1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Syncookies implementation for the Linux kernel
4 *
5 * Copyright (C) 1997 Andi Kleen
6 * Based on ideas by D.J.Bernstein and Eric Schenk.
7 */
8
9 #include <linux/tcp.h>
10 #include <linux/slab.h>
11 #include <linux/random.h>
12 #include <linux/siphash.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <net/secure_seq.h>
16 #include <net/tcp.h>
17 #include <net/route.h>
18
19 static siphash_key_t syncookie_secret[2] __read_mostly;
20
21 #define COOKIEBITS 24 /* Upper bits store count */
22 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
23
24 /* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
25 * stores TCP options:
26 *
27 * MSB LSB
28 * | 31 ... 6 | 5 | 4 | 3 2 1 0 |
29 * | Timestamp | ECN | SACK | WScale |
30 *
31 * When we receive a valid cookie-ACK, we look at the echoed tsval (if
32 * any) to figure out which TCP options we should use for the rebuilt
33 * connection.
34 *
35 * A WScale setting of '0xf' (which is an invalid scaling value)
36 * means that original syn did not include the TCP window scaling option.
37 */
38 #define TS_OPT_WSCALE_MASK 0xf
39 #define TS_OPT_SACK BIT(4)
40 #define TS_OPT_ECN BIT(5)
41 /* There is no TS_OPT_TIMESTAMP:
42 * if ACK contains timestamp option, we already know it was
43 * requested/supported by the syn/synack exchange.
44 */
45 #define TSBITS 6
46
cookie_hash(__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,u32 count,int c)47 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
48 u32 count, int c)
49 {
50 net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
51 return siphash_4u32((__force u32)saddr, (__force u32)daddr,
52 (__force u32)sport << 16 | (__force u32)dport,
53 count, &syncookie_secret[c]);
54 }
55
56
57 /*
58 * when syncookies are in effect and tcp timestamps are enabled we encode
59 * tcp options in the lower bits of the timestamp value that will be
60 * sent in the syn-ack.
61 * Since subsequent timestamps use the normal tcp_time_stamp value, we
62 * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
63 */
cookie_init_timestamp(struct request_sock * req,u64 now)64 u64 cookie_init_timestamp(struct request_sock *req, u64 now)
65 {
66 const struct inet_request_sock *ireq = inet_rsk(req);
67 u64 ts, ts_now = tcp_ns_to_ts(now);
68 u32 options = 0;
69
70 options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
71 if (ireq->sack_ok)
72 options |= TS_OPT_SACK;
73 if (ireq->ecn_ok)
74 options |= TS_OPT_ECN;
75
76 ts = (ts_now >> TSBITS) << TSBITS;
77 ts |= options;
78 if (ts > ts_now)
79 ts -= (1UL << TSBITS);
80
81 return ts * (NSEC_PER_SEC / TCP_TS_HZ);
82 }
83
84
secure_tcp_syn_cookie(__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,__u32 sseq,__u32 data)85 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
86 __be16 dport, __u32 sseq, __u32 data)
87 {
88 /*
89 * Compute the secure sequence number.
90 * The output should be:
91 * HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
92 * + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
93 * Where sseq is their sequence number and count increases every
94 * minute by 1.
95 * As an extra hack, we add a small "data" value that encodes the
96 * MSS into the second hash value.
97 */
98 u32 count = tcp_cookie_time();
99 return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
100 sseq + (count << COOKIEBITS) +
101 ((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
102 & COOKIEMASK));
103 }
104
105 /*
106 * This retrieves the small "data" value from the syncookie.
107 * If the syncookie is bad, the data returned will be out of
108 * range. This must be checked by the caller.
109 *
110 * The count value used to generate the cookie must be less than
111 * MAX_SYNCOOKIE_AGE minutes in the past.
112 * The return value (__u32)-1 if this test fails.
113 */
check_tcp_syn_cookie(__u32 cookie,__be32 saddr,__be32 daddr,__be16 sport,__be16 dport,__u32 sseq)114 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
115 __be16 sport, __be16 dport, __u32 sseq)
116 {
117 u32 diff, count = tcp_cookie_time();
118
119 /* Strip away the layers from the cookie */
120 cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
121
122 /* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
123 diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
124 if (diff >= MAX_SYNCOOKIE_AGE)
125 return (__u32)-1;
126
127 return (cookie -
128 cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
129 & COOKIEMASK; /* Leaving the data behind */
130 }
131
132 /*
133 * MSS Values are chosen based on the 2011 paper
134 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
135 * Values ..
136 * .. lower than 536 are rare (< 0.2%)
137 * .. between 537 and 1299 account for less than < 1.5% of observed values
138 * .. in the 1300-1349 range account for about 15 to 20% of observed mss values
139 * .. exceeding 1460 are very rare (< 0.04%)
140 *
141 * 1460 is the single most frequently announced mss value (30 to 46% depending
142 * on monitor location). Table must be sorted.
143 */
144 static __u16 const msstab[] = {
145 536,
146 1300,
147 1440, /* 1440, 1452: PPPoE */
148 1460,
149 };
150
151 /*
152 * Generate a syncookie. mssp points to the mss, which is returned
153 * rounded down to the value encoded in the cookie.
154 */
__cookie_v4_init_sequence(const struct iphdr * iph,const struct tcphdr * th,u16 * mssp)155 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
156 u16 *mssp)
157 {
158 int mssind;
159 const __u16 mss = *mssp;
160
161 for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
162 if (mss >= msstab[mssind])
163 break;
164 *mssp = msstab[mssind];
165
166 return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
167 th->source, th->dest, ntohl(th->seq),
168 mssind);
169 }
170 EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
171
cookie_v4_init_sequence(const struct sk_buff * skb,__u16 * mssp)172 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
173 {
174 const struct iphdr *iph = ip_hdr(skb);
175 const struct tcphdr *th = tcp_hdr(skb);
176
177 return __cookie_v4_init_sequence(iph, th, mssp);
178 }
179
180 /*
181 * Check if a ack sequence number is a valid syncookie.
182 * Return the decoded mss if it is, or 0 if not.
183 */
__cookie_v4_check(const struct iphdr * iph,const struct tcphdr * th,u32 cookie)184 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
185 u32 cookie)
186 {
187 __u32 seq = ntohl(th->seq) - 1;
188 __u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
189 th->source, th->dest, seq);
190
191 return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
192 }
193 EXPORT_SYMBOL_GPL(__cookie_v4_check);
194
tcp_get_cookie_sock(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct dst_entry * dst,u32 tsoff)195 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
196 struct request_sock *req,
197 struct dst_entry *dst, u32 tsoff)
198 {
199 struct inet_connection_sock *icsk = inet_csk(sk);
200 struct sock *child;
201 bool own_req;
202
203 child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
204 NULL, &own_req);
205 if (child) {
206 refcount_set(&req->rsk_refcnt, 1);
207 tcp_sk(child)->tsoffset = tsoff;
208 sock_rps_save_rxhash(child, skb);
209 if (inet_csk_reqsk_queue_add(sk, req, child))
210 return child;
211
212 bh_unlock_sock(child);
213 sock_put(child);
214 }
215 __reqsk_free(req);
216
217 return NULL;
218 }
219 EXPORT_SYMBOL(tcp_get_cookie_sock);
220
221 /*
222 * when syncookies are in effect and tcp timestamps are enabled we stored
223 * additional tcp options in the timestamp.
224 * This extracts these options from the timestamp echo.
225 *
226 * return false if we decode a tcp option that is disabled
227 * on the host.
228 */
cookie_timestamp_decode(const struct net * net,struct tcp_options_received * tcp_opt)229 bool cookie_timestamp_decode(const struct net *net,
230 struct tcp_options_received *tcp_opt)
231 {
232 /* echoed timestamp, lowest bits contain options */
233 u32 options = tcp_opt->rcv_tsecr;
234
235 if (!tcp_opt->saw_tstamp) {
236 tcp_clear_options(tcp_opt);
237 return true;
238 }
239
240 if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
241 return false;
242
243 tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
244
245 if (tcp_opt->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
246 return false;
247
248 if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
249 return true; /* no window scaling */
250
251 tcp_opt->wscale_ok = 1;
252 tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
253
254 return READ_ONCE(net->ipv4.sysctl_tcp_window_scaling) != 0;
255 }
256 EXPORT_SYMBOL(cookie_timestamp_decode);
257
cookie_ecn_ok(const struct tcp_options_received * tcp_opt,const struct net * net,const struct dst_entry * dst)258 bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
259 const struct net *net, const struct dst_entry *dst)
260 {
261 bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
262
263 if (!ecn_ok)
264 return false;
265
266 if (net->ipv4.sysctl_tcp_ecn)
267 return true;
268
269 return dst_feature(dst, RTAX_FEATURE_ECN);
270 }
271 EXPORT_SYMBOL(cookie_ecn_ok);
272
273 /* On input, sk is a listener.
274 * Output is listener if incoming packet would not create a child
275 * NULL if memory could not be allocated.
276 */
cookie_v4_check(struct sock * sk,struct sk_buff * skb)277 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
278 {
279 struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
280 struct tcp_options_received tcp_opt;
281 struct inet_request_sock *ireq;
282 struct tcp_request_sock *treq;
283 struct tcp_sock *tp = tcp_sk(sk);
284 const struct tcphdr *th = tcp_hdr(skb);
285 __u32 cookie = ntohl(th->ack_seq) - 1;
286 struct sock *ret = sk;
287 struct request_sock *req;
288 int full_space, mss;
289 struct rtable *rt;
290 __u8 rcv_wscale;
291 struct flowi4 fl4;
292 u32 tsoff = 0;
293
294 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) ||
295 !th->ack || th->rst)
296 goto out;
297
298 if (tcp_synq_no_recent_overflow(sk))
299 goto out;
300
301 mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
302 if (mss == 0) {
303 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
304 goto out;
305 }
306
307 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
308
309 /* check for timestamp cookie support */
310 memset(&tcp_opt, 0, sizeof(tcp_opt));
311 tcp_parse_options(sock_net(sk), skb, &tcp_opt, 0, NULL);
312
313 if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
314 tsoff = secure_tcp_ts_off(sock_net(sk),
315 ip_hdr(skb)->daddr,
316 ip_hdr(skb)->saddr);
317 tcp_opt.rcv_tsecr -= tsoff;
318 }
319
320 if (!cookie_timestamp_decode(sock_net(sk), &tcp_opt))
321 goto out;
322
323 ret = NULL;
324 req = inet_reqsk_alloc(&tcp_request_sock_ops, sk, false); /* for safety */
325 if (!req)
326 goto out;
327
328 ireq = inet_rsk(req);
329 treq = tcp_rsk(req);
330 treq->af_specific = &tcp_request_sock_ipv4_ops;
331 treq->rcv_isn = ntohl(th->seq) - 1;
332 treq->snt_isn = cookie;
333 treq->ts_off = 0;
334 treq->txhash = net_tx_rndhash();
335 req->mss = mss;
336 ireq->ir_num = ntohs(th->dest);
337 ireq->ir_rmt_port = th->source;
338 sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
339 sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
340 ireq->ir_mark = inet_request_mark(sk, skb);
341 ireq->snd_wscale = tcp_opt.snd_wscale;
342 ireq->sack_ok = tcp_opt.sack_ok;
343 ireq->wscale_ok = tcp_opt.wscale_ok;
344 ireq->tstamp_ok = tcp_opt.saw_tstamp;
345 req->ts_recent = tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
346 treq->snt_synack = 0;
347 treq->tfo_listener = false;
348 if (IS_ENABLED(CONFIG_SMC))
349 ireq->smc_ok = 0;
350
351 ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
352
353 /* We throwed the options of the initial SYN away, so we hope
354 * the ACK carries the same options again (see RFC1122 4.2.3.8)
355 */
356 RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(sock_net(sk), skb));
357
358 if (security_inet_conn_request(sk, skb, req)) {
359 reqsk_free(req);
360 goto out;
361 }
362
363 req->num_retrans = 0;
364
365 /*
366 * We need to lookup the route here to get at the correct
367 * window size. We should better make sure that the window size
368 * hasn't changed since we received the original syn, but I see
369 * no easy way to do this.
370 */
371 flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
372 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
373 inet_sk_flowi_flags(sk),
374 opt->srr ? opt->faddr : ireq->ir_rmt_addr,
375 ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
376 security_req_classify_flow(req, flowi4_to_flowi(&fl4));
377 rt = ip_route_output_key(sock_net(sk), &fl4);
378 if (IS_ERR(rt)) {
379 reqsk_free(req);
380 goto out;
381 }
382
383 /* Try to redo what tcp_v4_send_synack did. */
384 req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
385 /* limit the window selection if the user enforce a smaller rx buffer */
386 full_space = tcp_full_space(sk);
387 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
388 (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
389 req->rsk_window_clamp = full_space;
390
391 tcp_select_initial_window(sk, full_space, req->mss,
392 &req->rsk_rcv_wnd, &req->rsk_window_clamp,
393 ireq->wscale_ok, &rcv_wscale,
394 dst_metric(&rt->dst, RTAX_INITRWND));
395
396 ireq->rcv_wscale = rcv_wscale;
397 ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
398
399 ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff);
400 /* ip_queue_xmit() depends on our flow being setup
401 * Normal sockets get it right from inet_csk_route_child_sock()
402 */
403 if (ret)
404 inet_sk(ret)->cork.fl.u.ip4 = fl4;
405 out: return ret;
406 }
407