1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/kernel.h>
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7 #include <linux/init.h>
8 #include <linux/export.h>
9 #include <linux/timer.h>
10 #include <linux/acpi_pmtmr.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/clocksource.h>
14 #include <linux/percpu.h>
15 #include <linux/timex.h>
16 #include <linux/static_key.h>
17
18 #include <asm/hpet.h>
19 #include <asm/timer.h>
20 #include <asm/vgtod.h>
21 #include <asm/time.h>
22 #include <asm/delay.h>
23 #include <asm/hypervisor.h>
24 #include <asm/nmi.h>
25 #include <asm/x86_init.h>
26 #include <asm/geode.h>
27 #include <asm/apic.h>
28 #include <asm/intel-family.h>
29 #include <asm/i8259.h>
30 #include <asm/uv/uv.h>
31
32 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
33 EXPORT_SYMBOL(cpu_khz);
34
35 unsigned int __read_mostly tsc_khz;
36 EXPORT_SYMBOL(tsc_khz);
37
38 #define KHZ 1000
39
40 /*
41 * TSC can be unstable due to cpufreq or due to unsynced TSCs
42 */
43 static int __read_mostly tsc_unstable;
44
45 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
46
47 int tsc_clocksource_reliable;
48
49 static u32 art_to_tsc_numerator;
50 static u32 art_to_tsc_denominator;
51 static u64 art_to_tsc_offset;
52 struct clocksource *art_related_clocksource;
53
54 struct cyc2ns {
55 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
56 seqcount_t seq; /* 32 + 4 = 36 */
57
58 }; /* fits one cacheline */
59
60 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
61
cyc2ns_read_begin(struct cyc2ns_data * data)62 __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data)
63 {
64 int seq, idx;
65
66 preempt_disable_notrace();
67
68 do {
69 seq = this_cpu_read(cyc2ns.seq.sequence);
70 idx = seq & 1;
71
72 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
73 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
74 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
75
76 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
77 }
78
cyc2ns_read_end(void)79 __always_inline void cyc2ns_read_end(void)
80 {
81 preempt_enable_notrace();
82 }
83
84 /*
85 * Accelerators for sched_clock()
86 * convert from cycles(64bits) => nanoseconds (64bits)
87 * basic equation:
88 * ns = cycles / (freq / ns_per_sec)
89 * ns = cycles * (ns_per_sec / freq)
90 * ns = cycles * (10^9 / (cpu_khz * 10^3))
91 * ns = cycles * (10^6 / cpu_khz)
92 *
93 * Then we use scaling math (suggested by george@mvista.com) to get:
94 * ns = cycles * (10^6 * SC / cpu_khz) / SC
95 * ns = cycles * cyc2ns_scale / SC
96 *
97 * And since SC is a constant power of two, we can convert the div
98 * into a shift. The larger SC is, the more accurate the conversion, but
99 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
100 * (64-bit result) can be used.
101 *
102 * We can use khz divisor instead of mhz to keep a better precision.
103 * (mathieu.desnoyers@polymtl.ca)
104 *
105 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
106 */
107
cycles_2_ns(unsigned long long cyc)108 static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc)
109 {
110 struct cyc2ns_data data;
111 unsigned long long ns;
112
113 cyc2ns_read_begin(&data);
114
115 ns = data.cyc2ns_offset;
116 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
117
118 cyc2ns_read_end();
119
120 return ns;
121 }
122
__set_cyc2ns_scale(unsigned long khz,int cpu,unsigned long long tsc_now)123 static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
124 {
125 unsigned long long ns_now;
126 struct cyc2ns_data data;
127 struct cyc2ns *c2n;
128
129 ns_now = cycles_2_ns(tsc_now);
130
131 /*
132 * Compute a new multiplier as per the above comment and ensure our
133 * time function is continuous; see the comment near struct
134 * cyc2ns_data.
135 */
136 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
137 NSEC_PER_MSEC, 0);
138
139 /*
140 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
141 * not expected to be greater than 31 due to the original published
142 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
143 * value) - refer perf_event_mmap_page documentation in perf_event.h.
144 */
145 if (data.cyc2ns_shift == 32) {
146 data.cyc2ns_shift = 31;
147 data.cyc2ns_mul >>= 1;
148 }
149
150 data.cyc2ns_offset = ns_now -
151 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
152
153 c2n = per_cpu_ptr(&cyc2ns, cpu);
154
155 raw_write_seqcount_latch(&c2n->seq);
156 c2n->data[0] = data;
157 raw_write_seqcount_latch(&c2n->seq);
158 c2n->data[1] = data;
159 }
160
set_cyc2ns_scale(unsigned long khz,int cpu,unsigned long long tsc_now)161 static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
162 {
163 unsigned long flags;
164
165 local_irq_save(flags);
166 sched_clock_idle_sleep_event();
167
168 if (khz)
169 __set_cyc2ns_scale(khz, cpu, tsc_now);
170
171 sched_clock_idle_wakeup_event();
172 local_irq_restore(flags);
173 }
174
175 /*
176 * Initialize cyc2ns for boot cpu
177 */
cyc2ns_init_boot_cpu(void)178 static void __init cyc2ns_init_boot_cpu(void)
179 {
180 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
181
182 seqcount_init(&c2n->seq);
183 __set_cyc2ns_scale(tsc_khz, smp_processor_id(), rdtsc());
184 }
185
186 /*
187 * Secondary CPUs do not run through tsc_init(), so set up
188 * all the scale factors for all CPUs, assuming the same
189 * speed as the bootup CPU.
190 */
cyc2ns_init_secondary_cpus(void)191 static void __init cyc2ns_init_secondary_cpus(void)
192 {
193 unsigned int cpu, this_cpu = smp_processor_id();
194 struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns);
195 struct cyc2ns_data *data = c2n->data;
196
197 for_each_possible_cpu(cpu) {
198 if (cpu != this_cpu) {
199 seqcount_init(&c2n->seq);
200 c2n = per_cpu_ptr(&cyc2ns, cpu);
201 c2n->data[0] = data[0];
202 c2n->data[1] = data[1];
203 }
204 }
205 }
206
207 /*
208 * Scheduler clock - returns current time in nanosec units.
209 */
native_sched_clock(void)210 u64 native_sched_clock(void)
211 {
212 if (static_branch_likely(&__use_tsc)) {
213 u64 tsc_now = rdtsc();
214
215 /* return the value in ns */
216 return cycles_2_ns(tsc_now);
217 }
218
219 /*
220 * Fall back to jiffies if there's no TSC available:
221 * ( But note that we still use it if the TSC is marked
222 * unstable. We do this because unlike Time Of Day,
223 * the scheduler clock tolerates small errors and it's
224 * very important for it to be as fast as the platform
225 * can achieve it. )
226 */
227
228 /* No locking but a rare wrong value is not a big deal: */
229 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
230 }
231
232 /*
233 * Generate a sched_clock if you already have a TSC value.
234 */
native_sched_clock_from_tsc(u64 tsc)235 u64 native_sched_clock_from_tsc(u64 tsc)
236 {
237 return cycles_2_ns(tsc);
238 }
239
240 /* We need to define a real function for sched_clock, to override the
241 weak default version */
242 #ifdef CONFIG_PARAVIRT
sched_clock(void)243 unsigned long long sched_clock(void)
244 {
245 return paravirt_sched_clock();
246 }
247
using_native_sched_clock(void)248 bool using_native_sched_clock(void)
249 {
250 return pv_ops.time.sched_clock == native_sched_clock;
251 }
252 #else
253 unsigned long long
254 sched_clock(void) __attribute__((alias("native_sched_clock")));
255
using_native_sched_clock(void)256 bool using_native_sched_clock(void) { return true; }
257 #endif
258
check_tsc_unstable(void)259 int check_tsc_unstable(void)
260 {
261 return tsc_unstable;
262 }
263 EXPORT_SYMBOL_GPL(check_tsc_unstable);
264
265 #ifdef CONFIG_X86_TSC
notsc_setup(char * str)266 int __init notsc_setup(char *str)
267 {
268 mark_tsc_unstable("boot parameter notsc");
269 return 1;
270 }
271 #else
272 /*
273 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
274 * in cpu/common.c
275 */
notsc_setup(char * str)276 int __init notsc_setup(char *str)
277 {
278 setup_clear_cpu_cap(X86_FEATURE_TSC);
279 return 1;
280 }
281 #endif
282
283 __setup("notsc", notsc_setup);
284
285 static int no_sched_irq_time;
286 static int no_tsc_watchdog;
287
tsc_setup(char * str)288 static int __init tsc_setup(char *str)
289 {
290 if (!strcmp(str, "reliable"))
291 tsc_clocksource_reliable = 1;
292 if (!strncmp(str, "noirqtime", 9))
293 no_sched_irq_time = 1;
294 if (!strcmp(str, "unstable"))
295 mark_tsc_unstable("boot parameter");
296 if (!strcmp(str, "nowatchdog"))
297 no_tsc_watchdog = 1;
298 return 1;
299 }
300
301 __setup("tsc=", tsc_setup);
302
303 #define MAX_RETRIES 5
304 #define TSC_DEFAULT_THRESHOLD 0x20000
305
306 /*
307 * Read TSC and the reference counters. Take care of any disturbances
308 */
tsc_read_refs(u64 * p,int hpet)309 static u64 tsc_read_refs(u64 *p, int hpet)
310 {
311 u64 t1, t2;
312 u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD;
313 int i;
314
315 for (i = 0; i < MAX_RETRIES; i++) {
316 t1 = get_cycles();
317 if (hpet)
318 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
319 else
320 *p = acpi_pm_read_early();
321 t2 = get_cycles();
322 if ((t2 - t1) < thresh)
323 return t2;
324 }
325 return ULLONG_MAX;
326 }
327
328 /*
329 * Calculate the TSC frequency from HPET reference
330 */
calc_hpet_ref(u64 deltatsc,u64 hpet1,u64 hpet2)331 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
332 {
333 u64 tmp;
334
335 if (hpet2 < hpet1)
336 hpet2 += 0x100000000ULL;
337 hpet2 -= hpet1;
338 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
339 do_div(tmp, 1000000);
340 deltatsc = div64_u64(deltatsc, tmp);
341
342 return (unsigned long) deltatsc;
343 }
344
345 /*
346 * Calculate the TSC frequency from PMTimer reference
347 */
calc_pmtimer_ref(u64 deltatsc,u64 pm1,u64 pm2)348 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
349 {
350 u64 tmp;
351
352 if (!pm1 && !pm2)
353 return ULONG_MAX;
354
355 if (pm2 < pm1)
356 pm2 += (u64)ACPI_PM_OVRRUN;
357 pm2 -= pm1;
358 tmp = pm2 * 1000000000LL;
359 do_div(tmp, PMTMR_TICKS_PER_SEC);
360 do_div(deltatsc, tmp);
361
362 return (unsigned long) deltatsc;
363 }
364
365 #define CAL_MS 10
366 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
367 #define CAL_PIT_LOOPS 1000
368
369 #define CAL2_MS 50
370 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
371 #define CAL2_PIT_LOOPS 5000
372
373
374 /*
375 * Try to calibrate the TSC against the Programmable
376 * Interrupt Timer and return the frequency of the TSC
377 * in kHz.
378 *
379 * Return ULONG_MAX on failure to calibrate.
380 */
pit_calibrate_tsc(u32 latch,unsigned long ms,int loopmin)381 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
382 {
383 u64 tsc, t1, t2, delta;
384 unsigned long tscmin, tscmax;
385 int pitcnt;
386
387 if (!has_legacy_pic()) {
388 /*
389 * Relies on tsc_early_delay_calibrate() to have given us semi
390 * usable udelay(), wait for the same 50ms we would have with
391 * the PIT loop below.
392 */
393 udelay(10 * USEC_PER_MSEC);
394 udelay(10 * USEC_PER_MSEC);
395 udelay(10 * USEC_PER_MSEC);
396 udelay(10 * USEC_PER_MSEC);
397 udelay(10 * USEC_PER_MSEC);
398 return ULONG_MAX;
399 }
400
401 /* Set the Gate high, disable speaker */
402 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
403
404 /*
405 * Setup CTC channel 2* for mode 0, (interrupt on terminal
406 * count mode), binary count. Set the latch register to 50ms
407 * (LSB then MSB) to begin countdown.
408 */
409 outb(0xb0, 0x43);
410 outb(latch & 0xff, 0x42);
411 outb(latch >> 8, 0x42);
412
413 tsc = t1 = t2 = get_cycles();
414
415 pitcnt = 0;
416 tscmax = 0;
417 tscmin = ULONG_MAX;
418 while ((inb(0x61) & 0x20) == 0) {
419 t2 = get_cycles();
420 delta = t2 - tsc;
421 tsc = t2;
422 if ((unsigned long) delta < tscmin)
423 tscmin = (unsigned int) delta;
424 if ((unsigned long) delta > tscmax)
425 tscmax = (unsigned int) delta;
426 pitcnt++;
427 }
428
429 /*
430 * Sanity checks:
431 *
432 * If we were not able to read the PIT more than loopmin
433 * times, then we have been hit by a massive SMI
434 *
435 * If the maximum is 10 times larger than the minimum,
436 * then we got hit by an SMI as well.
437 */
438 if (pitcnt < loopmin || tscmax > 10 * tscmin)
439 return ULONG_MAX;
440
441 /* Calculate the PIT value */
442 delta = t2 - t1;
443 do_div(delta, ms);
444 return delta;
445 }
446
447 /*
448 * This reads the current MSB of the PIT counter, and
449 * checks if we are running on sufficiently fast and
450 * non-virtualized hardware.
451 *
452 * Our expectations are:
453 *
454 * - the PIT is running at roughly 1.19MHz
455 *
456 * - each IO is going to take about 1us on real hardware,
457 * but we allow it to be much faster (by a factor of 10) or
458 * _slightly_ slower (ie we allow up to a 2us read+counter
459 * update - anything else implies a unacceptably slow CPU
460 * or PIT for the fast calibration to work.
461 *
462 * - with 256 PIT ticks to read the value, we have 214us to
463 * see the same MSB (and overhead like doing a single TSC
464 * read per MSB value etc).
465 *
466 * - We're doing 2 reads per loop (LSB, MSB), and we expect
467 * them each to take about a microsecond on real hardware.
468 * So we expect a count value of around 100. But we'll be
469 * generous, and accept anything over 50.
470 *
471 * - if the PIT is stuck, and we see *many* more reads, we
472 * return early (and the next caller of pit_expect_msb()
473 * then consider it a failure when they don't see the
474 * next expected value).
475 *
476 * These expectations mean that we know that we have seen the
477 * transition from one expected value to another with a fairly
478 * high accuracy, and we didn't miss any events. We can thus
479 * use the TSC value at the transitions to calculate a pretty
480 * good value for the TSC frequencty.
481 */
pit_verify_msb(unsigned char val)482 static inline int pit_verify_msb(unsigned char val)
483 {
484 /* Ignore LSB */
485 inb(0x42);
486 return inb(0x42) == val;
487 }
488
pit_expect_msb(unsigned char val,u64 * tscp,unsigned long * deltap)489 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
490 {
491 int count;
492 u64 tsc = 0, prev_tsc = 0;
493
494 for (count = 0; count < 50000; count++) {
495 if (!pit_verify_msb(val))
496 break;
497 prev_tsc = tsc;
498 tsc = get_cycles();
499 }
500 *deltap = get_cycles() - prev_tsc;
501 *tscp = tsc;
502
503 /*
504 * We require _some_ success, but the quality control
505 * will be based on the error terms on the TSC values.
506 */
507 return count > 5;
508 }
509
510 /*
511 * How many MSB values do we want to see? We aim for
512 * a maximum error rate of 500ppm (in practice the
513 * real error is much smaller), but refuse to spend
514 * more than 50ms on it.
515 */
516 #define MAX_QUICK_PIT_MS 50
517 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
518
quick_pit_calibrate(void)519 static unsigned long quick_pit_calibrate(void)
520 {
521 int i;
522 u64 tsc, delta;
523 unsigned long d1, d2;
524
525 if (!has_legacy_pic())
526 return 0;
527
528 /* Set the Gate high, disable speaker */
529 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
530
531 /*
532 * Counter 2, mode 0 (one-shot), binary count
533 *
534 * NOTE! Mode 2 decrements by two (and then the
535 * output is flipped each time, giving the same
536 * final output frequency as a decrement-by-one),
537 * so mode 0 is much better when looking at the
538 * individual counts.
539 */
540 outb(0xb0, 0x43);
541
542 /* Start at 0xffff */
543 outb(0xff, 0x42);
544 outb(0xff, 0x42);
545
546 /*
547 * The PIT starts counting at the next edge, so we
548 * need to delay for a microsecond. The easiest way
549 * to do that is to just read back the 16-bit counter
550 * once from the PIT.
551 */
552 pit_verify_msb(0);
553
554 if (pit_expect_msb(0xff, &tsc, &d1)) {
555 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
556 if (!pit_expect_msb(0xff-i, &delta, &d2))
557 break;
558
559 delta -= tsc;
560
561 /*
562 * Extrapolate the error and fail fast if the error will
563 * never be below 500 ppm.
564 */
565 if (i == 1 &&
566 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
567 return 0;
568
569 /*
570 * Iterate until the error is less than 500 ppm
571 */
572 if (d1+d2 >= delta >> 11)
573 continue;
574
575 /*
576 * Check the PIT one more time to verify that
577 * all TSC reads were stable wrt the PIT.
578 *
579 * This also guarantees serialization of the
580 * last cycle read ('d2') in pit_expect_msb.
581 */
582 if (!pit_verify_msb(0xfe - i))
583 break;
584 goto success;
585 }
586 }
587 pr_info("Fast TSC calibration failed\n");
588 return 0;
589
590 success:
591 /*
592 * Ok, if we get here, then we've seen the
593 * MSB of the PIT decrement 'i' times, and the
594 * error has shrunk to less than 500 ppm.
595 *
596 * As a result, we can depend on there not being
597 * any odd delays anywhere, and the TSC reads are
598 * reliable (within the error).
599 *
600 * kHz = ticks / time-in-seconds / 1000;
601 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
602 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
603 */
604 delta *= PIT_TICK_RATE;
605 do_div(delta, i*256*1000);
606 pr_info("Fast TSC calibration using PIT\n");
607 return delta;
608 }
609
610 /**
611 * native_calibrate_tsc
612 * Determine TSC frequency via CPUID, else return 0.
613 */
native_calibrate_tsc(void)614 unsigned long native_calibrate_tsc(void)
615 {
616 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
617 unsigned int crystal_khz;
618
619 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
620 return 0;
621
622 if (boot_cpu_data.cpuid_level < 0x15)
623 return 0;
624
625 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
626
627 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
628 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
629
630 if (ebx_numerator == 0 || eax_denominator == 0)
631 return 0;
632
633 crystal_khz = ecx_hz / 1000;
634
635 /*
636 * Denverton SoCs don't report crystal clock, and also don't support
637 * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal
638 * clock.
639 */
640 if (crystal_khz == 0 &&
641 boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D)
642 crystal_khz = 25000;
643
644 /*
645 * TSC frequency reported directly by CPUID is a "hardware reported"
646 * frequency and is the most accurate one so far we have. This
647 * is considered a known frequency.
648 */
649 if (crystal_khz != 0)
650 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
651
652 /*
653 * Some Intel SoCs like Skylake and Kabylake don't report the crystal
654 * clock, but we can easily calculate it to a high degree of accuracy
655 * by considering the crystal ratio and the CPU speed.
656 */
657 if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) {
658 unsigned int eax_base_mhz, ebx, ecx, edx;
659
660 cpuid(0x16, &eax_base_mhz, &ebx, &ecx, &edx);
661 crystal_khz = eax_base_mhz * 1000 *
662 eax_denominator / ebx_numerator;
663 }
664
665 if (crystal_khz == 0)
666 return 0;
667
668 /*
669 * For Atom SoCs TSC is the only reliable clocksource.
670 * Mark TSC reliable so no watchdog on it.
671 */
672 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
673 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
674
675 #ifdef CONFIG_X86_LOCAL_APIC
676 /*
677 * The local APIC appears to be fed by the core crystal clock
678 * (which sounds entirely sensible). We can set the global
679 * lapic_timer_period here to avoid having to calibrate the APIC
680 * timer later.
681 */
682 lapic_timer_period = crystal_khz * 1000 / HZ;
683 #endif
684
685 return crystal_khz * ebx_numerator / eax_denominator;
686 }
687
cpu_khz_from_cpuid(void)688 static unsigned long cpu_khz_from_cpuid(void)
689 {
690 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
691
692 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
693 return 0;
694
695 if (boot_cpu_data.cpuid_level < 0x16)
696 return 0;
697
698 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
699
700 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
701
702 return eax_base_mhz * 1000;
703 }
704
705 /*
706 * calibrate cpu using pit, hpet, and ptimer methods. They are available
707 * later in boot after acpi is initialized.
708 */
pit_hpet_ptimer_calibrate_cpu(void)709 static unsigned long pit_hpet_ptimer_calibrate_cpu(void)
710 {
711 u64 tsc1, tsc2, delta, ref1, ref2;
712 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
713 unsigned long flags, latch, ms;
714 int hpet = is_hpet_enabled(), i, loopmin;
715
716 /*
717 * Run 5 calibration loops to get the lowest frequency value
718 * (the best estimate). We use two different calibration modes
719 * here:
720 *
721 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
722 * load a timeout of 50ms. We read the time right after we
723 * started the timer and wait until the PIT count down reaches
724 * zero. In each wait loop iteration we read the TSC and check
725 * the delta to the previous read. We keep track of the min
726 * and max values of that delta. The delta is mostly defined
727 * by the IO time of the PIT access, so we can detect when
728 * any disturbance happened between the two reads. If the
729 * maximum time is significantly larger than the minimum time,
730 * then we discard the result and have another try.
731 *
732 * 2) Reference counter. If available we use the HPET or the
733 * PMTIMER as a reference to check the sanity of that value.
734 * We use separate TSC readouts and check inside of the
735 * reference read for any possible disturbance. We dicard
736 * disturbed values here as well. We do that around the PIT
737 * calibration delay loop as we have to wait for a certain
738 * amount of time anyway.
739 */
740
741 /* Preset PIT loop values */
742 latch = CAL_LATCH;
743 ms = CAL_MS;
744 loopmin = CAL_PIT_LOOPS;
745
746 for (i = 0; i < 3; i++) {
747 unsigned long tsc_pit_khz;
748
749 /*
750 * Read the start value and the reference count of
751 * hpet/pmtimer when available. Then do the PIT
752 * calibration, which will take at least 50ms, and
753 * read the end value.
754 */
755 local_irq_save(flags);
756 tsc1 = tsc_read_refs(&ref1, hpet);
757 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
758 tsc2 = tsc_read_refs(&ref2, hpet);
759 local_irq_restore(flags);
760
761 /* Pick the lowest PIT TSC calibration so far */
762 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
763
764 /* hpet or pmtimer available ? */
765 if (ref1 == ref2)
766 continue;
767
768 /* Check, whether the sampling was disturbed */
769 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
770 continue;
771
772 tsc2 = (tsc2 - tsc1) * 1000000LL;
773 if (hpet)
774 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
775 else
776 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
777
778 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
779
780 /* Check the reference deviation */
781 delta = ((u64) tsc_pit_min) * 100;
782 do_div(delta, tsc_ref_min);
783
784 /*
785 * If both calibration results are inside a 10% window
786 * then we can be sure, that the calibration
787 * succeeded. We break out of the loop right away. We
788 * use the reference value, as it is more precise.
789 */
790 if (delta >= 90 && delta <= 110) {
791 pr_info("PIT calibration matches %s. %d loops\n",
792 hpet ? "HPET" : "PMTIMER", i + 1);
793 return tsc_ref_min;
794 }
795
796 /*
797 * Check whether PIT failed more than once. This
798 * happens in virtualized environments. We need to
799 * give the virtual PC a slightly longer timeframe for
800 * the HPET/PMTIMER to make the result precise.
801 */
802 if (i == 1 && tsc_pit_min == ULONG_MAX) {
803 latch = CAL2_LATCH;
804 ms = CAL2_MS;
805 loopmin = CAL2_PIT_LOOPS;
806 }
807 }
808
809 /*
810 * Now check the results.
811 */
812 if (tsc_pit_min == ULONG_MAX) {
813 /* PIT gave no useful value */
814 pr_warn("Unable to calibrate against PIT\n");
815
816 /* We don't have an alternative source, disable TSC */
817 if (!hpet && !ref1 && !ref2) {
818 pr_notice("No reference (HPET/PMTIMER) available\n");
819 return 0;
820 }
821
822 /* The alternative source failed as well, disable TSC */
823 if (tsc_ref_min == ULONG_MAX) {
824 pr_warn("HPET/PMTIMER calibration failed\n");
825 return 0;
826 }
827
828 /* Use the alternative source */
829 pr_info("using %s reference calibration\n",
830 hpet ? "HPET" : "PMTIMER");
831
832 return tsc_ref_min;
833 }
834
835 /* We don't have an alternative source, use the PIT calibration value */
836 if (!hpet && !ref1 && !ref2) {
837 pr_info("Using PIT calibration value\n");
838 return tsc_pit_min;
839 }
840
841 /* The alternative source failed, use the PIT calibration value */
842 if (tsc_ref_min == ULONG_MAX) {
843 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
844 return tsc_pit_min;
845 }
846
847 /*
848 * The calibration values differ too much. In doubt, we use
849 * the PIT value as we know that there are PMTIMERs around
850 * running at double speed. At least we let the user know:
851 */
852 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
853 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
854 pr_info("Using PIT calibration value\n");
855 return tsc_pit_min;
856 }
857
858 /**
859 * native_calibrate_cpu_early - can calibrate the cpu early in boot
860 */
native_calibrate_cpu_early(void)861 unsigned long native_calibrate_cpu_early(void)
862 {
863 unsigned long flags, fast_calibrate = cpu_khz_from_cpuid();
864
865 if (!fast_calibrate)
866 fast_calibrate = cpu_khz_from_msr();
867 if (!fast_calibrate) {
868 local_irq_save(flags);
869 fast_calibrate = quick_pit_calibrate();
870 local_irq_restore(flags);
871 }
872 return fast_calibrate;
873 }
874
875
876 /**
877 * native_calibrate_cpu - calibrate the cpu
878 */
native_calibrate_cpu(void)879 static unsigned long native_calibrate_cpu(void)
880 {
881 unsigned long tsc_freq = native_calibrate_cpu_early();
882
883 if (!tsc_freq)
884 tsc_freq = pit_hpet_ptimer_calibrate_cpu();
885
886 return tsc_freq;
887 }
888
recalibrate_cpu_khz(void)889 void recalibrate_cpu_khz(void)
890 {
891 #ifndef CONFIG_SMP
892 unsigned long cpu_khz_old = cpu_khz;
893
894 if (!boot_cpu_has(X86_FEATURE_TSC))
895 return;
896
897 cpu_khz = x86_platform.calibrate_cpu();
898 tsc_khz = x86_platform.calibrate_tsc();
899 if (tsc_khz == 0)
900 tsc_khz = cpu_khz;
901 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
902 cpu_khz = tsc_khz;
903 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
904 cpu_khz_old, cpu_khz);
905 #endif
906 }
907
908 EXPORT_SYMBOL(recalibrate_cpu_khz);
909
910
911 static unsigned long long cyc2ns_suspend;
912
tsc_save_sched_clock_state(void)913 void tsc_save_sched_clock_state(void)
914 {
915 if (!sched_clock_stable())
916 return;
917
918 cyc2ns_suspend = sched_clock();
919 }
920
921 /*
922 * Even on processors with invariant TSC, TSC gets reset in some the
923 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
924 * arbitrary value (still sync'd across cpu's) during resume from such sleep
925 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
926 * that sched_clock() continues from the point where it was left off during
927 * suspend.
928 */
tsc_restore_sched_clock_state(void)929 void tsc_restore_sched_clock_state(void)
930 {
931 unsigned long long offset;
932 unsigned long flags;
933 int cpu;
934
935 if (!sched_clock_stable())
936 return;
937
938 local_irq_save(flags);
939
940 /*
941 * We're coming out of suspend, there's no concurrency yet; don't
942 * bother being nice about the RCU stuff, just write to both
943 * data fields.
944 */
945
946 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
947 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
948
949 offset = cyc2ns_suspend - sched_clock();
950
951 for_each_possible_cpu(cpu) {
952 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
953 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
954 }
955
956 local_irq_restore(flags);
957 }
958
959 #ifdef CONFIG_CPU_FREQ
960 /*
961 * Frequency scaling support. Adjust the TSC based timer when the CPU frequency
962 * changes.
963 *
964 * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC
965 * as unstable and give up in those cases.
966 *
967 * Should fix up last_tsc too. Currently gettimeofday in the
968 * first tick after the change will be slightly wrong.
969 */
970
971 static unsigned int ref_freq;
972 static unsigned long loops_per_jiffy_ref;
973 static unsigned long tsc_khz_ref;
974
time_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)975 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
976 void *data)
977 {
978 struct cpufreq_freqs *freq = data;
979
980 if (num_online_cpus() > 1) {
981 mark_tsc_unstable("cpufreq changes on SMP");
982 return 0;
983 }
984
985 if (!ref_freq) {
986 ref_freq = freq->old;
987 loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy;
988 tsc_khz_ref = tsc_khz;
989 }
990
991 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
992 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
993 boot_cpu_data.loops_per_jiffy =
994 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
995
996 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
997 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
998 mark_tsc_unstable("cpufreq changes");
999
1000 set_cyc2ns_scale(tsc_khz, freq->policy->cpu, rdtsc());
1001 }
1002
1003 return 0;
1004 }
1005
1006 static struct notifier_block time_cpufreq_notifier_block = {
1007 .notifier_call = time_cpufreq_notifier
1008 };
1009
cpufreq_register_tsc_scaling(void)1010 static int __init cpufreq_register_tsc_scaling(void)
1011 {
1012 if (!boot_cpu_has(X86_FEATURE_TSC))
1013 return 0;
1014 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1015 return 0;
1016 cpufreq_register_notifier(&time_cpufreq_notifier_block,
1017 CPUFREQ_TRANSITION_NOTIFIER);
1018 return 0;
1019 }
1020
1021 core_initcall(cpufreq_register_tsc_scaling);
1022
1023 #endif /* CONFIG_CPU_FREQ */
1024
1025 #define ART_CPUID_LEAF (0x15)
1026 #define ART_MIN_DENOMINATOR (1)
1027
1028
1029 /*
1030 * If ART is present detect the numerator:denominator to convert to TSC
1031 */
detect_art(void)1032 static void __init detect_art(void)
1033 {
1034 unsigned int unused[2];
1035
1036 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1037 return;
1038
1039 /*
1040 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
1041 * and the TSC counter resets must not occur asynchronously.
1042 */
1043 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1044 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1045 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
1046 tsc_async_resets)
1047 return;
1048
1049 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1050 &art_to_tsc_numerator, unused, unused+1);
1051
1052 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
1053 return;
1054
1055 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1056
1057 /* Make this sticky over multiple CPU init calls */
1058 setup_force_cpu_cap(X86_FEATURE_ART);
1059 }
1060
1061
1062 /* clocksource code */
1063
tsc_resume(struct clocksource * cs)1064 static void tsc_resume(struct clocksource *cs)
1065 {
1066 tsc_verify_tsc_adjust(true);
1067 }
1068
1069 /*
1070 * We used to compare the TSC to the cycle_last value in the clocksource
1071 * structure to avoid a nasty time-warp. This can be observed in a
1072 * very small window right after one CPU updated cycle_last under
1073 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1074 * is smaller than the cycle_last reference value due to a TSC which
1075 * is slighty behind. This delta is nowhere else observable, but in
1076 * that case it results in a forward time jump in the range of hours
1077 * due to the unsigned delta calculation of the time keeping core
1078 * code, which is necessary to support wrapping clocksources like pm
1079 * timer.
1080 *
1081 * This sanity check is now done in the core timekeeping code.
1082 * checking the result of read_tsc() - cycle_last for being negative.
1083 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1084 */
read_tsc(struct clocksource * cs)1085 static u64 read_tsc(struct clocksource *cs)
1086 {
1087 return (u64)rdtsc_ordered();
1088 }
1089
tsc_cs_mark_unstable(struct clocksource * cs)1090 static void tsc_cs_mark_unstable(struct clocksource *cs)
1091 {
1092 if (tsc_unstable)
1093 return;
1094
1095 tsc_unstable = 1;
1096 if (using_native_sched_clock())
1097 clear_sched_clock_stable();
1098 disable_sched_clock_irqtime();
1099 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1100 }
1101
tsc_cs_tick_stable(struct clocksource * cs)1102 static void tsc_cs_tick_stable(struct clocksource *cs)
1103 {
1104 if (tsc_unstable)
1105 return;
1106
1107 if (using_native_sched_clock())
1108 sched_clock_tick_stable();
1109 }
1110
1111 /*
1112 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1113 */
1114 static struct clocksource clocksource_tsc_early = {
1115 .name = "tsc-early",
1116 .rating = 299,
1117 .read = read_tsc,
1118 .mask = CLOCKSOURCE_MASK(64),
1119 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1120 CLOCK_SOURCE_MUST_VERIFY,
1121 .archdata = { .vclock_mode = VCLOCK_TSC },
1122 .resume = tsc_resume,
1123 .mark_unstable = tsc_cs_mark_unstable,
1124 .tick_stable = tsc_cs_tick_stable,
1125 .list = LIST_HEAD_INIT(clocksource_tsc_early.list),
1126 };
1127
1128 /*
1129 * Must mark VALID_FOR_HRES early such that when we unregister tsc_early
1130 * this one will immediately take over. We will only register if TSC has
1131 * been found good.
1132 */
1133 static struct clocksource clocksource_tsc = {
1134 .name = "tsc",
1135 .rating = 300,
1136 .read = read_tsc,
1137 .mask = CLOCKSOURCE_MASK(64),
1138 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1139 CLOCK_SOURCE_VALID_FOR_HRES |
1140 CLOCK_SOURCE_MUST_VERIFY,
1141 .archdata = { .vclock_mode = VCLOCK_TSC },
1142 .resume = tsc_resume,
1143 .mark_unstable = tsc_cs_mark_unstable,
1144 .tick_stable = tsc_cs_tick_stable,
1145 .list = LIST_HEAD_INIT(clocksource_tsc.list),
1146 };
1147
mark_tsc_unstable(char * reason)1148 void mark_tsc_unstable(char *reason)
1149 {
1150 if (tsc_unstable)
1151 return;
1152
1153 tsc_unstable = 1;
1154 if (using_native_sched_clock())
1155 clear_sched_clock_stable();
1156 disable_sched_clock_irqtime();
1157 pr_info("Marking TSC unstable due to %s\n", reason);
1158
1159 clocksource_mark_unstable(&clocksource_tsc_early);
1160 clocksource_mark_unstable(&clocksource_tsc);
1161 }
1162
1163 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1164
tsc_disable_clocksource_watchdog(void)1165 static void __init tsc_disable_clocksource_watchdog(void)
1166 {
1167 clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1168 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1169 }
1170
check_system_tsc_reliable(void)1171 static void __init check_system_tsc_reliable(void)
1172 {
1173 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1174 if (is_geode_lx()) {
1175 /* RTSC counts during suspend */
1176 #define RTSC_SUSP 0x100
1177 unsigned long res_low, res_high;
1178
1179 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1180 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1181 if (res_low & RTSC_SUSP)
1182 tsc_clocksource_reliable = 1;
1183 }
1184 #endif
1185 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1186 tsc_clocksource_reliable = 1;
1187
1188 /*
1189 * Disable the clocksource watchdog when the system has:
1190 * - TSC running at constant frequency
1191 * - TSC which does not stop in C-States
1192 * - the TSC_ADJUST register which allows to detect even minimal
1193 * modifications
1194 * - not more than two sockets. As the number of sockets cannot be
1195 * evaluated at the early boot stage where this has to be
1196 * invoked, check the number of online memory nodes as a
1197 * fallback solution which is an reasonable estimate.
1198 */
1199 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
1200 boot_cpu_has(X86_FEATURE_NONSTOP_TSC) &&
1201 boot_cpu_has(X86_FEATURE_TSC_ADJUST) &&
1202 nr_online_nodes <= 2)
1203 tsc_disable_clocksource_watchdog();
1204 }
1205
1206 /*
1207 * Make an educated guess if the TSC is trustworthy and synchronized
1208 * over all CPUs.
1209 */
unsynchronized_tsc(void)1210 int unsynchronized_tsc(void)
1211 {
1212 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1213 return 1;
1214
1215 #ifdef CONFIG_SMP
1216 if (apic_is_clustered_box())
1217 return 1;
1218 #endif
1219
1220 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1221 return 0;
1222
1223 if (tsc_clocksource_reliable)
1224 return 0;
1225 /*
1226 * Intel systems are normally all synchronized.
1227 * Exceptions must mark TSC as unstable:
1228 */
1229 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1230 /* assume multi socket systems are not synchronized: */
1231 if (num_possible_cpus() > 1)
1232 return 1;
1233 }
1234
1235 return 0;
1236 }
1237
1238 /*
1239 * Convert ART to TSC given numerator/denominator found in detect_art()
1240 */
convert_art_to_tsc(u64 art)1241 struct system_counterval_t convert_art_to_tsc(u64 art)
1242 {
1243 u64 tmp, res, rem;
1244
1245 rem = do_div(art, art_to_tsc_denominator);
1246
1247 res = art * art_to_tsc_numerator;
1248 tmp = rem * art_to_tsc_numerator;
1249
1250 do_div(tmp, art_to_tsc_denominator);
1251 res += tmp + art_to_tsc_offset;
1252
1253 return (struct system_counterval_t) {.cs = art_related_clocksource,
1254 .cycles = res};
1255 }
1256 EXPORT_SYMBOL(convert_art_to_tsc);
1257
1258 /**
1259 * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC.
1260 * @art_ns: ART (Always Running Timer) in unit of nanoseconds
1261 *
1262 * PTM requires all timestamps to be in units of nanoseconds. When user
1263 * software requests a cross-timestamp, this function converts system timestamp
1264 * to TSC.
1265 *
1266 * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set
1267 * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check
1268 * that this flag is set before conversion to TSC is attempted.
1269 *
1270 * Return:
1271 * struct system_counterval_t - system counter value with the pointer to the
1272 * corresponding clocksource
1273 * @cycles: System counter value
1274 * @cs: Clocksource corresponding to system counter value. Used
1275 * by timekeeping code to verify comparibility of two cycle
1276 * values.
1277 */
1278
convert_art_ns_to_tsc(u64 art_ns)1279 struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns)
1280 {
1281 u64 tmp, res, rem;
1282
1283 rem = do_div(art_ns, USEC_PER_SEC);
1284
1285 res = art_ns * tsc_khz;
1286 tmp = rem * tsc_khz;
1287
1288 do_div(tmp, USEC_PER_SEC);
1289 res += tmp;
1290
1291 return (struct system_counterval_t) { .cs = art_related_clocksource,
1292 .cycles = res};
1293 }
1294 EXPORT_SYMBOL(convert_art_ns_to_tsc);
1295
1296
1297 static void tsc_refine_calibration_work(struct work_struct *work);
1298 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1299 /**
1300 * tsc_refine_calibration_work - Further refine tsc freq calibration
1301 * @work - ignored.
1302 *
1303 * This functions uses delayed work over a period of a
1304 * second to further refine the TSC freq value. Since this is
1305 * timer based, instead of loop based, we don't block the boot
1306 * process while this longer calibration is done.
1307 *
1308 * If there are any calibration anomalies (too many SMIs, etc),
1309 * or the refined calibration is off by 1% of the fast early
1310 * calibration, we throw out the new calibration and use the
1311 * early calibration.
1312 */
tsc_refine_calibration_work(struct work_struct * work)1313 static void tsc_refine_calibration_work(struct work_struct *work)
1314 {
1315 static u64 tsc_start = ULLONG_MAX, ref_start;
1316 static int hpet;
1317 u64 tsc_stop, ref_stop, delta;
1318 unsigned long freq;
1319 int cpu;
1320
1321 /* Don't bother refining TSC on unstable systems */
1322 if (tsc_unstable)
1323 goto unreg;
1324
1325 /*
1326 * Since the work is started early in boot, we may be
1327 * delayed the first time we expire. So set the workqueue
1328 * again once we know timers are working.
1329 */
1330 if (tsc_start == ULLONG_MAX) {
1331 restart:
1332 /*
1333 * Only set hpet once, to avoid mixing hardware
1334 * if the hpet becomes enabled later.
1335 */
1336 hpet = is_hpet_enabled();
1337 tsc_start = tsc_read_refs(&ref_start, hpet);
1338 schedule_delayed_work(&tsc_irqwork, HZ);
1339 return;
1340 }
1341
1342 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1343
1344 /* hpet or pmtimer available ? */
1345 if (ref_start == ref_stop)
1346 goto out;
1347
1348 /* Check, whether the sampling was disturbed */
1349 if (tsc_stop == ULLONG_MAX)
1350 goto restart;
1351
1352 delta = tsc_stop - tsc_start;
1353 delta *= 1000000LL;
1354 if (hpet)
1355 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1356 else
1357 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1358
1359 /* Make sure we're within 1% */
1360 if (abs(tsc_khz - freq) > tsc_khz/100)
1361 goto out;
1362
1363 tsc_khz = freq;
1364 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1365 (unsigned long)tsc_khz / 1000,
1366 (unsigned long)tsc_khz % 1000);
1367
1368 /* Inform the TSC deadline clockevent devices about the recalibration */
1369 lapic_update_tsc_freq();
1370
1371 /* Update the sched_clock() rate to match the clocksource one */
1372 for_each_possible_cpu(cpu)
1373 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
1374
1375 out:
1376 if (tsc_unstable)
1377 goto unreg;
1378
1379 if (boot_cpu_has(X86_FEATURE_ART))
1380 art_related_clocksource = &clocksource_tsc;
1381 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1382 unreg:
1383 clocksource_unregister(&clocksource_tsc_early);
1384 }
1385
1386
init_tsc_clocksource(void)1387 static int __init init_tsc_clocksource(void)
1388 {
1389 if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz)
1390 return 0;
1391
1392 if (tsc_unstable)
1393 goto unreg;
1394
1395 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1396 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1397
1398 /*
1399 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1400 * the refined calibration and directly register it as a clocksource.
1401 */
1402 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1403 if (boot_cpu_has(X86_FEATURE_ART))
1404 art_related_clocksource = &clocksource_tsc;
1405 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1406 unreg:
1407 clocksource_unregister(&clocksource_tsc_early);
1408 return 0;
1409 }
1410
1411 schedule_delayed_work(&tsc_irqwork, 0);
1412 return 0;
1413 }
1414 /*
1415 * We use device_initcall here, to ensure we run after the hpet
1416 * is fully initialized, which may occur at fs_initcall time.
1417 */
1418 device_initcall(init_tsc_clocksource);
1419
determine_cpu_tsc_frequencies(bool early)1420 static bool __init determine_cpu_tsc_frequencies(bool early)
1421 {
1422 /* Make sure that cpu and tsc are not already calibrated */
1423 WARN_ON(cpu_khz || tsc_khz);
1424
1425 if (early) {
1426 cpu_khz = x86_platform.calibrate_cpu();
1427 tsc_khz = x86_platform.calibrate_tsc();
1428 } else {
1429 /* We should not be here with non-native cpu calibration */
1430 WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu);
1431 cpu_khz = pit_hpet_ptimer_calibrate_cpu();
1432 }
1433
1434 /*
1435 * Trust non-zero tsc_khz as authoritative,
1436 * and use it to sanity check cpu_khz,
1437 * which will be off if system timer is off.
1438 */
1439 if (tsc_khz == 0)
1440 tsc_khz = cpu_khz;
1441 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1442 cpu_khz = tsc_khz;
1443
1444 if (tsc_khz == 0)
1445 return false;
1446
1447 pr_info("Detected %lu.%03lu MHz processor\n",
1448 (unsigned long)cpu_khz / KHZ,
1449 (unsigned long)cpu_khz % KHZ);
1450
1451 if (cpu_khz != tsc_khz) {
1452 pr_info("Detected %lu.%03lu MHz TSC",
1453 (unsigned long)tsc_khz / KHZ,
1454 (unsigned long)tsc_khz % KHZ);
1455 }
1456 return true;
1457 }
1458
get_loops_per_jiffy(void)1459 static unsigned long __init get_loops_per_jiffy(void)
1460 {
1461 u64 lpj = (u64)tsc_khz * KHZ;
1462
1463 do_div(lpj, HZ);
1464 return lpj;
1465 }
1466
tsc_enable_sched_clock(void)1467 static void __init tsc_enable_sched_clock(void)
1468 {
1469 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1470 tsc_store_and_check_tsc_adjust(true);
1471 cyc2ns_init_boot_cpu();
1472 static_branch_enable(&__use_tsc);
1473 }
1474
tsc_early_init(void)1475 void __init tsc_early_init(void)
1476 {
1477 if (!boot_cpu_has(X86_FEATURE_TSC))
1478 return;
1479 /* Don't change UV TSC multi-chassis synchronization */
1480 if (is_early_uv_system())
1481 return;
1482 if (!determine_cpu_tsc_frequencies(true))
1483 return;
1484 loops_per_jiffy = get_loops_per_jiffy();
1485
1486 tsc_enable_sched_clock();
1487 }
1488
tsc_init(void)1489 void __init tsc_init(void)
1490 {
1491 /*
1492 * native_calibrate_cpu_early can only calibrate using methods that are
1493 * available early in boot.
1494 */
1495 if (x86_platform.calibrate_cpu == native_calibrate_cpu_early)
1496 x86_platform.calibrate_cpu = native_calibrate_cpu;
1497
1498 if (!boot_cpu_has(X86_FEATURE_TSC)) {
1499 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1500 return;
1501 }
1502
1503 if (!tsc_khz) {
1504 /* We failed to determine frequencies earlier, try again */
1505 if (!determine_cpu_tsc_frequencies(false)) {
1506 mark_tsc_unstable("could not calculate TSC khz");
1507 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1508 return;
1509 }
1510 tsc_enable_sched_clock();
1511 }
1512
1513 cyc2ns_init_secondary_cpus();
1514
1515 if (!no_sched_irq_time)
1516 enable_sched_clock_irqtime();
1517
1518 lpj_fine = get_loops_per_jiffy();
1519 use_tsc_delay();
1520
1521 check_system_tsc_reliable();
1522
1523 if (unsynchronized_tsc()) {
1524 mark_tsc_unstable("TSCs unsynchronized");
1525 return;
1526 }
1527
1528 if (tsc_clocksource_reliable || no_tsc_watchdog)
1529 tsc_disable_clocksource_watchdog();
1530
1531 clocksource_register_khz(&clocksource_tsc_early, tsc_khz);
1532 detect_art();
1533 }
1534
1535 #ifdef CONFIG_SMP
1536 /*
1537 * If we have a constant TSC and are using the TSC for the delay loop,
1538 * we can skip clock calibration if another cpu in the same socket has already
1539 * been calibrated. This assumes that CONSTANT_TSC applies to all
1540 * cpus in the socket - this should be a safe assumption.
1541 */
calibrate_delay_is_known(void)1542 unsigned long calibrate_delay_is_known(void)
1543 {
1544 int sibling, cpu = smp_processor_id();
1545 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1546 const struct cpumask *mask = topology_core_cpumask(cpu);
1547
1548 if (!constant_tsc || !mask)
1549 return 0;
1550
1551 sibling = cpumask_any_but(mask, cpu);
1552 if (sibling < nr_cpu_ids)
1553 return cpu_data(sibling).loops_per_jiffy;
1554 return 0;
1555 }
1556 #endif
1557