• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2019 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22 
23 
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47 
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65 
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71 
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *	be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *	regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83 	REG_REQ_OK,
84 	REG_REQ_IGNORE,
85 	REG_REQ_INTERSECT,
86 	REG_REQ_ALREADY_SET,
87 };
88 
89 static struct regulatory_request core_request_world = {
90 	.initiator = NL80211_REGDOM_SET_BY_CORE,
91 	.alpha2[0] = '0',
92 	.alpha2[1] = '0',
93 	.intersect = false,
94 	.processed = true,
95 	.country_ie_env = ENVIRON_ANY,
96 };
97 
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103 	(void __force __rcu *)&core_request_world;
104 
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107 
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115 
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122 
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130 
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133 
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136 
get_cfg80211_regdom(void)137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139 	return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141 
get_wiphy_regdom(struct wiphy * wiphy)142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 {
144 	return rcu_dereference_rtnl(wiphy->regd);
145 }
146 
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 {
149 	switch (dfs_region) {
150 	case NL80211_DFS_UNSET:
151 		return "unset";
152 	case NL80211_DFS_FCC:
153 		return "FCC";
154 	case NL80211_DFS_ETSI:
155 		return "ETSI";
156 	case NL80211_DFS_JP:
157 		return "JP";
158 	}
159 	return "Unknown";
160 }
161 
reg_get_dfs_region(struct wiphy * wiphy)162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 {
164 	const struct ieee80211_regdomain *regd = NULL;
165 	const struct ieee80211_regdomain *wiphy_regd = NULL;
166 
167 	regd = get_cfg80211_regdom();
168 	if (!wiphy)
169 		goto out;
170 
171 	wiphy_regd = get_wiphy_regdom(wiphy);
172 	if (!wiphy_regd)
173 		goto out;
174 
175 	if (wiphy_regd->dfs_region == regd->dfs_region)
176 		goto out;
177 
178 	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179 		 dev_name(&wiphy->dev),
180 		 reg_dfs_region_str(wiphy_regd->dfs_region),
181 		 reg_dfs_region_str(regd->dfs_region));
182 
183 out:
184 	return regd->dfs_region;
185 }
186 
rcu_free_regdom(const struct ieee80211_regdomain * r)187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 {
189 	if (!r)
190 		return;
191 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192 }
193 
get_last_request(void)194 static struct regulatory_request *get_last_request(void)
195 {
196 	return rcu_dereference_rtnl(last_request);
197 }
198 
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
202 
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
206 
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
209 
210 struct reg_beacon {
211 	struct list_head list;
212 	struct ieee80211_channel chan;
213 };
214 
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217 
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
220 
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223 	.n_reg_rules = 8,
224 	.alpha2 =  "00",
225 	.reg_rules = {
226 		/* IEEE 802.11b/g, channels 1..11 */
227 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228 		/* IEEE 802.11b/g, channels 12..13. */
229 		REG_RULE(2467-10, 2472+10, 20, 6, 20,
230 			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231 		/* IEEE 802.11 channel 14 - Only JP enables
232 		 * this and for 802.11b only */
233 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
234 			NL80211_RRF_NO_IR |
235 			NL80211_RRF_NO_OFDM),
236 		/* IEEE 802.11a, channel 36..48 */
237 		REG_RULE(5180-10, 5240+10, 80, 6, 20,
238                         NL80211_RRF_NO_IR |
239                         NL80211_RRF_AUTO_BW),
240 
241 		/* IEEE 802.11a, channel 52..64 - DFS required */
242 		REG_RULE(5260-10, 5320+10, 80, 6, 20,
243 			NL80211_RRF_NO_IR |
244 			NL80211_RRF_AUTO_BW |
245 			NL80211_RRF_DFS),
246 
247 		/* IEEE 802.11a, channel 100..144 - DFS required */
248 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
249 			NL80211_RRF_NO_IR |
250 			NL80211_RRF_DFS),
251 
252 		/* IEEE 802.11a, channel 149..165 */
253 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
254 			NL80211_RRF_NO_IR),
255 
256 		/* IEEE 802.11ad (60GHz), channels 1..3 */
257 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258 	}
259 };
260 
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263 	&world_regdom;
264 
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
268 
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271 
reg_free_request(struct regulatory_request * request)272 static void reg_free_request(struct regulatory_request *request)
273 {
274 	if (request == &core_request_world)
275 		return;
276 
277 	if (request != get_last_request())
278 		kfree(request);
279 }
280 
reg_free_last_request(void)281 static void reg_free_last_request(void)
282 {
283 	struct regulatory_request *lr = get_last_request();
284 
285 	if (lr != &core_request_world && lr)
286 		kfree_rcu(lr, rcu_head);
287 }
288 
reg_update_last_request(struct regulatory_request * request)289 static void reg_update_last_request(struct regulatory_request *request)
290 {
291 	struct regulatory_request *lr;
292 
293 	lr = get_last_request();
294 	if (lr == request)
295 		return;
296 
297 	reg_free_last_request();
298 	rcu_assign_pointer(last_request, request);
299 }
300 
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)301 static void reset_regdomains(bool full_reset,
302 			     const struct ieee80211_regdomain *new_regdom)
303 {
304 	const struct ieee80211_regdomain *r;
305 
306 	ASSERT_RTNL();
307 
308 	r = get_cfg80211_regdom();
309 
310 	/* avoid freeing static information or freeing something twice */
311 	if (r == cfg80211_world_regdom)
312 		r = NULL;
313 	if (cfg80211_world_regdom == &world_regdom)
314 		cfg80211_world_regdom = NULL;
315 	if (r == &world_regdom)
316 		r = NULL;
317 
318 	rcu_free_regdom(r);
319 	rcu_free_regdom(cfg80211_world_regdom);
320 
321 	cfg80211_world_regdom = &world_regdom;
322 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323 
324 	if (!full_reset)
325 		return;
326 
327 	reg_update_last_request(&core_request_world);
328 }
329 
330 /*
331  * Dynamic world regulatory domain requested by the wireless
332  * core upon initialization
333  */
update_world_regdomain(const struct ieee80211_regdomain * rd)334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335 {
336 	struct regulatory_request *lr;
337 
338 	lr = get_last_request();
339 
340 	WARN_ON(!lr);
341 
342 	reset_regdomains(false, rd);
343 
344 	cfg80211_world_regdom = rd;
345 }
346 
is_world_regdom(const char * alpha2)347 bool is_world_regdom(const char *alpha2)
348 {
349 	if (!alpha2)
350 		return false;
351 	return alpha2[0] == '0' && alpha2[1] == '0';
352 }
353 
is_alpha2_set(const char * alpha2)354 static bool is_alpha2_set(const char *alpha2)
355 {
356 	if (!alpha2)
357 		return false;
358 	return alpha2[0] && alpha2[1];
359 }
360 
is_unknown_alpha2(const char * alpha2)361 static bool is_unknown_alpha2(const char *alpha2)
362 {
363 	if (!alpha2)
364 		return false;
365 	/*
366 	 * Special case where regulatory domain was built by driver
367 	 * but a specific alpha2 cannot be determined
368 	 */
369 	return alpha2[0] == '9' && alpha2[1] == '9';
370 }
371 
is_intersected_alpha2(const char * alpha2)372 static bool is_intersected_alpha2(const char *alpha2)
373 {
374 	if (!alpha2)
375 		return false;
376 	/*
377 	 * Special case where regulatory domain is the
378 	 * result of an intersection between two regulatory domain
379 	 * structures
380 	 */
381 	return alpha2[0] == '9' && alpha2[1] == '8';
382 }
383 
is_an_alpha2(const char * alpha2)384 static bool is_an_alpha2(const char *alpha2)
385 {
386 	if (!alpha2)
387 		return false;
388 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 }
390 
alpha2_equal(const char * alpha2_x,const char * alpha2_y)391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392 {
393 	if (!alpha2_x || !alpha2_y)
394 		return false;
395 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 }
397 
regdom_changes(const char * alpha2)398 static bool regdom_changes(const char *alpha2)
399 {
400 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401 
402 	if (!r)
403 		return true;
404 	return !alpha2_equal(r->alpha2, alpha2);
405 }
406 
407 /*
408  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410  * has ever been issued.
411  */
is_user_regdom_saved(void)412 static bool is_user_regdom_saved(void)
413 {
414 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415 		return false;
416 
417 	/* This would indicate a mistake on the design */
418 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419 		 "Unexpected user alpha2: %c%c\n",
420 		 user_alpha2[0], user_alpha2[1]))
421 		return false;
422 
423 	return true;
424 }
425 
426 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428 {
429 	struct ieee80211_regdomain *regd;
430 	unsigned int i;
431 
432 	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
433 		       GFP_KERNEL);
434 	if (!regd)
435 		return ERR_PTR(-ENOMEM);
436 
437 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
438 
439 	for (i = 0; i < src_regd->n_reg_rules; i++)
440 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
441 		       sizeof(struct ieee80211_reg_rule));
442 
443 	return regd;
444 }
445 
cfg80211_save_user_regdom(const struct ieee80211_regdomain * rd)446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
447 {
448 	ASSERT_RTNL();
449 
450 	if (!IS_ERR(cfg80211_user_regdom))
451 		kfree(cfg80211_user_regdom);
452 	cfg80211_user_regdom = reg_copy_regd(rd);
453 }
454 
455 struct reg_regdb_apply_request {
456 	struct list_head list;
457 	const struct ieee80211_regdomain *regdom;
458 };
459 
460 static LIST_HEAD(reg_regdb_apply_list);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
462 
reg_regdb_apply(struct work_struct * work)463 static void reg_regdb_apply(struct work_struct *work)
464 {
465 	struct reg_regdb_apply_request *request;
466 
467 	rtnl_lock();
468 
469 	mutex_lock(&reg_regdb_apply_mutex);
470 	while (!list_empty(&reg_regdb_apply_list)) {
471 		request = list_first_entry(&reg_regdb_apply_list,
472 					   struct reg_regdb_apply_request,
473 					   list);
474 		list_del(&request->list);
475 
476 		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477 		kfree(request);
478 	}
479 	mutex_unlock(&reg_regdb_apply_mutex);
480 
481 	rtnl_unlock();
482 }
483 
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
485 
reg_schedule_apply(const struct ieee80211_regdomain * regdom)486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
487 {
488 	struct reg_regdb_apply_request *request;
489 
490 	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
491 	if (!request) {
492 		kfree(regdom);
493 		return -ENOMEM;
494 	}
495 
496 	request->regdom = regdom;
497 
498 	mutex_lock(&reg_regdb_apply_mutex);
499 	list_add_tail(&request->list, &reg_regdb_apply_list);
500 	mutex_unlock(&reg_regdb_apply_mutex);
501 
502 	schedule_work(&reg_regdb_work);
503 	return 0;
504 }
505 
506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
507 /* Max number of consecutive attempts to communicate with CRDA  */
508 #define REG_MAX_CRDA_TIMEOUTS 10
509 
510 static u32 reg_crda_timeouts;
511 
512 static void crda_timeout_work(struct work_struct *work);
513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
514 
crda_timeout_work(struct work_struct * work)515 static void crda_timeout_work(struct work_struct *work)
516 {
517 	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
518 	rtnl_lock();
519 	reg_crda_timeouts++;
520 	restore_regulatory_settings(true, false);
521 	rtnl_unlock();
522 }
523 
cancel_crda_timeout(void)524 static void cancel_crda_timeout(void)
525 {
526 	cancel_delayed_work(&crda_timeout);
527 }
528 
cancel_crda_timeout_sync(void)529 static void cancel_crda_timeout_sync(void)
530 {
531 	cancel_delayed_work_sync(&crda_timeout);
532 }
533 
reset_crda_timeouts(void)534 static void reset_crda_timeouts(void)
535 {
536 	reg_crda_timeouts = 0;
537 }
538 
539 /*
540  * This lets us keep regulatory code which is updated on a regulatory
541  * basis in userspace.
542  */
call_crda(const char * alpha2)543 static int call_crda(const char *alpha2)
544 {
545 	char country[12];
546 	char *env[] = { country, NULL };
547 	int ret;
548 
549 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
550 		 alpha2[0], alpha2[1]);
551 
552 	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
553 		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
554 		return -EINVAL;
555 	}
556 
557 	if (!is_world_regdom((char *) alpha2))
558 		pr_debug("Calling CRDA for country: %c%c\n",
559 			 alpha2[0], alpha2[1]);
560 	else
561 		pr_debug("Calling CRDA to update world regulatory domain\n");
562 
563 	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
564 	if (ret)
565 		return ret;
566 
567 	queue_delayed_work(system_power_efficient_wq,
568 			   &crda_timeout, msecs_to_jiffies(3142));
569 	return 0;
570 }
571 #else
cancel_crda_timeout(void)572 static inline void cancel_crda_timeout(void) {}
cancel_crda_timeout_sync(void)573 static inline void cancel_crda_timeout_sync(void) {}
reset_crda_timeouts(void)574 static inline void reset_crda_timeouts(void) {}
call_crda(const char * alpha2)575 static inline int call_crda(const char *alpha2)
576 {
577 	return -ENODATA;
578 }
579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
580 
581 /* code to directly load a firmware database through request_firmware */
582 static const struct fwdb_header *regdb;
583 
584 struct fwdb_country {
585 	u8 alpha2[2];
586 	__be16 coll_ptr;
587 	/* this struct cannot be extended */
588 } __packed __aligned(4);
589 
590 struct fwdb_collection {
591 	u8 len;
592 	u8 n_rules;
593 	u8 dfs_region;
594 	/* no optional data yet */
595 	/* aligned to 2, then followed by __be16 array of rule pointers */
596 } __packed __aligned(4);
597 
598 enum fwdb_flags {
599 	FWDB_FLAG_NO_OFDM	= BIT(0),
600 	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
601 	FWDB_FLAG_DFS		= BIT(2),
602 	FWDB_FLAG_NO_IR		= BIT(3),
603 	FWDB_FLAG_AUTO_BW	= BIT(4),
604 };
605 
606 struct fwdb_wmm_ac {
607 	u8 ecw;
608 	u8 aifsn;
609 	__be16 cot;
610 } __packed;
611 
612 struct fwdb_wmm_rule {
613 	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
614 	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
615 } __packed;
616 
617 struct fwdb_rule {
618 	u8 len;
619 	u8 flags;
620 	__be16 max_eirp;
621 	__be32 start, end, max_bw;
622 	/* start of optional data */
623 	__be16 cac_timeout;
624 	__be16 wmm_ptr;
625 } __packed __aligned(4);
626 
627 #define FWDB_MAGIC 0x52474442
628 #define FWDB_VERSION 20
629 
630 struct fwdb_header {
631 	__be32 magic;
632 	__be32 version;
633 	struct fwdb_country country[];
634 } __packed __aligned(4);
635 
ecw2cw(int ecw)636 static int ecw2cw(int ecw)
637 {
638 	return (1 << ecw) - 1;
639 }
640 
valid_wmm(struct fwdb_wmm_rule * rule)641 static bool valid_wmm(struct fwdb_wmm_rule *rule)
642 {
643 	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
644 	int i;
645 
646 	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
647 		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
648 		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
649 		u8 aifsn = ac[i].aifsn;
650 
651 		if (cw_min >= cw_max)
652 			return false;
653 
654 		if (aifsn < 1)
655 			return false;
656 	}
657 
658 	return true;
659 }
660 
valid_rule(const u8 * data,unsigned int size,u16 rule_ptr)661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
662 {
663 	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
664 
665 	if ((u8 *)rule + sizeof(rule->len) > data + size)
666 		return false;
667 
668 	/* mandatory fields */
669 	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
670 		return false;
671 	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
672 		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
673 		struct fwdb_wmm_rule *wmm;
674 
675 		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
676 			return false;
677 
678 		wmm = (void *)(data + wmm_ptr);
679 
680 		if (!valid_wmm(wmm))
681 			return false;
682 	}
683 	return true;
684 }
685 
valid_country(const u8 * data,unsigned int size,const struct fwdb_country * country)686 static bool valid_country(const u8 *data, unsigned int size,
687 			  const struct fwdb_country *country)
688 {
689 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
690 	struct fwdb_collection *coll = (void *)(data + ptr);
691 	__be16 *rules_ptr;
692 	unsigned int i;
693 
694 	/* make sure we can read len/n_rules */
695 	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
696 		return false;
697 
698 	/* make sure base struct and all rules fit */
699 	if ((u8 *)coll + ALIGN(coll->len, 2) +
700 	    (coll->n_rules * 2) > data + size)
701 		return false;
702 
703 	/* mandatory fields must exist */
704 	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
705 		return false;
706 
707 	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
708 
709 	for (i = 0; i < coll->n_rules; i++) {
710 		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
711 
712 		if (!valid_rule(data, size, rule_ptr))
713 			return false;
714 	}
715 
716 	return true;
717 }
718 
719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720 static struct key *builtin_regdb_keys;
721 
load_keys_from_buffer(const u8 * p,unsigned int buflen)722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
723 {
724 	const u8 *end = p + buflen;
725 	size_t plen;
726 	key_ref_t key;
727 
728 	while (p < end) {
729 		/* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730 		 * than 256 bytes in size.
731 		 */
732 		if (end - p < 4)
733 			goto dodgy_cert;
734 		if (p[0] != 0x30 &&
735 		    p[1] != 0x82)
736 			goto dodgy_cert;
737 		plen = (p[2] << 8) | p[3];
738 		plen += 4;
739 		if (plen > end - p)
740 			goto dodgy_cert;
741 
742 		key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
743 					   "asymmetric", NULL, p, plen,
744 					   ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
745 					    KEY_USR_VIEW | KEY_USR_READ),
746 					   KEY_ALLOC_NOT_IN_QUOTA |
747 					   KEY_ALLOC_BUILT_IN |
748 					   KEY_ALLOC_BYPASS_RESTRICTION);
749 		if (IS_ERR(key)) {
750 			pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
751 			       PTR_ERR(key));
752 		} else {
753 			pr_notice("Loaded X.509 cert '%s'\n",
754 				  key_ref_to_ptr(key)->description);
755 			key_ref_put(key);
756 		}
757 		p += plen;
758 	}
759 
760 	return;
761 
762 dodgy_cert:
763 	pr_err("Problem parsing in-kernel X.509 certificate list\n");
764 }
765 
load_builtin_regdb_keys(void)766 static int __init load_builtin_regdb_keys(void)
767 {
768 	builtin_regdb_keys =
769 		keyring_alloc(".builtin_regdb_keys",
770 			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
771 			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
772 			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
773 			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
774 	if (IS_ERR(builtin_regdb_keys))
775 		return PTR_ERR(builtin_regdb_keys);
776 
777 	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
778 
779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
780 	load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
781 #endif
782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
783 	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
784 		load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
785 #endif
786 
787 	return 0;
788 }
789 
regdb_has_valid_signature(const u8 * data,unsigned int size)790 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
791 {
792 	const struct firmware *sig;
793 	bool result;
794 
795 	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
796 		return false;
797 
798 	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
799 					builtin_regdb_keys,
800 					VERIFYING_UNSPECIFIED_SIGNATURE,
801 					NULL, NULL) == 0;
802 
803 	release_firmware(sig);
804 
805 	return result;
806 }
807 
free_regdb_keyring(void)808 static void free_regdb_keyring(void)
809 {
810 	key_put(builtin_regdb_keys);
811 }
812 #else
load_builtin_regdb_keys(void)813 static int load_builtin_regdb_keys(void)
814 {
815 	return 0;
816 }
817 
regdb_has_valid_signature(const u8 * data,unsigned int size)818 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
819 {
820 	return true;
821 }
822 
free_regdb_keyring(void)823 static void free_regdb_keyring(void)
824 {
825 }
826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
827 
valid_regdb(const u8 * data,unsigned int size)828 static bool valid_regdb(const u8 *data, unsigned int size)
829 {
830 	const struct fwdb_header *hdr = (void *)data;
831 	const struct fwdb_country *country;
832 
833 	if (size < sizeof(*hdr))
834 		return false;
835 
836 	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
837 		return false;
838 
839 	if (hdr->version != cpu_to_be32(FWDB_VERSION))
840 		return false;
841 
842 	if (!regdb_has_valid_signature(data, size))
843 		return false;
844 
845 	country = &hdr->country[0];
846 	while ((u8 *)(country + 1) <= data + size) {
847 		if (!country->coll_ptr)
848 			break;
849 		if (!valid_country(data, size, country))
850 			return false;
851 		country++;
852 	}
853 
854 	return true;
855 }
856 
set_wmm_rule(const struct fwdb_header * db,const struct fwdb_country * country,const struct fwdb_rule * rule,struct ieee80211_reg_rule * rrule)857 static void set_wmm_rule(const struct fwdb_header *db,
858 			 const struct fwdb_country *country,
859 			 const struct fwdb_rule *rule,
860 			 struct ieee80211_reg_rule *rrule)
861 {
862 	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
863 	struct fwdb_wmm_rule *wmm;
864 	unsigned int i, wmm_ptr;
865 
866 	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
867 	wmm = (void *)((u8 *)db + wmm_ptr);
868 
869 	if (!valid_wmm(wmm)) {
870 		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
871 		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
872 		       country->alpha2[0], country->alpha2[1]);
873 		return;
874 	}
875 
876 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
877 		wmm_rule->client[i].cw_min =
878 			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
879 		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
880 		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
881 		wmm_rule->client[i].cot =
882 			1000 * be16_to_cpu(wmm->client[i].cot);
883 		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
884 		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
885 		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
886 		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
887 	}
888 
889 	rrule->has_wmm = true;
890 }
891 
__regdb_query_wmm(const struct fwdb_header * db,const struct fwdb_country * country,int freq,struct ieee80211_reg_rule * rrule)892 static int __regdb_query_wmm(const struct fwdb_header *db,
893 			     const struct fwdb_country *country, int freq,
894 			     struct ieee80211_reg_rule *rrule)
895 {
896 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
897 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
898 	int i;
899 
900 	for (i = 0; i < coll->n_rules; i++) {
901 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
902 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
903 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
904 
905 		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
906 			continue;
907 
908 		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
909 		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
910 			set_wmm_rule(db, country, rule, rrule);
911 			return 0;
912 		}
913 	}
914 
915 	return -ENODATA;
916 }
917 
reg_query_regdb_wmm(char * alpha2,int freq,struct ieee80211_reg_rule * rule)918 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
919 {
920 	const struct fwdb_header *hdr = regdb;
921 	const struct fwdb_country *country;
922 
923 	if (!regdb)
924 		return -ENODATA;
925 
926 	if (IS_ERR(regdb))
927 		return PTR_ERR(regdb);
928 
929 	country = &hdr->country[0];
930 	while (country->coll_ptr) {
931 		if (alpha2_equal(alpha2, country->alpha2))
932 			return __regdb_query_wmm(regdb, country, freq, rule);
933 
934 		country++;
935 	}
936 
937 	return -ENODATA;
938 }
939 EXPORT_SYMBOL(reg_query_regdb_wmm);
940 
regdb_query_country(const struct fwdb_header * db,const struct fwdb_country * country)941 static int regdb_query_country(const struct fwdb_header *db,
942 			       const struct fwdb_country *country)
943 {
944 	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
945 	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
946 	struct ieee80211_regdomain *regdom;
947 	unsigned int i;
948 
949 	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
950 			 GFP_KERNEL);
951 	if (!regdom)
952 		return -ENOMEM;
953 
954 	regdom->n_reg_rules = coll->n_rules;
955 	regdom->alpha2[0] = country->alpha2[0];
956 	regdom->alpha2[1] = country->alpha2[1];
957 	regdom->dfs_region = coll->dfs_region;
958 
959 	for (i = 0; i < regdom->n_reg_rules; i++) {
960 		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
961 		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
962 		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
963 		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
964 
965 		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
966 		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
967 		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
968 
969 		rrule->power_rule.max_antenna_gain = 0;
970 		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
971 
972 		rrule->flags = 0;
973 		if (rule->flags & FWDB_FLAG_NO_OFDM)
974 			rrule->flags |= NL80211_RRF_NO_OFDM;
975 		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
976 			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
977 		if (rule->flags & FWDB_FLAG_DFS)
978 			rrule->flags |= NL80211_RRF_DFS;
979 		if (rule->flags & FWDB_FLAG_NO_IR)
980 			rrule->flags |= NL80211_RRF_NO_IR;
981 		if (rule->flags & FWDB_FLAG_AUTO_BW)
982 			rrule->flags |= NL80211_RRF_AUTO_BW;
983 
984 		rrule->dfs_cac_ms = 0;
985 
986 		/* handle optional data */
987 		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
988 			rrule->dfs_cac_ms =
989 				1000 * be16_to_cpu(rule->cac_timeout);
990 		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
991 			set_wmm_rule(db, country, rule, rrule);
992 	}
993 
994 	return reg_schedule_apply(regdom);
995 }
996 
query_regdb(const char * alpha2)997 static int query_regdb(const char *alpha2)
998 {
999 	const struct fwdb_header *hdr = regdb;
1000 	const struct fwdb_country *country;
1001 
1002 	ASSERT_RTNL();
1003 
1004 	if (IS_ERR(regdb))
1005 		return PTR_ERR(regdb);
1006 
1007 	country = &hdr->country[0];
1008 	while (country->coll_ptr) {
1009 		if (alpha2_equal(alpha2, country->alpha2))
1010 			return regdb_query_country(regdb, country);
1011 		country++;
1012 	}
1013 
1014 	return -ENODATA;
1015 }
1016 
regdb_fw_cb(const struct firmware * fw,void * context)1017 static void regdb_fw_cb(const struct firmware *fw, void *context)
1018 {
1019 	int set_error = 0;
1020 	bool restore = true;
1021 	void *db;
1022 
1023 	if (!fw) {
1024 		pr_info("failed to load regulatory.db\n");
1025 		set_error = -ENODATA;
1026 	} else if (!valid_regdb(fw->data, fw->size)) {
1027 		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1028 		set_error = -EINVAL;
1029 	}
1030 
1031 	rtnl_lock();
1032 	if (regdb && !IS_ERR(regdb)) {
1033 		/* negative case - a bug
1034 		 * positive case - can happen due to race in case of multiple cb's in
1035 		 * queue, due to usage of asynchronous callback
1036 		 *
1037 		 * Either case, just restore and free new db.
1038 		 */
1039 	} else if (set_error) {
1040 		regdb = ERR_PTR(set_error);
1041 	} else if (fw) {
1042 		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1043 		if (db) {
1044 			regdb = db;
1045 			restore = context && query_regdb(context);
1046 		} else {
1047 			restore = true;
1048 		}
1049 	}
1050 
1051 	if (restore)
1052 		restore_regulatory_settings(true, false);
1053 
1054 	rtnl_unlock();
1055 
1056 	kfree(context);
1057 
1058 	release_firmware(fw);
1059 }
1060 
query_regdb_file(const char * alpha2)1061 static int query_regdb_file(const char *alpha2)
1062 {
1063 	int err;
1064 
1065 	ASSERT_RTNL();
1066 
1067 	if (regdb)
1068 		return query_regdb(alpha2);
1069 
1070 	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1071 	if (!alpha2)
1072 		return -ENOMEM;
1073 
1074 	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1075 				      &reg_pdev->dev, GFP_KERNEL,
1076 				      (void *)alpha2, regdb_fw_cb);
1077 	if (err)
1078 		kfree(alpha2);
1079 
1080 	return err;
1081 }
1082 
reg_reload_regdb(void)1083 int reg_reload_regdb(void)
1084 {
1085 	const struct firmware *fw;
1086 	void *db;
1087 	int err;
1088 
1089 	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1090 	if (err)
1091 		return err;
1092 
1093 	if (!valid_regdb(fw->data, fw->size)) {
1094 		err = -ENODATA;
1095 		goto out;
1096 	}
1097 
1098 	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1099 	if (!db) {
1100 		err = -ENOMEM;
1101 		goto out;
1102 	}
1103 
1104 	rtnl_lock();
1105 	if (!IS_ERR_OR_NULL(regdb))
1106 		kfree(regdb);
1107 	regdb = db;
1108 	rtnl_unlock();
1109 
1110  out:
1111 	release_firmware(fw);
1112 	return err;
1113 }
1114 
reg_query_database(struct regulatory_request * request)1115 static bool reg_query_database(struct regulatory_request *request)
1116 {
1117 	if (query_regdb_file(request->alpha2) == 0)
1118 		return true;
1119 
1120 	if (call_crda(request->alpha2) == 0)
1121 		return true;
1122 
1123 	return false;
1124 }
1125 
reg_is_valid_request(const char * alpha2)1126 bool reg_is_valid_request(const char *alpha2)
1127 {
1128 	struct regulatory_request *lr = get_last_request();
1129 
1130 	if (!lr || lr->processed)
1131 		return false;
1132 
1133 	return alpha2_equal(lr->alpha2, alpha2);
1134 }
1135 
reg_get_regdomain(struct wiphy * wiphy)1136 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1137 {
1138 	struct regulatory_request *lr = get_last_request();
1139 
1140 	/*
1141 	 * Follow the driver's regulatory domain, if present, unless a country
1142 	 * IE has been processed or a user wants to help complaince further
1143 	 */
1144 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1145 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1146 	    wiphy->regd)
1147 		return get_wiphy_regdom(wiphy);
1148 
1149 	return get_cfg80211_regdom();
1150 }
1151 
1152 static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1153 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1154 				 const struct ieee80211_reg_rule *rule)
1155 {
1156 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1157 	const struct ieee80211_freq_range *freq_range_tmp;
1158 	const struct ieee80211_reg_rule *tmp;
1159 	u32 start_freq, end_freq, idx, no;
1160 
1161 	for (idx = 0; idx < rd->n_reg_rules; idx++)
1162 		if (rule == &rd->reg_rules[idx])
1163 			break;
1164 
1165 	if (idx == rd->n_reg_rules)
1166 		return 0;
1167 
1168 	/* get start_freq */
1169 	no = idx;
1170 
1171 	while (no) {
1172 		tmp = &rd->reg_rules[--no];
1173 		freq_range_tmp = &tmp->freq_range;
1174 
1175 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1176 			break;
1177 
1178 		freq_range = freq_range_tmp;
1179 	}
1180 
1181 	start_freq = freq_range->start_freq_khz;
1182 
1183 	/* get end_freq */
1184 	freq_range = &rule->freq_range;
1185 	no = idx;
1186 
1187 	while (no < rd->n_reg_rules - 1) {
1188 		tmp = &rd->reg_rules[++no];
1189 		freq_range_tmp = &tmp->freq_range;
1190 
1191 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1192 			break;
1193 
1194 		freq_range = freq_range_tmp;
1195 	}
1196 
1197 	end_freq = freq_range->end_freq_khz;
1198 
1199 	return end_freq - start_freq;
1200 }
1201 
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1202 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1203 				   const struct ieee80211_reg_rule *rule)
1204 {
1205 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1206 
1207 	if (rule->flags & NL80211_RRF_NO_160MHZ)
1208 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1209 	if (rule->flags & NL80211_RRF_NO_80MHZ)
1210 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1211 
1212 	/*
1213 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1214 	 * are not allowed.
1215 	 */
1216 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1217 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1218 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1219 
1220 	return bw;
1221 }
1222 
1223 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)1224 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1225 {
1226 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1227 	u32 freq_diff;
1228 
1229 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1230 		return false;
1231 
1232 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1233 		return false;
1234 
1235 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1236 
1237 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1238 	    freq_range->max_bandwidth_khz > freq_diff)
1239 		return false;
1240 
1241 	return true;
1242 }
1243 
is_valid_rd(const struct ieee80211_regdomain * rd)1244 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1245 {
1246 	const struct ieee80211_reg_rule *reg_rule = NULL;
1247 	unsigned int i;
1248 
1249 	if (!rd->n_reg_rules)
1250 		return false;
1251 
1252 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1253 		return false;
1254 
1255 	for (i = 0; i < rd->n_reg_rules; i++) {
1256 		reg_rule = &rd->reg_rules[i];
1257 		if (!is_valid_reg_rule(reg_rule))
1258 			return false;
1259 	}
1260 
1261 	return true;
1262 }
1263 
1264 /**
1265  * freq_in_rule_band - tells us if a frequency is in a frequency band
1266  * @freq_range: frequency rule we want to query
1267  * @freq_khz: frequency we are inquiring about
1268  *
1269  * This lets us know if a specific frequency rule is or is not relevant to
1270  * a specific frequency's band. Bands are device specific and artificial
1271  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1272  * however it is safe for now to assume that a frequency rule should not be
1273  * part of a frequency's band if the start freq or end freq are off by more
1274  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1275  * 60 GHz band.
1276  * This resolution can be lowered and should be considered as we add
1277  * regulatory rule support for other "bands".
1278  **/
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)1279 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1280 			      u32 freq_khz)
1281 {
1282 #define ONE_GHZ_IN_KHZ	1000000
1283 	/*
1284 	 * From 802.11ad: directional multi-gigabit (DMG):
1285 	 * Pertaining to operation in a frequency band containing a channel
1286 	 * with the Channel starting frequency above 45 GHz.
1287 	 */
1288 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1289 			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1290 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1291 		return true;
1292 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1293 		return true;
1294 	return false;
1295 #undef ONE_GHZ_IN_KHZ
1296 }
1297 
1298 /*
1299  * Later on we can perhaps use the more restrictive DFS
1300  * region but we don't have information for that yet so
1301  * for now simply disallow conflicts.
1302  */
1303 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)1304 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1305 			 const enum nl80211_dfs_regions dfs_region2)
1306 {
1307 	if (dfs_region1 != dfs_region2)
1308 		return NL80211_DFS_UNSET;
1309 	return dfs_region1;
1310 }
1311 
reg_wmm_rules_intersect(const struct ieee80211_wmm_ac * wmm_ac1,const struct ieee80211_wmm_ac * wmm_ac2,struct ieee80211_wmm_ac * intersect)1312 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1313 				    const struct ieee80211_wmm_ac *wmm_ac2,
1314 				    struct ieee80211_wmm_ac *intersect)
1315 {
1316 	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1317 	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1318 	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1319 	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1320 }
1321 
1322 /*
1323  * Helper for regdom_intersect(), this does the real
1324  * mathematical intersection fun
1325  */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)1326 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1327 			       const struct ieee80211_regdomain *rd2,
1328 			       const struct ieee80211_reg_rule *rule1,
1329 			       const struct ieee80211_reg_rule *rule2,
1330 			       struct ieee80211_reg_rule *intersected_rule)
1331 {
1332 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1333 	struct ieee80211_freq_range *freq_range;
1334 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1335 	struct ieee80211_power_rule *power_rule;
1336 	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1337 	struct ieee80211_wmm_rule *wmm_rule;
1338 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1339 
1340 	freq_range1 = &rule1->freq_range;
1341 	freq_range2 = &rule2->freq_range;
1342 	freq_range = &intersected_rule->freq_range;
1343 
1344 	power_rule1 = &rule1->power_rule;
1345 	power_rule2 = &rule2->power_rule;
1346 	power_rule = &intersected_rule->power_rule;
1347 
1348 	wmm_rule1 = &rule1->wmm_rule;
1349 	wmm_rule2 = &rule2->wmm_rule;
1350 	wmm_rule = &intersected_rule->wmm_rule;
1351 
1352 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1353 					 freq_range2->start_freq_khz);
1354 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1355 				       freq_range2->end_freq_khz);
1356 
1357 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1358 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1359 
1360 	if (rule1->flags & NL80211_RRF_AUTO_BW)
1361 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1362 	if (rule2->flags & NL80211_RRF_AUTO_BW)
1363 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1364 
1365 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1366 
1367 	intersected_rule->flags = rule1->flags | rule2->flags;
1368 
1369 	/*
1370 	 * In case NL80211_RRF_AUTO_BW requested for both rules
1371 	 * set AUTO_BW in intersected rule also. Next we will
1372 	 * calculate BW correctly in handle_channel function.
1373 	 * In other case remove AUTO_BW flag while we calculate
1374 	 * maximum bandwidth correctly and auto calculation is
1375 	 * not required.
1376 	 */
1377 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1378 	    (rule2->flags & NL80211_RRF_AUTO_BW))
1379 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1380 	else
1381 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1382 
1383 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1384 	if (freq_range->max_bandwidth_khz > freq_diff)
1385 		freq_range->max_bandwidth_khz = freq_diff;
1386 
1387 	power_rule->max_eirp = min(power_rule1->max_eirp,
1388 		power_rule2->max_eirp);
1389 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1390 		power_rule2->max_antenna_gain);
1391 
1392 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1393 					   rule2->dfs_cac_ms);
1394 
1395 	if (rule1->has_wmm && rule2->has_wmm) {
1396 		u8 ac;
1397 
1398 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1399 			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1400 						&wmm_rule2->client[ac],
1401 						&wmm_rule->client[ac]);
1402 			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1403 						&wmm_rule2->ap[ac],
1404 						&wmm_rule->ap[ac]);
1405 		}
1406 
1407 		intersected_rule->has_wmm = true;
1408 	} else if (rule1->has_wmm) {
1409 		*wmm_rule = *wmm_rule1;
1410 		intersected_rule->has_wmm = true;
1411 	} else if (rule2->has_wmm) {
1412 		*wmm_rule = *wmm_rule2;
1413 		intersected_rule->has_wmm = true;
1414 	} else {
1415 		intersected_rule->has_wmm = false;
1416 	}
1417 
1418 	if (!is_valid_reg_rule(intersected_rule))
1419 		return -EINVAL;
1420 
1421 	return 0;
1422 }
1423 
1424 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)1425 static bool rule_contains(struct ieee80211_reg_rule *r1,
1426 			  struct ieee80211_reg_rule *r2)
1427 {
1428 	/* for simplicity, currently consider only same flags */
1429 	if (r1->flags != r2->flags)
1430 		return false;
1431 
1432 	/* verify r1 is more restrictive */
1433 	if ((r1->power_rule.max_antenna_gain >
1434 	     r2->power_rule.max_antenna_gain) ||
1435 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1436 		return false;
1437 
1438 	/* make sure r2's range is contained within r1 */
1439 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1440 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1441 		return false;
1442 
1443 	/* and finally verify that r1.max_bw >= r2.max_bw */
1444 	if (r1->freq_range.max_bandwidth_khz <
1445 	    r2->freq_range.max_bandwidth_khz)
1446 		return false;
1447 
1448 	return true;
1449 }
1450 
1451 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)1452 static void add_rule(struct ieee80211_reg_rule *rule,
1453 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1454 {
1455 	struct ieee80211_reg_rule *tmp_rule;
1456 	int i;
1457 
1458 	for (i = 0; i < *n_rules; i++) {
1459 		tmp_rule = &reg_rules[i];
1460 		/* rule is already contained - do nothing */
1461 		if (rule_contains(tmp_rule, rule))
1462 			return;
1463 
1464 		/* extend rule if possible */
1465 		if (rule_contains(rule, tmp_rule)) {
1466 			memcpy(tmp_rule, rule, sizeof(*rule));
1467 			return;
1468 		}
1469 	}
1470 
1471 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1472 	(*n_rules)++;
1473 }
1474 
1475 /**
1476  * regdom_intersect - do the intersection between two regulatory domains
1477  * @rd1: first regulatory domain
1478  * @rd2: second regulatory domain
1479  *
1480  * Use this function to get the intersection between two regulatory domains.
1481  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1482  * as no one single alpha2 can represent this regulatory domain.
1483  *
1484  * Returns a pointer to the regulatory domain structure which will hold the
1485  * resulting intersection of rules between rd1 and rd2. We will
1486  * kzalloc() this structure for you.
1487  */
1488 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)1489 regdom_intersect(const struct ieee80211_regdomain *rd1,
1490 		 const struct ieee80211_regdomain *rd2)
1491 {
1492 	int r;
1493 	unsigned int x, y;
1494 	unsigned int num_rules = 0;
1495 	const struct ieee80211_reg_rule *rule1, *rule2;
1496 	struct ieee80211_reg_rule intersected_rule;
1497 	struct ieee80211_regdomain *rd;
1498 
1499 	if (!rd1 || !rd2)
1500 		return NULL;
1501 
1502 	/*
1503 	 * First we get a count of the rules we'll need, then we actually
1504 	 * build them. This is to so we can malloc() and free() a
1505 	 * regdomain once. The reason we use reg_rules_intersect() here
1506 	 * is it will return -EINVAL if the rule computed makes no sense.
1507 	 * All rules that do check out OK are valid.
1508 	 */
1509 
1510 	for (x = 0; x < rd1->n_reg_rules; x++) {
1511 		rule1 = &rd1->reg_rules[x];
1512 		for (y = 0; y < rd2->n_reg_rules; y++) {
1513 			rule2 = &rd2->reg_rules[y];
1514 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1515 						 &intersected_rule))
1516 				num_rules++;
1517 		}
1518 	}
1519 
1520 	if (!num_rules)
1521 		return NULL;
1522 
1523 	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1524 	if (!rd)
1525 		return NULL;
1526 
1527 	for (x = 0; x < rd1->n_reg_rules; x++) {
1528 		rule1 = &rd1->reg_rules[x];
1529 		for (y = 0; y < rd2->n_reg_rules; y++) {
1530 			rule2 = &rd2->reg_rules[y];
1531 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1532 						&intersected_rule);
1533 			/*
1534 			 * No need to memset here the intersected rule here as
1535 			 * we're not using the stack anymore
1536 			 */
1537 			if (r)
1538 				continue;
1539 
1540 			add_rule(&intersected_rule, rd->reg_rules,
1541 				 &rd->n_reg_rules);
1542 		}
1543 	}
1544 
1545 	rd->alpha2[0] = '9';
1546 	rd->alpha2[1] = '8';
1547 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1548 						  rd2->dfs_region);
1549 
1550 	return rd;
1551 }
1552 
1553 /*
1554  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1555  * want to just have the channel structure use these
1556  */
map_regdom_flags(u32 rd_flags)1557 static u32 map_regdom_flags(u32 rd_flags)
1558 {
1559 	u32 channel_flags = 0;
1560 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1561 		channel_flags |= IEEE80211_CHAN_NO_IR;
1562 	if (rd_flags & NL80211_RRF_DFS)
1563 		channel_flags |= IEEE80211_CHAN_RADAR;
1564 	if (rd_flags & NL80211_RRF_NO_OFDM)
1565 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1566 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1567 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1568 	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1569 		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1570 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1571 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1572 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1573 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1574 	if (rd_flags & NL80211_RRF_NO_80MHZ)
1575 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1576 	if (rd_flags & NL80211_RRF_NO_160MHZ)
1577 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1578 	return channel_flags;
1579 }
1580 
1581 static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,const struct ieee80211_regdomain * regd,u32 bw)1582 freq_reg_info_regd(u32 center_freq,
1583 		   const struct ieee80211_regdomain *regd, u32 bw)
1584 {
1585 	int i;
1586 	bool band_rule_found = false;
1587 	bool bw_fits = false;
1588 
1589 	if (!regd)
1590 		return ERR_PTR(-EINVAL);
1591 
1592 	for (i = 0; i < regd->n_reg_rules; i++) {
1593 		const struct ieee80211_reg_rule *rr;
1594 		const struct ieee80211_freq_range *fr = NULL;
1595 
1596 		rr = &regd->reg_rules[i];
1597 		fr = &rr->freq_range;
1598 
1599 		/*
1600 		 * We only need to know if one frequency rule was
1601 		 * was in center_freq's band, that's enough, so lets
1602 		 * not overwrite it once found
1603 		 */
1604 		if (!band_rule_found)
1605 			band_rule_found = freq_in_rule_band(fr, center_freq);
1606 
1607 		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1608 
1609 		if (band_rule_found && bw_fits)
1610 			return rr;
1611 	}
1612 
1613 	if (!band_rule_found)
1614 		return ERR_PTR(-ERANGE);
1615 
1616 	return ERR_PTR(-EINVAL);
1617 }
1618 
1619 static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 min_bw)1620 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1621 {
1622 	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1623 	const struct ieee80211_reg_rule *reg_rule = NULL;
1624 	u32 bw;
1625 
1626 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1627 		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1628 		if (!IS_ERR(reg_rule))
1629 			return reg_rule;
1630 	}
1631 
1632 	return reg_rule;
1633 }
1634 
freq_reg_info(struct wiphy * wiphy,u32 center_freq)1635 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1636 					       u32 center_freq)
1637 {
1638 	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1639 }
1640 EXPORT_SYMBOL(freq_reg_info);
1641 
reg_initiator_name(enum nl80211_reg_initiator initiator)1642 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1643 {
1644 	switch (initiator) {
1645 	case NL80211_REGDOM_SET_BY_CORE:
1646 		return "core";
1647 	case NL80211_REGDOM_SET_BY_USER:
1648 		return "user";
1649 	case NL80211_REGDOM_SET_BY_DRIVER:
1650 		return "driver";
1651 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1652 		return "country element";
1653 	default:
1654 		WARN_ON(1);
1655 		return "bug";
1656 	}
1657 }
1658 EXPORT_SYMBOL(reg_initiator_name);
1659 
reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain * regd,const struct ieee80211_reg_rule * reg_rule,const struct ieee80211_channel * chan)1660 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1661 					  const struct ieee80211_reg_rule *reg_rule,
1662 					  const struct ieee80211_channel *chan)
1663 {
1664 	const struct ieee80211_freq_range *freq_range = NULL;
1665 	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1666 
1667 	freq_range = &reg_rule->freq_range;
1668 
1669 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1670 	center_freq_khz = ieee80211_channel_to_khz(chan);
1671 	/* Check if auto calculation requested */
1672 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1673 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1674 
1675 	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1676 	if (!cfg80211_does_bw_fit_range(freq_range,
1677 					center_freq_khz,
1678 					MHZ_TO_KHZ(10)))
1679 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1680 	if (!cfg80211_does_bw_fit_range(freq_range,
1681 					center_freq_khz,
1682 					MHZ_TO_KHZ(20)))
1683 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1684 
1685 	if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1686 		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1687 	if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1688 		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1689 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1690 		bw_flags |= IEEE80211_CHAN_NO_HT40;
1691 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1692 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1693 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1694 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1695 	return bw_flags;
1696 }
1697 
1698 /*
1699  * Note that right now we assume the desired channel bandwidth
1700  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1701  * per channel, the primary and the extension channel).
1702  */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1703 static void handle_channel(struct wiphy *wiphy,
1704 			   enum nl80211_reg_initiator initiator,
1705 			   struct ieee80211_channel *chan)
1706 {
1707 	u32 flags, bw_flags = 0;
1708 	const struct ieee80211_reg_rule *reg_rule = NULL;
1709 	const struct ieee80211_power_rule *power_rule = NULL;
1710 	struct wiphy *request_wiphy = NULL;
1711 	struct regulatory_request *lr = get_last_request();
1712 	const struct ieee80211_regdomain *regd;
1713 
1714 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1715 
1716 	flags = chan->orig_flags;
1717 
1718 	reg_rule = freq_reg_info(wiphy, ieee80211_channel_to_khz(chan));
1719 	if (IS_ERR(reg_rule)) {
1720 		/*
1721 		 * We will disable all channels that do not match our
1722 		 * received regulatory rule unless the hint is coming
1723 		 * from a Country IE and the Country IE had no information
1724 		 * about a band. The IEEE 802.11 spec allows for an AP
1725 		 * to send only a subset of the regulatory rules allowed,
1726 		 * so an AP in the US that only supports 2.4 GHz may only send
1727 		 * a country IE with information for the 2.4 GHz band
1728 		 * while 5 GHz is still supported.
1729 		 */
1730 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1731 		    PTR_ERR(reg_rule) == -ERANGE)
1732 			return;
1733 
1734 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1735 		    request_wiphy && request_wiphy == wiphy &&
1736 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1737 			pr_debug("Disabling freq %d.%03d MHz for good\n",
1738 				 chan->center_freq, chan->freq_offset);
1739 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1740 			chan->flags = chan->orig_flags;
1741 		} else {
1742 			pr_debug("Disabling freq %d.%03d MHz\n",
1743 				 chan->center_freq, chan->freq_offset);
1744 			chan->flags |= IEEE80211_CHAN_DISABLED;
1745 		}
1746 		return;
1747 	}
1748 
1749 	regd = reg_get_regdomain(wiphy);
1750 
1751 	power_rule = &reg_rule->power_rule;
1752 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1753 
1754 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1755 	    request_wiphy && request_wiphy == wiphy &&
1756 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1757 		/*
1758 		 * This guarantees the driver's requested regulatory domain
1759 		 * will always be used as a base for further regulatory
1760 		 * settings
1761 		 */
1762 		chan->flags = chan->orig_flags =
1763 			map_regdom_flags(reg_rule->flags) | bw_flags;
1764 		chan->max_antenna_gain = chan->orig_mag =
1765 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1766 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1767 			(int) MBM_TO_DBM(power_rule->max_eirp);
1768 
1769 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1770 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1771 			if (reg_rule->dfs_cac_ms)
1772 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1773 		}
1774 
1775 		return;
1776 	}
1777 
1778 	chan->dfs_state = NL80211_DFS_USABLE;
1779 	chan->dfs_state_entered = jiffies;
1780 
1781 	chan->beacon_found = false;
1782 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1783 	chan->max_antenna_gain =
1784 		min_t(int, chan->orig_mag,
1785 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1786 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1787 
1788 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1789 		if (reg_rule->dfs_cac_ms)
1790 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1791 		else
1792 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1793 	}
1794 
1795 	if (chan->orig_mpwr) {
1796 		/*
1797 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1798 		 * will always follow the passed country IE power settings.
1799 		 */
1800 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1801 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1802 			chan->max_power = chan->max_reg_power;
1803 		else
1804 			chan->max_power = min(chan->orig_mpwr,
1805 					      chan->max_reg_power);
1806 	} else
1807 		chan->max_power = chan->max_reg_power;
1808 }
1809 
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)1810 static void handle_band(struct wiphy *wiphy,
1811 			enum nl80211_reg_initiator initiator,
1812 			struct ieee80211_supported_band *sband)
1813 {
1814 	unsigned int i;
1815 
1816 	if (!sband)
1817 		return;
1818 
1819 	for (i = 0; i < sband->n_channels; i++)
1820 		handle_channel(wiphy, initiator, &sband->channels[i]);
1821 }
1822 
reg_request_cell_base(struct regulatory_request * request)1823 static bool reg_request_cell_base(struct regulatory_request *request)
1824 {
1825 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1826 		return false;
1827 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1828 }
1829 
reg_last_request_cell_base(void)1830 bool reg_last_request_cell_base(void)
1831 {
1832 	return reg_request_cell_base(get_last_request());
1833 }
1834 
1835 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1836 /* Core specific check */
1837 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)1838 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1839 {
1840 	struct regulatory_request *lr = get_last_request();
1841 
1842 	if (!reg_num_devs_support_basehint)
1843 		return REG_REQ_IGNORE;
1844 
1845 	if (reg_request_cell_base(lr) &&
1846 	    !regdom_changes(pending_request->alpha2))
1847 		return REG_REQ_ALREADY_SET;
1848 
1849 	return REG_REQ_OK;
1850 }
1851 
1852 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)1853 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1854 {
1855 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1856 }
1857 #else
1858 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)1859 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1860 {
1861 	return REG_REQ_IGNORE;
1862 }
1863 
reg_dev_ignore_cell_hint(struct wiphy * wiphy)1864 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1865 {
1866 	return true;
1867 }
1868 #endif
1869 
wiphy_strict_alpha2_regd(struct wiphy * wiphy)1870 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1871 {
1872 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1873 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1874 		return true;
1875 	return false;
1876 }
1877 
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)1878 static bool ignore_reg_update(struct wiphy *wiphy,
1879 			      enum nl80211_reg_initiator initiator)
1880 {
1881 	struct regulatory_request *lr = get_last_request();
1882 
1883 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1884 		return true;
1885 
1886 	if (!lr) {
1887 		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1888 			 reg_initiator_name(initiator));
1889 		return true;
1890 	}
1891 
1892 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1893 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1894 		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1895 			 reg_initiator_name(initiator));
1896 		return true;
1897 	}
1898 
1899 	/*
1900 	 * wiphy->regd will be set once the device has its own
1901 	 * desired regulatory domain set
1902 	 */
1903 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1904 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1905 	    !is_world_regdom(lr->alpha2)) {
1906 		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1907 			 reg_initiator_name(initiator));
1908 		return true;
1909 	}
1910 
1911 	if (reg_request_cell_base(lr))
1912 		return reg_dev_ignore_cell_hint(wiphy);
1913 
1914 	return false;
1915 }
1916 
reg_is_world_roaming(struct wiphy * wiphy)1917 static bool reg_is_world_roaming(struct wiphy *wiphy)
1918 {
1919 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1920 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1921 	struct regulatory_request *lr = get_last_request();
1922 
1923 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1924 		return true;
1925 
1926 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1927 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1928 		return true;
1929 
1930 	return false;
1931 }
1932 
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)1933 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1934 			      struct reg_beacon *reg_beacon)
1935 {
1936 	struct ieee80211_supported_band *sband;
1937 	struct ieee80211_channel *chan;
1938 	bool channel_changed = false;
1939 	struct ieee80211_channel chan_before;
1940 
1941 	sband = wiphy->bands[reg_beacon->chan.band];
1942 	chan = &sband->channels[chan_idx];
1943 
1944 	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
1945 		return;
1946 
1947 	if (chan->beacon_found)
1948 		return;
1949 
1950 	chan->beacon_found = true;
1951 
1952 	if (!reg_is_world_roaming(wiphy))
1953 		return;
1954 
1955 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1956 		return;
1957 
1958 	chan_before = *chan;
1959 
1960 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1961 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1962 		channel_changed = true;
1963 	}
1964 
1965 	if (channel_changed)
1966 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1967 }
1968 
1969 /*
1970  * Called when a scan on a wiphy finds a beacon on
1971  * new channel
1972  */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)1973 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1974 				    struct reg_beacon *reg_beacon)
1975 {
1976 	unsigned int i;
1977 	struct ieee80211_supported_band *sband;
1978 
1979 	if (!wiphy->bands[reg_beacon->chan.band])
1980 		return;
1981 
1982 	sband = wiphy->bands[reg_beacon->chan.band];
1983 
1984 	for (i = 0; i < sband->n_channels; i++)
1985 		handle_reg_beacon(wiphy, i, reg_beacon);
1986 }
1987 
1988 /*
1989  * Called upon reg changes or a new wiphy is added
1990  */
wiphy_update_beacon_reg(struct wiphy * wiphy)1991 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1992 {
1993 	unsigned int i;
1994 	struct ieee80211_supported_band *sband;
1995 	struct reg_beacon *reg_beacon;
1996 
1997 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1998 		if (!wiphy->bands[reg_beacon->chan.band])
1999 			continue;
2000 		sband = wiphy->bands[reg_beacon->chan.band];
2001 		for (i = 0; i < sband->n_channels; i++)
2002 			handle_reg_beacon(wiphy, i, reg_beacon);
2003 	}
2004 }
2005 
2006 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)2007 static void reg_process_beacons(struct wiphy *wiphy)
2008 {
2009 	/*
2010 	 * Means we are just firing up cfg80211, so no beacons would
2011 	 * have been processed yet.
2012 	 */
2013 	if (!last_request)
2014 		return;
2015 	wiphy_update_beacon_reg(wiphy);
2016 }
2017 
is_ht40_allowed(struct ieee80211_channel * chan)2018 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2019 {
2020 	if (!chan)
2021 		return false;
2022 	if (chan->flags & IEEE80211_CHAN_DISABLED)
2023 		return false;
2024 	/* This would happen when regulatory rules disallow HT40 completely */
2025 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2026 		return false;
2027 	return true;
2028 }
2029 
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)2030 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2031 					 struct ieee80211_channel *channel)
2032 {
2033 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2034 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2035 	const struct ieee80211_regdomain *regd;
2036 	unsigned int i;
2037 	u32 flags;
2038 
2039 	if (!is_ht40_allowed(channel)) {
2040 		channel->flags |= IEEE80211_CHAN_NO_HT40;
2041 		return;
2042 	}
2043 
2044 	/*
2045 	 * We need to ensure the extension channels exist to
2046 	 * be able to use HT40- or HT40+, this finds them (or not)
2047 	 */
2048 	for (i = 0; i < sband->n_channels; i++) {
2049 		struct ieee80211_channel *c = &sband->channels[i];
2050 
2051 		if (c->center_freq == (channel->center_freq - 20))
2052 			channel_before = c;
2053 		if (c->center_freq == (channel->center_freq + 20))
2054 			channel_after = c;
2055 	}
2056 
2057 	flags = 0;
2058 	regd = get_wiphy_regdom(wiphy);
2059 	if (regd) {
2060 		const struct ieee80211_reg_rule *reg_rule =
2061 			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2062 					   regd, MHZ_TO_KHZ(20));
2063 
2064 		if (!IS_ERR(reg_rule))
2065 			flags = reg_rule->flags;
2066 	}
2067 
2068 	/*
2069 	 * Please note that this assumes target bandwidth is 20 MHz,
2070 	 * if that ever changes we also need to change the below logic
2071 	 * to include that as well.
2072 	 */
2073 	if (!is_ht40_allowed(channel_before) ||
2074 	    flags & NL80211_RRF_NO_HT40MINUS)
2075 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2076 	else
2077 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2078 
2079 	if (!is_ht40_allowed(channel_after) ||
2080 	    flags & NL80211_RRF_NO_HT40PLUS)
2081 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2082 	else
2083 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2084 }
2085 
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)2086 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2087 				      struct ieee80211_supported_band *sband)
2088 {
2089 	unsigned int i;
2090 
2091 	if (!sband)
2092 		return;
2093 
2094 	for (i = 0; i < sband->n_channels; i++)
2095 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2096 }
2097 
reg_process_ht_flags(struct wiphy * wiphy)2098 static void reg_process_ht_flags(struct wiphy *wiphy)
2099 {
2100 	enum nl80211_band band;
2101 
2102 	if (!wiphy)
2103 		return;
2104 
2105 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2106 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2107 }
2108 
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)2109 static void reg_call_notifier(struct wiphy *wiphy,
2110 			      struct regulatory_request *request)
2111 {
2112 	if (wiphy->reg_notifier)
2113 		wiphy->reg_notifier(wiphy, request);
2114 }
2115 
reg_wdev_chan_valid(struct wiphy * wiphy,struct wireless_dev * wdev)2116 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2117 {
2118 	struct cfg80211_chan_def chandef = {};
2119 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2120 	enum nl80211_iftype iftype;
2121 
2122 	wdev_lock(wdev);
2123 	iftype = wdev->iftype;
2124 
2125 	/* make sure the interface is active */
2126 	if (!wdev->netdev || !netif_running(wdev->netdev))
2127 		goto wdev_inactive_unlock;
2128 
2129 	switch (iftype) {
2130 	case NL80211_IFTYPE_AP:
2131 	case NL80211_IFTYPE_P2P_GO:
2132 		if (!wdev->beacon_interval)
2133 			goto wdev_inactive_unlock;
2134 		chandef = wdev->chandef;
2135 		break;
2136 	case NL80211_IFTYPE_ADHOC:
2137 		if (!wdev->ssid_len)
2138 			goto wdev_inactive_unlock;
2139 		chandef = wdev->chandef;
2140 		break;
2141 	case NL80211_IFTYPE_STATION:
2142 	case NL80211_IFTYPE_P2P_CLIENT:
2143 		if (!wdev->current_bss ||
2144 		    !wdev->current_bss->pub.channel)
2145 			goto wdev_inactive_unlock;
2146 
2147 		if (!rdev->ops->get_channel ||
2148 		    rdev_get_channel(rdev, wdev, &chandef))
2149 			cfg80211_chandef_create(&chandef,
2150 						wdev->current_bss->pub.channel,
2151 						NL80211_CHAN_NO_HT);
2152 		break;
2153 	case NL80211_IFTYPE_MONITOR:
2154 	case NL80211_IFTYPE_AP_VLAN:
2155 	case NL80211_IFTYPE_P2P_DEVICE:
2156 		/* no enforcement required */
2157 		break;
2158 	default:
2159 		/* others not implemented for now */
2160 		WARN_ON(1);
2161 		break;
2162 	}
2163 
2164 	wdev_unlock(wdev);
2165 
2166 	switch (iftype) {
2167 	case NL80211_IFTYPE_AP:
2168 	case NL80211_IFTYPE_P2P_GO:
2169 	case NL80211_IFTYPE_ADHOC:
2170 		return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2171 	case NL80211_IFTYPE_STATION:
2172 	case NL80211_IFTYPE_P2P_CLIENT:
2173 		return cfg80211_chandef_usable(wiphy, &chandef,
2174 					       IEEE80211_CHAN_DISABLED);
2175 	default:
2176 		break;
2177 	}
2178 
2179 	return true;
2180 
2181 wdev_inactive_unlock:
2182 	wdev_unlock(wdev);
2183 	return true;
2184 }
2185 
reg_leave_invalid_chans(struct wiphy * wiphy)2186 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2187 {
2188 	struct wireless_dev *wdev;
2189 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2190 
2191 	ASSERT_RTNL();
2192 
2193 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2194 		if (!reg_wdev_chan_valid(wiphy, wdev))
2195 			cfg80211_leave(rdev, wdev);
2196 }
2197 
reg_check_chans_work(struct work_struct * work)2198 static void reg_check_chans_work(struct work_struct *work)
2199 {
2200 	struct cfg80211_registered_device *rdev;
2201 
2202 	pr_debug("Verifying active interfaces after reg change\n");
2203 	rtnl_lock();
2204 
2205 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2206 		if (!(rdev->wiphy.regulatory_flags &
2207 		      REGULATORY_IGNORE_STALE_KICKOFF))
2208 			reg_leave_invalid_chans(&rdev->wiphy);
2209 
2210 	rtnl_unlock();
2211 }
2212 
reg_check_channels(void)2213 static void reg_check_channels(void)
2214 {
2215 	/*
2216 	 * Give usermode a chance to do something nicer (move to another
2217 	 * channel, orderly disconnection), before forcing a disconnection.
2218 	 */
2219 	mod_delayed_work(system_power_efficient_wq,
2220 			 &reg_check_chans,
2221 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2222 }
2223 
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2224 static void wiphy_update_regulatory(struct wiphy *wiphy,
2225 				    enum nl80211_reg_initiator initiator)
2226 {
2227 	enum nl80211_band band;
2228 	struct regulatory_request *lr = get_last_request();
2229 
2230 	if (ignore_reg_update(wiphy, initiator)) {
2231 		/*
2232 		 * Regulatory updates set by CORE are ignored for custom
2233 		 * regulatory cards. Let us notify the changes to the driver,
2234 		 * as some drivers used this to restore its orig_* reg domain.
2235 		 */
2236 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2237 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2238 		    !(wiphy->regulatory_flags &
2239 		      REGULATORY_WIPHY_SELF_MANAGED))
2240 			reg_call_notifier(wiphy, lr);
2241 		return;
2242 	}
2243 
2244 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2245 
2246 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2247 		handle_band(wiphy, initiator, wiphy->bands[band]);
2248 
2249 	reg_process_beacons(wiphy);
2250 	reg_process_ht_flags(wiphy);
2251 	reg_call_notifier(wiphy, lr);
2252 }
2253 
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)2254 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2255 {
2256 	struct cfg80211_registered_device *rdev;
2257 	struct wiphy *wiphy;
2258 
2259 	ASSERT_RTNL();
2260 
2261 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2262 		wiphy = &rdev->wiphy;
2263 		wiphy_update_regulatory(wiphy, initiator);
2264 	}
2265 
2266 	reg_check_channels();
2267 }
2268 
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd,u32 min_bw)2269 static void handle_channel_custom(struct wiphy *wiphy,
2270 				  struct ieee80211_channel *chan,
2271 				  const struct ieee80211_regdomain *regd,
2272 				  u32 min_bw)
2273 {
2274 	u32 bw_flags = 0;
2275 	const struct ieee80211_reg_rule *reg_rule = NULL;
2276 	const struct ieee80211_power_rule *power_rule = NULL;
2277 	u32 bw, center_freq_khz;
2278 
2279 	center_freq_khz = ieee80211_channel_to_khz(chan);
2280 	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2281 		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2282 		if (!IS_ERR(reg_rule))
2283 			break;
2284 	}
2285 
2286 	if (IS_ERR_OR_NULL(reg_rule)) {
2287 		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2288 			 chan->center_freq, chan->freq_offset);
2289 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2290 			chan->flags |= IEEE80211_CHAN_DISABLED;
2291 		} else {
2292 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2293 			chan->flags = chan->orig_flags;
2294 		}
2295 		return;
2296 	}
2297 
2298 	power_rule = &reg_rule->power_rule;
2299 	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2300 
2301 	chan->dfs_state_entered = jiffies;
2302 	chan->dfs_state = NL80211_DFS_USABLE;
2303 
2304 	chan->beacon_found = false;
2305 
2306 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2307 		chan->flags = chan->orig_flags | bw_flags |
2308 			      map_regdom_flags(reg_rule->flags);
2309 	else
2310 		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2311 
2312 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2313 	chan->max_reg_power = chan->max_power =
2314 		(int) MBM_TO_DBM(power_rule->max_eirp);
2315 
2316 	if (chan->flags & IEEE80211_CHAN_RADAR) {
2317 		if (reg_rule->dfs_cac_ms)
2318 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2319 		else
2320 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2321 	}
2322 
2323 	chan->max_power = chan->max_reg_power;
2324 }
2325 
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)2326 static void handle_band_custom(struct wiphy *wiphy,
2327 			       struct ieee80211_supported_band *sband,
2328 			       const struct ieee80211_regdomain *regd)
2329 {
2330 	unsigned int i;
2331 
2332 	if (!sband)
2333 		return;
2334 
2335 	/*
2336 	 * We currently assume that you always want at least 20 MHz,
2337 	 * otherwise channel 12 might get enabled if this rule is
2338 	 * compatible to US, which permits 2402 - 2472 MHz.
2339 	 */
2340 	for (i = 0; i < sband->n_channels; i++)
2341 		handle_channel_custom(wiphy, &sband->channels[i], regd,
2342 				      MHZ_TO_KHZ(20));
2343 }
2344 
2345 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)2346 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2347 				   const struct ieee80211_regdomain *regd)
2348 {
2349 	enum nl80211_band band;
2350 	unsigned int bands_set = 0;
2351 
2352 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2353 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2354 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2355 
2356 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2357 		if (!wiphy->bands[band])
2358 			continue;
2359 		handle_band_custom(wiphy, wiphy->bands[band], regd);
2360 		bands_set++;
2361 	}
2362 
2363 	/*
2364 	 * no point in calling this if it won't have any effect
2365 	 * on your device's supported bands.
2366 	 */
2367 	WARN_ON(!bands_set);
2368 }
2369 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2370 
reg_set_request_processed(void)2371 static void reg_set_request_processed(void)
2372 {
2373 	bool need_more_processing = false;
2374 	struct regulatory_request *lr = get_last_request();
2375 
2376 	lr->processed = true;
2377 
2378 	spin_lock(&reg_requests_lock);
2379 	if (!list_empty(&reg_requests_list))
2380 		need_more_processing = true;
2381 	spin_unlock(&reg_requests_lock);
2382 
2383 	cancel_crda_timeout();
2384 
2385 	if (need_more_processing)
2386 		schedule_work(&reg_work);
2387 }
2388 
2389 /**
2390  * reg_process_hint_core - process core regulatory requests
2391  * @pending_request: a pending core regulatory request
2392  *
2393  * The wireless subsystem can use this function to process
2394  * a regulatory request issued by the regulatory core.
2395  */
2396 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)2397 reg_process_hint_core(struct regulatory_request *core_request)
2398 {
2399 	if (reg_query_database(core_request)) {
2400 		core_request->intersect = false;
2401 		core_request->processed = false;
2402 		reg_update_last_request(core_request);
2403 		return REG_REQ_OK;
2404 	}
2405 
2406 	return REG_REQ_IGNORE;
2407 }
2408 
2409 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)2410 __reg_process_hint_user(struct regulatory_request *user_request)
2411 {
2412 	struct regulatory_request *lr = get_last_request();
2413 
2414 	if (reg_request_cell_base(user_request))
2415 		return reg_ignore_cell_hint(user_request);
2416 
2417 	if (reg_request_cell_base(lr))
2418 		return REG_REQ_IGNORE;
2419 
2420 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2421 		return REG_REQ_INTERSECT;
2422 	/*
2423 	 * If the user knows better the user should set the regdom
2424 	 * to their country before the IE is picked up
2425 	 */
2426 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2427 	    lr->intersect)
2428 		return REG_REQ_IGNORE;
2429 	/*
2430 	 * Process user requests only after previous user/driver/core
2431 	 * requests have been processed
2432 	 */
2433 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2434 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2435 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2436 	    regdom_changes(lr->alpha2))
2437 		return REG_REQ_IGNORE;
2438 
2439 	if (!regdom_changes(user_request->alpha2))
2440 		return REG_REQ_ALREADY_SET;
2441 
2442 	return REG_REQ_OK;
2443 }
2444 
2445 /**
2446  * reg_process_hint_user - process user regulatory requests
2447  * @user_request: a pending user regulatory request
2448  *
2449  * The wireless subsystem can use this function to process
2450  * a regulatory request initiated by userspace.
2451  */
2452 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)2453 reg_process_hint_user(struct regulatory_request *user_request)
2454 {
2455 	enum reg_request_treatment treatment;
2456 
2457 	treatment = __reg_process_hint_user(user_request);
2458 	if (treatment == REG_REQ_IGNORE ||
2459 	    treatment == REG_REQ_ALREADY_SET)
2460 		return REG_REQ_IGNORE;
2461 
2462 	user_request->intersect = treatment == REG_REQ_INTERSECT;
2463 	user_request->processed = false;
2464 
2465 	if (reg_query_database(user_request)) {
2466 		reg_update_last_request(user_request);
2467 		user_alpha2[0] = user_request->alpha2[0];
2468 		user_alpha2[1] = user_request->alpha2[1];
2469 		return REG_REQ_OK;
2470 	}
2471 
2472 	return REG_REQ_IGNORE;
2473 }
2474 
2475 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)2476 __reg_process_hint_driver(struct regulatory_request *driver_request)
2477 {
2478 	struct regulatory_request *lr = get_last_request();
2479 
2480 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2481 		if (regdom_changes(driver_request->alpha2))
2482 			return REG_REQ_OK;
2483 		return REG_REQ_ALREADY_SET;
2484 	}
2485 
2486 	/*
2487 	 * This would happen if you unplug and plug your card
2488 	 * back in or if you add a new device for which the previously
2489 	 * loaded card also agrees on the regulatory domain.
2490 	 */
2491 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2492 	    !regdom_changes(driver_request->alpha2))
2493 		return REG_REQ_ALREADY_SET;
2494 
2495 	return REG_REQ_INTERSECT;
2496 }
2497 
2498 /**
2499  * reg_process_hint_driver - process driver regulatory requests
2500  * @driver_request: a pending driver regulatory request
2501  *
2502  * The wireless subsystem can use this function to process
2503  * a regulatory request issued by an 802.11 driver.
2504  *
2505  * Returns one of the different reg request treatment values.
2506  */
2507 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)2508 reg_process_hint_driver(struct wiphy *wiphy,
2509 			struct regulatory_request *driver_request)
2510 {
2511 	const struct ieee80211_regdomain *regd, *tmp;
2512 	enum reg_request_treatment treatment;
2513 
2514 	treatment = __reg_process_hint_driver(driver_request);
2515 
2516 	switch (treatment) {
2517 	case REG_REQ_OK:
2518 		break;
2519 	case REG_REQ_IGNORE:
2520 		return REG_REQ_IGNORE;
2521 	case REG_REQ_INTERSECT:
2522 	case REG_REQ_ALREADY_SET:
2523 		regd = reg_copy_regd(get_cfg80211_regdom());
2524 		if (IS_ERR(regd))
2525 			return REG_REQ_IGNORE;
2526 
2527 		tmp = get_wiphy_regdom(wiphy);
2528 		rcu_assign_pointer(wiphy->regd, regd);
2529 		rcu_free_regdom(tmp);
2530 	}
2531 
2532 
2533 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2534 	driver_request->processed = false;
2535 
2536 	/*
2537 	 * Since CRDA will not be called in this case as we already
2538 	 * have applied the requested regulatory domain before we just
2539 	 * inform userspace we have processed the request
2540 	 */
2541 	if (treatment == REG_REQ_ALREADY_SET) {
2542 		nl80211_send_reg_change_event(driver_request);
2543 		reg_update_last_request(driver_request);
2544 		reg_set_request_processed();
2545 		return REG_REQ_ALREADY_SET;
2546 	}
2547 
2548 	if (reg_query_database(driver_request)) {
2549 		reg_update_last_request(driver_request);
2550 		return REG_REQ_OK;
2551 	}
2552 
2553 	return REG_REQ_IGNORE;
2554 }
2555 
2556 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2557 __reg_process_hint_country_ie(struct wiphy *wiphy,
2558 			      struct regulatory_request *country_ie_request)
2559 {
2560 	struct wiphy *last_wiphy = NULL;
2561 	struct regulatory_request *lr = get_last_request();
2562 
2563 	if (reg_request_cell_base(lr)) {
2564 		/* Trust a Cell base station over the AP's country IE */
2565 		if (regdom_changes(country_ie_request->alpha2))
2566 			return REG_REQ_IGNORE;
2567 		return REG_REQ_ALREADY_SET;
2568 	} else {
2569 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2570 			return REG_REQ_IGNORE;
2571 	}
2572 
2573 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2574 		return -EINVAL;
2575 
2576 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2577 		return REG_REQ_OK;
2578 
2579 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2580 
2581 	if (last_wiphy != wiphy) {
2582 		/*
2583 		 * Two cards with two APs claiming different
2584 		 * Country IE alpha2s. We could
2585 		 * intersect them, but that seems unlikely
2586 		 * to be correct. Reject second one for now.
2587 		 */
2588 		if (regdom_changes(country_ie_request->alpha2))
2589 			return REG_REQ_IGNORE;
2590 		return REG_REQ_ALREADY_SET;
2591 	}
2592 
2593 	if (regdom_changes(country_ie_request->alpha2))
2594 		return REG_REQ_OK;
2595 	return REG_REQ_ALREADY_SET;
2596 }
2597 
2598 /**
2599  * reg_process_hint_country_ie - process regulatory requests from country IEs
2600  * @country_ie_request: a regulatory request from a country IE
2601  *
2602  * The wireless subsystem can use this function to process
2603  * a regulatory request issued by a country Information Element.
2604  *
2605  * Returns one of the different reg request treatment values.
2606  */
2607 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2608 reg_process_hint_country_ie(struct wiphy *wiphy,
2609 			    struct regulatory_request *country_ie_request)
2610 {
2611 	enum reg_request_treatment treatment;
2612 
2613 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2614 
2615 	switch (treatment) {
2616 	case REG_REQ_OK:
2617 		break;
2618 	case REG_REQ_IGNORE:
2619 		return REG_REQ_IGNORE;
2620 	case REG_REQ_ALREADY_SET:
2621 		reg_free_request(country_ie_request);
2622 		return REG_REQ_ALREADY_SET;
2623 	case REG_REQ_INTERSECT:
2624 		/*
2625 		 * This doesn't happen yet, not sure we
2626 		 * ever want to support it for this case.
2627 		 */
2628 		WARN_ONCE(1, "Unexpected intersection for country elements");
2629 		return REG_REQ_IGNORE;
2630 	}
2631 
2632 	country_ie_request->intersect = false;
2633 	country_ie_request->processed = false;
2634 
2635 	if (reg_query_database(country_ie_request)) {
2636 		reg_update_last_request(country_ie_request);
2637 		return REG_REQ_OK;
2638 	}
2639 
2640 	return REG_REQ_IGNORE;
2641 }
2642 
reg_dfs_domain_same(struct wiphy * wiphy1,struct wiphy * wiphy2)2643 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2644 {
2645 	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2646 	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2647 	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2648 	bool dfs_domain_same;
2649 
2650 	rcu_read_lock();
2651 
2652 	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2653 	wiphy1_regd = rcu_dereference(wiphy1->regd);
2654 	if (!wiphy1_regd)
2655 		wiphy1_regd = cfg80211_regd;
2656 
2657 	wiphy2_regd = rcu_dereference(wiphy2->regd);
2658 	if (!wiphy2_regd)
2659 		wiphy2_regd = cfg80211_regd;
2660 
2661 	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2662 
2663 	rcu_read_unlock();
2664 
2665 	return dfs_domain_same;
2666 }
2667 
reg_copy_dfs_chan_state(struct ieee80211_channel * dst_chan,struct ieee80211_channel * src_chan)2668 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2669 				    struct ieee80211_channel *src_chan)
2670 {
2671 	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2672 	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2673 		return;
2674 
2675 	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2676 	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2677 		return;
2678 
2679 	if (src_chan->center_freq == dst_chan->center_freq &&
2680 	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2681 		dst_chan->dfs_state = src_chan->dfs_state;
2682 		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2683 	}
2684 }
2685 
wiphy_share_dfs_chan_state(struct wiphy * dst_wiphy,struct wiphy * src_wiphy)2686 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2687 				       struct wiphy *src_wiphy)
2688 {
2689 	struct ieee80211_supported_band *src_sband, *dst_sband;
2690 	struct ieee80211_channel *src_chan, *dst_chan;
2691 	int i, j, band;
2692 
2693 	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2694 		return;
2695 
2696 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2697 		dst_sband = dst_wiphy->bands[band];
2698 		src_sband = src_wiphy->bands[band];
2699 		if (!dst_sband || !src_sband)
2700 			continue;
2701 
2702 		for (i = 0; i < dst_sband->n_channels; i++) {
2703 			dst_chan = &dst_sband->channels[i];
2704 			for (j = 0; j < src_sband->n_channels; j++) {
2705 				src_chan = &src_sband->channels[j];
2706 				reg_copy_dfs_chan_state(dst_chan, src_chan);
2707 			}
2708 		}
2709 	}
2710 }
2711 
wiphy_all_share_dfs_chan_state(struct wiphy * wiphy)2712 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2713 {
2714 	struct cfg80211_registered_device *rdev;
2715 
2716 	ASSERT_RTNL();
2717 
2718 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2719 		if (wiphy == &rdev->wiphy)
2720 			continue;
2721 		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2722 	}
2723 }
2724 
2725 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)2726 static void reg_process_hint(struct regulatory_request *reg_request)
2727 {
2728 	struct wiphy *wiphy = NULL;
2729 	enum reg_request_treatment treatment;
2730 	enum nl80211_reg_initiator initiator = reg_request->initiator;
2731 
2732 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2733 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2734 
2735 	switch (initiator) {
2736 	case NL80211_REGDOM_SET_BY_CORE:
2737 		treatment = reg_process_hint_core(reg_request);
2738 		break;
2739 	case NL80211_REGDOM_SET_BY_USER:
2740 		treatment = reg_process_hint_user(reg_request);
2741 		break;
2742 	case NL80211_REGDOM_SET_BY_DRIVER:
2743 		if (!wiphy)
2744 			goto out_free;
2745 		treatment = reg_process_hint_driver(wiphy, reg_request);
2746 		break;
2747 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2748 		if (!wiphy)
2749 			goto out_free;
2750 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2751 		break;
2752 	default:
2753 		WARN(1, "invalid initiator %d\n", initiator);
2754 		goto out_free;
2755 	}
2756 
2757 	if (treatment == REG_REQ_IGNORE)
2758 		goto out_free;
2759 
2760 	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2761 	     "unexpected treatment value %d\n", treatment);
2762 
2763 	/* This is required so that the orig_* parameters are saved.
2764 	 * NOTE: treatment must be set for any case that reaches here!
2765 	 */
2766 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2767 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2768 		wiphy_update_regulatory(wiphy, initiator);
2769 		wiphy_all_share_dfs_chan_state(wiphy);
2770 		reg_check_channels();
2771 	}
2772 
2773 	return;
2774 
2775 out_free:
2776 	reg_free_request(reg_request);
2777 }
2778 
notify_self_managed_wiphys(struct regulatory_request * request)2779 static void notify_self_managed_wiphys(struct regulatory_request *request)
2780 {
2781 	struct cfg80211_registered_device *rdev;
2782 	struct wiphy *wiphy;
2783 
2784 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2785 		wiphy = &rdev->wiphy;
2786 		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2787 		    request->initiator == NL80211_REGDOM_SET_BY_USER)
2788 			reg_call_notifier(wiphy, request);
2789 	}
2790 }
2791 
2792 /*
2793  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2794  * Regulatory hints come on a first come first serve basis and we
2795  * must process each one atomically.
2796  */
reg_process_pending_hints(void)2797 static void reg_process_pending_hints(void)
2798 {
2799 	struct regulatory_request *reg_request, *lr;
2800 
2801 	lr = get_last_request();
2802 
2803 	/* When last_request->processed becomes true this will be rescheduled */
2804 	if (lr && !lr->processed) {
2805 		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
2806 		return;
2807 	}
2808 
2809 	spin_lock(&reg_requests_lock);
2810 
2811 	if (list_empty(&reg_requests_list)) {
2812 		spin_unlock(&reg_requests_lock);
2813 		return;
2814 	}
2815 
2816 	reg_request = list_first_entry(&reg_requests_list,
2817 				       struct regulatory_request,
2818 				       list);
2819 	list_del_init(&reg_request->list);
2820 
2821 	spin_unlock(&reg_requests_lock);
2822 
2823 	notify_self_managed_wiphys(reg_request);
2824 
2825 	reg_process_hint(reg_request);
2826 
2827 	lr = get_last_request();
2828 
2829 	spin_lock(&reg_requests_lock);
2830 	if (!list_empty(&reg_requests_list) && lr && lr->processed)
2831 		schedule_work(&reg_work);
2832 	spin_unlock(&reg_requests_lock);
2833 }
2834 
2835 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)2836 static void reg_process_pending_beacon_hints(void)
2837 {
2838 	struct cfg80211_registered_device *rdev;
2839 	struct reg_beacon *pending_beacon, *tmp;
2840 
2841 	/* This goes through the _pending_ beacon list */
2842 	spin_lock_bh(&reg_pending_beacons_lock);
2843 
2844 	list_for_each_entry_safe(pending_beacon, tmp,
2845 				 &reg_pending_beacons, list) {
2846 		list_del_init(&pending_beacon->list);
2847 
2848 		/* Applies the beacon hint to current wiphys */
2849 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2850 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2851 
2852 		/* Remembers the beacon hint for new wiphys or reg changes */
2853 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2854 	}
2855 
2856 	spin_unlock_bh(&reg_pending_beacons_lock);
2857 }
2858 
reg_process_self_managed_hints(void)2859 static void reg_process_self_managed_hints(void)
2860 {
2861 	struct cfg80211_registered_device *rdev;
2862 	struct wiphy *wiphy;
2863 	const struct ieee80211_regdomain *tmp;
2864 	const struct ieee80211_regdomain *regd;
2865 	enum nl80211_band band;
2866 	struct regulatory_request request = {};
2867 
2868 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2869 		wiphy = &rdev->wiphy;
2870 
2871 		spin_lock(&reg_requests_lock);
2872 		regd = rdev->requested_regd;
2873 		rdev->requested_regd = NULL;
2874 		spin_unlock(&reg_requests_lock);
2875 
2876 		if (regd == NULL)
2877 			continue;
2878 
2879 		tmp = get_wiphy_regdom(wiphy);
2880 		rcu_assign_pointer(wiphy->regd, regd);
2881 		rcu_free_regdom(tmp);
2882 
2883 		for (band = 0; band < NUM_NL80211_BANDS; band++)
2884 			handle_band_custom(wiphy, wiphy->bands[band], regd);
2885 
2886 		reg_process_ht_flags(wiphy);
2887 
2888 		request.wiphy_idx = get_wiphy_idx(wiphy);
2889 		request.alpha2[0] = regd->alpha2[0];
2890 		request.alpha2[1] = regd->alpha2[1];
2891 		request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2892 
2893 		nl80211_send_wiphy_reg_change_event(&request);
2894 	}
2895 
2896 	reg_check_channels();
2897 }
2898 
reg_todo(struct work_struct * work)2899 static void reg_todo(struct work_struct *work)
2900 {
2901 	rtnl_lock();
2902 	reg_process_pending_hints();
2903 	reg_process_pending_beacon_hints();
2904 	reg_process_self_managed_hints();
2905 	rtnl_unlock();
2906 }
2907 
queue_regulatory_request(struct regulatory_request * request)2908 static void queue_regulatory_request(struct regulatory_request *request)
2909 {
2910 	request->alpha2[0] = toupper(request->alpha2[0]);
2911 	request->alpha2[1] = toupper(request->alpha2[1]);
2912 
2913 	spin_lock(&reg_requests_lock);
2914 	list_add_tail(&request->list, &reg_requests_list);
2915 	spin_unlock(&reg_requests_lock);
2916 
2917 	schedule_work(&reg_work);
2918 }
2919 
2920 /*
2921  * Core regulatory hint -- happens during cfg80211_init()
2922  * and when we restore regulatory settings.
2923  */
regulatory_hint_core(const char * alpha2)2924 static int regulatory_hint_core(const char *alpha2)
2925 {
2926 	struct regulatory_request *request;
2927 
2928 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2929 	if (!request)
2930 		return -ENOMEM;
2931 
2932 	request->alpha2[0] = alpha2[0];
2933 	request->alpha2[1] = alpha2[1];
2934 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2935 	request->wiphy_idx = WIPHY_IDX_INVALID;
2936 
2937 	queue_regulatory_request(request);
2938 
2939 	return 0;
2940 }
2941 
2942 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)2943 int regulatory_hint_user(const char *alpha2,
2944 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2945 {
2946 	struct regulatory_request *request;
2947 
2948 	if (WARN_ON(!alpha2))
2949 		return -EINVAL;
2950 
2951 	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
2952 		return -EINVAL;
2953 
2954 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2955 	if (!request)
2956 		return -ENOMEM;
2957 
2958 	request->wiphy_idx = WIPHY_IDX_INVALID;
2959 	request->alpha2[0] = alpha2[0];
2960 	request->alpha2[1] = alpha2[1];
2961 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2962 	request->user_reg_hint_type = user_reg_hint_type;
2963 
2964 	/* Allow calling CRDA again */
2965 	reset_crda_timeouts();
2966 
2967 	queue_regulatory_request(request);
2968 
2969 	return 0;
2970 }
2971 
regulatory_hint_indoor(bool is_indoor,u32 portid)2972 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2973 {
2974 	spin_lock(&reg_indoor_lock);
2975 
2976 	/* It is possible that more than one user space process is trying to
2977 	 * configure the indoor setting. To handle such cases, clear the indoor
2978 	 * setting in case that some process does not think that the device
2979 	 * is operating in an indoor environment. In addition, if a user space
2980 	 * process indicates that it is controlling the indoor setting, save its
2981 	 * portid, i.e., make it the owner.
2982 	 */
2983 	reg_is_indoor = is_indoor;
2984 	if (reg_is_indoor) {
2985 		if (!reg_is_indoor_portid)
2986 			reg_is_indoor_portid = portid;
2987 	} else {
2988 		reg_is_indoor_portid = 0;
2989 	}
2990 
2991 	spin_unlock(&reg_indoor_lock);
2992 
2993 	if (!is_indoor)
2994 		reg_check_channels();
2995 
2996 	return 0;
2997 }
2998 
regulatory_netlink_notify(u32 portid)2999 void regulatory_netlink_notify(u32 portid)
3000 {
3001 	spin_lock(&reg_indoor_lock);
3002 
3003 	if (reg_is_indoor_portid != portid) {
3004 		spin_unlock(&reg_indoor_lock);
3005 		return;
3006 	}
3007 
3008 	reg_is_indoor = false;
3009 	reg_is_indoor_portid = 0;
3010 
3011 	spin_unlock(&reg_indoor_lock);
3012 
3013 	reg_check_channels();
3014 }
3015 
3016 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)3017 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3018 {
3019 	struct regulatory_request *request;
3020 
3021 	if (WARN_ON(!alpha2 || !wiphy))
3022 		return -EINVAL;
3023 
3024 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3025 
3026 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3027 	if (!request)
3028 		return -ENOMEM;
3029 
3030 	request->wiphy_idx = get_wiphy_idx(wiphy);
3031 
3032 	request->alpha2[0] = alpha2[0];
3033 	request->alpha2[1] = alpha2[1];
3034 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3035 
3036 	/* Allow calling CRDA again */
3037 	reset_crda_timeouts();
3038 
3039 	queue_regulatory_request(request);
3040 
3041 	return 0;
3042 }
3043 EXPORT_SYMBOL(regulatory_hint);
3044 
regulatory_hint_country_ie(struct wiphy * wiphy,enum nl80211_band band,const u8 * country_ie,u8 country_ie_len)3045 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3046 				const u8 *country_ie, u8 country_ie_len)
3047 {
3048 	char alpha2[2];
3049 	enum environment_cap env = ENVIRON_ANY;
3050 	struct regulatory_request *request = NULL, *lr;
3051 
3052 	/* IE len must be evenly divisible by 2 */
3053 	if (country_ie_len & 0x01)
3054 		return;
3055 
3056 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3057 		return;
3058 
3059 	request = kzalloc(sizeof(*request), GFP_KERNEL);
3060 	if (!request)
3061 		return;
3062 
3063 	alpha2[0] = country_ie[0];
3064 	alpha2[1] = country_ie[1];
3065 
3066 	if (country_ie[2] == 'I')
3067 		env = ENVIRON_INDOOR;
3068 	else if (country_ie[2] == 'O')
3069 		env = ENVIRON_OUTDOOR;
3070 
3071 	rcu_read_lock();
3072 	lr = get_last_request();
3073 
3074 	if (unlikely(!lr))
3075 		goto out;
3076 
3077 	/*
3078 	 * We will run this only upon a successful connection on cfg80211.
3079 	 * We leave conflict resolution to the workqueue, where can hold
3080 	 * the RTNL.
3081 	 */
3082 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3083 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3084 		goto out;
3085 
3086 	request->wiphy_idx = get_wiphy_idx(wiphy);
3087 	request->alpha2[0] = alpha2[0];
3088 	request->alpha2[1] = alpha2[1];
3089 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3090 	request->country_ie_env = env;
3091 
3092 	/* Allow calling CRDA again */
3093 	reset_crda_timeouts();
3094 
3095 	queue_regulatory_request(request);
3096 	request = NULL;
3097 out:
3098 	kfree(request);
3099 	rcu_read_unlock();
3100 }
3101 
restore_alpha2(char * alpha2,bool reset_user)3102 static void restore_alpha2(char *alpha2, bool reset_user)
3103 {
3104 	/* indicates there is no alpha2 to consider for restoration */
3105 	alpha2[0] = '9';
3106 	alpha2[1] = '7';
3107 
3108 	/* The user setting has precedence over the module parameter */
3109 	if (is_user_regdom_saved()) {
3110 		/* Unless we're asked to ignore it and reset it */
3111 		if (reset_user) {
3112 			pr_debug("Restoring regulatory settings including user preference\n");
3113 			user_alpha2[0] = '9';
3114 			user_alpha2[1] = '7';
3115 
3116 			/*
3117 			 * If we're ignoring user settings, we still need to
3118 			 * check the module parameter to ensure we put things
3119 			 * back as they were for a full restore.
3120 			 */
3121 			if (!is_world_regdom(ieee80211_regdom)) {
3122 				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3123 					 ieee80211_regdom[0], ieee80211_regdom[1]);
3124 				alpha2[0] = ieee80211_regdom[0];
3125 				alpha2[1] = ieee80211_regdom[1];
3126 			}
3127 		} else {
3128 			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3129 				 user_alpha2[0], user_alpha2[1]);
3130 			alpha2[0] = user_alpha2[0];
3131 			alpha2[1] = user_alpha2[1];
3132 		}
3133 	} else if (!is_world_regdom(ieee80211_regdom)) {
3134 		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3135 			 ieee80211_regdom[0], ieee80211_regdom[1]);
3136 		alpha2[0] = ieee80211_regdom[0];
3137 		alpha2[1] = ieee80211_regdom[1];
3138 	} else
3139 		pr_debug("Restoring regulatory settings\n");
3140 }
3141 
restore_custom_reg_settings(struct wiphy * wiphy)3142 static void restore_custom_reg_settings(struct wiphy *wiphy)
3143 {
3144 	struct ieee80211_supported_band *sband;
3145 	enum nl80211_band band;
3146 	struct ieee80211_channel *chan;
3147 	int i;
3148 
3149 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3150 		sband = wiphy->bands[band];
3151 		if (!sband)
3152 			continue;
3153 		for (i = 0; i < sband->n_channels; i++) {
3154 			chan = &sband->channels[i];
3155 			chan->flags = chan->orig_flags;
3156 			chan->max_antenna_gain = chan->orig_mag;
3157 			chan->max_power = chan->orig_mpwr;
3158 			chan->beacon_found = false;
3159 		}
3160 	}
3161 }
3162 
3163 /*
3164  * Restoring regulatory settings involves ingoring any
3165  * possibly stale country IE information and user regulatory
3166  * settings if so desired, this includes any beacon hints
3167  * learned as we could have traveled outside to another country
3168  * after disconnection. To restore regulatory settings we do
3169  * exactly what we did at bootup:
3170  *
3171  *   - send a core regulatory hint
3172  *   - send a user regulatory hint if applicable
3173  *
3174  * Device drivers that send a regulatory hint for a specific country
3175  * keep their own regulatory domain on wiphy->regd so that does does
3176  * not need to be remembered.
3177  */
restore_regulatory_settings(bool reset_user,bool cached)3178 static void restore_regulatory_settings(bool reset_user, bool cached)
3179 {
3180 	char alpha2[2];
3181 	char world_alpha2[2];
3182 	struct reg_beacon *reg_beacon, *btmp;
3183 	LIST_HEAD(tmp_reg_req_list);
3184 	struct cfg80211_registered_device *rdev;
3185 
3186 	ASSERT_RTNL();
3187 
3188 	/*
3189 	 * Clear the indoor setting in case that it is not controlled by user
3190 	 * space, as otherwise there is no guarantee that the device is still
3191 	 * operating in an indoor environment.
3192 	 */
3193 	spin_lock(&reg_indoor_lock);
3194 	if (reg_is_indoor && !reg_is_indoor_portid) {
3195 		reg_is_indoor = false;
3196 		reg_check_channels();
3197 	}
3198 	spin_unlock(&reg_indoor_lock);
3199 
3200 	reset_regdomains(true, &world_regdom);
3201 	restore_alpha2(alpha2, reset_user);
3202 
3203 	/*
3204 	 * If there's any pending requests we simply
3205 	 * stash them to a temporary pending queue and
3206 	 * add then after we've restored regulatory
3207 	 * settings.
3208 	 */
3209 	spin_lock(&reg_requests_lock);
3210 	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3211 	spin_unlock(&reg_requests_lock);
3212 
3213 	/* Clear beacon hints */
3214 	spin_lock_bh(&reg_pending_beacons_lock);
3215 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3216 		list_del(&reg_beacon->list);
3217 		kfree(reg_beacon);
3218 	}
3219 	spin_unlock_bh(&reg_pending_beacons_lock);
3220 
3221 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3222 		list_del(&reg_beacon->list);
3223 		kfree(reg_beacon);
3224 	}
3225 
3226 	/* First restore to the basic regulatory settings */
3227 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3228 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3229 
3230 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3231 		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3232 			continue;
3233 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3234 			restore_custom_reg_settings(&rdev->wiphy);
3235 	}
3236 
3237 	if (cached && (!is_an_alpha2(alpha2) ||
3238 		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3239 		reset_regdomains(false, cfg80211_world_regdom);
3240 		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3241 		print_regdomain(get_cfg80211_regdom());
3242 		nl80211_send_reg_change_event(&core_request_world);
3243 		reg_set_request_processed();
3244 
3245 		if (is_an_alpha2(alpha2) &&
3246 		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3247 			struct regulatory_request *ureq;
3248 
3249 			spin_lock(&reg_requests_lock);
3250 			ureq = list_last_entry(&reg_requests_list,
3251 					       struct regulatory_request,
3252 					       list);
3253 			list_del(&ureq->list);
3254 			spin_unlock(&reg_requests_lock);
3255 
3256 			notify_self_managed_wiphys(ureq);
3257 			reg_update_last_request(ureq);
3258 			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3259 				   REGD_SOURCE_CACHED);
3260 		}
3261 	} else {
3262 		regulatory_hint_core(world_alpha2);
3263 
3264 		/*
3265 		 * This restores the ieee80211_regdom module parameter
3266 		 * preference or the last user requested regulatory
3267 		 * settings, user regulatory settings takes precedence.
3268 		 */
3269 		if (is_an_alpha2(alpha2))
3270 			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3271 	}
3272 
3273 	spin_lock(&reg_requests_lock);
3274 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3275 	spin_unlock(&reg_requests_lock);
3276 
3277 	pr_debug("Kicking the queue\n");
3278 
3279 	schedule_work(&reg_work);
3280 }
3281 
is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)3282 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3283 {
3284 	struct cfg80211_registered_device *rdev;
3285 	struct wireless_dev *wdev;
3286 
3287 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3288 		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3289 			wdev_lock(wdev);
3290 			if (!(wdev->wiphy->regulatory_flags & flag)) {
3291 				wdev_unlock(wdev);
3292 				return false;
3293 			}
3294 			wdev_unlock(wdev);
3295 		}
3296 	}
3297 
3298 	return true;
3299 }
3300 
regulatory_hint_disconnect(void)3301 void regulatory_hint_disconnect(void)
3302 {
3303 	/* Restore of regulatory settings is not required when wiphy(s)
3304 	 * ignore IE from connected access point but clearance of beacon hints
3305 	 * is required when wiphy(s) supports beacon hints.
3306 	 */
3307 	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3308 		struct reg_beacon *reg_beacon, *btmp;
3309 
3310 		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3311 			return;
3312 
3313 		spin_lock_bh(&reg_pending_beacons_lock);
3314 		list_for_each_entry_safe(reg_beacon, btmp,
3315 					 &reg_pending_beacons, list) {
3316 			list_del(&reg_beacon->list);
3317 			kfree(reg_beacon);
3318 		}
3319 		spin_unlock_bh(&reg_pending_beacons_lock);
3320 
3321 		list_for_each_entry_safe(reg_beacon, btmp,
3322 					 &reg_beacon_list, list) {
3323 			list_del(&reg_beacon->list);
3324 			kfree(reg_beacon);
3325 		}
3326 
3327 		return;
3328 	}
3329 
3330 	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3331 	restore_regulatory_settings(false, true);
3332 }
3333 
freq_is_chan_12_13_14(u32 freq)3334 static bool freq_is_chan_12_13_14(u32 freq)
3335 {
3336 	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3337 	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3338 	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3339 		return true;
3340 	return false;
3341 }
3342 
pending_reg_beacon(struct ieee80211_channel * beacon_chan)3343 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3344 {
3345 	struct reg_beacon *pending_beacon;
3346 
3347 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3348 		if (ieee80211_channel_equal(beacon_chan,
3349 					    &pending_beacon->chan))
3350 			return true;
3351 	return false;
3352 }
3353 
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)3354 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3355 				 struct ieee80211_channel *beacon_chan,
3356 				 gfp_t gfp)
3357 {
3358 	struct reg_beacon *reg_beacon;
3359 	bool processing;
3360 
3361 	if (beacon_chan->beacon_found ||
3362 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3363 	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3364 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3365 		return 0;
3366 
3367 	spin_lock_bh(&reg_pending_beacons_lock);
3368 	processing = pending_reg_beacon(beacon_chan);
3369 	spin_unlock_bh(&reg_pending_beacons_lock);
3370 
3371 	if (processing)
3372 		return 0;
3373 
3374 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3375 	if (!reg_beacon)
3376 		return -ENOMEM;
3377 
3378 	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3379 		 beacon_chan->center_freq, beacon_chan->freq_offset,
3380 		 ieee80211_freq_khz_to_channel(
3381 			 ieee80211_channel_to_khz(beacon_chan)),
3382 		 wiphy_name(wiphy));
3383 
3384 	memcpy(&reg_beacon->chan, beacon_chan,
3385 	       sizeof(struct ieee80211_channel));
3386 
3387 	/*
3388 	 * Since we can be called from BH or and non-BH context
3389 	 * we must use spin_lock_bh()
3390 	 */
3391 	spin_lock_bh(&reg_pending_beacons_lock);
3392 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3393 	spin_unlock_bh(&reg_pending_beacons_lock);
3394 
3395 	schedule_work(&reg_work);
3396 
3397 	return 0;
3398 }
3399 
print_rd_rules(const struct ieee80211_regdomain * rd)3400 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3401 {
3402 	unsigned int i;
3403 	const struct ieee80211_reg_rule *reg_rule = NULL;
3404 	const struct ieee80211_freq_range *freq_range = NULL;
3405 	const struct ieee80211_power_rule *power_rule = NULL;
3406 	char bw[32], cac_time[32];
3407 
3408 	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3409 
3410 	for (i = 0; i < rd->n_reg_rules; i++) {
3411 		reg_rule = &rd->reg_rules[i];
3412 		freq_range = &reg_rule->freq_range;
3413 		power_rule = &reg_rule->power_rule;
3414 
3415 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3416 			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3417 				 freq_range->max_bandwidth_khz,
3418 				 reg_get_max_bandwidth(rd, reg_rule));
3419 		else
3420 			snprintf(bw, sizeof(bw), "%d KHz",
3421 				 freq_range->max_bandwidth_khz);
3422 
3423 		if (reg_rule->flags & NL80211_RRF_DFS)
3424 			scnprintf(cac_time, sizeof(cac_time), "%u s",
3425 				  reg_rule->dfs_cac_ms/1000);
3426 		else
3427 			scnprintf(cac_time, sizeof(cac_time), "N/A");
3428 
3429 
3430 		/*
3431 		 * There may not be documentation for max antenna gain
3432 		 * in certain regions
3433 		 */
3434 		if (power_rule->max_antenna_gain)
3435 			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3436 				freq_range->start_freq_khz,
3437 				freq_range->end_freq_khz,
3438 				bw,
3439 				power_rule->max_antenna_gain,
3440 				power_rule->max_eirp,
3441 				cac_time);
3442 		else
3443 			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3444 				freq_range->start_freq_khz,
3445 				freq_range->end_freq_khz,
3446 				bw,
3447 				power_rule->max_eirp,
3448 				cac_time);
3449 	}
3450 }
3451 
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)3452 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3453 {
3454 	switch (dfs_region) {
3455 	case NL80211_DFS_UNSET:
3456 	case NL80211_DFS_FCC:
3457 	case NL80211_DFS_ETSI:
3458 	case NL80211_DFS_JP:
3459 		return true;
3460 	default:
3461 		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3462 		return false;
3463 	}
3464 }
3465 
print_regdomain(const struct ieee80211_regdomain * rd)3466 static void print_regdomain(const struct ieee80211_regdomain *rd)
3467 {
3468 	struct regulatory_request *lr = get_last_request();
3469 
3470 	if (is_intersected_alpha2(rd->alpha2)) {
3471 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3472 			struct cfg80211_registered_device *rdev;
3473 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3474 			if (rdev) {
3475 				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3476 					rdev->country_ie_alpha2[0],
3477 					rdev->country_ie_alpha2[1]);
3478 			} else
3479 				pr_debug("Current regulatory domain intersected:\n");
3480 		} else
3481 			pr_debug("Current regulatory domain intersected:\n");
3482 	} else if (is_world_regdom(rd->alpha2)) {
3483 		pr_debug("World regulatory domain updated:\n");
3484 	} else {
3485 		if (is_unknown_alpha2(rd->alpha2))
3486 			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3487 		else {
3488 			if (reg_request_cell_base(lr))
3489 				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3490 					rd->alpha2[0], rd->alpha2[1]);
3491 			else
3492 				pr_debug("Regulatory domain changed to country: %c%c\n",
3493 					rd->alpha2[0], rd->alpha2[1]);
3494 		}
3495 	}
3496 
3497 	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3498 	print_rd_rules(rd);
3499 }
3500 
print_regdomain_info(const struct ieee80211_regdomain * rd)3501 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3502 {
3503 	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3504 	print_rd_rules(rd);
3505 }
3506 
reg_set_rd_core(const struct ieee80211_regdomain * rd)3507 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3508 {
3509 	if (!is_world_regdom(rd->alpha2))
3510 		return -EINVAL;
3511 	update_world_regdomain(rd);
3512 	return 0;
3513 }
3514 
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)3515 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3516 			   struct regulatory_request *user_request)
3517 {
3518 	const struct ieee80211_regdomain *intersected_rd = NULL;
3519 
3520 	if (!regdom_changes(rd->alpha2))
3521 		return -EALREADY;
3522 
3523 	if (!is_valid_rd(rd)) {
3524 		pr_err("Invalid regulatory domain detected: %c%c\n",
3525 		       rd->alpha2[0], rd->alpha2[1]);
3526 		print_regdomain_info(rd);
3527 		return -EINVAL;
3528 	}
3529 
3530 	if (!user_request->intersect) {
3531 		reset_regdomains(false, rd);
3532 		return 0;
3533 	}
3534 
3535 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3536 	if (!intersected_rd)
3537 		return -EINVAL;
3538 
3539 	kfree(rd);
3540 	rd = NULL;
3541 	reset_regdomains(false, intersected_rd);
3542 
3543 	return 0;
3544 }
3545 
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)3546 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3547 			     struct regulatory_request *driver_request)
3548 {
3549 	const struct ieee80211_regdomain *regd;
3550 	const struct ieee80211_regdomain *intersected_rd = NULL;
3551 	const struct ieee80211_regdomain *tmp;
3552 	struct wiphy *request_wiphy;
3553 
3554 	if (is_world_regdom(rd->alpha2))
3555 		return -EINVAL;
3556 
3557 	if (!regdom_changes(rd->alpha2))
3558 		return -EALREADY;
3559 
3560 	if (!is_valid_rd(rd)) {
3561 		pr_err("Invalid regulatory domain detected: %c%c\n",
3562 		       rd->alpha2[0], rd->alpha2[1]);
3563 		print_regdomain_info(rd);
3564 		return -EINVAL;
3565 	}
3566 
3567 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3568 	if (!request_wiphy)
3569 		return -ENODEV;
3570 
3571 	if (!driver_request->intersect) {
3572 		if (request_wiphy->regd)
3573 			return -EALREADY;
3574 
3575 		regd = reg_copy_regd(rd);
3576 		if (IS_ERR(regd))
3577 			return PTR_ERR(regd);
3578 
3579 		rcu_assign_pointer(request_wiphy->regd, regd);
3580 		reset_regdomains(false, rd);
3581 		return 0;
3582 	}
3583 
3584 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3585 	if (!intersected_rd)
3586 		return -EINVAL;
3587 
3588 	/*
3589 	 * We can trash what CRDA provided now.
3590 	 * However if a driver requested this specific regulatory
3591 	 * domain we keep it for its private use
3592 	 */
3593 	tmp = get_wiphy_regdom(request_wiphy);
3594 	rcu_assign_pointer(request_wiphy->regd, rd);
3595 	rcu_free_regdom(tmp);
3596 
3597 	rd = NULL;
3598 
3599 	reset_regdomains(false, intersected_rd);
3600 
3601 	return 0;
3602 }
3603 
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)3604 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3605 				 struct regulatory_request *country_ie_request)
3606 {
3607 	struct wiphy *request_wiphy;
3608 
3609 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3610 	    !is_unknown_alpha2(rd->alpha2))
3611 		return -EINVAL;
3612 
3613 	/*
3614 	 * Lets only bother proceeding on the same alpha2 if the current
3615 	 * rd is non static (it means CRDA was present and was used last)
3616 	 * and the pending request came in from a country IE
3617 	 */
3618 
3619 	if (!is_valid_rd(rd)) {
3620 		pr_err("Invalid regulatory domain detected: %c%c\n",
3621 		       rd->alpha2[0], rd->alpha2[1]);
3622 		print_regdomain_info(rd);
3623 		return -EINVAL;
3624 	}
3625 
3626 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3627 	if (!request_wiphy)
3628 		return -ENODEV;
3629 
3630 	if (country_ie_request->intersect)
3631 		return -EINVAL;
3632 
3633 	reset_regdomains(false, rd);
3634 	return 0;
3635 }
3636 
3637 /*
3638  * Use this call to set the current regulatory domain. Conflicts with
3639  * multiple drivers can be ironed out later. Caller must've already
3640  * kmalloc'd the rd structure.
3641  */
set_regdom(const struct ieee80211_regdomain * rd,enum ieee80211_regd_source regd_src)3642 int set_regdom(const struct ieee80211_regdomain *rd,
3643 	       enum ieee80211_regd_source regd_src)
3644 {
3645 	struct regulatory_request *lr;
3646 	bool user_reset = false;
3647 	int r;
3648 
3649 	if (IS_ERR_OR_NULL(rd))
3650 		return -ENODATA;
3651 
3652 	if (!reg_is_valid_request(rd->alpha2)) {
3653 		kfree(rd);
3654 		return -EINVAL;
3655 	}
3656 
3657 	if (regd_src == REGD_SOURCE_CRDA)
3658 		reset_crda_timeouts();
3659 
3660 	lr = get_last_request();
3661 
3662 	/* Note that this doesn't update the wiphys, this is done below */
3663 	switch (lr->initiator) {
3664 	case NL80211_REGDOM_SET_BY_CORE:
3665 		r = reg_set_rd_core(rd);
3666 		break;
3667 	case NL80211_REGDOM_SET_BY_USER:
3668 		cfg80211_save_user_regdom(rd);
3669 		r = reg_set_rd_user(rd, lr);
3670 		user_reset = true;
3671 		break;
3672 	case NL80211_REGDOM_SET_BY_DRIVER:
3673 		r = reg_set_rd_driver(rd, lr);
3674 		break;
3675 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3676 		r = reg_set_rd_country_ie(rd, lr);
3677 		break;
3678 	default:
3679 		WARN(1, "invalid initiator %d\n", lr->initiator);
3680 		kfree(rd);
3681 		return -EINVAL;
3682 	}
3683 
3684 	if (r) {
3685 		switch (r) {
3686 		case -EALREADY:
3687 			reg_set_request_processed();
3688 			break;
3689 		default:
3690 			/* Back to world regulatory in case of errors */
3691 			restore_regulatory_settings(user_reset, false);
3692 		}
3693 
3694 		kfree(rd);
3695 		return r;
3696 	}
3697 
3698 	/* This would make this whole thing pointless */
3699 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3700 		return -EINVAL;
3701 
3702 	/* update all wiphys now with the new established regulatory domain */
3703 	update_all_wiphy_regulatory(lr->initiator);
3704 
3705 	print_regdomain(get_cfg80211_regdom());
3706 
3707 	nl80211_send_reg_change_event(lr);
3708 
3709 	reg_set_request_processed();
3710 
3711 	return 0;
3712 }
3713 
__regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)3714 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3715 				       struct ieee80211_regdomain *rd)
3716 {
3717 	const struct ieee80211_regdomain *regd;
3718 	const struct ieee80211_regdomain *prev_regd;
3719 	struct cfg80211_registered_device *rdev;
3720 
3721 	if (WARN_ON(!wiphy || !rd))
3722 		return -EINVAL;
3723 
3724 	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3725 		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3726 		return -EPERM;
3727 
3728 	if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3729 		print_regdomain_info(rd);
3730 		return -EINVAL;
3731 	}
3732 
3733 	regd = reg_copy_regd(rd);
3734 	if (IS_ERR(regd))
3735 		return PTR_ERR(regd);
3736 
3737 	rdev = wiphy_to_rdev(wiphy);
3738 
3739 	spin_lock(&reg_requests_lock);
3740 	prev_regd = rdev->requested_regd;
3741 	rdev->requested_regd = regd;
3742 	spin_unlock(&reg_requests_lock);
3743 
3744 	kfree(prev_regd);
3745 	return 0;
3746 }
3747 
regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)3748 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3749 			      struct ieee80211_regdomain *rd)
3750 {
3751 	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3752 
3753 	if (ret)
3754 		return ret;
3755 
3756 	schedule_work(&reg_work);
3757 	return 0;
3758 }
3759 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3760 
regulatory_set_wiphy_regd_sync_rtnl(struct wiphy * wiphy,struct ieee80211_regdomain * rd)3761 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3762 					struct ieee80211_regdomain *rd)
3763 {
3764 	int ret;
3765 
3766 	ASSERT_RTNL();
3767 
3768 	ret = __regulatory_set_wiphy_regd(wiphy, rd);
3769 	if (ret)
3770 		return ret;
3771 
3772 	/* process the request immediately */
3773 	reg_process_self_managed_hints();
3774 	return 0;
3775 }
3776 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3777 
wiphy_regulatory_register(struct wiphy * wiphy)3778 void wiphy_regulatory_register(struct wiphy *wiphy)
3779 {
3780 	struct regulatory_request *lr = get_last_request();
3781 
3782 	/* self-managed devices ignore beacon hints and country IE */
3783 	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3784 		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3785 					   REGULATORY_COUNTRY_IE_IGNORE;
3786 
3787 		/*
3788 		 * The last request may have been received before this
3789 		 * registration call. Call the driver notifier if
3790 		 * initiator is USER.
3791 		 */
3792 		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
3793 			reg_call_notifier(wiphy, lr);
3794 	}
3795 
3796 	if (!reg_dev_ignore_cell_hint(wiphy))
3797 		reg_num_devs_support_basehint++;
3798 
3799 	wiphy_update_regulatory(wiphy, lr->initiator);
3800 	wiphy_all_share_dfs_chan_state(wiphy);
3801 	reg_process_self_managed_hints();
3802 }
3803 
wiphy_regulatory_deregister(struct wiphy * wiphy)3804 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3805 {
3806 	struct wiphy *request_wiphy = NULL;
3807 	struct regulatory_request *lr;
3808 
3809 	lr = get_last_request();
3810 
3811 	if (!reg_dev_ignore_cell_hint(wiphy))
3812 		reg_num_devs_support_basehint--;
3813 
3814 	rcu_free_regdom(get_wiphy_regdom(wiphy));
3815 	RCU_INIT_POINTER(wiphy->regd, NULL);
3816 
3817 	if (lr)
3818 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3819 
3820 	if (!request_wiphy || request_wiphy != wiphy)
3821 		return;
3822 
3823 	lr->wiphy_idx = WIPHY_IDX_INVALID;
3824 	lr->country_ie_env = ENVIRON_ANY;
3825 }
3826 
3827 /*
3828  * See FCC notices for UNII band definitions
3829  *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
3830  *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
3831  */
cfg80211_get_unii(int freq)3832 int cfg80211_get_unii(int freq)
3833 {
3834 	/* UNII-1 */
3835 	if (freq >= 5150 && freq <= 5250)
3836 		return 0;
3837 
3838 	/* UNII-2A */
3839 	if (freq > 5250 && freq <= 5350)
3840 		return 1;
3841 
3842 	/* UNII-2B */
3843 	if (freq > 5350 && freq <= 5470)
3844 		return 2;
3845 
3846 	/* UNII-2C */
3847 	if (freq > 5470 && freq <= 5725)
3848 		return 3;
3849 
3850 	/* UNII-3 */
3851 	if (freq > 5725 && freq <= 5825)
3852 		return 4;
3853 
3854 	/* UNII-5 */
3855 	if (freq > 5925 && freq <= 6425)
3856 		return 5;
3857 
3858 	/* UNII-6 */
3859 	if (freq > 6425 && freq <= 6525)
3860 		return 6;
3861 
3862 	/* UNII-7 */
3863 	if (freq > 6525 && freq <= 6875)
3864 		return 7;
3865 
3866 	/* UNII-8 */
3867 	if (freq > 6875 && freq <= 7125)
3868 		return 8;
3869 
3870 	return -EINVAL;
3871 }
3872 
regulatory_indoor_allowed(void)3873 bool regulatory_indoor_allowed(void)
3874 {
3875 	return reg_is_indoor;
3876 }
3877 
regulatory_pre_cac_allowed(struct wiphy * wiphy)3878 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3879 {
3880 	const struct ieee80211_regdomain *regd = NULL;
3881 	const struct ieee80211_regdomain *wiphy_regd = NULL;
3882 	bool pre_cac_allowed = false;
3883 
3884 	rcu_read_lock();
3885 
3886 	regd = rcu_dereference(cfg80211_regdomain);
3887 	wiphy_regd = rcu_dereference(wiphy->regd);
3888 	if (!wiphy_regd) {
3889 		if (regd->dfs_region == NL80211_DFS_ETSI)
3890 			pre_cac_allowed = true;
3891 
3892 		rcu_read_unlock();
3893 
3894 		return pre_cac_allowed;
3895 	}
3896 
3897 	if (regd->dfs_region == wiphy_regd->dfs_region &&
3898 	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3899 		pre_cac_allowed = true;
3900 
3901 	rcu_read_unlock();
3902 
3903 	return pre_cac_allowed;
3904 }
3905 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
3906 
cfg80211_check_and_end_cac(struct cfg80211_registered_device * rdev)3907 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
3908 {
3909 	struct wireless_dev *wdev;
3910 	/* If we finished CAC or received radar, we should end any
3911 	 * CAC running on the same channels.
3912 	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
3913 	 * either all channels are available - those the CAC_FINISHED
3914 	 * event has effected another wdev state, or there is a channel
3915 	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
3916 	 * event has effected another wdev state.
3917 	 * In both cases we should end the CAC on the wdev.
3918 	 */
3919 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3920 		if (wdev->cac_started &&
3921 		    !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
3922 			rdev_end_cac(rdev, wdev->netdev);
3923 	}
3924 }
3925 
regulatory_propagate_dfs_state(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state,enum nl80211_radar_event event)3926 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3927 				    struct cfg80211_chan_def *chandef,
3928 				    enum nl80211_dfs_state dfs_state,
3929 				    enum nl80211_radar_event event)
3930 {
3931 	struct cfg80211_registered_device *rdev;
3932 
3933 	ASSERT_RTNL();
3934 
3935 	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3936 		return;
3937 
3938 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3939 		if (wiphy == &rdev->wiphy)
3940 			continue;
3941 
3942 		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3943 			continue;
3944 
3945 		if (!ieee80211_get_channel(&rdev->wiphy,
3946 					   chandef->chan->center_freq))
3947 			continue;
3948 
3949 		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3950 
3951 		if (event == NL80211_RADAR_DETECTED ||
3952 		    event == NL80211_RADAR_CAC_FINISHED) {
3953 			cfg80211_sched_dfs_chan_update(rdev);
3954 			cfg80211_check_and_end_cac(rdev);
3955 		}
3956 
3957 		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3958 	}
3959 }
3960 
regulatory_init_db(void)3961 static int __init regulatory_init_db(void)
3962 {
3963 	int err;
3964 
3965 	/*
3966 	 * It's possible that - due to other bugs/issues - cfg80211
3967 	 * never called regulatory_init() below, or that it failed;
3968 	 * in that case, don't try to do any further work here as
3969 	 * it's doomed to lead to crashes.
3970 	 */
3971 	if (IS_ERR_OR_NULL(reg_pdev))
3972 		return -EINVAL;
3973 
3974 	err = load_builtin_regdb_keys();
3975 	if (err) {
3976 		platform_device_unregister(reg_pdev);
3977 		return err;
3978 	}
3979 
3980 	/* We always try to get an update for the static regdomain */
3981 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3982 	if (err) {
3983 		if (err == -ENOMEM) {
3984 			platform_device_unregister(reg_pdev);
3985 			return err;
3986 		}
3987 		/*
3988 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
3989 		 * memory which is handled and propagated appropriately above
3990 		 * but it can also fail during a netlink_broadcast() or during
3991 		 * early boot for call_usermodehelper(). For now treat these
3992 		 * errors as non-fatal.
3993 		 */
3994 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3995 	}
3996 
3997 	/*
3998 	 * Finally, if the user set the module parameter treat it
3999 	 * as a user hint.
4000 	 */
4001 	if (!is_world_regdom(ieee80211_regdom))
4002 		regulatory_hint_user(ieee80211_regdom,
4003 				     NL80211_USER_REG_HINT_USER);
4004 
4005 	return 0;
4006 }
4007 #ifndef MODULE
4008 late_initcall(regulatory_init_db);
4009 #endif
4010 
regulatory_init(void)4011 int __init regulatory_init(void)
4012 {
4013 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4014 	if (IS_ERR(reg_pdev))
4015 		return PTR_ERR(reg_pdev);
4016 
4017 	spin_lock_init(&reg_requests_lock);
4018 	spin_lock_init(&reg_pending_beacons_lock);
4019 	spin_lock_init(&reg_indoor_lock);
4020 
4021 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4022 
4023 	user_alpha2[0] = '9';
4024 	user_alpha2[1] = '7';
4025 
4026 #ifdef MODULE
4027 	return regulatory_init_db();
4028 #else
4029 	return 0;
4030 #endif
4031 }
4032 
regulatory_exit(void)4033 void regulatory_exit(void)
4034 {
4035 	struct regulatory_request *reg_request, *tmp;
4036 	struct reg_beacon *reg_beacon, *btmp;
4037 
4038 	cancel_work_sync(&reg_work);
4039 	cancel_crda_timeout_sync();
4040 	cancel_delayed_work_sync(&reg_check_chans);
4041 
4042 	/* Lock to suppress warnings */
4043 	rtnl_lock();
4044 	reset_regdomains(true, NULL);
4045 	rtnl_unlock();
4046 
4047 	dev_set_uevent_suppress(&reg_pdev->dev, true);
4048 
4049 	platform_device_unregister(reg_pdev);
4050 
4051 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4052 		list_del(&reg_beacon->list);
4053 		kfree(reg_beacon);
4054 	}
4055 
4056 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4057 		list_del(&reg_beacon->list);
4058 		kfree(reg_beacon);
4059 	}
4060 
4061 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4062 		list_del(&reg_request->list);
4063 		kfree(reg_request);
4064 	}
4065 
4066 	if (!IS_ERR_OR_NULL(regdb))
4067 		kfree(regdb);
4068 	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4069 		kfree(cfg80211_user_regdom);
4070 
4071 	free_regdb_keyring();
4072 }
4073