1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2019 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24 /**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82 enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102 static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121 static int reg_num_devs_support_basehint;
122
123 /*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136
get_cfg80211_regdom(void)137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139 return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141
get_wiphy_regdom(struct wiphy * wiphy)142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 {
144 return rcu_dereference_rtnl(wiphy->regd);
145 }
146
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 {
149 switch (dfs_region) {
150 case NL80211_DFS_UNSET:
151 return "unset";
152 case NL80211_DFS_FCC:
153 return "FCC";
154 case NL80211_DFS_ETSI:
155 return "ETSI";
156 case NL80211_DFS_JP:
157 return "JP";
158 }
159 return "Unknown";
160 }
161
reg_get_dfs_region(struct wiphy * wiphy)162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 {
164 const struct ieee80211_regdomain *regd = NULL;
165 const struct ieee80211_regdomain *wiphy_regd = NULL;
166
167 regd = get_cfg80211_regdom();
168 if (!wiphy)
169 goto out;
170
171 wiphy_regd = get_wiphy_regdom(wiphy);
172 if (!wiphy_regd)
173 goto out;
174
175 if (wiphy_regd->dfs_region == regd->dfs_region)
176 goto out;
177
178 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179 dev_name(&wiphy->dev),
180 reg_dfs_region_str(wiphy_regd->dfs_region),
181 reg_dfs_region_str(regd->dfs_region));
182
183 out:
184 return regd->dfs_region;
185 }
186
rcu_free_regdom(const struct ieee80211_regdomain * r)187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 {
189 if (!r)
190 return;
191 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192 }
193
get_last_request(void)194 static struct regulatory_request *get_last_request(void)
195 {
196 return rcu_dereference_rtnl(last_request);
197 }
198
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
202
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
206
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
209
210 struct reg_beacon {
211 struct list_head list;
212 struct ieee80211_channel chan;
213 };
214
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
220
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223 .n_reg_rules = 8,
224 .alpha2 = "00",
225 .reg_rules = {
226 /* IEEE 802.11b/g, channels 1..11 */
227 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228 /* IEEE 802.11b/g, channels 12..13. */
229 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231 /* IEEE 802.11 channel 14 - Only JP enables
232 * this and for 802.11b only */
233 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234 NL80211_RRF_NO_IR |
235 NL80211_RRF_NO_OFDM),
236 /* IEEE 802.11a, channel 36..48 */
237 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238 NL80211_RRF_NO_IR |
239 NL80211_RRF_AUTO_BW),
240
241 /* IEEE 802.11a, channel 52..64 - DFS required */
242 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243 NL80211_RRF_NO_IR |
244 NL80211_RRF_AUTO_BW |
245 NL80211_RRF_DFS),
246
247 /* IEEE 802.11a, channel 100..144 - DFS required */
248 REG_RULE(5500-10, 5720+10, 160, 6, 20,
249 NL80211_RRF_NO_IR |
250 NL80211_RRF_DFS),
251
252 /* IEEE 802.11a, channel 149..165 */
253 REG_RULE(5745-10, 5825+10, 80, 6, 20,
254 NL80211_RRF_NO_IR),
255
256 /* IEEE 802.11ad (60GHz), channels 1..3 */
257 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258 }
259 };
260
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263 &world_regdom;
264
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
268
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271
reg_free_request(struct regulatory_request * request)272 static void reg_free_request(struct regulatory_request *request)
273 {
274 if (request == &core_request_world)
275 return;
276
277 if (request != get_last_request())
278 kfree(request);
279 }
280
reg_free_last_request(void)281 static void reg_free_last_request(void)
282 {
283 struct regulatory_request *lr = get_last_request();
284
285 if (lr != &core_request_world && lr)
286 kfree_rcu(lr, rcu_head);
287 }
288
reg_update_last_request(struct regulatory_request * request)289 static void reg_update_last_request(struct regulatory_request *request)
290 {
291 struct regulatory_request *lr;
292
293 lr = get_last_request();
294 if (lr == request)
295 return;
296
297 reg_free_last_request();
298 rcu_assign_pointer(last_request, request);
299 }
300
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)301 static void reset_regdomains(bool full_reset,
302 const struct ieee80211_regdomain *new_regdom)
303 {
304 const struct ieee80211_regdomain *r;
305
306 ASSERT_RTNL();
307
308 r = get_cfg80211_regdom();
309
310 /* avoid freeing static information or freeing something twice */
311 if (r == cfg80211_world_regdom)
312 r = NULL;
313 if (cfg80211_world_regdom == &world_regdom)
314 cfg80211_world_regdom = NULL;
315 if (r == &world_regdom)
316 r = NULL;
317
318 rcu_free_regdom(r);
319 rcu_free_regdom(cfg80211_world_regdom);
320
321 cfg80211_world_regdom = &world_regdom;
322 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323
324 if (!full_reset)
325 return;
326
327 reg_update_last_request(&core_request_world);
328 }
329
330 /*
331 * Dynamic world regulatory domain requested by the wireless
332 * core upon initialization
333 */
update_world_regdomain(const struct ieee80211_regdomain * rd)334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335 {
336 struct regulatory_request *lr;
337
338 lr = get_last_request();
339
340 WARN_ON(!lr);
341
342 reset_regdomains(false, rd);
343
344 cfg80211_world_regdom = rd;
345 }
346
is_world_regdom(const char * alpha2)347 bool is_world_regdom(const char *alpha2)
348 {
349 if (!alpha2)
350 return false;
351 return alpha2[0] == '0' && alpha2[1] == '0';
352 }
353
is_alpha2_set(const char * alpha2)354 static bool is_alpha2_set(const char *alpha2)
355 {
356 if (!alpha2)
357 return false;
358 return alpha2[0] && alpha2[1];
359 }
360
is_unknown_alpha2(const char * alpha2)361 static bool is_unknown_alpha2(const char *alpha2)
362 {
363 if (!alpha2)
364 return false;
365 /*
366 * Special case where regulatory domain was built by driver
367 * but a specific alpha2 cannot be determined
368 */
369 return alpha2[0] == '9' && alpha2[1] == '9';
370 }
371
is_intersected_alpha2(const char * alpha2)372 static bool is_intersected_alpha2(const char *alpha2)
373 {
374 if (!alpha2)
375 return false;
376 /*
377 * Special case where regulatory domain is the
378 * result of an intersection between two regulatory domain
379 * structures
380 */
381 return alpha2[0] == '9' && alpha2[1] == '8';
382 }
383
is_an_alpha2(const char * alpha2)384 static bool is_an_alpha2(const char *alpha2)
385 {
386 if (!alpha2)
387 return false;
388 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 }
390
alpha2_equal(const char * alpha2_x,const char * alpha2_y)391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392 {
393 if (!alpha2_x || !alpha2_y)
394 return false;
395 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 }
397
regdom_changes(const char * alpha2)398 static bool regdom_changes(const char *alpha2)
399 {
400 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401
402 if (!r)
403 return true;
404 return !alpha2_equal(r->alpha2, alpha2);
405 }
406
407 /*
408 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410 * has ever been issued.
411 */
is_user_regdom_saved(void)412 static bool is_user_regdom_saved(void)
413 {
414 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415 return false;
416
417 /* This would indicate a mistake on the design */
418 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419 "Unexpected user alpha2: %c%c\n",
420 user_alpha2[0], user_alpha2[1]))
421 return false;
422
423 return true;
424 }
425
426 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428 {
429 struct ieee80211_regdomain *regd;
430 unsigned int i;
431
432 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
433 GFP_KERNEL);
434 if (!regd)
435 return ERR_PTR(-ENOMEM);
436
437 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
438
439 for (i = 0; i < src_regd->n_reg_rules; i++)
440 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
441 sizeof(struct ieee80211_reg_rule));
442
443 return regd;
444 }
445
cfg80211_save_user_regdom(const struct ieee80211_regdomain * rd)446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
447 {
448 ASSERT_RTNL();
449
450 if (!IS_ERR(cfg80211_user_regdom))
451 kfree(cfg80211_user_regdom);
452 cfg80211_user_regdom = reg_copy_regd(rd);
453 }
454
455 struct reg_regdb_apply_request {
456 struct list_head list;
457 const struct ieee80211_regdomain *regdom;
458 };
459
460 static LIST_HEAD(reg_regdb_apply_list);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
462
reg_regdb_apply(struct work_struct * work)463 static void reg_regdb_apply(struct work_struct *work)
464 {
465 struct reg_regdb_apply_request *request;
466
467 rtnl_lock();
468
469 mutex_lock(®_regdb_apply_mutex);
470 while (!list_empty(®_regdb_apply_list)) {
471 request = list_first_entry(®_regdb_apply_list,
472 struct reg_regdb_apply_request,
473 list);
474 list_del(&request->list);
475
476 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477 kfree(request);
478 }
479 mutex_unlock(®_regdb_apply_mutex);
480
481 rtnl_unlock();
482 }
483
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
485
reg_schedule_apply(const struct ieee80211_regdomain * regdom)486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
487 {
488 struct reg_regdb_apply_request *request;
489
490 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
491 if (!request) {
492 kfree(regdom);
493 return -ENOMEM;
494 }
495
496 request->regdom = regdom;
497
498 mutex_lock(®_regdb_apply_mutex);
499 list_add_tail(&request->list, ®_regdb_apply_list);
500 mutex_unlock(®_regdb_apply_mutex);
501
502 schedule_work(®_regdb_work);
503 return 0;
504 }
505
506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
507 /* Max number of consecutive attempts to communicate with CRDA */
508 #define REG_MAX_CRDA_TIMEOUTS 10
509
510 static u32 reg_crda_timeouts;
511
512 static void crda_timeout_work(struct work_struct *work);
513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
514
crda_timeout_work(struct work_struct * work)515 static void crda_timeout_work(struct work_struct *work)
516 {
517 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
518 rtnl_lock();
519 reg_crda_timeouts++;
520 restore_regulatory_settings(true, false);
521 rtnl_unlock();
522 }
523
cancel_crda_timeout(void)524 static void cancel_crda_timeout(void)
525 {
526 cancel_delayed_work(&crda_timeout);
527 }
528
cancel_crda_timeout_sync(void)529 static void cancel_crda_timeout_sync(void)
530 {
531 cancel_delayed_work_sync(&crda_timeout);
532 }
533
reset_crda_timeouts(void)534 static void reset_crda_timeouts(void)
535 {
536 reg_crda_timeouts = 0;
537 }
538
539 /*
540 * This lets us keep regulatory code which is updated on a regulatory
541 * basis in userspace.
542 */
call_crda(const char * alpha2)543 static int call_crda(const char *alpha2)
544 {
545 char country[12];
546 char *env[] = { country, NULL };
547 int ret;
548
549 snprintf(country, sizeof(country), "COUNTRY=%c%c",
550 alpha2[0], alpha2[1]);
551
552 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
553 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
554 return -EINVAL;
555 }
556
557 if (!is_world_regdom((char *) alpha2))
558 pr_debug("Calling CRDA for country: %c%c\n",
559 alpha2[0], alpha2[1]);
560 else
561 pr_debug("Calling CRDA to update world regulatory domain\n");
562
563 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
564 if (ret)
565 return ret;
566
567 queue_delayed_work(system_power_efficient_wq,
568 &crda_timeout, msecs_to_jiffies(3142));
569 return 0;
570 }
571 #else
cancel_crda_timeout(void)572 static inline void cancel_crda_timeout(void) {}
cancel_crda_timeout_sync(void)573 static inline void cancel_crda_timeout_sync(void) {}
reset_crda_timeouts(void)574 static inline void reset_crda_timeouts(void) {}
call_crda(const char * alpha2)575 static inline int call_crda(const char *alpha2)
576 {
577 return -ENODATA;
578 }
579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
580
581 /* code to directly load a firmware database through request_firmware */
582 static const struct fwdb_header *regdb;
583
584 struct fwdb_country {
585 u8 alpha2[2];
586 __be16 coll_ptr;
587 /* this struct cannot be extended */
588 } __packed __aligned(4);
589
590 struct fwdb_collection {
591 u8 len;
592 u8 n_rules;
593 u8 dfs_region;
594 /* no optional data yet */
595 /* aligned to 2, then followed by __be16 array of rule pointers */
596 } __packed __aligned(4);
597
598 enum fwdb_flags {
599 FWDB_FLAG_NO_OFDM = BIT(0),
600 FWDB_FLAG_NO_OUTDOOR = BIT(1),
601 FWDB_FLAG_DFS = BIT(2),
602 FWDB_FLAG_NO_IR = BIT(3),
603 FWDB_FLAG_AUTO_BW = BIT(4),
604 };
605
606 struct fwdb_wmm_ac {
607 u8 ecw;
608 u8 aifsn;
609 __be16 cot;
610 } __packed;
611
612 struct fwdb_wmm_rule {
613 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
614 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
615 } __packed;
616
617 struct fwdb_rule {
618 u8 len;
619 u8 flags;
620 __be16 max_eirp;
621 __be32 start, end, max_bw;
622 /* start of optional data */
623 __be16 cac_timeout;
624 __be16 wmm_ptr;
625 } __packed __aligned(4);
626
627 #define FWDB_MAGIC 0x52474442
628 #define FWDB_VERSION 20
629
630 struct fwdb_header {
631 __be32 magic;
632 __be32 version;
633 struct fwdb_country country[];
634 } __packed __aligned(4);
635
ecw2cw(int ecw)636 static int ecw2cw(int ecw)
637 {
638 return (1 << ecw) - 1;
639 }
640
valid_wmm(struct fwdb_wmm_rule * rule)641 static bool valid_wmm(struct fwdb_wmm_rule *rule)
642 {
643 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
644 int i;
645
646 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
647 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
648 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
649 u8 aifsn = ac[i].aifsn;
650
651 if (cw_min >= cw_max)
652 return false;
653
654 if (aifsn < 1)
655 return false;
656 }
657
658 return true;
659 }
660
valid_rule(const u8 * data,unsigned int size,u16 rule_ptr)661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
662 {
663 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
664
665 if ((u8 *)rule + sizeof(rule->len) > data + size)
666 return false;
667
668 /* mandatory fields */
669 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
670 return false;
671 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
672 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
673 struct fwdb_wmm_rule *wmm;
674
675 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
676 return false;
677
678 wmm = (void *)(data + wmm_ptr);
679
680 if (!valid_wmm(wmm))
681 return false;
682 }
683 return true;
684 }
685
valid_country(const u8 * data,unsigned int size,const struct fwdb_country * country)686 static bool valid_country(const u8 *data, unsigned int size,
687 const struct fwdb_country *country)
688 {
689 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
690 struct fwdb_collection *coll = (void *)(data + ptr);
691 __be16 *rules_ptr;
692 unsigned int i;
693
694 /* make sure we can read len/n_rules */
695 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
696 return false;
697
698 /* make sure base struct and all rules fit */
699 if ((u8 *)coll + ALIGN(coll->len, 2) +
700 (coll->n_rules * 2) > data + size)
701 return false;
702
703 /* mandatory fields must exist */
704 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
705 return false;
706
707 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
708
709 for (i = 0; i < coll->n_rules; i++) {
710 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
711
712 if (!valid_rule(data, size, rule_ptr))
713 return false;
714 }
715
716 return true;
717 }
718
719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720 static struct key *builtin_regdb_keys;
721
load_keys_from_buffer(const u8 * p,unsigned int buflen)722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
723 {
724 const u8 *end = p + buflen;
725 size_t plen;
726 key_ref_t key;
727
728 while (p < end) {
729 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730 * than 256 bytes in size.
731 */
732 if (end - p < 4)
733 goto dodgy_cert;
734 if (p[0] != 0x30 &&
735 p[1] != 0x82)
736 goto dodgy_cert;
737 plen = (p[2] << 8) | p[3];
738 plen += 4;
739 if (plen > end - p)
740 goto dodgy_cert;
741
742 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
743 "asymmetric", NULL, p, plen,
744 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
745 KEY_USR_VIEW | KEY_USR_READ),
746 KEY_ALLOC_NOT_IN_QUOTA |
747 KEY_ALLOC_BUILT_IN |
748 KEY_ALLOC_BYPASS_RESTRICTION);
749 if (IS_ERR(key)) {
750 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
751 PTR_ERR(key));
752 } else {
753 pr_notice("Loaded X.509 cert '%s'\n",
754 key_ref_to_ptr(key)->description);
755 key_ref_put(key);
756 }
757 p += plen;
758 }
759
760 return;
761
762 dodgy_cert:
763 pr_err("Problem parsing in-kernel X.509 certificate list\n");
764 }
765
load_builtin_regdb_keys(void)766 static int __init load_builtin_regdb_keys(void)
767 {
768 builtin_regdb_keys =
769 keyring_alloc(".builtin_regdb_keys",
770 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
771 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
772 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
773 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
774 if (IS_ERR(builtin_regdb_keys))
775 return PTR_ERR(builtin_regdb_keys);
776
777 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
778
779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
780 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
781 #endif
782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
783 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
784 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
785 #endif
786
787 return 0;
788 }
789
regdb_has_valid_signature(const u8 * data,unsigned int size)790 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
791 {
792 const struct firmware *sig;
793 bool result;
794
795 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
796 return false;
797
798 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
799 builtin_regdb_keys,
800 VERIFYING_UNSPECIFIED_SIGNATURE,
801 NULL, NULL) == 0;
802
803 release_firmware(sig);
804
805 return result;
806 }
807
free_regdb_keyring(void)808 static void free_regdb_keyring(void)
809 {
810 key_put(builtin_regdb_keys);
811 }
812 #else
load_builtin_regdb_keys(void)813 static int load_builtin_regdb_keys(void)
814 {
815 return 0;
816 }
817
regdb_has_valid_signature(const u8 * data,unsigned int size)818 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
819 {
820 return true;
821 }
822
free_regdb_keyring(void)823 static void free_regdb_keyring(void)
824 {
825 }
826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
827
valid_regdb(const u8 * data,unsigned int size)828 static bool valid_regdb(const u8 *data, unsigned int size)
829 {
830 const struct fwdb_header *hdr = (void *)data;
831 const struct fwdb_country *country;
832
833 if (size < sizeof(*hdr))
834 return false;
835
836 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
837 return false;
838
839 if (hdr->version != cpu_to_be32(FWDB_VERSION))
840 return false;
841
842 if (!regdb_has_valid_signature(data, size))
843 return false;
844
845 country = &hdr->country[0];
846 while ((u8 *)(country + 1) <= data + size) {
847 if (!country->coll_ptr)
848 break;
849 if (!valid_country(data, size, country))
850 return false;
851 country++;
852 }
853
854 return true;
855 }
856
set_wmm_rule(const struct fwdb_header * db,const struct fwdb_country * country,const struct fwdb_rule * rule,struct ieee80211_reg_rule * rrule)857 static void set_wmm_rule(const struct fwdb_header *db,
858 const struct fwdb_country *country,
859 const struct fwdb_rule *rule,
860 struct ieee80211_reg_rule *rrule)
861 {
862 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
863 struct fwdb_wmm_rule *wmm;
864 unsigned int i, wmm_ptr;
865
866 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
867 wmm = (void *)((u8 *)db + wmm_ptr);
868
869 if (!valid_wmm(wmm)) {
870 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
871 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
872 country->alpha2[0], country->alpha2[1]);
873 return;
874 }
875
876 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
877 wmm_rule->client[i].cw_min =
878 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
879 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
880 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
881 wmm_rule->client[i].cot =
882 1000 * be16_to_cpu(wmm->client[i].cot);
883 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
884 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
885 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
886 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
887 }
888
889 rrule->has_wmm = true;
890 }
891
__regdb_query_wmm(const struct fwdb_header * db,const struct fwdb_country * country,int freq,struct ieee80211_reg_rule * rrule)892 static int __regdb_query_wmm(const struct fwdb_header *db,
893 const struct fwdb_country *country, int freq,
894 struct ieee80211_reg_rule *rrule)
895 {
896 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
897 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
898 int i;
899
900 for (i = 0; i < coll->n_rules; i++) {
901 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
902 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
903 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
904
905 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
906 continue;
907
908 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
909 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
910 set_wmm_rule(db, country, rule, rrule);
911 return 0;
912 }
913 }
914
915 return -ENODATA;
916 }
917
reg_query_regdb_wmm(char * alpha2,int freq,struct ieee80211_reg_rule * rule)918 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
919 {
920 const struct fwdb_header *hdr = regdb;
921 const struct fwdb_country *country;
922
923 if (!regdb)
924 return -ENODATA;
925
926 if (IS_ERR(regdb))
927 return PTR_ERR(regdb);
928
929 country = &hdr->country[0];
930 while (country->coll_ptr) {
931 if (alpha2_equal(alpha2, country->alpha2))
932 return __regdb_query_wmm(regdb, country, freq, rule);
933
934 country++;
935 }
936
937 return -ENODATA;
938 }
939 EXPORT_SYMBOL(reg_query_regdb_wmm);
940
regdb_query_country(const struct fwdb_header * db,const struct fwdb_country * country)941 static int regdb_query_country(const struct fwdb_header *db,
942 const struct fwdb_country *country)
943 {
944 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
945 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
946 struct ieee80211_regdomain *regdom;
947 unsigned int i;
948
949 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
950 GFP_KERNEL);
951 if (!regdom)
952 return -ENOMEM;
953
954 regdom->n_reg_rules = coll->n_rules;
955 regdom->alpha2[0] = country->alpha2[0];
956 regdom->alpha2[1] = country->alpha2[1];
957 regdom->dfs_region = coll->dfs_region;
958
959 for (i = 0; i < regdom->n_reg_rules; i++) {
960 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
961 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
962 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
963 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
964
965 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
966 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
967 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
968
969 rrule->power_rule.max_antenna_gain = 0;
970 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
971
972 rrule->flags = 0;
973 if (rule->flags & FWDB_FLAG_NO_OFDM)
974 rrule->flags |= NL80211_RRF_NO_OFDM;
975 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
976 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
977 if (rule->flags & FWDB_FLAG_DFS)
978 rrule->flags |= NL80211_RRF_DFS;
979 if (rule->flags & FWDB_FLAG_NO_IR)
980 rrule->flags |= NL80211_RRF_NO_IR;
981 if (rule->flags & FWDB_FLAG_AUTO_BW)
982 rrule->flags |= NL80211_RRF_AUTO_BW;
983
984 rrule->dfs_cac_ms = 0;
985
986 /* handle optional data */
987 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
988 rrule->dfs_cac_ms =
989 1000 * be16_to_cpu(rule->cac_timeout);
990 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
991 set_wmm_rule(db, country, rule, rrule);
992 }
993
994 return reg_schedule_apply(regdom);
995 }
996
query_regdb(const char * alpha2)997 static int query_regdb(const char *alpha2)
998 {
999 const struct fwdb_header *hdr = regdb;
1000 const struct fwdb_country *country;
1001
1002 ASSERT_RTNL();
1003
1004 if (IS_ERR(regdb))
1005 return PTR_ERR(regdb);
1006
1007 country = &hdr->country[0];
1008 while (country->coll_ptr) {
1009 if (alpha2_equal(alpha2, country->alpha2))
1010 return regdb_query_country(regdb, country);
1011 country++;
1012 }
1013
1014 return -ENODATA;
1015 }
1016
regdb_fw_cb(const struct firmware * fw,void * context)1017 static void regdb_fw_cb(const struct firmware *fw, void *context)
1018 {
1019 int set_error = 0;
1020 bool restore = true;
1021 void *db;
1022
1023 if (!fw) {
1024 pr_info("failed to load regulatory.db\n");
1025 set_error = -ENODATA;
1026 } else if (!valid_regdb(fw->data, fw->size)) {
1027 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1028 set_error = -EINVAL;
1029 }
1030
1031 rtnl_lock();
1032 if (regdb && !IS_ERR(regdb)) {
1033 /* negative case - a bug
1034 * positive case - can happen due to race in case of multiple cb's in
1035 * queue, due to usage of asynchronous callback
1036 *
1037 * Either case, just restore and free new db.
1038 */
1039 } else if (set_error) {
1040 regdb = ERR_PTR(set_error);
1041 } else if (fw) {
1042 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1043 if (db) {
1044 regdb = db;
1045 restore = context && query_regdb(context);
1046 } else {
1047 restore = true;
1048 }
1049 }
1050
1051 if (restore)
1052 restore_regulatory_settings(true, false);
1053
1054 rtnl_unlock();
1055
1056 kfree(context);
1057
1058 release_firmware(fw);
1059 }
1060
query_regdb_file(const char * alpha2)1061 static int query_regdb_file(const char *alpha2)
1062 {
1063 int err;
1064
1065 ASSERT_RTNL();
1066
1067 if (regdb)
1068 return query_regdb(alpha2);
1069
1070 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1071 if (!alpha2)
1072 return -ENOMEM;
1073
1074 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1075 ®_pdev->dev, GFP_KERNEL,
1076 (void *)alpha2, regdb_fw_cb);
1077 if (err)
1078 kfree(alpha2);
1079
1080 return err;
1081 }
1082
reg_reload_regdb(void)1083 int reg_reload_regdb(void)
1084 {
1085 const struct firmware *fw;
1086 void *db;
1087 int err;
1088
1089 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1090 if (err)
1091 return err;
1092
1093 if (!valid_regdb(fw->data, fw->size)) {
1094 err = -ENODATA;
1095 goto out;
1096 }
1097
1098 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1099 if (!db) {
1100 err = -ENOMEM;
1101 goto out;
1102 }
1103
1104 rtnl_lock();
1105 if (!IS_ERR_OR_NULL(regdb))
1106 kfree(regdb);
1107 regdb = db;
1108 rtnl_unlock();
1109
1110 out:
1111 release_firmware(fw);
1112 return err;
1113 }
1114
reg_query_database(struct regulatory_request * request)1115 static bool reg_query_database(struct regulatory_request *request)
1116 {
1117 if (query_regdb_file(request->alpha2) == 0)
1118 return true;
1119
1120 if (call_crda(request->alpha2) == 0)
1121 return true;
1122
1123 return false;
1124 }
1125
reg_is_valid_request(const char * alpha2)1126 bool reg_is_valid_request(const char *alpha2)
1127 {
1128 struct regulatory_request *lr = get_last_request();
1129
1130 if (!lr || lr->processed)
1131 return false;
1132
1133 return alpha2_equal(lr->alpha2, alpha2);
1134 }
1135
reg_get_regdomain(struct wiphy * wiphy)1136 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1137 {
1138 struct regulatory_request *lr = get_last_request();
1139
1140 /*
1141 * Follow the driver's regulatory domain, if present, unless a country
1142 * IE has been processed or a user wants to help complaince further
1143 */
1144 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1145 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1146 wiphy->regd)
1147 return get_wiphy_regdom(wiphy);
1148
1149 return get_cfg80211_regdom();
1150 }
1151
1152 static unsigned int
reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1153 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1154 const struct ieee80211_reg_rule *rule)
1155 {
1156 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1157 const struct ieee80211_freq_range *freq_range_tmp;
1158 const struct ieee80211_reg_rule *tmp;
1159 u32 start_freq, end_freq, idx, no;
1160
1161 for (idx = 0; idx < rd->n_reg_rules; idx++)
1162 if (rule == &rd->reg_rules[idx])
1163 break;
1164
1165 if (idx == rd->n_reg_rules)
1166 return 0;
1167
1168 /* get start_freq */
1169 no = idx;
1170
1171 while (no) {
1172 tmp = &rd->reg_rules[--no];
1173 freq_range_tmp = &tmp->freq_range;
1174
1175 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1176 break;
1177
1178 freq_range = freq_range_tmp;
1179 }
1180
1181 start_freq = freq_range->start_freq_khz;
1182
1183 /* get end_freq */
1184 freq_range = &rule->freq_range;
1185 no = idx;
1186
1187 while (no < rd->n_reg_rules - 1) {
1188 tmp = &rd->reg_rules[++no];
1189 freq_range_tmp = &tmp->freq_range;
1190
1191 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1192 break;
1193
1194 freq_range = freq_range_tmp;
1195 }
1196
1197 end_freq = freq_range->end_freq_khz;
1198
1199 return end_freq - start_freq;
1200 }
1201
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)1202 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1203 const struct ieee80211_reg_rule *rule)
1204 {
1205 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1206
1207 if (rule->flags & NL80211_RRF_NO_160MHZ)
1208 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1209 if (rule->flags & NL80211_RRF_NO_80MHZ)
1210 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1211
1212 /*
1213 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1214 * are not allowed.
1215 */
1216 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1217 rule->flags & NL80211_RRF_NO_HT40PLUS)
1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1219
1220 return bw;
1221 }
1222
1223 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)1224 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1225 {
1226 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1227 u32 freq_diff;
1228
1229 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1230 return false;
1231
1232 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1233 return false;
1234
1235 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1236
1237 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1238 freq_range->max_bandwidth_khz > freq_diff)
1239 return false;
1240
1241 return true;
1242 }
1243
is_valid_rd(const struct ieee80211_regdomain * rd)1244 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1245 {
1246 const struct ieee80211_reg_rule *reg_rule = NULL;
1247 unsigned int i;
1248
1249 if (!rd->n_reg_rules)
1250 return false;
1251
1252 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1253 return false;
1254
1255 for (i = 0; i < rd->n_reg_rules; i++) {
1256 reg_rule = &rd->reg_rules[i];
1257 if (!is_valid_reg_rule(reg_rule))
1258 return false;
1259 }
1260
1261 return true;
1262 }
1263
1264 /**
1265 * freq_in_rule_band - tells us if a frequency is in a frequency band
1266 * @freq_range: frequency rule we want to query
1267 * @freq_khz: frequency we are inquiring about
1268 *
1269 * This lets us know if a specific frequency rule is or is not relevant to
1270 * a specific frequency's band. Bands are device specific and artificial
1271 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1272 * however it is safe for now to assume that a frequency rule should not be
1273 * part of a frequency's band if the start freq or end freq are off by more
1274 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1275 * 60 GHz band.
1276 * This resolution can be lowered and should be considered as we add
1277 * regulatory rule support for other "bands".
1278 **/
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)1279 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1280 u32 freq_khz)
1281 {
1282 #define ONE_GHZ_IN_KHZ 1000000
1283 /*
1284 * From 802.11ad: directional multi-gigabit (DMG):
1285 * Pertaining to operation in a frequency band containing a channel
1286 * with the Channel starting frequency above 45 GHz.
1287 */
1288 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1289 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1290 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1291 return true;
1292 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1293 return true;
1294 return false;
1295 #undef ONE_GHZ_IN_KHZ
1296 }
1297
1298 /*
1299 * Later on we can perhaps use the more restrictive DFS
1300 * region but we don't have information for that yet so
1301 * for now simply disallow conflicts.
1302 */
1303 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)1304 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1305 const enum nl80211_dfs_regions dfs_region2)
1306 {
1307 if (dfs_region1 != dfs_region2)
1308 return NL80211_DFS_UNSET;
1309 return dfs_region1;
1310 }
1311
reg_wmm_rules_intersect(const struct ieee80211_wmm_ac * wmm_ac1,const struct ieee80211_wmm_ac * wmm_ac2,struct ieee80211_wmm_ac * intersect)1312 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1313 const struct ieee80211_wmm_ac *wmm_ac2,
1314 struct ieee80211_wmm_ac *intersect)
1315 {
1316 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1317 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1318 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1319 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1320 }
1321
1322 /*
1323 * Helper for regdom_intersect(), this does the real
1324 * mathematical intersection fun
1325 */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)1326 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1327 const struct ieee80211_regdomain *rd2,
1328 const struct ieee80211_reg_rule *rule1,
1329 const struct ieee80211_reg_rule *rule2,
1330 struct ieee80211_reg_rule *intersected_rule)
1331 {
1332 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1333 struct ieee80211_freq_range *freq_range;
1334 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1335 struct ieee80211_power_rule *power_rule;
1336 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1337 struct ieee80211_wmm_rule *wmm_rule;
1338 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1339
1340 freq_range1 = &rule1->freq_range;
1341 freq_range2 = &rule2->freq_range;
1342 freq_range = &intersected_rule->freq_range;
1343
1344 power_rule1 = &rule1->power_rule;
1345 power_rule2 = &rule2->power_rule;
1346 power_rule = &intersected_rule->power_rule;
1347
1348 wmm_rule1 = &rule1->wmm_rule;
1349 wmm_rule2 = &rule2->wmm_rule;
1350 wmm_rule = &intersected_rule->wmm_rule;
1351
1352 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1353 freq_range2->start_freq_khz);
1354 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1355 freq_range2->end_freq_khz);
1356
1357 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1358 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1359
1360 if (rule1->flags & NL80211_RRF_AUTO_BW)
1361 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1362 if (rule2->flags & NL80211_RRF_AUTO_BW)
1363 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1364
1365 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1366
1367 intersected_rule->flags = rule1->flags | rule2->flags;
1368
1369 /*
1370 * In case NL80211_RRF_AUTO_BW requested for both rules
1371 * set AUTO_BW in intersected rule also. Next we will
1372 * calculate BW correctly in handle_channel function.
1373 * In other case remove AUTO_BW flag while we calculate
1374 * maximum bandwidth correctly and auto calculation is
1375 * not required.
1376 */
1377 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1378 (rule2->flags & NL80211_RRF_AUTO_BW))
1379 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1380 else
1381 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1382
1383 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1384 if (freq_range->max_bandwidth_khz > freq_diff)
1385 freq_range->max_bandwidth_khz = freq_diff;
1386
1387 power_rule->max_eirp = min(power_rule1->max_eirp,
1388 power_rule2->max_eirp);
1389 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1390 power_rule2->max_antenna_gain);
1391
1392 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1393 rule2->dfs_cac_ms);
1394
1395 if (rule1->has_wmm && rule2->has_wmm) {
1396 u8 ac;
1397
1398 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1399 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1400 &wmm_rule2->client[ac],
1401 &wmm_rule->client[ac]);
1402 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1403 &wmm_rule2->ap[ac],
1404 &wmm_rule->ap[ac]);
1405 }
1406
1407 intersected_rule->has_wmm = true;
1408 } else if (rule1->has_wmm) {
1409 *wmm_rule = *wmm_rule1;
1410 intersected_rule->has_wmm = true;
1411 } else if (rule2->has_wmm) {
1412 *wmm_rule = *wmm_rule2;
1413 intersected_rule->has_wmm = true;
1414 } else {
1415 intersected_rule->has_wmm = false;
1416 }
1417
1418 if (!is_valid_reg_rule(intersected_rule))
1419 return -EINVAL;
1420
1421 return 0;
1422 }
1423
1424 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)1425 static bool rule_contains(struct ieee80211_reg_rule *r1,
1426 struct ieee80211_reg_rule *r2)
1427 {
1428 /* for simplicity, currently consider only same flags */
1429 if (r1->flags != r2->flags)
1430 return false;
1431
1432 /* verify r1 is more restrictive */
1433 if ((r1->power_rule.max_antenna_gain >
1434 r2->power_rule.max_antenna_gain) ||
1435 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1436 return false;
1437
1438 /* make sure r2's range is contained within r1 */
1439 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1440 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1441 return false;
1442
1443 /* and finally verify that r1.max_bw >= r2.max_bw */
1444 if (r1->freq_range.max_bandwidth_khz <
1445 r2->freq_range.max_bandwidth_khz)
1446 return false;
1447
1448 return true;
1449 }
1450
1451 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)1452 static void add_rule(struct ieee80211_reg_rule *rule,
1453 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1454 {
1455 struct ieee80211_reg_rule *tmp_rule;
1456 int i;
1457
1458 for (i = 0; i < *n_rules; i++) {
1459 tmp_rule = ®_rules[i];
1460 /* rule is already contained - do nothing */
1461 if (rule_contains(tmp_rule, rule))
1462 return;
1463
1464 /* extend rule if possible */
1465 if (rule_contains(rule, tmp_rule)) {
1466 memcpy(tmp_rule, rule, sizeof(*rule));
1467 return;
1468 }
1469 }
1470
1471 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1472 (*n_rules)++;
1473 }
1474
1475 /**
1476 * regdom_intersect - do the intersection between two regulatory domains
1477 * @rd1: first regulatory domain
1478 * @rd2: second regulatory domain
1479 *
1480 * Use this function to get the intersection between two regulatory domains.
1481 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1482 * as no one single alpha2 can represent this regulatory domain.
1483 *
1484 * Returns a pointer to the regulatory domain structure which will hold the
1485 * resulting intersection of rules between rd1 and rd2. We will
1486 * kzalloc() this structure for you.
1487 */
1488 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)1489 regdom_intersect(const struct ieee80211_regdomain *rd1,
1490 const struct ieee80211_regdomain *rd2)
1491 {
1492 int r;
1493 unsigned int x, y;
1494 unsigned int num_rules = 0;
1495 const struct ieee80211_reg_rule *rule1, *rule2;
1496 struct ieee80211_reg_rule intersected_rule;
1497 struct ieee80211_regdomain *rd;
1498
1499 if (!rd1 || !rd2)
1500 return NULL;
1501
1502 /*
1503 * First we get a count of the rules we'll need, then we actually
1504 * build them. This is to so we can malloc() and free() a
1505 * regdomain once. The reason we use reg_rules_intersect() here
1506 * is it will return -EINVAL if the rule computed makes no sense.
1507 * All rules that do check out OK are valid.
1508 */
1509
1510 for (x = 0; x < rd1->n_reg_rules; x++) {
1511 rule1 = &rd1->reg_rules[x];
1512 for (y = 0; y < rd2->n_reg_rules; y++) {
1513 rule2 = &rd2->reg_rules[y];
1514 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1515 &intersected_rule))
1516 num_rules++;
1517 }
1518 }
1519
1520 if (!num_rules)
1521 return NULL;
1522
1523 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1524 if (!rd)
1525 return NULL;
1526
1527 for (x = 0; x < rd1->n_reg_rules; x++) {
1528 rule1 = &rd1->reg_rules[x];
1529 for (y = 0; y < rd2->n_reg_rules; y++) {
1530 rule2 = &rd2->reg_rules[y];
1531 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1532 &intersected_rule);
1533 /*
1534 * No need to memset here the intersected rule here as
1535 * we're not using the stack anymore
1536 */
1537 if (r)
1538 continue;
1539
1540 add_rule(&intersected_rule, rd->reg_rules,
1541 &rd->n_reg_rules);
1542 }
1543 }
1544
1545 rd->alpha2[0] = '9';
1546 rd->alpha2[1] = '8';
1547 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1548 rd2->dfs_region);
1549
1550 return rd;
1551 }
1552
1553 /*
1554 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1555 * want to just have the channel structure use these
1556 */
map_regdom_flags(u32 rd_flags)1557 static u32 map_regdom_flags(u32 rd_flags)
1558 {
1559 u32 channel_flags = 0;
1560 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1561 channel_flags |= IEEE80211_CHAN_NO_IR;
1562 if (rd_flags & NL80211_RRF_DFS)
1563 channel_flags |= IEEE80211_CHAN_RADAR;
1564 if (rd_flags & NL80211_RRF_NO_OFDM)
1565 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1566 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1567 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1568 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1569 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1570 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1571 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1572 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1573 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1574 if (rd_flags & NL80211_RRF_NO_80MHZ)
1575 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1576 if (rd_flags & NL80211_RRF_NO_160MHZ)
1577 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1578 return channel_flags;
1579 }
1580
1581 static const struct ieee80211_reg_rule *
freq_reg_info_regd(u32 center_freq,const struct ieee80211_regdomain * regd,u32 bw)1582 freq_reg_info_regd(u32 center_freq,
1583 const struct ieee80211_regdomain *regd, u32 bw)
1584 {
1585 int i;
1586 bool band_rule_found = false;
1587 bool bw_fits = false;
1588
1589 if (!regd)
1590 return ERR_PTR(-EINVAL);
1591
1592 for (i = 0; i < regd->n_reg_rules; i++) {
1593 const struct ieee80211_reg_rule *rr;
1594 const struct ieee80211_freq_range *fr = NULL;
1595
1596 rr = ®d->reg_rules[i];
1597 fr = &rr->freq_range;
1598
1599 /*
1600 * We only need to know if one frequency rule was
1601 * was in center_freq's band, that's enough, so lets
1602 * not overwrite it once found
1603 */
1604 if (!band_rule_found)
1605 band_rule_found = freq_in_rule_band(fr, center_freq);
1606
1607 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1608
1609 if (band_rule_found && bw_fits)
1610 return rr;
1611 }
1612
1613 if (!band_rule_found)
1614 return ERR_PTR(-ERANGE);
1615
1616 return ERR_PTR(-EINVAL);
1617 }
1618
1619 static const struct ieee80211_reg_rule *
__freq_reg_info(struct wiphy * wiphy,u32 center_freq,u32 min_bw)1620 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1621 {
1622 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1623 const struct ieee80211_reg_rule *reg_rule = NULL;
1624 u32 bw;
1625
1626 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1627 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1628 if (!IS_ERR(reg_rule))
1629 return reg_rule;
1630 }
1631
1632 return reg_rule;
1633 }
1634
freq_reg_info(struct wiphy * wiphy,u32 center_freq)1635 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1636 u32 center_freq)
1637 {
1638 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1639 }
1640 EXPORT_SYMBOL(freq_reg_info);
1641
reg_initiator_name(enum nl80211_reg_initiator initiator)1642 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1643 {
1644 switch (initiator) {
1645 case NL80211_REGDOM_SET_BY_CORE:
1646 return "core";
1647 case NL80211_REGDOM_SET_BY_USER:
1648 return "user";
1649 case NL80211_REGDOM_SET_BY_DRIVER:
1650 return "driver";
1651 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1652 return "country element";
1653 default:
1654 WARN_ON(1);
1655 return "bug";
1656 }
1657 }
1658 EXPORT_SYMBOL(reg_initiator_name);
1659
reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain * regd,const struct ieee80211_reg_rule * reg_rule,const struct ieee80211_channel * chan)1660 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1661 const struct ieee80211_reg_rule *reg_rule,
1662 const struct ieee80211_channel *chan)
1663 {
1664 const struct ieee80211_freq_range *freq_range = NULL;
1665 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1666
1667 freq_range = ®_rule->freq_range;
1668
1669 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1670 center_freq_khz = ieee80211_channel_to_khz(chan);
1671 /* Check if auto calculation requested */
1672 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1673 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1674
1675 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1676 if (!cfg80211_does_bw_fit_range(freq_range,
1677 center_freq_khz,
1678 MHZ_TO_KHZ(10)))
1679 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1680 if (!cfg80211_does_bw_fit_range(freq_range,
1681 center_freq_khz,
1682 MHZ_TO_KHZ(20)))
1683 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1684
1685 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1686 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1687 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1688 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1689 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1690 bw_flags |= IEEE80211_CHAN_NO_HT40;
1691 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1692 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1693 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1694 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1695 return bw_flags;
1696 }
1697
1698 /*
1699 * Note that right now we assume the desired channel bandwidth
1700 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1701 * per channel, the primary and the extension channel).
1702 */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1703 static void handle_channel(struct wiphy *wiphy,
1704 enum nl80211_reg_initiator initiator,
1705 struct ieee80211_channel *chan)
1706 {
1707 u32 flags, bw_flags = 0;
1708 const struct ieee80211_reg_rule *reg_rule = NULL;
1709 const struct ieee80211_power_rule *power_rule = NULL;
1710 struct wiphy *request_wiphy = NULL;
1711 struct regulatory_request *lr = get_last_request();
1712 const struct ieee80211_regdomain *regd;
1713
1714 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1715
1716 flags = chan->orig_flags;
1717
1718 reg_rule = freq_reg_info(wiphy, ieee80211_channel_to_khz(chan));
1719 if (IS_ERR(reg_rule)) {
1720 /*
1721 * We will disable all channels that do not match our
1722 * received regulatory rule unless the hint is coming
1723 * from a Country IE and the Country IE had no information
1724 * about a band. The IEEE 802.11 spec allows for an AP
1725 * to send only a subset of the regulatory rules allowed,
1726 * so an AP in the US that only supports 2.4 GHz may only send
1727 * a country IE with information for the 2.4 GHz band
1728 * while 5 GHz is still supported.
1729 */
1730 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1731 PTR_ERR(reg_rule) == -ERANGE)
1732 return;
1733
1734 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1735 request_wiphy && request_wiphy == wiphy &&
1736 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1737 pr_debug("Disabling freq %d.%03d MHz for good\n",
1738 chan->center_freq, chan->freq_offset);
1739 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1740 chan->flags = chan->orig_flags;
1741 } else {
1742 pr_debug("Disabling freq %d.%03d MHz\n",
1743 chan->center_freq, chan->freq_offset);
1744 chan->flags |= IEEE80211_CHAN_DISABLED;
1745 }
1746 return;
1747 }
1748
1749 regd = reg_get_regdomain(wiphy);
1750
1751 power_rule = ®_rule->power_rule;
1752 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1753
1754 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1755 request_wiphy && request_wiphy == wiphy &&
1756 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1757 /*
1758 * This guarantees the driver's requested regulatory domain
1759 * will always be used as a base for further regulatory
1760 * settings
1761 */
1762 chan->flags = chan->orig_flags =
1763 map_regdom_flags(reg_rule->flags) | bw_flags;
1764 chan->max_antenna_gain = chan->orig_mag =
1765 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1766 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1767 (int) MBM_TO_DBM(power_rule->max_eirp);
1768
1769 if (chan->flags & IEEE80211_CHAN_RADAR) {
1770 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1771 if (reg_rule->dfs_cac_ms)
1772 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1773 }
1774
1775 return;
1776 }
1777
1778 chan->dfs_state = NL80211_DFS_USABLE;
1779 chan->dfs_state_entered = jiffies;
1780
1781 chan->beacon_found = false;
1782 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1783 chan->max_antenna_gain =
1784 min_t(int, chan->orig_mag,
1785 MBI_TO_DBI(power_rule->max_antenna_gain));
1786 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1787
1788 if (chan->flags & IEEE80211_CHAN_RADAR) {
1789 if (reg_rule->dfs_cac_ms)
1790 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1791 else
1792 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1793 }
1794
1795 if (chan->orig_mpwr) {
1796 /*
1797 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1798 * will always follow the passed country IE power settings.
1799 */
1800 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1801 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1802 chan->max_power = chan->max_reg_power;
1803 else
1804 chan->max_power = min(chan->orig_mpwr,
1805 chan->max_reg_power);
1806 } else
1807 chan->max_power = chan->max_reg_power;
1808 }
1809
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)1810 static void handle_band(struct wiphy *wiphy,
1811 enum nl80211_reg_initiator initiator,
1812 struct ieee80211_supported_band *sband)
1813 {
1814 unsigned int i;
1815
1816 if (!sband)
1817 return;
1818
1819 for (i = 0; i < sband->n_channels; i++)
1820 handle_channel(wiphy, initiator, &sband->channels[i]);
1821 }
1822
reg_request_cell_base(struct regulatory_request * request)1823 static bool reg_request_cell_base(struct regulatory_request *request)
1824 {
1825 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1826 return false;
1827 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1828 }
1829
reg_last_request_cell_base(void)1830 bool reg_last_request_cell_base(void)
1831 {
1832 return reg_request_cell_base(get_last_request());
1833 }
1834
1835 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1836 /* Core specific check */
1837 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)1838 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1839 {
1840 struct regulatory_request *lr = get_last_request();
1841
1842 if (!reg_num_devs_support_basehint)
1843 return REG_REQ_IGNORE;
1844
1845 if (reg_request_cell_base(lr) &&
1846 !regdom_changes(pending_request->alpha2))
1847 return REG_REQ_ALREADY_SET;
1848
1849 return REG_REQ_OK;
1850 }
1851
1852 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)1853 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1854 {
1855 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1856 }
1857 #else
1858 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)1859 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1860 {
1861 return REG_REQ_IGNORE;
1862 }
1863
reg_dev_ignore_cell_hint(struct wiphy * wiphy)1864 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1865 {
1866 return true;
1867 }
1868 #endif
1869
wiphy_strict_alpha2_regd(struct wiphy * wiphy)1870 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1871 {
1872 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1873 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1874 return true;
1875 return false;
1876 }
1877
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)1878 static bool ignore_reg_update(struct wiphy *wiphy,
1879 enum nl80211_reg_initiator initiator)
1880 {
1881 struct regulatory_request *lr = get_last_request();
1882
1883 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1884 return true;
1885
1886 if (!lr) {
1887 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1888 reg_initiator_name(initiator));
1889 return true;
1890 }
1891
1892 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1893 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1894 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1895 reg_initiator_name(initiator));
1896 return true;
1897 }
1898
1899 /*
1900 * wiphy->regd will be set once the device has its own
1901 * desired regulatory domain set
1902 */
1903 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1904 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1905 !is_world_regdom(lr->alpha2)) {
1906 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1907 reg_initiator_name(initiator));
1908 return true;
1909 }
1910
1911 if (reg_request_cell_base(lr))
1912 return reg_dev_ignore_cell_hint(wiphy);
1913
1914 return false;
1915 }
1916
reg_is_world_roaming(struct wiphy * wiphy)1917 static bool reg_is_world_roaming(struct wiphy *wiphy)
1918 {
1919 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1920 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1921 struct regulatory_request *lr = get_last_request();
1922
1923 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1924 return true;
1925
1926 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1927 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1928 return true;
1929
1930 return false;
1931 }
1932
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)1933 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1934 struct reg_beacon *reg_beacon)
1935 {
1936 struct ieee80211_supported_band *sband;
1937 struct ieee80211_channel *chan;
1938 bool channel_changed = false;
1939 struct ieee80211_channel chan_before;
1940
1941 sband = wiphy->bands[reg_beacon->chan.band];
1942 chan = &sband->channels[chan_idx];
1943
1944 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
1945 return;
1946
1947 if (chan->beacon_found)
1948 return;
1949
1950 chan->beacon_found = true;
1951
1952 if (!reg_is_world_roaming(wiphy))
1953 return;
1954
1955 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1956 return;
1957
1958 chan_before = *chan;
1959
1960 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1961 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1962 channel_changed = true;
1963 }
1964
1965 if (channel_changed)
1966 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1967 }
1968
1969 /*
1970 * Called when a scan on a wiphy finds a beacon on
1971 * new channel
1972 */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)1973 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1974 struct reg_beacon *reg_beacon)
1975 {
1976 unsigned int i;
1977 struct ieee80211_supported_band *sband;
1978
1979 if (!wiphy->bands[reg_beacon->chan.band])
1980 return;
1981
1982 sband = wiphy->bands[reg_beacon->chan.band];
1983
1984 for (i = 0; i < sband->n_channels; i++)
1985 handle_reg_beacon(wiphy, i, reg_beacon);
1986 }
1987
1988 /*
1989 * Called upon reg changes or a new wiphy is added
1990 */
wiphy_update_beacon_reg(struct wiphy * wiphy)1991 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1992 {
1993 unsigned int i;
1994 struct ieee80211_supported_band *sband;
1995 struct reg_beacon *reg_beacon;
1996
1997 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
1998 if (!wiphy->bands[reg_beacon->chan.band])
1999 continue;
2000 sband = wiphy->bands[reg_beacon->chan.band];
2001 for (i = 0; i < sband->n_channels; i++)
2002 handle_reg_beacon(wiphy, i, reg_beacon);
2003 }
2004 }
2005
2006 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)2007 static void reg_process_beacons(struct wiphy *wiphy)
2008 {
2009 /*
2010 * Means we are just firing up cfg80211, so no beacons would
2011 * have been processed yet.
2012 */
2013 if (!last_request)
2014 return;
2015 wiphy_update_beacon_reg(wiphy);
2016 }
2017
is_ht40_allowed(struct ieee80211_channel * chan)2018 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2019 {
2020 if (!chan)
2021 return false;
2022 if (chan->flags & IEEE80211_CHAN_DISABLED)
2023 return false;
2024 /* This would happen when regulatory rules disallow HT40 completely */
2025 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2026 return false;
2027 return true;
2028 }
2029
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)2030 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2031 struct ieee80211_channel *channel)
2032 {
2033 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2034 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2035 const struct ieee80211_regdomain *regd;
2036 unsigned int i;
2037 u32 flags;
2038
2039 if (!is_ht40_allowed(channel)) {
2040 channel->flags |= IEEE80211_CHAN_NO_HT40;
2041 return;
2042 }
2043
2044 /*
2045 * We need to ensure the extension channels exist to
2046 * be able to use HT40- or HT40+, this finds them (or not)
2047 */
2048 for (i = 0; i < sband->n_channels; i++) {
2049 struct ieee80211_channel *c = &sband->channels[i];
2050
2051 if (c->center_freq == (channel->center_freq - 20))
2052 channel_before = c;
2053 if (c->center_freq == (channel->center_freq + 20))
2054 channel_after = c;
2055 }
2056
2057 flags = 0;
2058 regd = get_wiphy_regdom(wiphy);
2059 if (regd) {
2060 const struct ieee80211_reg_rule *reg_rule =
2061 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2062 regd, MHZ_TO_KHZ(20));
2063
2064 if (!IS_ERR(reg_rule))
2065 flags = reg_rule->flags;
2066 }
2067
2068 /*
2069 * Please note that this assumes target bandwidth is 20 MHz,
2070 * if that ever changes we also need to change the below logic
2071 * to include that as well.
2072 */
2073 if (!is_ht40_allowed(channel_before) ||
2074 flags & NL80211_RRF_NO_HT40MINUS)
2075 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2076 else
2077 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2078
2079 if (!is_ht40_allowed(channel_after) ||
2080 flags & NL80211_RRF_NO_HT40PLUS)
2081 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2082 else
2083 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2084 }
2085
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)2086 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2087 struct ieee80211_supported_band *sband)
2088 {
2089 unsigned int i;
2090
2091 if (!sband)
2092 return;
2093
2094 for (i = 0; i < sband->n_channels; i++)
2095 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2096 }
2097
reg_process_ht_flags(struct wiphy * wiphy)2098 static void reg_process_ht_flags(struct wiphy *wiphy)
2099 {
2100 enum nl80211_band band;
2101
2102 if (!wiphy)
2103 return;
2104
2105 for (band = 0; band < NUM_NL80211_BANDS; band++)
2106 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2107 }
2108
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)2109 static void reg_call_notifier(struct wiphy *wiphy,
2110 struct regulatory_request *request)
2111 {
2112 if (wiphy->reg_notifier)
2113 wiphy->reg_notifier(wiphy, request);
2114 }
2115
reg_wdev_chan_valid(struct wiphy * wiphy,struct wireless_dev * wdev)2116 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2117 {
2118 struct cfg80211_chan_def chandef = {};
2119 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2120 enum nl80211_iftype iftype;
2121
2122 wdev_lock(wdev);
2123 iftype = wdev->iftype;
2124
2125 /* make sure the interface is active */
2126 if (!wdev->netdev || !netif_running(wdev->netdev))
2127 goto wdev_inactive_unlock;
2128
2129 switch (iftype) {
2130 case NL80211_IFTYPE_AP:
2131 case NL80211_IFTYPE_P2P_GO:
2132 if (!wdev->beacon_interval)
2133 goto wdev_inactive_unlock;
2134 chandef = wdev->chandef;
2135 break;
2136 case NL80211_IFTYPE_ADHOC:
2137 if (!wdev->ssid_len)
2138 goto wdev_inactive_unlock;
2139 chandef = wdev->chandef;
2140 break;
2141 case NL80211_IFTYPE_STATION:
2142 case NL80211_IFTYPE_P2P_CLIENT:
2143 if (!wdev->current_bss ||
2144 !wdev->current_bss->pub.channel)
2145 goto wdev_inactive_unlock;
2146
2147 if (!rdev->ops->get_channel ||
2148 rdev_get_channel(rdev, wdev, &chandef))
2149 cfg80211_chandef_create(&chandef,
2150 wdev->current_bss->pub.channel,
2151 NL80211_CHAN_NO_HT);
2152 break;
2153 case NL80211_IFTYPE_MONITOR:
2154 case NL80211_IFTYPE_AP_VLAN:
2155 case NL80211_IFTYPE_P2P_DEVICE:
2156 /* no enforcement required */
2157 break;
2158 default:
2159 /* others not implemented for now */
2160 WARN_ON(1);
2161 break;
2162 }
2163
2164 wdev_unlock(wdev);
2165
2166 switch (iftype) {
2167 case NL80211_IFTYPE_AP:
2168 case NL80211_IFTYPE_P2P_GO:
2169 case NL80211_IFTYPE_ADHOC:
2170 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2171 case NL80211_IFTYPE_STATION:
2172 case NL80211_IFTYPE_P2P_CLIENT:
2173 return cfg80211_chandef_usable(wiphy, &chandef,
2174 IEEE80211_CHAN_DISABLED);
2175 default:
2176 break;
2177 }
2178
2179 return true;
2180
2181 wdev_inactive_unlock:
2182 wdev_unlock(wdev);
2183 return true;
2184 }
2185
reg_leave_invalid_chans(struct wiphy * wiphy)2186 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2187 {
2188 struct wireless_dev *wdev;
2189 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2190
2191 ASSERT_RTNL();
2192
2193 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2194 if (!reg_wdev_chan_valid(wiphy, wdev))
2195 cfg80211_leave(rdev, wdev);
2196 }
2197
reg_check_chans_work(struct work_struct * work)2198 static void reg_check_chans_work(struct work_struct *work)
2199 {
2200 struct cfg80211_registered_device *rdev;
2201
2202 pr_debug("Verifying active interfaces after reg change\n");
2203 rtnl_lock();
2204
2205 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2206 if (!(rdev->wiphy.regulatory_flags &
2207 REGULATORY_IGNORE_STALE_KICKOFF))
2208 reg_leave_invalid_chans(&rdev->wiphy);
2209
2210 rtnl_unlock();
2211 }
2212
reg_check_channels(void)2213 static void reg_check_channels(void)
2214 {
2215 /*
2216 * Give usermode a chance to do something nicer (move to another
2217 * channel, orderly disconnection), before forcing a disconnection.
2218 */
2219 mod_delayed_work(system_power_efficient_wq,
2220 ®_check_chans,
2221 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2222 }
2223
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)2224 static void wiphy_update_regulatory(struct wiphy *wiphy,
2225 enum nl80211_reg_initiator initiator)
2226 {
2227 enum nl80211_band band;
2228 struct regulatory_request *lr = get_last_request();
2229
2230 if (ignore_reg_update(wiphy, initiator)) {
2231 /*
2232 * Regulatory updates set by CORE are ignored for custom
2233 * regulatory cards. Let us notify the changes to the driver,
2234 * as some drivers used this to restore its orig_* reg domain.
2235 */
2236 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2237 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2238 !(wiphy->regulatory_flags &
2239 REGULATORY_WIPHY_SELF_MANAGED))
2240 reg_call_notifier(wiphy, lr);
2241 return;
2242 }
2243
2244 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2245
2246 for (band = 0; band < NUM_NL80211_BANDS; band++)
2247 handle_band(wiphy, initiator, wiphy->bands[band]);
2248
2249 reg_process_beacons(wiphy);
2250 reg_process_ht_flags(wiphy);
2251 reg_call_notifier(wiphy, lr);
2252 }
2253
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)2254 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2255 {
2256 struct cfg80211_registered_device *rdev;
2257 struct wiphy *wiphy;
2258
2259 ASSERT_RTNL();
2260
2261 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2262 wiphy = &rdev->wiphy;
2263 wiphy_update_regulatory(wiphy, initiator);
2264 }
2265
2266 reg_check_channels();
2267 }
2268
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd,u32 min_bw)2269 static void handle_channel_custom(struct wiphy *wiphy,
2270 struct ieee80211_channel *chan,
2271 const struct ieee80211_regdomain *regd,
2272 u32 min_bw)
2273 {
2274 u32 bw_flags = 0;
2275 const struct ieee80211_reg_rule *reg_rule = NULL;
2276 const struct ieee80211_power_rule *power_rule = NULL;
2277 u32 bw, center_freq_khz;
2278
2279 center_freq_khz = ieee80211_channel_to_khz(chan);
2280 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2281 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2282 if (!IS_ERR(reg_rule))
2283 break;
2284 }
2285
2286 if (IS_ERR_OR_NULL(reg_rule)) {
2287 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2288 chan->center_freq, chan->freq_offset);
2289 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2290 chan->flags |= IEEE80211_CHAN_DISABLED;
2291 } else {
2292 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2293 chan->flags = chan->orig_flags;
2294 }
2295 return;
2296 }
2297
2298 power_rule = ®_rule->power_rule;
2299 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2300
2301 chan->dfs_state_entered = jiffies;
2302 chan->dfs_state = NL80211_DFS_USABLE;
2303
2304 chan->beacon_found = false;
2305
2306 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2307 chan->flags = chan->orig_flags | bw_flags |
2308 map_regdom_flags(reg_rule->flags);
2309 else
2310 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2311
2312 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2313 chan->max_reg_power = chan->max_power =
2314 (int) MBM_TO_DBM(power_rule->max_eirp);
2315
2316 if (chan->flags & IEEE80211_CHAN_RADAR) {
2317 if (reg_rule->dfs_cac_ms)
2318 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2319 else
2320 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2321 }
2322
2323 chan->max_power = chan->max_reg_power;
2324 }
2325
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)2326 static void handle_band_custom(struct wiphy *wiphy,
2327 struct ieee80211_supported_band *sband,
2328 const struct ieee80211_regdomain *regd)
2329 {
2330 unsigned int i;
2331
2332 if (!sband)
2333 return;
2334
2335 /*
2336 * We currently assume that you always want at least 20 MHz,
2337 * otherwise channel 12 might get enabled if this rule is
2338 * compatible to US, which permits 2402 - 2472 MHz.
2339 */
2340 for (i = 0; i < sband->n_channels; i++)
2341 handle_channel_custom(wiphy, &sband->channels[i], regd,
2342 MHZ_TO_KHZ(20));
2343 }
2344
2345 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)2346 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2347 const struct ieee80211_regdomain *regd)
2348 {
2349 enum nl80211_band band;
2350 unsigned int bands_set = 0;
2351
2352 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2353 "wiphy should have REGULATORY_CUSTOM_REG\n");
2354 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2355
2356 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2357 if (!wiphy->bands[band])
2358 continue;
2359 handle_band_custom(wiphy, wiphy->bands[band], regd);
2360 bands_set++;
2361 }
2362
2363 /*
2364 * no point in calling this if it won't have any effect
2365 * on your device's supported bands.
2366 */
2367 WARN_ON(!bands_set);
2368 }
2369 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2370
reg_set_request_processed(void)2371 static void reg_set_request_processed(void)
2372 {
2373 bool need_more_processing = false;
2374 struct regulatory_request *lr = get_last_request();
2375
2376 lr->processed = true;
2377
2378 spin_lock(®_requests_lock);
2379 if (!list_empty(®_requests_list))
2380 need_more_processing = true;
2381 spin_unlock(®_requests_lock);
2382
2383 cancel_crda_timeout();
2384
2385 if (need_more_processing)
2386 schedule_work(®_work);
2387 }
2388
2389 /**
2390 * reg_process_hint_core - process core regulatory requests
2391 * @pending_request: a pending core regulatory request
2392 *
2393 * The wireless subsystem can use this function to process
2394 * a regulatory request issued by the regulatory core.
2395 */
2396 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)2397 reg_process_hint_core(struct regulatory_request *core_request)
2398 {
2399 if (reg_query_database(core_request)) {
2400 core_request->intersect = false;
2401 core_request->processed = false;
2402 reg_update_last_request(core_request);
2403 return REG_REQ_OK;
2404 }
2405
2406 return REG_REQ_IGNORE;
2407 }
2408
2409 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)2410 __reg_process_hint_user(struct regulatory_request *user_request)
2411 {
2412 struct regulatory_request *lr = get_last_request();
2413
2414 if (reg_request_cell_base(user_request))
2415 return reg_ignore_cell_hint(user_request);
2416
2417 if (reg_request_cell_base(lr))
2418 return REG_REQ_IGNORE;
2419
2420 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2421 return REG_REQ_INTERSECT;
2422 /*
2423 * If the user knows better the user should set the regdom
2424 * to their country before the IE is picked up
2425 */
2426 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2427 lr->intersect)
2428 return REG_REQ_IGNORE;
2429 /*
2430 * Process user requests only after previous user/driver/core
2431 * requests have been processed
2432 */
2433 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2434 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2435 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2436 regdom_changes(lr->alpha2))
2437 return REG_REQ_IGNORE;
2438
2439 if (!regdom_changes(user_request->alpha2))
2440 return REG_REQ_ALREADY_SET;
2441
2442 return REG_REQ_OK;
2443 }
2444
2445 /**
2446 * reg_process_hint_user - process user regulatory requests
2447 * @user_request: a pending user regulatory request
2448 *
2449 * The wireless subsystem can use this function to process
2450 * a regulatory request initiated by userspace.
2451 */
2452 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)2453 reg_process_hint_user(struct regulatory_request *user_request)
2454 {
2455 enum reg_request_treatment treatment;
2456
2457 treatment = __reg_process_hint_user(user_request);
2458 if (treatment == REG_REQ_IGNORE ||
2459 treatment == REG_REQ_ALREADY_SET)
2460 return REG_REQ_IGNORE;
2461
2462 user_request->intersect = treatment == REG_REQ_INTERSECT;
2463 user_request->processed = false;
2464
2465 if (reg_query_database(user_request)) {
2466 reg_update_last_request(user_request);
2467 user_alpha2[0] = user_request->alpha2[0];
2468 user_alpha2[1] = user_request->alpha2[1];
2469 return REG_REQ_OK;
2470 }
2471
2472 return REG_REQ_IGNORE;
2473 }
2474
2475 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)2476 __reg_process_hint_driver(struct regulatory_request *driver_request)
2477 {
2478 struct regulatory_request *lr = get_last_request();
2479
2480 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2481 if (regdom_changes(driver_request->alpha2))
2482 return REG_REQ_OK;
2483 return REG_REQ_ALREADY_SET;
2484 }
2485
2486 /*
2487 * This would happen if you unplug and plug your card
2488 * back in or if you add a new device for which the previously
2489 * loaded card also agrees on the regulatory domain.
2490 */
2491 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2492 !regdom_changes(driver_request->alpha2))
2493 return REG_REQ_ALREADY_SET;
2494
2495 return REG_REQ_INTERSECT;
2496 }
2497
2498 /**
2499 * reg_process_hint_driver - process driver regulatory requests
2500 * @driver_request: a pending driver regulatory request
2501 *
2502 * The wireless subsystem can use this function to process
2503 * a regulatory request issued by an 802.11 driver.
2504 *
2505 * Returns one of the different reg request treatment values.
2506 */
2507 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)2508 reg_process_hint_driver(struct wiphy *wiphy,
2509 struct regulatory_request *driver_request)
2510 {
2511 const struct ieee80211_regdomain *regd, *tmp;
2512 enum reg_request_treatment treatment;
2513
2514 treatment = __reg_process_hint_driver(driver_request);
2515
2516 switch (treatment) {
2517 case REG_REQ_OK:
2518 break;
2519 case REG_REQ_IGNORE:
2520 return REG_REQ_IGNORE;
2521 case REG_REQ_INTERSECT:
2522 case REG_REQ_ALREADY_SET:
2523 regd = reg_copy_regd(get_cfg80211_regdom());
2524 if (IS_ERR(regd))
2525 return REG_REQ_IGNORE;
2526
2527 tmp = get_wiphy_regdom(wiphy);
2528 rcu_assign_pointer(wiphy->regd, regd);
2529 rcu_free_regdom(tmp);
2530 }
2531
2532
2533 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2534 driver_request->processed = false;
2535
2536 /*
2537 * Since CRDA will not be called in this case as we already
2538 * have applied the requested regulatory domain before we just
2539 * inform userspace we have processed the request
2540 */
2541 if (treatment == REG_REQ_ALREADY_SET) {
2542 nl80211_send_reg_change_event(driver_request);
2543 reg_update_last_request(driver_request);
2544 reg_set_request_processed();
2545 return REG_REQ_ALREADY_SET;
2546 }
2547
2548 if (reg_query_database(driver_request)) {
2549 reg_update_last_request(driver_request);
2550 return REG_REQ_OK;
2551 }
2552
2553 return REG_REQ_IGNORE;
2554 }
2555
2556 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2557 __reg_process_hint_country_ie(struct wiphy *wiphy,
2558 struct regulatory_request *country_ie_request)
2559 {
2560 struct wiphy *last_wiphy = NULL;
2561 struct regulatory_request *lr = get_last_request();
2562
2563 if (reg_request_cell_base(lr)) {
2564 /* Trust a Cell base station over the AP's country IE */
2565 if (regdom_changes(country_ie_request->alpha2))
2566 return REG_REQ_IGNORE;
2567 return REG_REQ_ALREADY_SET;
2568 } else {
2569 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2570 return REG_REQ_IGNORE;
2571 }
2572
2573 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2574 return -EINVAL;
2575
2576 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2577 return REG_REQ_OK;
2578
2579 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2580
2581 if (last_wiphy != wiphy) {
2582 /*
2583 * Two cards with two APs claiming different
2584 * Country IE alpha2s. We could
2585 * intersect them, but that seems unlikely
2586 * to be correct. Reject second one for now.
2587 */
2588 if (regdom_changes(country_ie_request->alpha2))
2589 return REG_REQ_IGNORE;
2590 return REG_REQ_ALREADY_SET;
2591 }
2592
2593 if (regdom_changes(country_ie_request->alpha2))
2594 return REG_REQ_OK;
2595 return REG_REQ_ALREADY_SET;
2596 }
2597
2598 /**
2599 * reg_process_hint_country_ie - process regulatory requests from country IEs
2600 * @country_ie_request: a regulatory request from a country IE
2601 *
2602 * The wireless subsystem can use this function to process
2603 * a regulatory request issued by a country Information Element.
2604 *
2605 * Returns one of the different reg request treatment values.
2606 */
2607 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)2608 reg_process_hint_country_ie(struct wiphy *wiphy,
2609 struct regulatory_request *country_ie_request)
2610 {
2611 enum reg_request_treatment treatment;
2612
2613 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2614
2615 switch (treatment) {
2616 case REG_REQ_OK:
2617 break;
2618 case REG_REQ_IGNORE:
2619 return REG_REQ_IGNORE;
2620 case REG_REQ_ALREADY_SET:
2621 reg_free_request(country_ie_request);
2622 return REG_REQ_ALREADY_SET;
2623 case REG_REQ_INTERSECT:
2624 /*
2625 * This doesn't happen yet, not sure we
2626 * ever want to support it for this case.
2627 */
2628 WARN_ONCE(1, "Unexpected intersection for country elements");
2629 return REG_REQ_IGNORE;
2630 }
2631
2632 country_ie_request->intersect = false;
2633 country_ie_request->processed = false;
2634
2635 if (reg_query_database(country_ie_request)) {
2636 reg_update_last_request(country_ie_request);
2637 return REG_REQ_OK;
2638 }
2639
2640 return REG_REQ_IGNORE;
2641 }
2642
reg_dfs_domain_same(struct wiphy * wiphy1,struct wiphy * wiphy2)2643 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2644 {
2645 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2646 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2647 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2648 bool dfs_domain_same;
2649
2650 rcu_read_lock();
2651
2652 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2653 wiphy1_regd = rcu_dereference(wiphy1->regd);
2654 if (!wiphy1_regd)
2655 wiphy1_regd = cfg80211_regd;
2656
2657 wiphy2_regd = rcu_dereference(wiphy2->regd);
2658 if (!wiphy2_regd)
2659 wiphy2_regd = cfg80211_regd;
2660
2661 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2662
2663 rcu_read_unlock();
2664
2665 return dfs_domain_same;
2666 }
2667
reg_copy_dfs_chan_state(struct ieee80211_channel * dst_chan,struct ieee80211_channel * src_chan)2668 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2669 struct ieee80211_channel *src_chan)
2670 {
2671 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2672 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2673 return;
2674
2675 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2676 src_chan->flags & IEEE80211_CHAN_DISABLED)
2677 return;
2678
2679 if (src_chan->center_freq == dst_chan->center_freq &&
2680 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2681 dst_chan->dfs_state = src_chan->dfs_state;
2682 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2683 }
2684 }
2685
wiphy_share_dfs_chan_state(struct wiphy * dst_wiphy,struct wiphy * src_wiphy)2686 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2687 struct wiphy *src_wiphy)
2688 {
2689 struct ieee80211_supported_band *src_sband, *dst_sband;
2690 struct ieee80211_channel *src_chan, *dst_chan;
2691 int i, j, band;
2692
2693 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2694 return;
2695
2696 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2697 dst_sband = dst_wiphy->bands[band];
2698 src_sband = src_wiphy->bands[band];
2699 if (!dst_sband || !src_sband)
2700 continue;
2701
2702 for (i = 0; i < dst_sband->n_channels; i++) {
2703 dst_chan = &dst_sband->channels[i];
2704 for (j = 0; j < src_sband->n_channels; j++) {
2705 src_chan = &src_sband->channels[j];
2706 reg_copy_dfs_chan_state(dst_chan, src_chan);
2707 }
2708 }
2709 }
2710 }
2711
wiphy_all_share_dfs_chan_state(struct wiphy * wiphy)2712 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2713 {
2714 struct cfg80211_registered_device *rdev;
2715
2716 ASSERT_RTNL();
2717
2718 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2719 if (wiphy == &rdev->wiphy)
2720 continue;
2721 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2722 }
2723 }
2724
2725 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)2726 static void reg_process_hint(struct regulatory_request *reg_request)
2727 {
2728 struct wiphy *wiphy = NULL;
2729 enum reg_request_treatment treatment;
2730 enum nl80211_reg_initiator initiator = reg_request->initiator;
2731
2732 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2733 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2734
2735 switch (initiator) {
2736 case NL80211_REGDOM_SET_BY_CORE:
2737 treatment = reg_process_hint_core(reg_request);
2738 break;
2739 case NL80211_REGDOM_SET_BY_USER:
2740 treatment = reg_process_hint_user(reg_request);
2741 break;
2742 case NL80211_REGDOM_SET_BY_DRIVER:
2743 if (!wiphy)
2744 goto out_free;
2745 treatment = reg_process_hint_driver(wiphy, reg_request);
2746 break;
2747 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2748 if (!wiphy)
2749 goto out_free;
2750 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2751 break;
2752 default:
2753 WARN(1, "invalid initiator %d\n", initiator);
2754 goto out_free;
2755 }
2756
2757 if (treatment == REG_REQ_IGNORE)
2758 goto out_free;
2759
2760 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2761 "unexpected treatment value %d\n", treatment);
2762
2763 /* This is required so that the orig_* parameters are saved.
2764 * NOTE: treatment must be set for any case that reaches here!
2765 */
2766 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2767 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2768 wiphy_update_regulatory(wiphy, initiator);
2769 wiphy_all_share_dfs_chan_state(wiphy);
2770 reg_check_channels();
2771 }
2772
2773 return;
2774
2775 out_free:
2776 reg_free_request(reg_request);
2777 }
2778
notify_self_managed_wiphys(struct regulatory_request * request)2779 static void notify_self_managed_wiphys(struct regulatory_request *request)
2780 {
2781 struct cfg80211_registered_device *rdev;
2782 struct wiphy *wiphy;
2783
2784 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2785 wiphy = &rdev->wiphy;
2786 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2787 request->initiator == NL80211_REGDOM_SET_BY_USER)
2788 reg_call_notifier(wiphy, request);
2789 }
2790 }
2791
2792 /*
2793 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2794 * Regulatory hints come on a first come first serve basis and we
2795 * must process each one atomically.
2796 */
reg_process_pending_hints(void)2797 static void reg_process_pending_hints(void)
2798 {
2799 struct regulatory_request *reg_request, *lr;
2800
2801 lr = get_last_request();
2802
2803 /* When last_request->processed becomes true this will be rescheduled */
2804 if (lr && !lr->processed) {
2805 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
2806 return;
2807 }
2808
2809 spin_lock(®_requests_lock);
2810
2811 if (list_empty(®_requests_list)) {
2812 spin_unlock(®_requests_lock);
2813 return;
2814 }
2815
2816 reg_request = list_first_entry(®_requests_list,
2817 struct regulatory_request,
2818 list);
2819 list_del_init(®_request->list);
2820
2821 spin_unlock(®_requests_lock);
2822
2823 notify_self_managed_wiphys(reg_request);
2824
2825 reg_process_hint(reg_request);
2826
2827 lr = get_last_request();
2828
2829 spin_lock(®_requests_lock);
2830 if (!list_empty(®_requests_list) && lr && lr->processed)
2831 schedule_work(®_work);
2832 spin_unlock(®_requests_lock);
2833 }
2834
2835 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)2836 static void reg_process_pending_beacon_hints(void)
2837 {
2838 struct cfg80211_registered_device *rdev;
2839 struct reg_beacon *pending_beacon, *tmp;
2840
2841 /* This goes through the _pending_ beacon list */
2842 spin_lock_bh(®_pending_beacons_lock);
2843
2844 list_for_each_entry_safe(pending_beacon, tmp,
2845 ®_pending_beacons, list) {
2846 list_del_init(&pending_beacon->list);
2847
2848 /* Applies the beacon hint to current wiphys */
2849 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2850 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2851
2852 /* Remembers the beacon hint for new wiphys or reg changes */
2853 list_add_tail(&pending_beacon->list, ®_beacon_list);
2854 }
2855
2856 spin_unlock_bh(®_pending_beacons_lock);
2857 }
2858
reg_process_self_managed_hints(void)2859 static void reg_process_self_managed_hints(void)
2860 {
2861 struct cfg80211_registered_device *rdev;
2862 struct wiphy *wiphy;
2863 const struct ieee80211_regdomain *tmp;
2864 const struct ieee80211_regdomain *regd;
2865 enum nl80211_band band;
2866 struct regulatory_request request = {};
2867
2868 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2869 wiphy = &rdev->wiphy;
2870
2871 spin_lock(®_requests_lock);
2872 regd = rdev->requested_regd;
2873 rdev->requested_regd = NULL;
2874 spin_unlock(®_requests_lock);
2875
2876 if (regd == NULL)
2877 continue;
2878
2879 tmp = get_wiphy_regdom(wiphy);
2880 rcu_assign_pointer(wiphy->regd, regd);
2881 rcu_free_regdom(tmp);
2882
2883 for (band = 0; band < NUM_NL80211_BANDS; band++)
2884 handle_band_custom(wiphy, wiphy->bands[band], regd);
2885
2886 reg_process_ht_flags(wiphy);
2887
2888 request.wiphy_idx = get_wiphy_idx(wiphy);
2889 request.alpha2[0] = regd->alpha2[0];
2890 request.alpha2[1] = regd->alpha2[1];
2891 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2892
2893 nl80211_send_wiphy_reg_change_event(&request);
2894 }
2895
2896 reg_check_channels();
2897 }
2898
reg_todo(struct work_struct * work)2899 static void reg_todo(struct work_struct *work)
2900 {
2901 rtnl_lock();
2902 reg_process_pending_hints();
2903 reg_process_pending_beacon_hints();
2904 reg_process_self_managed_hints();
2905 rtnl_unlock();
2906 }
2907
queue_regulatory_request(struct regulatory_request * request)2908 static void queue_regulatory_request(struct regulatory_request *request)
2909 {
2910 request->alpha2[0] = toupper(request->alpha2[0]);
2911 request->alpha2[1] = toupper(request->alpha2[1]);
2912
2913 spin_lock(®_requests_lock);
2914 list_add_tail(&request->list, ®_requests_list);
2915 spin_unlock(®_requests_lock);
2916
2917 schedule_work(®_work);
2918 }
2919
2920 /*
2921 * Core regulatory hint -- happens during cfg80211_init()
2922 * and when we restore regulatory settings.
2923 */
regulatory_hint_core(const char * alpha2)2924 static int regulatory_hint_core(const char *alpha2)
2925 {
2926 struct regulatory_request *request;
2927
2928 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2929 if (!request)
2930 return -ENOMEM;
2931
2932 request->alpha2[0] = alpha2[0];
2933 request->alpha2[1] = alpha2[1];
2934 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2935 request->wiphy_idx = WIPHY_IDX_INVALID;
2936
2937 queue_regulatory_request(request);
2938
2939 return 0;
2940 }
2941
2942 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)2943 int regulatory_hint_user(const char *alpha2,
2944 enum nl80211_user_reg_hint_type user_reg_hint_type)
2945 {
2946 struct regulatory_request *request;
2947
2948 if (WARN_ON(!alpha2))
2949 return -EINVAL;
2950
2951 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
2952 return -EINVAL;
2953
2954 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2955 if (!request)
2956 return -ENOMEM;
2957
2958 request->wiphy_idx = WIPHY_IDX_INVALID;
2959 request->alpha2[0] = alpha2[0];
2960 request->alpha2[1] = alpha2[1];
2961 request->initiator = NL80211_REGDOM_SET_BY_USER;
2962 request->user_reg_hint_type = user_reg_hint_type;
2963
2964 /* Allow calling CRDA again */
2965 reset_crda_timeouts();
2966
2967 queue_regulatory_request(request);
2968
2969 return 0;
2970 }
2971
regulatory_hint_indoor(bool is_indoor,u32 portid)2972 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2973 {
2974 spin_lock(®_indoor_lock);
2975
2976 /* It is possible that more than one user space process is trying to
2977 * configure the indoor setting. To handle such cases, clear the indoor
2978 * setting in case that some process does not think that the device
2979 * is operating in an indoor environment. In addition, if a user space
2980 * process indicates that it is controlling the indoor setting, save its
2981 * portid, i.e., make it the owner.
2982 */
2983 reg_is_indoor = is_indoor;
2984 if (reg_is_indoor) {
2985 if (!reg_is_indoor_portid)
2986 reg_is_indoor_portid = portid;
2987 } else {
2988 reg_is_indoor_portid = 0;
2989 }
2990
2991 spin_unlock(®_indoor_lock);
2992
2993 if (!is_indoor)
2994 reg_check_channels();
2995
2996 return 0;
2997 }
2998
regulatory_netlink_notify(u32 portid)2999 void regulatory_netlink_notify(u32 portid)
3000 {
3001 spin_lock(®_indoor_lock);
3002
3003 if (reg_is_indoor_portid != portid) {
3004 spin_unlock(®_indoor_lock);
3005 return;
3006 }
3007
3008 reg_is_indoor = false;
3009 reg_is_indoor_portid = 0;
3010
3011 spin_unlock(®_indoor_lock);
3012
3013 reg_check_channels();
3014 }
3015
3016 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)3017 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3018 {
3019 struct regulatory_request *request;
3020
3021 if (WARN_ON(!alpha2 || !wiphy))
3022 return -EINVAL;
3023
3024 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3025
3026 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3027 if (!request)
3028 return -ENOMEM;
3029
3030 request->wiphy_idx = get_wiphy_idx(wiphy);
3031
3032 request->alpha2[0] = alpha2[0];
3033 request->alpha2[1] = alpha2[1];
3034 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3035
3036 /* Allow calling CRDA again */
3037 reset_crda_timeouts();
3038
3039 queue_regulatory_request(request);
3040
3041 return 0;
3042 }
3043 EXPORT_SYMBOL(regulatory_hint);
3044
regulatory_hint_country_ie(struct wiphy * wiphy,enum nl80211_band band,const u8 * country_ie,u8 country_ie_len)3045 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3046 const u8 *country_ie, u8 country_ie_len)
3047 {
3048 char alpha2[2];
3049 enum environment_cap env = ENVIRON_ANY;
3050 struct regulatory_request *request = NULL, *lr;
3051
3052 /* IE len must be evenly divisible by 2 */
3053 if (country_ie_len & 0x01)
3054 return;
3055
3056 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3057 return;
3058
3059 request = kzalloc(sizeof(*request), GFP_KERNEL);
3060 if (!request)
3061 return;
3062
3063 alpha2[0] = country_ie[0];
3064 alpha2[1] = country_ie[1];
3065
3066 if (country_ie[2] == 'I')
3067 env = ENVIRON_INDOOR;
3068 else if (country_ie[2] == 'O')
3069 env = ENVIRON_OUTDOOR;
3070
3071 rcu_read_lock();
3072 lr = get_last_request();
3073
3074 if (unlikely(!lr))
3075 goto out;
3076
3077 /*
3078 * We will run this only upon a successful connection on cfg80211.
3079 * We leave conflict resolution to the workqueue, where can hold
3080 * the RTNL.
3081 */
3082 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3083 lr->wiphy_idx != WIPHY_IDX_INVALID)
3084 goto out;
3085
3086 request->wiphy_idx = get_wiphy_idx(wiphy);
3087 request->alpha2[0] = alpha2[0];
3088 request->alpha2[1] = alpha2[1];
3089 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3090 request->country_ie_env = env;
3091
3092 /* Allow calling CRDA again */
3093 reset_crda_timeouts();
3094
3095 queue_regulatory_request(request);
3096 request = NULL;
3097 out:
3098 kfree(request);
3099 rcu_read_unlock();
3100 }
3101
restore_alpha2(char * alpha2,bool reset_user)3102 static void restore_alpha2(char *alpha2, bool reset_user)
3103 {
3104 /* indicates there is no alpha2 to consider for restoration */
3105 alpha2[0] = '9';
3106 alpha2[1] = '7';
3107
3108 /* The user setting has precedence over the module parameter */
3109 if (is_user_regdom_saved()) {
3110 /* Unless we're asked to ignore it and reset it */
3111 if (reset_user) {
3112 pr_debug("Restoring regulatory settings including user preference\n");
3113 user_alpha2[0] = '9';
3114 user_alpha2[1] = '7';
3115
3116 /*
3117 * If we're ignoring user settings, we still need to
3118 * check the module parameter to ensure we put things
3119 * back as they were for a full restore.
3120 */
3121 if (!is_world_regdom(ieee80211_regdom)) {
3122 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3123 ieee80211_regdom[0], ieee80211_regdom[1]);
3124 alpha2[0] = ieee80211_regdom[0];
3125 alpha2[1] = ieee80211_regdom[1];
3126 }
3127 } else {
3128 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3129 user_alpha2[0], user_alpha2[1]);
3130 alpha2[0] = user_alpha2[0];
3131 alpha2[1] = user_alpha2[1];
3132 }
3133 } else if (!is_world_regdom(ieee80211_regdom)) {
3134 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3135 ieee80211_regdom[0], ieee80211_regdom[1]);
3136 alpha2[0] = ieee80211_regdom[0];
3137 alpha2[1] = ieee80211_regdom[1];
3138 } else
3139 pr_debug("Restoring regulatory settings\n");
3140 }
3141
restore_custom_reg_settings(struct wiphy * wiphy)3142 static void restore_custom_reg_settings(struct wiphy *wiphy)
3143 {
3144 struct ieee80211_supported_band *sband;
3145 enum nl80211_band band;
3146 struct ieee80211_channel *chan;
3147 int i;
3148
3149 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3150 sband = wiphy->bands[band];
3151 if (!sband)
3152 continue;
3153 for (i = 0; i < sband->n_channels; i++) {
3154 chan = &sband->channels[i];
3155 chan->flags = chan->orig_flags;
3156 chan->max_antenna_gain = chan->orig_mag;
3157 chan->max_power = chan->orig_mpwr;
3158 chan->beacon_found = false;
3159 }
3160 }
3161 }
3162
3163 /*
3164 * Restoring regulatory settings involves ingoring any
3165 * possibly stale country IE information and user regulatory
3166 * settings if so desired, this includes any beacon hints
3167 * learned as we could have traveled outside to another country
3168 * after disconnection. To restore regulatory settings we do
3169 * exactly what we did at bootup:
3170 *
3171 * - send a core regulatory hint
3172 * - send a user regulatory hint if applicable
3173 *
3174 * Device drivers that send a regulatory hint for a specific country
3175 * keep their own regulatory domain on wiphy->regd so that does does
3176 * not need to be remembered.
3177 */
restore_regulatory_settings(bool reset_user,bool cached)3178 static void restore_regulatory_settings(bool reset_user, bool cached)
3179 {
3180 char alpha2[2];
3181 char world_alpha2[2];
3182 struct reg_beacon *reg_beacon, *btmp;
3183 LIST_HEAD(tmp_reg_req_list);
3184 struct cfg80211_registered_device *rdev;
3185
3186 ASSERT_RTNL();
3187
3188 /*
3189 * Clear the indoor setting in case that it is not controlled by user
3190 * space, as otherwise there is no guarantee that the device is still
3191 * operating in an indoor environment.
3192 */
3193 spin_lock(®_indoor_lock);
3194 if (reg_is_indoor && !reg_is_indoor_portid) {
3195 reg_is_indoor = false;
3196 reg_check_channels();
3197 }
3198 spin_unlock(®_indoor_lock);
3199
3200 reset_regdomains(true, &world_regdom);
3201 restore_alpha2(alpha2, reset_user);
3202
3203 /*
3204 * If there's any pending requests we simply
3205 * stash them to a temporary pending queue and
3206 * add then after we've restored regulatory
3207 * settings.
3208 */
3209 spin_lock(®_requests_lock);
3210 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3211 spin_unlock(®_requests_lock);
3212
3213 /* Clear beacon hints */
3214 spin_lock_bh(®_pending_beacons_lock);
3215 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3216 list_del(®_beacon->list);
3217 kfree(reg_beacon);
3218 }
3219 spin_unlock_bh(®_pending_beacons_lock);
3220
3221 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3222 list_del(®_beacon->list);
3223 kfree(reg_beacon);
3224 }
3225
3226 /* First restore to the basic regulatory settings */
3227 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3228 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3229
3230 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3231 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3232 continue;
3233 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3234 restore_custom_reg_settings(&rdev->wiphy);
3235 }
3236
3237 if (cached && (!is_an_alpha2(alpha2) ||
3238 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3239 reset_regdomains(false, cfg80211_world_regdom);
3240 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3241 print_regdomain(get_cfg80211_regdom());
3242 nl80211_send_reg_change_event(&core_request_world);
3243 reg_set_request_processed();
3244
3245 if (is_an_alpha2(alpha2) &&
3246 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3247 struct regulatory_request *ureq;
3248
3249 spin_lock(®_requests_lock);
3250 ureq = list_last_entry(®_requests_list,
3251 struct regulatory_request,
3252 list);
3253 list_del(&ureq->list);
3254 spin_unlock(®_requests_lock);
3255
3256 notify_self_managed_wiphys(ureq);
3257 reg_update_last_request(ureq);
3258 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3259 REGD_SOURCE_CACHED);
3260 }
3261 } else {
3262 regulatory_hint_core(world_alpha2);
3263
3264 /*
3265 * This restores the ieee80211_regdom module parameter
3266 * preference or the last user requested regulatory
3267 * settings, user regulatory settings takes precedence.
3268 */
3269 if (is_an_alpha2(alpha2))
3270 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3271 }
3272
3273 spin_lock(®_requests_lock);
3274 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3275 spin_unlock(®_requests_lock);
3276
3277 pr_debug("Kicking the queue\n");
3278
3279 schedule_work(®_work);
3280 }
3281
is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)3282 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3283 {
3284 struct cfg80211_registered_device *rdev;
3285 struct wireless_dev *wdev;
3286
3287 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3288 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3289 wdev_lock(wdev);
3290 if (!(wdev->wiphy->regulatory_flags & flag)) {
3291 wdev_unlock(wdev);
3292 return false;
3293 }
3294 wdev_unlock(wdev);
3295 }
3296 }
3297
3298 return true;
3299 }
3300
regulatory_hint_disconnect(void)3301 void regulatory_hint_disconnect(void)
3302 {
3303 /* Restore of regulatory settings is not required when wiphy(s)
3304 * ignore IE from connected access point but clearance of beacon hints
3305 * is required when wiphy(s) supports beacon hints.
3306 */
3307 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3308 struct reg_beacon *reg_beacon, *btmp;
3309
3310 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3311 return;
3312
3313 spin_lock_bh(®_pending_beacons_lock);
3314 list_for_each_entry_safe(reg_beacon, btmp,
3315 ®_pending_beacons, list) {
3316 list_del(®_beacon->list);
3317 kfree(reg_beacon);
3318 }
3319 spin_unlock_bh(®_pending_beacons_lock);
3320
3321 list_for_each_entry_safe(reg_beacon, btmp,
3322 ®_beacon_list, list) {
3323 list_del(®_beacon->list);
3324 kfree(reg_beacon);
3325 }
3326
3327 return;
3328 }
3329
3330 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3331 restore_regulatory_settings(false, true);
3332 }
3333
freq_is_chan_12_13_14(u32 freq)3334 static bool freq_is_chan_12_13_14(u32 freq)
3335 {
3336 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3337 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3338 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3339 return true;
3340 return false;
3341 }
3342
pending_reg_beacon(struct ieee80211_channel * beacon_chan)3343 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3344 {
3345 struct reg_beacon *pending_beacon;
3346
3347 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3348 if (ieee80211_channel_equal(beacon_chan,
3349 &pending_beacon->chan))
3350 return true;
3351 return false;
3352 }
3353
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)3354 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3355 struct ieee80211_channel *beacon_chan,
3356 gfp_t gfp)
3357 {
3358 struct reg_beacon *reg_beacon;
3359 bool processing;
3360
3361 if (beacon_chan->beacon_found ||
3362 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3363 (beacon_chan->band == NL80211_BAND_2GHZ &&
3364 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3365 return 0;
3366
3367 spin_lock_bh(®_pending_beacons_lock);
3368 processing = pending_reg_beacon(beacon_chan);
3369 spin_unlock_bh(®_pending_beacons_lock);
3370
3371 if (processing)
3372 return 0;
3373
3374 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3375 if (!reg_beacon)
3376 return -ENOMEM;
3377
3378 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3379 beacon_chan->center_freq, beacon_chan->freq_offset,
3380 ieee80211_freq_khz_to_channel(
3381 ieee80211_channel_to_khz(beacon_chan)),
3382 wiphy_name(wiphy));
3383
3384 memcpy(®_beacon->chan, beacon_chan,
3385 sizeof(struct ieee80211_channel));
3386
3387 /*
3388 * Since we can be called from BH or and non-BH context
3389 * we must use spin_lock_bh()
3390 */
3391 spin_lock_bh(®_pending_beacons_lock);
3392 list_add_tail(®_beacon->list, ®_pending_beacons);
3393 spin_unlock_bh(®_pending_beacons_lock);
3394
3395 schedule_work(®_work);
3396
3397 return 0;
3398 }
3399
print_rd_rules(const struct ieee80211_regdomain * rd)3400 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3401 {
3402 unsigned int i;
3403 const struct ieee80211_reg_rule *reg_rule = NULL;
3404 const struct ieee80211_freq_range *freq_range = NULL;
3405 const struct ieee80211_power_rule *power_rule = NULL;
3406 char bw[32], cac_time[32];
3407
3408 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3409
3410 for (i = 0; i < rd->n_reg_rules; i++) {
3411 reg_rule = &rd->reg_rules[i];
3412 freq_range = ®_rule->freq_range;
3413 power_rule = ®_rule->power_rule;
3414
3415 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3416 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3417 freq_range->max_bandwidth_khz,
3418 reg_get_max_bandwidth(rd, reg_rule));
3419 else
3420 snprintf(bw, sizeof(bw), "%d KHz",
3421 freq_range->max_bandwidth_khz);
3422
3423 if (reg_rule->flags & NL80211_RRF_DFS)
3424 scnprintf(cac_time, sizeof(cac_time), "%u s",
3425 reg_rule->dfs_cac_ms/1000);
3426 else
3427 scnprintf(cac_time, sizeof(cac_time), "N/A");
3428
3429
3430 /*
3431 * There may not be documentation for max antenna gain
3432 * in certain regions
3433 */
3434 if (power_rule->max_antenna_gain)
3435 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3436 freq_range->start_freq_khz,
3437 freq_range->end_freq_khz,
3438 bw,
3439 power_rule->max_antenna_gain,
3440 power_rule->max_eirp,
3441 cac_time);
3442 else
3443 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3444 freq_range->start_freq_khz,
3445 freq_range->end_freq_khz,
3446 bw,
3447 power_rule->max_eirp,
3448 cac_time);
3449 }
3450 }
3451
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)3452 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3453 {
3454 switch (dfs_region) {
3455 case NL80211_DFS_UNSET:
3456 case NL80211_DFS_FCC:
3457 case NL80211_DFS_ETSI:
3458 case NL80211_DFS_JP:
3459 return true;
3460 default:
3461 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3462 return false;
3463 }
3464 }
3465
print_regdomain(const struct ieee80211_regdomain * rd)3466 static void print_regdomain(const struct ieee80211_regdomain *rd)
3467 {
3468 struct regulatory_request *lr = get_last_request();
3469
3470 if (is_intersected_alpha2(rd->alpha2)) {
3471 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3472 struct cfg80211_registered_device *rdev;
3473 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3474 if (rdev) {
3475 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3476 rdev->country_ie_alpha2[0],
3477 rdev->country_ie_alpha2[1]);
3478 } else
3479 pr_debug("Current regulatory domain intersected:\n");
3480 } else
3481 pr_debug("Current regulatory domain intersected:\n");
3482 } else if (is_world_regdom(rd->alpha2)) {
3483 pr_debug("World regulatory domain updated:\n");
3484 } else {
3485 if (is_unknown_alpha2(rd->alpha2))
3486 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3487 else {
3488 if (reg_request_cell_base(lr))
3489 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3490 rd->alpha2[0], rd->alpha2[1]);
3491 else
3492 pr_debug("Regulatory domain changed to country: %c%c\n",
3493 rd->alpha2[0], rd->alpha2[1]);
3494 }
3495 }
3496
3497 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3498 print_rd_rules(rd);
3499 }
3500
print_regdomain_info(const struct ieee80211_regdomain * rd)3501 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3502 {
3503 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3504 print_rd_rules(rd);
3505 }
3506
reg_set_rd_core(const struct ieee80211_regdomain * rd)3507 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3508 {
3509 if (!is_world_regdom(rd->alpha2))
3510 return -EINVAL;
3511 update_world_regdomain(rd);
3512 return 0;
3513 }
3514
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)3515 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3516 struct regulatory_request *user_request)
3517 {
3518 const struct ieee80211_regdomain *intersected_rd = NULL;
3519
3520 if (!regdom_changes(rd->alpha2))
3521 return -EALREADY;
3522
3523 if (!is_valid_rd(rd)) {
3524 pr_err("Invalid regulatory domain detected: %c%c\n",
3525 rd->alpha2[0], rd->alpha2[1]);
3526 print_regdomain_info(rd);
3527 return -EINVAL;
3528 }
3529
3530 if (!user_request->intersect) {
3531 reset_regdomains(false, rd);
3532 return 0;
3533 }
3534
3535 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3536 if (!intersected_rd)
3537 return -EINVAL;
3538
3539 kfree(rd);
3540 rd = NULL;
3541 reset_regdomains(false, intersected_rd);
3542
3543 return 0;
3544 }
3545
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)3546 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3547 struct regulatory_request *driver_request)
3548 {
3549 const struct ieee80211_regdomain *regd;
3550 const struct ieee80211_regdomain *intersected_rd = NULL;
3551 const struct ieee80211_regdomain *tmp;
3552 struct wiphy *request_wiphy;
3553
3554 if (is_world_regdom(rd->alpha2))
3555 return -EINVAL;
3556
3557 if (!regdom_changes(rd->alpha2))
3558 return -EALREADY;
3559
3560 if (!is_valid_rd(rd)) {
3561 pr_err("Invalid regulatory domain detected: %c%c\n",
3562 rd->alpha2[0], rd->alpha2[1]);
3563 print_regdomain_info(rd);
3564 return -EINVAL;
3565 }
3566
3567 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3568 if (!request_wiphy)
3569 return -ENODEV;
3570
3571 if (!driver_request->intersect) {
3572 if (request_wiphy->regd)
3573 return -EALREADY;
3574
3575 regd = reg_copy_regd(rd);
3576 if (IS_ERR(regd))
3577 return PTR_ERR(regd);
3578
3579 rcu_assign_pointer(request_wiphy->regd, regd);
3580 reset_regdomains(false, rd);
3581 return 0;
3582 }
3583
3584 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3585 if (!intersected_rd)
3586 return -EINVAL;
3587
3588 /*
3589 * We can trash what CRDA provided now.
3590 * However if a driver requested this specific regulatory
3591 * domain we keep it for its private use
3592 */
3593 tmp = get_wiphy_regdom(request_wiphy);
3594 rcu_assign_pointer(request_wiphy->regd, rd);
3595 rcu_free_regdom(tmp);
3596
3597 rd = NULL;
3598
3599 reset_regdomains(false, intersected_rd);
3600
3601 return 0;
3602 }
3603
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)3604 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3605 struct regulatory_request *country_ie_request)
3606 {
3607 struct wiphy *request_wiphy;
3608
3609 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3610 !is_unknown_alpha2(rd->alpha2))
3611 return -EINVAL;
3612
3613 /*
3614 * Lets only bother proceeding on the same alpha2 if the current
3615 * rd is non static (it means CRDA was present and was used last)
3616 * and the pending request came in from a country IE
3617 */
3618
3619 if (!is_valid_rd(rd)) {
3620 pr_err("Invalid regulatory domain detected: %c%c\n",
3621 rd->alpha2[0], rd->alpha2[1]);
3622 print_regdomain_info(rd);
3623 return -EINVAL;
3624 }
3625
3626 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3627 if (!request_wiphy)
3628 return -ENODEV;
3629
3630 if (country_ie_request->intersect)
3631 return -EINVAL;
3632
3633 reset_regdomains(false, rd);
3634 return 0;
3635 }
3636
3637 /*
3638 * Use this call to set the current regulatory domain. Conflicts with
3639 * multiple drivers can be ironed out later. Caller must've already
3640 * kmalloc'd the rd structure.
3641 */
set_regdom(const struct ieee80211_regdomain * rd,enum ieee80211_regd_source regd_src)3642 int set_regdom(const struct ieee80211_regdomain *rd,
3643 enum ieee80211_regd_source regd_src)
3644 {
3645 struct regulatory_request *lr;
3646 bool user_reset = false;
3647 int r;
3648
3649 if (IS_ERR_OR_NULL(rd))
3650 return -ENODATA;
3651
3652 if (!reg_is_valid_request(rd->alpha2)) {
3653 kfree(rd);
3654 return -EINVAL;
3655 }
3656
3657 if (regd_src == REGD_SOURCE_CRDA)
3658 reset_crda_timeouts();
3659
3660 lr = get_last_request();
3661
3662 /* Note that this doesn't update the wiphys, this is done below */
3663 switch (lr->initiator) {
3664 case NL80211_REGDOM_SET_BY_CORE:
3665 r = reg_set_rd_core(rd);
3666 break;
3667 case NL80211_REGDOM_SET_BY_USER:
3668 cfg80211_save_user_regdom(rd);
3669 r = reg_set_rd_user(rd, lr);
3670 user_reset = true;
3671 break;
3672 case NL80211_REGDOM_SET_BY_DRIVER:
3673 r = reg_set_rd_driver(rd, lr);
3674 break;
3675 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3676 r = reg_set_rd_country_ie(rd, lr);
3677 break;
3678 default:
3679 WARN(1, "invalid initiator %d\n", lr->initiator);
3680 kfree(rd);
3681 return -EINVAL;
3682 }
3683
3684 if (r) {
3685 switch (r) {
3686 case -EALREADY:
3687 reg_set_request_processed();
3688 break;
3689 default:
3690 /* Back to world regulatory in case of errors */
3691 restore_regulatory_settings(user_reset, false);
3692 }
3693
3694 kfree(rd);
3695 return r;
3696 }
3697
3698 /* This would make this whole thing pointless */
3699 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3700 return -EINVAL;
3701
3702 /* update all wiphys now with the new established regulatory domain */
3703 update_all_wiphy_regulatory(lr->initiator);
3704
3705 print_regdomain(get_cfg80211_regdom());
3706
3707 nl80211_send_reg_change_event(lr);
3708
3709 reg_set_request_processed();
3710
3711 return 0;
3712 }
3713
__regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)3714 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3715 struct ieee80211_regdomain *rd)
3716 {
3717 const struct ieee80211_regdomain *regd;
3718 const struct ieee80211_regdomain *prev_regd;
3719 struct cfg80211_registered_device *rdev;
3720
3721 if (WARN_ON(!wiphy || !rd))
3722 return -EINVAL;
3723
3724 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3725 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3726 return -EPERM;
3727
3728 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3729 print_regdomain_info(rd);
3730 return -EINVAL;
3731 }
3732
3733 regd = reg_copy_regd(rd);
3734 if (IS_ERR(regd))
3735 return PTR_ERR(regd);
3736
3737 rdev = wiphy_to_rdev(wiphy);
3738
3739 spin_lock(®_requests_lock);
3740 prev_regd = rdev->requested_regd;
3741 rdev->requested_regd = regd;
3742 spin_unlock(®_requests_lock);
3743
3744 kfree(prev_regd);
3745 return 0;
3746 }
3747
regulatory_set_wiphy_regd(struct wiphy * wiphy,struct ieee80211_regdomain * rd)3748 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3749 struct ieee80211_regdomain *rd)
3750 {
3751 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3752
3753 if (ret)
3754 return ret;
3755
3756 schedule_work(®_work);
3757 return 0;
3758 }
3759 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3760
regulatory_set_wiphy_regd_sync_rtnl(struct wiphy * wiphy,struct ieee80211_regdomain * rd)3761 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3762 struct ieee80211_regdomain *rd)
3763 {
3764 int ret;
3765
3766 ASSERT_RTNL();
3767
3768 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3769 if (ret)
3770 return ret;
3771
3772 /* process the request immediately */
3773 reg_process_self_managed_hints();
3774 return 0;
3775 }
3776 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3777
wiphy_regulatory_register(struct wiphy * wiphy)3778 void wiphy_regulatory_register(struct wiphy *wiphy)
3779 {
3780 struct regulatory_request *lr = get_last_request();
3781
3782 /* self-managed devices ignore beacon hints and country IE */
3783 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3784 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3785 REGULATORY_COUNTRY_IE_IGNORE;
3786
3787 /*
3788 * The last request may have been received before this
3789 * registration call. Call the driver notifier if
3790 * initiator is USER.
3791 */
3792 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
3793 reg_call_notifier(wiphy, lr);
3794 }
3795
3796 if (!reg_dev_ignore_cell_hint(wiphy))
3797 reg_num_devs_support_basehint++;
3798
3799 wiphy_update_regulatory(wiphy, lr->initiator);
3800 wiphy_all_share_dfs_chan_state(wiphy);
3801 reg_process_self_managed_hints();
3802 }
3803
wiphy_regulatory_deregister(struct wiphy * wiphy)3804 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3805 {
3806 struct wiphy *request_wiphy = NULL;
3807 struct regulatory_request *lr;
3808
3809 lr = get_last_request();
3810
3811 if (!reg_dev_ignore_cell_hint(wiphy))
3812 reg_num_devs_support_basehint--;
3813
3814 rcu_free_regdom(get_wiphy_regdom(wiphy));
3815 RCU_INIT_POINTER(wiphy->regd, NULL);
3816
3817 if (lr)
3818 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3819
3820 if (!request_wiphy || request_wiphy != wiphy)
3821 return;
3822
3823 lr->wiphy_idx = WIPHY_IDX_INVALID;
3824 lr->country_ie_env = ENVIRON_ANY;
3825 }
3826
3827 /*
3828 * See FCC notices for UNII band definitions
3829 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
3830 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
3831 */
cfg80211_get_unii(int freq)3832 int cfg80211_get_unii(int freq)
3833 {
3834 /* UNII-1 */
3835 if (freq >= 5150 && freq <= 5250)
3836 return 0;
3837
3838 /* UNII-2A */
3839 if (freq > 5250 && freq <= 5350)
3840 return 1;
3841
3842 /* UNII-2B */
3843 if (freq > 5350 && freq <= 5470)
3844 return 2;
3845
3846 /* UNII-2C */
3847 if (freq > 5470 && freq <= 5725)
3848 return 3;
3849
3850 /* UNII-3 */
3851 if (freq > 5725 && freq <= 5825)
3852 return 4;
3853
3854 /* UNII-5 */
3855 if (freq > 5925 && freq <= 6425)
3856 return 5;
3857
3858 /* UNII-6 */
3859 if (freq > 6425 && freq <= 6525)
3860 return 6;
3861
3862 /* UNII-7 */
3863 if (freq > 6525 && freq <= 6875)
3864 return 7;
3865
3866 /* UNII-8 */
3867 if (freq > 6875 && freq <= 7125)
3868 return 8;
3869
3870 return -EINVAL;
3871 }
3872
regulatory_indoor_allowed(void)3873 bool regulatory_indoor_allowed(void)
3874 {
3875 return reg_is_indoor;
3876 }
3877
regulatory_pre_cac_allowed(struct wiphy * wiphy)3878 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3879 {
3880 const struct ieee80211_regdomain *regd = NULL;
3881 const struct ieee80211_regdomain *wiphy_regd = NULL;
3882 bool pre_cac_allowed = false;
3883
3884 rcu_read_lock();
3885
3886 regd = rcu_dereference(cfg80211_regdomain);
3887 wiphy_regd = rcu_dereference(wiphy->regd);
3888 if (!wiphy_regd) {
3889 if (regd->dfs_region == NL80211_DFS_ETSI)
3890 pre_cac_allowed = true;
3891
3892 rcu_read_unlock();
3893
3894 return pre_cac_allowed;
3895 }
3896
3897 if (regd->dfs_region == wiphy_regd->dfs_region &&
3898 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3899 pre_cac_allowed = true;
3900
3901 rcu_read_unlock();
3902
3903 return pre_cac_allowed;
3904 }
3905 EXPORT_SYMBOL(regulatory_pre_cac_allowed);
3906
cfg80211_check_and_end_cac(struct cfg80211_registered_device * rdev)3907 static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
3908 {
3909 struct wireless_dev *wdev;
3910 /* If we finished CAC or received radar, we should end any
3911 * CAC running on the same channels.
3912 * the check !cfg80211_chandef_dfs_usable contain 2 options:
3913 * either all channels are available - those the CAC_FINISHED
3914 * event has effected another wdev state, or there is a channel
3915 * in unavailable state in wdev chandef - those the RADAR_DETECTED
3916 * event has effected another wdev state.
3917 * In both cases we should end the CAC on the wdev.
3918 */
3919 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3920 if (wdev->cac_started &&
3921 !cfg80211_chandef_dfs_usable(&rdev->wiphy, &wdev->chandef))
3922 rdev_end_cac(rdev, wdev->netdev);
3923 }
3924 }
3925
regulatory_propagate_dfs_state(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state,enum nl80211_radar_event event)3926 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3927 struct cfg80211_chan_def *chandef,
3928 enum nl80211_dfs_state dfs_state,
3929 enum nl80211_radar_event event)
3930 {
3931 struct cfg80211_registered_device *rdev;
3932
3933 ASSERT_RTNL();
3934
3935 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3936 return;
3937
3938 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3939 if (wiphy == &rdev->wiphy)
3940 continue;
3941
3942 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3943 continue;
3944
3945 if (!ieee80211_get_channel(&rdev->wiphy,
3946 chandef->chan->center_freq))
3947 continue;
3948
3949 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3950
3951 if (event == NL80211_RADAR_DETECTED ||
3952 event == NL80211_RADAR_CAC_FINISHED) {
3953 cfg80211_sched_dfs_chan_update(rdev);
3954 cfg80211_check_and_end_cac(rdev);
3955 }
3956
3957 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3958 }
3959 }
3960
regulatory_init_db(void)3961 static int __init regulatory_init_db(void)
3962 {
3963 int err;
3964
3965 /*
3966 * It's possible that - due to other bugs/issues - cfg80211
3967 * never called regulatory_init() below, or that it failed;
3968 * in that case, don't try to do any further work here as
3969 * it's doomed to lead to crashes.
3970 */
3971 if (IS_ERR_OR_NULL(reg_pdev))
3972 return -EINVAL;
3973
3974 err = load_builtin_regdb_keys();
3975 if (err) {
3976 platform_device_unregister(reg_pdev);
3977 return err;
3978 }
3979
3980 /* We always try to get an update for the static regdomain */
3981 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3982 if (err) {
3983 if (err == -ENOMEM) {
3984 platform_device_unregister(reg_pdev);
3985 return err;
3986 }
3987 /*
3988 * N.B. kobject_uevent_env() can fail mainly for when we're out
3989 * memory which is handled and propagated appropriately above
3990 * but it can also fail during a netlink_broadcast() or during
3991 * early boot for call_usermodehelper(). For now treat these
3992 * errors as non-fatal.
3993 */
3994 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3995 }
3996
3997 /*
3998 * Finally, if the user set the module parameter treat it
3999 * as a user hint.
4000 */
4001 if (!is_world_regdom(ieee80211_regdom))
4002 regulatory_hint_user(ieee80211_regdom,
4003 NL80211_USER_REG_HINT_USER);
4004
4005 return 0;
4006 }
4007 #ifndef MODULE
4008 late_initcall(regulatory_init_db);
4009 #endif
4010
regulatory_init(void)4011 int __init regulatory_init(void)
4012 {
4013 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4014 if (IS_ERR(reg_pdev))
4015 return PTR_ERR(reg_pdev);
4016
4017 spin_lock_init(®_requests_lock);
4018 spin_lock_init(®_pending_beacons_lock);
4019 spin_lock_init(®_indoor_lock);
4020
4021 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4022
4023 user_alpha2[0] = '9';
4024 user_alpha2[1] = '7';
4025
4026 #ifdef MODULE
4027 return regulatory_init_db();
4028 #else
4029 return 0;
4030 #endif
4031 }
4032
regulatory_exit(void)4033 void regulatory_exit(void)
4034 {
4035 struct regulatory_request *reg_request, *tmp;
4036 struct reg_beacon *reg_beacon, *btmp;
4037
4038 cancel_work_sync(®_work);
4039 cancel_crda_timeout_sync();
4040 cancel_delayed_work_sync(®_check_chans);
4041
4042 /* Lock to suppress warnings */
4043 rtnl_lock();
4044 reset_regdomains(true, NULL);
4045 rtnl_unlock();
4046
4047 dev_set_uevent_suppress(®_pdev->dev, true);
4048
4049 platform_device_unregister(reg_pdev);
4050
4051 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4052 list_del(®_beacon->list);
4053 kfree(reg_beacon);
4054 }
4055
4056 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4057 list_del(®_beacon->list);
4058 kfree(reg_beacon);
4059 }
4060
4061 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4062 list_del(®_request->list);
4063 kfree(reg_request);
4064 }
4065
4066 if (!IS_ERR_OR_NULL(regdb))
4067 kfree(regdb);
4068 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4069 kfree(cfg80211_user_regdom);
4070
4071 free_regdb_keyring();
4072 }
4073