• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
4  *
5  *  PowerPC version
6  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
7  * Copyright (C) 2001 IBM
8  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9  * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
10  *
11  *  Derived from "arch/i386/kernel/signal.c"
12  *    Copyright (C) 1991, 1992 Linus Torvalds
13  *    1997-11-28  Modified for POSIX.1b signals by Richard Henderson
14  */
15 
16 #include <linux/sched.h>
17 #include <linux/mm.h>
18 #include <linux/smp.h>
19 #include <linux/kernel.h>
20 #include <linux/signal.h>
21 #include <linux/errno.h>
22 #include <linux/elf.h>
23 #include <linux/ptrace.h>
24 #include <linux/pagemap.h>
25 #include <linux/ratelimit.h>
26 #include <linux/syscalls.h>
27 #ifdef CONFIG_PPC64
28 #include <linux/compat.h>
29 #else
30 #include <linux/wait.h>
31 #include <linux/unistd.h>
32 #include <linux/stddef.h>
33 #include <linux/tty.h>
34 #include <linux/binfmts.h>
35 #endif
36 
37 #include <linux/uaccess.h>
38 #include <asm/cacheflush.h>
39 #include <asm/syscalls.h>
40 #include <asm/sigcontext.h>
41 #include <asm/vdso.h>
42 #include <asm/switch_to.h>
43 #include <asm/tm.h>
44 #include <asm/asm-prototypes.h>
45 #ifdef CONFIG_PPC64
46 #include "ppc32.h"
47 #include <asm/unistd.h>
48 #else
49 #include <asm/ucontext.h>
50 #include <asm/pgtable.h>
51 #endif
52 
53 #include "signal.h"
54 
55 
56 #ifdef CONFIG_PPC64
57 #define old_sigaction	old_sigaction32
58 #define sigcontext	sigcontext32
59 #define mcontext	mcontext32
60 #define ucontext	ucontext32
61 
62 #define __save_altstack __compat_save_altstack
63 
64 /*
65  * Userspace code may pass a ucontext which doesn't include VSX added
66  * at the end.  We need to check for this case.
67  */
68 #define UCONTEXTSIZEWITHOUTVSX \
69 		(sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
70 
71 /*
72  * Returning 0 means we return to userspace via
73  * ret_from_except and thus restore all user
74  * registers from *regs.  This is what we need
75  * to do when a signal has been delivered.
76  */
77 
78 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
79 #undef __SIGNAL_FRAMESIZE
80 #define __SIGNAL_FRAMESIZE	__SIGNAL_FRAMESIZE32
81 #undef ELF_NVRREG
82 #define ELF_NVRREG	ELF_NVRREG32
83 
84 /*
85  * Functions for flipping sigsets (thanks to brain dead generic
86  * implementation that makes things simple for little endian only)
87  */
put_sigset_t(compat_sigset_t __user * uset,sigset_t * set)88 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
89 {
90 	return put_compat_sigset(uset, set, sizeof(*uset));
91 }
92 
get_sigset_t(sigset_t * set,const compat_sigset_t __user * uset)93 static inline int get_sigset_t(sigset_t *set,
94 			       const compat_sigset_t __user *uset)
95 {
96 	return get_compat_sigset(set, uset);
97 }
98 
99 #define to_user_ptr(p)		ptr_to_compat(p)
100 #define from_user_ptr(p)	compat_ptr(p)
101 
save_general_regs(struct pt_regs * regs,struct mcontext __user * frame)102 static inline int save_general_regs(struct pt_regs *regs,
103 		struct mcontext __user *frame)
104 {
105 	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
106 	int i;
107 	/* Force usr to alway see softe as 1 (interrupts enabled) */
108 	elf_greg_t64 softe = 0x1;
109 
110 	WARN_ON(!FULL_REGS(regs));
111 
112 	for (i = 0; i <= PT_RESULT; i ++) {
113 		if (i == 14 && !FULL_REGS(regs))
114 			i = 32;
115 		if ( i == PT_SOFTE) {
116 			if(__put_user((unsigned int)softe, &frame->mc_gregs[i]))
117 				return -EFAULT;
118 			else
119 				continue;
120 		}
121 		if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
122 			return -EFAULT;
123 	}
124 	return 0;
125 }
126 
restore_general_regs(struct pt_regs * regs,struct mcontext __user * sr)127 static inline int restore_general_regs(struct pt_regs *regs,
128 		struct mcontext __user *sr)
129 {
130 	elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
131 	int i;
132 
133 	for (i = 0; i <= PT_RESULT; i++) {
134 		if ((i == PT_MSR) || (i == PT_SOFTE))
135 			continue;
136 		if (__get_user(gregs[i], &sr->mc_gregs[i]))
137 			return -EFAULT;
138 	}
139 	return 0;
140 }
141 
142 #else /* CONFIG_PPC64 */
143 
144 #define GP_REGS_SIZE	min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
145 
put_sigset_t(sigset_t __user * uset,sigset_t * set)146 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
147 {
148 	return copy_to_user(uset, set, sizeof(*uset));
149 }
150 
get_sigset_t(sigset_t * set,const sigset_t __user * uset)151 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
152 {
153 	return copy_from_user(set, uset, sizeof(*uset));
154 }
155 
156 #define to_user_ptr(p)		((unsigned long)(p))
157 #define from_user_ptr(p)	((void __user *)(p))
158 
save_general_regs(struct pt_regs * regs,struct mcontext __user * frame)159 static inline int save_general_regs(struct pt_regs *regs,
160 		struct mcontext __user *frame)
161 {
162 	WARN_ON(!FULL_REGS(regs));
163 	return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
164 }
165 
restore_general_regs(struct pt_regs * regs,struct mcontext __user * sr)166 static inline int restore_general_regs(struct pt_regs *regs,
167 		struct mcontext __user *sr)
168 {
169 	/* copy up to but not including MSR */
170 	if (__copy_from_user(regs, &sr->mc_gregs,
171 				PT_MSR * sizeof(elf_greg_t)))
172 		return -EFAULT;
173 	/* copy from orig_r3 (the word after the MSR) up to the end */
174 	if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
175 				GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
176 		return -EFAULT;
177 	return 0;
178 }
179 #endif
180 
181 /*
182  * When we have signals to deliver, we set up on the
183  * user stack, going down from the original stack pointer:
184  *	an ABI gap of 56 words
185  *	an mcontext struct
186  *	a sigcontext struct
187  *	a gap of __SIGNAL_FRAMESIZE bytes
188  *
189  * Each of these things must be a multiple of 16 bytes in size. The following
190  * structure represent all of this except the __SIGNAL_FRAMESIZE gap
191  *
192  */
193 struct sigframe {
194 	struct sigcontext sctx;		/* the sigcontext */
195 	struct mcontext	mctx;		/* all the register values */
196 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
197 	struct sigcontext sctx_transact;
198 	struct mcontext	mctx_transact;
199 #endif
200 	/*
201 	 * Programs using the rs6000/xcoff abi can save up to 19 gp
202 	 * regs and 18 fp regs below sp before decrementing it.
203 	 */
204 	int			abigap[56];
205 };
206 
207 /* We use the mc_pad field for the signal return trampoline. */
208 #define tramp	mc_pad
209 
210 /*
211  *  When we have rt signals to deliver, we set up on the
212  *  user stack, going down from the original stack pointer:
213  *	one rt_sigframe struct (siginfo + ucontext + ABI gap)
214  *	a gap of __SIGNAL_FRAMESIZE+16 bytes
215  *  (the +16 is to get the siginfo and ucontext in the same
216  *  positions as in older kernels).
217  *
218  *  Each of these things must be a multiple of 16 bytes in size.
219  *
220  */
221 struct rt_sigframe {
222 #ifdef CONFIG_PPC64
223 	compat_siginfo_t info;
224 #else
225 	struct siginfo info;
226 #endif
227 	struct ucontext	uc;
228 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
229 	struct ucontext	uc_transact;
230 #endif
231 	/*
232 	 * Programs using the rs6000/xcoff abi can save up to 19 gp
233 	 * regs and 18 fp regs below sp before decrementing it.
234 	 */
235 	int			abigap[56];
236 };
237 
238 #ifdef CONFIG_VSX
copy_fpr_to_user(void __user * to,struct task_struct * task)239 unsigned long copy_fpr_to_user(void __user *to,
240 			       struct task_struct *task)
241 {
242 	u64 buf[ELF_NFPREG];
243 	int i;
244 
245 	/* save FPR copy to local buffer then write to the thread_struct */
246 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
247 		buf[i] = task->thread.TS_FPR(i);
248 	buf[i] = task->thread.fp_state.fpscr;
249 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
250 }
251 
copy_fpr_from_user(struct task_struct * task,void __user * from)252 unsigned long copy_fpr_from_user(struct task_struct *task,
253 				 void __user *from)
254 {
255 	u64 buf[ELF_NFPREG];
256 	int i;
257 
258 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
259 		return 1;
260 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
261 		task->thread.TS_FPR(i) = buf[i];
262 	task->thread.fp_state.fpscr = buf[i];
263 
264 	return 0;
265 }
266 
copy_vsx_to_user(void __user * to,struct task_struct * task)267 unsigned long copy_vsx_to_user(void __user *to,
268 			       struct task_struct *task)
269 {
270 	u64 buf[ELF_NVSRHALFREG];
271 	int i;
272 
273 	/* save FPR copy to local buffer then write to the thread_struct */
274 	for (i = 0; i < ELF_NVSRHALFREG; i++)
275 		buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
276 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
277 }
278 
copy_vsx_from_user(struct task_struct * task,void __user * from)279 unsigned long copy_vsx_from_user(struct task_struct *task,
280 				 void __user *from)
281 {
282 	u64 buf[ELF_NVSRHALFREG];
283 	int i;
284 
285 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
286 		return 1;
287 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
288 		task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
289 	return 0;
290 }
291 
292 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
copy_ckfpr_to_user(void __user * to,struct task_struct * task)293 unsigned long copy_ckfpr_to_user(void __user *to,
294 				  struct task_struct *task)
295 {
296 	u64 buf[ELF_NFPREG];
297 	int i;
298 
299 	/* save FPR copy to local buffer then write to the thread_struct */
300 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
301 		buf[i] = task->thread.TS_CKFPR(i);
302 	buf[i] = task->thread.ckfp_state.fpscr;
303 	return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
304 }
305 
copy_ckfpr_from_user(struct task_struct * task,void __user * from)306 unsigned long copy_ckfpr_from_user(struct task_struct *task,
307 					  void __user *from)
308 {
309 	u64 buf[ELF_NFPREG];
310 	int i;
311 
312 	if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
313 		return 1;
314 	for (i = 0; i < (ELF_NFPREG - 1) ; i++)
315 		task->thread.TS_CKFPR(i) = buf[i];
316 	task->thread.ckfp_state.fpscr = buf[i];
317 
318 	return 0;
319 }
320 
copy_ckvsx_to_user(void __user * to,struct task_struct * task)321 unsigned long copy_ckvsx_to_user(void __user *to,
322 				  struct task_struct *task)
323 {
324 	u64 buf[ELF_NVSRHALFREG];
325 	int i;
326 
327 	/* save FPR copy to local buffer then write to the thread_struct */
328 	for (i = 0; i < ELF_NVSRHALFREG; i++)
329 		buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
330 	return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
331 }
332 
copy_ckvsx_from_user(struct task_struct * task,void __user * from)333 unsigned long copy_ckvsx_from_user(struct task_struct *task,
334 					  void __user *from)
335 {
336 	u64 buf[ELF_NVSRHALFREG];
337 	int i;
338 
339 	if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
340 		return 1;
341 	for (i = 0; i < ELF_NVSRHALFREG ; i++)
342 		task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
343 	return 0;
344 }
345 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
346 #else
copy_fpr_to_user(void __user * to,struct task_struct * task)347 inline unsigned long copy_fpr_to_user(void __user *to,
348 				      struct task_struct *task)
349 {
350 	return __copy_to_user(to, task->thread.fp_state.fpr,
351 			      ELF_NFPREG * sizeof(double));
352 }
353 
copy_fpr_from_user(struct task_struct * task,void __user * from)354 inline unsigned long copy_fpr_from_user(struct task_struct *task,
355 					void __user *from)
356 {
357 	return __copy_from_user(task->thread.fp_state.fpr, from,
358 			      ELF_NFPREG * sizeof(double));
359 }
360 
361 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
copy_ckfpr_to_user(void __user * to,struct task_struct * task)362 inline unsigned long copy_ckfpr_to_user(void __user *to,
363 					 struct task_struct *task)
364 {
365 	return __copy_to_user(to, task->thread.ckfp_state.fpr,
366 			      ELF_NFPREG * sizeof(double));
367 }
368 
copy_ckfpr_from_user(struct task_struct * task,void __user * from)369 inline unsigned long copy_ckfpr_from_user(struct task_struct *task,
370 						 void __user *from)
371 {
372 	return __copy_from_user(task->thread.ckfp_state.fpr, from,
373 				ELF_NFPREG * sizeof(double));
374 }
375 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
376 #endif
377 
378 /*
379  * Save the current user registers on the user stack.
380  * We only save the altivec/spe registers if the process has used
381  * altivec/spe instructions at some point.
382  */
save_user_regs(struct pt_regs * regs,struct mcontext __user * frame,struct mcontext __user * tm_frame,int sigret,int ctx_has_vsx_region)383 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
384 			  struct mcontext __user *tm_frame, int sigret,
385 			  int ctx_has_vsx_region)
386 {
387 	unsigned long msr = regs->msr;
388 
389 	/* Make sure floating point registers are stored in regs */
390 	flush_fp_to_thread(current);
391 
392 	/* save general registers */
393 	if (save_general_regs(regs, frame))
394 		return 1;
395 
396 #ifdef CONFIG_ALTIVEC
397 	/* save altivec registers */
398 	if (current->thread.used_vr) {
399 		flush_altivec_to_thread(current);
400 		if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
401 				   ELF_NVRREG * sizeof(vector128)))
402 			return 1;
403 		/* set MSR_VEC in the saved MSR value to indicate that
404 		   frame->mc_vregs contains valid data */
405 		msr |= MSR_VEC;
406 	}
407 	/* else assert((regs->msr & MSR_VEC) == 0) */
408 
409 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
410 	 * use altivec. Since VSCR only contains 32 bits saved in the least
411 	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
412 	 * most significant bits of that same vector. --BenH
413 	 * Note that the current VRSAVE value is in the SPR at this point.
414 	 */
415 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
416 		current->thread.vrsave = mfspr(SPRN_VRSAVE);
417 	if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
418 		return 1;
419 #endif /* CONFIG_ALTIVEC */
420 	if (copy_fpr_to_user(&frame->mc_fregs, current))
421 		return 1;
422 
423 	/*
424 	 * Clear the MSR VSX bit to indicate there is no valid state attached
425 	 * to this context, except in the specific case below where we set it.
426 	 */
427 	msr &= ~MSR_VSX;
428 #ifdef CONFIG_VSX
429 	/*
430 	 * Copy VSR 0-31 upper half from thread_struct to local
431 	 * buffer, then write that to userspace.  Also set MSR_VSX in
432 	 * the saved MSR value to indicate that frame->mc_vregs
433 	 * contains valid data
434 	 */
435 	if (current->thread.used_vsr && ctx_has_vsx_region) {
436 		flush_vsx_to_thread(current);
437 		if (copy_vsx_to_user(&frame->mc_vsregs, current))
438 			return 1;
439 		msr |= MSR_VSX;
440 	}
441 #endif /* CONFIG_VSX */
442 #ifdef CONFIG_SPE
443 	/* save spe registers */
444 	if (current->thread.used_spe) {
445 		flush_spe_to_thread(current);
446 		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
447 				   ELF_NEVRREG * sizeof(u32)))
448 			return 1;
449 		/* set MSR_SPE in the saved MSR value to indicate that
450 		   frame->mc_vregs contains valid data */
451 		msr |= MSR_SPE;
452 	}
453 	/* else assert((regs->msr & MSR_SPE) == 0) */
454 
455 	/* We always copy to/from spefscr */
456 	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
457 		return 1;
458 #endif /* CONFIG_SPE */
459 
460 	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
461 		return 1;
462 	/* We need to write 0 the MSR top 32 bits in the tm frame so that we
463 	 * can check it on the restore to see if TM is active
464 	 */
465 	if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
466 		return 1;
467 
468 	if (sigret) {
469 		/* Set up the sigreturn trampoline: li 0,sigret; sc */
470 		if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0])
471 		    || __put_user(PPC_INST_SC, &frame->tramp[1]))
472 			return 1;
473 		flush_icache_range((unsigned long) &frame->tramp[0],
474 				   (unsigned long) &frame->tramp[2]);
475 	}
476 
477 	return 0;
478 }
479 
480 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
481 /*
482  * Save the current user registers on the user stack.
483  * We only save the altivec/spe registers if the process has used
484  * altivec/spe instructions at some point.
485  * We also save the transactional registers to a second ucontext in the
486  * frame.
487  *
488  * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
489  */
save_tm_user_regs(struct pt_regs * regs,struct mcontext __user * frame,struct mcontext __user * tm_frame,int sigret,unsigned long msr)490 static int save_tm_user_regs(struct pt_regs *regs,
491 			     struct mcontext __user *frame,
492 			     struct mcontext __user *tm_frame, int sigret,
493 			     unsigned long msr)
494 {
495 	WARN_ON(tm_suspend_disabled);
496 
497 	/* Save both sets of general registers */
498 	if (save_general_regs(&current->thread.ckpt_regs, frame)
499 	    || save_general_regs(regs, tm_frame))
500 		return 1;
501 
502 	/* Stash the top half of the 64bit MSR into the 32bit MSR word
503 	 * of the transactional mcontext.  This way we have a backward-compatible
504 	 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
505 	 * also look at what type of transaction (T or S) was active at the
506 	 * time of the signal.
507 	 */
508 	if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
509 		return 1;
510 
511 #ifdef CONFIG_ALTIVEC
512 	/* save altivec registers */
513 	if (current->thread.used_vr) {
514 		if (__copy_to_user(&frame->mc_vregs, &current->thread.ckvr_state,
515 				   ELF_NVRREG * sizeof(vector128)))
516 			return 1;
517 		if (msr & MSR_VEC) {
518 			if (__copy_to_user(&tm_frame->mc_vregs,
519 					   &current->thread.vr_state,
520 					   ELF_NVRREG * sizeof(vector128)))
521 				return 1;
522 		} else {
523 			if (__copy_to_user(&tm_frame->mc_vregs,
524 					   &current->thread.ckvr_state,
525 					   ELF_NVRREG * sizeof(vector128)))
526 				return 1;
527 		}
528 
529 		/* set MSR_VEC in the saved MSR value to indicate that
530 		 * frame->mc_vregs contains valid data
531 		 */
532 		msr |= MSR_VEC;
533 	}
534 
535 	/* We always copy to/from vrsave, it's 0 if we don't have or don't
536 	 * use altivec. Since VSCR only contains 32 bits saved in the least
537 	 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
538 	 * most significant bits of that same vector. --BenH
539 	 */
540 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
541 		current->thread.ckvrsave = mfspr(SPRN_VRSAVE);
542 	if (__put_user(current->thread.ckvrsave,
543 		       (u32 __user *)&frame->mc_vregs[32]))
544 		return 1;
545 	if (msr & MSR_VEC) {
546 		if (__put_user(current->thread.vrsave,
547 			       (u32 __user *)&tm_frame->mc_vregs[32]))
548 			return 1;
549 	} else {
550 		if (__put_user(current->thread.ckvrsave,
551 			       (u32 __user *)&tm_frame->mc_vregs[32]))
552 			return 1;
553 	}
554 #endif /* CONFIG_ALTIVEC */
555 
556 	if (copy_ckfpr_to_user(&frame->mc_fregs, current))
557 		return 1;
558 	if (msr & MSR_FP) {
559 		if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
560 			return 1;
561 	} else {
562 		if (copy_ckfpr_to_user(&tm_frame->mc_fregs, current))
563 			return 1;
564 	}
565 
566 #ifdef CONFIG_VSX
567 	/*
568 	 * Copy VSR 0-31 upper half from thread_struct to local
569 	 * buffer, then write that to userspace.  Also set MSR_VSX in
570 	 * the saved MSR value to indicate that frame->mc_vregs
571 	 * contains valid data
572 	 */
573 	if (current->thread.used_vsr) {
574 		if (copy_ckvsx_to_user(&frame->mc_vsregs, current))
575 			return 1;
576 		if (msr & MSR_VSX) {
577 			if (copy_vsx_to_user(&tm_frame->mc_vsregs,
578 						      current))
579 				return 1;
580 		} else {
581 			if (copy_ckvsx_to_user(&tm_frame->mc_vsregs, current))
582 				return 1;
583 		}
584 
585 		msr |= MSR_VSX;
586 	}
587 #endif /* CONFIG_VSX */
588 #ifdef CONFIG_SPE
589 	/* SPE regs are not checkpointed with TM, so this section is
590 	 * simply the same as in save_user_regs().
591 	 */
592 	if (current->thread.used_spe) {
593 		flush_spe_to_thread(current);
594 		if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
595 				   ELF_NEVRREG * sizeof(u32)))
596 			return 1;
597 		/* set MSR_SPE in the saved MSR value to indicate that
598 		 * frame->mc_vregs contains valid data */
599 		msr |= MSR_SPE;
600 	}
601 
602 	/* We always copy to/from spefscr */
603 	if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
604 		return 1;
605 #endif /* CONFIG_SPE */
606 
607 	if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
608 		return 1;
609 	if (sigret) {
610 		/* Set up the sigreturn trampoline: li 0,sigret; sc */
611 		if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0])
612 		    || __put_user(PPC_INST_SC, &frame->tramp[1]))
613 			return 1;
614 		flush_icache_range((unsigned long) &frame->tramp[0],
615 				   (unsigned long) &frame->tramp[2]);
616 	}
617 
618 	return 0;
619 }
620 #endif
621 
622 /*
623  * Restore the current user register values from the user stack,
624  * (except for MSR).
625  */
restore_user_regs(struct pt_regs * regs,struct mcontext __user * sr,int sig)626 static long restore_user_regs(struct pt_regs *regs,
627 			      struct mcontext __user *sr, int sig)
628 {
629 	long err;
630 	unsigned int save_r2 = 0;
631 	unsigned long msr;
632 #ifdef CONFIG_VSX
633 	int i;
634 #endif
635 
636 	/*
637 	 * restore general registers but not including MSR or SOFTE. Also
638 	 * take care of keeping r2 (TLS) intact if not a signal
639 	 */
640 	if (!sig)
641 		save_r2 = (unsigned int)regs->gpr[2];
642 	err = restore_general_regs(regs, sr);
643 	regs->trap = 0;
644 	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
645 	if (!sig)
646 		regs->gpr[2] = (unsigned long) save_r2;
647 	if (err)
648 		return 1;
649 
650 	/* if doing signal return, restore the previous little-endian mode */
651 	if (sig)
652 		regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
653 
654 #ifdef CONFIG_ALTIVEC
655 	/*
656 	 * Force the process to reload the altivec registers from
657 	 * current->thread when it next does altivec instructions
658 	 */
659 	regs->msr &= ~MSR_VEC;
660 	if (msr & MSR_VEC) {
661 		/* restore altivec registers from the stack */
662 		if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
663 				     sizeof(sr->mc_vregs)))
664 			return 1;
665 		current->thread.used_vr = true;
666 	} else if (current->thread.used_vr)
667 		memset(&current->thread.vr_state, 0,
668 		       ELF_NVRREG * sizeof(vector128));
669 
670 	/* Always get VRSAVE back */
671 	if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
672 		return 1;
673 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
674 		mtspr(SPRN_VRSAVE, current->thread.vrsave);
675 #endif /* CONFIG_ALTIVEC */
676 	if (copy_fpr_from_user(current, &sr->mc_fregs))
677 		return 1;
678 
679 #ifdef CONFIG_VSX
680 	/*
681 	 * Force the process to reload the VSX registers from
682 	 * current->thread when it next does VSX instruction.
683 	 */
684 	regs->msr &= ~MSR_VSX;
685 	if (msr & MSR_VSX) {
686 		/*
687 		 * Restore altivec registers from the stack to a local
688 		 * buffer, then write this out to the thread_struct
689 		 */
690 		if (copy_vsx_from_user(current, &sr->mc_vsregs))
691 			return 1;
692 		current->thread.used_vsr = true;
693 	} else if (current->thread.used_vsr)
694 		for (i = 0; i < 32 ; i++)
695 			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
696 #endif /* CONFIG_VSX */
697 	/*
698 	 * force the process to reload the FP registers from
699 	 * current->thread when it next does FP instructions
700 	 */
701 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
702 
703 #ifdef CONFIG_SPE
704 	/* force the process to reload the spe registers from
705 	   current->thread when it next does spe instructions */
706 	regs->msr &= ~MSR_SPE;
707 	if (msr & MSR_SPE) {
708 		/* restore spe registers from the stack */
709 		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
710 				     ELF_NEVRREG * sizeof(u32)))
711 			return 1;
712 		current->thread.used_spe = true;
713 	} else if (current->thread.used_spe)
714 		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
715 
716 	/* Always get SPEFSCR back */
717 	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
718 		return 1;
719 #endif /* CONFIG_SPE */
720 
721 	return 0;
722 }
723 
724 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
725 /*
726  * Restore the current user register values from the user stack, except for
727  * MSR, and recheckpoint the original checkpointed register state for processes
728  * in transactions.
729  */
restore_tm_user_regs(struct pt_regs * regs,struct mcontext __user * sr,struct mcontext __user * tm_sr)730 static long restore_tm_user_regs(struct pt_regs *regs,
731 				 struct mcontext __user *sr,
732 				 struct mcontext __user *tm_sr)
733 {
734 	long err;
735 	unsigned long msr, msr_hi;
736 #ifdef CONFIG_VSX
737 	int i;
738 #endif
739 
740 	if (tm_suspend_disabled)
741 		return 1;
742 	/*
743 	 * restore general registers but not including MSR or SOFTE. Also
744 	 * take care of keeping r2 (TLS) intact if not a signal.
745 	 * See comment in signal_64.c:restore_tm_sigcontexts();
746 	 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
747 	 * were set by the signal delivery.
748 	 */
749 	err = restore_general_regs(regs, tm_sr);
750 	err |= restore_general_regs(&current->thread.ckpt_regs, sr);
751 
752 	err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
753 
754 	err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
755 	if (err)
756 		return 1;
757 
758 	/* Restore the previous little-endian mode */
759 	regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
760 
761 #ifdef CONFIG_ALTIVEC
762 	regs->msr &= ~MSR_VEC;
763 	if (msr & MSR_VEC) {
764 		/* restore altivec registers from the stack */
765 		if (__copy_from_user(&current->thread.ckvr_state, &sr->mc_vregs,
766 				     sizeof(sr->mc_vregs)) ||
767 		    __copy_from_user(&current->thread.vr_state,
768 				     &tm_sr->mc_vregs,
769 				     sizeof(sr->mc_vregs)))
770 			return 1;
771 		current->thread.used_vr = true;
772 	} else if (current->thread.used_vr) {
773 		memset(&current->thread.vr_state, 0,
774 		       ELF_NVRREG * sizeof(vector128));
775 		memset(&current->thread.ckvr_state, 0,
776 		       ELF_NVRREG * sizeof(vector128));
777 	}
778 
779 	/* Always get VRSAVE back */
780 	if (__get_user(current->thread.ckvrsave,
781 		       (u32 __user *)&sr->mc_vregs[32]) ||
782 	    __get_user(current->thread.vrsave,
783 		       (u32 __user *)&tm_sr->mc_vregs[32]))
784 		return 1;
785 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
786 		mtspr(SPRN_VRSAVE, current->thread.ckvrsave);
787 #endif /* CONFIG_ALTIVEC */
788 
789 	regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
790 
791 	if (copy_fpr_from_user(current, &sr->mc_fregs) ||
792 	    copy_ckfpr_from_user(current, &tm_sr->mc_fregs))
793 		return 1;
794 
795 #ifdef CONFIG_VSX
796 	regs->msr &= ~MSR_VSX;
797 	if (msr & MSR_VSX) {
798 		/*
799 		 * Restore altivec registers from the stack to a local
800 		 * buffer, then write this out to the thread_struct
801 		 */
802 		if (copy_vsx_from_user(current, &tm_sr->mc_vsregs) ||
803 		    copy_ckvsx_from_user(current, &sr->mc_vsregs))
804 			return 1;
805 		current->thread.used_vsr = true;
806 	} else if (current->thread.used_vsr)
807 		for (i = 0; i < 32 ; i++) {
808 			current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
809 			current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
810 		}
811 #endif /* CONFIG_VSX */
812 
813 #ifdef CONFIG_SPE
814 	/* SPE regs are not checkpointed with TM, so this section is
815 	 * simply the same as in restore_user_regs().
816 	 */
817 	regs->msr &= ~MSR_SPE;
818 	if (msr & MSR_SPE) {
819 		if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
820 				     ELF_NEVRREG * sizeof(u32)))
821 			return 1;
822 		current->thread.used_spe = true;
823 	} else if (current->thread.used_spe)
824 		memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
825 
826 	/* Always get SPEFSCR back */
827 	if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
828 		       + ELF_NEVRREG))
829 		return 1;
830 #endif /* CONFIG_SPE */
831 
832 	/* Get the top half of the MSR from the user context */
833 	if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
834 		return 1;
835 	msr_hi <<= 32;
836 	/* If TM bits are set to the reserved value, it's an invalid context */
837 	if (MSR_TM_RESV(msr_hi))
838 		return 1;
839 
840 	/*
841 	 * Disabling preemption, since it is unsafe to be preempted
842 	 * with MSR[TS] set without recheckpointing.
843 	 */
844 	preempt_disable();
845 
846 	/*
847 	 * CAUTION:
848 	 * After regs->MSR[TS] being updated, make sure that get_user(),
849 	 * put_user() or similar functions are *not* called. These
850 	 * functions can generate page faults which will cause the process
851 	 * to be de-scheduled with MSR[TS] set but without calling
852 	 * tm_recheckpoint(). This can cause a bug.
853 	 *
854 	 * Pull in the MSR TM bits from the user context
855 	 */
856 	regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK);
857 	/* Now, recheckpoint.  This loads up all of the checkpointed (older)
858 	 * registers, including FP and V[S]Rs.  After recheckpointing, the
859 	 * transactional versions should be loaded.
860 	 */
861 	tm_enable();
862 	/* Make sure the transaction is marked as failed */
863 	current->thread.tm_texasr |= TEXASR_FS;
864 	/* This loads the checkpointed FP/VEC state, if used */
865 	tm_recheckpoint(&current->thread);
866 
867 	/* This loads the speculative FP/VEC state, if used */
868 	msr_check_and_set(msr & (MSR_FP | MSR_VEC));
869 	if (msr & MSR_FP) {
870 		load_fp_state(&current->thread.fp_state);
871 		regs->msr |= (MSR_FP | current->thread.fpexc_mode);
872 	}
873 #ifdef CONFIG_ALTIVEC
874 	if (msr & MSR_VEC) {
875 		load_vr_state(&current->thread.vr_state);
876 		regs->msr |= MSR_VEC;
877 	}
878 #endif
879 
880 	preempt_enable();
881 
882 	return 0;
883 }
884 #endif
885 
886 #ifdef CONFIG_PPC64
887 
888 #define copy_siginfo_to_user	copy_siginfo_to_user32
889 
890 #endif /* CONFIG_PPC64 */
891 
892 /*
893  * Set up a signal frame for a "real-time" signal handler
894  * (one which gets siginfo).
895  */
handle_rt_signal32(struct ksignal * ksig,sigset_t * oldset,struct task_struct * tsk)896 int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
897 		       struct task_struct *tsk)
898 {
899 	struct rt_sigframe __user *rt_sf;
900 	struct mcontext __user *frame;
901 	struct mcontext __user *tm_frame = NULL;
902 	void __user *addr;
903 	unsigned long newsp = 0;
904 	int sigret;
905 	unsigned long tramp;
906 	struct pt_regs *regs = tsk->thread.regs;
907 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
908 	/* Save the thread's msr before get_tm_stackpointer() changes it */
909 	unsigned long msr = regs->msr;
910 #endif
911 
912 	BUG_ON(tsk != current);
913 
914 	/* Set up Signal Frame */
915 	/* Put a Real Time Context onto stack */
916 	rt_sf = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*rt_sf), 1);
917 	addr = rt_sf;
918 	if (unlikely(rt_sf == NULL))
919 		goto badframe;
920 
921 	/* Put the siginfo & fill in most of the ucontext */
922 	if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
923 	    || __put_user(0, &rt_sf->uc.uc_flags)
924 	    || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
925 	    || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
926 		    &rt_sf->uc.uc_regs)
927 	    || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
928 		goto badframe;
929 
930 	/* Save user registers on the stack */
931 	frame = &rt_sf->uc.uc_mcontext;
932 	addr = frame;
933 	if (vdso32_rt_sigtramp && tsk->mm->context.vdso_base) {
934 		sigret = 0;
935 		tramp = tsk->mm->context.vdso_base + vdso32_rt_sigtramp;
936 	} else {
937 		sigret = __NR_rt_sigreturn;
938 		tramp = (unsigned long) frame->tramp;
939 	}
940 
941 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
942 	tm_frame = &rt_sf->uc_transact.uc_mcontext;
943 	if (MSR_TM_ACTIVE(msr)) {
944 		if (__put_user((unsigned long)&rt_sf->uc_transact,
945 			       &rt_sf->uc.uc_link) ||
946 		    __put_user((unsigned long)tm_frame,
947 			       &rt_sf->uc_transact.uc_regs))
948 			goto badframe;
949 		if (save_tm_user_regs(regs, frame, tm_frame, sigret, msr))
950 			goto badframe;
951 	}
952 	else
953 #endif
954 	{
955 		if (__put_user(0, &rt_sf->uc.uc_link))
956 			goto badframe;
957 		if (save_user_regs(regs, frame, tm_frame, sigret, 1))
958 			goto badframe;
959 	}
960 	regs->link = tramp;
961 
962 	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
963 
964 	/* create a stack frame for the caller of the handler */
965 	newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
966 	addr = (void __user *)regs->gpr[1];
967 	if (put_user(regs->gpr[1], (u32 __user *)newsp))
968 		goto badframe;
969 
970 	/* Fill registers for signal handler */
971 	regs->gpr[1] = newsp;
972 	regs->gpr[3] = ksig->sig;
973 	regs->gpr[4] = (unsigned long) &rt_sf->info;
974 	regs->gpr[5] = (unsigned long) &rt_sf->uc;
975 	regs->gpr[6] = (unsigned long) rt_sf;
976 	regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
977 	/* enter the signal handler in native-endian mode */
978 	regs->msr &= ~MSR_LE;
979 	regs->msr |= (MSR_KERNEL & MSR_LE);
980 	return 0;
981 
982 badframe:
983 	if (show_unhandled_signals)
984 		printk_ratelimited(KERN_INFO
985 				   "%s[%d]: bad frame in handle_rt_signal32: "
986 				   "%p nip %08lx lr %08lx\n",
987 				   tsk->comm, tsk->pid,
988 				   addr, regs->nip, regs->link);
989 
990 	return 1;
991 }
992 
do_setcontext(struct ucontext __user * ucp,struct pt_regs * regs,int sig)993 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
994 {
995 	sigset_t set;
996 	struct mcontext __user *mcp;
997 
998 	if (get_sigset_t(&set, &ucp->uc_sigmask))
999 		return -EFAULT;
1000 #ifdef CONFIG_PPC64
1001 	{
1002 		u32 cmcp;
1003 
1004 		if (__get_user(cmcp, &ucp->uc_regs))
1005 			return -EFAULT;
1006 		mcp = (struct mcontext __user *)(u64)cmcp;
1007 		/* no need to check access_ok(mcp), since mcp < 4GB */
1008 	}
1009 #else
1010 	if (__get_user(mcp, &ucp->uc_regs))
1011 		return -EFAULT;
1012 	if (!access_ok(mcp, sizeof(*mcp)))
1013 		return -EFAULT;
1014 #endif
1015 	set_current_blocked(&set);
1016 	if (restore_user_regs(regs, mcp, sig))
1017 		return -EFAULT;
1018 
1019 	return 0;
1020 }
1021 
1022 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
do_setcontext_tm(struct ucontext __user * ucp,struct ucontext __user * tm_ucp,struct pt_regs * regs)1023 static int do_setcontext_tm(struct ucontext __user *ucp,
1024 			    struct ucontext __user *tm_ucp,
1025 			    struct pt_regs *regs)
1026 {
1027 	sigset_t set;
1028 	struct mcontext __user *mcp;
1029 	struct mcontext __user *tm_mcp;
1030 	u32 cmcp;
1031 	u32 tm_cmcp;
1032 
1033 	if (get_sigset_t(&set, &ucp->uc_sigmask))
1034 		return -EFAULT;
1035 
1036 	if (__get_user(cmcp, &ucp->uc_regs) ||
1037 	    __get_user(tm_cmcp, &tm_ucp->uc_regs))
1038 		return -EFAULT;
1039 	mcp = (struct mcontext __user *)(u64)cmcp;
1040 	tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1041 	/* no need to check access_ok(mcp), since mcp < 4GB */
1042 
1043 	set_current_blocked(&set);
1044 	if (restore_tm_user_regs(regs, mcp, tm_mcp))
1045 		return -EFAULT;
1046 
1047 	return 0;
1048 }
1049 #endif
1050 
1051 #ifdef CONFIG_PPC64
COMPAT_SYSCALL_DEFINE3(swapcontext,struct ucontext __user *,old_ctx,struct ucontext __user *,new_ctx,int,ctx_size)1052 COMPAT_SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
1053 		       struct ucontext __user *, new_ctx, int, ctx_size)
1054 #else
1055 SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
1056 		       struct ucontext __user *, new_ctx, long, ctx_size)
1057 #endif
1058 {
1059 	struct pt_regs *regs = current_pt_regs();
1060 	int ctx_has_vsx_region = 0;
1061 
1062 #ifdef CONFIG_PPC64
1063 	unsigned long new_msr = 0;
1064 
1065 	if (new_ctx) {
1066 		struct mcontext __user *mcp;
1067 		u32 cmcp;
1068 
1069 		/*
1070 		 * Get pointer to the real mcontext.  No need for
1071 		 * access_ok since we are dealing with compat
1072 		 * pointers.
1073 		 */
1074 		if (__get_user(cmcp, &new_ctx->uc_regs))
1075 			return -EFAULT;
1076 		mcp = (struct mcontext __user *)(u64)cmcp;
1077 		if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1078 			return -EFAULT;
1079 	}
1080 	/*
1081 	 * Check that the context is not smaller than the original
1082 	 * size (with VMX but without VSX)
1083 	 */
1084 	if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1085 		return -EINVAL;
1086 	/*
1087 	 * If the new context state sets the MSR VSX bits but
1088 	 * it doesn't provide VSX state.
1089 	 */
1090 	if ((ctx_size < sizeof(struct ucontext)) &&
1091 	    (new_msr & MSR_VSX))
1092 		return -EINVAL;
1093 	/* Does the context have enough room to store VSX data? */
1094 	if (ctx_size >= sizeof(struct ucontext))
1095 		ctx_has_vsx_region = 1;
1096 #else
1097 	/* Context size is for future use. Right now, we only make sure
1098 	 * we are passed something we understand
1099 	 */
1100 	if (ctx_size < sizeof(struct ucontext))
1101 		return -EINVAL;
1102 #endif
1103 	if (old_ctx != NULL) {
1104 		struct mcontext __user *mctx;
1105 
1106 		/*
1107 		 * old_ctx might not be 16-byte aligned, in which
1108 		 * case old_ctx->uc_mcontext won't be either.
1109 		 * Because we have the old_ctx->uc_pad2 field
1110 		 * before old_ctx->uc_mcontext, we need to round down
1111 		 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1112 		 */
1113 		mctx = (struct mcontext __user *)
1114 			((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1115 		if (!access_ok(old_ctx, ctx_size)
1116 		    || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1117 		    || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1118 		    || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1119 			return -EFAULT;
1120 	}
1121 	if (new_ctx == NULL)
1122 		return 0;
1123 	if (!access_ok(new_ctx, ctx_size) ||
1124 	    fault_in_pages_readable((u8 __user *)new_ctx, ctx_size))
1125 		return -EFAULT;
1126 
1127 	/*
1128 	 * If we get a fault copying the context into the kernel's
1129 	 * image of the user's registers, we can't just return -EFAULT
1130 	 * because the user's registers will be corrupted.  For instance
1131 	 * the NIP value may have been updated but not some of the
1132 	 * other registers.  Given that we have done the access_ok
1133 	 * and successfully read the first and last bytes of the region
1134 	 * above, this should only happen in an out-of-memory situation
1135 	 * or if another thread unmaps the region containing the context.
1136 	 * We kill the task with a SIGSEGV in this situation.
1137 	 */
1138 	if (do_setcontext(new_ctx, regs, 0))
1139 		do_exit(SIGSEGV);
1140 
1141 	set_thread_flag(TIF_RESTOREALL);
1142 	return 0;
1143 }
1144 
1145 #ifdef CONFIG_PPC64
COMPAT_SYSCALL_DEFINE0(rt_sigreturn)1146 COMPAT_SYSCALL_DEFINE0(rt_sigreturn)
1147 #else
1148 SYSCALL_DEFINE0(rt_sigreturn)
1149 #endif
1150 {
1151 	struct rt_sigframe __user *rt_sf;
1152 	struct pt_regs *regs = current_pt_regs();
1153 	int tm_restore = 0;
1154 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1155 	struct ucontext __user *uc_transact;
1156 	unsigned long msr_hi;
1157 	unsigned long tmp;
1158 #endif
1159 	/* Always make any pending restarted system calls return -EINTR */
1160 	current->restart_block.fn = do_no_restart_syscall;
1161 
1162 	rt_sf = (struct rt_sigframe __user *)
1163 		(regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1164 	if (!access_ok(rt_sf, sizeof(*rt_sf)))
1165 		goto bad;
1166 
1167 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1168 	/*
1169 	 * If there is a transactional state then throw it away.
1170 	 * The purpose of a sigreturn is to destroy all traces of the
1171 	 * signal frame, this includes any transactional state created
1172 	 * within in. We only check for suspended as we can never be
1173 	 * active in the kernel, we are active, there is nothing better to
1174 	 * do than go ahead and Bad Thing later.
1175 	 * The cause is not important as there will never be a
1176 	 * recheckpoint so it's not user visible.
1177 	 */
1178 	if (MSR_TM_SUSPENDED(mfmsr()))
1179 		tm_reclaim_current(0);
1180 
1181 	if (__get_user(tmp, &rt_sf->uc.uc_link))
1182 		goto bad;
1183 	uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1184 	if (uc_transact) {
1185 		u32 cmcp;
1186 		struct mcontext __user *mcp;
1187 
1188 		if (__get_user(cmcp, &uc_transact->uc_regs))
1189 			return -EFAULT;
1190 		mcp = (struct mcontext __user *)(u64)cmcp;
1191 		/* The top 32 bits of the MSR are stashed in the transactional
1192 		 * ucontext. */
1193 		if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1194 			goto bad;
1195 
1196 		if (MSR_TM_ACTIVE(msr_hi<<32)) {
1197 			/* Trying to start TM on non TM system */
1198 			if (!cpu_has_feature(CPU_FTR_TM))
1199 				goto bad;
1200 			/* We only recheckpoint on return if we're
1201 			 * transaction.
1202 			 */
1203 			tm_restore = 1;
1204 			if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1205 				goto bad;
1206 		}
1207 	}
1208 	if (!tm_restore) {
1209 		/*
1210 		 * Unset regs->msr because ucontext MSR TS is not
1211 		 * set, and recheckpoint was not called. This avoid
1212 		 * hitting a TM Bad thing at RFID
1213 		 */
1214 		regs->msr &= ~MSR_TS_MASK;
1215 	}
1216 	/* Fall through, for non-TM restore */
1217 #endif
1218 	if (!tm_restore)
1219 		if (do_setcontext(&rt_sf->uc, regs, 1))
1220 			goto bad;
1221 
1222 	/*
1223 	 * It's not clear whether or why it is desirable to save the
1224 	 * sigaltstack setting on signal delivery and restore it on
1225 	 * signal return.  But other architectures do this and we have
1226 	 * always done it up until now so it is probably better not to
1227 	 * change it.  -- paulus
1228 	 */
1229 #ifdef CONFIG_PPC64
1230 	if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1231 		goto bad;
1232 #else
1233 	if (restore_altstack(&rt_sf->uc.uc_stack))
1234 		goto bad;
1235 #endif
1236 	set_thread_flag(TIF_RESTOREALL);
1237 	return 0;
1238 
1239  bad:
1240 	if (show_unhandled_signals)
1241 		printk_ratelimited(KERN_INFO
1242 				   "%s[%d]: bad frame in sys_rt_sigreturn: "
1243 				   "%p nip %08lx lr %08lx\n",
1244 				   current->comm, current->pid,
1245 				   rt_sf, regs->nip, regs->link);
1246 
1247 	force_sig(SIGSEGV);
1248 	return 0;
1249 }
1250 
1251 #ifdef CONFIG_PPC32
SYSCALL_DEFINE3(debug_setcontext,struct ucontext __user *,ctx,int,ndbg,struct sig_dbg_op __user *,dbg)1252 SYSCALL_DEFINE3(debug_setcontext, struct ucontext __user *, ctx,
1253 			 int, ndbg, struct sig_dbg_op __user *, dbg)
1254 {
1255 	struct pt_regs *regs = current_pt_regs();
1256 	struct sig_dbg_op op;
1257 	int i;
1258 	unsigned long new_msr = regs->msr;
1259 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1260 	unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1261 #endif
1262 
1263 	for (i=0; i<ndbg; i++) {
1264 		if (copy_from_user(&op, dbg + i, sizeof(op)))
1265 			return -EFAULT;
1266 		switch (op.dbg_type) {
1267 		case SIG_DBG_SINGLE_STEPPING:
1268 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1269 			if (op.dbg_value) {
1270 				new_msr |= MSR_DE;
1271 				new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1272 			} else {
1273 				new_dbcr0 &= ~DBCR0_IC;
1274 				if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1275 						current->thread.debug.dbcr1)) {
1276 					new_msr &= ~MSR_DE;
1277 					new_dbcr0 &= ~DBCR0_IDM;
1278 				}
1279 			}
1280 #else
1281 			if (op.dbg_value)
1282 				new_msr |= MSR_SE;
1283 			else
1284 				new_msr &= ~MSR_SE;
1285 #endif
1286 			break;
1287 		case SIG_DBG_BRANCH_TRACING:
1288 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1289 			return -EINVAL;
1290 #else
1291 			if (op.dbg_value)
1292 				new_msr |= MSR_BE;
1293 			else
1294 				new_msr &= ~MSR_BE;
1295 #endif
1296 			break;
1297 
1298 		default:
1299 			return -EINVAL;
1300 		}
1301 	}
1302 
1303 	/* We wait until here to actually install the values in the
1304 	   registers so if we fail in the above loop, it will not
1305 	   affect the contents of these registers.  After this point,
1306 	   failure is a problem, anyway, and it's very unlikely unless
1307 	   the user is really doing something wrong. */
1308 	regs->msr = new_msr;
1309 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1310 	current->thread.debug.dbcr0 = new_dbcr0;
1311 #endif
1312 
1313 	if (!access_ok(ctx, sizeof(*ctx)) ||
1314 	    fault_in_pages_readable((u8 __user *)ctx, sizeof(*ctx)))
1315 		return -EFAULT;
1316 
1317 	/*
1318 	 * If we get a fault copying the context into the kernel's
1319 	 * image of the user's registers, we can't just return -EFAULT
1320 	 * because the user's registers will be corrupted.  For instance
1321 	 * the NIP value may have been updated but not some of the
1322 	 * other registers.  Given that we have done the access_ok
1323 	 * and successfully read the first and last bytes of the region
1324 	 * above, this should only happen in an out-of-memory situation
1325 	 * or if another thread unmaps the region containing the context.
1326 	 * We kill the task with a SIGSEGV in this situation.
1327 	 */
1328 	if (do_setcontext(ctx, regs, 1)) {
1329 		if (show_unhandled_signals)
1330 			printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1331 					   "sys_debug_setcontext: %p nip %08lx "
1332 					   "lr %08lx\n",
1333 					   current->comm, current->pid,
1334 					   ctx, regs->nip, regs->link);
1335 
1336 		force_sig(SIGSEGV);
1337 		goto out;
1338 	}
1339 
1340 	/*
1341 	 * It's not clear whether or why it is desirable to save the
1342 	 * sigaltstack setting on signal delivery and restore it on
1343 	 * signal return.  But other architectures do this and we have
1344 	 * always done it up until now so it is probably better not to
1345 	 * change it.  -- paulus
1346 	 */
1347 	restore_altstack(&ctx->uc_stack);
1348 
1349 	set_thread_flag(TIF_RESTOREALL);
1350  out:
1351 	return 0;
1352 }
1353 #endif
1354 
1355 /*
1356  * OK, we're invoking a handler
1357  */
handle_signal32(struct ksignal * ksig,sigset_t * oldset,struct task_struct * tsk)1358 int handle_signal32(struct ksignal *ksig, sigset_t *oldset,
1359 		struct task_struct *tsk)
1360 {
1361 	struct sigcontext __user *sc;
1362 	struct sigframe __user *frame;
1363 	struct mcontext __user *tm_mctx = NULL;
1364 	unsigned long newsp = 0;
1365 	int sigret;
1366 	unsigned long tramp;
1367 	struct pt_regs *regs = tsk->thread.regs;
1368 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1369 	/* Save the thread's msr before get_tm_stackpointer() changes it */
1370 	unsigned long msr = regs->msr;
1371 #endif
1372 
1373 	BUG_ON(tsk != current);
1374 
1375 	/* Set up Signal Frame */
1376 	frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 1);
1377 	if (unlikely(frame == NULL))
1378 		goto badframe;
1379 	sc = (struct sigcontext __user *) &frame->sctx;
1380 
1381 #if _NSIG != 64
1382 #error "Please adjust handle_signal()"
1383 #endif
1384 	if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1385 	    || __put_user(oldset->sig[0], &sc->oldmask)
1386 #ifdef CONFIG_PPC64
1387 	    || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1388 #else
1389 	    || __put_user(oldset->sig[1], &sc->_unused[3])
1390 #endif
1391 	    || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1392 	    || __put_user(ksig->sig, &sc->signal))
1393 		goto badframe;
1394 
1395 	if (vdso32_sigtramp && tsk->mm->context.vdso_base) {
1396 		sigret = 0;
1397 		tramp = tsk->mm->context.vdso_base + vdso32_sigtramp;
1398 	} else {
1399 		sigret = __NR_sigreturn;
1400 		tramp = (unsigned long) frame->mctx.tramp;
1401 	}
1402 
1403 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1404 	tm_mctx = &frame->mctx_transact;
1405 	if (MSR_TM_ACTIVE(msr)) {
1406 		if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1407 				      sigret, msr))
1408 			goto badframe;
1409 	}
1410 	else
1411 #endif
1412 	{
1413 		if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1414 			goto badframe;
1415 	}
1416 
1417 	regs->link = tramp;
1418 
1419 	tsk->thread.fp_state.fpscr = 0;	/* turn off all fp exceptions */
1420 
1421 	/* create a stack frame for the caller of the handler */
1422 	newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1423 	if (put_user(regs->gpr[1], (u32 __user *)newsp))
1424 		goto badframe;
1425 
1426 	regs->gpr[1] = newsp;
1427 	regs->gpr[3] = ksig->sig;
1428 	regs->gpr[4] = (unsigned long) sc;
1429 	regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1430 	/* enter the signal handler in big-endian mode */
1431 	regs->msr &= ~MSR_LE;
1432 	return 0;
1433 
1434 badframe:
1435 	if (show_unhandled_signals)
1436 		printk_ratelimited(KERN_INFO
1437 				   "%s[%d]: bad frame in handle_signal32: "
1438 				   "%p nip %08lx lr %08lx\n",
1439 				   tsk->comm, tsk->pid,
1440 				   frame, regs->nip, regs->link);
1441 
1442 	return 1;
1443 }
1444 
1445 /*
1446  * Do a signal return; undo the signal stack.
1447  */
1448 #ifdef CONFIG_PPC64
COMPAT_SYSCALL_DEFINE0(sigreturn)1449 COMPAT_SYSCALL_DEFINE0(sigreturn)
1450 #else
1451 SYSCALL_DEFINE0(sigreturn)
1452 #endif
1453 {
1454 	struct pt_regs *regs = current_pt_regs();
1455 	struct sigframe __user *sf;
1456 	struct sigcontext __user *sc;
1457 	struct sigcontext sigctx;
1458 	struct mcontext __user *sr;
1459 	void __user *addr;
1460 	sigset_t set;
1461 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1462 	struct mcontext __user *mcp, *tm_mcp;
1463 	unsigned long msr_hi;
1464 #endif
1465 
1466 	/* Always make any pending restarted system calls return -EINTR */
1467 	current->restart_block.fn = do_no_restart_syscall;
1468 
1469 	sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1470 	sc = &sf->sctx;
1471 	addr = sc;
1472 	if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1473 		goto badframe;
1474 
1475 #ifdef CONFIG_PPC64
1476 	/*
1477 	 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1478 	 * unused part of the signal stackframe
1479 	 */
1480 	set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1481 #else
1482 	set.sig[0] = sigctx.oldmask;
1483 	set.sig[1] = sigctx._unused[3];
1484 #endif
1485 	set_current_blocked(&set);
1486 
1487 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1488 	mcp = (struct mcontext __user *)&sf->mctx;
1489 	tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1490 	if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1491 		goto badframe;
1492 	if (MSR_TM_ACTIVE(msr_hi<<32)) {
1493 		if (!cpu_has_feature(CPU_FTR_TM))
1494 			goto badframe;
1495 		if (restore_tm_user_regs(regs, mcp, tm_mcp))
1496 			goto badframe;
1497 	} else
1498 #endif
1499 	{
1500 		sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1501 		addr = sr;
1502 		if (!access_ok(sr, sizeof(*sr))
1503 		    || restore_user_regs(regs, sr, 1))
1504 			goto badframe;
1505 	}
1506 
1507 	set_thread_flag(TIF_RESTOREALL);
1508 	return 0;
1509 
1510 badframe:
1511 	if (show_unhandled_signals)
1512 		printk_ratelimited(KERN_INFO
1513 				   "%s[%d]: bad frame in sys_sigreturn: "
1514 				   "%p nip %08lx lr %08lx\n",
1515 				   current->comm, current->pid,
1516 				   addr, regs->nip, regs->link);
1517 
1518 	force_sig(SIGSEGV);
1519 	return 0;
1520 }
1521