• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  kernel/cpuset.c
3  *
4  *  Processor and Memory placement constraints for sets of tasks.
5  *
6  *  Copyright (C) 2003 BULL SA.
7  *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8  *  Copyright (C) 2006 Google, Inc
9  *
10  *  Portions derived from Patrick Mochel's sysfs code.
11  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
12  *
13  *  2003-10-10 Written by Simon Derr.
14  *  2003-10-22 Updates by Stephen Hemminger.
15  *  2004 May-July Rework by Paul Jackson.
16  *  2006 Rework by Paul Menage to use generic cgroups
17  *  2008 Rework of the scheduler domains and CPU hotplug handling
18  *       by Max Krasnyansky
19  *
20  *  This file is subject to the terms and conditions of the GNU General Public
21  *  License.  See the file COPYING in the main directory of the Linux
22  *  distribution for more details.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/kthread.h>
37 #include <linux/list.h>
38 #include <linux/mempolicy.h>
39 #include <linux/mm.h>
40 #include <linux/memory.h>
41 #include <linux/export.h>
42 #include <linux/mount.h>
43 #include <linux/fs_context.h>
44 #include <linux/namei.h>
45 #include <linux/pagemap.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/sched.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/mm.h>
51 #include <linux/sched/task.h>
52 #include <linux/seq_file.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/spinlock.h>
56 #include <linux/stat.h>
57 #include <linux/string.h>
58 #include <linux/time.h>
59 #include <linux/time64.h>
60 #include <linux/backing-dev.h>
61 #include <linux/sort.h>
62 #include <linux/oom.h>
63 #include <linux/sched/isolation.h>
64 #include <linux/uaccess.h>
65 #include <linux/atomic.h>
66 #include <linux/mutex.h>
67 #include <linux/cgroup.h>
68 #include <linux/wait.h>
69 
70 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
71 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
72 
73 /* See "Frequency meter" comments, below. */
74 
75 struct fmeter {
76 	int cnt;		/* unprocessed events count */
77 	int val;		/* most recent output value */
78 	time64_t time;		/* clock (secs) when val computed */
79 	spinlock_t lock;	/* guards read or write of above */
80 };
81 
82 struct cpuset {
83 	struct cgroup_subsys_state css;
84 
85 	unsigned long flags;		/* "unsigned long" so bitops work */
86 
87 	/*
88 	 * On default hierarchy:
89 	 *
90 	 * The user-configured masks can only be changed by writing to
91 	 * cpuset.cpus and cpuset.mems, and won't be limited by the
92 	 * parent masks.
93 	 *
94 	 * The effective masks is the real masks that apply to the tasks
95 	 * in the cpuset. They may be changed if the configured masks are
96 	 * changed or hotplug happens.
97 	 *
98 	 * effective_mask == configured_mask & parent's effective_mask,
99 	 * and if it ends up empty, it will inherit the parent's mask.
100 	 *
101 	 *
102 	 * On legacy hierachy:
103 	 *
104 	 * The user-configured masks are always the same with effective masks.
105 	 */
106 
107 	/* user-configured CPUs and Memory Nodes allow to tasks */
108 	cpumask_var_t cpus_allowed;
109 	nodemask_t mems_allowed;
110 
111 	/* effective CPUs and Memory Nodes allow to tasks */
112 	cpumask_var_t effective_cpus;
113 	nodemask_t effective_mems;
114 
115 	/*
116 	 * CPUs allocated to child sub-partitions (default hierarchy only)
117 	 * - CPUs granted by the parent = effective_cpus U subparts_cpus
118 	 * - effective_cpus and subparts_cpus are mutually exclusive.
119 	 *
120 	 * effective_cpus contains only onlined CPUs, but subparts_cpus
121 	 * may have offlined ones.
122 	 */
123 	cpumask_var_t subparts_cpus;
124 
125 	/*
126 	 * This is old Memory Nodes tasks took on.
127 	 *
128 	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
129 	 * - A new cpuset's old_mems_allowed is initialized when some
130 	 *   task is moved into it.
131 	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
132 	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
133 	 *   then old_mems_allowed is updated to mems_allowed.
134 	 */
135 	nodemask_t old_mems_allowed;
136 
137 	struct fmeter fmeter;		/* memory_pressure filter */
138 
139 	/*
140 	 * Tasks are being attached to this cpuset.  Used to prevent
141 	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
142 	 */
143 	int attach_in_progress;
144 
145 	/* partition number for rebuild_sched_domains() */
146 	int pn;
147 
148 	/* for custom sched domain */
149 	int relax_domain_level;
150 
151 	/* number of CPUs in subparts_cpus */
152 	int nr_subparts_cpus;
153 
154 	/* partition root state */
155 	int partition_root_state;
156 
157 	/*
158 	 * Default hierarchy only:
159 	 * use_parent_ecpus - set if using parent's effective_cpus
160 	 * child_ecpus_count - # of children with use_parent_ecpus set
161 	 */
162 	int use_parent_ecpus;
163 	int child_ecpus_count;
164 };
165 
166 /*
167  * Partition root states:
168  *
169  *   0 - not a partition root
170  *
171  *   1 - partition root
172  *
173  *  -1 - invalid partition root
174  *       None of the cpus in cpus_allowed can be put into the parent's
175  *       subparts_cpus. In this case, the cpuset is not a real partition
176  *       root anymore.  However, the CPU_EXCLUSIVE bit will still be set
177  *       and the cpuset can be restored back to a partition root if the
178  *       parent cpuset can give more CPUs back to this child cpuset.
179  */
180 #define PRS_DISABLED		0
181 #define PRS_ENABLED		1
182 #define PRS_ERROR		-1
183 
184 /*
185  * Temporary cpumasks for working with partitions that are passed among
186  * functions to avoid memory allocation in inner functions.
187  */
188 struct tmpmasks {
189 	cpumask_var_t addmask, delmask;	/* For partition root */
190 	cpumask_var_t new_cpus;		/* For update_cpumasks_hier() */
191 };
192 
css_cs(struct cgroup_subsys_state * css)193 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
194 {
195 	return css ? container_of(css, struct cpuset, css) : NULL;
196 }
197 
198 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)199 static inline struct cpuset *task_cs(struct task_struct *task)
200 {
201 	return css_cs(task_css(task, cpuset_cgrp_id));
202 }
203 
parent_cs(struct cpuset * cs)204 static inline struct cpuset *parent_cs(struct cpuset *cs)
205 {
206 	return css_cs(cs->css.parent);
207 }
208 
209 /* bits in struct cpuset flags field */
210 typedef enum {
211 	CS_ONLINE,
212 	CS_CPU_EXCLUSIVE,
213 	CS_MEM_EXCLUSIVE,
214 	CS_MEM_HARDWALL,
215 	CS_MEMORY_MIGRATE,
216 	CS_SCHED_LOAD_BALANCE,
217 	CS_SPREAD_PAGE,
218 	CS_SPREAD_SLAB,
219 } cpuset_flagbits_t;
220 
221 /* convenient tests for these bits */
is_cpuset_online(struct cpuset * cs)222 static inline bool is_cpuset_online(struct cpuset *cs)
223 {
224 	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
225 }
226 
is_cpu_exclusive(const struct cpuset * cs)227 static inline int is_cpu_exclusive(const struct cpuset *cs)
228 {
229 	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
230 }
231 
is_mem_exclusive(const struct cpuset * cs)232 static inline int is_mem_exclusive(const struct cpuset *cs)
233 {
234 	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
235 }
236 
is_mem_hardwall(const struct cpuset * cs)237 static inline int is_mem_hardwall(const struct cpuset *cs)
238 {
239 	return test_bit(CS_MEM_HARDWALL, &cs->flags);
240 }
241 
is_sched_load_balance(const struct cpuset * cs)242 static inline int is_sched_load_balance(const struct cpuset *cs)
243 {
244 	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
245 }
246 
is_memory_migrate(const struct cpuset * cs)247 static inline int is_memory_migrate(const struct cpuset *cs)
248 {
249 	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
250 }
251 
is_spread_page(const struct cpuset * cs)252 static inline int is_spread_page(const struct cpuset *cs)
253 {
254 	return test_bit(CS_SPREAD_PAGE, &cs->flags);
255 }
256 
is_spread_slab(const struct cpuset * cs)257 static inline int is_spread_slab(const struct cpuset *cs)
258 {
259 	return test_bit(CS_SPREAD_SLAB, &cs->flags);
260 }
261 
is_partition_root(const struct cpuset * cs)262 static inline int is_partition_root(const struct cpuset *cs)
263 {
264 	return cs->partition_root_state > 0;
265 }
266 
267 static struct cpuset top_cpuset = {
268 	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
269 		  (1 << CS_MEM_EXCLUSIVE)),
270 	.partition_root_state = PRS_ENABLED,
271 };
272 
273 /**
274  * cpuset_for_each_child - traverse online children of a cpuset
275  * @child_cs: loop cursor pointing to the current child
276  * @pos_css: used for iteration
277  * @parent_cs: target cpuset to walk children of
278  *
279  * Walk @child_cs through the online children of @parent_cs.  Must be used
280  * with RCU read locked.
281  */
282 #define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
283 	css_for_each_child((pos_css), &(parent_cs)->css)		\
284 		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
285 
286 /**
287  * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
288  * @des_cs: loop cursor pointing to the current descendant
289  * @pos_css: used for iteration
290  * @root_cs: target cpuset to walk ancestor of
291  *
292  * Walk @des_cs through the online descendants of @root_cs.  Must be used
293  * with RCU read locked.  The caller may modify @pos_css by calling
294  * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
295  * iteration and the first node to be visited.
296  */
297 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
298 	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
299 		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
300 
301 /*
302  * There are two global locks guarding cpuset structures - cpuset_mutex and
303  * callback_lock. We also require taking task_lock() when dereferencing a
304  * task's cpuset pointer. See "The task_lock() exception", at the end of this
305  * comment.
306  *
307  * A task must hold both locks to modify cpusets.  If a task holds
308  * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
309  * is the only task able to also acquire callback_lock and be able to
310  * modify cpusets.  It can perform various checks on the cpuset structure
311  * first, knowing nothing will change.  It can also allocate memory while
312  * just holding cpuset_mutex.  While it is performing these checks, various
313  * callback routines can briefly acquire callback_lock to query cpusets.
314  * Once it is ready to make the changes, it takes callback_lock, blocking
315  * everyone else.
316  *
317  * Calls to the kernel memory allocator can not be made while holding
318  * callback_lock, as that would risk double tripping on callback_lock
319  * from one of the callbacks into the cpuset code from within
320  * __alloc_pages().
321  *
322  * If a task is only holding callback_lock, then it has read-only
323  * access to cpusets.
324  *
325  * Now, the task_struct fields mems_allowed and mempolicy may be changed
326  * by other task, we use alloc_lock in the task_struct fields to protect
327  * them.
328  *
329  * The cpuset_common_file_read() handlers only hold callback_lock across
330  * small pieces of code, such as when reading out possibly multi-word
331  * cpumasks and nodemasks.
332  *
333  * Accessing a task's cpuset should be done in accordance with the
334  * guidelines for accessing subsystem state in kernel/cgroup.c
335  */
336 
337 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
338 static DEFINE_SPINLOCK(callback_lock);
339 
340 static struct workqueue_struct *cpuset_migrate_mm_wq;
341 
342 /*
343  * CPU / memory hotplug is handled asynchronously.
344  */
345 static void cpuset_hotplug_workfn(struct work_struct *work);
346 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
347 
348 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
349 
350 /*
351  * Cgroup v2 behavior is used when on default hierarchy or the
352  * cgroup_v2_mode flag is set.
353  */
is_in_v2_mode(void)354 static inline bool is_in_v2_mode(void)
355 {
356 	return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
357 	      (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
358 }
359 
360 /*
361  * Return in pmask the portion of a cpusets's cpus_allowed that
362  * are online.  If none are online, walk up the cpuset hierarchy
363  * until we find one that does have some online cpus.
364  *
365  * One way or another, we guarantee to return some non-empty subset
366  * of cpu_online_mask.
367  *
368  * Call with callback_lock or cpuset_mutex held.
369  */
guarantee_online_cpus(struct cpuset * cs,struct cpumask * pmask)370 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
371 {
372 	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
373 		cs = parent_cs(cs);
374 		if (unlikely(!cs)) {
375 			/*
376 			 * The top cpuset doesn't have any online cpu as a
377 			 * consequence of a race between cpuset_hotplug_work
378 			 * and cpu hotplug notifier.  But we know the top
379 			 * cpuset's effective_cpus is on its way to to be
380 			 * identical to cpu_online_mask.
381 			 */
382 			cpumask_copy(pmask, cpu_online_mask);
383 			return;
384 		}
385 	}
386 	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
387 }
388 
389 /*
390  * Return in *pmask the portion of a cpusets's mems_allowed that
391  * are online, with memory.  If none are online with memory, walk
392  * up the cpuset hierarchy until we find one that does have some
393  * online mems.  The top cpuset always has some mems online.
394  *
395  * One way or another, we guarantee to return some non-empty subset
396  * of node_states[N_MEMORY].
397  *
398  * Call with callback_lock or cpuset_mutex held.
399  */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)400 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
401 {
402 	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
403 		cs = parent_cs(cs);
404 	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
405 }
406 
407 /*
408  * update task's spread flag if cpuset's page/slab spread flag is set
409  *
410  * Call with callback_lock or cpuset_mutex held.
411  */
cpuset_update_task_spread_flag(struct cpuset * cs,struct task_struct * tsk)412 static void cpuset_update_task_spread_flag(struct cpuset *cs,
413 					struct task_struct *tsk)
414 {
415 	if (is_spread_page(cs))
416 		task_set_spread_page(tsk);
417 	else
418 		task_clear_spread_page(tsk);
419 
420 	if (is_spread_slab(cs))
421 		task_set_spread_slab(tsk);
422 	else
423 		task_clear_spread_slab(tsk);
424 }
425 
426 /*
427  * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
428  *
429  * One cpuset is a subset of another if all its allowed CPUs and
430  * Memory Nodes are a subset of the other, and its exclusive flags
431  * are only set if the other's are set.  Call holding cpuset_mutex.
432  */
433 
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)434 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
435 {
436 	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
437 		nodes_subset(p->mems_allowed, q->mems_allowed) &&
438 		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
439 		is_mem_exclusive(p) <= is_mem_exclusive(q);
440 }
441 
442 /**
443  * alloc_cpumasks - allocate three cpumasks for cpuset
444  * @cs:  the cpuset that have cpumasks to be allocated.
445  * @tmp: the tmpmasks structure pointer
446  * Return: 0 if successful, -ENOMEM otherwise.
447  *
448  * Only one of the two input arguments should be non-NULL.
449  */
alloc_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)450 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
451 {
452 	cpumask_var_t *pmask1, *pmask2, *pmask3;
453 
454 	if (cs) {
455 		pmask1 = &cs->cpus_allowed;
456 		pmask2 = &cs->effective_cpus;
457 		pmask3 = &cs->subparts_cpus;
458 	} else {
459 		pmask1 = &tmp->new_cpus;
460 		pmask2 = &tmp->addmask;
461 		pmask3 = &tmp->delmask;
462 	}
463 
464 	if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
465 		return -ENOMEM;
466 
467 	if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
468 		goto free_one;
469 
470 	if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
471 		goto free_two;
472 
473 	return 0;
474 
475 free_two:
476 	free_cpumask_var(*pmask2);
477 free_one:
478 	free_cpumask_var(*pmask1);
479 	return -ENOMEM;
480 }
481 
482 /**
483  * free_cpumasks - free cpumasks in a tmpmasks structure
484  * @cs:  the cpuset that have cpumasks to be free.
485  * @tmp: the tmpmasks structure pointer
486  */
free_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)487 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
488 {
489 	if (cs) {
490 		free_cpumask_var(cs->cpus_allowed);
491 		free_cpumask_var(cs->effective_cpus);
492 		free_cpumask_var(cs->subparts_cpus);
493 	}
494 	if (tmp) {
495 		free_cpumask_var(tmp->new_cpus);
496 		free_cpumask_var(tmp->addmask);
497 		free_cpumask_var(tmp->delmask);
498 	}
499 }
500 
501 /**
502  * alloc_trial_cpuset - allocate a trial cpuset
503  * @cs: the cpuset that the trial cpuset duplicates
504  */
alloc_trial_cpuset(struct cpuset * cs)505 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
506 {
507 	struct cpuset *trial;
508 
509 	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
510 	if (!trial)
511 		return NULL;
512 
513 	if (alloc_cpumasks(trial, NULL)) {
514 		kfree(trial);
515 		return NULL;
516 	}
517 
518 	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
519 	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
520 	return trial;
521 }
522 
523 /**
524  * free_cpuset - free the cpuset
525  * @cs: the cpuset to be freed
526  */
free_cpuset(struct cpuset * cs)527 static inline void free_cpuset(struct cpuset *cs)
528 {
529 	free_cpumasks(cs, NULL);
530 	kfree(cs);
531 }
532 
533 /*
534  * validate_change() - Used to validate that any proposed cpuset change
535  *		       follows the structural rules for cpusets.
536  *
537  * If we replaced the flag and mask values of the current cpuset
538  * (cur) with those values in the trial cpuset (trial), would
539  * our various subset and exclusive rules still be valid?  Presumes
540  * cpuset_mutex held.
541  *
542  * 'cur' is the address of an actual, in-use cpuset.  Operations
543  * such as list traversal that depend on the actual address of the
544  * cpuset in the list must use cur below, not trial.
545  *
546  * 'trial' is the address of bulk structure copy of cur, with
547  * perhaps one or more of the fields cpus_allowed, mems_allowed,
548  * or flags changed to new, trial values.
549  *
550  * Return 0 if valid, -errno if not.
551  */
552 
validate_change(struct cpuset * cur,struct cpuset * trial)553 static int validate_change(struct cpuset *cur, struct cpuset *trial)
554 {
555 	struct cgroup_subsys_state *css;
556 	struct cpuset *c, *par;
557 	int ret;
558 
559 	rcu_read_lock();
560 
561 	/* Each of our child cpusets must be a subset of us */
562 	ret = -EBUSY;
563 	cpuset_for_each_child(c, css, cur)
564 		if (!is_cpuset_subset(c, trial))
565 			goto out;
566 
567 	/* Remaining checks don't apply to root cpuset */
568 	ret = 0;
569 	if (cur == &top_cpuset)
570 		goto out;
571 
572 	par = parent_cs(cur);
573 
574 	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
575 	ret = -EACCES;
576 	if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
577 		goto out;
578 
579 	/*
580 	 * If either I or some sibling (!= me) is exclusive, we can't
581 	 * overlap
582 	 */
583 	ret = -EINVAL;
584 	cpuset_for_each_child(c, css, par) {
585 		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
586 		    c != cur &&
587 		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
588 			goto out;
589 		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
590 		    c != cur &&
591 		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
592 			goto out;
593 	}
594 
595 	/*
596 	 * Cpusets with tasks - existing or newly being attached - can't
597 	 * be changed to have empty cpus_allowed or mems_allowed.
598 	 */
599 	ret = -ENOSPC;
600 	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
601 		if (!cpumask_empty(cur->cpus_allowed) &&
602 		    cpumask_empty(trial->cpus_allowed))
603 			goto out;
604 		if (!nodes_empty(cur->mems_allowed) &&
605 		    nodes_empty(trial->mems_allowed))
606 			goto out;
607 	}
608 
609 	/*
610 	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
611 	 * tasks.
612 	 */
613 	ret = -EBUSY;
614 	if (is_cpu_exclusive(cur) &&
615 	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
616 				       trial->cpus_allowed))
617 		goto out;
618 
619 	ret = 0;
620 out:
621 	rcu_read_unlock();
622 	return ret;
623 }
624 
625 #ifdef CONFIG_SMP
626 /*
627  * Helper routine for generate_sched_domains().
628  * Do cpusets a, b have overlapping effective cpus_allowed masks?
629  */
cpusets_overlap(struct cpuset * a,struct cpuset * b)630 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
631 {
632 	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
633 }
634 
635 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)636 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
637 {
638 	if (dattr->relax_domain_level < c->relax_domain_level)
639 		dattr->relax_domain_level = c->relax_domain_level;
640 	return;
641 }
642 
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)643 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
644 				    struct cpuset *root_cs)
645 {
646 	struct cpuset *cp;
647 	struct cgroup_subsys_state *pos_css;
648 
649 	rcu_read_lock();
650 	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
651 		/* skip the whole subtree if @cp doesn't have any CPU */
652 		if (cpumask_empty(cp->cpus_allowed)) {
653 			pos_css = css_rightmost_descendant(pos_css);
654 			continue;
655 		}
656 
657 		if (is_sched_load_balance(cp))
658 			update_domain_attr(dattr, cp);
659 	}
660 	rcu_read_unlock();
661 }
662 
663 /* Must be called with cpuset_mutex held.  */
nr_cpusets(void)664 static inline int nr_cpusets(void)
665 {
666 	/* jump label reference count + the top-level cpuset */
667 	return static_key_count(&cpusets_enabled_key.key) + 1;
668 }
669 
670 /*
671  * generate_sched_domains()
672  *
673  * This function builds a partial partition of the systems CPUs
674  * A 'partial partition' is a set of non-overlapping subsets whose
675  * union is a subset of that set.
676  * The output of this function needs to be passed to kernel/sched/core.c
677  * partition_sched_domains() routine, which will rebuild the scheduler's
678  * load balancing domains (sched domains) as specified by that partial
679  * partition.
680  *
681  * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
682  * for a background explanation of this.
683  *
684  * Does not return errors, on the theory that the callers of this
685  * routine would rather not worry about failures to rebuild sched
686  * domains when operating in the severe memory shortage situations
687  * that could cause allocation failures below.
688  *
689  * Must be called with cpuset_mutex held.
690  *
691  * The three key local variables below are:
692  *    cp - cpuset pointer, used (together with pos_css) to perform a
693  *	   top-down scan of all cpusets. For our purposes, rebuilding
694  *	   the schedulers sched domains, we can ignore !is_sched_load_
695  *	   balance cpusets.
696  *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
697  *	   that need to be load balanced, for convenient iterative
698  *	   access by the subsequent code that finds the best partition,
699  *	   i.e the set of domains (subsets) of CPUs such that the
700  *	   cpus_allowed of every cpuset marked is_sched_load_balance
701  *	   is a subset of one of these domains, while there are as
702  *	   many such domains as possible, each as small as possible.
703  * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
704  *	   the kernel/sched/core.c routine partition_sched_domains() in a
705  *	   convenient format, that can be easily compared to the prior
706  *	   value to determine what partition elements (sched domains)
707  *	   were changed (added or removed.)
708  *
709  * Finding the best partition (set of domains):
710  *	The triple nested loops below over i, j, k scan over the
711  *	load balanced cpusets (using the array of cpuset pointers in
712  *	csa[]) looking for pairs of cpusets that have overlapping
713  *	cpus_allowed, but which don't have the same 'pn' partition
714  *	number and gives them in the same partition number.  It keeps
715  *	looping on the 'restart' label until it can no longer find
716  *	any such pairs.
717  *
718  *	The union of the cpus_allowed masks from the set of
719  *	all cpusets having the same 'pn' value then form the one
720  *	element of the partition (one sched domain) to be passed to
721  *	partition_sched_domains().
722  */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)723 static int generate_sched_domains(cpumask_var_t **domains,
724 			struct sched_domain_attr **attributes)
725 {
726 	struct cpuset *cp;	/* top-down scan of cpusets */
727 	struct cpuset **csa;	/* array of all cpuset ptrs */
728 	int csn;		/* how many cpuset ptrs in csa so far */
729 	int i, j, k;		/* indices for partition finding loops */
730 	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
731 	struct sched_domain_attr *dattr;  /* attributes for custom domains */
732 	int ndoms = 0;		/* number of sched domains in result */
733 	int nslot;		/* next empty doms[] struct cpumask slot */
734 	struct cgroup_subsys_state *pos_css;
735 	bool root_load_balance = is_sched_load_balance(&top_cpuset);
736 
737 	doms = NULL;
738 	dattr = NULL;
739 	csa = NULL;
740 
741 	/* Special case for the 99% of systems with one, full, sched domain */
742 	if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
743 		ndoms = 1;
744 		doms = alloc_sched_domains(ndoms);
745 		if (!doms)
746 			goto done;
747 
748 		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
749 		if (dattr) {
750 			*dattr = SD_ATTR_INIT;
751 			update_domain_attr_tree(dattr, &top_cpuset);
752 		}
753 		cpumask_and(doms[0], top_cpuset.effective_cpus,
754 			    housekeeping_cpumask(HK_FLAG_DOMAIN));
755 
756 		goto done;
757 	}
758 
759 	csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
760 	if (!csa)
761 		goto done;
762 	csn = 0;
763 
764 	rcu_read_lock();
765 	if (root_load_balance)
766 		csa[csn++] = &top_cpuset;
767 	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
768 		if (cp == &top_cpuset)
769 			continue;
770 		/*
771 		 * Continue traversing beyond @cp iff @cp has some CPUs and
772 		 * isn't load balancing.  The former is obvious.  The
773 		 * latter: All child cpusets contain a subset of the
774 		 * parent's cpus, so just skip them, and then we call
775 		 * update_domain_attr_tree() to calc relax_domain_level of
776 		 * the corresponding sched domain.
777 		 *
778 		 * If root is load-balancing, we can skip @cp if it
779 		 * is a subset of the root's effective_cpus.
780 		 */
781 		if (!cpumask_empty(cp->cpus_allowed) &&
782 		    !(is_sched_load_balance(cp) &&
783 		      cpumask_intersects(cp->cpus_allowed,
784 					 housekeeping_cpumask(HK_FLAG_DOMAIN))))
785 			continue;
786 
787 		if (root_load_balance &&
788 		    cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
789 			continue;
790 
791 		if (is_sched_load_balance(cp) &&
792 		    !cpumask_empty(cp->effective_cpus))
793 			csa[csn++] = cp;
794 
795 		/* skip @cp's subtree if not a partition root */
796 		if (!is_partition_root(cp))
797 			pos_css = css_rightmost_descendant(pos_css);
798 	}
799 	rcu_read_unlock();
800 
801 	for (i = 0; i < csn; i++)
802 		csa[i]->pn = i;
803 	ndoms = csn;
804 
805 restart:
806 	/* Find the best partition (set of sched domains) */
807 	for (i = 0; i < csn; i++) {
808 		struct cpuset *a = csa[i];
809 		int apn = a->pn;
810 
811 		for (j = 0; j < csn; j++) {
812 			struct cpuset *b = csa[j];
813 			int bpn = b->pn;
814 
815 			if (apn != bpn && cpusets_overlap(a, b)) {
816 				for (k = 0; k < csn; k++) {
817 					struct cpuset *c = csa[k];
818 
819 					if (c->pn == bpn)
820 						c->pn = apn;
821 				}
822 				ndoms--;	/* one less element */
823 				goto restart;
824 			}
825 		}
826 	}
827 
828 	/*
829 	 * Now we know how many domains to create.
830 	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
831 	 */
832 	doms = alloc_sched_domains(ndoms);
833 	if (!doms)
834 		goto done;
835 
836 	/*
837 	 * The rest of the code, including the scheduler, can deal with
838 	 * dattr==NULL case. No need to abort if alloc fails.
839 	 */
840 	dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
841 			      GFP_KERNEL);
842 
843 	for (nslot = 0, i = 0; i < csn; i++) {
844 		struct cpuset *a = csa[i];
845 		struct cpumask *dp;
846 		int apn = a->pn;
847 
848 		if (apn < 0) {
849 			/* Skip completed partitions */
850 			continue;
851 		}
852 
853 		dp = doms[nslot];
854 
855 		if (nslot == ndoms) {
856 			static int warnings = 10;
857 			if (warnings) {
858 				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
859 					nslot, ndoms, csn, i, apn);
860 				warnings--;
861 			}
862 			continue;
863 		}
864 
865 		cpumask_clear(dp);
866 		if (dattr)
867 			*(dattr + nslot) = SD_ATTR_INIT;
868 		for (j = i; j < csn; j++) {
869 			struct cpuset *b = csa[j];
870 
871 			if (apn == b->pn) {
872 				cpumask_or(dp, dp, b->effective_cpus);
873 				cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
874 				if (dattr)
875 					update_domain_attr_tree(dattr + nslot, b);
876 
877 				/* Done with this partition */
878 				b->pn = -1;
879 			}
880 		}
881 		nslot++;
882 	}
883 	BUG_ON(nslot != ndoms);
884 
885 done:
886 	kfree(csa);
887 
888 	/*
889 	 * Fallback to the default domain if kmalloc() failed.
890 	 * See comments in partition_sched_domains().
891 	 */
892 	if (doms == NULL)
893 		ndoms = 1;
894 
895 	*domains    = doms;
896 	*attributes = dattr;
897 	return ndoms;
898 }
899 
update_tasks_root_domain(struct cpuset * cs)900 static void update_tasks_root_domain(struct cpuset *cs)
901 {
902 	struct css_task_iter it;
903 	struct task_struct *task;
904 
905 	css_task_iter_start(&cs->css, 0, &it);
906 
907 	while ((task = css_task_iter_next(&it)))
908 		dl_add_task_root_domain(task);
909 
910 	css_task_iter_end(&it);
911 }
912 
rebuild_root_domains(void)913 static void rebuild_root_domains(void)
914 {
915 	struct cpuset *cs = NULL;
916 	struct cgroup_subsys_state *pos_css;
917 
918 	percpu_rwsem_assert_held(&cpuset_rwsem);
919 	lockdep_assert_cpus_held();
920 	lockdep_assert_held(&sched_domains_mutex);
921 
922 	cgroup_enable_task_cg_lists();
923 
924 	rcu_read_lock();
925 
926 	/*
927 	 * Clear default root domain DL accounting, it will be computed again
928 	 * if a task belongs to it.
929 	 */
930 	dl_clear_root_domain(&def_root_domain);
931 
932 	cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
933 
934 		if (cpumask_empty(cs->effective_cpus)) {
935 			pos_css = css_rightmost_descendant(pos_css);
936 			continue;
937 		}
938 
939 		css_get(&cs->css);
940 
941 		rcu_read_unlock();
942 
943 		update_tasks_root_domain(cs);
944 
945 		rcu_read_lock();
946 		css_put(&cs->css);
947 	}
948 	rcu_read_unlock();
949 }
950 
951 static void
partition_and_rebuild_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)952 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
953 				    struct sched_domain_attr *dattr_new)
954 {
955 	mutex_lock(&sched_domains_mutex);
956 	partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
957 	rebuild_root_domains();
958 	mutex_unlock(&sched_domains_mutex);
959 }
960 
961 /*
962  * Rebuild scheduler domains.
963  *
964  * If the flag 'sched_load_balance' of any cpuset with non-empty
965  * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
966  * which has that flag enabled, or if any cpuset with a non-empty
967  * 'cpus' is removed, then call this routine to rebuild the
968  * scheduler's dynamic sched domains.
969  *
970  * Call with cpuset_mutex held.  Takes get_online_cpus().
971  */
rebuild_sched_domains_locked(void)972 static void rebuild_sched_domains_locked(void)
973 {
974 	struct cgroup_subsys_state *pos_css;
975 	struct sched_domain_attr *attr;
976 	cpumask_var_t *doms;
977 	struct cpuset *cs;
978 	int ndoms;
979 
980 	lockdep_assert_cpus_held();
981 	percpu_rwsem_assert_held(&cpuset_rwsem);
982 
983 	/*
984 	 * If we have raced with CPU hotplug, return early to avoid
985 	 * passing doms with offlined cpu to partition_sched_domains().
986 	 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
987 	 *
988 	 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
989 	 * should be the same as the active CPUs, so checking only top_cpuset
990 	 * is enough to detect racing CPU offlines.
991 	 */
992 	if (!top_cpuset.nr_subparts_cpus &&
993 	    !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
994 		return;
995 
996 	/*
997 	 * With subpartition CPUs, however, the effective CPUs of a partition
998 	 * root should be only a subset of the active CPUs.  Since a CPU in any
999 	 * partition root could be offlined, all must be checked.
1000 	 */
1001 	if (top_cpuset.nr_subparts_cpus) {
1002 		rcu_read_lock();
1003 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1004 			if (!is_partition_root(cs)) {
1005 				pos_css = css_rightmost_descendant(pos_css);
1006 				continue;
1007 			}
1008 			if (!cpumask_subset(cs->effective_cpus,
1009 					    cpu_active_mask)) {
1010 				rcu_read_unlock();
1011 				return;
1012 			}
1013 		}
1014 		rcu_read_unlock();
1015 	}
1016 
1017 	/* Generate domain masks and attrs */
1018 	ndoms = generate_sched_domains(&doms, &attr);
1019 
1020 	/* Have scheduler rebuild the domains */
1021 	partition_and_rebuild_sched_domains(ndoms, doms, attr);
1022 }
1023 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)1024 static void rebuild_sched_domains_locked(void)
1025 {
1026 }
1027 #endif /* CONFIG_SMP */
1028 
rebuild_sched_domains(void)1029 void rebuild_sched_domains(void)
1030 {
1031 	get_online_cpus();
1032 	percpu_down_write(&cpuset_rwsem);
1033 	rebuild_sched_domains_locked();
1034 	percpu_up_write(&cpuset_rwsem);
1035 	put_online_cpus();
1036 }
1037 
1038 /**
1039  * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1040  * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1041  *
1042  * Iterate through each task of @cs updating its cpus_allowed to the
1043  * effective cpuset's.  As this function is called with cpuset_mutex held,
1044  * cpuset membership stays stable.
1045  */
update_tasks_cpumask(struct cpuset * cs)1046 static void update_tasks_cpumask(struct cpuset *cs)
1047 {
1048 	struct css_task_iter it;
1049 	struct task_struct *task;
1050 	bool top_cs = cs == &top_cpuset;
1051 
1052 	css_task_iter_start(&cs->css, 0, &it);
1053 	while ((task = css_task_iter_next(&it))) {
1054 		/*
1055 		 * Percpu kthreads in top_cpuset are ignored
1056 		 */
1057 		if (top_cs && (task->flags & PF_KTHREAD) &&
1058 		    kthread_is_per_cpu(task))
1059 			continue;
1060 		set_cpus_allowed_ptr(task, cs->effective_cpus);
1061 	}
1062 	css_task_iter_end(&it);
1063 }
1064 
1065 /**
1066  * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1067  * @new_cpus: the temp variable for the new effective_cpus mask
1068  * @cs: the cpuset the need to recompute the new effective_cpus mask
1069  * @parent: the parent cpuset
1070  *
1071  * If the parent has subpartition CPUs, include them in the list of
1072  * allowable CPUs in computing the new effective_cpus mask. Since offlined
1073  * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1074  * to mask those out.
1075  */
compute_effective_cpumask(struct cpumask * new_cpus,struct cpuset * cs,struct cpuset * parent)1076 static void compute_effective_cpumask(struct cpumask *new_cpus,
1077 				      struct cpuset *cs, struct cpuset *parent)
1078 {
1079 	if (parent->nr_subparts_cpus) {
1080 		cpumask_or(new_cpus, parent->effective_cpus,
1081 			   parent->subparts_cpus);
1082 		cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1083 		cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1084 	} else {
1085 		cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1086 	}
1087 }
1088 
1089 /*
1090  * Commands for update_parent_subparts_cpumask
1091  */
1092 enum subparts_cmd {
1093 	partcmd_enable,		/* Enable partition root	 */
1094 	partcmd_disable,	/* Disable partition root	 */
1095 	partcmd_update,		/* Update parent's subparts_cpus */
1096 };
1097 
1098 /**
1099  * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1100  * @cpuset:  The cpuset that requests change in partition root state
1101  * @cmd:     Partition root state change command
1102  * @newmask: Optional new cpumask for partcmd_update
1103  * @tmp:     Temporary addmask and delmask
1104  * Return:   0, 1 or an error code
1105  *
1106  * For partcmd_enable, the cpuset is being transformed from a non-partition
1107  * root to a partition root. The cpus_allowed mask of the given cpuset will
1108  * be put into parent's subparts_cpus and taken away from parent's
1109  * effective_cpus. The function will return 0 if all the CPUs listed in
1110  * cpus_allowed can be granted or an error code will be returned.
1111  *
1112  * For partcmd_disable, the cpuset is being transofrmed from a partition
1113  * root back to a non-partition root. any CPUs in cpus_allowed that are in
1114  * parent's subparts_cpus will be taken away from that cpumask and put back
1115  * into parent's effective_cpus. 0 should always be returned.
1116  *
1117  * For partcmd_update, if the optional newmask is specified, the cpu
1118  * list is to be changed from cpus_allowed to newmask. Otherwise,
1119  * cpus_allowed is assumed to remain the same. The cpuset should either
1120  * be a partition root or an invalid partition root. The partition root
1121  * state may change if newmask is NULL and none of the requested CPUs can
1122  * be granted by the parent. The function will return 1 if changes to
1123  * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1124  * Error code should only be returned when newmask is non-NULL.
1125  *
1126  * The partcmd_enable and partcmd_disable commands are used by
1127  * update_prstate(). The partcmd_update command is used by
1128  * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1129  * newmask set.
1130  *
1131  * The checking is more strict when enabling partition root than the
1132  * other two commands.
1133  *
1134  * Because of the implicit cpu exclusive nature of a partition root,
1135  * cpumask changes that violates the cpu exclusivity rule will not be
1136  * permitted when checked by validate_change(). The validate_change()
1137  * function will also prevent any changes to the cpu list if it is not
1138  * a superset of children's cpu lists.
1139  */
update_parent_subparts_cpumask(struct cpuset * cpuset,int cmd,struct cpumask * newmask,struct tmpmasks * tmp)1140 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1141 					  struct cpumask *newmask,
1142 					  struct tmpmasks *tmp)
1143 {
1144 	struct cpuset *parent = parent_cs(cpuset);
1145 	int adding;	/* Moving cpus from effective_cpus to subparts_cpus */
1146 	int deleting;	/* Moving cpus from subparts_cpus to effective_cpus */
1147 	bool part_error = false;	/* Partition error? */
1148 
1149 	percpu_rwsem_assert_held(&cpuset_rwsem);
1150 
1151 	/*
1152 	 * The parent must be a partition root.
1153 	 * The new cpumask, if present, or the current cpus_allowed must
1154 	 * not be empty.
1155 	 */
1156 	if (!is_partition_root(parent) ||
1157 	   (newmask && cpumask_empty(newmask)) ||
1158 	   (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1159 		return -EINVAL;
1160 
1161 	/*
1162 	 * Enabling/disabling partition root is not allowed if there are
1163 	 * online children.
1164 	 */
1165 	if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1166 		return -EBUSY;
1167 
1168 	/*
1169 	 * Enabling partition root is not allowed if not all the CPUs
1170 	 * can be granted from parent's effective_cpus or at least one
1171 	 * CPU will be left after that.
1172 	 */
1173 	if ((cmd == partcmd_enable) &&
1174 	   (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1175 	     cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1176 		return -EINVAL;
1177 
1178 	/*
1179 	 * A cpumask update cannot make parent's effective_cpus become empty.
1180 	 */
1181 	adding = deleting = false;
1182 	if (cmd == partcmd_enable) {
1183 		cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1184 		adding = true;
1185 	} else if (cmd == partcmd_disable) {
1186 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1187 				       parent->subparts_cpus);
1188 	} else if (newmask) {
1189 		/*
1190 		 * partcmd_update with newmask:
1191 		 *
1192 		 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1193 		 * addmask = newmask & parent->effective_cpus
1194 		 *		     & ~parent->subparts_cpus
1195 		 */
1196 		cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1197 		deleting = cpumask_and(tmp->delmask, tmp->delmask,
1198 				       parent->subparts_cpus);
1199 
1200 		cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1201 		adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1202 					parent->subparts_cpus);
1203 		/*
1204 		 * Return error if the new effective_cpus could become empty.
1205 		 */
1206 		if (adding &&
1207 		    cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1208 			if (!deleting)
1209 				return -EINVAL;
1210 			/*
1211 			 * As some of the CPUs in subparts_cpus might have
1212 			 * been offlined, we need to compute the real delmask
1213 			 * to confirm that.
1214 			 */
1215 			if (!cpumask_and(tmp->addmask, tmp->delmask,
1216 					 cpu_active_mask))
1217 				return -EINVAL;
1218 			cpumask_copy(tmp->addmask, parent->effective_cpus);
1219 		}
1220 	} else {
1221 		/*
1222 		 * partcmd_update w/o newmask:
1223 		 *
1224 		 * addmask = cpus_allowed & parent->effectiveb_cpus
1225 		 *
1226 		 * Note that parent's subparts_cpus may have been
1227 		 * pre-shrunk in case there is a change in the cpu list.
1228 		 * So no deletion is needed.
1229 		 */
1230 		adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1231 				     parent->effective_cpus);
1232 		part_error = cpumask_equal(tmp->addmask,
1233 					   parent->effective_cpus);
1234 	}
1235 
1236 	if (cmd == partcmd_update) {
1237 		int prev_prs = cpuset->partition_root_state;
1238 
1239 		/*
1240 		 * Check for possible transition between PRS_ENABLED
1241 		 * and PRS_ERROR.
1242 		 */
1243 		switch (cpuset->partition_root_state) {
1244 		case PRS_ENABLED:
1245 			if (part_error)
1246 				cpuset->partition_root_state = PRS_ERROR;
1247 			break;
1248 		case PRS_ERROR:
1249 			if (!part_error)
1250 				cpuset->partition_root_state = PRS_ENABLED;
1251 			break;
1252 		}
1253 		/*
1254 		 * Set part_error if previously in invalid state.
1255 		 */
1256 		part_error = (prev_prs == PRS_ERROR);
1257 	}
1258 
1259 	if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1260 		return 0;	/* Nothing need to be done */
1261 
1262 	if (cpuset->partition_root_state == PRS_ERROR) {
1263 		/*
1264 		 * Remove all its cpus from parent's subparts_cpus.
1265 		 */
1266 		adding = false;
1267 		deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1268 				       parent->subparts_cpus);
1269 	}
1270 
1271 	if (!adding && !deleting)
1272 		return 0;
1273 
1274 	/*
1275 	 * Change the parent's subparts_cpus.
1276 	 * Newly added CPUs will be removed from effective_cpus and
1277 	 * newly deleted ones will be added back to effective_cpus.
1278 	 */
1279 	spin_lock_irq(&callback_lock);
1280 	if (adding) {
1281 		cpumask_or(parent->subparts_cpus,
1282 			   parent->subparts_cpus, tmp->addmask);
1283 		cpumask_andnot(parent->effective_cpus,
1284 			       parent->effective_cpus, tmp->addmask);
1285 	}
1286 	if (deleting) {
1287 		cpumask_andnot(parent->subparts_cpus,
1288 			       parent->subparts_cpus, tmp->delmask);
1289 		/*
1290 		 * Some of the CPUs in subparts_cpus might have been offlined.
1291 		 */
1292 		cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1293 		cpumask_or(parent->effective_cpus,
1294 			   parent->effective_cpus, tmp->delmask);
1295 	}
1296 
1297 	parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1298 	spin_unlock_irq(&callback_lock);
1299 
1300 	return cmd == partcmd_update;
1301 }
1302 
1303 /*
1304  * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1305  * @cs:  the cpuset to consider
1306  * @tmp: temp variables for calculating effective_cpus & partition setup
1307  *
1308  * When congifured cpumask is changed, the effective cpumasks of this cpuset
1309  * and all its descendants need to be updated.
1310  *
1311  * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1312  *
1313  * Called with cpuset_mutex held
1314  */
update_cpumasks_hier(struct cpuset * cs,struct tmpmasks * tmp)1315 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1316 {
1317 	struct cpuset *cp;
1318 	struct cgroup_subsys_state *pos_css;
1319 	bool need_rebuild_sched_domains = false;
1320 
1321 	rcu_read_lock();
1322 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1323 		struct cpuset *parent = parent_cs(cp);
1324 
1325 		compute_effective_cpumask(tmp->new_cpus, cp, parent);
1326 
1327 		/*
1328 		 * If it becomes empty, inherit the effective mask of the
1329 		 * parent, which is guaranteed to have some CPUs.
1330 		 */
1331 		if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1332 			cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1333 			if (!cp->use_parent_ecpus) {
1334 				cp->use_parent_ecpus = true;
1335 				parent->child_ecpus_count++;
1336 			}
1337 		} else if (cp->use_parent_ecpus) {
1338 			cp->use_parent_ecpus = false;
1339 			WARN_ON_ONCE(!parent->child_ecpus_count);
1340 			parent->child_ecpus_count--;
1341 		}
1342 
1343 		/*
1344 		 * Skip the whole subtree if the cpumask remains the same
1345 		 * and has no partition root state.
1346 		 */
1347 		if (!cp->partition_root_state &&
1348 		    cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1349 			pos_css = css_rightmost_descendant(pos_css);
1350 			continue;
1351 		}
1352 
1353 		/*
1354 		 * update_parent_subparts_cpumask() should have been called
1355 		 * for cs already in update_cpumask(). We should also call
1356 		 * update_tasks_cpumask() again for tasks in the parent
1357 		 * cpuset if the parent's subparts_cpus changes.
1358 		 */
1359 		if ((cp != cs) && cp->partition_root_state) {
1360 			switch (parent->partition_root_state) {
1361 			case PRS_DISABLED:
1362 				/*
1363 				 * If parent is not a partition root or an
1364 				 * invalid partition root, clear the state
1365 				 * state and the CS_CPU_EXCLUSIVE flag.
1366 				 */
1367 				WARN_ON_ONCE(cp->partition_root_state
1368 					     != PRS_ERROR);
1369 				cp->partition_root_state = 0;
1370 
1371 				/*
1372 				 * clear_bit() is an atomic operation and
1373 				 * readers aren't interested in the state
1374 				 * of CS_CPU_EXCLUSIVE anyway. So we can
1375 				 * just update the flag without holding
1376 				 * the callback_lock.
1377 				 */
1378 				clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1379 				break;
1380 
1381 			case PRS_ENABLED:
1382 				if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1383 					update_tasks_cpumask(parent);
1384 				break;
1385 
1386 			case PRS_ERROR:
1387 				/*
1388 				 * When parent is invalid, it has to be too.
1389 				 */
1390 				cp->partition_root_state = PRS_ERROR;
1391 				if (cp->nr_subparts_cpus) {
1392 					cp->nr_subparts_cpus = 0;
1393 					cpumask_clear(cp->subparts_cpus);
1394 				}
1395 				break;
1396 			}
1397 		}
1398 
1399 		if (!css_tryget_online(&cp->css))
1400 			continue;
1401 		rcu_read_unlock();
1402 
1403 		spin_lock_irq(&callback_lock);
1404 
1405 		cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1406 		if (cp->nr_subparts_cpus &&
1407 		   (cp->partition_root_state != PRS_ENABLED)) {
1408 			cp->nr_subparts_cpus = 0;
1409 			cpumask_clear(cp->subparts_cpus);
1410 		} else if (cp->nr_subparts_cpus) {
1411 			/*
1412 			 * Make sure that effective_cpus & subparts_cpus
1413 			 * are mutually exclusive.
1414 			 *
1415 			 * In the unlikely event that effective_cpus
1416 			 * becomes empty. we clear cp->nr_subparts_cpus and
1417 			 * let its child partition roots to compete for
1418 			 * CPUs again.
1419 			 */
1420 			cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1421 				       cp->subparts_cpus);
1422 			if (cpumask_empty(cp->effective_cpus)) {
1423 				cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1424 				cpumask_clear(cp->subparts_cpus);
1425 				cp->nr_subparts_cpus = 0;
1426 			} else if (!cpumask_subset(cp->subparts_cpus,
1427 						   tmp->new_cpus)) {
1428 				cpumask_andnot(cp->subparts_cpus,
1429 					cp->subparts_cpus, tmp->new_cpus);
1430 				cp->nr_subparts_cpus
1431 					= cpumask_weight(cp->subparts_cpus);
1432 			}
1433 		}
1434 		spin_unlock_irq(&callback_lock);
1435 
1436 		WARN_ON(!is_in_v2_mode() &&
1437 			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1438 
1439 		update_tasks_cpumask(cp);
1440 
1441 		/*
1442 		 * On legacy hierarchy, if the effective cpumask of any non-
1443 		 * empty cpuset is changed, we need to rebuild sched domains.
1444 		 * On default hierarchy, the cpuset needs to be a partition
1445 		 * root as well.
1446 		 */
1447 		if (!cpumask_empty(cp->cpus_allowed) &&
1448 		    is_sched_load_balance(cp) &&
1449 		   (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1450 		    is_partition_root(cp)))
1451 			need_rebuild_sched_domains = true;
1452 
1453 		rcu_read_lock();
1454 		css_put(&cp->css);
1455 	}
1456 	rcu_read_unlock();
1457 
1458 	if (need_rebuild_sched_domains)
1459 		rebuild_sched_domains_locked();
1460 }
1461 
1462 /**
1463  * update_sibling_cpumasks - Update siblings cpumasks
1464  * @parent:  Parent cpuset
1465  * @cs:      Current cpuset
1466  * @tmp:     Temp variables
1467  */
update_sibling_cpumasks(struct cpuset * parent,struct cpuset * cs,struct tmpmasks * tmp)1468 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1469 				    struct tmpmasks *tmp)
1470 {
1471 	struct cpuset *sibling;
1472 	struct cgroup_subsys_state *pos_css;
1473 
1474 	percpu_rwsem_assert_held(&cpuset_rwsem);
1475 
1476 	/*
1477 	 * Check all its siblings and call update_cpumasks_hier()
1478 	 * if their use_parent_ecpus flag is set in order for them
1479 	 * to use the right effective_cpus value.
1480 	 *
1481 	 * The update_cpumasks_hier() function may sleep. So we have to
1482 	 * release the RCU read lock before calling it.
1483 	 */
1484 	rcu_read_lock();
1485 	cpuset_for_each_child(sibling, pos_css, parent) {
1486 		if (sibling == cs)
1487 			continue;
1488 		if (!sibling->use_parent_ecpus)
1489 			continue;
1490 		if (!css_tryget_online(&sibling->css))
1491 			continue;
1492 
1493 		rcu_read_unlock();
1494 		update_cpumasks_hier(sibling, tmp);
1495 		rcu_read_lock();
1496 		css_put(&sibling->css);
1497 	}
1498 	rcu_read_unlock();
1499 }
1500 
1501 /**
1502  * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1503  * @cs: the cpuset to consider
1504  * @trialcs: trial cpuset
1505  * @buf: buffer of cpu numbers written to this cpuset
1506  */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1507 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1508 			  const char *buf)
1509 {
1510 	int retval;
1511 	struct tmpmasks tmp;
1512 
1513 	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1514 	if (cs == &top_cpuset)
1515 		return -EACCES;
1516 
1517 	/*
1518 	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1519 	 * Since cpulist_parse() fails on an empty mask, we special case
1520 	 * that parsing.  The validate_change() call ensures that cpusets
1521 	 * with tasks have cpus.
1522 	 */
1523 	if (!*buf) {
1524 		cpumask_clear(trialcs->cpus_allowed);
1525 	} else {
1526 		retval = cpulist_parse(buf, trialcs->cpus_allowed);
1527 		if (retval < 0)
1528 			return retval;
1529 
1530 		if (!cpumask_subset(trialcs->cpus_allowed,
1531 				    top_cpuset.cpus_allowed))
1532 			return -EINVAL;
1533 	}
1534 
1535 	/* Nothing to do if the cpus didn't change */
1536 	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1537 		return 0;
1538 
1539 	retval = validate_change(cs, trialcs);
1540 	if (retval < 0)
1541 		return retval;
1542 
1543 #ifdef CONFIG_CPUMASK_OFFSTACK
1544 	/*
1545 	 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1546 	 * to allocated cpumasks.
1547 	 */
1548 	tmp.addmask  = trialcs->subparts_cpus;
1549 	tmp.delmask  = trialcs->effective_cpus;
1550 	tmp.new_cpus = trialcs->cpus_allowed;
1551 #endif
1552 
1553 	if (cs->partition_root_state) {
1554 		/* Cpumask of a partition root cannot be empty */
1555 		if (cpumask_empty(trialcs->cpus_allowed))
1556 			return -EINVAL;
1557 		if (update_parent_subparts_cpumask(cs, partcmd_update,
1558 					trialcs->cpus_allowed, &tmp) < 0)
1559 			return -EINVAL;
1560 	}
1561 
1562 	spin_lock_irq(&callback_lock);
1563 	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1564 
1565 	/*
1566 	 * Make sure that subparts_cpus is a subset of cpus_allowed.
1567 	 */
1568 	if (cs->nr_subparts_cpus) {
1569 		cpumask_and(cs->subparts_cpus, cs->subparts_cpus, cs->cpus_allowed);
1570 		cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1571 	}
1572 	spin_unlock_irq(&callback_lock);
1573 
1574 	update_cpumasks_hier(cs, &tmp);
1575 
1576 	if (cs->partition_root_state) {
1577 		struct cpuset *parent = parent_cs(cs);
1578 
1579 		/*
1580 		 * For partition root, update the cpumasks of sibling
1581 		 * cpusets if they use parent's effective_cpus.
1582 		 */
1583 		if (parent->child_ecpus_count)
1584 			update_sibling_cpumasks(parent, cs, &tmp);
1585 	}
1586 	return 0;
1587 }
1588 
1589 /*
1590  * Migrate memory region from one set of nodes to another.  This is
1591  * performed asynchronously as it can be called from process migration path
1592  * holding locks involved in process management.  All mm migrations are
1593  * performed in the queued order and can be waited for by flushing
1594  * cpuset_migrate_mm_wq.
1595  */
1596 
1597 struct cpuset_migrate_mm_work {
1598 	struct work_struct	work;
1599 	struct mm_struct	*mm;
1600 	nodemask_t		from;
1601 	nodemask_t		to;
1602 };
1603 
cpuset_migrate_mm_workfn(struct work_struct * work)1604 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1605 {
1606 	struct cpuset_migrate_mm_work *mwork =
1607 		container_of(work, struct cpuset_migrate_mm_work, work);
1608 
1609 	/* on a wq worker, no need to worry about %current's mems_allowed */
1610 	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1611 	mmput(mwork->mm);
1612 	kfree(mwork);
1613 }
1614 
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)1615 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1616 							const nodemask_t *to)
1617 {
1618 	struct cpuset_migrate_mm_work *mwork;
1619 
1620 	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1621 	if (mwork) {
1622 		mwork->mm = mm;
1623 		mwork->from = *from;
1624 		mwork->to = *to;
1625 		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1626 		queue_work(cpuset_migrate_mm_wq, &mwork->work);
1627 	} else {
1628 		mmput(mm);
1629 	}
1630 }
1631 
cpuset_post_attach(void)1632 static void cpuset_post_attach(void)
1633 {
1634 	flush_workqueue(cpuset_migrate_mm_wq);
1635 }
1636 
1637 /*
1638  * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1639  * @tsk: the task to change
1640  * @newmems: new nodes that the task will be set
1641  *
1642  * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1643  * and rebind an eventual tasks' mempolicy. If the task is allocating in
1644  * parallel, it might temporarily see an empty intersection, which results in
1645  * a seqlock check and retry before OOM or allocation failure.
1646  */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)1647 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1648 					nodemask_t *newmems)
1649 {
1650 	task_lock(tsk);
1651 
1652 	local_irq_disable();
1653 	write_seqcount_begin(&tsk->mems_allowed_seq);
1654 
1655 	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1656 	mpol_rebind_task(tsk, newmems);
1657 	tsk->mems_allowed = *newmems;
1658 
1659 	write_seqcount_end(&tsk->mems_allowed_seq);
1660 	local_irq_enable();
1661 
1662 	task_unlock(tsk);
1663 }
1664 
1665 static void *cpuset_being_rebound;
1666 
1667 /**
1668  * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1669  * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1670  *
1671  * Iterate through each task of @cs updating its mems_allowed to the
1672  * effective cpuset's.  As this function is called with cpuset_mutex held,
1673  * cpuset membership stays stable.
1674  */
update_tasks_nodemask(struct cpuset * cs)1675 static void update_tasks_nodemask(struct cpuset *cs)
1676 {
1677 	static nodemask_t newmems;	/* protected by cpuset_mutex */
1678 	struct css_task_iter it;
1679 	struct task_struct *task;
1680 
1681 	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1682 
1683 	guarantee_online_mems(cs, &newmems);
1684 
1685 	/*
1686 	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1687 	 * take while holding tasklist_lock.  Forks can happen - the
1688 	 * mpol_dup() cpuset_being_rebound check will catch such forks,
1689 	 * and rebind their vma mempolicies too.  Because we still hold
1690 	 * the global cpuset_mutex, we know that no other rebind effort
1691 	 * will be contending for the global variable cpuset_being_rebound.
1692 	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1693 	 * is idempotent.  Also migrate pages in each mm to new nodes.
1694 	 */
1695 	css_task_iter_start(&cs->css, 0, &it);
1696 	while ((task = css_task_iter_next(&it))) {
1697 		struct mm_struct *mm;
1698 		bool migrate;
1699 
1700 		cpuset_change_task_nodemask(task, &newmems);
1701 
1702 		mm = get_task_mm(task);
1703 		if (!mm)
1704 			continue;
1705 
1706 		migrate = is_memory_migrate(cs);
1707 
1708 		mpol_rebind_mm(mm, &cs->mems_allowed);
1709 		if (migrate)
1710 			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1711 		else
1712 			mmput(mm);
1713 	}
1714 	css_task_iter_end(&it);
1715 
1716 	/*
1717 	 * All the tasks' nodemasks have been updated, update
1718 	 * cs->old_mems_allowed.
1719 	 */
1720 	cs->old_mems_allowed = newmems;
1721 
1722 	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1723 	cpuset_being_rebound = NULL;
1724 }
1725 
1726 /*
1727  * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1728  * @cs: the cpuset to consider
1729  * @new_mems: a temp variable for calculating new effective_mems
1730  *
1731  * When configured nodemask is changed, the effective nodemasks of this cpuset
1732  * and all its descendants need to be updated.
1733  *
1734  * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1735  *
1736  * Called with cpuset_mutex held
1737  */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)1738 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1739 {
1740 	struct cpuset *cp;
1741 	struct cgroup_subsys_state *pos_css;
1742 
1743 	rcu_read_lock();
1744 	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1745 		struct cpuset *parent = parent_cs(cp);
1746 
1747 		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1748 
1749 		/*
1750 		 * If it becomes empty, inherit the effective mask of the
1751 		 * parent, which is guaranteed to have some MEMs.
1752 		 */
1753 		if (is_in_v2_mode() && nodes_empty(*new_mems))
1754 			*new_mems = parent->effective_mems;
1755 
1756 		/* Skip the whole subtree if the nodemask remains the same. */
1757 		if (nodes_equal(*new_mems, cp->effective_mems)) {
1758 			pos_css = css_rightmost_descendant(pos_css);
1759 			continue;
1760 		}
1761 
1762 		if (!css_tryget_online(&cp->css))
1763 			continue;
1764 		rcu_read_unlock();
1765 
1766 		spin_lock_irq(&callback_lock);
1767 		cp->effective_mems = *new_mems;
1768 		spin_unlock_irq(&callback_lock);
1769 
1770 		WARN_ON(!is_in_v2_mode() &&
1771 			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1772 
1773 		update_tasks_nodemask(cp);
1774 
1775 		rcu_read_lock();
1776 		css_put(&cp->css);
1777 	}
1778 	rcu_read_unlock();
1779 }
1780 
1781 /*
1782  * Handle user request to change the 'mems' memory placement
1783  * of a cpuset.  Needs to validate the request, update the
1784  * cpusets mems_allowed, and for each task in the cpuset,
1785  * update mems_allowed and rebind task's mempolicy and any vma
1786  * mempolicies and if the cpuset is marked 'memory_migrate',
1787  * migrate the tasks pages to the new memory.
1788  *
1789  * Call with cpuset_mutex held. May take callback_lock during call.
1790  * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1791  * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1792  * their mempolicies to the cpusets new mems_allowed.
1793  */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1794 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1795 			   const char *buf)
1796 {
1797 	int retval;
1798 
1799 	/*
1800 	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1801 	 * it's read-only
1802 	 */
1803 	if (cs == &top_cpuset) {
1804 		retval = -EACCES;
1805 		goto done;
1806 	}
1807 
1808 	/*
1809 	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1810 	 * Since nodelist_parse() fails on an empty mask, we special case
1811 	 * that parsing.  The validate_change() call ensures that cpusets
1812 	 * with tasks have memory.
1813 	 */
1814 	if (!*buf) {
1815 		nodes_clear(trialcs->mems_allowed);
1816 	} else {
1817 		retval = nodelist_parse(buf, trialcs->mems_allowed);
1818 		if (retval < 0)
1819 			goto done;
1820 
1821 		if (!nodes_subset(trialcs->mems_allowed,
1822 				  top_cpuset.mems_allowed)) {
1823 			retval = -EINVAL;
1824 			goto done;
1825 		}
1826 	}
1827 
1828 	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1829 		retval = 0;		/* Too easy - nothing to do */
1830 		goto done;
1831 	}
1832 	retval = validate_change(cs, trialcs);
1833 	if (retval < 0)
1834 		goto done;
1835 
1836 	spin_lock_irq(&callback_lock);
1837 	cs->mems_allowed = trialcs->mems_allowed;
1838 	spin_unlock_irq(&callback_lock);
1839 
1840 	/* use trialcs->mems_allowed as a temp variable */
1841 	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1842 done:
1843 	return retval;
1844 }
1845 
current_cpuset_is_being_rebound(void)1846 bool current_cpuset_is_being_rebound(void)
1847 {
1848 	bool ret;
1849 
1850 	rcu_read_lock();
1851 	ret = task_cs(current) == cpuset_being_rebound;
1852 	rcu_read_unlock();
1853 
1854 	return ret;
1855 }
1856 
update_relax_domain_level(struct cpuset * cs,s64 val)1857 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1858 {
1859 #ifdef CONFIG_SMP
1860 	if (val < -1 || val >= sched_domain_level_max)
1861 		return -EINVAL;
1862 #endif
1863 
1864 	if (val != cs->relax_domain_level) {
1865 		cs->relax_domain_level = val;
1866 		if (!cpumask_empty(cs->cpus_allowed) &&
1867 		    is_sched_load_balance(cs))
1868 			rebuild_sched_domains_locked();
1869 	}
1870 
1871 	return 0;
1872 }
1873 
1874 /**
1875  * update_tasks_flags - update the spread flags of tasks in the cpuset.
1876  * @cs: the cpuset in which each task's spread flags needs to be changed
1877  *
1878  * Iterate through each task of @cs updating its spread flags.  As this
1879  * function is called with cpuset_mutex held, cpuset membership stays
1880  * stable.
1881  */
update_tasks_flags(struct cpuset * cs)1882 static void update_tasks_flags(struct cpuset *cs)
1883 {
1884 	struct css_task_iter it;
1885 	struct task_struct *task;
1886 
1887 	css_task_iter_start(&cs->css, 0, &it);
1888 	while ((task = css_task_iter_next(&it)))
1889 		cpuset_update_task_spread_flag(cs, task);
1890 	css_task_iter_end(&it);
1891 }
1892 
1893 /*
1894  * update_flag - read a 0 or a 1 in a file and update associated flag
1895  * bit:		the bit to update (see cpuset_flagbits_t)
1896  * cs:		the cpuset to update
1897  * turning_on: 	whether the flag is being set or cleared
1898  *
1899  * Call with cpuset_mutex held.
1900  */
1901 
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)1902 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1903 		       int turning_on)
1904 {
1905 	struct cpuset *trialcs;
1906 	int balance_flag_changed;
1907 	int spread_flag_changed;
1908 	int err;
1909 
1910 	trialcs = alloc_trial_cpuset(cs);
1911 	if (!trialcs)
1912 		return -ENOMEM;
1913 
1914 	if (turning_on)
1915 		set_bit(bit, &trialcs->flags);
1916 	else
1917 		clear_bit(bit, &trialcs->flags);
1918 
1919 	err = validate_change(cs, trialcs);
1920 	if (err < 0)
1921 		goto out;
1922 
1923 	balance_flag_changed = (is_sched_load_balance(cs) !=
1924 				is_sched_load_balance(trialcs));
1925 
1926 	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1927 			|| (is_spread_page(cs) != is_spread_page(trialcs)));
1928 
1929 	spin_lock_irq(&callback_lock);
1930 	cs->flags = trialcs->flags;
1931 	spin_unlock_irq(&callback_lock);
1932 
1933 	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1934 		rebuild_sched_domains_locked();
1935 
1936 	if (spread_flag_changed)
1937 		update_tasks_flags(cs);
1938 out:
1939 	free_cpuset(trialcs);
1940 	return err;
1941 }
1942 
1943 /*
1944  * update_prstate - update partititon_root_state
1945  * cs:	the cpuset to update
1946  * val: 0 - disabled, 1 - enabled
1947  *
1948  * Call with cpuset_mutex held.
1949  */
update_prstate(struct cpuset * cs,int val)1950 static int update_prstate(struct cpuset *cs, int val)
1951 {
1952 	int err;
1953 	struct cpuset *parent = parent_cs(cs);
1954 	struct tmpmasks tmp;
1955 
1956 	if ((val != 0) && (val != 1))
1957 		return -EINVAL;
1958 	if (val == cs->partition_root_state)
1959 		return 0;
1960 
1961 	/*
1962 	 * Cannot force a partial or invalid partition root to a full
1963 	 * partition root.
1964 	 */
1965 	if (val && cs->partition_root_state)
1966 		return -EINVAL;
1967 
1968 	if (alloc_cpumasks(NULL, &tmp))
1969 		return -ENOMEM;
1970 
1971 	err = -EINVAL;
1972 	if (!cs->partition_root_state) {
1973 		/*
1974 		 * Turning on partition root requires setting the
1975 		 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1976 		 * cannot be NULL.
1977 		 */
1978 		if (cpumask_empty(cs->cpus_allowed))
1979 			goto out;
1980 
1981 		err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1982 		if (err)
1983 			goto out;
1984 
1985 		err = update_parent_subparts_cpumask(cs, partcmd_enable,
1986 						     NULL, &tmp);
1987 		if (err) {
1988 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1989 			goto out;
1990 		}
1991 		cs->partition_root_state = PRS_ENABLED;
1992 	} else {
1993 		/*
1994 		 * Turning off partition root will clear the
1995 		 * CS_CPU_EXCLUSIVE bit.
1996 		 */
1997 		if (cs->partition_root_state == PRS_ERROR) {
1998 			cs->partition_root_state = 0;
1999 			update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2000 			err = 0;
2001 			goto out;
2002 		}
2003 
2004 		err = update_parent_subparts_cpumask(cs, partcmd_disable,
2005 						     NULL, &tmp);
2006 		if (err)
2007 			goto out;
2008 
2009 		cs->partition_root_state = 0;
2010 
2011 		/* Turning off CS_CPU_EXCLUSIVE will not return error */
2012 		update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2013 	}
2014 
2015 	update_tasks_cpumask(parent);
2016 
2017 	if (parent->child_ecpus_count)
2018 		update_sibling_cpumasks(parent, cs, &tmp);
2019 
2020 	rebuild_sched_domains_locked();
2021 out:
2022 	free_cpumasks(NULL, &tmp);
2023 	return err;
2024 }
2025 
2026 /*
2027  * Frequency meter - How fast is some event occurring?
2028  *
2029  * These routines manage a digitally filtered, constant time based,
2030  * event frequency meter.  There are four routines:
2031  *   fmeter_init() - initialize a frequency meter.
2032  *   fmeter_markevent() - called each time the event happens.
2033  *   fmeter_getrate() - returns the recent rate of such events.
2034  *   fmeter_update() - internal routine used to update fmeter.
2035  *
2036  * A common data structure is passed to each of these routines,
2037  * which is used to keep track of the state required to manage the
2038  * frequency meter and its digital filter.
2039  *
2040  * The filter works on the number of events marked per unit time.
2041  * The filter is single-pole low-pass recursive (IIR).  The time unit
2042  * is 1 second.  Arithmetic is done using 32-bit integers scaled to
2043  * simulate 3 decimal digits of precision (multiplied by 1000).
2044  *
2045  * With an FM_COEF of 933, and a time base of 1 second, the filter
2046  * has a half-life of 10 seconds, meaning that if the events quit
2047  * happening, then the rate returned from the fmeter_getrate()
2048  * will be cut in half each 10 seconds, until it converges to zero.
2049  *
2050  * It is not worth doing a real infinitely recursive filter.  If more
2051  * than FM_MAXTICKS ticks have elapsed since the last filter event,
2052  * just compute FM_MAXTICKS ticks worth, by which point the level
2053  * will be stable.
2054  *
2055  * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2056  * arithmetic overflow in the fmeter_update() routine.
2057  *
2058  * Given the simple 32 bit integer arithmetic used, this meter works
2059  * best for reporting rates between one per millisecond (msec) and
2060  * one per 32 (approx) seconds.  At constant rates faster than one
2061  * per msec it maxes out at values just under 1,000,000.  At constant
2062  * rates between one per msec, and one per second it will stabilize
2063  * to a value N*1000, where N is the rate of events per second.
2064  * At constant rates between one per second and one per 32 seconds,
2065  * it will be choppy, moving up on the seconds that have an event,
2066  * and then decaying until the next event.  At rates slower than
2067  * about one in 32 seconds, it decays all the way back to zero between
2068  * each event.
2069  */
2070 
2071 #define FM_COEF 933		/* coefficient for half-life of 10 secs */
2072 #define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
2073 #define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
2074 #define FM_SCALE 1000		/* faux fixed point scale */
2075 
2076 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)2077 static void fmeter_init(struct fmeter *fmp)
2078 {
2079 	fmp->cnt = 0;
2080 	fmp->val = 0;
2081 	fmp->time = 0;
2082 	spin_lock_init(&fmp->lock);
2083 }
2084 
2085 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)2086 static void fmeter_update(struct fmeter *fmp)
2087 {
2088 	time64_t now;
2089 	u32 ticks;
2090 
2091 	now = ktime_get_seconds();
2092 	ticks = now - fmp->time;
2093 
2094 	if (ticks == 0)
2095 		return;
2096 
2097 	ticks = min(FM_MAXTICKS, ticks);
2098 	while (ticks-- > 0)
2099 		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2100 	fmp->time = now;
2101 
2102 	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2103 	fmp->cnt = 0;
2104 }
2105 
2106 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)2107 static void fmeter_markevent(struct fmeter *fmp)
2108 {
2109 	spin_lock(&fmp->lock);
2110 	fmeter_update(fmp);
2111 	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2112 	spin_unlock(&fmp->lock);
2113 }
2114 
2115 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)2116 static int fmeter_getrate(struct fmeter *fmp)
2117 {
2118 	int val;
2119 
2120 	spin_lock(&fmp->lock);
2121 	fmeter_update(fmp);
2122 	val = fmp->val;
2123 	spin_unlock(&fmp->lock);
2124 	return val;
2125 }
2126 
2127 static struct cpuset *cpuset_attach_old_cs;
2128 
2129 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)2130 static int cpuset_can_attach(struct cgroup_taskset *tset)
2131 {
2132 	struct cgroup_subsys_state *css;
2133 	struct cpuset *cs;
2134 	struct task_struct *task;
2135 	int ret;
2136 
2137 	/* used later by cpuset_attach() */
2138 	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2139 	cs = css_cs(css);
2140 
2141 	percpu_down_write(&cpuset_rwsem);
2142 
2143 	/* allow moving tasks into an empty cpuset if on default hierarchy */
2144 	ret = -ENOSPC;
2145 	if (!is_in_v2_mode() &&
2146 	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2147 		goto out_unlock;
2148 
2149 	cgroup_taskset_for_each(task, css, tset) {
2150 		ret = task_can_attach(task, cs->cpus_allowed);
2151 		if (ret)
2152 			goto out_unlock;
2153 		ret = security_task_setscheduler(task);
2154 		if (ret)
2155 			goto out_unlock;
2156 	}
2157 
2158 	/*
2159 	 * Mark attach is in progress.  This makes validate_change() fail
2160 	 * changes which zero cpus/mems_allowed.
2161 	 */
2162 	cs->attach_in_progress++;
2163 	ret = 0;
2164 out_unlock:
2165 	percpu_up_write(&cpuset_rwsem);
2166 	return ret;
2167 }
2168 
cpuset_cancel_attach(struct cgroup_taskset * tset)2169 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2170 {
2171 	struct cgroup_subsys_state *css;
2172 	struct cpuset *cs;
2173 
2174 	cgroup_taskset_first(tset, &css);
2175 	cs = css_cs(css);
2176 
2177 	percpu_down_write(&cpuset_rwsem);
2178 	cs->attach_in_progress--;
2179 	if (!cs->attach_in_progress)
2180 		wake_up(&cpuset_attach_wq);
2181 	percpu_up_write(&cpuset_rwsem);
2182 }
2183 
2184 /*
2185  * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
2186  * but we can't allocate it dynamically there.  Define it global and
2187  * allocate from cpuset_init().
2188  */
2189 static cpumask_var_t cpus_attach;
2190 
cpuset_attach(struct cgroup_taskset * tset)2191 static void cpuset_attach(struct cgroup_taskset *tset)
2192 {
2193 	/* static buf protected by cpuset_mutex */
2194 	static nodemask_t cpuset_attach_nodemask_to;
2195 	struct task_struct *task;
2196 	struct task_struct *leader;
2197 	struct cgroup_subsys_state *css;
2198 	struct cpuset *cs;
2199 	struct cpuset *oldcs = cpuset_attach_old_cs;
2200 
2201 	cgroup_taskset_first(tset, &css);
2202 	cs = css_cs(css);
2203 
2204 	lockdep_assert_cpus_held();	/* see cgroup_attach_lock() */
2205 	percpu_down_write(&cpuset_rwsem);
2206 
2207 	/* prepare for attach */
2208 	if (cs == &top_cpuset)
2209 		cpumask_copy(cpus_attach, cpu_possible_mask);
2210 	else
2211 		guarantee_online_cpus(cs, cpus_attach);
2212 
2213 	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2214 
2215 	cgroup_taskset_for_each(task, css, tset) {
2216 		/*
2217 		 * can_attach beforehand should guarantee that this doesn't
2218 		 * fail.  TODO: have a better way to handle failure here
2219 		 */
2220 		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2221 
2222 		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2223 		cpuset_update_task_spread_flag(cs, task);
2224 	}
2225 
2226 	/*
2227 	 * Change mm for all threadgroup leaders. This is expensive and may
2228 	 * sleep and should be moved outside migration path proper.
2229 	 */
2230 	cpuset_attach_nodemask_to = cs->effective_mems;
2231 	cgroup_taskset_for_each_leader(leader, css, tset) {
2232 		struct mm_struct *mm = get_task_mm(leader);
2233 
2234 		if (mm) {
2235 			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2236 
2237 			/*
2238 			 * old_mems_allowed is the same with mems_allowed
2239 			 * here, except if this task is being moved
2240 			 * automatically due to hotplug.  In that case
2241 			 * @mems_allowed has been updated and is empty, so
2242 			 * @old_mems_allowed is the right nodesets that we
2243 			 * migrate mm from.
2244 			 */
2245 			if (is_memory_migrate(cs))
2246 				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2247 						  &cpuset_attach_nodemask_to);
2248 			else
2249 				mmput(mm);
2250 		}
2251 	}
2252 
2253 	cs->old_mems_allowed = cpuset_attach_nodemask_to;
2254 
2255 	cs->attach_in_progress--;
2256 	if (!cs->attach_in_progress)
2257 		wake_up(&cpuset_attach_wq);
2258 
2259 	percpu_up_write(&cpuset_rwsem);
2260 }
2261 
2262 /* The various types of files and directories in a cpuset file system */
2263 
2264 typedef enum {
2265 	FILE_MEMORY_MIGRATE,
2266 	FILE_CPULIST,
2267 	FILE_MEMLIST,
2268 	FILE_EFFECTIVE_CPULIST,
2269 	FILE_EFFECTIVE_MEMLIST,
2270 	FILE_SUBPARTS_CPULIST,
2271 	FILE_CPU_EXCLUSIVE,
2272 	FILE_MEM_EXCLUSIVE,
2273 	FILE_MEM_HARDWALL,
2274 	FILE_SCHED_LOAD_BALANCE,
2275 	FILE_PARTITION_ROOT,
2276 	FILE_SCHED_RELAX_DOMAIN_LEVEL,
2277 	FILE_MEMORY_PRESSURE_ENABLED,
2278 	FILE_MEMORY_PRESSURE,
2279 	FILE_SPREAD_PAGE,
2280 	FILE_SPREAD_SLAB,
2281 } cpuset_filetype_t;
2282 
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2283 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2284 			    u64 val)
2285 {
2286 	struct cpuset *cs = css_cs(css);
2287 	cpuset_filetype_t type = cft->private;
2288 	int retval = 0;
2289 
2290 	get_online_cpus();
2291 	percpu_down_write(&cpuset_rwsem);
2292 	if (!is_cpuset_online(cs)) {
2293 		retval = -ENODEV;
2294 		goto out_unlock;
2295 	}
2296 
2297 	switch (type) {
2298 	case FILE_CPU_EXCLUSIVE:
2299 		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2300 		break;
2301 	case FILE_MEM_EXCLUSIVE:
2302 		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2303 		break;
2304 	case FILE_MEM_HARDWALL:
2305 		retval = update_flag(CS_MEM_HARDWALL, cs, val);
2306 		break;
2307 	case FILE_SCHED_LOAD_BALANCE:
2308 		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2309 		break;
2310 	case FILE_MEMORY_MIGRATE:
2311 		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2312 		break;
2313 	case FILE_MEMORY_PRESSURE_ENABLED:
2314 		cpuset_memory_pressure_enabled = !!val;
2315 		break;
2316 	case FILE_SPREAD_PAGE:
2317 		retval = update_flag(CS_SPREAD_PAGE, cs, val);
2318 		break;
2319 	case FILE_SPREAD_SLAB:
2320 		retval = update_flag(CS_SPREAD_SLAB, cs, val);
2321 		break;
2322 	default:
2323 		retval = -EINVAL;
2324 		break;
2325 	}
2326 out_unlock:
2327 	percpu_up_write(&cpuset_rwsem);
2328 	put_online_cpus();
2329 	return retval;
2330 }
2331 
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)2332 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2333 			    s64 val)
2334 {
2335 	struct cpuset *cs = css_cs(css);
2336 	cpuset_filetype_t type = cft->private;
2337 	int retval = -ENODEV;
2338 
2339 	get_online_cpus();
2340 	percpu_down_write(&cpuset_rwsem);
2341 	if (!is_cpuset_online(cs))
2342 		goto out_unlock;
2343 
2344 	switch (type) {
2345 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2346 		retval = update_relax_domain_level(cs, val);
2347 		break;
2348 	default:
2349 		retval = -EINVAL;
2350 		break;
2351 	}
2352 out_unlock:
2353 	percpu_up_write(&cpuset_rwsem);
2354 	put_online_cpus();
2355 	return retval;
2356 }
2357 
2358 /*
2359  * Common handling for a write to a "cpus" or "mems" file.
2360  */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2361 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2362 				    char *buf, size_t nbytes, loff_t off)
2363 {
2364 	struct cpuset *cs = css_cs(of_css(of));
2365 	struct cpuset *trialcs;
2366 	int retval = -ENODEV;
2367 
2368 	buf = strstrip(buf);
2369 
2370 	/*
2371 	 * CPU or memory hotunplug may leave @cs w/o any execution
2372 	 * resources, in which case the hotplug code asynchronously updates
2373 	 * configuration and transfers all tasks to the nearest ancestor
2374 	 * which can execute.
2375 	 *
2376 	 * As writes to "cpus" or "mems" may restore @cs's execution
2377 	 * resources, wait for the previously scheduled operations before
2378 	 * proceeding, so that we don't end up keep removing tasks added
2379 	 * after execution capability is restored.
2380 	 *
2381 	 * cpuset_hotplug_work calls back into cgroup core via
2382 	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2383 	 * operation like this one can lead to a deadlock through kernfs
2384 	 * active_ref protection.  Let's break the protection.  Losing the
2385 	 * protection is okay as we check whether @cs is online after
2386 	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
2387 	 * hierarchies.
2388 	 */
2389 	css_get(&cs->css);
2390 	kernfs_break_active_protection(of->kn);
2391 	flush_work(&cpuset_hotplug_work);
2392 
2393 	get_online_cpus();
2394 	percpu_down_write(&cpuset_rwsem);
2395 	if (!is_cpuset_online(cs))
2396 		goto out_unlock;
2397 
2398 	trialcs = alloc_trial_cpuset(cs);
2399 	if (!trialcs) {
2400 		retval = -ENOMEM;
2401 		goto out_unlock;
2402 	}
2403 
2404 	switch (of_cft(of)->private) {
2405 	case FILE_CPULIST:
2406 		retval = update_cpumask(cs, trialcs, buf);
2407 		break;
2408 	case FILE_MEMLIST:
2409 		retval = update_nodemask(cs, trialcs, buf);
2410 		break;
2411 	default:
2412 		retval = -EINVAL;
2413 		break;
2414 	}
2415 
2416 	free_cpuset(trialcs);
2417 out_unlock:
2418 	percpu_up_write(&cpuset_rwsem);
2419 	put_online_cpus();
2420 	kernfs_unbreak_active_protection(of->kn);
2421 	css_put(&cs->css);
2422 	flush_workqueue(cpuset_migrate_mm_wq);
2423 	return retval ?: nbytes;
2424 }
2425 
2426 /*
2427  * These ascii lists should be read in a single call, by using a user
2428  * buffer large enough to hold the entire map.  If read in smaller
2429  * chunks, there is no guarantee of atomicity.  Since the display format
2430  * used, list of ranges of sequential numbers, is variable length,
2431  * and since these maps can change value dynamically, one could read
2432  * gibberish by doing partial reads while a list was changing.
2433  */
cpuset_common_seq_show(struct seq_file * sf,void * v)2434 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2435 {
2436 	struct cpuset *cs = css_cs(seq_css(sf));
2437 	cpuset_filetype_t type = seq_cft(sf)->private;
2438 	int ret = 0;
2439 
2440 	spin_lock_irq(&callback_lock);
2441 
2442 	switch (type) {
2443 	case FILE_CPULIST:
2444 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2445 		break;
2446 	case FILE_MEMLIST:
2447 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2448 		break;
2449 	case FILE_EFFECTIVE_CPULIST:
2450 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2451 		break;
2452 	case FILE_EFFECTIVE_MEMLIST:
2453 		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2454 		break;
2455 	case FILE_SUBPARTS_CPULIST:
2456 		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2457 		break;
2458 	default:
2459 		ret = -EINVAL;
2460 	}
2461 
2462 	spin_unlock_irq(&callback_lock);
2463 	return ret;
2464 }
2465 
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2466 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2467 {
2468 	struct cpuset *cs = css_cs(css);
2469 	cpuset_filetype_t type = cft->private;
2470 	switch (type) {
2471 	case FILE_CPU_EXCLUSIVE:
2472 		return is_cpu_exclusive(cs);
2473 	case FILE_MEM_EXCLUSIVE:
2474 		return is_mem_exclusive(cs);
2475 	case FILE_MEM_HARDWALL:
2476 		return is_mem_hardwall(cs);
2477 	case FILE_SCHED_LOAD_BALANCE:
2478 		return is_sched_load_balance(cs);
2479 	case FILE_MEMORY_MIGRATE:
2480 		return is_memory_migrate(cs);
2481 	case FILE_MEMORY_PRESSURE_ENABLED:
2482 		return cpuset_memory_pressure_enabled;
2483 	case FILE_MEMORY_PRESSURE:
2484 		return fmeter_getrate(&cs->fmeter);
2485 	case FILE_SPREAD_PAGE:
2486 		return is_spread_page(cs);
2487 	case FILE_SPREAD_SLAB:
2488 		return is_spread_slab(cs);
2489 	default:
2490 		BUG();
2491 	}
2492 
2493 	/* Unreachable but makes gcc happy */
2494 	return 0;
2495 }
2496 
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)2497 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2498 {
2499 	struct cpuset *cs = css_cs(css);
2500 	cpuset_filetype_t type = cft->private;
2501 	switch (type) {
2502 	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2503 		return cs->relax_domain_level;
2504 	default:
2505 		BUG();
2506 	}
2507 
2508 	/* Unrechable but makes gcc happy */
2509 	return 0;
2510 }
2511 
sched_partition_show(struct seq_file * seq,void * v)2512 static int sched_partition_show(struct seq_file *seq, void *v)
2513 {
2514 	struct cpuset *cs = css_cs(seq_css(seq));
2515 
2516 	switch (cs->partition_root_state) {
2517 	case PRS_ENABLED:
2518 		seq_puts(seq, "root\n");
2519 		break;
2520 	case PRS_DISABLED:
2521 		seq_puts(seq, "member\n");
2522 		break;
2523 	case PRS_ERROR:
2524 		seq_puts(seq, "root invalid\n");
2525 		break;
2526 	}
2527 	return 0;
2528 }
2529 
sched_partition_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2530 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2531 				     size_t nbytes, loff_t off)
2532 {
2533 	struct cpuset *cs = css_cs(of_css(of));
2534 	int val;
2535 	int retval = -ENODEV;
2536 
2537 	buf = strstrip(buf);
2538 
2539 	/*
2540 	 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2541 	 */
2542 	if (!strcmp(buf, "root"))
2543 		val = PRS_ENABLED;
2544 	else if (!strcmp(buf, "member"))
2545 		val = PRS_DISABLED;
2546 	else
2547 		return -EINVAL;
2548 
2549 	css_get(&cs->css);
2550 	get_online_cpus();
2551 	percpu_down_write(&cpuset_rwsem);
2552 	if (!is_cpuset_online(cs))
2553 		goto out_unlock;
2554 
2555 	retval = update_prstate(cs, val);
2556 out_unlock:
2557 	percpu_up_write(&cpuset_rwsem);
2558 	put_online_cpus();
2559 	css_put(&cs->css);
2560 	return retval ?: nbytes;
2561 }
2562 
2563 /*
2564  * for the common functions, 'private' gives the type of file
2565  */
2566 
2567 static struct cftype legacy_files[] = {
2568 	{
2569 		.name = "cpus",
2570 		.seq_show = cpuset_common_seq_show,
2571 		.write = cpuset_write_resmask,
2572 		.max_write_len = (100U + 6 * NR_CPUS),
2573 		.private = FILE_CPULIST,
2574 	},
2575 
2576 	{
2577 		.name = "mems",
2578 		.seq_show = cpuset_common_seq_show,
2579 		.write = cpuset_write_resmask,
2580 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2581 		.private = FILE_MEMLIST,
2582 	},
2583 
2584 	{
2585 		.name = "effective_cpus",
2586 		.seq_show = cpuset_common_seq_show,
2587 		.private = FILE_EFFECTIVE_CPULIST,
2588 	},
2589 
2590 	{
2591 		.name = "effective_mems",
2592 		.seq_show = cpuset_common_seq_show,
2593 		.private = FILE_EFFECTIVE_MEMLIST,
2594 	},
2595 
2596 	{
2597 		.name = "cpu_exclusive",
2598 		.read_u64 = cpuset_read_u64,
2599 		.write_u64 = cpuset_write_u64,
2600 		.private = FILE_CPU_EXCLUSIVE,
2601 	},
2602 
2603 	{
2604 		.name = "mem_exclusive",
2605 		.read_u64 = cpuset_read_u64,
2606 		.write_u64 = cpuset_write_u64,
2607 		.private = FILE_MEM_EXCLUSIVE,
2608 	},
2609 
2610 	{
2611 		.name = "mem_hardwall",
2612 		.read_u64 = cpuset_read_u64,
2613 		.write_u64 = cpuset_write_u64,
2614 		.private = FILE_MEM_HARDWALL,
2615 	},
2616 
2617 	{
2618 		.name = "sched_load_balance",
2619 		.read_u64 = cpuset_read_u64,
2620 		.write_u64 = cpuset_write_u64,
2621 		.private = FILE_SCHED_LOAD_BALANCE,
2622 	},
2623 
2624 	{
2625 		.name = "sched_relax_domain_level",
2626 		.read_s64 = cpuset_read_s64,
2627 		.write_s64 = cpuset_write_s64,
2628 		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2629 	},
2630 
2631 	{
2632 		.name = "memory_migrate",
2633 		.read_u64 = cpuset_read_u64,
2634 		.write_u64 = cpuset_write_u64,
2635 		.private = FILE_MEMORY_MIGRATE,
2636 	},
2637 
2638 	{
2639 		.name = "memory_pressure",
2640 		.read_u64 = cpuset_read_u64,
2641 		.private = FILE_MEMORY_PRESSURE,
2642 	},
2643 
2644 	{
2645 		.name = "memory_spread_page",
2646 		.read_u64 = cpuset_read_u64,
2647 		.write_u64 = cpuset_write_u64,
2648 		.private = FILE_SPREAD_PAGE,
2649 	},
2650 
2651 	{
2652 		.name = "memory_spread_slab",
2653 		.read_u64 = cpuset_read_u64,
2654 		.write_u64 = cpuset_write_u64,
2655 		.private = FILE_SPREAD_SLAB,
2656 	},
2657 
2658 	{
2659 		.name = "memory_pressure_enabled",
2660 		.flags = CFTYPE_ONLY_ON_ROOT,
2661 		.read_u64 = cpuset_read_u64,
2662 		.write_u64 = cpuset_write_u64,
2663 		.private = FILE_MEMORY_PRESSURE_ENABLED,
2664 	},
2665 
2666 	{ }	/* terminate */
2667 };
2668 
2669 /*
2670  * This is currently a minimal set for the default hierarchy. It can be
2671  * expanded later on by migrating more features and control files from v1.
2672  */
2673 static struct cftype dfl_files[] = {
2674 	{
2675 		.name = "cpus",
2676 		.seq_show = cpuset_common_seq_show,
2677 		.write = cpuset_write_resmask,
2678 		.max_write_len = (100U + 6 * NR_CPUS),
2679 		.private = FILE_CPULIST,
2680 		.flags = CFTYPE_NOT_ON_ROOT,
2681 	},
2682 
2683 	{
2684 		.name = "mems",
2685 		.seq_show = cpuset_common_seq_show,
2686 		.write = cpuset_write_resmask,
2687 		.max_write_len = (100U + 6 * MAX_NUMNODES),
2688 		.private = FILE_MEMLIST,
2689 		.flags = CFTYPE_NOT_ON_ROOT,
2690 	},
2691 
2692 	{
2693 		.name = "cpus.effective",
2694 		.seq_show = cpuset_common_seq_show,
2695 		.private = FILE_EFFECTIVE_CPULIST,
2696 	},
2697 
2698 	{
2699 		.name = "mems.effective",
2700 		.seq_show = cpuset_common_seq_show,
2701 		.private = FILE_EFFECTIVE_MEMLIST,
2702 	},
2703 
2704 	{
2705 		.name = "cpus.partition",
2706 		.seq_show = sched_partition_show,
2707 		.write = sched_partition_write,
2708 		.private = FILE_PARTITION_ROOT,
2709 		.flags = CFTYPE_NOT_ON_ROOT,
2710 	},
2711 
2712 	{
2713 		.name = "cpus.subpartitions",
2714 		.seq_show = cpuset_common_seq_show,
2715 		.private = FILE_SUBPARTS_CPULIST,
2716 		.flags = CFTYPE_DEBUG,
2717 	},
2718 
2719 	{ }	/* terminate */
2720 };
2721 
2722 
2723 /*
2724  *	cpuset_css_alloc - allocate a cpuset css
2725  *	cgrp:	control group that the new cpuset will be part of
2726  */
2727 
2728 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)2729 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2730 {
2731 	struct cpuset *cs;
2732 
2733 	if (!parent_css)
2734 		return &top_cpuset.css;
2735 
2736 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2737 	if (!cs)
2738 		return ERR_PTR(-ENOMEM);
2739 
2740 	if (alloc_cpumasks(cs, NULL)) {
2741 		kfree(cs);
2742 		return ERR_PTR(-ENOMEM);
2743 	}
2744 
2745 	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2746 	nodes_clear(cs->mems_allowed);
2747 	nodes_clear(cs->effective_mems);
2748 	fmeter_init(&cs->fmeter);
2749 	cs->relax_domain_level = -1;
2750 
2751 	return &cs->css;
2752 }
2753 
cpuset_css_online(struct cgroup_subsys_state * css)2754 static int cpuset_css_online(struct cgroup_subsys_state *css)
2755 {
2756 	struct cpuset *cs = css_cs(css);
2757 	struct cpuset *parent = parent_cs(cs);
2758 	struct cpuset *tmp_cs;
2759 	struct cgroup_subsys_state *pos_css;
2760 
2761 	if (!parent)
2762 		return 0;
2763 
2764 	get_online_cpus();
2765 	percpu_down_write(&cpuset_rwsem);
2766 
2767 	set_bit(CS_ONLINE, &cs->flags);
2768 	if (is_spread_page(parent))
2769 		set_bit(CS_SPREAD_PAGE, &cs->flags);
2770 	if (is_spread_slab(parent))
2771 		set_bit(CS_SPREAD_SLAB, &cs->flags);
2772 
2773 	cpuset_inc();
2774 
2775 	spin_lock_irq(&callback_lock);
2776 	if (is_in_v2_mode()) {
2777 		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2778 		cs->effective_mems = parent->effective_mems;
2779 		cs->use_parent_ecpus = true;
2780 		parent->child_ecpus_count++;
2781 	}
2782 	spin_unlock_irq(&callback_lock);
2783 
2784 	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2785 		goto out_unlock;
2786 
2787 	/*
2788 	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2789 	 * set.  This flag handling is implemented in cgroup core for
2790 	 * histrical reasons - the flag may be specified during mount.
2791 	 *
2792 	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2793 	 * refuse to clone the configuration - thereby refusing the task to
2794 	 * be entered, and as a result refusing the sys_unshare() or
2795 	 * clone() which initiated it.  If this becomes a problem for some
2796 	 * users who wish to allow that scenario, then this could be
2797 	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2798 	 * (and likewise for mems) to the new cgroup.
2799 	 */
2800 	rcu_read_lock();
2801 	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2802 		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2803 			rcu_read_unlock();
2804 			goto out_unlock;
2805 		}
2806 	}
2807 	rcu_read_unlock();
2808 
2809 	spin_lock_irq(&callback_lock);
2810 	cs->mems_allowed = parent->mems_allowed;
2811 	cs->effective_mems = parent->mems_allowed;
2812 	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2813 	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2814 	spin_unlock_irq(&callback_lock);
2815 out_unlock:
2816 	percpu_up_write(&cpuset_rwsem);
2817 	put_online_cpus();
2818 	return 0;
2819 }
2820 
2821 /*
2822  * If the cpuset being removed has its flag 'sched_load_balance'
2823  * enabled, then simulate turning sched_load_balance off, which
2824  * will call rebuild_sched_domains_locked(). That is not needed
2825  * in the default hierarchy where only changes in partition
2826  * will cause repartitioning.
2827  *
2828  * If the cpuset has the 'sched.partition' flag enabled, simulate
2829  * turning 'sched.partition" off.
2830  */
2831 
cpuset_css_offline(struct cgroup_subsys_state * css)2832 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2833 {
2834 	struct cpuset *cs = css_cs(css);
2835 
2836 	get_online_cpus();
2837 	percpu_down_write(&cpuset_rwsem);
2838 
2839 	if (is_partition_root(cs))
2840 		update_prstate(cs, 0);
2841 
2842 	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2843 	    is_sched_load_balance(cs))
2844 		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2845 
2846 	if (cs->use_parent_ecpus) {
2847 		struct cpuset *parent = parent_cs(cs);
2848 
2849 		cs->use_parent_ecpus = false;
2850 		parent->child_ecpus_count--;
2851 	}
2852 
2853 	cpuset_dec();
2854 	clear_bit(CS_ONLINE, &cs->flags);
2855 
2856 	percpu_up_write(&cpuset_rwsem);
2857 	put_online_cpus();
2858 }
2859 
cpuset_css_free(struct cgroup_subsys_state * css)2860 static void cpuset_css_free(struct cgroup_subsys_state *css)
2861 {
2862 	struct cpuset *cs = css_cs(css);
2863 
2864 	free_cpuset(cs);
2865 }
2866 
cpuset_bind(struct cgroup_subsys_state * root_css)2867 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2868 {
2869 	percpu_down_write(&cpuset_rwsem);
2870 	spin_lock_irq(&callback_lock);
2871 
2872 	if (is_in_v2_mode()) {
2873 		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2874 		top_cpuset.mems_allowed = node_possible_map;
2875 	} else {
2876 		cpumask_copy(top_cpuset.cpus_allowed,
2877 			     top_cpuset.effective_cpus);
2878 		top_cpuset.mems_allowed = top_cpuset.effective_mems;
2879 	}
2880 
2881 	spin_unlock_irq(&callback_lock);
2882 	percpu_up_write(&cpuset_rwsem);
2883 }
2884 
2885 /*
2886  * Make sure the new task conform to the current state of its parent,
2887  * which could have been changed by cpuset just after it inherits the
2888  * state from the parent and before it sits on the cgroup's task list.
2889  */
cpuset_fork(struct task_struct * task)2890 static void cpuset_fork(struct task_struct *task)
2891 {
2892 	if (task_css_is_root(task, cpuset_cgrp_id))
2893 		return;
2894 
2895 	set_cpus_allowed_ptr(task, current->cpus_ptr);
2896 	task->mems_allowed = current->mems_allowed;
2897 }
2898 
2899 struct cgroup_subsys cpuset_cgrp_subsys = {
2900 	.css_alloc	= cpuset_css_alloc,
2901 	.css_online	= cpuset_css_online,
2902 	.css_offline	= cpuset_css_offline,
2903 	.css_free	= cpuset_css_free,
2904 	.can_attach	= cpuset_can_attach,
2905 	.cancel_attach	= cpuset_cancel_attach,
2906 	.attach		= cpuset_attach,
2907 	.post_attach	= cpuset_post_attach,
2908 	.bind		= cpuset_bind,
2909 	.fork		= cpuset_fork,
2910 	.legacy_cftypes	= legacy_files,
2911 	.dfl_cftypes	= dfl_files,
2912 	.early_init	= true,
2913 	.threaded	= true,
2914 };
2915 
2916 /**
2917  * cpuset_init - initialize cpusets at system boot
2918  *
2919  * Description: Initialize top_cpuset
2920  **/
2921 
cpuset_init(void)2922 int __init cpuset_init(void)
2923 {
2924 	BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2925 
2926 	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2927 	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2928 	BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2929 
2930 	cpumask_setall(top_cpuset.cpus_allowed);
2931 	nodes_setall(top_cpuset.mems_allowed);
2932 	cpumask_setall(top_cpuset.effective_cpus);
2933 	nodes_setall(top_cpuset.effective_mems);
2934 
2935 	fmeter_init(&top_cpuset.fmeter);
2936 	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2937 	top_cpuset.relax_domain_level = -1;
2938 
2939 	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2940 
2941 	return 0;
2942 }
2943 
2944 /*
2945  * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2946  * or memory nodes, we need to walk over the cpuset hierarchy,
2947  * removing that CPU or node from all cpusets.  If this removes the
2948  * last CPU or node from a cpuset, then move the tasks in the empty
2949  * cpuset to its next-highest non-empty parent.
2950  */
remove_tasks_in_empty_cpuset(struct cpuset * cs)2951 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2952 {
2953 	struct cpuset *parent;
2954 
2955 	/*
2956 	 * Find its next-highest non-empty parent, (top cpuset
2957 	 * has online cpus, so can't be empty).
2958 	 */
2959 	parent = parent_cs(cs);
2960 	while (cpumask_empty(parent->cpus_allowed) ||
2961 			nodes_empty(parent->mems_allowed))
2962 		parent = parent_cs(parent);
2963 
2964 	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2965 		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2966 		pr_cont_cgroup_name(cs->css.cgroup);
2967 		pr_cont("\n");
2968 	}
2969 }
2970 
2971 static void
hotplug_update_tasks_legacy(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)2972 hotplug_update_tasks_legacy(struct cpuset *cs,
2973 			    struct cpumask *new_cpus, nodemask_t *new_mems,
2974 			    bool cpus_updated, bool mems_updated)
2975 {
2976 	bool is_empty;
2977 
2978 	spin_lock_irq(&callback_lock);
2979 	cpumask_copy(cs->cpus_allowed, new_cpus);
2980 	cpumask_copy(cs->effective_cpus, new_cpus);
2981 	cs->mems_allowed = *new_mems;
2982 	cs->effective_mems = *new_mems;
2983 	spin_unlock_irq(&callback_lock);
2984 
2985 	/*
2986 	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2987 	 * as the tasks will be migratecd to an ancestor.
2988 	 */
2989 	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2990 		update_tasks_cpumask(cs);
2991 	if (mems_updated && !nodes_empty(cs->mems_allowed))
2992 		update_tasks_nodemask(cs);
2993 
2994 	is_empty = cpumask_empty(cs->cpus_allowed) ||
2995 		   nodes_empty(cs->mems_allowed);
2996 
2997 	percpu_up_write(&cpuset_rwsem);
2998 
2999 	/*
3000 	 * Move tasks to the nearest ancestor with execution resources,
3001 	 * This is full cgroup operation which will also call back into
3002 	 * cpuset. Should be done outside any lock.
3003 	 */
3004 	if (is_empty)
3005 		remove_tasks_in_empty_cpuset(cs);
3006 
3007 	percpu_down_write(&cpuset_rwsem);
3008 }
3009 
3010 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3011 hotplug_update_tasks(struct cpuset *cs,
3012 		     struct cpumask *new_cpus, nodemask_t *new_mems,
3013 		     bool cpus_updated, bool mems_updated)
3014 {
3015 	if (cpumask_empty(new_cpus))
3016 		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3017 	if (nodes_empty(*new_mems))
3018 		*new_mems = parent_cs(cs)->effective_mems;
3019 
3020 	spin_lock_irq(&callback_lock);
3021 	cpumask_copy(cs->effective_cpus, new_cpus);
3022 	cs->effective_mems = *new_mems;
3023 	spin_unlock_irq(&callback_lock);
3024 
3025 	if (cpus_updated)
3026 		update_tasks_cpumask(cs);
3027 	if (mems_updated)
3028 		update_tasks_nodemask(cs);
3029 }
3030 
3031 static bool force_rebuild;
3032 
cpuset_force_rebuild(void)3033 void cpuset_force_rebuild(void)
3034 {
3035 	force_rebuild = true;
3036 }
3037 
3038 /**
3039  * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3040  * @cs: cpuset in interest
3041  * @tmp: the tmpmasks structure pointer
3042  *
3043  * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3044  * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
3045  * all its tasks are moved to the nearest ancestor with both resources.
3046  */
cpuset_hotplug_update_tasks(struct cpuset * cs,struct tmpmasks * tmp)3047 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3048 {
3049 	static cpumask_t new_cpus;
3050 	static nodemask_t new_mems;
3051 	bool cpus_updated;
3052 	bool mems_updated;
3053 	struct cpuset *parent;
3054 retry:
3055 	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3056 
3057 	percpu_down_write(&cpuset_rwsem);
3058 
3059 	/*
3060 	 * We have raced with task attaching. We wait until attaching
3061 	 * is finished, so we won't attach a task to an empty cpuset.
3062 	 */
3063 	if (cs->attach_in_progress) {
3064 		percpu_up_write(&cpuset_rwsem);
3065 		goto retry;
3066 	}
3067 
3068 	parent =  parent_cs(cs);
3069 	compute_effective_cpumask(&new_cpus, cs, parent);
3070 	nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3071 
3072 	if (cs->nr_subparts_cpus)
3073 		/*
3074 		 * Make sure that CPUs allocated to child partitions
3075 		 * do not show up in effective_cpus.
3076 		 */
3077 		cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3078 
3079 	if (!tmp || !cs->partition_root_state)
3080 		goto update_tasks;
3081 
3082 	/*
3083 	 * In the unlikely event that a partition root has empty
3084 	 * effective_cpus or its parent becomes erroneous, we have to
3085 	 * transition it to the erroneous state.
3086 	 */
3087 	if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3088 	   (parent->partition_root_state == PRS_ERROR))) {
3089 		if (cs->nr_subparts_cpus) {
3090 			cs->nr_subparts_cpus = 0;
3091 			cpumask_clear(cs->subparts_cpus);
3092 			compute_effective_cpumask(&new_cpus, cs, parent);
3093 		}
3094 
3095 		/*
3096 		 * If the effective_cpus is empty because the child
3097 		 * partitions take away all the CPUs, we can keep
3098 		 * the current partition and let the child partitions
3099 		 * fight for available CPUs.
3100 		 */
3101 		if ((parent->partition_root_state == PRS_ERROR) ||
3102 		     cpumask_empty(&new_cpus)) {
3103 			update_parent_subparts_cpumask(cs, partcmd_disable,
3104 						       NULL, tmp);
3105 			cs->partition_root_state = PRS_ERROR;
3106 		}
3107 		cpuset_force_rebuild();
3108 	}
3109 
3110 	/*
3111 	 * On the other hand, an erroneous partition root may be transitioned
3112 	 * back to a regular one or a partition root with no CPU allocated
3113 	 * from the parent may change to erroneous.
3114 	 */
3115 	if (is_partition_root(parent) &&
3116 	   ((cs->partition_root_state == PRS_ERROR) ||
3117 	    !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3118 	     update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3119 		cpuset_force_rebuild();
3120 
3121 update_tasks:
3122 	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3123 	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3124 
3125 	if (is_in_v2_mode())
3126 		hotplug_update_tasks(cs, &new_cpus, &new_mems,
3127 				     cpus_updated, mems_updated);
3128 	else
3129 		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3130 					    cpus_updated, mems_updated);
3131 
3132 	percpu_up_write(&cpuset_rwsem);
3133 }
3134 
3135 /**
3136  * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3137  *
3138  * This function is called after either CPU or memory configuration has
3139  * changed and updates cpuset accordingly.  The top_cpuset is always
3140  * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3141  * order to make cpusets transparent (of no affect) on systems that are
3142  * actively using CPU hotplug but making no active use of cpusets.
3143  *
3144  * Non-root cpusets are only affected by offlining.  If any CPUs or memory
3145  * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3146  * all descendants.
3147  *
3148  * Note that CPU offlining during suspend is ignored.  We don't modify
3149  * cpusets across suspend/resume cycles at all.
3150  */
cpuset_hotplug_workfn(struct work_struct * work)3151 static void cpuset_hotplug_workfn(struct work_struct *work)
3152 {
3153 	static cpumask_t new_cpus;
3154 	static nodemask_t new_mems;
3155 	bool cpus_updated, mems_updated;
3156 	bool on_dfl = is_in_v2_mode();
3157 	struct tmpmasks tmp, *ptmp = NULL;
3158 
3159 	if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3160 		ptmp = &tmp;
3161 
3162 	percpu_down_write(&cpuset_rwsem);
3163 
3164 	/* fetch the available cpus/mems and find out which changed how */
3165 	cpumask_copy(&new_cpus, cpu_active_mask);
3166 	new_mems = node_states[N_MEMORY];
3167 
3168 	/*
3169 	 * If subparts_cpus is populated, it is likely that the check below
3170 	 * will produce a false positive on cpus_updated when the cpu list
3171 	 * isn't changed. It is extra work, but it is better to be safe.
3172 	 */
3173 	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3174 	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3175 
3176 	/*
3177 	 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3178 	 * we assumed that cpus are updated.
3179 	 */
3180 	if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3181 		cpus_updated = true;
3182 
3183 	/* synchronize cpus_allowed to cpu_active_mask */
3184 	if (cpus_updated) {
3185 		spin_lock_irq(&callback_lock);
3186 		if (!on_dfl)
3187 			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3188 		/*
3189 		 * Make sure that CPUs allocated to child partitions
3190 		 * do not show up in effective_cpus. If no CPU is left,
3191 		 * we clear the subparts_cpus & let the child partitions
3192 		 * fight for the CPUs again.
3193 		 */
3194 		if (top_cpuset.nr_subparts_cpus) {
3195 			if (cpumask_subset(&new_cpus,
3196 					   top_cpuset.subparts_cpus)) {
3197 				top_cpuset.nr_subparts_cpus = 0;
3198 				cpumask_clear(top_cpuset.subparts_cpus);
3199 			} else {
3200 				cpumask_andnot(&new_cpus, &new_cpus,
3201 					       top_cpuset.subparts_cpus);
3202 			}
3203 		}
3204 		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3205 		spin_unlock_irq(&callback_lock);
3206 		/* we don't mess with cpumasks of tasks in top_cpuset */
3207 	}
3208 
3209 	/* synchronize mems_allowed to N_MEMORY */
3210 	if (mems_updated) {
3211 		spin_lock_irq(&callback_lock);
3212 		if (!on_dfl)
3213 			top_cpuset.mems_allowed = new_mems;
3214 		top_cpuset.effective_mems = new_mems;
3215 		spin_unlock_irq(&callback_lock);
3216 		update_tasks_nodemask(&top_cpuset);
3217 	}
3218 
3219 	percpu_up_write(&cpuset_rwsem);
3220 
3221 	/* if cpus or mems changed, we need to propagate to descendants */
3222 	if (cpus_updated || mems_updated) {
3223 		struct cpuset *cs;
3224 		struct cgroup_subsys_state *pos_css;
3225 
3226 		rcu_read_lock();
3227 		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3228 			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3229 				continue;
3230 			rcu_read_unlock();
3231 
3232 			cpuset_hotplug_update_tasks(cs, ptmp);
3233 
3234 			rcu_read_lock();
3235 			css_put(&cs->css);
3236 		}
3237 		rcu_read_unlock();
3238 	}
3239 
3240 	/* rebuild sched domains if cpus_allowed has changed */
3241 	if (cpus_updated || force_rebuild) {
3242 		force_rebuild = false;
3243 		rebuild_sched_domains();
3244 	}
3245 
3246 	free_cpumasks(NULL, ptmp);
3247 }
3248 
cpuset_update_active_cpus(void)3249 void cpuset_update_active_cpus(void)
3250 {
3251 	/*
3252 	 * We're inside cpu hotplug critical region which usually nests
3253 	 * inside cgroup synchronization.  Bounce actual hotplug processing
3254 	 * to a work item to avoid reverse locking order.
3255 	 */
3256 	schedule_work(&cpuset_hotplug_work);
3257 }
3258 
cpuset_wait_for_hotplug(void)3259 void cpuset_wait_for_hotplug(void)
3260 {
3261 	flush_work(&cpuset_hotplug_work);
3262 }
3263 
3264 /*
3265  * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3266  * Call this routine anytime after node_states[N_MEMORY] changes.
3267  * See cpuset_update_active_cpus() for CPU hotplug handling.
3268  */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)3269 static int cpuset_track_online_nodes(struct notifier_block *self,
3270 				unsigned long action, void *arg)
3271 {
3272 	schedule_work(&cpuset_hotplug_work);
3273 	return NOTIFY_OK;
3274 }
3275 
3276 static struct notifier_block cpuset_track_online_nodes_nb = {
3277 	.notifier_call = cpuset_track_online_nodes,
3278 	.priority = 10,		/* ??! */
3279 };
3280 
3281 /**
3282  * cpuset_init_smp - initialize cpus_allowed
3283  *
3284  * Description: Finish top cpuset after cpu, node maps are initialized
3285  */
cpuset_init_smp(void)3286 void __init cpuset_init_smp(void)
3287 {
3288 	/*
3289 	 * cpus_allowd/mems_allowed set to v2 values in the initial
3290 	 * cpuset_bind() call will be reset to v1 values in another
3291 	 * cpuset_bind() call when v1 cpuset is mounted.
3292 	 */
3293 	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3294 
3295 	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3296 	top_cpuset.effective_mems = node_states[N_MEMORY];
3297 
3298 	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3299 
3300 	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3301 	BUG_ON(!cpuset_migrate_mm_wq);
3302 }
3303 
3304 /**
3305  * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3306  * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3307  * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3308  *
3309  * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3310  * attached to the specified @tsk.  Guaranteed to return some non-empty
3311  * subset of cpu_online_mask, even if this means going outside the
3312  * tasks cpuset.
3313  **/
3314 
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)3315 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3316 {
3317 	unsigned long flags;
3318 
3319 	spin_lock_irqsave(&callback_lock, flags);
3320 	rcu_read_lock();
3321 	guarantee_online_cpus(task_cs(tsk), pmask);
3322 	rcu_read_unlock();
3323 	spin_unlock_irqrestore(&callback_lock, flags);
3324 }
3325 
3326 /**
3327  * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3328  * @tsk: pointer to task_struct with which the scheduler is struggling
3329  *
3330  * Description: In the case that the scheduler cannot find an allowed cpu in
3331  * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3332  * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3333  * which will not contain a sane cpumask during cases such as cpu hotplugging.
3334  * This is the absolute last resort for the scheduler and it is only used if
3335  * _every_ other avenue has been traveled.
3336  **/
3337 
cpuset_cpus_allowed_fallback(struct task_struct * tsk)3338 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3339 {
3340 	rcu_read_lock();
3341 	do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3342 		task_cs(tsk)->cpus_allowed : cpu_possible_mask);
3343 	rcu_read_unlock();
3344 
3345 	/*
3346 	 * We own tsk->cpus_allowed, nobody can change it under us.
3347 	 *
3348 	 * But we used cs && cs->cpus_allowed lockless and thus can
3349 	 * race with cgroup_attach_task() or update_cpumask() and get
3350 	 * the wrong tsk->cpus_allowed. However, both cases imply the
3351 	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3352 	 * which takes task_rq_lock().
3353 	 *
3354 	 * If we are called after it dropped the lock we must see all
3355 	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3356 	 * set any mask even if it is not right from task_cs() pov,
3357 	 * the pending set_cpus_allowed_ptr() will fix things.
3358 	 *
3359 	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3360 	 * if required.
3361 	 */
3362 }
3363 
cpuset_init_current_mems_allowed(void)3364 void __init cpuset_init_current_mems_allowed(void)
3365 {
3366 	nodes_setall(current->mems_allowed);
3367 }
3368 
3369 /**
3370  * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3371  * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3372  *
3373  * Description: Returns the nodemask_t mems_allowed of the cpuset
3374  * attached to the specified @tsk.  Guaranteed to return some non-empty
3375  * subset of node_states[N_MEMORY], even if this means going outside the
3376  * tasks cpuset.
3377  **/
3378 
cpuset_mems_allowed(struct task_struct * tsk)3379 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3380 {
3381 	nodemask_t mask;
3382 	unsigned long flags;
3383 
3384 	spin_lock_irqsave(&callback_lock, flags);
3385 	rcu_read_lock();
3386 	guarantee_online_mems(task_cs(tsk), &mask);
3387 	rcu_read_unlock();
3388 	spin_unlock_irqrestore(&callback_lock, flags);
3389 
3390 	return mask;
3391 }
3392 
3393 /**
3394  * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3395  * @nodemask: the nodemask to be checked
3396  *
3397  * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3398  */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)3399 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3400 {
3401 	return nodes_intersects(*nodemask, current->mems_allowed);
3402 }
3403 
3404 /*
3405  * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3406  * mem_hardwall ancestor to the specified cpuset.  Call holding
3407  * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
3408  * (an unusual configuration), then returns the root cpuset.
3409  */
nearest_hardwall_ancestor(struct cpuset * cs)3410 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3411 {
3412 	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3413 		cs = parent_cs(cs);
3414 	return cs;
3415 }
3416 
3417 /**
3418  * cpuset_node_allowed - Can we allocate on a memory node?
3419  * @node: is this an allowed node?
3420  * @gfp_mask: memory allocation flags
3421  *
3422  * If we're in interrupt, yes, we can always allocate.  If @node is set in
3423  * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
3424  * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3425  * yes.  If current has access to memory reserves as an oom victim, yes.
3426  * Otherwise, no.
3427  *
3428  * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3429  * and do not allow allocations outside the current tasks cpuset
3430  * unless the task has been OOM killed.
3431  * GFP_KERNEL allocations are not so marked, so can escape to the
3432  * nearest enclosing hardwalled ancestor cpuset.
3433  *
3434  * Scanning up parent cpusets requires callback_lock.  The
3435  * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3436  * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3437  * current tasks mems_allowed came up empty on the first pass over
3438  * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
3439  * cpuset are short of memory, might require taking the callback_lock.
3440  *
3441  * The first call here from mm/page_alloc:get_page_from_freelist()
3442  * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3443  * so no allocation on a node outside the cpuset is allowed (unless
3444  * in interrupt, of course).
3445  *
3446  * The second pass through get_page_from_freelist() doesn't even call
3447  * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
3448  * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3449  * in alloc_flags.  That logic and the checks below have the combined
3450  * affect that:
3451  *	in_interrupt - any node ok (current task context irrelevant)
3452  *	GFP_ATOMIC   - any node ok
3453  *	tsk_is_oom_victim   - any node ok
3454  *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
3455  *	GFP_USER     - only nodes in current tasks mems allowed ok.
3456  */
__cpuset_node_allowed(int node,gfp_t gfp_mask)3457 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3458 {
3459 	struct cpuset *cs;		/* current cpuset ancestors */
3460 	int allowed;			/* is allocation in zone z allowed? */
3461 	unsigned long flags;
3462 
3463 	if (in_interrupt())
3464 		return true;
3465 	if (node_isset(node, current->mems_allowed))
3466 		return true;
3467 	/*
3468 	 * Allow tasks that have access to memory reserves because they have
3469 	 * been OOM killed to get memory anywhere.
3470 	 */
3471 	if (unlikely(tsk_is_oom_victim(current)))
3472 		return true;
3473 	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
3474 		return false;
3475 
3476 	if (current->flags & PF_EXITING) /* Let dying task have memory */
3477 		return true;
3478 
3479 	/* Not hardwall and node outside mems_allowed: scan up cpusets */
3480 	spin_lock_irqsave(&callback_lock, flags);
3481 
3482 	rcu_read_lock();
3483 	cs = nearest_hardwall_ancestor(task_cs(current));
3484 	allowed = node_isset(node, cs->mems_allowed);
3485 	rcu_read_unlock();
3486 
3487 	spin_unlock_irqrestore(&callback_lock, flags);
3488 	return allowed;
3489 }
3490 
3491 /**
3492  * cpuset_mem_spread_node() - On which node to begin search for a file page
3493  * cpuset_slab_spread_node() - On which node to begin search for a slab page
3494  *
3495  * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3496  * tasks in a cpuset with is_spread_page or is_spread_slab set),
3497  * and if the memory allocation used cpuset_mem_spread_node()
3498  * to determine on which node to start looking, as it will for
3499  * certain page cache or slab cache pages such as used for file
3500  * system buffers and inode caches, then instead of starting on the
3501  * local node to look for a free page, rather spread the starting
3502  * node around the tasks mems_allowed nodes.
3503  *
3504  * We don't have to worry about the returned node being offline
3505  * because "it can't happen", and even if it did, it would be ok.
3506  *
3507  * The routines calling guarantee_online_mems() are careful to
3508  * only set nodes in task->mems_allowed that are online.  So it
3509  * should not be possible for the following code to return an
3510  * offline node.  But if it did, that would be ok, as this routine
3511  * is not returning the node where the allocation must be, only
3512  * the node where the search should start.  The zonelist passed to
3513  * __alloc_pages() will include all nodes.  If the slab allocator
3514  * is passed an offline node, it will fall back to the local node.
3515  * See kmem_cache_alloc_node().
3516  */
3517 
cpuset_spread_node(int * rotor)3518 static int cpuset_spread_node(int *rotor)
3519 {
3520 	return *rotor = next_node_in(*rotor, current->mems_allowed);
3521 }
3522 
cpuset_mem_spread_node(void)3523 int cpuset_mem_spread_node(void)
3524 {
3525 	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3526 		current->cpuset_mem_spread_rotor =
3527 			node_random(&current->mems_allowed);
3528 
3529 	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3530 }
3531 
cpuset_slab_spread_node(void)3532 int cpuset_slab_spread_node(void)
3533 {
3534 	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3535 		current->cpuset_slab_spread_rotor =
3536 			node_random(&current->mems_allowed);
3537 
3538 	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3539 }
3540 
3541 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3542 
3543 /**
3544  * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3545  * @tsk1: pointer to task_struct of some task.
3546  * @tsk2: pointer to task_struct of some other task.
3547  *
3548  * Description: Return true if @tsk1's mems_allowed intersects the
3549  * mems_allowed of @tsk2.  Used by the OOM killer to determine if
3550  * one of the task's memory usage might impact the memory available
3551  * to the other.
3552  **/
3553 
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)3554 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3555 				   const struct task_struct *tsk2)
3556 {
3557 	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3558 }
3559 
3560 /**
3561  * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3562  *
3563  * Description: Prints current's name, cpuset name, and cached copy of its
3564  * mems_allowed to the kernel log.
3565  */
cpuset_print_current_mems_allowed(void)3566 void cpuset_print_current_mems_allowed(void)
3567 {
3568 	struct cgroup *cgrp;
3569 
3570 	rcu_read_lock();
3571 
3572 	cgrp = task_cs(current)->css.cgroup;
3573 	pr_cont(",cpuset=");
3574 	pr_cont_cgroup_name(cgrp);
3575 	pr_cont(",mems_allowed=%*pbl",
3576 		nodemask_pr_args(&current->mems_allowed));
3577 
3578 	rcu_read_unlock();
3579 }
3580 
3581 /*
3582  * Collection of memory_pressure is suppressed unless
3583  * this flag is enabled by writing "1" to the special
3584  * cpuset file 'memory_pressure_enabled' in the root cpuset.
3585  */
3586 
3587 int cpuset_memory_pressure_enabled __read_mostly;
3588 
3589 /**
3590  * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3591  *
3592  * Keep a running average of the rate of synchronous (direct)
3593  * page reclaim efforts initiated by tasks in each cpuset.
3594  *
3595  * This represents the rate at which some task in the cpuset
3596  * ran low on memory on all nodes it was allowed to use, and
3597  * had to enter the kernels page reclaim code in an effort to
3598  * create more free memory by tossing clean pages or swapping
3599  * or writing dirty pages.
3600  *
3601  * Display to user space in the per-cpuset read-only file
3602  * "memory_pressure".  Value displayed is an integer
3603  * representing the recent rate of entry into the synchronous
3604  * (direct) page reclaim by any task attached to the cpuset.
3605  **/
3606 
__cpuset_memory_pressure_bump(void)3607 void __cpuset_memory_pressure_bump(void)
3608 {
3609 	rcu_read_lock();
3610 	fmeter_markevent(&task_cs(current)->fmeter);
3611 	rcu_read_unlock();
3612 }
3613 
3614 #ifdef CONFIG_PROC_PID_CPUSET
3615 /*
3616  * proc_cpuset_show()
3617  *  - Print tasks cpuset path into seq_file.
3618  *  - Used for /proc/<pid>/cpuset.
3619  *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3620  *    doesn't really matter if tsk->cpuset changes after we read it,
3621  *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
3622  *    anyway.
3623  */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)3624 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3625 		     struct pid *pid, struct task_struct *tsk)
3626 {
3627 	char *buf;
3628 	struct cgroup_subsys_state *css;
3629 	int retval;
3630 
3631 	retval = -ENOMEM;
3632 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
3633 	if (!buf)
3634 		goto out;
3635 
3636 	css = task_get_css(tsk, cpuset_cgrp_id);
3637 	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3638 				current->nsproxy->cgroup_ns);
3639 	css_put(css);
3640 	if (retval >= PATH_MAX)
3641 		retval = -ENAMETOOLONG;
3642 	if (retval < 0)
3643 		goto out_free;
3644 	seq_puts(m, buf);
3645 	seq_putc(m, '\n');
3646 	retval = 0;
3647 out_free:
3648 	kfree(buf);
3649 out:
3650 	return retval;
3651 }
3652 #endif /* CONFIG_PROC_PID_CPUSET */
3653 
3654 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)3655 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3656 {
3657 	seq_printf(m, "Mems_allowed:\t%*pb\n",
3658 		   nodemask_pr_args(&task->mems_allowed));
3659 	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3660 		   nodemask_pr_args(&task->mems_allowed));
3661 }
3662