• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3  *	x86 SMP booting functions
4  *
5  *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6  *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7  *	Copyright 2001 Andi Kleen, SuSE Labs.
8  *
9  *	Much of the core SMP work is based on previous work by Thomas Radke, to
10  *	whom a great many thanks are extended.
11  *
12  *	Thanks to Intel for making available several different Pentium,
13  *	Pentium Pro and Pentium-II/Xeon MP machines.
14  *	Original development of Linux SMP code supported by Caldera.
15  *
16  *	Fixes
17  *		Felix Koop	:	NR_CPUS used properly
18  *		Jose Renau	:	Handle single CPU case.
19  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
20  *		Greg Wright	:	Fix for kernel stacks panic.
21  *		Erich Boleyn	:	MP v1.4 and additional changes.
22  *	Matthias Sattler	:	Changes for 2.1 kernel map.
23  *	Michel Lespinasse	:	Changes for 2.1 kernel map.
24  *	Michael Chastain	:	Change trampoline.S to gnu as.
25  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
26  *		Ingo Molnar	:	Added APIC timers, based on code
27  *					from Jose Renau
28  *		Ingo Molnar	:	various cleanups and rewrites
29  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
30  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
31  *	Andi Kleen		:	Changed for SMP boot into long mode.
32  *		Martin J. Bligh	: 	Added support for multi-quad systems
33  *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
34  *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
35  *      Andi Kleen              :       Converted to new state machine.
36  *	Ashok Raj		: 	CPU hotplug support
37  *	Glauber Costa		:	i386 and x86_64 integration
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/stackprotector.h>
55 #include <linux/gfp.h>
56 #include <linux/cpuidle.h>
57 #include <linux/numa.h>
58 
59 #include <asm/acpi.h>
60 #include <asm/desc.h>
61 #include <asm/nmi.h>
62 #include <asm/irq.h>
63 #include <asm/realmode.h>
64 #include <asm/cpu.h>
65 #include <asm/numa.h>
66 #include <asm/pgtable.h>
67 #include <asm/tlbflush.h>
68 #include <asm/mtrr.h>
69 #include <asm/mwait.h>
70 #include <asm/apic.h>
71 #include <asm/io_apic.h>
72 #include <asm/fpu/internal.h>
73 #include <asm/setup.h>
74 #include <asm/uv/uv.h>
75 #include <linux/mc146818rtc.h>
76 #include <asm/i8259.h>
77 #include <asm/misc.h>
78 #include <asm/qspinlock.h>
79 #include <asm/intel-family.h>
80 #include <asm/cpu_device_id.h>
81 #include <asm/spec-ctrl.h>
82 #include <asm/hw_irq.h>
83 
84 /* representing HT siblings of each logical CPU */
85 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
86 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
87 
88 /* representing HT and core siblings of each logical CPU */
89 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
91 
92 /* representing HT, core, and die siblings of each logical CPU */
93 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
94 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
95 
96 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
97 
98 /* Per CPU bogomips and other parameters */
99 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
100 EXPORT_PER_CPU_SYMBOL(cpu_info);
101 
102 struct mwait_cpu_dead {
103 	unsigned int	control;
104 	unsigned int	status;
105 };
106 
107 /*
108  * Cache line aligned data for mwait_play_dead(). Separate on purpose so
109  * that it's unlikely to be touched by other CPUs.
110  */
111 static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
112 
113 /* Logical package management. We might want to allocate that dynamically */
114 unsigned int __max_logical_packages __read_mostly;
115 EXPORT_SYMBOL(__max_logical_packages);
116 static unsigned int logical_packages __read_mostly;
117 static unsigned int logical_die __read_mostly;
118 
119 /* Maximum number of SMT threads on any online core */
120 int __read_mostly __max_smt_threads = 1;
121 
122 /* Flag to indicate if a complete sched domain rebuild is required */
123 bool x86_topology_update;
124 
arch_update_cpu_topology(void)125 int arch_update_cpu_topology(void)
126 {
127 	int retval = x86_topology_update;
128 
129 	x86_topology_update = false;
130 	return retval;
131 }
132 
smpboot_setup_warm_reset_vector(unsigned long start_eip)133 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
134 {
135 	unsigned long flags;
136 
137 	spin_lock_irqsave(&rtc_lock, flags);
138 	CMOS_WRITE(0xa, 0xf);
139 	spin_unlock_irqrestore(&rtc_lock, flags);
140 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
141 							start_eip >> 4;
142 	*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
143 							start_eip & 0xf;
144 }
145 
smpboot_restore_warm_reset_vector(void)146 static inline void smpboot_restore_warm_reset_vector(void)
147 {
148 	unsigned long flags;
149 
150 	/*
151 	 * Paranoid:  Set warm reset code and vector here back
152 	 * to default values.
153 	 */
154 	spin_lock_irqsave(&rtc_lock, flags);
155 	CMOS_WRITE(0, 0xf);
156 	spin_unlock_irqrestore(&rtc_lock, flags);
157 
158 	*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
159 }
160 
161 /*
162  * Report back to the Boot Processor during boot time or to the caller processor
163  * during CPU online.
164  */
smp_callin(void)165 static void smp_callin(void)
166 {
167 	int cpuid;
168 
169 	/*
170 	 * If waken up by an INIT in an 82489DX configuration
171 	 * cpu_callout_mask guarantees we don't get here before
172 	 * an INIT_deassert IPI reaches our local APIC, so it is
173 	 * now safe to touch our local APIC.
174 	 */
175 	cpuid = smp_processor_id();
176 
177 	/*
178 	 * the boot CPU has finished the init stage and is spinning
179 	 * on callin_map until we finish. We are free to set up this
180 	 * CPU, first the APIC. (this is probably redundant on most
181 	 * boards)
182 	 */
183 	apic_ap_setup();
184 
185 	/*
186 	 * Save our processor parameters. Note: this information
187 	 * is needed for clock calibration.
188 	 */
189 	smp_store_cpu_info(cpuid);
190 
191 	/*
192 	 * The topology information must be up to date before
193 	 * calibrate_delay() and notify_cpu_starting().
194 	 */
195 	set_cpu_sibling_map(raw_smp_processor_id());
196 
197 	/*
198 	 * Get our bogomips.
199 	 * Update loops_per_jiffy in cpu_data. Previous call to
200 	 * smp_store_cpu_info() stored a value that is close but not as
201 	 * accurate as the value just calculated.
202 	 */
203 	calibrate_delay();
204 	cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
205 	pr_debug("Stack at about %p\n", &cpuid);
206 
207 	wmb();
208 
209 	notify_cpu_starting(cpuid);
210 
211 	/*
212 	 * Allow the master to continue.
213 	 */
214 	cpumask_set_cpu(cpuid, cpu_callin_mask);
215 }
216 
217 static int cpu0_logical_apicid;
218 static int enable_start_cpu0;
219 /*
220  * Activate a secondary processor.
221  */
start_secondary(void * unused)222 static void notrace start_secondary(void *unused)
223 {
224 	/*
225 	 * Don't put *anything* except direct CPU state initialization
226 	 * before cpu_init(), SMP booting is too fragile that we want to
227 	 * limit the things done here to the most necessary things.
228 	 */
229 	cr4_init();
230 
231 #ifdef CONFIG_X86_32
232 	/* switch away from the initial page table */
233 	load_cr3(swapper_pg_dir);
234 	__flush_tlb_all();
235 #endif
236 	load_current_idt();
237 	cpu_init();
238 	fpu__init_cpu();
239 	rcu_cpu_starting(raw_smp_processor_id());
240 	x86_cpuinit.early_percpu_clock_init();
241 	preempt_disable();
242 	smp_callin();
243 
244 	enable_start_cpu0 = 0;
245 
246 	/* otherwise gcc will move up smp_processor_id before the cpu_init */
247 	barrier();
248 	/*
249 	 * Check TSC synchronization with the boot CPU:
250 	 */
251 	check_tsc_sync_target();
252 
253 	speculative_store_bypass_ht_init();
254 
255 	/*
256 	 * Lock vector_lock, set CPU online and bring the vector
257 	 * allocator online. Online must be set with vector_lock held
258 	 * to prevent a concurrent irq setup/teardown from seeing a
259 	 * half valid vector space.
260 	 */
261 	lock_vector_lock();
262 	set_cpu_online(smp_processor_id(), true);
263 	lapic_online();
264 	unlock_vector_lock();
265 	cpu_set_state_online(smp_processor_id());
266 	x86_platform.nmi_init();
267 
268 	/* enable local interrupts */
269 	local_irq_enable();
270 
271 	/* to prevent fake stack check failure in clock setup */
272 	boot_init_stack_canary();
273 
274 	x86_cpuinit.setup_percpu_clockev();
275 
276 	wmb();
277 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
278 
279 	/*
280 	 * Prevent tail call to cpu_startup_entry() because the stack protector
281 	 * guard has been changed a couple of function calls up, in
282 	 * boot_init_stack_canary() and must not be checked before tail calling
283 	 * another function.
284 	 */
285 	prevent_tail_call_optimization();
286 }
287 
288 /**
289  * topology_is_primary_thread - Check whether CPU is the primary SMT thread
290  * @cpu:	CPU to check
291  */
topology_is_primary_thread(unsigned int cpu)292 bool topology_is_primary_thread(unsigned int cpu)
293 {
294 	return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
295 }
296 
297 /**
298  * topology_smt_supported - Check whether SMT is supported by the CPUs
299  */
topology_smt_supported(void)300 bool topology_smt_supported(void)
301 {
302 	return smp_num_siblings > 1;
303 }
304 
305 /**
306  * topology_phys_to_logical_pkg - Map a physical package id to a logical
307  *
308  * Returns logical package id or -1 if not found
309  */
topology_phys_to_logical_pkg(unsigned int phys_pkg)310 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
311 {
312 	int cpu;
313 
314 	for_each_possible_cpu(cpu) {
315 		struct cpuinfo_x86 *c = &cpu_data(cpu);
316 
317 		if (c->initialized && c->phys_proc_id == phys_pkg)
318 			return c->logical_proc_id;
319 	}
320 	return -1;
321 }
322 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
323 /**
324  * topology_phys_to_logical_die - Map a physical die id to logical
325  *
326  * Returns logical die id or -1 if not found
327  */
topology_phys_to_logical_die(unsigned int die_id,unsigned int cur_cpu)328 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
329 {
330 	int cpu;
331 	int proc_id = cpu_data(cur_cpu).phys_proc_id;
332 
333 	for_each_possible_cpu(cpu) {
334 		struct cpuinfo_x86 *c = &cpu_data(cpu);
335 
336 		if (c->initialized && c->cpu_die_id == die_id &&
337 		    c->phys_proc_id == proc_id)
338 			return c->logical_die_id;
339 	}
340 	return -1;
341 }
342 EXPORT_SYMBOL(topology_phys_to_logical_die);
343 
344 /**
345  * topology_update_package_map - Update the physical to logical package map
346  * @pkg:	The physical package id as retrieved via CPUID
347  * @cpu:	The cpu for which this is updated
348  */
topology_update_package_map(unsigned int pkg,unsigned int cpu)349 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
350 {
351 	int new;
352 
353 	/* Already available somewhere? */
354 	new = topology_phys_to_logical_pkg(pkg);
355 	if (new >= 0)
356 		goto found;
357 
358 	new = logical_packages++;
359 	if (new != pkg) {
360 		pr_info("CPU %u Converting physical %u to logical package %u\n",
361 			cpu, pkg, new);
362 	}
363 found:
364 	cpu_data(cpu).logical_proc_id = new;
365 	return 0;
366 }
367 /**
368  * topology_update_die_map - Update the physical to logical die map
369  * @die:	The die id as retrieved via CPUID
370  * @cpu:	The cpu for which this is updated
371  */
topology_update_die_map(unsigned int die,unsigned int cpu)372 int topology_update_die_map(unsigned int die, unsigned int cpu)
373 {
374 	int new;
375 
376 	/* Already available somewhere? */
377 	new = topology_phys_to_logical_die(die, cpu);
378 	if (new >= 0)
379 		goto found;
380 
381 	new = logical_die++;
382 	if (new != die) {
383 		pr_info("CPU %u Converting physical %u to logical die %u\n",
384 			cpu, die, new);
385 	}
386 found:
387 	cpu_data(cpu).logical_die_id = new;
388 	return 0;
389 }
390 
smp_store_boot_cpu_info(void)391 void __init smp_store_boot_cpu_info(void)
392 {
393 	int id = 0; /* CPU 0 */
394 	struct cpuinfo_x86 *c = &cpu_data(id);
395 
396 	*c = boot_cpu_data;
397 	c->cpu_index = id;
398 	topology_update_package_map(c->phys_proc_id, id);
399 	topology_update_die_map(c->cpu_die_id, id);
400 	c->initialized = true;
401 }
402 
403 /*
404  * The bootstrap kernel entry code has set these up. Save them for
405  * a given CPU
406  */
smp_store_cpu_info(int id)407 void smp_store_cpu_info(int id)
408 {
409 	struct cpuinfo_x86 *c = &cpu_data(id);
410 
411 	/* Copy boot_cpu_data only on the first bringup */
412 	if (!c->initialized)
413 		*c = boot_cpu_data;
414 	c->cpu_index = id;
415 	/*
416 	 * During boot time, CPU0 has this setup already. Save the info when
417 	 * bringing up AP or offlined CPU0.
418 	 */
419 	identify_secondary_cpu(c);
420 	c->initialized = true;
421 }
422 
423 static bool
topology_same_node(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)424 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
425 {
426 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
427 
428 	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
429 }
430 
431 static bool
topology_sane(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o,const char * name)432 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
433 {
434 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
435 
436 	return !WARN_ONCE(!topology_same_node(c, o),
437 		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
438 		"[node: %d != %d]. Ignoring dependency.\n",
439 		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
440 }
441 
442 #define link_mask(mfunc, c1, c2)					\
443 do {									\
444 	cpumask_set_cpu((c1), mfunc(c2));				\
445 	cpumask_set_cpu((c2), mfunc(c1));				\
446 } while (0)
447 
match_smt(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)448 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
449 {
450 	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
451 		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
452 
453 		if (c->phys_proc_id == o->phys_proc_id &&
454 		    c->cpu_die_id == o->cpu_die_id &&
455 		    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
456 			if (c->cpu_core_id == o->cpu_core_id)
457 				return topology_sane(c, o, "smt");
458 
459 			if ((c->cu_id != 0xff) &&
460 			    (o->cu_id != 0xff) &&
461 			    (c->cu_id == o->cu_id))
462 				return topology_sane(c, o, "smt");
463 		}
464 
465 	} else if (c->phys_proc_id == o->phys_proc_id &&
466 		   c->cpu_die_id == o->cpu_die_id &&
467 		   c->cpu_core_id == o->cpu_core_id) {
468 		return topology_sane(c, o, "smt");
469 	}
470 
471 	return false;
472 }
473 
474 /*
475  * Define snc_cpu[] for SNC (Sub-NUMA Cluster) CPUs.
476  *
477  * These are Intel CPUs that enumerate an LLC that is shared by
478  * multiple NUMA nodes. The LLC on these systems is shared for
479  * off-package data access but private to the NUMA node (half
480  * of the package) for on-package access.
481  *
482  * CPUID (the source of the information about the LLC) can only
483  * enumerate the cache as being shared *or* unshared, but not
484  * this particular configuration. The CPU in this case enumerates
485  * the cache to be shared across the entire package (spanning both
486  * NUMA nodes).
487  */
488 
489 static const struct x86_cpu_id snc_cpu[] = {
490 	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X },
491 	{}
492 };
493 
match_llc(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)494 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
495 {
496 	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
497 
498 	/* Do not match if we do not have a valid APICID for cpu: */
499 	if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
500 		return false;
501 
502 	/* Do not match if LLC id does not match: */
503 	if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
504 		return false;
505 
506 	/*
507 	 * Allow the SNC topology without warning. Return of false
508 	 * means 'c' does not share the LLC of 'o'. This will be
509 	 * reflected to userspace.
510 	 */
511 	if (!topology_same_node(c, o) && x86_match_cpu(snc_cpu))
512 		return false;
513 
514 	return topology_sane(c, o, "llc");
515 }
516 
517 /*
518  * Unlike the other levels, we do not enforce keeping a
519  * multicore group inside a NUMA node.  If this happens, we will
520  * discard the MC level of the topology later.
521  */
match_pkg(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)522 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
523 {
524 	if (c->phys_proc_id == o->phys_proc_id)
525 		return true;
526 	return false;
527 }
528 
match_die(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)529 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
530 {
531 	if ((c->phys_proc_id == o->phys_proc_id) &&
532 		(c->cpu_die_id == o->cpu_die_id))
533 		return true;
534 	return false;
535 }
536 
537 
538 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
x86_sched_itmt_flags(void)539 static inline int x86_sched_itmt_flags(void)
540 {
541 	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
542 }
543 
544 #ifdef CONFIG_SCHED_MC
x86_core_flags(void)545 static int x86_core_flags(void)
546 {
547 	return cpu_core_flags() | x86_sched_itmt_flags();
548 }
549 #endif
550 #ifdef CONFIG_SCHED_SMT
x86_smt_flags(void)551 static int x86_smt_flags(void)
552 {
553 	return cpu_smt_flags() | x86_sched_itmt_flags();
554 }
555 #endif
556 #endif
557 
558 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
559 #ifdef CONFIG_SCHED_SMT
560 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
561 #endif
562 #ifdef CONFIG_SCHED_MC
563 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
564 #endif
565 	{ NULL, },
566 };
567 
568 static struct sched_domain_topology_level x86_topology[] = {
569 #ifdef CONFIG_SCHED_SMT
570 	{ cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
571 #endif
572 #ifdef CONFIG_SCHED_MC
573 	{ cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
574 #endif
575 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
576 	{ NULL, },
577 };
578 
579 /*
580  * Set if a package/die has multiple NUMA nodes inside.
581  * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
582  * Sub-NUMA Clustering have this.
583  */
584 static bool x86_has_numa_in_package;
585 
set_cpu_sibling_map(int cpu)586 void set_cpu_sibling_map(int cpu)
587 {
588 	bool has_smt = smp_num_siblings > 1;
589 	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
590 	struct cpuinfo_x86 *c = &cpu_data(cpu);
591 	struct cpuinfo_x86 *o;
592 	int i, threads;
593 
594 	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
595 
596 	if (!has_mp) {
597 		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
598 		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
599 		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
600 		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
601 		c->booted_cores = 1;
602 		return;
603 	}
604 
605 	for_each_cpu(i, cpu_sibling_setup_mask) {
606 		o = &cpu_data(i);
607 
608 		if ((i == cpu) || (has_smt && match_smt(c, o)))
609 			link_mask(topology_sibling_cpumask, cpu, i);
610 
611 		if ((i == cpu) || (has_mp && match_llc(c, o)))
612 			link_mask(cpu_llc_shared_mask, cpu, i);
613 
614 	}
615 
616 	/*
617 	 * This needs a separate iteration over the cpus because we rely on all
618 	 * topology_sibling_cpumask links to be set-up.
619 	 */
620 	for_each_cpu(i, cpu_sibling_setup_mask) {
621 		o = &cpu_data(i);
622 
623 		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
624 			link_mask(topology_core_cpumask, cpu, i);
625 
626 			/*
627 			 *  Does this new cpu bringup a new core?
628 			 */
629 			if (cpumask_weight(
630 			    topology_sibling_cpumask(cpu)) == 1) {
631 				/*
632 				 * for each core in package, increment
633 				 * the booted_cores for this new cpu
634 				 */
635 				if (cpumask_first(
636 				    topology_sibling_cpumask(i)) == i)
637 					c->booted_cores++;
638 				/*
639 				 * increment the core count for all
640 				 * the other cpus in this package
641 				 */
642 				if (i != cpu)
643 					cpu_data(i).booted_cores++;
644 			} else if (i != cpu && !c->booted_cores)
645 				c->booted_cores = cpu_data(i).booted_cores;
646 		}
647 		if (match_pkg(c, o) && !topology_same_node(c, o))
648 			x86_has_numa_in_package = true;
649 
650 		if ((i == cpu) || (has_mp && match_die(c, o)))
651 			link_mask(topology_die_cpumask, cpu, i);
652 	}
653 
654 	threads = cpumask_weight(topology_sibling_cpumask(cpu));
655 	if (threads > __max_smt_threads)
656 		__max_smt_threads = threads;
657 }
658 
659 /* maps the cpu to the sched domain representing multi-core */
cpu_coregroup_mask(int cpu)660 const struct cpumask *cpu_coregroup_mask(int cpu)
661 {
662 	return cpu_llc_shared_mask(cpu);
663 }
664 
impress_friends(void)665 static void impress_friends(void)
666 {
667 	int cpu;
668 	unsigned long bogosum = 0;
669 	/*
670 	 * Allow the user to impress friends.
671 	 */
672 	pr_debug("Before bogomips\n");
673 	for_each_possible_cpu(cpu)
674 		if (cpumask_test_cpu(cpu, cpu_callout_mask))
675 			bogosum += cpu_data(cpu).loops_per_jiffy;
676 	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
677 		num_online_cpus(),
678 		bogosum/(500000/HZ),
679 		(bogosum/(5000/HZ))%100);
680 
681 	pr_debug("Before bogocount - setting activated=1\n");
682 }
683 
__inquire_remote_apic(int apicid)684 void __inquire_remote_apic(int apicid)
685 {
686 	unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
687 	const char * const names[] = { "ID", "VERSION", "SPIV" };
688 	int timeout;
689 	u32 status;
690 
691 	pr_info("Inquiring remote APIC 0x%x...\n", apicid);
692 
693 	for (i = 0; i < ARRAY_SIZE(regs); i++) {
694 		pr_info("... APIC 0x%x %s: ", apicid, names[i]);
695 
696 		/*
697 		 * Wait for idle.
698 		 */
699 		status = safe_apic_wait_icr_idle();
700 		if (status)
701 			pr_cont("a previous APIC delivery may have failed\n");
702 
703 		apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
704 
705 		timeout = 0;
706 		do {
707 			udelay(100);
708 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
709 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
710 
711 		switch (status) {
712 		case APIC_ICR_RR_VALID:
713 			status = apic_read(APIC_RRR);
714 			pr_cont("%08x\n", status);
715 			break;
716 		default:
717 			pr_cont("failed\n");
718 		}
719 	}
720 }
721 
722 /*
723  * The Multiprocessor Specification 1.4 (1997) example code suggests
724  * that there should be a 10ms delay between the BSP asserting INIT
725  * and de-asserting INIT, when starting a remote processor.
726  * But that slows boot and resume on modern processors, which include
727  * many cores and don't require that delay.
728  *
729  * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
730  * Modern processor families are quirked to remove the delay entirely.
731  */
732 #define UDELAY_10MS_DEFAULT 10000
733 
734 static unsigned int init_udelay = UINT_MAX;
735 
cpu_init_udelay(char * str)736 static int __init cpu_init_udelay(char *str)
737 {
738 	get_option(&str, &init_udelay);
739 
740 	return 0;
741 }
742 early_param("cpu_init_udelay", cpu_init_udelay);
743 
smp_quirk_init_udelay(void)744 static void __init smp_quirk_init_udelay(void)
745 {
746 	/* if cmdline changed it from default, leave it alone */
747 	if (init_udelay != UINT_MAX)
748 		return;
749 
750 	/* if modern processor, use no delay */
751 	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
752 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
753 	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
754 		init_udelay = 0;
755 		return;
756 	}
757 	/* else, use legacy delay */
758 	init_udelay = UDELAY_10MS_DEFAULT;
759 }
760 
761 /*
762  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
763  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
764  * won't ... remember to clear down the APIC, etc later.
765  */
766 int
wakeup_secondary_cpu_via_nmi(int apicid,unsigned long start_eip)767 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
768 {
769 	unsigned long send_status, accept_status = 0;
770 	int maxlvt;
771 
772 	/* Target chip */
773 	/* Boot on the stack */
774 	/* Kick the second */
775 	apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
776 
777 	pr_debug("Waiting for send to finish...\n");
778 	send_status = safe_apic_wait_icr_idle();
779 
780 	/*
781 	 * Give the other CPU some time to accept the IPI.
782 	 */
783 	udelay(200);
784 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
785 		maxlvt = lapic_get_maxlvt();
786 		if (maxlvt > 3)			/* Due to the Pentium erratum 3AP.  */
787 			apic_write(APIC_ESR, 0);
788 		accept_status = (apic_read(APIC_ESR) & 0xEF);
789 	}
790 	pr_debug("NMI sent\n");
791 
792 	if (send_status)
793 		pr_err("APIC never delivered???\n");
794 	if (accept_status)
795 		pr_err("APIC delivery error (%lx)\n", accept_status);
796 
797 	return (send_status | accept_status);
798 }
799 
800 static int
wakeup_secondary_cpu_via_init(int phys_apicid,unsigned long start_eip)801 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
802 {
803 	unsigned long send_status = 0, accept_status = 0;
804 	int maxlvt, num_starts, j;
805 
806 	maxlvt = lapic_get_maxlvt();
807 
808 	/*
809 	 * Be paranoid about clearing APIC errors.
810 	 */
811 	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
812 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
813 			apic_write(APIC_ESR, 0);
814 		apic_read(APIC_ESR);
815 	}
816 
817 	pr_debug("Asserting INIT\n");
818 
819 	/*
820 	 * Turn INIT on target chip
821 	 */
822 	/*
823 	 * Send IPI
824 	 */
825 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
826 		       phys_apicid);
827 
828 	pr_debug("Waiting for send to finish...\n");
829 	send_status = safe_apic_wait_icr_idle();
830 
831 	udelay(init_udelay);
832 
833 	pr_debug("Deasserting INIT\n");
834 
835 	/* Target chip */
836 	/* Send IPI */
837 	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
838 
839 	pr_debug("Waiting for send to finish...\n");
840 	send_status = safe_apic_wait_icr_idle();
841 
842 	mb();
843 
844 	/*
845 	 * Should we send STARTUP IPIs ?
846 	 *
847 	 * Determine this based on the APIC version.
848 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
849 	 */
850 	if (APIC_INTEGRATED(boot_cpu_apic_version))
851 		num_starts = 2;
852 	else
853 		num_starts = 0;
854 
855 	/*
856 	 * Run STARTUP IPI loop.
857 	 */
858 	pr_debug("#startup loops: %d\n", num_starts);
859 
860 	for (j = 1; j <= num_starts; j++) {
861 		pr_debug("Sending STARTUP #%d\n", j);
862 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
863 			apic_write(APIC_ESR, 0);
864 		apic_read(APIC_ESR);
865 		pr_debug("After apic_write\n");
866 
867 		/*
868 		 * STARTUP IPI
869 		 */
870 
871 		/* Target chip */
872 		/* Boot on the stack */
873 		/* Kick the second */
874 		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
875 			       phys_apicid);
876 
877 		/*
878 		 * Give the other CPU some time to accept the IPI.
879 		 */
880 		if (init_udelay == 0)
881 			udelay(10);
882 		else
883 			udelay(300);
884 
885 		pr_debug("Startup point 1\n");
886 
887 		pr_debug("Waiting for send to finish...\n");
888 		send_status = safe_apic_wait_icr_idle();
889 
890 		/*
891 		 * Give the other CPU some time to accept the IPI.
892 		 */
893 		if (init_udelay == 0)
894 			udelay(10);
895 		else
896 			udelay(200);
897 
898 		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
899 			apic_write(APIC_ESR, 0);
900 		accept_status = (apic_read(APIC_ESR) & 0xEF);
901 		if (send_status || accept_status)
902 			break;
903 	}
904 	pr_debug("After Startup\n");
905 
906 	if (send_status)
907 		pr_err("APIC never delivered???\n");
908 	if (accept_status)
909 		pr_err("APIC delivery error (%lx)\n", accept_status);
910 
911 	return (send_status | accept_status);
912 }
913 
914 /* reduce the number of lines printed when booting a large cpu count system */
announce_cpu(int cpu,int apicid)915 static void announce_cpu(int cpu, int apicid)
916 {
917 	static int current_node = NUMA_NO_NODE;
918 	int node = early_cpu_to_node(cpu);
919 	static int width, node_width;
920 
921 	if (!width)
922 		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
923 
924 	if (!node_width)
925 		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
926 
927 	if (cpu == 1)
928 		printk(KERN_INFO "x86: Booting SMP configuration:\n");
929 
930 	if (system_state < SYSTEM_RUNNING) {
931 		if (node != current_node) {
932 			if (current_node > (-1))
933 				pr_cont("\n");
934 			current_node = node;
935 
936 			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
937 			       node_width - num_digits(node), " ", node);
938 		}
939 
940 		/* Add padding for the BSP */
941 		if (cpu == 1)
942 			pr_cont("%*s", width + 1, " ");
943 
944 		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
945 
946 	} else
947 		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
948 			node, cpu, apicid);
949 }
950 
wakeup_cpu0_nmi(unsigned int cmd,struct pt_regs * regs)951 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
952 {
953 	int cpu;
954 
955 	cpu = smp_processor_id();
956 	if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
957 		return NMI_HANDLED;
958 
959 	return NMI_DONE;
960 }
961 
962 /*
963  * Wake up AP by INIT, INIT, STARTUP sequence.
964  *
965  * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
966  * boot-strap code which is not a desired behavior for waking up BSP. To
967  * void the boot-strap code, wake up CPU0 by NMI instead.
968  *
969  * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
970  * (i.e. physically hot removed and then hot added), NMI won't wake it up.
971  * We'll change this code in the future to wake up hard offlined CPU0 if
972  * real platform and request are available.
973  */
974 static int
wakeup_cpu_via_init_nmi(int cpu,unsigned long start_ip,int apicid,int * cpu0_nmi_registered)975 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
976 	       int *cpu0_nmi_registered)
977 {
978 	int id;
979 	int boot_error;
980 
981 	preempt_disable();
982 
983 	/*
984 	 * Wake up AP by INIT, INIT, STARTUP sequence.
985 	 */
986 	if (cpu) {
987 		boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
988 		goto out;
989 	}
990 
991 	/*
992 	 * Wake up BSP by nmi.
993 	 *
994 	 * Register a NMI handler to help wake up CPU0.
995 	 */
996 	boot_error = register_nmi_handler(NMI_LOCAL,
997 					  wakeup_cpu0_nmi, 0, "wake_cpu0");
998 
999 	if (!boot_error) {
1000 		enable_start_cpu0 = 1;
1001 		*cpu0_nmi_registered = 1;
1002 		if (apic->dest_logical == APIC_DEST_LOGICAL)
1003 			id = cpu0_logical_apicid;
1004 		else
1005 			id = apicid;
1006 		boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
1007 	}
1008 
1009 out:
1010 	preempt_enable();
1011 
1012 	return boot_error;
1013 }
1014 
common_cpu_up(unsigned int cpu,struct task_struct * idle)1015 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1016 {
1017 	int ret;
1018 
1019 	/* Just in case we booted with a single CPU. */
1020 	alternatives_enable_smp();
1021 
1022 	per_cpu(current_task, cpu) = idle;
1023 
1024 	/* Initialize the interrupt stack(s) */
1025 	ret = irq_init_percpu_irqstack(cpu);
1026 	if (ret)
1027 		return ret;
1028 
1029 #ifdef CONFIG_X86_32
1030 	/* Stack for startup_32 can be just as for start_secondary onwards */
1031 	per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1032 #else
1033 	initial_gs = per_cpu_offset(cpu);
1034 #endif
1035 	return 0;
1036 }
1037 
1038 /*
1039  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1040  * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1041  * Returns zero if CPU booted OK, else error code from
1042  * ->wakeup_secondary_cpu.
1043  */
do_boot_cpu(int apicid,int cpu,struct task_struct * idle,int * cpu0_nmi_registered)1044 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1045 		       int *cpu0_nmi_registered)
1046 {
1047 	/* start_ip had better be page-aligned! */
1048 	unsigned long start_ip = real_mode_header->trampoline_start;
1049 
1050 	unsigned long boot_error = 0;
1051 	unsigned long timeout;
1052 
1053 	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1054 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1055 	initial_code = (unsigned long)start_secondary;
1056 	initial_stack  = idle->thread.sp;
1057 
1058 	/* Enable the espfix hack for this CPU */
1059 	init_espfix_ap(cpu);
1060 
1061 	/* So we see what's up */
1062 	announce_cpu(cpu, apicid);
1063 
1064 	/*
1065 	 * This grunge runs the startup process for
1066 	 * the targeted processor.
1067 	 */
1068 
1069 	if (x86_platform.legacy.warm_reset) {
1070 
1071 		pr_debug("Setting warm reset code and vector.\n");
1072 
1073 		smpboot_setup_warm_reset_vector(start_ip);
1074 		/*
1075 		 * Be paranoid about clearing APIC errors.
1076 		*/
1077 		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1078 			apic_write(APIC_ESR, 0);
1079 			apic_read(APIC_ESR);
1080 		}
1081 	}
1082 
1083 	/*
1084 	 * AP might wait on cpu_callout_mask in cpu_init() with
1085 	 * cpu_initialized_mask set if previous attempt to online
1086 	 * it timed-out. Clear cpu_initialized_mask so that after
1087 	 * INIT/SIPI it could start with a clean state.
1088 	 */
1089 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1090 	smp_mb();
1091 
1092 	/*
1093 	 * Wake up a CPU in difference cases:
1094 	 * - Use the method in the APIC driver if it's defined
1095 	 * Otherwise,
1096 	 * - Use an INIT boot APIC message for APs or NMI for BSP.
1097 	 */
1098 	if (apic->wakeup_secondary_cpu)
1099 		boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1100 	else
1101 		boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1102 						     cpu0_nmi_registered);
1103 
1104 	if (!boot_error) {
1105 		/*
1106 		 * Wait 10s total for first sign of life from AP
1107 		 */
1108 		boot_error = -1;
1109 		timeout = jiffies + 10*HZ;
1110 		while (time_before(jiffies, timeout)) {
1111 			if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1112 				/*
1113 				 * Tell AP to proceed with initialization
1114 				 */
1115 				cpumask_set_cpu(cpu, cpu_callout_mask);
1116 				boot_error = 0;
1117 				break;
1118 			}
1119 			schedule();
1120 		}
1121 	}
1122 
1123 	if (!boot_error) {
1124 		/*
1125 		 * Wait till AP completes initial initialization
1126 		 */
1127 		while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1128 			/*
1129 			 * Allow other tasks to run while we wait for the
1130 			 * AP to come online. This also gives a chance
1131 			 * for the MTRR work(triggered by the AP coming online)
1132 			 * to be completed in the stop machine context.
1133 			 */
1134 			schedule();
1135 		}
1136 	}
1137 
1138 	if (x86_platform.legacy.warm_reset) {
1139 		/*
1140 		 * Cleanup possible dangling ends...
1141 		 */
1142 		smpboot_restore_warm_reset_vector();
1143 	}
1144 
1145 	return boot_error;
1146 }
1147 
native_cpu_up(unsigned int cpu,struct task_struct * tidle)1148 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1149 {
1150 	int apicid = apic->cpu_present_to_apicid(cpu);
1151 	int cpu0_nmi_registered = 0;
1152 	unsigned long flags;
1153 	int err, ret = 0;
1154 
1155 	lockdep_assert_irqs_enabled();
1156 
1157 	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1158 
1159 	if (apicid == BAD_APICID ||
1160 	    !physid_isset(apicid, phys_cpu_present_map) ||
1161 	    !apic->apic_id_valid(apicid)) {
1162 		pr_err("%s: bad cpu %d\n", __func__, cpu);
1163 		return -EINVAL;
1164 	}
1165 
1166 	/*
1167 	 * Already booted CPU?
1168 	 */
1169 	if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1170 		pr_debug("do_boot_cpu %d Already started\n", cpu);
1171 		return -ENOSYS;
1172 	}
1173 
1174 	/*
1175 	 * Save current MTRR state in case it was changed since early boot
1176 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1177 	 */
1178 	mtrr_save_state();
1179 
1180 	/* x86 CPUs take themselves offline, so delayed offline is OK. */
1181 	err = cpu_check_up_prepare(cpu);
1182 	if (err && err != -EBUSY)
1183 		return err;
1184 
1185 	/* the FPU context is blank, nobody can own it */
1186 	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1187 
1188 	err = common_cpu_up(cpu, tidle);
1189 	if (err)
1190 		return err;
1191 
1192 	err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1193 	if (err) {
1194 		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1195 		ret = -EIO;
1196 		goto unreg_nmi;
1197 	}
1198 
1199 	/*
1200 	 * Check TSC synchronization with the AP (keep irqs disabled
1201 	 * while doing so):
1202 	 */
1203 	local_irq_save(flags);
1204 	check_tsc_sync_source(cpu);
1205 	local_irq_restore(flags);
1206 
1207 	while (!cpu_online(cpu)) {
1208 		cpu_relax();
1209 		touch_nmi_watchdog();
1210 	}
1211 
1212 unreg_nmi:
1213 	/*
1214 	 * Clean up the nmi handler. Do this after the callin and callout sync
1215 	 * to avoid impact of possible long unregister time.
1216 	 */
1217 	if (cpu0_nmi_registered)
1218 		unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1219 
1220 	return ret;
1221 }
1222 
1223 /**
1224  * arch_disable_smp_support() - disables SMP support for x86 at runtime
1225  */
arch_disable_smp_support(void)1226 void arch_disable_smp_support(void)
1227 {
1228 	disable_ioapic_support();
1229 }
1230 
1231 /*
1232  * Fall back to non SMP mode after errors.
1233  *
1234  * RED-PEN audit/test this more. I bet there is more state messed up here.
1235  */
disable_smp(void)1236 static __init void disable_smp(void)
1237 {
1238 	pr_info("SMP disabled\n");
1239 
1240 	disable_ioapic_support();
1241 
1242 	init_cpu_present(cpumask_of(0));
1243 	init_cpu_possible(cpumask_of(0));
1244 
1245 	if (smp_found_config)
1246 		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1247 	else
1248 		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1249 	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1250 	cpumask_set_cpu(0, topology_core_cpumask(0));
1251 	cpumask_set_cpu(0, topology_die_cpumask(0));
1252 }
1253 
1254 /*
1255  * Various sanity checks.
1256  */
smp_sanity_check(void)1257 static void __init smp_sanity_check(void)
1258 {
1259 	preempt_disable();
1260 
1261 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1262 	if (def_to_bigsmp && nr_cpu_ids > 8) {
1263 		unsigned int cpu;
1264 		unsigned nr;
1265 
1266 		pr_warn("More than 8 CPUs detected - skipping them\n"
1267 			"Use CONFIG_X86_BIGSMP\n");
1268 
1269 		nr = 0;
1270 		for_each_present_cpu(cpu) {
1271 			if (nr >= 8)
1272 				set_cpu_present(cpu, false);
1273 			nr++;
1274 		}
1275 
1276 		nr = 0;
1277 		for_each_possible_cpu(cpu) {
1278 			if (nr >= 8)
1279 				set_cpu_possible(cpu, false);
1280 			nr++;
1281 		}
1282 
1283 		nr_cpu_ids = 8;
1284 	}
1285 #endif
1286 
1287 	if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1288 		pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1289 			hard_smp_processor_id());
1290 
1291 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1292 	}
1293 
1294 	/*
1295 	 * Should not be necessary because the MP table should list the boot
1296 	 * CPU too, but we do it for the sake of robustness anyway.
1297 	 */
1298 	if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1299 		pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1300 			  boot_cpu_physical_apicid);
1301 		physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1302 	}
1303 	preempt_enable();
1304 }
1305 
smp_cpu_index_default(void)1306 static void __init smp_cpu_index_default(void)
1307 {
1308 	int i;
1309 	struct cpuinfo_x86 *c;
1310 
1311 	for_each_possible_cpu(i) {
1312 		c = &cpu_data(i);
1313 		/* mark all to hotplug */
1314 		c->cpu_index = nr_cpu_ids;
1315 	}
1316 }
1317 
smp_get_logical_apicid(void)1318 static void __init smp_get_logical_apicid(void)
1319 {
1320 	if (x2apic_mode)
1321 		cpu0_logical_apicid = apic_read(APIC_LDR);
1322 	else
1323 		cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1324 }
1325 
1326 /*
1327  * Prepare for SMP bootup.
1328  * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1329  *            for common interface support.
1330  */
native_smp_prepare_cpus(unsigned int max_cpus)1331 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1332 {
1333 	unsigned int i;
1334 
1335 	smp_cpu_index_default();
1336 
1337 	/*
1338 	 * Setup boot CPU information
1339 	 */
1340 	smp_store_boot_cpu_info(); /* Final full version of the data */
1341 	cpumask_copy(cpu_callin_mask, cpumask_of(0));
1342 	mb();
1343 
1344 	for_each_possible_cpu(i) {
1345 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1346 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1347 		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1348 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1349 	}
1350 
1351 	/*
1352 	 * Set 'default' x86 topology, this matches default_topology() in that
1353 	 * it has NUMA nodes as a topology level. See also
1354 	 * native_smp_cpus_done().
1355 	 *
1356 	 * Must be done before set_cpus_sibling_map() is ran.
1357 	 */
1358 	set_sched_topology(x86_topology);
1359 
1360 	set_cpu_sibling_map(0);
1361 
1362 	smp_sanity_check();
1363 
1364 	switch (apic_intr_mode) {
1365 	case APIC_PIC:
1366 	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1367 		disable_smp();
1368 		return;
1369 	case APIC_SYMMETRIC_IO_NO_ROUTING:
1370 		disable_smp();
1371 		/* Setup local timer */
1372 		x86_init.timers.setup_percpu_clockev();
1373 		return;
1374 	case APIC_VIRTUAL_WIRE:
1375 	case APIC_SYMMETRIC_IO:
1376 		break;
1377 	}
1378 
1379 	/* Setup local timer */
1380 	x86_init.timers.setup_percpu_clockev();
1381 
1382 	smp_get_logical_apicid();
1383 
1384 	pr_info("CPU0: ");
1385 	print_cpu_info(&cpu_data(0));
1386 
1387 	uv_system_init();
1388 
1389 	set_mtrr_aps_delayed_init();
1390 
1391 	smp_quirk_init_udelay();
1392 
1393 	speculative_store_bypass_ht_init();
1394 }
1395 
arch_enable_nonboot_cpus_begin(void)1396 void arch_enable_nonboot_cpus_begin(void)
1397 {
1398 	set_mtrr_aps_delayed_init();
1399 }
1400 
arch_enable_nonboot_cpus_end(void)1401 void arch_enable_nonboot_cpus_end(void)
1402 {
1403 	mtrr_aps_init();
1404 }
1405 
1406 /*
1407  * Early setup to make printk work.
1408  */
native_smp_prepare_boot_cpu(void)1409 void __init native_smp_prepare_boot_cpu(void)
1410 {
1411 	int me = smp_processor_id();
1412 	switch_to_new_gdt(me);
1413 	/* already set me in cpu_online_mask in boot_cpu_init() */
1414 	cpumask_set_cpu(me, cpu_callout_mask);
1415 	cpu_set_state_online(me);
1416 	native_pv_lock_init();
1417 }
1418 
calculate_max_logical_packages(void)1419 void __init calculate_max_logical_packages(void)
1420 {
1421 	int ncpus;
1422 
1423 	/*
1424 	 * Today neither Intel nor AMD support heterogenous systems so
1425 	 * extrapolate the boot cpu's data to all packages.
1426 	 */
1427 	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1428 	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1429 	pr_info("Max logical packages: %u\n", __max_logical_packages);
1430 }
1431 
native_smp_cpus_done(unsigned int max_cpus)1432 void __init native_smp_cpus_done(unsigned int max_cpus)
1433 {
1434 	pr_debug("Boot done\n");
1435 
1436 	calculate_max_logical_packages();
1437 
1438 	if (x86_has_numa_in_package)
1439 		set_sched_topology(x86_numa_in_package_topology);
1440 
1441 	nmi_selftest();
1442 	impress_friends();
1443 	mtrr_aps_init();
1444 }
1445 
1446 static int __initdata setup_possible_cpus = -1;
_setup_possible_cpus(char * str)1447 static int __init _setup_possible_cpus(char *str)
1448 {
1449 	get_option(&str, &setup_possible_cpus);
1450 	return 0;
1451 }
1452 early_param("possible_cpus", _setup_possible_cpus);
1453 
1454 
1455 /*
1456  * cpu_possible_mask should be static, it cannot change as cpu's
1457  * are onlined, or offlined. The reason is per-cpu data-structures
1458  * are allocated by some modules at init time, and dont expect to
1459  * do this dynamically on cpu arrival/departure.
1460  * cpu_present_mask on the other hand can change dynamically.
1461  * In case when cpu_hotplug is not compiled, then we resort to current
1462  * behaviour, which is cpu_possible == cpu_present.
1463  * - Ashok Raj
1464  *
1465  * Three ways to find out the number of additional hotplug CPUs:
1466  * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1467  * - The user can overwrite it with possible_cpus=NUM
1468  * - Otherwise don't reserve additional CPUs.
1469  * We do this because additional CPUs waste a lot of memory.
1470  * -AK
1471  */
prefill_possible_map(void)1472 __init void prefill_possible_map(void)
1473 {
1474 	int i, possible;
1475 
1476 	/* No boot processor was found in mptable or ACPI MADT */
1477 	if (!num_processors) {
1478 		if (boot_cpu_has(X86_FEATURE_APIC)) {
1479 			int apicid = boot_cpu_physical_apicid;
1480 			int cpu = hard_smp_processor_id();
1481 
1482 			pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1483 
1484 			/* Make sure boot cpu is enumerated */
1485 			if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1486 			    apic->apic_id_valid(apicid))
1487 				generic_processor_info(apicid, boot_cpu_apic_version);
1488 		}
1489 
1490 		if (!num_processors)
1491 			num_processors = 1;
1492 	}
1493 
1494 	i = setup_max_cpus ?: 1;
1495 	if (setup_possible_cpus == -1) {
1496 		possible = num_processors;
1497 #ifdef CONFIG_HOTPLUG_CPU
1498 		if (setup_max_cpus)
1499 			possible += disabled_cpus;
1500 #else
1501 		if (possible > i)
1502 			possible = i;
1503 #endif
1504 	} else
1505 		possible = setup_possible_cpus;
1506 
1507 	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1508 
1509 	/* nr_cpu_ids could be reduced via nr_cpus= */
1510 	if (possible > nr_cpu_ids) {
1511 		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1512 			possible, nr_cpu_ids);
1513 		possible = nr_cpu_ids;
1514 	}
1515 
1516 #ifdef CONFIG_HOTPLUG_CPU
1517 	if (!setup_max_cpus)
1518 #endif
1519 	if (possible > i) {
1520 		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1521 			possible, setup_max_cpus);
1522 		possible = i;
1523 	}
1524 
1525 	nr_cpu_ids = possible;
1526 
1527 	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1528 		possible, max_t(int, possible - num_processors, 0));
1529 
1530 	reset_cpu_possible_mask();
1531 
1532 	for (i = 0; i < possible; i++)
1533 		set_cpu_possible(i, true);
1534 }
1535 
1536 #ifdef CONFIG_HOTPLUG_CPU
1537 
1538 /* Recompute SMT state for all CPUs on offline */
recompute_smt_state(void)1539 static void recompute_smt_state(void)
1540 {
1541 	int max_threads, cpu;
1542 
1543 	max_threads = 0;
1544 	for_each_online_cpu (cpu) {
1545 		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1546 
1547 		if (threads > max_threads)
1548 			max_threads = threads;
1549 	}
1550 	__max_smt_threads = max_threads;
1551 }
1552 
remove_siblinginfo(int cpu)1553 static void remove_siblinginfo(int cpu)
1554 {
1555 	int sibling;
1556 	struct cpuinfo_x86 *c = &cpu_data(cpu);
1557 
1558 	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1559 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1560 		/*/
1561 		 * last thread sibling in this cpu core going down
1562 		 */
1563 		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1564 			cpu_data(sibling).booted_cores--;
1565 	}
1566 
1567 	for_each_cpu(sibling, topology_die_cpumask(cpu))
1568 		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1569 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
1570 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1571 	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1572 		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1573 	cpumask_clear(cpu_llc_shared_mask(cpu));
1574 	cpumask_clear(topology_sibling_cpumask(cpu));
1575 	cpumask_clear(topology_core_cpumask(cpu));
1576 	cpumask_clear(topology_die_cpumask(cpu));
1577 	c->cpu_core_id = 0;
1578 	c->booted_cores = 0;
1579 	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1580 	recompute_smt_state();
1581 }
1582 
remove_cpu_from_maps(int cpu)1583 static void remove_cpu_from_maps(int cpu)
1584 {
1585 	set_cpu_online(cpu, false);
1586 	cpumask_clear_cpu(cpu, cpu_callout_mask);
1587 	cpumask_clear_cpu(cpu, cpu_callin_mask);
1588 	/* was set by cpu_init() */
1589 	cpumask_clear_cpu(cpu, cpu_initialized_mask);
1590 	numa_remove_cpu(cpu);
1591 }
1592 
cpu_disable_common(void)1593 void cpu_disable_common(void)
1594 {
1595 	int cpu = smp_processor_id();
1596 
1597 	remove_siblinginfo(cpu);
1598 
1599 	/* It's now safe to remove this processor from the online map */
1600 	lock_vector_lock();
1601 	remove_cpu_from_maps(cpu);
1602 	unlock_vector_lock();
1603 	fixup_irqs();
1604 	lapic_offline();
1605 }
1606 
native_cpu_disable(void)1607 int native_cpu_disable(void)
1608 {
1609 	int ret;
1610 
1611 	ret = lapic_can_unplug_cpu();
1612 	if (ret)
1613 		return ret;
1614 
1615 	cpu_disable_common();
1616 
1617         /*
1618          * Disable the local APIC. Otherwise IPI broadcasts will reach
1619          * it. It still responds normally to INIT, NMI, SMI, and SIPI
1620          * messages.
1621          *
1622          * Disabling the APIC must happen after cpu_disable_common()
1623          * which invokes fixup_irqs().
1624          *
1625          * Disabling the APIC preserves already set bits in IRR, but
1626          * an interrupt arriving after disabling the local APIC does not
1627          * set the corresponding IRR bit.
1628          *
1629          * fixup_irqs() scans IRR for set bits so it can raise a not
1630          * yet handled interrupt on the new destination CPU via an IPI
1631          * but obviously it can't do so for IRR bits which are not set.
1632          * IOW, interrupts arriving after disabling the local APIC will
1633          * be lost.
1634          */
1635 	apic_soft_disable();
1636 
1637 	return 0;
1638 }
1639 
common_cpu_die(unsigned int cpu)1640 int common_cpu_die(unsigned int cpu)
1641 {
1642 	int ret = 0;
1643 
1644 	/* We don't do anything here: idle task is faking death itself. */
1645 
1646 	/* They ack this in play_dead() by setting CPU_DEAD */
1647 	if (cpu_wait_death(cpu, 5)) {
1648 		if (system_state == SYSTEM_RUNNING)
1649 			pr_info("CPU %u is now offline\n", cpu);
1650 	} else {
1651 		pr_err("CPU %u didn't die...\n", cpu);
1652 		ret = -1;
1653 	}
1654 
1655 	return ret;
1656 }
1657 
native_cpu_die(unsigned int cpu)1658 void native_cpu_die(unsigned int cpu)
1659 {
1660 	common_cpu_die(cpu);
1661 }
1662 
play_dead_common(void)1663 void play_dead_common(void)
1664 {
1665 	idle_task_exit();
1666 
1667 	/* Ack it */
1668 	(void)cpu_report_death();
1669 
1670 	/*
1671 	 * With physical CPU hotplug, we should halt the cpu
1672 	 */
1673 	local_irq_disable();
1674 }
1675 
wakeup_cpu0(void)1676 static bool wakeup_cpu0(void)
1677 {
1678 	if (smp_processor_id() == 0 && enable_start_cpu0)
1679 		return true;
1680 
1681 	return false;
1682 }
1683 
1684 /*
1685  * We need to flush the caches before going to sleep, lest we have
1686  * dirty data in our caches when we come back up.
1687  */
mwait_play_dead(void)1688 static inline void mwait_play_dead(void)
1689 {
1690 	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1691 	unsigned int eax, ebx, ecx, edx;
1692 	unsigned int highest_cstate = 0;
1693 	unsigned int highest_subcstate = 0;
1694 	int i;
1695 
1696 	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1697 	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1698 		return;
1699 	if (!this_cpu_has(X86_FEATURE_MWAIT))
1700 		return;
1701 	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1702 		return;
1703 	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1704 		return;
1705 
1706 	eax = CPUID_MWAIT_LEAF;
1707 	ecx = 0;
1708 	native_cpuid(&eax, &ebx, &ecx, &edx);
1709 
1710 	/*
1711 	 * eax will be 0 if EDX enumeration is not valid.
1712 	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1713 	 */
1714 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1715 		eax = 0;
1716 	} else {
1717 		edx >>= MWAIT_SUBSTATE_SIZE;
1718 		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1719 			if (edx & MWAIT_SUBSTATE_MASK) {
1720 				highest_cstate = i;
1721 				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1722 			}
1723 		}
1724 		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1725 			(highest_subcstate - 1);
1726 	}
1727 
1728 	wbinvd();
1729 
1730 	while (1) {
1731 		/*
1732 		 * The CLFLUSH is a workaround for erratum AAI65 for
1733 		 * the Xeon 7400 series.  It's not clear it is actually
1734 		 * needed, but it should be harmless in either case.
1735 		 * The WBINVD is insufficient due to the spurious-wakeup
1736 		 * case where we return around the loop.
1737 		 */
1738 		mb();
1739 		clflush(md);
1740 		mb();
1741 		__monitor(md, 0, 0);
1742 		mb();
1743 		__mwait(eax, 0);
1744 		/*
1745 		 * If NMI wants to wake up CPU0, start CPU0.
1746 		 */
1747 		if (wakeup_cpu0())
1748 			start_cpu0();
1749 	}
1750 }
1751 
hlt_play_dead(void)1752 void hlt_play_dead(void)
1753 {
1754 	if (__this_cpu_read(cpu_info.x86) >= 4)
1755 		wbinvd();
1756 
1757 	while (1) {
1758 		native_halt();
1759 		/*
1760 		 * If NMI wants to wake up CPU0, start CPU0.
1761 		 */
1762 		if (wakeup_cpu0())
1763 			start_cpu0();
1764 	}
1765 }
1766 
native_play_dead(void)1767 void native_play_dead(void)
1768 {
1769 	play_dead_common();
1770 	tboot_shutdown(TB_SHUTDOWN_WFS);
1771 
1772 	mwait_play_dead();	/* Only returns on failure */
1773 	if (cpuidle_play_dead())
1774 		hlt_play_dead();
1775 }
1776 
1777 #else /* ... !CONFIG_HOTPLUG_CPU */
native_cpu_disable(void)1778 int native_cpu_disable(void)
1779 {
1780 	return -ENOSYS;
1781 }
1782 
native_cpu_die(unsigned int cpu)1783 void native_cpu_die(unsigned int cpu)
1784 {
1785 	/* We said "no" in __cpu_disable */
1786 	BUG();
1787 }
1788 
native_play_dead(void)1789 void native_play_dead(void)
1790 {
1791 	BUG();
1792 }
1793 
1794 #endif
1795