groups, move both closid and rmid.
561 * For monitor groups, can move the tasks only from
562 * their parent CTRL group.
563 */
564
565 if (rdtgrp->type == RDTCTRL_GROUP) {
566 WRITE_ONCE(tsk->closid, rdtgrp->closid);
567 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
568 } else if (rdtgrp->type == RDTMON_GROUP) {
569 if (rdtgrp->mon.parent->closid == tsk->closid) {
570 WRITE_ONCE(tsk->rmid, rdtgrp->mon.rmid);
571 } else {
572 rdt_last_cmd_puts("Can't move task to different control group\n");
573 return -EINVAL;
574 }
575 }
576
577 /*
578 * Ensure the task's closid and rmid are written before determining if
579 * the task is current that will decide if it will be interrupted.
580 * This pairs with the full barrier between the rq->curr update and
581 * resctrl_sched_in() during context switch.
582 */
583 smp_mb();
584
585 /*
586 * By now, the task's closid and rmid are set. If the task is current
587 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource
588 * group go into effect. If the task is not current, the MSR will be
589 * updated when the task is scheduled in.
590 */
591 update_task_closid_rmid(tsk);
592
593 return 0;
594 }
595
is_closid_match(struct task_struct * t,struct rdtgroup * r)596 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
597 {
598 return (rdt_alloc_capable &&
599 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
600 }
601
is_rmid_match(struct task_struct * t,struct rdtgroup * r)602 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
603 {
604 return (rdt_mon_capable &&
605 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
606 }
607
608 /**
609 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
610 * @r: Resource group
611 *
612 * Return: 1 if tasks have been assigned to @r, 0 otherwise
613 */
rdtgroup_tasks_assigned(struct rdtgroup * r)614 int rdtgroup_tasks_assigned(struct rdtgroup *r)
615 {
616 struct task_struct *p, *t;
617 int ret = 0;
618
619 lockdep_assert_held(&rdtgroup_mutex);
620
621 rcu_read_lock();
622 for_each_process_thread(p, t) {
623 if (is_closid_match(t, r) || is_rmid_match(t, r)) {
624 ret = 1;
625 break;
626 }
627 }
628 rcu_read_unlock();
629
630 return ret;
631 }
632
rdtgroup_task_write_permission(struct task_struct * task,struct kernfs_open_file * of)633 static int rdtgroup_task_write_permission(struct task_struct *task,
634 struct kernfs_open_file *of)
635 {
636 const struct cred *tcred = get_task_cred(task);
637 const struct cred *cred = current_cred();
638 int ret = 0;
639
640 /*
641 * Even if we're attaching all tasks in the thread group, we only
642 * need to check permissions on one of them.
643 */
644 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
645 !uid_eq(cred->euid, tcred->uid) &&
646 !uid_eq(cred->euid, tcred->suid)) {
647 rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
648 ret = -EPERM;
649 }
650
651 put_cred(tcred);
652 return ret;
653 }
654
rdtgroup_move_task(pid_t pid,struct rdtgroup * rdtgrp,struct kernfs_open_file * of)655 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
656 struct kernfs_open_file *of)
657 {
658 struct task_struct *tsk;
659 int ret;
660
661 rcu_read_lock();
662 if (pid) {
663 tsk = find_task_by_vpid(pid);
664 if (!tsk) {
665 rcu_read_unlock();
666 rdt_last_cmd_printf("No task %d\n", pid);
667 return -ESRCH;
668 }
669 } else {
670 tsk = current;
671 }
672
673 get_task_struct(tsk);
674 rcu_read_unlock();
675
676 ret = rdtgroup_task_write_permission(tsk, of);
677 if (!ret)
678 ret = __rdtgroup_move_task(tsk, rdtgrp);
679
680 put_task_struct(tsk);
681 return ret;
682 }
683
rdtgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)684 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
685 char *buf, size_t nbytes, loff_t off)
686 {
687 struct rdtgroup *rdtgrp;
688 int ret = 0;
689 pid_t pid;
690
691 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
692 return -EINVAL;
693 rdtgrp = rdtgroup_kn_lock_live(of->kn);
694 if (!rdtgrp) {
695 rdtgroup_kn_unlock(of->kn);
696 return -ENOENT;
697 }
698 rdt_last_cmd_clear();
699
700 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
701 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
702 ret = -EINVAL;
703 rdt_last_cmd_puts("Pseudo-locking in progress\n");
704 goto unlock;
705 }
706
707 ret = rdtgroup_move_task(pid, rdtgrp, of);
708
709 unlock:
710 rdtgroup_kn_unlock(of->kn);
711
712 return ret ?: nbytes;
713 }
714
show_rdt_tasks(struct rdtgroup * r,struct seq_file * s)715 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
716 {
717 struct task_struct *p, *t;
718 pid_t pid;
719
720 rcu_read_lock();
721 for_each_process_thread(p, t) {
722 if (is_closid_match(t, r) || is_rmid_match(t, r)) {
723 pid = task_pid_vnr(t);
724 if (pid)
725 seq_printf(s, "%d\n", pid);
726 }
727 }
728 rcu_read_unlock();
729 }
730
rdtgroup_tasks_show(struct kernfs_open_file * of,struct seq_file * s,void * v)731 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
732 struct seq_file *s, void *v)
733 {
734 struct rdtgroup *rdtgrp;
735 int ret = 0;
736
737 rdtgrp = rdtgroup_kn_lock_live(of->kn);
738 if (rdtgrp)
739 show_rdt_tasks(rdtgrp, s);
740 else
741 ret = -ENOENT;
742 rdtgroup_kn_unlock(of->kn);
743
744 return ret;
745 }
746
rdt_last_cmd_status_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)747 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
748 struct seq_file *seq, void *v)
749 {
750 int len;
751
752 mutex_lock(&rdtgroup_mutex);
753 len = seq_buf_used(&last_cmd_status);
754 if (len)
755 seq_printf(seq, "%.*s", len, last_cmd_status_buf);
756 else
757 seq_puts(seq, "ok\n");
758 mutex_unlock(&rdtgroup_mutex);
759 return 0;
760 }
761
rdt_num_closids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)762 static int rdt_num_closids_show(struct kernfs_open_file *of,
763 struct seq_file *seq, void *v)
764 {
765 struct rdt_resource *r = of->kn->parent->priv;
766
767 seq_printf(seq, "%d\n", r->num_closid);
768 return 0;
769 }
770
rdt_default_ctrl_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)771 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
772 struct seq_file *seq, void *v)
773 {
774 struct rdt_resource *r = of->kn->parent->priv;
775
776 seq_printf(seq, "%x\n", r->default_ctrl);
777 return 0;
778 }
779
rdt_min_cbm_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)780 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
781 struct seq_file *seq, void *v)
782 {
783 struct rdt_resource *r = of->kn->parent->priv;
784
785 seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
786 return 0;
787 }
788
rdt_shareable_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)789 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
790 struct seq_file *seq, void *v)
791 {
792 struct rdt_resource *r = of->kn->parent->priv;
793
794 seq_printf(seq, "%x\n", r->cache.shareable_bits);
795 return 0;
796 }
797
798 /**
799 * rdt_bit_usage_show - Display current usage of resources
800 *
801 * A domain is a shared resource that can now be allocated differently. Here
802 * we display the current regions of the domain as an annotated bitmask.
803 * For each domain of this resource its allocation bitmask
804 * is annotated as below to indicate the current usage of the corresponding bit:
805 * 0 - currently unused
806 * X - currently available for sharing and used by software and hardware
807 * H - currently used by hardware only but available for software use
808 * S - currently used and shareable by software only
809 * E - currently used exclusively by one resource group
810 * P - currently pseudo-locked by one resource group
811 */
rdt_bit_usage_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)812 static int rdt_bit_usage_show(struct kernfs_open_file *of,
813 struct seq_file *seq, void *v)
814 {
815 struct rdt_resource *r = of->kn->parent->priv;
816 /*
817 * Use unsigned long even though only 32 bits are used to ensure
818 * test_bit() is used safely.
819 */
820 unsigned long sw_shareable = 0, hw_shareable = 0;
821 unsigned long exclusive = 0, pseudo_locked = 0;
822 struct rdt_domain *dom;
823 int i, hwb, swb, excl, psl;
824 enum rdtgrp_mode mode;
825 bool sep = false;
826 u32 *ctrl;
827
828 mutex_lock(&rdtgroup_mutex);
829 hw_shareable = r->cache.shareable_bits;
830 list_for_each_entry(dom, &r->domains, list) {
831 if (sep)
832 seq_putc(seq, ';');
833 ctrl = dom->ctrl_val;
834 sw_shareable = 0;
835 exclusive = 0;
836 seq_printf(seq, "%d=", dom->id);
837 for (i = 0; i < closids_supported(); i++, ctrl++) {
838 if (!closid_allocated(i))
839 continue;
840 mode = rdtgroup_mode_by_closid(i);
841 switch (mode) {
842 case RDT_MODE_SHAREABLE:
843 sw_shareable |= *ctrl;
844 break;
845 case RDT_MODE_EXCLUSIVE:
846 exclusive |= *ctrl;
847 break;
848 case RDT_MODE_PSEUDO_LOCKSETUP:
849 /*
850 * RDT_MODE_PSEUDO_LOCKSETUP is possible
851 * here but not included since the CBM
852 * associated with this CLOSID in this mode
853 * is not initialized and no task or cpu can be
854 * assigned this CLOSID.
855 */
856 break;
857 case RDT_MODE_PSEUDO_LOCKED:
858 case RDT_NUM_MODES:
859 WARN(1,
860 "invalid mode for closid %d\n", i);
861 break;
862 }
863 }
864 for (i = r->cache.cbm_len - 1; i >= 0; i--) {
865 pseudo_locked = dom->plr ? dom->plr->cbm : 0;
866 hwb = test_bit(i, &hw_shareable);
867 swb = test_bit(i, &sw_shareable);
868 excl = test_bit(i, &exclusive);
869 psl = test_bit(i, &pseudo_locked);
870 if (hwb && swb)
871 seq_putc(seq, 'X');
872 else if (hwb && !swb)
873 seq_putc(seq, 'H');
874 else if (!hwb && swb)
875 seq_putc(seq, 'S');
876 else if (excl)
877 seq_putc(seq, 'E');
878 else if (psl)
879 seq_putc(seq, 'P');
880 else /* Unused bits remain */
881 seq_putc(seq, '0');
882 }
883 sep = true;
884 }
885 seq_putc(seq, '\n');
886 mutex_unlock(&rdtgroup_mutex);
887 return 0;
888 }
889
rdt_min_bw_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)890 static int rdt_min_bw_show(struct kernfs_open_file *of,
891 struct seq_file *seq, void *v)
892 {
893 struct rdt_resource *r = of->kn->parent->priv;
894
895 seq_printf(seq, "%u\n", r->membw.min_bw);
896 return 0;
897 }
898
rdt_num_rmids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)899 static int rdt_num_rmids_show(struct kernfs_open_file *of,
900 struct seq_file *seq, void *v)
901 {
902 struct rdt_resource *r = of->kn->parent->priv;
903
904 seq_printf(seq, "%d\n", r->num_rmid);
905
906 return 0;
907 }
908
rdt_mon_features_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)909 static int rdt_mon_features_show(struct kernfs_open_file *of,
910 struct seq_file *seq, void *v)
911 {
912 struct rdt_resource *r = of->kn->parent->priv;
913 struct mon_evt *mevt;
914
915 list_for_each_entry(mevt, &r->evt_list, list)
916 seq_printf(seq, "%s\n", mevt->name);
917
918 return 0;
919 }
920
rdt_bw_gran_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)921 static int rdt_bw_gran_show(struct kernfs_open_file *of,
922 struct seq_file *seq, void *v)
923 {
924 struct rdt_resource *r = of->kn->parent->priv;
925
926 seq_printf(seq, "%u\n", r->membw.bw_gran);
927 return 0;
928 }
929
rdt_delay_linear_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)930 static int rdt_delay_linear_show(struct kernfs_open_file *of,
931 struct seq_file *seq, void *v)
932 {
933 struct rdt_resource *r = of->kn->parent->priv;
934
935 seq_printf(seq, "%u\n", r->membw.delay_linear);
936 return 0;
937 }
938
max_threshold_occ_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)939 static int max_threshold_occ_show(struct kernfs_open_file *of,
940 struct seq_file *seq, void *v)
941 {
942 struct rdt_resource *r = of->kn->parent->priv;
943
944 seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale);
945
946 return 0;
947 }
948
max_threshold_occ_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)949 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
950 char *buf, size_t nbytes, loff_t off)
951 {
952 struct rdt_resource *r = of->kn->parent->priv;
953 unsigned int bytes;
954 int ret;
955
956 ret = kstrtouint(buf, 0, &bytes);
957 if (ret)
958 return ret;
959
960 if (bytes > (boot_cpu_data.x86_cache_size * 1024))
961 return -EINVAL;
962
963 resctrl_cqm_threshold = bytes / r->mon_scale;
964
965 return nbytes;
966 }
967
968 /*
969 * rdtgroup_mode_show - Display mode of this resource group
970 */
rdtgroup_mode_show(struct kernfs_open_file * of,struct seq_file * s,void * v)971 static int rdtgroup_mode_show(struct kernfs_open_file *of,
972 struct seq_file *s, void *v)
973 {
974 struct rdtgroup *rdtgrp;
975
976 rdtgrp = rdtgroup_kn_lock_live(of->kn);
977 if (!rdtgrp) {
978 rdtgroup_kn_unlock(of->kn);
979 return -ENOENT;
980 }
981
982 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
983
984 rdtgroup_kn_unlock(of->kn);
985 return 0;
986 }
987
988 /**
989 * rdt_cdp_peer_get - Retrieve CDP peer if it exists
990 * @r: RDT resource to which RDT domain @d belongs
991 * @d: Cache instance for which a CDP peer is requested
992 * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
993 * Used to return the result.
994 * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
995 * Used to return the result.
996 *
997 * RDT resources are managed independently and by extension the RDT domains
998 * (RDT resource instances) are managed independently also. The Code and
999 * Data Prioritization (CDP) RDT resources, while managed independently,
1000 * could refer to the same underlying hardware. For example,
1001 * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
1002 *
1003 * When provided with an RDT resource @r and an instance of that RDT
1004 * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
1005 * resource and the exact instance that shares the same hardware.
1006 *
1007 * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
1008 * If a CDP peer was found, @r_cdp will point to the peer RDT resource
1009 * and @d_cdp will point to the peer RDT domain.
1010 */
rdt_cdp_peer_get(struct rdt_resource * r,struct rdt_domain * d,struct rdt_resource ** r_cdp,struct rdt_domain ** d_cdp)1011 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
1012 struct rdt_resource **r_cdp,
1013 struct rdt_domain **d_cdp)
1014 {
1015 struct rdt_resource *_r_cdp = NULL;
1016 struct rdt_domain *_d_cdp = NULL;
1017 int ret = 0;
1018
1019 switch (r->rid) {
1020 case RDT_RESOURCE_L3DATA:
1021 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1022 break;
1023 case RDT_RESOURCE_L3CODE:
1024 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3DATA];
1025 break;
1026 case RDT_RESOURCE_L2DATA:
1027 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2CODE];
1028 break;
1029 case RDT_RESOURCE_L2CODE:
1030 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2DATA];
1031 break;
1032 default:
1033 ret = -ENOENT;
1034 goto out;
1035 }
1036
1037 /*
1038 * When a new CPU comes online and CDP is enabled then the new
1039 * RDT domains (if any) associated with both CDP RDT resources
1040 * are added in the same CPU online routine while the
1041 * rdtgroup_mutex is held. It should thus not happen for one
1042 * RDT domain to exist and be associated with its RDT CDP
1043 * resource but there is no RDT domain associated with the
1044 * peer RDT CDP resource. Hence the WARN.
1045 */
1046 _d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1047 if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
1048 _r_cdp = NULL;
1049 _d_cdp = NULL;
1050 ret = -EINVAL;
1051 }
1052
1053 out:
1054 *r_cdp = _r_cdp;
1055 *d_cdp = _d_cdp;
1056
1057 return ret;
1058 }
1059
1060 /**
1061 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1062 * @r: Resource to which domain instance @d belongs.
1063 * @d: The domain instance for which @closid is being tested.
1064 * @cbm: Capacity bitmask being tested.
1065 * @closid: Intended closid for @cbm.
1066 * @exclusive: Only check if overlaps with exclusive resource groups
1067 *
1068 * Checks if provided @cbm intended to be used for @closid on domain
1069 * @d overlaps with any other closids or other hardware usage associated
1070 * with this domain. If @exclusive is true then only overlaps with
1071 * resource groups in exclusive mode will be considered. If @exclusive
1072 * is false then overlaps with any resource group or hardware entities
1073 * will be considered.
1074 *
1075 * @cbm is unsigned long, even if only 32 bits are used, to make the
1076 * bitmap functions work correctly.
1077 *
1078 * Return: false if CBM does not overlap, true if it does.
1079 */
__rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm,int closid,bool exclusive)1080 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1081 unsigned long cbm, int closid, bool exclusive)
1082 {
1083 enum rdtgrp_mode mode;
1084 unsigned long ctrl_b;
1085 u32 *ctrl;
1086 int i;
1087
1088 /* Check for any overlap with regions used by hardware directly */
1089 if (!exclusive) {
1090 ctrl_b = r->cache.shareable_bits;
1091 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1092 return true;
1093 }
1094
1095 /* Check for overlap with other resource groups */
1096 ctrl = d->ctrl_val;
1097 for (i = 0; i < closids_supported(); i++, ctrl++) {
1098 ctrl_b = *ctrl;
1099 mode = rdtgroup_mode_by_closid(i);
1100 if (closid_allocated(i) && i != closid &&
1101 mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1102 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1103 if (exclusive) {
1104 if (mode == RDT_MODE_EXCLUSIVE)
1105 return true;
1106 continue;
1107 }
1108 return true;
1109 }
1110 }
1111 }
1112
1113 return false;
1114 }
1115
1116 /**
1117 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1118 * @r: Resource to which domain instance @d belongs.
1119 * @d: The domain instance for which @closid is being tested.
1120 * @cbm: Capacity bitmask being tested.
1121 * @closid: Intended closid for @cbm.
1122 * @exclusive: Only check if overlaps with exclusive resource groups
1123 *
1124 * Resources that can be allocated using a CBM can use the CBM to control
1125 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1126 * for overlap. Overlap test is not limited to the specific resource for
1127 * which the CBM is intended though - when dealing with CDP resources that
1128 * share the underlying hardware the overlap check should be performed on
1129 * the CDP resource sharing the hardware also.
1130 *
1131 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1132 * overlap test.
1133 *
1134 * Return: true if CBM overlap detected, false if there is no overlap
1135 */
rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm,int closid,bool exclusive)1136 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1137 unsigned long cbm, int closid, bool exclusive)
1138 {
1139 struct rdt_resource *r_cdp;
1140 struct rdt_domain *d_cdp;
1141
1142 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1143 return true;
1144
1145 if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1146 return false;
1147
1148 return __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1149 }
1150
1151 /**
1152 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1153 *
1154 * An exclusive resource group implies that there should be no sharing of
1155 * its allocated resources. At the time this group is considered to be
1156 * exclusive this test can determine if its current schemata supports this
1157 * setting by testing for overlap with all other resource groups.
1158 *
1159 * Return: true if resource group can be exclusive, false if there is overlap
1160 * with allocations of other resource groups and thus this resource group
1161 * cannot be exclusive.
1162 */
rdtgroup_mode_test_exclusive(struct rdtgroup * rdtgrp)1163 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1164 {
1165 int closid = rdtgrp->closid;
1166 struct rdt_resource *r;
1167 bool has_cache = false;
1168 struct rdt_domain *d;
1169
1170 for_each_alloc_enabled_rdt_resource(r) {
1171 if (r->rid == RDT_RESOURCE_MBA)
1172 continue;
1173 has_cache = true;
1174 list_for_each_entry(d, &r->domains, list) {
1175 if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1176 rdtgrp->closid, false)) {
1177 rdt_last_cmd_puts("Schemata overlaps\n");
1178 return false;
1179 }
1180 }
1181 }
1182
1183 if (!has_cache) {
1184 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1185 return false;
1186 }
1187
1188 return true;
1189 }
1190
1191 /**
1192 * rdtgroup_mode_write - Modify the resource group's mode
1193 *
1194 */
rdtgroup_mode_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1195 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1196 char *buf, size_t nbytes, loff_t off)
1197 {
1198 struct rdtgroup *rdtgrp;
1199 enum rdtgrp_mode mode;
1200 int ret = 0;
1201
1202 /* Valid input requires a trailing newline */
1203 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1204 return -EINVAL;
1205 buf[nbytes - 1] = '\0';
1206
1207 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1208 if (!rdtgrp) {
1209 rdtgroup_kn_unlock(of->kn);
1210 return -ENOENT;
1211 }
1212
1213 rdt_last_cmd_clear();
1214
1215 mode = rdtgrp->mode;
1216
1217 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1218 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1219 (!strcmp(buf, "pseudo-locksetup") &&
1220 mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1221 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1222 goto out;
1223
1224 if (mode == RDT_MODE_PSEUDO_LOCKED) {
1225 rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1226 ret = -EINVAL;
1227 goto out;
1228 }
1229
1230 if (!strcmp(buf, "shareable")) {
1231 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1232 ret = rdtgroup_locksetup_exit(rdtgrp);
1233 if (ret)
1234 goto out;
1235 }
1236 rdtgrp->mode = RDT_MODE_SHAREABLE;
1237 } else if (!strcmp(buf, "exclusive")) {
1238 if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1239 ret = -EINVAL;
1240 goto out;
1241 }
1242 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1243 ret = rdtgroup_locksetup_exit(rdtgrp);
1244 if (ret)
1245 goto out;
1246 }
1247 rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1248 } else if (!strcmp(buf, "pseudo-locksetup")) {
1249 ret = rdtgroup_locksetup_enter(rdtgrp);
1250 if (ret)
1251 goto out;
1252 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1253 } else {
1254 rdt_last_cmd_puts("Unknown or unsupported mode\n");
1255 ret = -EINVAL;
1256 }
1257
1258 out:
1259 rdtgroup_kn_unlock(of->kn);
1260 return ret ?: nbytes;
1261 }
1262
1263 /**
1264 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1265 * @r: RDT resource to which @d belongs.
1266 * @d: RDT domain instance.
1267 * @cbm: bitmask for which the size should be computed.
1268 *
1269 * The bitmask provided associated with the RDT domain instance @d will be
1270 * translated into how many bytes it represents. The size in bytes is
1271 * computed by first dividing the total cache size by the CBM length to
1272 * determine how many bytes each bit in the bitmask represents. The result
1273 * is multiplied with the number of bits set in the bitmask.
1274 *
1275 * @cbm is unsigned long, even if only 32 bits are used to make the
1276 * bitmap functions work correctly.
1277 */
rdtgroup_cbm_to_size(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm)1278 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1279 struct rdt_domain *d, unsigned long cbm)
1280 {
1281 struct cpu_cacheinfo *ci;
1282 unsigned int size = 0;
1283 int num_b, i;
1284
1285 num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1286 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1287 for (i = 0; i < ci->num_leaves; i++) {
1288 if (ci->info_list[i].level == r->cache_level) {
1289 size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1290 break;
1291 }
1292 }
1293
1294 return size;
1295 }
1296
1297 /**
1298 * rdtgroup_size_show - Display size in bytes of allocated regions
1299 *
1300 * The "size" file mirrors the layout of the "schemata" file, printing the
1301 * size in bytes of each region instead of the capacity bitmask.
1302 *
1303 */
rdtgroup_size_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1304 static int rdtgroup_size_show(struct kernfs_open_file *of,
1305 struct seq_file *s, void *v)
1306 {
1307 struct rdtgroup *rdtgrp;
1308 struct rdt_resource *r;
1309 struct rdt_domain *d;
1310 unsigned int size;
1311 int ret = 0;
1312 bool sep;
1313 u32 ctrl;
1314
1315 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1316 if (!rdtgrp) {
1317 rdtgroup_kn_unlock(of->kn);
1318 return -ENOENT;
1319 }
1320
1321 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1322 if (!rdtgrp->plr->d) {
1323 rdt_last_cmd_clear();
1324 rdt_last_cmd_puts("Cache domain offline\n");
1325 ret = -ENODEV;
1326 } else {
1327 seq_printf(s, "%*s:", max_name_width,
1328 rdtgrp->plr->r->name);
1329 size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1330 rdtgrp->plr->d,
1331 rdtgrp->plr->cbm);
1332 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1333 }
1334 goto out;
1335 }
1336
1337 for_each_alloc_enabled_rdt_resource(r) {
1338 sep = false;
1339 seq_printf(s, "%*s:", max_name_width, r->name);
1340 list_for_each_entry(d, &r->domains, list) {
1341 if (sep)
1342 seq_putc(s, ';');
1343 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1344 size = 0;
1345 } else {
1346 ctrl = (!is_mba_sc(r) ?
1347 d->ctrl_val[rdtgrp->closid] :
1348 d->mbps_val[rdtgrp->closid]);
1349 if (r->rid == RDT_RESOURCE_MBA)
1350 size = ctrl;
1351 else
1352 size = rdtgroup_cbm_to_size(r, d, ctrl);
1353 }
1354 seq_printf(s, "%d=%u", d->id, size);
1355 sep = true;
1356 }
1357 seq_putc(s, '\n');
1358 }
1359
1360 out:
1361 rdtgroup_kn_unlock(of->kn);
1362
1363 return ret;
1364 }
1365
1366 /* rdtgroup information files for one cache resource. */
1367 static struct rftype res_common_files[] = {
1368 {
1369 .name = "last_cmd_status",
1370 .mode = 0444,
1371 .kf_ops = &rdtgroup_kf_single_ops,
1372 .seq_show = rdt_last_cmd_status_show,
1373 .fflags = RF_TOP_INFO,
1374 },
1375 {
1376 .name = "num_closids",
1377 .mode = 0444,
1378 .kf_ops = &rdtgroup_kf_single_ops,
1379 .seq_show = rdt_num_closids_show,
1380 .fflags = RF_CTRL_INFO,
1381 },
1382 {
1383 .name = "mon_features",
1384 .mode = 0444,
1385 .kf_ops = &rdtgroup_kf_single_ops,
1386 .seq_show = rdt_mon_features_show,
1387 .fflags = RF_MON_INFO,
1388 },
1389 {
1390 .name = "num_rmids",
1391 .mode = 0444,
1392 .kf_ops = &rdtgroup_kf_single_ops,
1393 .seq_show = rdt_num_rmids_show,
1394 .fflags = RF_MON_INFO,
1395 },
1396 {
1397 .name = "cbm_mask",
1398 .mode = 0444,
1399 .kf_ops = &rdtgroup_kf_single_ops,
1400 .seq_show = rdt_default_ctrl_show,
1401 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1402 },
1403 {
1404 .name = "min_cbm_bits",
1405 .mode = 0444,
1406 .kf_ops = &rdtgroup_kf_single_ops,
1407 .seq_show = rdt_min_cbm_bits_show,
1408 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1409 },
1410 {
1411 .name = "shareable_bits",
1412 .mode = 0444,
1413 .kf_ops = &rdtgroup_kf_single_ops,
1414 .seq_show = rdt_shareable_bits_show,
1415 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1416 },
1417 {
1418 .name = "bit_usage",
1419 .mode = 0444,
1420 .kf_ops = &rdtgroup_kf_single_ops,
1421 .seq_show = rdt_bit_usage_show,
1422 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1423 },
1424 {
1425 .name = "min_bandwidth",
1426 .mode = 0444,
1427 .kf_ops = &rdtgroup_kf_single_ops,
1428 .seq_show = rdt_min_bw_show,
1429 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1430 },
1431 {
1432 .name = "bandwidth_gran",
1433 .mode = 0444,
1434 .kf_ops = &rdtgroup_kf_single_ops,
1435 .seq_show = rdt_bw_gran_show,
1436 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1437 },
1438 {
1439 .name = "delay_linear",
1440 .mode = 0444,
1441 .kf_ops = &rdtgroup_kf_single_ops,
1442 .seq_show = rdt_delay_linear_show,
1443 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1444 },
1445 {
1446 .name = "max_threshold_occupancy",
1447 .mode = 0644,
1448 .kf_ops = &rdtgroup_kf_single_ops,
1449 .write = max_threshold_occ_write,
1450 .seq_show = max_threshold_occ_show,
1451 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE,
1452 },
1453 {
1454 .name = "cpus",
1455 .mode = 0644,
1456 .kf_ops = &rdtgroup_kf_single_ops,
1457 .write = rdtgroup_cpus_write,
1458 .seq_show = rdtgroup_cpus_show,
1459 .fflags = RFTYPE_BASE,
1460 },
1461 {
1462 .name = "cpus_list",
1463 .mode = 0644,
1464 .kf_ops = &rdtgroup_kf_single_ops,
1465 .write = rdtgroup_cpus_write,
1466 .seq_show = rdtgroup_cpus_show,
1467 .flags = RFTYPE_FLAGS_CPUS_LIST,
1468 .fflags = RFTYPE_BASE,
1469 },
1470 {
1471 .name = "tasks",
1472 .mode = 0644,
1473 .kf_ops = &rdtgroup_kf_single_ops,
1474 .write = rdtgroup_tasks_write,
1475 .seq_show = rdtgroup_tasks_show,
1476 .fflags = RFTYPE_BASE,
1477 },
1478 {
1479 .name = "schemata",
1480 .mode = 0644,
1481 .kf_ops = &rdtgroup_kf_single_ops,
1482 .write = rdtgroup_schemata_write,
1483 .seq_show = rdtgroup_schemata_show,
1484 .fflags = RF_CTRL_BASE,
1485 },
1486 {
1487 .name = "mode",
1488 .mode = 0644,
1489 .kf_ops = &rdtgroup_kf_single_ops,
1490 .write = rdtgroup_mode_write,
1491 .seq_show = rdtgroup_mode_show,
1492 .fflags = RF_CTRL_BASE,
1493 },
1494 {
1495 .name = "size",
1496 .mode = 0444,
1497 .kf_ops = &rdtgroup_kf_single_ops,
1498 .seq_show = rdtgroup_size_show,
1499 .fflags = RF_CTRL_BASE,
1500 },
1501
1502 };
1503
rdtgroup_add_files(struct kernfs_node * kn,unsigned long fflags)1504 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1505 {
1506 struct rftype *rfts, *rft;
1507 int ret, len;
1508
1509 rfts = res_common_files;
1510 len = ARRAY_SIZE(res_common_files);
1511
1512 lockdep_assert_held(&rdtgroup_mutex);
1513
1514 for (rft = rfts; rft < rfts + len; rft++) {
1515 if ((fflags & rft->fflags) == rft->fflags) {
1516 ret = rdtgroup_add_file(kn, rft);
1517 if (ret)
1518 goto error;
1519 }
1520 }
1521
1522 return 0;
1523 error:
1524 pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1525 while (--rft >= rfts) {
1526 if ((fflags & rft->fflags) == rft->fflags)
1527 kernfs_remove_by_name(kn, rft->name);
1528 }
1529 return ret;
1530 }
1531
1532 /**
1533 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1534 * @r: The resource group with which the file is associated.
1535 * @name: Name of the file
1536 *
1537 * The permissions of named resctrl file, directory, or link are modified
1538 * to not allow read, write, or execute by any user.
1539 *
1540 * WARNING: This function is intended to communicate to the user that the
1541 * resctrl file has been locked down - that it is not relevant to the
1542 * particular state the system finds itself in. It should not be relied
1543 * on to protect from user access because after the file's permissions
1544 * are restricted the user can still change the permissions using chmod
1545 * from the command line.
1546 *
1547 * Return: 0 on success, <0 on failure.
1548 */
rdtgroup_kn_mode_restrict(struct rdtgroup * r,const char * name)1549 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1550 {
1551 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1552 struct kernfs_node *kn;
1553 int ret = 0;
1554
1555 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1556 if (!kn)
1557 return -ENOENT;
1558
1559 switch (kernfs_type(kn)) {
1560 case KERNFS_DIR:
1561 iattr.ia_mode = S_IFDIR;
1562 break;
1563 case KERNFS_FILE:
1564 iattr.ia_mode = S_IFREG;
1565 break;
1566 case KERNFS_LINK:
1567 iattr.ia_mode = S_IFLNK;
1568 break;
1569 }
1570
1571 ret = kernfs_setattr(kn, &iattr);
1572 kernfs_put(kn);
1573 return ret;
1574 }
1575
1576 /**
1577 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1578 * @r: The resource group with which the file is associated.
1579 * @name: Name of the file
1580 * @mask: Mask of permissions that should be restored
1581 *
1582 * Restore the permissions of the named file. If @name is a directory the
1583 * permissions of its parent will be used.
1584 *
1585 * Return: 0 on success, <0 on failure.
1586 */
rdtgroup_kn_mode_restore(struct rdtgroup * r,const char * name,umode_t mask)1587 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1588 umode_t mask)
1589 {
1590 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1591 struct kernfs_node *kn, *parent;
1592 struct rftype *rfts, *rft;
1593 int ret, len;
1594
1595 rfts = res_common_files;
1596 len = ARRAY_SIZE(res_common_files);
1597
1598 for (rft = rfts; rft < rfts + len; rft++) {
1599 if (!strcmp(rft->name, name))
1600 iattr.ia_mode = rft->mode & mask;
1601 }
1602
1603 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1604 if (!kn)
1605 return -ENOENT;
1606
1607 switch (kernfs_type(kn)) {
1608 case KERNFS_DIR:
1609 parent = kernfs_get_parent(kn);
1610 if (parent) {
1611 iattr.ia_mode |= parent->mode;
1612 kernfs_put(parent);
1613 }
1614 iattr.ia_mode |= S_IFDIR;
1615 break;
1616 case KERNFS_FILE:
1617 iattr.ia_mode |= S_IFREG;
1618 break;
1619 case KERNFS_LINK:
1620 iattr.ia_mode |= S_IFLNK;
1621 break;
1622 }
1623
1624 ret = kernfs_setattr(kn, &iattr);
1625 kernfs_put(kn);
1626 return ret;
1627 }
1628
rdtgroup_mkdir_info_resdir(struct rdt_resource * r,char * name,unsigned long fflags)1629 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1630 unsigned long fflags)
1631 {
1632 struct kernfs_node *kn_subdir;
1633 int ret;
1634
1635 kn_subdir = kernfs_create_dir(kn_info, name,
1636 kn_info->mode, r);
1637 if (IS_ERR(kn_subdir))
1638 return PTR_ERR(kn_subdir);
1639
1640 ret = rdtgroup_kn_set_ugid(kn_subdir);
1641 if (ret)
1642 return ret;
1643
1644 ret = rdtgroup_add_files(kn_subdir, fflags);
1645 if (!ret)
1646 kernfs_activate(kn_subdir);
1647
1648 return ret;
1649 }
1650
rdtgroup_create_info_dir(struct kernfs_node * parent_kn)1651 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1652 {
1653 struct rdt_resource *r;
1654 unsigned long fflags;
1655 char name[32];
1656 int ret;
1657
1658 /* create the directory */
1659 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1660 if (IS_ERR(kn_info))
1661 return PTR_ERR(kn_info);
1662
1663 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1664 if (ret)
1665 goto out_destroy;
1666
1667 for_each_alloc_enabled_rdt_resource(r) {
1668 fflags = r->fflags | RF_CTRL_INFO;
1669 ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1670 if (ret)
1671 goto out_destroy;
1672 }
1673
1674 for_each_mon_enabled_rdt_resource(r) {
1675 fflags = r->fflags | RF_MON_INFO;
1676 sprintf(name, "%s_MON", r->name);
1677 ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1678 if (ret)
1679 goto out_destroy;
1680 }
1681
1682 ret = rdtgroup_kn_set_ugid(kn_info);
1683 if (ret)
1684 goto out_destroy;
1685
1686 kernfs_activate(kn_info);
1687
1688 return 0;
1689
1690 out_destroy:
1691 kernfs_remove(kn_info);
1692 return ret;
1693 }
1694
1695 static int
mongroup_create_dir(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,char * name,struct kernfs_node ** dest_kn)1696 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1697 char *name, struct kernfs_node **dest_kn)
1698 {
1699 struct kernfs_node *kn;
1700 int ret;
1701
1702 /* create the directory */
1703 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1704 if (IS_ERR(kn))
1705 return PTR_ERR(kn);
1706
1707 if (dest_kn)
1708 *dest_kn = kn;
1709
1710 ret = rdtgroup_kn_set_ugid(kn);
1711 if (ret)
1712 goto out_destroy;
1713
1714 kernfs_activate(kn);
1715
1716 return 0;
1717
1718 out_destroy:
1719 kernfs_remove(kn);
1720 return ret;
1721 }
1722
l3_qos_cfg_update(void * arg)1723 static void l3_qos_cfg_update(void *arg)
1724 {
1725 bool *enable = arg;
1726
1727 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1728 }
1729
l2_qos_cfg_update(void * arg)1730 static void l2_qos_cfg_update(void *arg)
1731 {
1732 bool *enable = arg;
1733
1734 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1735 }
1736
is_mba_linear(void)1737 static inline bool is_mba_linear(void)
1738 {
1739 return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1740 }
1741
set_cache_qos_cfg(int level,bool enable)1742 static int set_cache_qos_cfg(int level, bool enable)
1743 {
1744 void (*update)(void *arg);
1745 struct rdt_resource *r_l;
1746 cpumask_var_t cpu_mask;
1747 struct rdt_domain *d;
1748 int cpu;
1749
1750 if (level == RDT_RESOURCE_L3)
1751 update = l3_qos_cfg_update;
1752 else if (level == RDT_RESOURCE_L2)
1753 update = l2_qos_cfg_update;
1754 else
1755 return -EINVAL;
1756
1757 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1758 return -ENOMEM;
1759
1760 r_l = &rdt_resources_all[level];
1761 list_for_each_entry(d, &r_l->domains, list) {
1762 /* Pick one CPU from each domain instance to update MSR */
1763 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1764 }
1765 cpu = get_cpu();
1766 /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1767 if (cpumask_test_cpu(cpu, cpu_mask))
1768 update(&enable);
1769 /* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1770 smp_call_function_many(cpu_mask, update, &enable, 1);
1771 put_cpu();
1772
1773 free_cpumask_var(cpu_mask);
1774
1775 return 0;
1776 }
1777
1778 /* Restore the qos cfg state when a domain comes online */
rdt_domain_reconfigure_cdp(struct rdt_resource * r)1779 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
1780 {
1781 if (!r->alloc_capable)
1782 return;
1783
1784 if (r == &rdt_resources_all[RDT_RESOURCE_L2DATA])
1785 l2_qos_cfg_update(&r->alloc_enabled);
1786
1787 if (r == &rdt_resources_all[RDT_RESOURCE_L3DATA])
1788 l3_qos_cfg_update(&r->alloc_enabled);
1789 }
1790
1791 /*
1792 * Enable or disable the MBA software controller
1793 * which helps user specify bandwidth in MBps.
1794 * MBA software controller is supported only if
1795 * MBM is supported and MBA is in linear scale.
1796 */
set_mba_sc(bool mba_sc)1797 static int set_mba_sc(bool mba_sc)
1798 {
1799 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1800 struct rdt_domain *d;
1801
1802 if (!is_mbm_enabled() || !is_mba_linear() ||
1803 mba_sc == is_mba_sc(r))
1804 return -EINVAL;
1805
1806 r->membw.mba_sc = mba_sc;
1807 list_for_each_entry(d, &r->domains, list)
1808 setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1809
1810 return 0;
1811 }
1812
cdp_enable(int level,int data_type,int code_type)1813 static int cdp_enable(int level, int data_type, int code_type)
1814 {
1815 struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1816 struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1817 struct rdt_resource *r_l = &rdt_resources_all[level];
1818 int ret;
1819
1820 if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1821 !r_lcode->alloc_capable)
1822 return -EINVAL;
1823
1824 ret = set_cache_qos_cfg(level, true);
1825 if (!ret) {
1826 r_l->alloc_enabled = false;
1827 r_ldata->alloc_enabled = true;
1828 r_lcode->alloc_enabled = true;
1829 }
1830 return ret;
1831 }
1832
cdpl3_enable(void)1833 static int cdpl3_enable(void)
1834 {
1835 return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1836 RDT_RESOURCE_L3CODE);
1837 }
1838
cdpl2_enable(void)1839 static int cdpl2_enable(void)
1840 {
1841 return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1842 RDT_RESOURCE_L2CODE);
1843 }
1844
cdp_disable(int level,int data_type,int code_type)1845 static void cdp_disable(int level, int data_type, int code_type)
1846 {
1847 struct rdt_resource *r = &rdt_resources_all[level];
1848
1849 r->alloc_enabled = r->alloc_capable;
1850
1851 if (rdt_resources_all[data_type].alloc_enabled) {
1852 rdt_resources_all[data_type].alloc_enabled = false;
1853 rdt_resources_all[code_type].alloc_enabled = false;
1854 set_cache_qos_cfg(level, false);
1855 }
1856 }
1857
cdpl3_disable(void)1858 static void cdpl3_disable(void)
1859 {
1860 cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1861 }
1862
cdpl2_disable(void)1863 static void cdpl2_disable(void)
1864 {
1865 cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
1866 }
1867
cdp_disable_all(void)1868 static void cdp_disable_all(void)
1869 {
1870 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
1871 cdpl3_disable();
1872 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
1873 cdpl2_disable();
1874 }
1875
1876 /*
1877 * We don't allow rdtgroup directories to be created anywhere
1878 * except the root directory. Thus when looking for the rdtgroup
1879 * structure for a kernfs node we are either looking at a directory,
1880 * in which case the rdtgroup structure is pointed at by the "priv"
1881 * field, otherwise we have a file, and need only look to the parent
1882 * to find the rdtgroup.
1883 */
kernfs_to_rdtgroup(struct kernfs_node * kn)1884 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
1885 {
1886 if (kernfs_type(kn) == KERNFS_DIR) {
1887 /*
1888 * All the resource directories use "kn->priv"
1889 * to point to the "struct rdtgroup" for the
1890 * resource. "info" and its subdirectories don't
1891 * have rdtgroup structures, so return NULL here.
1892 */
1893 if (kn == kn_info || kn->parent == kn_info)
1894 return NULL;
1895 else
1896 return kn->priv;
1897 } else {
1898 return kn->parent->priv;
1899 }
1900 }
1901
rdtgroup_kn_lock_live(struct kernfs_node * kn)1902 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
1903 {
1904 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1905
1906 if (!rdtgrp)
1907 return NULL;
1908
1909 atomic_inc(&rdtgrp->waitcount);
1910 kernfs_break_active_protection(kn);
1911
1912 mutex_lock(&rdtgroup_mutex);
1913
1914 /* Was this group deleted while we waited? */
1915 if (rdtgrp->flags & RDT_DELETED)
1916 return NULL;
1917
1918 return rdtgrp;
1919 }
1920
rdtgroup_kn_unlock(struct kernfs_node * kn)1921 void rdtgroup_kn_unlock(struct kernfs_node *kn)
1922 {
1923 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1924
1925 if (!rdtgrp)
1926 return;
1927
1928 mutex_unlock(&rdtgroup_mutex);
1929
1930 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
1931 (rdtgrp->flags & RDT_DELETED)) {
1932 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
1933 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
1934 rdtgroup_pseudo_lock_remove(rdtgrp);
1935 kernfs_unbreak_active_protection(kn);
1936 rdtgroup_remove(rdtgrp);
1937 } else {
1938 kernfs_unbreak_active_protection(kn);
1939 }
1940 }
1941
1942 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
1943 struct rdtgroup *prgrp,
1944 struct kernfs_node **mon_data_kn);
1945
rdt_enable_ctx(struct rdt_fs_context * ctx)1946 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
1947 {
1948 int ret = 0;
1949
1950 if (ctx->enable_cdpl2)
1951 ret = cdpl2_enable();
1952
1953 if (!ret && ctx->enable_cdpl3)
1954 ret = cdpl3_enable();
1955
1956 if (!ret && ctx->enable_mba_mbps)
1957 ret = set_mba_sc(true);
1958
1959 return ret;
1960 }
1961
rdt_get_tree(struct fs_context * fc)1962 static int rdt_get_tree(struct fs_context *fc)
1963 {
1964 struct rdt_fs_context *ctx = rdt_fc2context(fc);
1965 struct rdt_domain *dom;
1966 struct rdt_resource *r;
1967 int ret;
1968
1969 cpus_read_lock();
1970 mutex_lock(&rdtgroup_mutex);
1971 /*
1972 * resctrl file system can only be mounted once.
1973 */
1974 if (static_branch_unlikely(&rdt_enable_key)) {
1975 ret = -EBUSY;
1976 goto out;
1977 }
1978
1979 ret = rdt_enable_ctx(ctx);
1980 if (ret < 0)
1981 goto out_cdp;
1982
1983 closid_init();
1984
1985 ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
1986 if (ret < 0)
1987 goto out_mba;
1988
1989 if (rdt_mon_capable) {
1990 ret = mongroup_create_dir(rdtgroup_default.kn,
1991 &rdtgroup_default, "mon_groups",
1992 &kn_mongrp);
1993 if (ret < 0)
1994 goto out_info;
1995
1996 ret = mkdir_mondata_all(rdtgroup_default.kn,
1997 &rdtgroup_default, &kn_mondata);
1998 if (ret < 0)
1999 goto out_mongrp;
2000 rdtgroup_default.mon.mon_data_kn = kn_mondata;
2001 }
2002
2003 ret = rdt_pseudo_lock_init();
2004 if (ret)
2005 goto out_mondata;
2006
2007 ret = kernfs_get_tree(fc);
2008 if (ret < 0)
2009 goto out_psl;
2010
2011 if (rdt_alloc_capable)
2012 static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2013 if (rdt_mon_capable)
2014 static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2015
2016 if (rdt_alloc_capable || rdt_mon_capable)
2017 static_branch_enable_cpuslocked(&rdt_enable_key);
2018
2019 if (is_mbm_enabled()) {
2020 r = &rdt_resources_all[RDT_RESOURCE_L3];
2021 list_for_each_entry(dom, &r->domains, list)
2022 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2023 }
2024
2025 goto out;
2026
2027 out_psl:
2028 rdt_pseudo_lock_release();
2029 out_mondata:
2030 if (rdt_mon_capable)
2031 kernfs_remove(kn_mondata);
2032 out_mongrp:
2033 if (rdt_mon_capable)
2034 kernfs_remove(kn_mongrp);
2035 out_info:
2036 kernfs_remove(kn_info);
2037 out_mba:
2038 if (ctx->enable_mba_mbps)
2039 set_mba_sc(false);
2040 out_cdp:
2041 cdp_disable_all();
2042 out:
2043 rdt_last_cmd_clear();
2044 mutex_unlock(&rdtgroup_mutex);
2045 cpus_read_unlock();
2046 return ret;
2047 }
2048
2049 enum rdt_param {
2050 Opt_cdp,
2051 Opt_cdpl2,
2052 Opt_mba_mbps,
2053 nr__rdt_params
2054 };
2055
2056 static const struct fs_parameter_spec rdt_param_specs[] = {
2057 fsparam_flag("cdp", Opt_cdp),
2058 fsparam_flag("cdpl2", Opt_cdpl2),
2059 fsparam_flag("mba_MBps", Opt_mba_mbps),
2060 {}
2061 };
2062
2063 static const struct fs_parameter_description rdt_fs_parameters = {
2064 .name = "rdt",
2065 .specs = rdt_param_specs,
2066 };
2067
rdt_parse_param(struct fs_context * fc,struct fs_parameter * param)2068 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2069 {
2070 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2071 struct fs_parse_result result;
2072 int opt;
2073
2074 opt = fs_parse(fc, &rdt_fs_parameters, param, &result);
2075 if (opt < 0)
2076 return opt;
2077
2078 switch (opt) {
2079 case Opt_cdp:
2080 ctx->enable_cdpl3 = true;
2081 return 0;
2082 case Opt_cdpl2:
2083 ctx->enable_cdpl2 = true;
2084 return 0;
2085 case Opt_mba_mbps:
2086 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2087 return -EINVAL;
2088 ctx->enable_mba_mbps = true;
2089 return 0;
2090 }
2091
2092 return -EINVAL;
2093 }
2094
rdt_fs_context_free(struct fs_context * fc)2095 static void rdt_fs_context_free(struct fs_context *fc)
2096 {
2097 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2098
2099 kernfs_free_fs_context(fc);
2100 kfree(ctx);
2101 }
2102
2103 static const struct fs_context_operations rdt_fs_context_ops = {
2104 .free = rdt_fs_context_free,
2105 .parse_param = rdt_parse_param,
2106 .get_tree = rdt_get_tree,
2107 };
2108
rdt_init_fs_context(struct fs_context * fc)2109 static int rdt_init_fs_context(struct fs_context *fc)
2110 {
2111 struct rdt_fs_context *ctx;
2112
2113 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2114 if (!ctx)
2115 return -ENOMEM;
2116
2117 ctx->kfc.root = rdt_root;
2118 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2119 fc->fs_private = &ctx->kfc;
2120 fc->ops = &rdt_fs_context_ops;
2121 put_user_ns(fc->user_ns);
2122 fc->user_ns = get_user_ns(&init_user_ns);
2123 fc->global = true;
2124 return 0;
2125 }
2126
reset_all_ctrls(struct rdt_resource * r)2127 static int reset_all_ctrls(struct rdt_resource *r)
2128 {
2129 struct msr_param msr_param;
2130 cpumask_var_t cpu_mask;
2131 struct rdt_domain *d;
2132 int i, cpu;
2133
2134 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2135 return -ENOMEM;
2136
2137 msr_param.res = r;
2138 msr_param.low = 0;
2139 msr_param.high = r->num_closid;
2140
2141 /*
2142 * Disable resource control for this resource by setting all
2143 * CBMs in all domains to the maximum mask value. Pick one CPU
2144 * from each domain to update the MSRs below.
2145 */
2146 list_for_each_entry(d, &r->domains, list) {
2147 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2148
2149 for (i = 0; i < r->num_closid; i++)
2150 d->ctrl_val[i] = r->default_ctrl;
2151 }
2152 cpu = get_cpu();
2153 /* Update CBM on this cpu if it's in cpu_mask. */
2154 if (cpumask_test_cpu(cpu, cpu_mask))
2155 rdt_ctrl_update(&msr_param);
2156 /* Update CBM on all other cpus in cpu_mask. */
2157 smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2158 put_cpu();
2159
2160 free_cpumask_var(cpu_mask);
2161
2162 return 0;
2163 }
2164
2165 /*
2166 * Move tasks from one to the other group. If @from is NULL, then all tasks
2167 * in the systems are moved unconditionally (used for teardown).
2168 *
2169 * If @mask is not NULL the cpus on which moved tasks are running are set
2170 * in that mask so the update smp function call is restricted to affected
2171 * cpus.
2172 */
rdt_move_group_tasks(struct rdtgroup * from,struct rdtgroup * to,struct cpumask * mask)2173 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2174 struct cpumask *mask)
2175 {
2176 struct task_struct *p, *t;
2177
2178 read_lock(&tasklist_lock);
2179 for_each_process_thread(p, t) {
2180 if (!from || is_closid_match(t, from) ||
2181 is_rmid_match(t, from)) {
2182 WRITE_ONCE(t->closid, to->closid);
2183 WRITE_ONCE(t->rmid, to->mon.rmid);
2184
2185 /*
2186 * Order the closid/rmid stores above before the loads
2187 * in task_curr(). This pairs with the full barrier
2188 * between the rq->curr update and resctrl_sched_in()
2189 * during context switch.
2190 */
2191 smp_mb();
2192
2193 /*
2194 * If the task is on a CPU, set the CPU in the mask.
2195 * The detection is inaccurate as tasks might move or
2196 * schedule before the smp function call takes place.
2197 * In such a case the function call is pointless, but
2198 * there is no other side effect.
2199 */
2200 if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t))
2201 cpumask_set_cpu(task_cpu(t), mask);
2202 }
2203 }
2204 read_unlock(&tasklist_lock);
2205 }
2206
free_all_child_rdtgrp(struct rdtgroup * rdtgrp)2207 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2208 {
2209 struct rdtgroup *sentry, *stmp;
2210 struct list_head *head;
2211
2212 head = &rdtgrp->mon.crdtgrp_list;
2213 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2214 free_rmid(sentry->mon.rmid);
2215 list_del(&sentry->mon.crdtgrp_list);
2216
2217 if (atomic_read(&sentry->waitcount) != 0)
2218 sentry->flags = RDT_DELETED;
2219 else
2220 rdtgroup_remove(sentry);
2221 }
2222 }
2223
2224 /*
2225 * Forcibly remove all of subdirectories under root.
2226 */
rmdir_all_sub(void)2227 static void rmdir_all_sub(void)
2228 {
2229 struct rdtgroup *rdtgrp, *tmp;
2230
2231 /* Move all tasks to the default resource group */
2232 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2233
2234 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2235 /* Free any child rmids */
2236 free_all_child_rdtgrp(rdtgrp);
2237
2238 /* Remove each rdtgroup other than root */
2239 if (rdtgrp == &rdtgroup_default)
2240 continue;
2241
2242 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2243 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2244 rdtgroup_pseudo_lock_remove(rdtgrp);
2245
2246 /*
2247 * Give any CPUs back to the default group. We cannot copy
2248 * cpu_online_mask because a CPU might have executed the
2249 * offline callback already, but is still marked online.
2250 */
2251 cpumask_or(&rdtgroup_default.cpu_mask,
2252 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2253
2254 free_rmid(rdtgrp->mon.rmid);
2255
2256 kernfs_remove(rdtgrp->kn);
2257 list_del(&rdtgrp->rdtgroup_list);
2258
2259 if (atomic_read(&rdtgrp->waitcount) != 0)
2260 rdtgrp->flags = RDT_DELETED;
2261 else
2262 rdtgroup_remove(rdtgrp);
2263 }
2264 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2265 update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2266
2267 kernfs_remove(kn_info);
2268 kernfs_remove(kn_mongrp);
2269 kernfs_remove(kn_mondata);
2270 }
2271
rdt_kill_sb(struct super_block * sb)2272 static void rdt_kill_sb(struct super_block *sb)
2273 {
2274 struct rdt_resource *r;
2275
2276 cpus_read_lock();
2277 mutex_lock(&rdtgroup_mutex);
2278
2279 set_mba_sc(false);
2280
2281 /*Put everything back to default values. */
2282 for_each_alloc_enabled_rdt_resource(r)
2283 reset_all_ctrls(r);
2284 cdp_disable_all();
2285 rmdir_all_sub();
2286 rdt_pseudo_lock_release();
2287 rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2288 static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2289 static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2290 static_branch_disable_cpuslocked(&rdt_enable_key);
2291 kernfs_kill_sb(sb);
2292 mutex_unlock(&rdtgroup_mutex);
2293 cpus_read_unlock();
2294 }
2295
2296 static struct file_system_type rdt_fs_type = {
2297 .name = "resctrl",
2298 .init_fs_context = rdt_init_fs_context,
2299 .parameters = &rdt_fs_parameters,
2300 .kill_sb = rdt_kill_sb,
2301 };
2302
mon_addfile(struct kernfs_node * parent_kn,const char * name,void * priv)2303 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2304 void *priv)
2305 {
2306 struct kernfs_node *kn;
2307 int ret = 0;
2308
2309 kn = __kernfs_create_file(parent_kn, name, 0444,
2310 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2311 &kf_mondata_ops, priv, NULL, NULL);
2312 if (IS_ERR(kn))
2313 return PTR_ERR(kn);
2314
2315 ret = rdtgroup_kn_set_ugid(kn);
2316 if (ret) {
2317 kernfs_remove(kn);
2318 return ret;
2319 }
2320
2321 return ret;
2322 }
2323
2324 /*
2325 * Remove all subdirectories of mon_data of ctrl_mon groups
2326 * and monitor groups with given domain id.
2327 */
rmdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,unsigned int dom_id)2328 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2329 {
2330 struct rdtgroup *prgrp, *crgrp;
2331 char name[32];
2332
2333 if (!r->mon_enabled)
2334 return;
2335
2336 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2337 sprintf(name, "mon_%s_%02d", r->name, dom_id);
2338 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2339
2340 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2341 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2342 }
2343 }
2344
mkdir_mondata_subdir(struct kernfs_node * parent_kn,struct rdt_domain * d,struct rdt_resource * r,struct rdtgroup * prgrp)2345 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2346 struct rdt_domain *d,
2347 struct rdt_resource *r, struct rdtgroup *prgrp)
2348 {
2349 union mon_data_bits priv;
2350 struct kernfs_node *kn;
2351 struct mon_evt *mevt;
2352 struct rmid_read rr;
2353 char name[32];
2354 int ret;
2355
2356 sprintf(name, "mon_%s_%02d", r->name, d->id);
2357 /* create the directory */
2358 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2359 if (IS_ERR(kn))
2360 return PTR_ERR(kn);
2361
2362 ret = rdtgroup_kn_set_ugid(kn);
2363 if (ret)
2364 goto out_destroy;
2365
2366 if (WARN_ON(list_empty(&r->evt_list))) {
2367 ret = -EPERM;
2368 goto out_destroy;
2369 }
2370
2371 priv.u.rid = r->rid;
2372 priv.u.domid = d->id;
2373 list_for_each_entry(mevt, &r->evt_list, list) {
2374 priv.u.evtid = mevt->evtid;
2375 ret = mon_addfile(kn, mevt->name, priv.priv);
2376 if (ret)
2377 goto out_destroy;
2378
2379 if (is_mbm_event(mevt->evtid))
2380 mon_event_read(&rr, d, prgrp, mevt->evtid, true);
2381 }
2382 kernfs_activate(kn);
2383 return 0;
2384
2385 out_destroy:
2386 kernfs_remove(kn);
2387 return ret;
2388 }
2389
2390 /*
2391 * Add all subdirectories of mon_data for "ctrl_mon" groups
2392 * and "monitor" groups with given domain id.
2393 */
mkdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,struct rdt_domain * d)2394 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2395 struct rdt_domain *d)
2396 {
2397 struct kernfs_node *parent_kn;
2398 struct rdtgroup *prgrp, *crgrp;
2399 struct list_head *head;
2400
2401 if (!r->mon_enabled)
2402 return;
2403
2404 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2405 parent_kn = prgrp->mon.mon_data_kn;
2406 mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2407
2408 head = &prgrp->mon.crdtgrp_list;
2409 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2410 parent_kn = crgrp->mon.mon_data_kn;
2411 mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2412 }
2413 }
2414 }
2415
mkdir_mondata_subdir_alldom(struct kernfs_node * parent_kn,struct rdt_resource * r,struct rdtgroup * prgrp)2416 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2417 struct rdt_resource *r,
2418 struct rdtgroup *prgrp)
2419 {
2420 struct rdt_domain *dom;
2421 int ret;
2422
2423 list_for_each_entry(dom, &r->domains, list) {
2424 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2425 if (ret)
2426 return ret;
2427 }
2428
2429 return 0;
2430 }
2431
2432 /*
2433 * This creates a directory mon_data which contains the monitored data.
2434 *
2435 * mon_data has one directory for each domain whic are named
2436 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2437 * with L3 domain looks as below:
2438 * ./mon_data:
2439 * mon_L3_00
2440 * mon_L3_01
2441 * mon_L3_02
2442 * ...
2443 *
2444 * Each domain directory has one file per event:
2445 * ./mon_L3_00/:
2446 * llc_occupancy
2447 *
2448 */
mkdir_mondata_all(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,struct kernfs_node ** dest_kn)2449 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2450 struct rdtgroup *prgrp,
2451 struct kernfs_node **dest_kn)
2452 {
2453 struct rdt_resource *r;
2454 struct kernfs_node *kn;
2455 int ret;
2456
2457 /*
2458 * Create the mon_data directory first.
2459 */
2460 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
2461 if (ret)
2462 return ret;
2463
2464 if (dest_kn)
2465 *dest_kn = kn;
2466
2467 /*
2468 * Create the subdirectories for each domain. Note that all events
2469 * in a domain like L3 are grouped into a resource whose domain is L3
2470 */
2471 for_each_mon_enabled_rdt_resource(r) {
2472 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2473 if (ret)
2474 goto out_destroy;
2475 }
2476
2477 return 0;
2478
2479 out_destroy:
2480 kernfs_remove(kn);
2481 return ret;
2482 }
2483
2484 /**
2485 * cbm_ensure_valid - Enforce validity on provided CBM
2486 * @_val: Candidate CBM
2487 * @r: RDT resource to which the CBM belongs
2488 *
2489 * The provided CBM represents all cache portions available for use. This
2490 * may be represented by a bitmap that does not consist of contiguous ones
2491 * and thus be an invalid CBM.
2492 * Here the provided CBM is forced to be a valid CBM by only considering
2493 * the first set of contiguous bits as valid and clearing all bits.
2494 * The intention here is to provide a valid default CBM with which a new
2495 * resource group is initialized. The user can follow this with a
2496 * modification to the CBM if the default does not satisfy the
2497 * requirements.
2498 */
cbm_ensure_valid(u32 _val,struct rdt_resource * r)2499 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
2500 {
2501 unsigned int cbm_len = r->cache.cbm_len;
2502 unsigned long first_bit, zero_bit;
2503 unsigned long val = _val;
2504
2505 if (!val)
2506 return 0;
2507
2508 first_bit = find_first_bit(&val, cbm_len);
2509 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2510
2511 /* Clear any remaining bits to ensure contiguous region */
2512 bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2513 return (u32)val;
2514 }
2515
2516 /*
2517 * Initialize cache resources per RDT domain
2518 *
2519 * Set the RDT domain up to start off with all usable allocations. That is,
2520 * all shareable and unused bits. All-zero CBM is invalid.
2521 */
__init_one_rdt_domain(struct rdt_domain * d,struct rdt_resource * r,u32 closid)2522 static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r,
2523 u32 closid)
2524 {
2525 struct rdt_resource *r_cdp = NULL;
2526 struct rdt_domain *d_cdp = NULL;
2527 u32 used_b = 0, unused_b = 0;
2528 unsigned long tmp_cbm;
2529 enum rdtgrp_mode mode;
2530 u32 peer_ctl, *ctrl;
2531 int i;
2532
2533 rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp);
2534 d->have_new_ctrl = false;
2535 d->new_ctrl = r->cache.shareable_bits;
2536 used_b = r->cache.shareable_bits;
2537 ctrl = d->ctrl_val;
2538 for (i = 0; i < closids_supported(); i++, ctrl++) {
2539 if (closid_allocated(i) && i != closid) {
2540 mode = rdtgroup_mode_by_closid(i);
2541 if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2542 /*
2543 * ctrl values for locksetup aren't relevant
2544 * until the schemata is written, and the mode
2545 * becomes RDT_MODE_PSEUDO_LOCKED.
2546 */
2547 continue;
2548 /*
2549 * If CDP is active include peer domain's
2550 * usage to ensure there is no overlap
2551 * with an exclusive group.
2552 */
2553 if (d_cdp)
2554 peer_ctl = d_cdp->ctrl_val[i];
2555 else
2556 peer_ctl = 0;
2557 used_b |= *ctrl | peer_ctl;
2558 if (mode == RDT_MODE_SHAREABLE)
2559 d->new_ctrl |= *ctrl | peer_ctl;
2560 }
2561 }
2562 if (d->plr && d->plr->cbm > 0)
2563 used_b |= d->plr->cbm;
2564 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2565 unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2566 d->new_ctrl |= unused_b;
2567 /*
2568 * Force the initial CBM to be valid, user can
2569 * modify the CBM based on system availability.
2570 */
2571 d->new_ctrl = cbm_ensure_valid(d->new_ctrl, r);
2572 /*
2573 * Assign the u32 CBM to an unsigned long to ensure that
2574 * bitmap_weight() does not access out-of-bound memory.
2575 */
2576 tmp_cbm = d->new_ctrl;
2577 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2578 rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id);
2579 return -ENOSPC;
2580 }
2581 d->have_new_ctrl = true;
2582
2583 return 0;
2584 }
2585
2586 /*
2587 * Initialize cache resources with default values.
2588 *
2589 * A new RDT group is being created on an allocation capable (CAT)
2590 * supporting system. Set this group up to start off with all usable
2591 * allocations.
2592 *
2593 * If there are no more shareable bits available on any domain then
2594 * the entire allocation will fail.
2595 */
rdtgroup_init_cat(struct rdt_resource * r,u32 closid)2596 static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid)
2597 {
2598 struct rdt_domain *d;
2599 int ret;
2600
2601 list_for_each_entry(d, &r->domains, list) {
2602 ret = __init_one_rdt_domain(d, r, closid);
2603 if (ret < 0)
2604 return ret;
2605 }
2606
2607 return 0;
2608 }
2609
2610 /* Initialize MBA resource with default values. */
rdtgroup_init_mba(struct rdt_resource * r)2611 static void rdtgroup_init_mba(struct rdt_resource *r)
2612 {
2613 struct rdt_domain *d;
2614
2615 list_for_each_entry(d, &r->domains, list) {
2616 d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl;
2617 d->have_new_ctrl = true;
2618 }
2619 }
2620
2621 /* Initialize the RDT group's allocations. */
rdtgroup_init_alloc(struct rdtgroup * rdtgrp)2622 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2623 {
2624 struct rdt_resource *r;
2625 int ret;
2626
2627 for_each_alloc_enabled_rdt_resource(r) {
2628 if (r->rid == RDT_RESOURCE_MBA) {
2629 rdtgroup_init_mba(r);
2630 } else {
2631 ret = rdtgroup_init_cat(r, rdtgrp->closid);
2632 if (ret < 0)
2633 return ret;
2634 }
2635
2636 ret = update_domains(r, rdtgrp->closid);
2637 if (ret < 0) {
2638 rdt_last_cmd_puts("Failed to initialize allocations\n");
2639 return ret;
2640 }
2641
2642 }
2643
2644 rdtgrp->mode = RDT_MODE_SHAREABLE;
2645
2646 return 0;
2647 }
2648
mkdir_rdt_prepare(struct kernfs_node * parent_kn,struct kernfs_node * prgrp_kn,const char * name,umode_t mode,enum rdt_group_type rtype,struct rdtgroup ** r)2649 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2650 struct kernfs_node *prgrp_kn,
2651 const char *name, umode_t mode,
2652 enum rdt_group_type rtype, struct rdtgroup **r)
2653 {
2654 struct rdtgroup *prdtgrp, *rdtgrp;
2655 struct kernfs_node *kn;
2656 uint files = 0;
2657 int ret;
2658
2659 prdtgrp = rdtgroup_kn_lock_live(parent_kn);
2660 if (!prdtgrp) {
2661 ret = -ENODEV;
2662 goto out_unlock;
2663 }
2664
2665 if (rtype == RDTMON_GROUP &&
2666 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2667 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2668 ret = -EINVAL;
2669 rdt_last_cmd_puts("Pseudo-locking in progress\n");
2670 goto out_unlock;
2671 }
2672
2673 /* allocate the rdtgroup. */
2674 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2675 if (!rdtgrp) {
2676 ret = -ENOSPC;
2677 rdt_last_cmd_puts("Kernel out of memory\n");
2678 goto out_unlock;
2679 }
2680 *r = rdtgrp;
2681 rdtgrp->mon.parent = prdtgrp;
2682 rdtgrp->type = rtype;
2683 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2684
2685 /* kernfs creates the directory for rdtgrp */
2686 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2687 if (IS_ERR(kn)) {
2688 ret = PTR_ERR(kn);
2689 rdt_last_cmd_puts("kernfs create error\n");
2690 goto out_free_rgrp;
2691 }
2692 rdtgrp->kn = kn;
2693
2694 /*
2695 * kernfs_remove() will drop the reference count on "kn" which
2696 * will free it. But we still need it to stick around for the
2697 * rdtgroup_kn_unlock(kn) call. Take one extra reference here,
2698 * which will be dropped by kernfs_put() in rdtgroup_remove().
2699 */
2700 kernfs_get(kn);
2701
2702 ret = rdtgroup_kn_set_ugid(kn);
2703 if (ret) {
2704 rdt_last_cmd_puts("kernfs perm error\n");
2705 goto out_destroy;
2706 }
2707
2708 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2709 ret = rdtgroup_add_files(kn, files);
2710 if (ret) {
2711 rdt_last_cmd_puts("kernfs fill error\n");
2712 goto out_destroy;
2713 }
2714
2715 if (rdt_mon_capable) {
2716 ret = alloc_rmid();
2717 if (ret < 0) {
2718 rdt_last_cmd_puts("Out of RMIDs\n");
2719 goto out_destroy;
2720 }
2721 rdtgrp->mon.rmid = ret;
2722
2723 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2724 if (ret) {
2725 rdt_last_cmd_puts("kernfs subdir error\n");
2726 goto out_idfree;
2727 }
2728 }
2729 kernfs_activate(kn);
2730
2731 /*
2732 * The caller unlocks the parent_kn upon success.
2733 */
2734 return 0;
2735
2736 out_idfree:
2737 free_rmid(rdtgrp->mon.rmid);
2738 out_destroy:
2739 kernfs_put(rdtgrp->kn);
2740 kernfs_remove(rdtgrp->kn);
2741 out_free_rgrp:
2742 kfree(rdtgrp);
2743 out_unlock:
2744 rdtgroup_kn_unlock(parent_kn);
2745 return ret;
2746 }
2747
mkdir_rdt_prepare_clean(struct rdtgroup * rgrp)2748 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2749 {
2750 kernfs_remove(rgrp->kn);
2751 free_rmid(rgrp->mon.rmid);
2752 rdtgroup_remove(rgrp);
2753 }
2754
2755 /*
2756 * Create a monitor group under "mon_groups" directory of a control
2757 * and monitor group(ctrl_mon). This is a resource group
2758 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2759 */
rdtgroup_mkdir_mon(struct kernfs_node * parent_kn,struct kernfs_node * prgrp_kn,const char * name,umode_t mode)2760 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2761 struct kernfs_node *prgrp_kn,
2762 const char *name,
2763 umode_t mode)
2764 {
2765 struct rdtgroup *rdtgrp, *prgrp;
2766 int ret;
2767
2768 ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
2769 &rdtgrp);
2770 if (ret)
2771 return ret;
2772
2773 prgrp = rdtgrp->mon.parent;
2774 rdtgrp->closid = prgrp->closid;
2775
2776 /*
2777 * Add the rdtgrp to the list of rdtgrps the parent
2778 * ctrl_mon group has to track.
2779 */
2780 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2781
2782 rdtgroup_kn_unlock(parent_kn);
2783 return ret;
2784 }
2785
2786 /*
2787 * These are rdtgroups created under the root directory. Can be used
2788 * to allocate and monitor resources.
2789 */
rdtgroup_mkdir_ctrl_mon(struct kernfs_node * parent_kn,struct kernfs_node * prgrp_kn,const char * name,umode_t mode)2790 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2791 struct kernfs_node *prgrp_kn,
2792 const char *name, umode_t mode)
2793 {
2794 struct rdtgroup *rdtgrp;
2795 struct kernfs_node *kn;
2796 u32 closid;
2797 int ret;
2798
2799 ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
2800 &rdtgrp);
2801 if (ret)
2802 return ret;
2803
2804 kn = rdtgrp->kn;
2805 ret = closid_alloc();
2806 if (ret < 0) {
2807 rdt_last_cmd_puts("Out of CLOSIDs\n");
2808 goto out_common_fail;
2809 }
2810 closid = ret;
2811 ret = 0;
2812
2813 rdtgrp->closid = closid;
2814 ret = rdtgroup_init_alloc(rdtgrp);
2815 if (ret < 0)
2816 goto out_id_free;
2817
2818 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2819
2820 if (rdt_mon_capable) {
2821 /*
2822 * Create an empty mon_groups directory to hold the subset
2823 * of tasks and cpus to monitor.
2824 */
2825 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
2826 if (ret) {
2827 rdt_last_cmd_puts("kernfs subdir error\n");
2828 goto out_del_list;
2829 }
2830 }
2831
2832 goto out_unlock;
2833
2834 out_del_list:
2835 list_del(&rdtgrp->rdtgroup_list);
2836 out_id_free:
2837 closid_free(closid);
2838 out_common_fail:
2839 mkdir_rdt_prepare_clean(rdtgrp);
2840 out_unlock:
2841 rdtgroup_kn_unlock(parent_kn);
2842 return ret;
2843 }
2844
2845 /*
2846 * We allow creating mon groups only with in a directory called "mon_groups"
2847 * which is present in every ctrl_mon group. Check if this is a valid
2848 * "mon_groups" directory.
2849 *
2850 * 1. The directory should be named "mon_groups".
2851 * 2. The mon group itself should "not" be named "mon_groups".
2852 * This makes sure "mon_groups" directory always has a ctrl_mon group
2853 * as parent.
2854 */
is_mon_groups(struct kernfs_node * kn,const char * name)2855 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2856 {
2857 return (!strcmp(kn->name, "mon_groups") &&
2858 strcmp(name, "mon_groups"));
2859 }
2860
rdtgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)2861 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2862 umode_t mode)
2863 {
2864 /* Do not accept '\n' to avoid unparsable situation. */
2865 if (strchr(name, '\n'))
2866 return -EINVAL;
2867
2868 /*
2869 * If the parent directory is the root directory and RDT
2870 * allocation is supported, add a control and monitoring
2871 * subdirectory
2872 */
2873 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2874 return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);
2875
2876 /*
2877 * If RDT monitoring is supported and the parent directory is a valid
2878 * "mon_groups" directory, add a monitoring subdirectory.
2879 */
2880 if (rdt_mon_capable && is_mon_groups(parent_kn, name))
2881 return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
2882
2883 return -EPERM;
2884 }
2885
rdtgroup_rmdir_mon(struct kernfs_node * kn,struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)2886 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2887 cpumask_var_t tmpmask)
2888 {
2889 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
2890 int cpu;
2891
2892 /* Give any tasks back to the parent group */
2893 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
2894
2895 /* Update per cpu rmid of the moved CPUs first */
2896 for_each_cpu(cpu, &rdtgrp->cpu_mask)
2897 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
2898 /*
2899 * Update the MSR on moved CPUs and CPUs which have moved
2900 * task running on them.
2901 */
2902 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2903 update_closid_rmid(tmpmask, NULL);
2904
2905 rdtgrp->flags = RDT_DELETED;
2906 free_rmid(rdtgrp->mon.rmid);
2907
2908 /*
2909 * Remove the rdtgrp from the parent ctrl_mon group's list
2910 */
2911 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
2912 list_del(&rdtgrp->mon.crdtgrp_list);
2913
2914 kernfs_remove(rdtgrp->kn);
2915
2916 return 0;
2917 }
2918
rdtgroup_ctrl_remove(struct kernfs_node * kn,struct rdtgroup * rdtgrp)2919 static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
2920 struct rdtgroup *rdtgrp)
2921 {
2922 rdtgrp->flags = RDT_DELETED;
2923 list_del(&rdtgrp->rdtgroup_list);
2924
2925 kernfs_remove(rdtgrp->kn);
2926 return 0;
2927 }
2928
rdtgroup_rmdir_ctrl(struct kernfs_node * kn,struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)2929 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2930 cpumask_var_t tmpmask)
2931 {
2932 int cpu;
2933
2934 /* Give any tasks back to the default group */
2935 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
2936
2937 /* Give any CPUs back to the default group */
2938 cpumask_or(&rdtgroup_default.cpu_mask,
2939 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2940
2941 /* Update per cpu closid and rmid of the moved CPUs first */
2942 for_each_cpu(cpu, &rdtgrp->cpu_mask) {
2943 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
2944 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
2945 }
2946
2947 /*
2948 * Update the MSR on moved CPUs and CPUs which have moved
2949 * task running on them.
2950 */
2951 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2952 update_closid_rmid(tmpmask, NULL);
2953
2954 closid_free(rdtgrp->closid);
2955 free_rmid(rdtgrp->mon.rmid);
2956
2957 rdtgroup_ctrl_remove(kn, rdtgrp);
2958
2959 /*
2960 * Free all the child monitor group rmids.
2961 */
2962 free_all_child_rdtgrp(rdtgrp);
2963
2964 return 0;
2965 }
2966
rdtgroup_rmdir(struct kernfs_node * kn)2967 static int rdtgroup_rmdir(struct kernfs_node *kn)
2968 {
2969 struct kernfs_node *parent_kn = kn->parent;
2970 struct rdtgroup *rdtgrp;
2971 cpumask_var_t tmpmask;
2972 int ret = 0;
2973
2974 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
2975 return -ENOMEM;
2976
2977 rdtgrp = rdtgroup_kn_lock_live(kn);
2978 if (!rdtgrp) {
2979 ret = -EPERM;
2980 goto out;
2981 }
2982
2983 /*
2984 * If the rdtgroup is a ctrl_mon group and parent directory
2985 * is the root directory, remove the ctrl_mon group.
2986 *
2987 * If the rdtgroup is a mon group and parent directory
2988 * is a valid "mon_groups" directory, remove the mon group.
2989 */
2990 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
2991 rdtgrp != &rdtgroup_default) {
2992 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2993 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
2994 ret = rdtgroup_ctrl_remove(kn, rdtgrp);
2995 } else {
2996 ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
2997 }
2998 } else if (rdtgrp->type == RDTMON_GROUP &&
2999 is_mon_groups(parent_kn, kn->name)) {
3000 ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
3001 } else {
3002 ret = -EPERM;
3003 }
3004
3005 out:
3006 rdtgroup_kn_unlock(kn);
3007 free_cpumask_var(tmpmask);
3008 return ret;
3009 }
3010
rdtgroup_show_options(struct seq_file * seq,struct kernfs_root * kf)3011 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3012 {
3013 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
3014 seq_puts(seq, ",cdp");
3015
3016 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
3017 seq_puts(seq, ",cdpl2");
3018
3019 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
3020 seq_puts(seq, ",mba_MBps");
3021
3022 return 0;
3023 }
3024
3025 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3026 .mkdir = rdtgroup_mkdir,
3027 .rmdir = rdtgroup_rmdir,
3028 .show_options = rdtgroup_show_options,
3029 };
3030
rdtgroup_setup_root(void)3031 static int __init rdtgroup_setup_root(void)
3032 {
3033 int ret;
3034
3035 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3036 KERNFS_ROOT_CREATE_DEACTIVATED |
3037 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3038 &rdtgroup_default);
3039 if (IS_ERR(rdt_root))
3040 return PTR_ERR(rdt_root);
3041
3042 mutex_lock(&rdtgroup_mutex);
3043
3044 rdtgroup_default.closid = 0;
3045 rdtgroup_default.mon.rmid = 0;
3046 rdtgroup_default.type = RDTCTRL_GROUP;
3047 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3048
3049 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3050
3051 ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
3052 if (ret) {
3053 kernfs_destroy_root(rdt_root);
3054 goto out;
3055 }
3056
3057 rdtgroup_default.kn = rdt_root->kn;
3058 kernfs_activate(rdtgroup_default.kn);
3059
3060 out:
3061 mutex_unlock(&rdtgroup_mutex);
3062
3063 return ret;
3064 }
3065
3066 /*
3067 * rdtgroup_init - rdtgroup initialization
3068 *
3069 * Setup resctrl file system including set up root, create mount point,
3070 * register rdtgroup filesystem, and initialize files under root directory.
3071 *
3072 * Return: 0 on success or -errno
3073 */
rdtgroup_init(void)3074 int __init rdtgroup_init(void)
3075 {
3076 int ret = 0;
3077
3078 seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3079 sizeof(last_cmd_status_buf));
3080
3081 ret = rdtgroup_setup_root();
3082 if (ret)
3083 return ret;
3084
3085 ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3086 if (ret)
3087 goto cleanup_root;
3088
3089 ret = register_filesystem(&rdt_fs_type);
3090 if (ret)
3091 goto cleanup_mountpoint;
3092
3093 /*
3094 * Adding the resctrl debugfs directory here may not be ideal since
3095 * it would let the resctrl debugfs directory appear on the debugfs
3096 * filesystem before the resctrl filesystem is mounted.
3097 * It may also be ok since that would enable debugging of RDT before
3098 * resctrl is mounted.
3099 * The reason why the debugfs directory is created here and not in
3100 * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and
3101 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3102 * (the lockdep class of inode->i_rwsem). Other filesystem
3103 * interactions (eg. SyS_getdents) have the lock ordering:
3104 * &sb->s_type->i_mutex_key --> &mm->mmap_sem
3105 * During mmap(), called with &mm->mmap_sem, the rdtgroup_mutex
3106 * is taken, thus creating dependency:
3107 * &mm->mmap_sem --> rdtgroup_mutex for the latter that can cause
3108 * issues considering the other two lock dependencies.
3109 * By creating the debugfs directory here we avoid a dependency
3110 * that may cause deadlock (even though file operations cannot
3111 * occur until the filesystem is mounted, but I do not know how to
3112 * tell lockdep that).
3113 */
3114 debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3115
3116 return 0;
3117
3118 cleanup_mountpoint:
3119 sysfs_remove_mount_point(fs_kobj, "resctrl");
3120 cleanup_root:
3121 kernfs_destroy_root(rdt_root);
3122
3123 return ret;
3124 }
3125
rdtgroup_exit(void)3126 void __exit rdtgroup_exit(void)
3127 {
3128 debugfs_remove_recursive(debugfs_resctrl);
3129 unregister_filesystem(&rdt_fs_type);
3130 sysfs_remove_mount_point(fs_kobj, "resctrl");
3131 kernfs_destroy_root(rdt_root);
3132 }
3133