1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/kthread.h>
37 #include <linux/list.h>
38 #include <linux/mempolicy.h>
39 #include <linux/mm.h>
40 #include <linux/memory.h>
41 #include <linux/export.h>
42 #include <linux/mount.h>
43 #include <linux/fs_context.h>
44 #include <linux/namei.h>
45 #include <linux/pagemap.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/sched.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/mm.h>
51 #include <linux/sched/task.h>
52 #include <linux/seq_file.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/spinlock.h>
56 #include <linux/stat.h>
57 #include <linux/string.h>
58 #include <linux/time.h>
59 #include <linux/time64.h>
60 #include <linux/backing-dev.h>
61 #include <linux/sort.h>
62 #include <linux/oom.h>
63 #include <linux/sched/isolation.h>
64 #include <linux/uaccess.h>
65 #include <linux/atomic.h>
66 #include <linux/mutex.h>
67 #include <linux/cgroup.h>
68 #include <linux/wait.h>
69
70 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
71 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
72
73 /* See "Frequency meter" comments, below. */
74
75 struct fmeter {
76 int cnt; /* unprocessed events count */
77 int val; /* most recent output value */
78 time64_t time; /* clock (secs) when val computed */
79 spinlock_t lock; /* guards read or write of above */
80 };
81
82 struct cpuset {
83 struct cgroup_subsys_state css;
84
85 unsigned long flags; /* "unsigned long" so bitops work */
86
87 /*
88 * On default hierarchy:
89 *
90 * The user-configured masks can only be changed by writing to
91 * cpuset.cpus and cpuset.mems, and won't be limited by the
92 * parent masks.
93 *
94 * The effective masks is the real masks that apply to the tasks
95 * in the cpuset. They may be changed if the configured masks are
96 * changed or hotplug happens.
97 *
98 * effective_mask == configured_mask & parent's effective_mask,
99 * and if it ends up empty, it will inherit the parent's mask.
100 *
101 *
102 * On legacy hierachy:
103 *
104 * The user-configured masks are always the same with effective masks.
105 */
106
107 /* user-configured CPUs and Memory Nodes allow to tasks */
108 cpumask_var_t cpus_allowed;
109 nodemask_t mems_allowed;
110
111 /* effective CPUs and Memory Nodes allow to tasks */
112 cpumask_var_t effective_cpus;
113 nodemask_t effective_mems;
114
115 /*
116 * CPUs allocated to child sub-partitions (default hierarchy only)
117 * - CPUs granted by the parent = effective_cpus U subparts_cpus
118 * - effective_cpus and subparts_cpus are mutually exclusive.
119 *
120 * effective_cpus contains only onlined CPUs, but subparts_cpus
121 * may have offlined ones.
122 */
123 cpumask_var_t subparts_cpus;
124
125 /*
126 * This is old Memory Nodes tasks took on.
127 *
128 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
129 * - A new cpuset's old_mems_allowed is initialized when some
130 * task is moved into it.
131 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
132 * cpuset.mems_allowed and have tasks' nodemask updated, and
133 * then old_mems_allowed is updated to mems_allowed.
134 */
135 nodemask_t old_mems_allowed;
136
137 struct fmeter fmeter; /* memory_pressure filter */
138
139 /*
140 * Tasks are being attached to this cpuset. Used to prevent
141 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
142 */
143 int attach_in_progress;
144
145 /* partition number for rebuild_sched_domains() */
146 int pn;
147
148 /* for custom sched domain */
149 int relax_domain_level;
150
151 /* number of CPUs in subparts_cpus */
152 int nr_subparts_cpus;
153
154 /* partition root state */
155 int partition_root_state;
156
157 /*
158 * Default hierarchy only:
159 * use_parent_ecpus - set if using parent's effective_cpus
160 * child_ecpus_count - # of children with use_parent_ecpus set
161 */
162 int use_parent_ecpus;
163 int child_ecpus_count;
164 };
165
166 /*
167 * Partition root states:
168 *
169 * 0 - not a partition root
170 *
171 * 1 - partition root
172 *
173 * -1 - invalid partition root
174 * None of the cpus in cpus_allowed can be put into the parent's
175 * subparts_cpus. In this case, the cpuset is not a real partition
176 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
177 * and the cpuset can be restored back to a partition root if the
178 * parent cpuset can give more CPUs back to this child cpuset.
179 */
180 #define PRS_DISABLED 0
181 #define PRS_ENABLED 1
182 #define PRS_ERROR -1
183
184 /*
185 * Temporary cpumasks for working with partitions that are passed among
186 * functions to avoid memory allocation in inner functions.
187 */
188 struct tmpmasks {
189 cpumask_var_t addmask, delmask; /* For partition root */
190 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
191 };
192
css_cs(struct cgroup_subsys_state * css)193 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
194 {
195 return css ? container_of(css, struct cpuset, css) : NULL;
196 }
197
198 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)199 static inline struct cpuset *task_cs(struct task_struct *task)
200 {
201 return css_cs(task_css(task, cpuset_cgrp_id));
202 }
203
parent_cs(struct cpuset * cs)204 static inline struct cpuset *parent_cs(struct cpuset *cs)
205 {
206 return css_cs(cs->css.parent);
207 }
208
209 /* bits in struct cpuset flags field */
210 typedef enum {
211 CS_ONLINE,
212 CS_CPU_EXCLUSIVE,
213 CS_MEM_EXCLUSIVE,
214 CS_MEM_HARDWALL,
215 CS_MEMORY_MIGRATE,
216 CS_SCHED_LOAD_BALANCE,
217 CS_SPREAD_PAGE,
218 CS_SPREAD_SLAB,
219 } cpuset_flagbits_t;
220
221 /* convenient tests for these bits */
is_cpuset_online(struct cpuset * cs)222 static inline bool is_cpuset_online(struct cpuset *cs)
223 {
224 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
225 }
226
is_cpu_exclusive(const struct cpuset * cs)227 static inline int is_cpu_exclusive(const struct cpuset *cs)
228 {
229 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
230 }
231
is_mem_exclusive(const struct cpuset * cs)232 static inline int is_mem_exclusive(const struct cpuset *cs)
233 {
234 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
235 }
236
is_mem_hardwall(const struct cpuset * cs)237 static inline int is_mem_hardwall(const struct cpuset *cs)
238 {
239 return test_bit(CS_MEM_HARDWALL, &cs->flags);
240 }
241
is_sched_load_balance(const struct cpuset * cs)242 static inline int is_sched_load_balance(const struct cpuset *cs)
243 {
244 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
245 }
246
is_memory_migrate(const struct cpuset * cs)247 static inline int is_memory_migrate(const struct cpuset *cs)
248 {
249 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
250 }
251
is_spread_page(const struct cpuset * cs)252 static inline int is_spread_page(const struct cpuset *cs)
253 {
254 return test_bit(CS_SPREAD_PAGE, &cs->flags);
255 }
256
is_spread_slab(const struct cpuset * cs)257 static inline int is_spread_slab(const struct cpuset *cs)
258 {
259 return test_bit(CS_SPREAD_SLAB, &cs->flags);
260 }
261
is_partition_root(const struct cpuset * cs)262 static inline int is_partition_root(const struct cpuset *cs)
263 {
264 return cs->partition_root_state > 0;
265 }
266
267 static struct cpuset top_cpuset = {
268 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
269 (1 << CS_MEM_EXCLUSIVE)),
270 .partition_root_state = PRS_ENABLED,
271 };
272
273 /**
274 * cpuset_for_each_child - traverse online children of a cpuset
275 * @child_cs: loop cursor pointing to the current child
276 * @pos_css: used for iteration
277 * @parent_cs: target cpuset to walk children of
278 *
279 * Walk @child_cs through the online children of @parent_cs. Must be used
280 * with RCU read locked.
281 */
282 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
283 css_for_each_child((pos_css), &(parent_cs)->css) \
284 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
285
286 /**
287 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
288 * @des_cs: loop cursor pointing to the current descendant
289 * @pos_css: used for iteration
290 * @root_cs: target cpuset to walk ancestor of
291 *
292 * Walk @des_cs through the online descendants of @root_cs. Must be used
293 * with RCU read locked. The caller may modify @pos_css by calling
294 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
295 * iteration and the first node to be visited.
296 */
297 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
298 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
299 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
300
301 /*
302 * There are two global locks guarding cpuset structures - cpuset_mutex and
303 * callback_lock. We also require taking task_lock() when dereferencing a
304 * task's cpuset pointer. See "The task_lock() exception", at the end of this
305 * comment.
306 *
307 * A task must hold both locks to modify cpusets. If a task holds
308 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
309 * is the only task able to also acquire callback_lock and be able to
310 * modify cpusets. It can perform various checks on the cpuset structure
311 * first, knowing nothing will change. It can also allocate memory while
312 * just holding cpuset_mutex. While it is performing these checks, various
313 * callback routines can briefly acquire callback_lock to query cpusets.
314 * Once it is ready to make the changes, it takes callback_lock, blocking
315 * everyone else.
316 *
317 * Calls to the kernel memory allocator can not be made while holding
318 * callback_lock, as that would risk double tripping on callback_lock
319 * from one of the callbacks into the cpuset code from within
320 * __alloc_pages().
321 *
322 * If a task is only holding callback_lock, then it has read-only
323 * access to cpusets.
324 *
325 * Now, the task_struct fields mems_allowed and mempolicy may be changed
326 * by other task, we use alloc_lock in the task_struct fields to protect
327 * them.
328 *
329 * The cpuset_common_file_read() handlers only hold callback_lock across
330 * small pieces of code, such as when reading out possibly multi-word
331 * cpumasks and nodemasks.
332 *
333 * Accessing a task's cpuset should be done in accordance with the
334 * guidelines for accessing subsystem state in kernel/cgroup.c
335 */
336
337 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
338 static DEFINE_SPINLOCK(callback_lock);
339
340 static struct workqueue_struct *cpuset_migrate_mm_wq;
341
342 /*
343 * CPU / memory hotplug is handled asynchronously.
344 */
345 static void cpuset_hotplug_workfn(struct work_struct *work);
346 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
347
348 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
349
350 /*
351 * Cgroup v2 behavior is used when on default hierarchy or the
352 * cgroup_v2_mode flag is set.
353 */
is_in_v2_mode(void)354 static inline bool is_in_v2_mode(void)
355 {
356 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
357 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
358 }
359
360 /*
361 * Return in pmask the portion of a cpusets's cpus_allowed that
362 * are online. If none are online, walk up the cpuset hierarchy
363 * until we find one that does have some online cpus.
364 *
365 * One way or another, we guarantee to return some non-empty subset
366 * of cpu_online_mask.
367 *
368 * Call with callback_lock or cpuset_mutex held.
369 */
guarantee_online_cpus(struct cpuset * cs,struct cpumask * pmask)370 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
371 {
372 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
373 cs = parent_cs(cs);
374 if (unlikely(!cs)) {
375 /*
376 * The top cpuset doesn't have any online cpu as a
377 * consequence of a race between cpuset_hotplug_work
378 * and cpu hotplug notifier. But we know the top
379 * cpuset's effective_cpus is on its way to to be
380 * identical to cpu_online_mask.
381 */
382 cpumask_copy(pmask, cpu_online_mask);
383 return;
384 }
385 }
386 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
387 }
388
389 /*
390 * Return in *pmask the portion of a cpusets's mems_allowed that
391 * are online, with memory. If none are online with memory, walk
392 * up the cpuset hierarchy until we find one that does have some
393 * online mems. The top cpuset always has some mems online.
394 *
395 * One way or another, we guarantee to return some non-empty subset
396 * of node_states[N_MEMORY].
397 *
398 * Call with callback_lock or cpuset_mutex held.
399 */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)400 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
401 {
402 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
403 cs = parent_cs(cs);
404 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
405 }
406
407 /*
408 * update task's spread flag if cpuset's page/slab spread flag is set
409 *
410 * Call with callback_lock or cpuset_mutex held.
411 */
cpuset_update_task_spread_flag(struct cpuset * cs,struct task_struct * tsk)412 static void cpuset_update_task_spread_flag(struct cpuset *cs,
413 struct task_struct *tsk)
414 {
415 if (is_spread_page(cs))
416 task_set_spread_page(tsk);
417 else
418 task_clear_spread_page(tsk);
419
420 if (is_spread_slab(cs))
421 task_set_spread_slab(tsk);
422 else
423 task_clear_spread_slab(tsk);
424 }
425
426 /*
427 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
428 *
429 * One cpuset is a subset of another if all its allowed CPUs and
430 * Memory Nodes are a subset of the other, and its exclusive flags
431 * are only set if the other's are set. Call holding cpuset_mutex.
432 */
433
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)434 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
435 {
436 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
437 nodes_subset(p->mems_allowed, q->mems_allowed) &&
438 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
439 is_mem_exclusive(p) <= is_mem_exclusive(q);
440 }
441
442 /**
443 * alloc_cpumasks - allocate three cpumasks for cpuset
444 * @cs: the cpuset that have cpumasks to be allocated.
445 * @tmp: the tmpmasks structure pointer
446 * Return: 0 if successful, -ENOMEM otherwise.
447 *
448 * Only one of the two input arguments should be non-NULL.
449 */
alloc_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)450 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
451 {
452 cpumask_var_t *pmask1, *pmask2, *pmask3;
453
454 if (cs) {
455 pmask1 = &cs->cpus_allowed;
456 pmask2 = &cs->effective_cpus;
457 pmask3 = &cs->subparts_cpus;
458 } else {
459 pmask1 = &tmp->new_cpus;
460 pmask2 = &tmp->addmask;
461 pmask3 = &tmp->delmask;
462 }
463
464 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
465 return -ENOMEM;
466
467 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
468 goto free_one;
469
470 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
471 goto free_two;
472
473 return 0;
474
475 free_two:
476 free_cpumask_var(*pmask2);
477 free_one:
478 free_cpumask_var(*pmask1);
479 return -ENOMEM;
480 }
481
482 /**
483 * free_cpumasks - free cpumasks in a tmpmasks structure
484 * @cs: the cpuset that have cpumasks to be free.
485 * @tmp: the tmpmasks structure pointer
486 */
free_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)487 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
488 {
489 if (cs) {
490 free_cpumask_var(cs->cpus_allowed);
491 free_cpumask_var(cs->effective_cpus);
492 free_cpumask_var(cs->subparts_cpus);
493 }
494 if (tmp) {
495 free_cpumask_var(tmp->new_cpus);
496 free_cpumask_var(tmp->addmask);
497 free_cpumask_var(tmp->delmask);
498 }
499 }
500
501 /**
502 * alloc_trial_cpuset - allocate a trial cpuset
503 * @cs: the cpuset that the trial cpuset duplicates
504 */
alloc_trial_cpuset(struct cpuset * cs)505 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
506 {
507 struct cpuset *trial;
508
509 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
510 if (!trial)
511 return NULL;
512
513 if (alloc_cpumasks(trial, NULL)) {
514 kfree(trial);
515 return NULL;
516 }
517
518 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
519 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
520 return trial;
521 }
522
523 /**
524 * free_cpuset - free the cpuset
525 * @cs: the cpuset to be freed
526 */
free_cpuset(struct cpuset * cs)527 static inline void free_cpuset(struct cpuset *cs)
528 {
529 free_cpumasks(cs, NULL);
530 kfree(cs);
531 }
532
533 /*
534 * validate_change() - Used to validate that any proposed cpuset change
535 * follows the structural rules for cpusets.
536 *
537 * If we replaced the flag and mask values of the current cpuset
538 * (cur) with those values in the trial cpuset (trial), would
539 * our various subset and exclusive rules still be valid? Presumes
540 * cpuset_mutex held.
541 *
542 * 'cur' is the address of an actual, in-use cpuset. Operations
543 * such as list traversal that depend on the actual address of the
544 * cpuset in the list must use cur below, not trial.
545 *
546 * 'trial' is the address of bulk structure copy of cur, with
547 * perhaps one or more of the fields cpus_allowed, mems_allowed,
548 * or flags changed to new, trial values.
549 *
550 * Return 0 if valid, -errno if not.
551 */
552
validate_change(struct cpuset * cur,struct cpuset * trial)553 static int validate_change(struct cpuset *cur, struct cpuset *trial)
554 {
555 struct cgroup_subsys_state *css;
556 struct cpuset *c, *par;
557 int ret;
558
559 rcu_read_lock();
560
561 /* Each of our child cpusets must be a subset of us */
562 ret = -EBUSY;
563 cpuset_for_each_child(c, css, cur)
564 if (!is_cpuset_subset(c, trial))
565 goto out;
566
567 /* Remaining checks don't apply to root cpuset */
568 ret = 0;
569 if (cur == &top_cpuset)
570 goto out;
571
572 par = parent_cs(cur);
573
574 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
575 ret = -EACCES;
576 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
577 goto out;
578
579 /*
580 * If either I or some sibling (!= me) is exclusive, we can't
581 * overlap
582 */
583 ret = -EINVAL;
584 cpuset_for_each_child(c, css, par) {
585 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
586 c != cur &&
587 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
588 goto out;
589 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
590 c != cur &&
591 nodes_intersects(trial->mems_allowed, c->mems_allowed))
592 goto out;
593 }
594
595 /*
596 * Cpusets with tasks - existing or newly being attached - can't
597 * be changed to have empty cpus_allowed or mems_allowed.
598 */
599 ret = -ENOSPC;
600 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
601 if (!cpumask_empty(cur->cpus_allowed) &&
602 cpumask_empty(trial->cpus_allowed))
603 goto out;
604 if (!nodes_empty(cur->mems_allowed) &&
605 nodes_empty(trial->mems_allowed))
606 goto out;
607 }
608
609 /*
610 * We can't shrink if we won't have enough room for SCHED_DEADLINE
611 * tasks.
612 */
613 ret = -EBUSY;
614 if (is_cpu_exclusive(cur) &&
615 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
616 trial->cpus_allowed))
617 goto out;
618
619 ret = 0;
620 out:
621 rcu_read_unlock();
622 return ret;
623 }
624
625 #ifdef CONFIG_SMP
626 /*
627 * Helper routine for generate_sched_domains().
628 * Do cpusets a, b have overlapping effective cpus_allowed masks?
629 */
cpusets_overlap(struct cpuset * a,struct cpuset * b)630 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
631 {
632 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
633 }
634
635 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)636 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
637 {
638 if (dattr->relax_domain_level < c->relax_domain_level)
639 dattr->relax_domain_level = c->relax_domain_level;
640 return;
641 }
642
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)643 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
644 struct cpuset *root_cs)
645 {
646 struct cpuset *cp;
647 struct cgroup_subsys_state *pos_css;
648
649 rcu_read_lock();
650 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
651 /* skip the whole subtree if @cp doesn't have any CPU */
652 if (cpumask_empty(cp->cpus_allowed)) {
653 pos_css = css_rightmost_descendant(pos_css);
654 continue;
655 }
656
657 if (is_sched_load_balance(cp))
658 update_domain_attr(dattr, cp);
659 }
660 rcu_read_unlock();
661 }
662
663 /* Must be called with cpuset_mutex held. */
nr_cpusets(void)664 static inline int nr_cpusets(void)
665 {
666 /* jump label reference count + the top-level cpuset */
667 return static_key_count(&cpusets_enabled_key.key) + 1;
668 }
669
670 /*
671 * generate_sched_domains()
672 *
673 * This function builds a partial partition of the systems CPUs
674 * A 'partial partition' is a set of non-overlapping subsets whose
675 * union is a subset of that set.
676 * The output of this function needs to be passed to kernel/sched/core.c
677 * partition_sched_domains() routine, which will rebuild the scheduler's
678 * load balancing domains (sched domains) as specified by that partial
679 * partition.
680 *
681 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
682 * for a background explanation of this.
683 *
684 * Does not return errors, on the theory that the callers of this
685 * routine would rather not worry about failures to rebuild sched
686 * domains when operating in the severe memory shortage situations
687 * that could cause allocation failures below.
688 *
689 * Must be called with cpuset_mutex held.
690 *
691 * The three key local variables below are:
692 * cp - cpuset pointer, used (together with pos_css) to perform a
693 * top-down scan of all cpusets. For our purposes, rebuilding
694 * the schedulers sched domains, we can ignore !is_sched_load_
695 * balance cpusets.
696 * csa - (for CpuSet Array) Array of pointers to all the cpusets
697 * that need to be load balanced, for convenient iterative
698 * access by the subsequent code that finds the best partition,
699 * i.e the set of domains (subsets) of CPUs such that the
700 * cpus_allowed of every cpuset marked is_sched_load_balance
701 * is a subset of one of these domains, while there are as
702 * many such domains as possible, each as small as possible.
703 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
704 * the kernel/sched/core.c routine partition_sched_domains() in a
705 * convenient format, that can be easily compared to the prior
706 * value to determine what partition elements (sched domains)
707 * were changed (added or removed.)
708 *
709 * Finding the best partition (set of domains):
710 * The triple nested loops below over i, j, k scan over the
711 * load balanced cpusets (using the array of cpuset pointers in
712 * csa[]) looking for pairs of cpusets that have overlapping
713 * cpus_allowed, but which don't have the same 'pn' partition
714 * number and gives them in the same partition number. It keeps
715 * looping on the 'restart' label until it can no longer find
716 * any such pairs.
717 *
718 * The union of the cpus_allowed masks from the set of
719 * all cpusets having the same 'pn' value then form the one
720 * element of the partition (one sched domain) to be passed to
721 * partition_sched_domains().
722 */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)723 static int generate_sched_domains(cpumask_var_t **domains,
724 struct sched_domain_attr **attributes)
725 {
726 struct cpuset *cp; /* top-down scan of cpusets */
727 struct cpuset **csa; /* array of all cpuset ptrs */
728 int csn; /* how many cpuset ptrs in csa so far */
729 int i, j, k; /* indices for partition finding loops */
730 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
731 struct sched_domain_attr *dattr; /* attributes for custom domains */
732 int ndoms = 0; /* number of sched domains in result */
733 int nslot; /* next empty doms[] struct cpumask slot */
734 struct cgroup_subsys_state *pos_css;
735 bool root_load_balance = is_sched_load_balance(&top_cpuset);
736
737 doms = NULL;
738 dattr = NULL;
739 csa = NULL;
740
741 /* Special case for the 99% of systems with one, full, sched domain */
742 if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
743 ndoms = 1;
744 doms = alloc_sched_domains(ndoms);
745 if (!doms)
746 goto done;
747
748 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
749 if (dattr) {
750 *dattr = SD_ATTR_INIT;
751 update_domain_attr_tree(dattr, &top_cpuset);
752 }
753 cpumask_and(doms[0], top_cpuset.effective_cpus,
754 housekeeping_cpumask(HK_FLAG_DOMAIN));
755
756 goto done;
757 }
758
759 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
760 if (!csa)
761 goto done;
762 csn = 0;
763
764 rcu_read_lock();
765 if (root_load_balance)
766 csa[csn++] = &top_cpuset;
767 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
768 if (cp == &top_cpuset)
769 continue;
770 /*
771 * Continue traversing beyond @cp iff @cp has some CPUs and
772 * isn't load balancing. The former is obvious. The
773 * latter: All child cpusets contain a subset of the
774 * parent's cpus, so just skip them, and then we call
775 * update_domain_attr_tree() to calc relax_domain_level of
776 * the corresponding sched domain.
777 *
778 * If root is load-balancing, we can skip @cp if it
779 * is a subset of the root's effective_cpus.
780 */
781 if (!cpumask_empty(cp->cpus_allowed) &&
782 !(is_sched_load_balance(cp) &&
783 cpumask_intersects(cp->cpus_allowed,
784 housekeeping_cpumask(HK_FLAG_DOMAIN))))
785 continue;
786
787 if (root_load_balance &&
788 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
789 continue;
790
791 if (is_sched_load_balance(cp) &&
792 !cpumask_empty(cp->effective_cpus))
793 csa[csn++] = cp;
794
795 /* skip @cp's subtree if not a partition root */
796 if (!is_partition_root(cp))
797 pos_css = css_rightmost_descendant(pos_css);
798 }
799 rcu_read_unlock();
800
801 for (i = 0; i < csn; i++)
802 csa[i]->pn = i;
803 ndoms = csn;
804
805 restart:
806 /* Find the best partition (set of sched domains) */
807 for (i = 0; i < csn; i++) {
808 struct cpuset *a = csa[i];
809 int apn = a->pn;
810
811 for (j = 0; j < csn; j++) {
812 struct cpuset *b = csa[j];
813 int bpn = b->pn;
814
815 if (apn != bpn && cpusets_overlap(a, b)) {
816 for (k = 0; k < csn; k++) {
817 struct cpuset *c = csa[k];
818
819 if (c->pn == bpn)
820 c->pn = apn;
821 }
822 ndoms--; /* one less element */
823 goto restart;
824 }
825 }
826 }
827
828 /*
829 * Now we know how many domains to create.
830 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
831 */
832 doms = alloc_sched_domains(ndoms);
833 if (!doms)
834 goto done;
835
836 /*
837 * The rest of the code, including the scheduler, can deal with
838 * dattr==NULL case. No need to abort if alloc fails.
839 */
840 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
841 GFP_KERNEL);
842
843 for (nslot = 0, i = 0; i < csn; i++) {
844 struct cpuset *a = csa[i];
845 struct cpumask *dp;
846 int apn = a->pn;
847
848 if (apn < 0) {
849 /* Skip completed partitions */
850 continue;
851 }
852
853 dp = doms[nslot];
854
855 if (nslot == ndoms) {
856 static int warnings = 10;
857 if (warnings) {
858 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
859 nslot, ndoms, csn, i, apn);
860 warnings--;
861 }
862 continue;
863 }
864
865 cpumask_clear(dp);
866 if (dattr)
867 *(dattr + nslot) = SD_ATTR_INIT;
868 for (j = i; j < csn; j++) {
869 struct cpuset *b = csa[j];
870
871 if (apn == b->pn) {
872 cpumask_or(dp, dp, b->effective_cpus);
873 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
874 if (dattr)
875 update_domain_attr_tree(dattr + nslot, b);
876
877 /* Done with this partition */
878 b->pn = -1;
879 }
880 }
881 nslot++;
882 }
883 BUG_ON(nslot != ndoms);
884
885 done:
886 kfree(csa);
887
888 /*
889 * Fallback to the default domain if kmalloc() failed.
890 * See comments in partition_sched_domains().
891 */
892 if (doms == NULL)
893 ndoms = 1;
894
895 *domains = doms;
896 *attributes = dattr;
897 return ndoms;
898 }
899
update_tasks_root_domain(struct cpuset * cs)900 static void update_tasks_root_domain(struct cpuset *cs)
901 {
902 struct css_task_iter it;
903 struct task_struct *task;
904
905 css_task_iter_start(&cs->css, 0, &it);
906
907 while ((task = css_task_iter_next(&it)))
908 dl_add_task_root_domain(task);
909
910 css_task_iter_end(&it);
911 }
912
rebuild_root_domains(void)913 static void rebuild_root_domains(void)
914 {
915 struct cpuset *cs = NULL;
916 struct cgroup_subsys_state *pos_css;
917
918 percpu_rwsem_assert_held(&cpuset_rwsem);
919 lockdep_assert_cpus_held();
920 lockdep_assert_held(&sched_domains_mutex);
921
922 cgroup_enable_task_cg_lists();
923
924 rcu_read_lock();
925
926 /*
927 * Clear default root domain DL accounting, it will be computed again
928 * if a task belongs to it.
929 */
930 dl_clear_root_domain(&def_root_domain);
931
932 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
933
934 if (cpumask_empty(cs->effective_cpus)) {
935 pos_css = css_rightmost_descendant(pos_css);
936 continue;
937 }
938
939 css_get(&cs->css);
940
941 rcu_read_unlock();
942
943 update_tasks_root_domain(cs);
944
945 rcu_read_lock();
946 css_put(&cs->css);
947 }
948 rcu_read_unlock();
949 }
950
951 static void
partition_and_rebuild_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)952 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
953 struct sched_domain_attr *dattr_new)
954 {
955 mutex_lock(&sched_domains_mutex);
956 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
957 rebuild_root_domains();
958 mutex_unlock(&sched_domains_mutex);
959 }
960
961 /*
962 * Rebuild scheduler domains.
963 *
964 * If the flag 'sched_load_balance' of any cpuset with non-empty
965 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
966 * which has that flag enabled, or if any cpuset with a non-empty
967 * 'cpus' is removed, then call this routine to rebuild the
968 * scheduler's dynamic sched domains.
969 *
970 * Call with cpuset_mutex held. Takes get_online_cpus().
971 */
rebuild_sched_domains_locked(void)972 static void rebuild_sched_domains_locked(void)
973 {
974 struct cgroup_subsys_state *pos_css;
975 struct sched_domain_attr *attr;
976 cpumask_var_t *doms;
977 struct cpuset *cs;
978 int ndoms;
979
980 lockdep_assert_cpus_held();
981 percpu_rwsem_assert_held(&cpuset_rwsem);
982
983 /*
984 * If we have raced with CPU hotplug, return early to avoid
985 * passing doms with offlined cpu to partition_sched_domains().
986 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
987 *
988 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
989 * should be the same as the active CPUs, so checking only top_cpuset
990 * is enough to detect racing CPU offlines.
991 */
992 if (!top_cpuset.nr_subparts_cpus &&
993 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
994 return;
995
996 /*
997 * With subpartition CPUs, however, the effective CPUs of a partition
998 * root should be only a subset of the active CPUs. Since a CPU in any
999 * partition root could be offlined, all must be checked.
1000 */
1001 if (top_cpuset.nr_subparts_cpus) {
1002 rcu_read_lock();
1003 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1004 if (!is_partition_root(cs)) {
1005 pos_css = css_rightmost_descendant(pos_css);
1006 continue;
1007 }
1008 if (!cpumask_subset(cs->effective_cpus,
1009 cpu_active_mask)) {
1010 rcu_read_unlock();
1011 return;
1012 }
1013 }
1014 rcu_read_unlock();
1015 }
1016
1017 /* Generate domain masks and attrs */
1018 ndoms = generate_sched_domains(&doms, &attr);
1019
1020 /* Have scheduler rebuild the domains */
1021 partition_and_rebuild_sched_domains(ndoms, doms, attr);
1022 }
1023 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)1024 static void rebuild_sched_domains_locked(void)
1025 {
1026 }
1027 #endif /* CONFIG_SMP */
1028
rebuild_sched_domains(void)1029 void rebuild_sched_domains(void)
1030 {
1031 get_online_cpus();
1032 percpu_down_write(&cpuset_rwsem);
1033 rebuild_sched_domains_locked();
1034 percpu_up_write(&cpuset_rwsem);
1035 put_online_cpus();
1036 }
1037
1038 /**
1039 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1040 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1041 *
1042 * Iterate through each task of @cs updating its cpus_allowed to the
1043 * effective cpuset's. As this function is called with cpuset_mutex held,
1044 * cpuset membership stays stable.
1045 */
update_tasks_cpumask(struct cpuset * cs)1046 static void update_tasks_cpumask(struct cpuset *cs)
1047 {
1048 struct css_task_iter it;
1049 struct task_struct *task;
1050 bool top_cs = cs == &top_cpuset;
1051
1052 css_task_iter_start(&cs->css, 0, &it);
1053 while ((task = css_task_iter_next(&it))) {
1054 /*
1055 * Percpu kthreads in top_cpuset are ignored
1056 */
1057 if (top_cs && (task->flags & PF_KTHREAD) &&
1058 kthread_is_per_cpu(task))
1059 continue;
1060 set_cpus_allowed_ptr(task, cs->effective_cpus);
1061 }
1062 css_task_iter_end(&it);
1063 }
1064
1065 /**
1066 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1067 * @new_cpus: the temp variable for the new effective_cpus mask
1068 * @cs: the cpuset the need to recompute the new effective_cpus mask
1069 * @parent: the parent cpuset
1070 *
1071 * If the parent has subpartition CPUs, include them in the list of
1072 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1073 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1074 * to mask those out.
1075 */
compute_effective_cpumask(struct cpumask * new_cpus,struct cpuset * cs,struct cpuset * parent)1076 static void compute_effective_cpumask(struct cpumask *new_cpus,
1077 struct cpuset *cs, struct cpuset *parent)
1078 {
1079 if (parent->nr_subparts_cpus) {
1080 cpumask_or(new_cpus, parent->effective_cpus,
1081 parent->subparts_cpus);
1082 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1083 cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1084 } else {
1085 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1086 }
1087 }
1088
1089 /*
1090 * Commands for update_parent_subparts_cpumask
1091 */
1092 enum subparts_cmd {
1093 partcmd_enable, /* Enable partition root */
1094 partcmd_disable, /* Disable partition root */
1095 partcmd_update, /* Update parent's subparts_cpus */
1096 };
1097
1098 /**
1099 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1100 * @cpuset: The cpuset that requests change in partition root state
1101 * @cmd: Partition root state change command
1102 * @newmask: Optional new cpumask for partcmd_update
1103 * @tmp: Temporary addmask and delmask
1104 * Return: 0, 1 or an error code
1105 *
1106 * For partcmd_enable, the cpuset is being transformed from a non-partition
1107 * root to a partition root. The cpus_allowed mask of the given cpuset will
1108 * be put into parent's subparts_cpus and taken away from parent's
1109 * effective_cpus. The function will return 0 if all the CPUs listed in
1110 * cpus_allowed can be granted or an error code will be returned.
1111 *
1112 * For partcmd_disable, the cpuset is being transofrmed from a partition
1113 * root back to a non-partition root. any CPUs in cpus_allowed that are in
1114 * parent's subparts_cpus will be taken away from that cpumask and put back
1115 * into parent's effective_cpus. 0 should always be returned.
1116 *
1117 * For partcmd_update, if the optional newmask is specified, the cpu
1118 * list is to be changed from cpus_allowed to newmask. Otherwise,
1119 * cpus_allowed is assumed to remain the same. The cpuset should either
1120 * be a partition root or an invalid partition root. The partition root
1121 * state may change if newmask is NULL and none of the requested CPUs can
1122 * be granted by the parent. The function will return 1 if changes to
1123 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1124 * Error code should only be returned when newmask is non-NULL.
1125 *
1126 * The partcmd_enable and partcmd_disable commands are used by
1127 * update_prstate(). The partcmd_update command is used by
1128 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1129 * newmask set.
1130 *
1131 * The checking is more strict when enabling partition root than the
1132 * other two commands.
1133 *
1134 * Because of the implicit cpu exclusive nature of a partition root,
1135 * cpumask changes that violates the cpu exclusivity rule will not be
1136 * permitted when checked by validate_change(). The validate_change()
1137 * function will also prevent any changes to the cpu list if it is not
1138 * a superset of children's cpu lists.
1139 */
update_parent_subparts_cpumask(struct cpuset * cpuset,int cmd,struct cpumask * newmask,struct tmpmasks * tmp)1140 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1141 struct cpumask *newmask,
1142 struct tmpmasks *tmp)
1143 {
1144 struct cpuset *parent = parent_cs(cpuset);
1145 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1146 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
1147 bool part_error = false; /* Partition error? */
1148
1149 percpu_rwsem_assert_held(&cpuset_rwsem);
1150
1151 /*
1152 * The parent must be a partition root.
1153 * The new cpumask, if present, or the current cpus_allowed must
1154 * not be empty.
1155 */
1156 if (!is_partition_root(parent) ||
1157 (newmask && cpumask_empty(newmask)) ||
1158 (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1159 return -EINVAL;
1160
1161 /*
1162 * Enabling/disabling partition root is not allowed if there are
1163 * online children.
1164 */
1165 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1166 return -EBUSY;
1167
1168 /*
1169 * Enabling partition root is not allowed if not all the CPUs
1170 * can be granted from parent's effective_cpus or at least one
1171 * CPU will be left after that.
1172 */
1173 if ((cmd == partcmd_enable) &&
1174 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1175 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1176 return -EINVAL;
1177
1178 /*
1179 * A cpumask update cannot make parent's effective_cpus become empty.
1180 */
1181 adding = deleting = false;
1182 if (cmd == partcmd_enable) {
1183 cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1184 adding = true;
1185 } else if (cmd == partcmd_disable) {
1186 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1187 parent->subparts_cpus);
1188 } else if (newmask) {
1189 /*
1190 * partcmd_update with newmask:
1191 *
1192 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1193 * addmask = newmask & parent->effective_cpus
1194 * & ~parent->subparts_cpus
1195 */
1196 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1197 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1198 parent->subparts_cpus);
1199
1200 cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1201 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1202 parent->subparts_cpus);
1203 /*
1204 * Return error if the new effective_cpus could become empty.
1205 */
1206 if (adding &&
1207 cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1208 if (!deleting)
1209 return -EINVAL;
1210 /*
1211 * As some of the CPUs in subparts_cpus might have
1212 * been offlined, we need to compute the real delmask
1213 * to confirm that.
1214 */
1215 if (!cpumask_and(tmp->addmask, tmp->delmask,
1216 cpu_active_mask))
1217 return -EINVAL;
1218 cpumask_copy(tmp->addmask, parent->effective_cpus);
1219 }
1220 } else {
1221 /*
1222 * partcmd_update w/o newmask:
1223 *
1224 * addmask = cpus_allowed & parent->effectiveb_cpus
1225 *
1226 * Note that parent's subparts_cpus may have been
1227 * pre-shrunk in case there is a change in the cpu list.
1228 * So no deletion is needed.
1229 */
1230 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1231 parent->effective_cpus);
1232 part_error = cpumask_equal(tmp->addmask,
1233 parent->effective_cpus);
1234 }
1235
1236 if (cmd == partcmd_update) {
1237 int prev_prs = cpuset->partition_root_state;
1238
1239 /*
1240 * Check for possible transition between PRS_ENABLED
1241 * and PRS_ERROR.
1242 */
1243 switch (cpuset->partition_root_state) {
1244 case PRS_ENABLED:
1245 if (part_error)
1246 cpuset->partition_root_state = PRS_ERROR;
1247 break;
1248 case PRS_ERROR:
1249 if (!part_error)
1250 cpuset->partition_root_state = PRS_ENABLED;
1251 break;
1252 }
1253 /*
1254 * Set part_error if previously in invalid state.
1255 */
1256 part_error = (prev_prs == PRS_ERROR);
1257 }
1258
1259 if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1260 return 0; /* Nothing need to be done */
1261
1262 if (cpuset->partition_root_state == PRS_ERROR) {
1263 /*
1264 * Remove all its cpus from parent's subparts_cpus.
1265 */
1266 adding = false;
1267 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1268 parent->subparts_cpus);
1269 }
1270
1271 if (!adding && !deleting)
1272 return 0;
1273
1274 /*
1275 * Change the parent's subparts_cpus.
1276 * Newly added CPUs will be removed from effective_cpus and
1277 * newly deleted ones will be added back to effective_cpus.
1278 */
1279 spin_lock_irq(&callback_lock);
1280 if (adding) {
1281 cpumask_or(parent->subparts_cpus,
1282 parent->subparts_cpus, tmp->addmask);
1283 cpumask_andnot(parent->effective_cpus,
1284 parent->effective_cpus, tmp->addmask);
1285 }
1286 if (deleting) {
1287 cpumask_andnot(parent->subparts_cpus,
1288 parent->subparts_cpus, tmp->delmask);
1289 /*
1290 * Some of the CPUs in subparts_cpus might have been offlined.
1291 */
1292 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1293 cpumask_or(parent->effective_cpus,
1294 parent->effective_cpus, tmp->delmask);
1295 }
1296
1297 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1298 spin_unlock_irq(&callback_lock);
1299
1300 return cmd == partcmd_update;
1301 }
1302
1303 /*
1304 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1305 * @cs: the cpuset to consider
1306 * @tmp: temp variables for calculating effective_cpus & partition setup
1307 *
1308 * When congifured cpumask is changed, the effective cpumasks of this cpuset
1309 * and all its descendants need to be updated.
1310 *
1311 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1312 *
1313 * Called with cpuset_mutex held
1314 */
update_cpumasks_hier(struct cpuset * cs,struct tmpmasks * tmp)1315 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1316 {
1317 struct cpuset *cp;
1318 struct cgroup_subsys_state *pos_css;
1319 bool need_rebuild_sched_domains = false;
1320
1321 rcu_read_lock();
1322 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1323 struct cpuset *parent = parent_cs(cp);
1324
1325 compute_effective_cpumask(tmp->new_cpus, cp, parent);
1326
1327 /*
1328 * If it becomes empty, inherit the effective mask of the
1329 * parent, which is guaranteed to have some CPUs.
1330 */
1331 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1332 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1333 if (!cp->use_parent_ecpus) {
1334 cp->use_parent_ecpus = true;
1335 parent->child_ecpus_count++;
1336 }
1337 } else if (cp->use_parent_ecpus) {
1338 cp->use_parent_ecpus = false;
1339 WARN_ON_ONCE(!parent->child_ecpus_count);
1340 parent->child_ecpus_count--;
1341 }
1342
1343 /*
1344 * Skip the whole subtree if the cpumask remains the same
1345 * and has no partition root state.
1346 */
1347 if (!cp->partition_root_state &&
1348 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1349 pos_css = css_rightmost_descendant(pos_css);
1350 continue;
1351 }
1352
1353 /*
1354 * update_parent_subparts_cpumask() should have been called
1355 * for cs already in update_cpumask(). We should also call
1356 * update_tasks_cpumask() again for tasks in the parent
1357 * cpuset if the parent's subparts_cpus changes.
1358 */
1359 if ((cp != cs) && cp->partition_root_state) {
1360 switch (parent->partition_root_state) {
1361 case PRS_DISABLED:
1362 /*
1363 * If parent is not a partition root or an
1364 * invalid partition root, clear the state
1365 * state and the CS_CPU_EXCLUSIVE flag.
1366 */
1367 WARN_ON_ONCE(cp->partition_root_state
1368 != PRS_ERROR);
1369 cp->partition_root_state = 0;
1370
1371 /*
1372 * clear_bit() is an atomic operation and
1373 * readers aren't interested in the state
1374 * of CS_CPU_EXCLUSIVE anyway. So we can
1375 * just update the flag without holding
1376 * the callback_lock.
1377 */
1378 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1379 break;
1380
1381 case PRS_ENABLED:
1382 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1383 update_tasks_cpumask(parent);
1384 break;
1385
1386 case PRS_ERROR:
1387 /*
1388 * When parent is invalid, it has to be too.
1389 */
1390 cp->partition_root_state = PRS_ERROR;
1391 if (cp->nr_subparts_cpus) {
1392 cp->nr_subparts_cpus = 0;
1393 cpumask_clear(cp->subparts_cpus);
1394 }
1395 break;
1396 }
1397 }
1398
1399 if (!css_tryget_online(&cp->css))
1400 continue;
1401 rcu_read_unlock();
1402
1403 spin_lock_irq(&callback_lock);
1404
1405 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1406 if (cp->nr_subparts_cpus &&
1407 (cp->partition_root_state != PRS_ENABLED)) {
1408 cp->nr_subparts_cpus = 0;
1409 cpumask_clear(cp->subparts_cpus);
1410 } else if (cp->nr_subparts_cpus) {
1411 /*
1412 * Make sure that effective_cpus & subparts_cpus
1413 * are mutually exclusive.
1414 *
1415 * In the unlikely event that effective_cpus
1416 * becomes empty. we clear cp->nr_subparts_cpus and
1417 * let its child partition roots to compete for
1418 * CPUs again.
1419 */
1420 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1421 cp->subparts_cpus);
1422 if (cpumask_empty(cp->effective_cpus)) {
1423 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1424 cpumask_clear(cp->subparts_cpus);
1425 cp->nr_subparts_cpus = 0;
1426 } else if (!cpumask_subset(cp->subparts_cpus,
1427 tmp->new_cpus)) {
1428 cpumask_andnot(cp->subparts_cpus,
1429 cp->subparts_cpus, tmp->new_cpus);
1430 cp->nr_subparts_cpus
1431 = cpumask_weight(cp->subparts_cpus);
1432 }
1433 }
1434 spin_unlock_irq(&callback_lock);
1435
1436 WARN_ON(!is_in_v2_mode() &&
1437 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1438
1439 update_tasks_cpumask(cp);
1440
1441 /*
1442 * On legacy hierarchy, if the effective cpumask of any non-
1443 * empty cpuset is changed, we need to rebuild sched domains.
1444 * On default hierarchy, the cpuset needs to be a partition
1445 * root as well.
1446 */
1447 if (!cpumask_empty(cp->cpus_allowed) &&
1448 is_sched_load_balance(cp) &&
1449 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1450 is_partition_root(cp)))
1451 need_rebuild_sched_domains = true;
1452
1453 rcu_read_lock();
1454 css_put(&cp->css);
1455 }
1456 rcu_read_unlock();
1457
1458 if (need_rebuild_sched_domains)
1459 rebuild_sched_domains_locked();
1460 }
1461
1462 /**
1463 * update_sibling_cpumasks - Update siblings cpumasks
1464 * @parent: Parent cpuset
1465 * @cs: Current cpuset
1466 * @tmp: Temp variables
1467 */
update_sibling_cpumasks(struct cpuset * parent,struct cpuset * cs,struct tmpmasks * tmp)1468 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1469 struct tmpmasks *tmp)
1470 {
1471 struct cpuset *sibling;
1472 struct cgroup_subsys_state *pos_css;
1473
1474 percpu_rwsem_assert_held(&cpuset_rwsem);
1475
1476 /*
1477 * Check all its siblings and call update_cpumasks_hier()
1478 * if their use_parent_ecpus flag is set in order for them
1479 * to use the right effective_cpus value.
1480 *
1481 * The update_cpumasks_hier() function may sleep. So we have to
1482 * release the RCU read lock before calling it.
1483 */
1484 rcu_read_lock();
1485 cpuset_for_each_child(sibling, pos_css, parent) {
1486 if (sibling == cs)
1487 continue;
1488 if (!sibling->use_parent_ecpus)
1489 continue;
1490 if (!css_tryget_online(&sibling->css))
1491 continue;
1492
1493 rcu_read_unlock();
1494 update_cpumasks_hier(sibling, tmp);
1495 rcu_read_lock();
1496 css_put(&sibling->css);
1497 }
1498 rcu_read_unlock();
1499 }
1500
1501 /**
1502 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1503 * @cs: the cpuset to consider
1504 * @trialcs: trial cpuset
1505 * @buf: buffer of cpu numbers written to this cpuset
1506 */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1507 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1508 const char *buf)
1509 {
1510 int retval;
1511 struct tmpmasks tmp;
1512
1513 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1514 if (cs == &top_cpuset)
1515 return -EACCES;
1516
1517 /*
1518 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1519 * Since cpulist_parse() fails on an empty mask, we special case
1520 * that parsing. The validate_change() call ensures that cpusets
1521 * with tasks have cpus.
1522 */
1523 if (!*buf) {
1524 cpumask_clear(trialcs->cpus_allowed);
1525 } else {
1526 retval = cpulist_parse(buf, trialcs->cpus_allowed);
1527 if (retval < 0)
1528 return retval;
1529
1530 if (!cpumask_subset(trialcs->cpus_allowed,
1531 top_cpuset.cpus_allowed))
1532 return -EINVAL;
1533 }
1534
1535 /* Nothing to do if the cpus didn't change */
1536 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1537 return 0;
1538
1539 retval = validate_change(cs, trialcs);
1540 if (retval < 0)
1541 return retval;
1542
1543 #ifdef CONFIG_CPUMASK_OFFSTACK
1544 /*
1545 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1546 * to allocated cpumasks.
1547 */
1548 tmp.addmask = trialcs->subparts_cpus;
1549 tmp.delmask = trialcs->effective_cpus;
1550 tmp.new_cpus = trialcs->cpus_allowed;
1551 #endif
1552
1553 if (cs->partition_root_state) {
1554 /* Cpumask of a partition root cannot be empty */
1555 if (cpumask_empty(trialcs->cpus_allowed))
1556 return -EINVAL;
1557 if (update_parent_subparts_cpumask(cs, partcmd_update,
1558 trialcs->cpus_allowed, &tmp) < 0)
1559 return -EINVAL;
1560 }
1561
1562 spin_lock_irq(&callback_lock);
1563 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1564
1565 /*
1566 * Make sure that subparts_cpus is a subset of cpus_allowed.
1567 */
1568 if (cs->nr_subparts_cpus) {
1569 cpumask_and(cs->subparts_cpus, cs->subparts_cpus, cs->cpus_allowed);
1570 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1571 }
1572 spin_unlock_irq(&callback_lock);
1573
1574 update_cpumasks_hier(cs, &tmp);
1575
1576 if (cs->partition_root_state) {
1577 struct cpuset *parent = parent_cs(cs);
1578
1579 /*
1580 * For partition root, update the cpumasks of sibling
1581 * cpusets if they use parent's effective_cpus.
1582 */
1583 if (parent->child_ecpus_count)
1584 update_sibling_cpumasks(parent, cs, &tmp);
1585 }
1586 return 0;
1587 }
1588
1589 /*
1590 * Migrate memory region from one set of nodes to another. This is
1591 * performed asynchronously as it can be called from process migration path
1592 * holding locks involved in process management. All mm migrations are
1593 * performed in the queued order and can be waited for by flushing
1594 * cpuset_migrate_mm_wq.
1595 */
1596
1597 struct cpuset_migrate_mm_work {
1598 struct work_struct work;
1599 struct mm_struct *mm;
1600 nodemask_t from;
1601 nodemask_t to;
1602 };
1603
cpuset_migrate_mm_workfn(struct work_struct * work)1604 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1605 {
1606 struct cpuset_migrate_mm_work *mwork =
1607 container_of(work, struct cpuset_migrate_mm_work, work);
1608
1609 /* on a wq worker, no need to worry about %current's mems_allowed */
1610 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1611 mmput(mwork->mm);
1612 kfree(mwork);
1613 }
1614
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)1615 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1616 const nodemask_t *to)
1617 {
1618 struct cpuset_migrate_mm_work *mwork;
1619
1620 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1621 if (mwork) {
1622 mwork->mm = mm;
1623 mwork->from = *from;
1624 mwork->to = *to;
1625 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1626 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1627 } else {
1628 mmput(mm);
1629 }
1630 }
1631
cpuset_post_attach(void)1632 static void cpuset_post_attach(void)
1633 {
1634 flush_workqueue(cpuset_migrate_mm_wq);
1635 }
1636
1637 /*
1638 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1639 * @tsk: the task to change
1640 * @newmems: new nodes that the task will be set
1641 *
1642 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1643 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1644 * parallel, it might temporarily see an empty intersection, which results in
1645 * a seqlock check and retry before OOM or allocation failure.
1646 */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)1647 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1648 nodemask_t *newmems)
1649 {
1650 task_lock(tsk);
1651
1652 local_irq_disable();
1653 write_seqcount_begin(&tsk->mems_allowed_seq);
1654
1655 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1656 mpol_rebind_task(tsk, newmems);
1657 tsk->mems_allowed = *newmems;
1658
1659 write_seqcount_end(&tsk->mems_allowed_seq);
1660 local_irq_enable();
1661
1662 task_unlock(tsk);
1663 }
1664
1665 static void *cpuset_being_rebound;
1666
1667 /**
1668 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1669 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1670 *
1671 * Iterate through each task of @cs updating its mems_allowed to the
1672 * effective cpuset's. As this function is called with cpuset_mutex held,
1673 * cpuset membership stays stable.
1674 */
update_tasks_nodemask(struct cpuset * cs)1675 static void update_tasks_nodemask(struct cpuset *cs)
1676 {
1677 static nodemask_t newmems; /* protected by cpuset_mutex */
1678 struct css_task_iter it;
1679 struct task_struct *task;
1680
1681 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1682
1683 guarantee_online_mems(cs, &newmems);
1684
1685 /*
1686 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1687 * take while holding tasklist_lock. Forks can happen - the
1688 * mpol_dup() cpuset_being_rebound check will catch such forks,
1689 * and rebind their vma mempolicies too. Because we still hold
1690 * the global cpuset_mutex, we know that no other rebind effort
1691 * will be contending for the global variable cpuset_being_rebound.
1692 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1693 * is idempotent. Also migrate pages in each mm to new nodes.
1694 */
1695 css_task_iter_start(&cs->css, 0, &it);
1696 while ((task = css_task_iter_next(&it))) {
1697 struct mm_struct *mm;
1698 bool migrate;
1699
1700 cpuset_change_task_nodemask(task, &newmems);
1701
1702 mm = get_task_mm(task);
1703 if (!mm)
1704 continue;
1705
1706 migrate = is_memory_migrate(cs);
1707
1708 mpol_rebind_mm(mm, &cs->mems_allowed);
1709 if (migrate)
1710 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1711 else
1712 mmput(mm);
1713 }
1714 css_task_iter_end(&it);
1715
1716 /*
1717 * All the tasks' nodemasks have been updated, update
1718 * cs->old_mems_allowed.
1719 */
1720 cs->old_mems_allowed = newmems;
1721
1722 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1723 cpuset_being_rebound = NULL;
1724 }
1725
1726 /*
1727 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1728 * @cs: the cpuset to consider
1729 * @new_mems: a temp variable for calculating new effective_mems
1730 *
1731 * When configured nodemask is changed, the effective nodemasks of this cpuset
1732 * and all its descendants need to be updated.
1733 *
1734 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1735 *
1736 * Called with cpuset_mutex held
1737 */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)1738 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1739 {
1740 struct cpuset *cp;
1741 struct cgroup_subsys_state *pos_css;
1742
1743 rcu_read_lock();
1744 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1745 struct cpuset *parent = parent_cs(cp);
1746
1747 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1748
1749 /*
1750 * If it becomes empty, inherit the effective mask of the
1751 * parent, which is guaranteed to have some MEMs.
1752 */
1753 if (is_in_v2_mode() && nodes_empty(*new_mems))
1754 *new_mems = parent->effective_mems;
1755
1756 /* Skip the whole subtree if the nodemask remains the same. */
1757 if (nodes_equal(*new_mems, cp->effective_mems)) {
1758 pos_css = css_rightmost_descendant(pos_css);
1759 continue;
1760 }
1761
1762 if (!css_tryget_online(&cp->css))
1763 continue;
1764 rcu_read_unlock();
1765
1766 spin_lock_irq(&callback_lock);
1767 cp->effective_mems = *new_mems;
1768 spin_unlock_irq(&callback_lock);
1769
1770 WARN_ON(!is_in_v2_mode() &&
1771 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1772
1773 update_tasks_nodemask(cp);
1774
1775 rcu_read_lock();
1776 css_put(&cp->css);
1777 }
1778 rcu_read_unlock();
1779 }
1780
1781 /*
1782 * Handle user request to change the 'mems' memory placement
1783 * of a cpuset. Needs to validate the request, update the
1784 * cpusets mems_allowed, and for each task in the cpuset,
1785 * update mems_allowed and rebind task's mempolicy and any vma
1786 * mempolicies and if the cpuset is marked 'memory_migrate',
1787 * migrate the tasks pages to the new memory.
1788 *
1789 * Call with cpuset_mutex held. May take callback_lock during call.
1790 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1791 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1792 * their mempolicies to the cpusets new mems_allowed.
1793 */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1794 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1795 const char *buf)
1796 {
1797 int retval;
1798
1799 /*
1800 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1801 * it's read-only
1802 */
1803 if (cs == &top_cpuset) {
1804 retval = -EACCES;
1805 goto done;
1806 }
1807
1808 /*
1809 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1810 * Since nodelist_parse() fails on an empty mask, we special case
1811 * that parsing. The validate_change() call ensures that cpusets
1812 * with tasks have memory.
1813 */
1814 if (!*buf) {
1815 nodes_clear(trialcs->mems_allowed);
1816 } else {
1817 retval = nodelist_parse(buf, trialcs->mems_allowed);
1818 if (retval < 0)
1819 goto done;
1820
1821 if (!nodes_subset(trialcs->mems_allowed,
1822 top_cpuset.mems_allowed)) {
1823 retval = -EINVAL;
1824 goto done;
1825 }
1826 }
1827
1828 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1829 retval = 0; /* Too easy - nothing to do */
1830 goto done;
1831 }
1832 retval = validate_change(cs, trialcs);
1833 if (retval < 0)
1834 goto done;
1835
1836 spin_lock_irq(&callback_lock);
1837 cs->mems_allowed = trialcs->mems_allowed;
1838 spin_unlock_irq(&callback_lock);
1839
1840 /* use trialcs->mems_allowed as a temp variable */
1841 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1842 done:
1843 return retval;
1844 }
1845
current_cpuset_is_being_rebound(void)1846 bool current_cpuset_is_being_rebound(void)
1847 {
1848 bool ret;
1849
1850 rcu_read_lock();
1851 ret = task_cs(current) == cpuset_being_rebound;
1852 rcu_read_unlock();
1853
1854 return ret;
1855 }
1856
update_relax_domain_level(struct cpuset * cs,s64 val)1857 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1858 {
1859 #ifdef CONFIG_SMP
1860 if (val < -1 || val >= sched_domain_level_max)
1861 return -EINVAL;
1862 #endif
1863
1864 if (val != cs->relax_domain_level) {
1865 cs->relax_domain_level = val;
1866 if (!cpumask_empty(cs->cpus_allowed) &&
1867 is_sched_load_balance(cs))
1868 rebuild_sched_domains_locked();
1869 }
1870
1871 return 0;
1872 }
1873
1874 /**
1875 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1876 * @cs: the cpuset in which each task's spread flags needs to be changed
1877 *
1878 * Iterate through each task of @cs updating its spread flags. As this
1879 * function is called with cpuset_mutex held, cpuset membership stays
1880 * stable.
1881 */
update_tasks_flags(struct cpuset * cs)1882 static void update_tasks_flags(struct cpuset *cs)
1883 {
1884 struct css_task_iter it;
1885 struct task_struct *task;
1886
1887 css_task_iter_start(&cs->css, 0, &it);
1888 while ((task = css_task_iter_next(&it)))
1889 cpuset_update_task_spread_flag(cs, task);
1890 css_task_iter_end(&it);
1891 }
1892
1893 /*
1894 * update_flag - read a 0 or a 1 in a file and update associated flag
1895 * bit: the bit to update (see cpuset_flagbits_t)
1896 * cs: the cpuset to update
1897 * turning_on: whether the flag is being set or cleared
1898 *
1899 * Call with cpuset_mutex held.
1900 */
1901
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)1902 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1903 int turning_on)
1904 {
1905 struct cpuset *trialcs;
1906 int balance_flag_changed;
1907 int spread_flag_changed;
1908 int err;
1909
1910 trialcs = alloc_trial_cpuset(cs);
1911 if (!trialcs)
1912 return -ENOMEM;
1913
1914 if (turning_on)
1915 set_bit(bit, &trialcs->flags);
1916 else
1917 clear_bit(bit, &trialcs->flags);
1918
1919 err = validate_change(cs, trialcs);
1920 if (err < 0)
1921 goto out;
1922
1923 balance_flag_changed = (is_sched_load_balance(cs) !=
1924 is_sched_load_balance(trialcs));
1925
1926 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1927 || (is_spread_page(cs) != is_spread_page(trialcs)));
1928
1929 spin_lock_irq(&callback_lock);
1930 cs->flags = trialcs->flags;
1931 spin_unlock_irq(&callback_lock);
1932
1933 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1934 rebuild_sched_domains_locked();
1935
1936 if (spread_flag_changed)
1937 update_tasks_flags(cs);
1938 out:
1939 free_cpuset(trialcs);
1940 return err;
1941 }
1942
1943 /*
1944 * update_prstate - update partititon_root_state
1945 * cs: the cpuset to update
1946 * val: 0 - disabled, 1 - enabled
1947 *
1948 * Call with cpuset_mutex held.
1949 */
update_prstate(struct cpuset * cs,int val)1950 static int update_prstate(struct cpuset *cs, int val)
1951 {
1952 int err;
1953 struct cpuset *parent = parent_cs(cs);
1954 struct tmpmasks tmp;
1955
1956 if ((val != 0) && (val != 1))
1957 return -EINVAL;
1958 if (val == cs->partition_root_state)
1959 return 0;
1960
1961 /*
1962 * Cannot force a partial or invalid partition root to a full
1963 * partition root.
1964 */
1965 if (val && cs->partition_root_state)
1966 return -EINVAL;
1967
1968 if (alloc_cpumasks(NULL, &tmp))
1969 return -ENOMEM;
1970
1971 err = -EINVAL;
1972 if (!cs->partition_root_state) {
1973 /*
1974 * Turning on partition root requires setting the
1975 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1976 * cannot be NULL.
1977 */
1978 if (cpumask_empty(cs->cpus_allowed))
1979 goto out;
1980
1981 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1982 if (err)
1983 goto out;
1984
1985 err = update_parent_subparts_cpumask(cs, partcmd_enable,
1986 NULL, &tmp);
1987 if (err) {
1988 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1989 goto out;
1990 }
1991 cs->partition_root_state = PRS_ENABLED;
1992 } else {
1993 /*
1994 * Turning off partition root will clear the
1995 * CS_CPU_EXCLUSIVE bit.
1996 */
1997 if (cs->partition_root_state == PRS_ERROR) {
1998 cs->partition_root_state = 0;
1999 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2000 err = 0;
2001 goto out;
2002 }
2003
2004 err = update_parent_subparts_cpumask(cs, partcmd_disable,
2005 NULL, &tmp);
2006 if (err)
2007 goto out;
2008
2009 cs->partition_root_state = 0;
2010
2011 /* Turning off CS_CPU_EXCLUSIVE will not return error */
2012 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2013 }
2014
2015 update_tasks_cpumask(parent);
2016
2017 if (parent->child_ecpus_count)
2018 update_sibling_cpumasks(parent, cs, &tmp);
2019
2020 rebuild_sched_domains_locked();
2021 out:
2022 free_cpumasks(NULL, &tmp);
2023 return err;
2024 }
2025
2026 /*
2027 * Frequency meter - How fast is some event occurring?
2028 *
2029 * These routines manage a digitally filtered, constant time based,
2030 * event frequency meter. There are four routines:
2031 * fmeter_init() - initialize a frequency meter.
2032 * fmeter_markevent() - called each time the event happens.
2033 * fmeter_getrate() - returns the recent rate of such events.
2034 * fmeter_update() - internal routine used to update fmeter.
2035 *
2036 * A common data structure is passed to each of these routines,
2037 * which is used to keep track of the state required to manage the
2038 * frequency meter and its digital filter.
2039 *
2040 * The filter works on the number of events marked per unit time.
2041 * The filter is single-pole low-pass recursive (IIR). The time unit
2042 * is 1 second. Arithmetic is done using 32-bit integers scaled to
2043 * simulate 3 decimal digits of precision (multiplied by 1000).
2044 *
2045 * With an FM_COEF of 933, and a time base of 1 second, the filter
2046 * has a half-life of 10 seconds, meaning that if the events quit
2047 * happening, then the rate returned from the fmeter_getrate()
2048 * will be cut in half each 10 seconds, until it converges to zero.
2049 *
2050 * It is not worth doing a real infinitely recursive filter. If more
2051 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2052 * just compute FM_MAXTICKS ticks worth, by which point the level
2053 * will be stable.
2054 *
2055 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2056 * arithmetic overflow in the fmeter_update() routine.
2057 *
2058 * Given the simple 32 bit integer arithmetic used, this meter works
2059 * best for reporting rates between one per millisecond (msec) and
2060 * one per 32 (approx) seconds. At constant rates faster than one
2061 * per msec it maxes out at values just under 1,000,000. At constant
2062 * rates between one per msec, and one per second it will stabilize
2063 * to a value N*1000, where N is the rate of events per second.
2064 * At constant rates between one per second and one per 32 seconds,
2065 * it will be choppy, moving up on the seconds that have an event,
2066 * and then decaying until the next event. At rates slower than
2067 * about one in 32 seconds, it decays all the way back to zero between
2068 * each event.
2069 */
2070
2071 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
2072 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2073 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2074 #define FM_SCALE 1000 /* faux fixed point scale */
2075
2076 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)2077 static void fmeter_init(struct fmeter *fmp)
2078 {
2079 fmp->cnt = 0;
2080 fmp->val = 0;
2081 fmp->time = 0;
2082 spin_lock_init(&fmp->lock);
2083 }
2084
2085 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)2086 static void fmeter_update(struct fmeter *fmp)
2087 {
2088 time64_t now;
2089 u32 ticks;
2090
2091 now = ktime_get_seconds();
2092 ticks = now - fmp->time;
2093
2094 if (ticks == 0)
2095 return;
2096
2097 ticks = min(FM_MAXTICKS, ticks);
2098 while (ticks-- > 0)
2099 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2100 fmp->time = now;
2101
2102 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2103 fmp->cnt = 0;
2104 }
2105
2106 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)2107 static void fmeter_markevent(struct fmeter *fmp)
2108 {
2109 spin_lock(&fmp->lock);
2110 fmeter_update(fmp);
2111 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2112 spin_unlock(&fmp->lock);
2113 }
2114
2115 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)2116 static int fmeter_getrate(struct fmeter *fmp)
2117 {
2118 int val;
2119
2120 spin_lock(&fmp->lock);
2121 fmeter_update(fmp);
2122 val = fmp->val;
2123 spin_unlock(&fmp->lock);
2124 return val;
2125 }
2126
2127 static struct cpuset *cpuset_attach_old_cs;
2128
2129 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)2130 static int cpuset_can_attach(struct cgroup_taskset *tset)
2131 {
2132 struct cgroup_subsys_state *css;
2133 struct cpuset *cs;
2134 struct task_struct *task;
2135 int ret;
2136
2137 /* used later by cpuset_attach() */
2138 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2139 cs = css_cs(css);
2140
2141 percpu_down_write(&cpuset_rwsem);
2142
2143 /* allow moving tasks into an empty cpuset if on default hierarchy */
2144 ret = -ENOSPC;
2145 if (!is_in_v2_mode() &&
2146 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2147 goto out_unlock;
2148
2149 cgroup_taskset_for_each(task, css, tset) {
2150 ret = task_can_attach(task, cs->cpus_allowed);
2151 if (ret)
2152 goto out_unlock;
2153 ret = security_task_setscheduler(task);
2154 if (ret)
2155 goto out_unlock;
2156 }
2157
2158 /*
2159 * Mark attach is in progress. This makes validate_change() fail
2160 * changes which zero cpus/mems_allowed.
2161 */
2162 cs->attach_in_progress++;
2163 ret = 0;
2164 out_unlock:
2165 percpu_up_write(&cpuset_rwsem);
2166 return ret;
2167 }
2168
cpuset_cancel_attach(struct cgroup_taskset * tset)2169 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2170 {
2171 struct cgroup_subsys_state *css;
2172 struct cpuset *cs;
2173
2174 cgroup_taskset_first(tset, &css);
2175 cs = css_cs(css);
2176
2177 percpu_down_write(&cpuset_rwsem);
2178 cs->attach_in_progress--;
2179 if (!cs->attach_in_progress)
2180 wake_up(&cpuset_attach_wq);
2181 percpu_up_write(&cpuset_rwsem);
2182 }
2183
2184 /*
2185 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
2186 * but we can't allocate it dynamically there. Define it global and
2187 * allocate from cpuset_init().
2188 */
2189 static cpumask_var_t cpus_attach;
2190
cpuset_attach(struct cgroup_taskset * tset)2191 static void cpuset_attach(struct cgroup_taskset *tset)
2192 {
2193 /* static buf protected by cpuset_mutex */
2194 static nodemask_t cpuset_attach_nodemask_to;
2195 struct task_struct *task;
2196 struct task_struct *leader;
2197 struct cgroup_subsys_state *css;
2198 struct cpuset *cs;
2199 struct cpuset *oldcs = cpuset_attach_old_cs;
2200
2201 cgroup_taskset_first(tset, &css);
2202 cs = css_cs(css);
2203
2204 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
2205 percpu_down_write(&cpuset_rwsem);
2206
2207 /* prepare for attach */
2208 if (cs == &top_cpuset)
2209 cpumask_copy(cpus_attach, cpu_possible_mask);
2210 else
2211 guarantee_online_cpus(cs, cpus_attach);
2212
2213 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2214
2215 cgroup_taskset_for_each(task, css, tset) {
2216 /*
2217 * can_attach beforehand should guarantee that this doesn't
2218 * fail. TODO: have a better way to handle failure here
2219 */
2220 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2221
2222 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2223 cpuset_update_task_spread_flag(cs, task);
2224 }
2225
2226 /*
2227 * Change mm for all threadgroup leaders. This is expensive and may
2228 * sleep and should be moved outside migration path proper.
2229 */
2230 cpuset_attach_nodemask_to = cs->effective_mems;
2231 cgroup_taskset_for_each_leader(leader, css, tset) {
2232 struct mm_struct *mm = get_task_mm(leader);
2233
2234 if (mm) {
2235 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2236
2237 /*
2238 * old_mems_allowed is the same with mems_allowed
2239 * here, except if this task is being moved
2240 * automatically due to hotplug. In that case
2241 * @mems_allowed has been updated and is empty, so
2242 * @old_mems_allowed is the right nodesets that we
2243 * migrate mm from.
2244 */
2245 if (is_memory_migrate(cs))
2246 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2247 &cpuset_attach_nodemask_to);
2248 else
2249 mmput(mm);
2250 }
2251 }
2252
2253 cs->old_mems_allowed = cpuset_attach_nodemask_to;
2254
2255 cs->attach_in_progress--;
2256 if (!cs->attach_in_progress)
2257 wake_up(&cpuset_attach_wq);
2258
2259 percpu_up_write(&cpuset_rwsem);
2260 }
2261
2262 /* The various types of files and directories in a cpuset file system */
2263
2264 typedef enum {
2265 FILE_MEMORY_MIGRATE,
2266 FILE_CPULIST,
2267 FILE_MEMLIST,
2268 FILE_EFFECTIVE_CPULIST,
2269 FILE_EFFECTIVE_MEMLIST,
2270 FILE_SUBPARTS_CPULIST,
2271 FILE_CPU_EXCLUSIVE,
2272 FILE_MEM_EXCLUSIVE,
2273 FILE_MEM_HARDWALL,
2274 FILE_SCHED_LOAD_BALANCE,
2275 FILE_PARTITION_ROOT,
2276 FILE_SCHED_RELAX_DOMAIN_LEVEL,
2277 FILE_MEMORY_PRESSURE_ENABLED,
2278 FILE_MEMORY_PRESSURE,
2279 FILE_SPREAD_PAGE,
2280 FILE_SPREAD_SLAB,
2281 } cpuset_filetype_t;
2282
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2283 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2284 u64 val)
2285 {
2286 struct cpuset *cs = css_cs(css);
2287 cpuset_filetype_t type = cft->private;
2288 int retval = 0;
2289
2290 get_online_cpus();
2291 percpu_down_write(&cpuset_rwsem);
2292 if (!is_cpuset_online(cs)) {
2293 retval = -ENODEV;
2294 goto out_unlock;
2295 }
2296
2297 switch (type) {
2298 case FILE_CPU_EXCLUSIVE:
2299 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2300 break;
2301 case FILE_MEM_EXCLUSIVE:
2302 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2303 break;
2304 case FILE_MEM_HARDWALL:
2305 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2306 break;
2307 case FILE_SCHED_LOAD_BALANCE:
2308 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2309 break;
2310 case FILE_MEMORY_MIGRATE:
2311 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2312 break;
2313 case FILE_MEMORY_PRESSURE_ENABLED:
2314 cpuset_memory_pressure_enabled = !!val;
2315 break;
2316 case FILE_SPREAD_PAGE:
2317 retval = update_flag(CS_SPREAD_PAGE, cs, val);
2318 break;
2319 case FILE_SPREAD_SLAB:
2320 retval = update_flag(CS_SPREAD_SLAB, cs, val);
2321 break;
2322 default:
2323 retval = -EINVAL;
2324 break;
2325 }
2326 out_unlock:
2327 percpu_up_write(&cpuset_rwsem);
2328 put_online_cpus();
2329 return retval;
2330 }
2331
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)2332 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2333 s64 val)
2334 {
2335 struct cpuset *cs = css_cs(css);
2336 cpuset_filetype_t type = cft->private;
2337 int retval = -ENODEV;
2338
2339 get_online_cpus();
2340 percpu_down_write(&cpuset_rwsem);
2341 if (!is_cpuset_online(cs))
2342 goto out_unlock;
2343
2344 switch (type) {
2345 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2346 retval = update_relax_domain_level(cs, val);
2347 break;
2348 default:
2349 retval = -EINVAL;
2350 break;
2351 }
2352 out_unlock:
2353 percpu_up_write(&cpuset_rwsem);
2354 put_online_cpus();
2355 return retval;
2356 }
2357
2358 /*
2359 * Common handling for a write to a "cpus" or "mems" file.
2360 */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2361 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2362 char *buf, size_t nbytes, loff_t off)
2363 {
2364 struct cpuset *cs = css_cs(of_css(of));
2365 struct cpuset *trialcs;
2366 int retval = -ENODEV;
2367
2368 buf = strstrip(buf);
2369
2370 /*
2371 * CPU or memory hotunplug may leave @cs w/o any execution
2372 * resources, in which case the hotplug code asynchronously updates
2373 * configuration and transfers all tasks to the nearest ancestor
2374 * which can execute.
2375 *
2376 * As writes to "cpus" or "mems" may restore @cs's execution
2377 * resources, wait for the previously scheduled operations before
2378 * proceeding, so that we don't end up keep removing tasks added
2379 * after execution capability is restored.
2380 *
2381 * cpuset_hotplug_work calls back into cgroup core via
2382 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2383 * operation like this one can lead to a deadlock through kernfs
2384 * active_ref protection. Let's break the protection. Losing the
2385 * protection is okay as we check whether @cs is online after
2386 * grabbing cpuset_mutex anyway. This only happens on the legacy
2387 * hierarchies.
2388 */
2389 css_get(&cs->css);
2390 kernfs_break_active_protection(of->kn);
2391 flush_work(&cpuset_hotplug_work);
2392
2393 get_online_cpus();
2394 percpu_down_write(&cpuset_rwsem);
2395 if (!is_cpuset_online(cs))
2396 goto out_unlock;
2397
2398 trialcs = alloc_trial_cpuset(cs);
2399 if (!trialcs) {
2400 retval = -ENOMEM;
2401 goto out_unlock;
2402 }
2403
2404 switch (of_cft(of)->private) {
2405 case FILE_CPULIST:
2406 retval = update_cpumask(cs, trialcs, buf);
2407 break;
2408 case FILE_MEMLIST:
2409 retval = update_nodemask(cs, trialcs, buf);
2410 break;
2411 default:
2412 retval = -EINVAL;
2413 break;
2414 }
2415
2416 free_cpuset(trialcs);
2417 out_unlock:
2418 percpu_up_write(&cpuset_rwsem);
2419 put_online_cpus();
2420 kernfs_unbreak_active_protection(of->kn);
2421 css_put(&cs->css);
2422 flush_workqueue(cpuset_migrate_mm_wq);
2423 return retval ?: nbytes;
2424 }
2425
2426 /*
2427 * These ascii lists should be read in a single call, by using a user
2428 * buffer large enough to hold the entire map. If read in smaller
2429 * chunks, there is no guarantee of atomicity. Since the display format
2430 * used, list of ranges of sequential numbers, is variable length,
2431 * and since these maps can change value dynamically, one could read
2432 * gibberish by doing partial reads while a list was changing.
2433 */
cpuset_common_seq_show(struct seq_file * sf,void * v)2434 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2435 {
2436 struct cpuset *cs = css_cs(seq_css(sf));
2437 cpuset_filetype_t type = seq_cft(sf)->private;
2438 int ret = 0;
2439
2440 spin_lock_irq(&callback_lock);
2441
2442 switch (type) {
2443 case FILE_CPULIST:
2444 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2445 break;
2446 case FILE_MEMLIST:
2447 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2448 break;
2449 case FILE_EFFECTIVE_CPULIST:
2450 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2451 break;
2452 case FILE_EFFECTIVE_MEMLIST:
2453 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2454 break;
2455 case FILE_SUBPARTS_CPULIST:
2456 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2457 break;
2458 default:
2459 ret = -EINVAL;
2460 }
2461
2462 spin_unlock_irq(&callback_lock);
2463 return ret;
2464 }
2465
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2466 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2467 {
2468 struct cpuset *cs = css_cs(css);
2469 cpuset_filetype_t type = cft->private;
2470 switch (type) {
2471 case FILE_CPU_EXCLUSIVE:
2472 return is_cpu_exclusive(cs);
2473 case FILE_MEM_EXCLUSIVE:
2474 return is_mem_exclusive(cs);
2475 case FILE_MEM_HARDWALL:
2476 return is_mem_hardwall(cs);
2477 case FILE_SCHED_LOAD_BALANCE:
2478 return is_sched_load_balance(cs);
2479 case FILE_MEMORY_MIGRATE:
2480 return is_memory_migrate(cs);
2481 case FILE_MEMORY_PRESSURE_ENABLED:
2482 return cpuset_memory_pressure_enabled;
2483 case FILE_MEMORY_PRESSURE:
2484 return fmeter_getrate(&cs->fmeter);
2485 case FILE_SPREAD_PAGE:
2486 return is_spread_page(cs);
2487 case FILE_SPREAD_SLAB:
2488 return is_spread_slab(cs);
2489 default:
2490 BUG();
2491 }
2492
2493 /* Unreachable but makes gcc happy */
2494 return 0;
2495 }
2496
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)2497 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2498 {
2499 struct cpuset *cs = css_cs(css);
2500 cpuset_filetype_t type = cft->private;
2501 switch (type) {
2502 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2503 return cs->relax_domain_level;
2504 default:
2505 BUG();
2506 }
2507
2508 /* Unrechable but makes gcc happy */
2509 return 0;
2510 }
2511
sched_partition_show(struct seq_file * seq,void * v)2512 static int sched_partition_show(struct seq_file *seq, void *v)
2513 {
2514 struct cpuset *cs = css_cs(seq_css(seq));
2515
2516 switch (cs->partition_root_state) {
2517 case PRS_ENABLED:
2518 seq_puts(seq, "root\n");
2519 break;
2520 case PRS_DISABLED:
2521 seq_puts(seq, "member\n");
2522 break;
2523 case PRS_ERROR:
2524 seq_puts(seq, "root invalid\n");
2525 break;
2526 }
2527 return 0;
2528 }
2529
sched_partition_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2530 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2531 size_t nbytes, loff_t off)
2532 {
2533 struct cpuset *cs = css_cs(of_css(of));
2534 int val;
2535 int retval = -ENODEV;
2536
2537 buf = strstrip(buf);
2538
2539 /*
2540 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2541 */
2542 if (!strcmp(buf, "root"))
2543 val = PRS_ENABLED;
2544 else if (!strcmp(buf, "member"))
2545 val = PRS_DISABLED;
2546 else
2547 return -EINVAL;
2548
2549 css_get(&cs->css);
2550 get_online_cpus();
2551 percpu_down_write(&cpuset_rwsem);
2552 if (!is_cpuset_online(cs))
2553 goto out_unlock;
2554
2555 retval = update_prstate(cs, val);
2556 out_unlock:
2557 percpu_up_write(&cpuset_rwsem);
2558 put_online_cpus();
2559 css_put(&cs->css);
2560 return retval ?: nbytes;
2561 }
2562
2563 /*
2564 * for the common functions, 'private' gives the type of file
2565 */
2566
2567 static struct cftype legacy_files[] = {
2568 {
2569 .name = "cpus",
2570 .seq_show = cpuset_common_seq_show,
2571 .write = cpuset_write_resmask,
2572 .max_write_len = (100U + 6 * NR_CPUS),
2573 .private = FILE_CPULIST,
2574 },
2575
2576 {
2577 .name = "mems",
2578 .seq_show = cpuset_common_seq_show,
2579 .write = cpuset_write_resmask,
2580 .max_write_len = (100U + 6 * MAX_NUMNODES),
2581 .private = FILE_MEMLIST,
2582 },
2583
2584 {
2585 .name = "effective_cpus",
2586 .seq_show = cpuset_common_seq_show,
2587 .private = FILE_EFFECTIVE_CPULIST,
2588 },
2589
2590 {
2591 .name = "effective_mems",
2592 .seq_show = cpuset_common_seq_show,
2593 .private = FILE_EFFECTIVE_MEMLIST,
2594 },
2595
2596 {
2597 .name = "cpu_exclusive",
2598 .read_u64 = cpuset_read_u64,
2599 .write_u64 = cpuset_write_u64,
2600 .private = FILE_CPU_EXCLUSIVE,
2601 },
2602
2603 {
2604 .name = "mem_exclusive",
2605 .read_u64 = cpuset_read_u64,
2606 .write_u64 = cpuset_write_u64,
2607 .private = FILE_MEM_EXCLUSIVE,
2608 },
2609
2610 {
2611 .name = "mem_hardwall",
2612 .read_u64 = cpuset_read_u64,
2613 .write_u64 = cpuset_write_u64,
2614 .private = FILE_MEM_HARDWALL,
2615 },
2616
2617 {
2618 .name = "sched_load_balance",
2619 .read_u64 = cpuset_read_u64,
2620 .write_u64 = cpuset_write_u64,
2621 .private = FILE_SCHED_LOAD_BALANCE,
2622 },
2623
2624 {
2625 .name = "sched_relax_domain_level",
2626 .read_s64 = cpuset_read_s64,
2627 .write_s64 = cpuset_write_s64,
2628 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2629 },
2630
2631 {
2632 .name = "memory_migrate",
2633 .read_u64 = cpuset_read_u64,
2634 .write_u64 = cpuset_write_u64,
2635 .private = FILE_MEMORY_MIGRATE,
2636 },
2637
2638 {
2639 .name = "memory_pressure",
2640 .read_u64 = cpuset_read_u64,
2641 .private = FILE_MEMORY_PRESSURE,
2642 },
2643
2644 {
2645 .name = "memory_spread_page",
2646 .read_u64 = cpuset_read_u64,
2647 .write_u64 = cpuset_write_u64,
2648 .private = FILE_SPREAD_PAGE,
2649 },
2650
2651 {
2652 .name = "memory_spread_slab",
2653 .read_u64 = cpuset_read_u64,
2654 .write_u64 = cpuset_write_u64,
2655 .private = FILE_SPREAD_SLAB,
2656 },
2657
2658 {
2659 .name = "memory_pressure_enabled",
2660 .flags = CFTYPE_ONLY_ON_ROOT,
2661 .read_u64 = cpuset_read_u64,
2662 .write_u64 = cpuset_write_u64,
2663 .private = FILE_MEMORY_PRESSURE_ENABLED,
2664 },
2665
2666 { } /* terminate */
2667 };
2668
2669 /*
2670 * This is currently a minimal set for the default hierarchy. It can be
2671 * expanded later on by migrating more features and control files from v1.
2672 */
2673 static struct cftype dfl_files[] = {
2674 {
2675 .name = "cpus",
2676 .seq_show = cpuset_common_seq_show,
2677 .write = cpuset_write_resmask,
2678 .max_write_len = (100U + 6 * NR_CPUS),
2679 .private = FILE_CPULIST,
2680 .flags = CFTYPE_NOT_ON_ROOT,
2681 },
2682
2683 {
2684 .name = "mems",
2685 .seq_show = cpuset_common_seq_show,
2686 .write = cpuset_write_resmask,
2687 .max_write_len = (100U + 6 * MAX_NUMNODES),
2688 .private = FILE_MEMLIST,
2689 .flags = CFTYPE_NOT_ON_ROOT,
2690 },
2691
2692 {
2693 .name = "cpus.effective",
2694 .seq_show = cpuset_common_seq_show,
2695 .private = FILE_EFFECTIVE_CPULIST,
2696 },
2697
2698 {
2699 .name = "mems.effective",
2700 .seq_show = cpuset_common_seq_show,
2701 .private = FILE_EFFECTIVE_MEMLIST,
2702 },
2703
2704 {
2705 .name = "cpus.partition",
2706 .seq_show = sched_partition_show,
2707 .write = sched_partition_write,
2708 .private = FILE_PARTITION_ROOT,
2709 .flags = CFTYPE_NOT_ON_ROOT,
2710 },
2711
2712 {
2713 .name = "cpus.subpartitions",
2714 .seq_show = cpuset_common_seq_show,
2715 .private = FILE_SUBPARTS_CPULIST,
2716 .flags = CFTYPE_DEBUG,
2717 },
2718
2719 { } /* terminate */
2720 };
2721
2722
2723 /*
2724 * cpuset_css_alloc - allocate a cpuset css
2725 * cgrp: control group that the new cpuset will be part of
2726 */
2727
2728 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)2729 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2730 {
2731 struct cpuset *cs;
2732
2733 if (!parent_css)
2734 return &top_cpuset.css;
2735
2736 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2737 if (!cs)
2738 return ERR_PTR(-ENOMEM);
2739
2740 if (alloc_cpumasks(cs, NULL)) {
2741 kfree(cs);
2742 return ERR_PTR(-ENOMEM);
2743 }
2744
2745 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2746 nodes_clear(cs->mems_allowed);
2747 nodes_clear(cs->effective_mems);
2748 fmeter_init(&cs->fmeter);
2749 cs->relax_domain_level = -1;
2750
2751 return &cs->css;
2752 }
2753
cpuset_css_online(struct cgroup_subsys_state * css)2754 static int cpuset_css_online(struct cgroup_subsys_state *css)
2755 {
2756 struct cpuset *cs = css_cs(css);
2757 struct cpuset *parent = parent_cs(cs);
2758 struct cpuset *tmp_cs;
2759 struct cgroup_subsys_state *pos_css;
2760
2761 if (!parent)
2762 return 0;
2763
2764 get_online_cpus();
2765 percpu_down_write(&cpuset_rwsem);
2766
2767 set_bit(CS_ONLINE, &cs->flags);
2768 if (is_spread_page(parent))
2769 set_bit(CS_SPREAD_PAGE, &cs->flags);
2770 if (is_spread_slab(parent))
2771 set_bit(CS_SPREAD_SLAB, &cs->flags);
2772
2773 cpuset_inc();
2774
2775 spin_lock_irq(&callback_lock);
2776 if (is_in_v2_mode()) {
2777 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2778 cs->effective_mems = parent->effective_mems;
2779 cs->use_parent_ecpus = true;
2780 parent->child_ecpus_count++;
2781 }
2782 spin_unlock_irq(&callback_lock);
2783
2784 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2785 goto out_unlock;
2786
2787 /*
2788 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2789 * set. This flag handling is implemented in cgroup core for
2790 * histrical reasons - the flag may be specified during mount.
2791 *
2792 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2793 * refuse to clone the configuration - thereby refusing the task to
2794 * be entered, and as a result refusing the sys_unshare() or
2795 * clone() which initiated it. If this becomes a problem for some
2796 * users who wish to allow that scenario, then this could be
2797 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2798 * (and likewise for mems) to the new cgroup.
2799 */
2800 rcu_read_lock();
2801 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2802 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2803 rcu_read_unlock();
2804 goto out_unlock;
2805 }
2806 }
2807 rcu_read_unlock();
2808
2809 spin_lock_irq(&callback_lock);
2810 cs->mems_allowed = parent->mems_allowed;
2811 cs->effective_mems = parent->mems_allowed;
2812 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2813 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2814 spin_unlock_irq(&callback_lock);
2815 out_unlock:
2816 percpu_up_write(&cpuset_rwsem);
2817 put_online_cpus();
2818 return 0;
2819 }
2820
2821 /*
2822 * If the cpuset being removed has its flag 'sched_load_balance'
2823 * enabled, then simulate turning sched_load_balance off, which
2824 * will call rebuild_sched_domains_locked(). That is not needed
2825 * in the default hierarchy where only changes in partition
2826 * will cause repartitioning.
2827 *
2828 * If the cpuset has the 'sched.partition' flag enabled, simulate
2829 * turning 'sched.partition" off.
2830 */
2831
cpuset_css_offline(struct cgroup_subsys_state * css)2832 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2833 {
2834 struct cpuset *cs = css_cs(css);
2835
2836 get_online_cpus();
2837 percpu_down_write(&cpuset_rwsem);
2838
2839 if (is_partition_root(cs))
2840 update_prstate(cs, 0);
2841
2842 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2843 is_sched_load_balance(cs))
2844 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2845
2846 if (cs->use_parent_ecpus) {
2847 struct cpuset *parent = parent_cs(cs);
2848
2849 cs->use_parent_ecpus = false;
2850 parent->child_ecpus_count--;
2851 }
2852
2853 cpuset_dec();
2854 clear_bit(CS_ONLINE, &cs->flags);
2855
2856 percpu_up_write(&cpuset_rwsem);
2857 put_online_cpus();
2858 }
2859
cpuset_css_free(struct cgroup_subsys_state * css)2860 static void cpuset_css_free(struct cgroup_subsys_state *css)
2861 {
2862 struct cpuset *cs = css_cs(css);
2863
2864 free_cpuset(cs);
2865 }
2866
cpuset_bind(struct cgroup_subsys_state * root_css)2867 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2868 {
2869 percpu_down_write(&cpuset_rwsem);
2870 spin_lock_irq(&callback_lock);
2871
2872 if (is_in_v2_mode()) {
2873 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2874 top_cpuset.mems_allowed = node_possible_map;
2875 } else {
2876 cpumask_copy(top_cpuset.cpus_allowed,
2877 top_cpuset.effective_cpus);
2878 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2879 }
2880
2881 spin_unlock_irq(&callback_lock);
2882 percpu_up_write(&cpuset_rwsem);
2883 }
2884
2885 /*
2886 * Make sure the new task conform to the current state of its parent,
2887 * which could have been changed by cpuset just after it inherits the
2888 * state from the parent and before it sits on the cgroup's task list.
2889 */
cpuset_fork(struct task_struct * task)2890 static void cpuset_fork(struct task_struct *task)
2891 {
2892 if (task_css_is_root(task, cpuset_cgrp_id))
2893 return;
2894
2895 set_cpus_allowed_ptr(task, current->cpus_ptr);
2896 task->mems_allowed = current->mems_allowed;
2897 }
2898
2899 struct cgroup_subsys cpuset_cgrp_subsys = {
2900 .css_alloc = cpuset_css_alloc,
2901 .css_online = cpuset_css_online,
2902 .css_offline = cpuset_css_offline,
2903 .css_free = cpuset_css_free,
2904 .can_attach = cpuset_can_attach,
2905 .cancel_attach = cpuset_cancel_attach,
2906 .attach = cpuset_attach,
2907 .post_attach = cpuset_post_attach,
2908 .bind = cpuset_bind,
2909 .fork = cpuset_fork,
2910 .legacy_cftypes = legacy_files,
2911 .dfl_cftypes = dfl_files,
2912 .early_init = true,
2913 .threaded = true,
2914 };
2915
2916 /**
2917 * cpuset_init - initialize cpusets at system boot
2918 *
2919 * Description: Initialize top_cpuset
2920 **/
2921
cpuset_init(void)2922 int __init cpuset_init(void)
2923 {
2924 BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2925
2926 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2927 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2928 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2929
2930 cpumask_setall(top_cpuset.cpus_allowed);
2931 nodes_setall(top_cpuset.mems_allowed);
2932 cpumask_setall(top_cpuset.effective_cpus);
2933 nodes_setall(top_cpuset.effective_mems);
2934
2935 fmeter_init(&top_cpuset.fmeter);
2936 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2937 top_cpuset.relax_domain_level = -1;
2938
2939 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2940
2941 return 0;
2942 }
2943
2944 /*
2945 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2946 * or memory nodes, we need to walk over the cpuset hierarchy,
2947 * removing that CPU or node from all cpusets. If this removes the
2948 * last CPU or node from a cpuset, then move the tasks in the empty
2949 * cpuset to its next-highest non-empty parent.
2950 */
remove_tasks_in_empty_cpuset(struct cpuset * cs)2951 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2952 {
2953 struct cpuset *parent;
2954
2955 /*
2956 * Find its next-highest non-empty parent, (top cpuset
2957 * has online cpus, so can't be empty).
2958 */
2959 parent = parent_cs(cs);
2960 while (cpumask_empty(parent->cpus_allowed) ||
2961 nodes_empty(parent->mems_allowed))
2962 parent = parent_cs(parent);
2963
2964 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2965 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2966 pr_cont_cgroup_name(cs->css.cgroup);
2967 pr_cont("\n");
2968 }
2969 }
2970
2971 static void
hotplug_update_tasks_legacy(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)2972 hotplug_update_tasks_legacy(struct cpuset *cs,
2973 struct cpumask *new_cpus, nodemask_t *new_mems,
2974 bool cpus_updated, bool mems_updated)
2975 {
2976 bool is_empty;
2977
2978 spin_lock_irq(&callback_lock);
2979 cpumask_copy(cs->cpus_allowed, new_cpus);
2980 cpumask_copy(cs->effective_cpus, new_cpus);
2981 cs->mems_allowed = *new_mems;
2982 cs->effective_mems = *new_mems;
2983 spin_unlock_irq(&callback_lock);
2984
2985 /*
2986 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2987 * as the tasks will be migratecd to an ancestor.
2988 */
2989 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2990 update_tasks_cpumask(cs);
2991 if (mems_updated && !nodes_empty(cs->mems_allowed))
2992 update_tasks_nodemask(cs);
2993
2994 is_empty = cpumask_empty(cs->cpus_allowed) ||
2995 nodes_empty(cs->mems_allowed);
2996
2997 percpu_up_write(&cpuset_rwsem);
2998
2999 /*
3000 * Move tasks to the nearest ancestor with execution resources,
3001 * This is full cgroup operation which will also call back into
3002 * cpuset. Should be done outside any lock.
3003 */
3004 if (is_empty)
3005 remove_tasks_in_empty_cpuset(cs);
3006
3007 percpu_down_write(&cpuset_rwsem);
3008 }
3009
3010 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3011 hotplug_update_tasks(struct cpuset *cs,
3012 struct cpumask *new_cpus, nodemask_t *new_mems,
3013 bool cpus_updated, bool mems_updated)
3014 {
3015 if (cpumask_empty(new_cpus))
3016 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3017 if (nodes_empty(*new_mems))
3018 *new_mems = parent_cs(cs)->effective_mems;
3019
3020 spin_lock_irq(&callback_lock);
3021 cpumask_copy(cs->effective_cpus, new_cpus);
3022 cs->effective_mems = *new_mems;
3023 spin_unlock_irq(&callback_lock);
3024
3025 if (cpus_updated)
3026 update_tasks_cpumask(cs);
3027 if (mems_updated)
3028 update_tasks_nodemask(cs);
3029 }
3030
3031 static bool force_rebuild;
3032
cpuset_force_rebuild(void)3033 void cpuset_force_rebuild(void)
3034 {
3035 force_rebuild = true;
3036 }
3037
3038 /**
3039 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3040 * @cs: cpuset in interest
3041 * @tmp: the tmpmasks structure pointer
3042 *
3043 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3044 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3045 * all its tasks are moved to the nearest ancestor with both resources.
3046 */
cpuset_hotplug_update_tasks(struct cpuset * cs,struct tmpmasks * tmp)3047 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3048 {
3049 static cpumask_t new_cpus;
3050 static nodemask_t new_mems;
3051 bool cpus_updated;
3052 bool mems_updated;
3053 struct cpuset *parent;
3054 retry:
3055 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3056
3057 percpu_down_write(&cpuset_rwsem);
3058
3059 /*
3060 * We have raced with task attaching. We wait until attaching
3061 * is finished, so we won't attach a task to an empty cpuset.
3062 */
3063 if (cs->attach_in_progress) {
3064 percpu_up_write(&cpuset_rwsem);
3065 goto retry;
3066 }
3067
3068 parent = parent_cs(cs);
3069 compute_effective_cpumask(&new_cpus, cs, parent);
3070 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3071
3072 if (cs->nr_subparts_cpus)
3073 /*
3074 * Make sure that CPUs allocated to child partitions
3075 * do not show up in effective_cpus.
3076 */
3077 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3078
3079 if (!tmp || !cs->partition_root_state)
3080 goto update_tasks;
3081
3082 /*
3083 * In the unlikely event that a partition root has empty
3084 * effective_cpus or its parent becomes erroneous, we have to
3085 * transition it to the erroneous state.
3086 */
3087 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3088 (parent->partition_root_state == PRS_ERROR))) {
3089 if (cs->nr_subparts_cpus) {
3090 cs->nr_subparts_cpus = 0;
3091 cpumask_clear(cs->subparts_cpus);
3092 compute_effective_cpumask(&new_cpus, cs, parent);
3093 }
3094
3095 /*
3096 * If the effective_cpus is empty because the child
3097 * partitions take away all the CPUs, we can keep
3098 * the current partition and let the child partitions
3099 * fight for available CPUs.
3100 */
3101 if ((parent->partition_root_state == PRS_ERROR) ||
3102 cpumask_empty(&new_cpus)) {
3103 update_parent_subparts_cpumask(cs, partcmd_disable,
3104 NULL, tmp);
3105 cs->partition_root_state = PRS_ERROR;
3106 }
3107 cpuset_force_rebuild();
3108 }
3109
3110 /*
3111 * On the other hand, an erroneous partition root may be transitioned
3112 * back to a regular one or a partition root with no CPU allocated
3113 * from the parent may change to erroneous.
3114 */
3115 if (is_partition_root(parent) &&
3116 ((cs->partition_root_state == PRS_ERROR) ||
3117 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3118 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3119 cpuset_force_rebuild();
3120
3121 update_tasks:
3122 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3123 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3124
3125 if (is_in_v2_mode())
3126 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3127 cpus_updated, mems_updated);
3128 else
3129 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3130 cpus_updated, mems_updated);
3131
3132 percpu_up_write(&cpuset_rwsem);
3133 }
3134
3135 /**
3136 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3137 *
3138 * This function is called after either CPU or memory configuration has
3139 * changed and updates cpuset accordingly. The top_cpuset is always
3140 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3141 * order to make cpusets transparent (of no affect) on systems that are
3142 * actively using CPU hotplug but making no active use of cpusets.
3143 *
3144 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3145 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3146 * all descendants.
3147 *
3148 * Note that CPU offlining during suspend is ignored. We don't modify
3149 * cpusets across suspend/resume cycles at all.
3150 */
cpuset_hotplug_workfn(struct work_struct * work)3151 static void cpuset_hotplug_workfn(struct work_struct *work)
3152 {
3153 static cpumask_t new_cpus;
3154 static nodemask_t new_mems;
3155 bool cpus_updated, mems_updated;
3156 bool on_dfl = is_in_v2_mode();
3157 struct tmpmasks tmp, *ptmp = NULL;
3158
3159 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3160 ptmp = &tmp;
3161
3162 percpu_down_write(&cpuset_rwsem);
3163
3164 /* fetch the available cpus/mems and find out which changed how */
3165 cpumask_copy(&new_cpus, cpu_active_mask);
3166 new_mems = node_states[N_MEMORY];
3167
3168 /*
3169 * If subparts_cpus is populated, it is likely that the check below
3170 * will produce a false positive on cpus_updated when the cpu list
3171 * isn't changed. It is extra work, but it is better to be safe.
3172 */
3173 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3174 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3175
3176 /*
3177 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3178 * we assumed that cpus are updated.
3179 */
3180 if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3181 cpus_updated = true;
3182
3183 /* synchronize cpus_allowed to cpu_active_mask */
3184 if (cpus_updated) {
3185 spin_lock_irq(&callback_lock);
3186 if (!on_dfl)
3187 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3188 /*
3189 * Make sure that CPUs allocated to child partitions
3190 * do not show up in effective_cpus. If no CPU is left,
3191 * we clear the subparts_cpus & let the child partitions
3192 * fight for the CPUs again.
3193 */
3194 if (top_cpuset.nr_subparts_cpus) {
3195 if (cpumask_subset(&new_cpus,
3196 top_cpuset.subparts_cpus)) {
3197 top_cpuset.nr_subparts_cpus = 0;
3198 cpumask_clear(top_cpuset.subparts_cpus);
3199 } else {
3200 cpumask_andnot(&new_cpus, &new_cpus,
3201 top_cpuset.subparts_cpus);
3202 }
3203 }
3204 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3205 spin_unlock_irq(&callback_lock);
3206 /* we don't mess with cpumasks of tasks in top_cpuset */
3207 }
3208
3209 /* synchronize mems_allowed to N_MEMORY */
3210 if (mems_updated) {
3211 spin_lock_irq(&callback_lock);
3212 if (!on_dfl)
3213 top_cpuset.mems_allowed = new_mems;
3214 top_cpuset.effective_mems = new_mems;
3215 spin_unlock_irq(&callback_lock);
3216 update_tasks_nodemask(&top_cpuset);
3217 }
3218
3219 percpu_up_write(&cpuset_rwsem);
3220
3221 /* if cpus or mems changed, we need to propagate to descendants */
3222 if (cpus_updated || mems_updated) {
3223 struct cpuset *cs;
3224 struct cgroup_subsys_state *pos_css;
3225
3226 rcu_read_lock();
3227 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3228 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3229 continue;
3230 rcu_read_unlock();
3231
3232 cpuset_hotplug_update_tasks(cs, ptmp);
3233
3234 rcu_read_lock();
3235 css_put(&cs->css);
3236 }
3237 rcu_read_unlock();
3238 }
3239
3240 /* rebuild sched domains if cpus_allowed has changed */
3241 if (cpus_updated || force_rebuild) {
3242 force_rebuild = false;
3243 rebuild_sched_domains();
3244 }
3245
3246 free_cpumasks(NULL, ptmp);
3247 }
3248
cpuset_update_active_cpus(void)3249 void cpuset_update_active_cpus(void)
3250 {
3251 /*
3252 * We're inside cpu hotplug critical region which usually nests
3253 * inside cgroup synchronization. Bounce actual hotplug processing
3254 * to a work item to avoid reverse locking order.
3255 */
3256 schedule_work(&cpuset_hotplug_work);
3257 }
3258
cpuset_wait_for_hotplug(void)3259 void cpuset_wait_for_hotplug(void)
3260 {
3261 flush_work(&cpuset_hotplug_work);
3262 }
3263
3264 /*
3265 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3266 * Call this routine anytime after node_states[N_MEMORY] changes.
3267 * See cpuset_update_active_cpus() for CPU hotplug handling.
3268 */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)3269 static int cpuset_track_online_nodes(struct notifier_block *self,
3270 unsigned long action, void *arg)
3271 {
3272 schedule_work(&cpuset_hotplug_work);
3273 return NOTIFY_OK;
3274 }
3275
3276 static struct notifier_block cpuset_track_online_nodes_nb = {
3277 .notifier_call = cpuset_track_online_nodes,
3278 .priority = 10, /* ??! */
3279 };
3280
3281 /**
3282 * cpuset_init_smp - initialize cpus_allowed
3283 *
3284 * Description: Finish top cpuset after cpu, node maps are initialized
3285 */
cpuset_init_smp(void)3286 void __init cpuset_init_smp(void)
3287 {
3288 /*
3289 * cpus_allowd/mems_allowed set to v2 values in the initial
3290 * cpuset_bind() call will be reset to v1 values in another
3291 * cpuset_bind() call when v1 cpuset is mounted.
3292 */
3293 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3294
3295 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3296 top_cpuset.effective_mems = node_states[N_MEMORY];
3297
3298 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3299
3300 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3301 BUG_ON(!cpuset_migrate_mm_wq);
3302 }
3303
3304 /**
3305 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3306 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3307 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3308 *
3309 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3310 * attached to the specified @tsk. Guaranteed to return some non-empty
3311 * subset of cpu_online_mask, even if this means going outside the
3312 * tasks cpuset.
3313 **/
3314
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)3315 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3316 {
3317 unsigned long flags;
3318
3319 spin_lock_irqsave(&callback_lock, flags);
3320 rcu_read_lock();
3321 guarantee_online_cpus(task_cs(tsk), pmask);
3322 rcu_read_unlock();
3323 spin_unlock_irqrestore(&callback_lock, flags);
3324 }
3325
3326 /**
3327 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3328 * @tsk: pointer to task_struct with which the scheduler is struggling
3329 *
3330 * Description: In the case that the scheduler cannot find an allowed cpu in
3331 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3332 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3333 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3334 * This is the absolute last resort for the scheduler and it is only used if
3335 * _every_ other avenue has been traveled.
3336 **/
3337
cpuset_cpus_allowed_fallback(struct task_struct * tsk)3338 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3339 {
3340 rcu_read_lock();
3341 do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3342 task_cs(tsk)->cpus_allowed : cpu_possible_mask);
3343 rcu_read_unlock();
3344
3345 /*
3346 * We own tsk->cpus_allowed, nobody can change it under us.
3347 *
3348 * But we used cs && cs->cpus_allowed lockless and thus can
3349 * race with cgroup_attach_task() or update_cpumask() and get
3350 * the wrong tsk->cpus_allowed. However, both cases imply the
3351 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3352 * which takes task_rq_lock().
3353 *
3354 * If we are called after it dropped the lock we must see all
3355 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3356 * set any mask even if it is not right from task_cs() pov,
3357 * the pending set_cpus_allowed_ptr() will fix things.
3358 *
3359 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3360 * if required.
3361 */
3362 }
3363
cpuset_init_current_mems_allowed(void)3364 void __init cpuset_init_current_mems_allowed(void)
3365 {
3366 nodes_setall(current->mems_allowed);
3367 }
3368
3369 /**
3370 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3371 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3372 *
3373 * Description: Returns the nodemask_t mems_allowed of the cpuset
3374 * attached to the specified @tsk. Guaranteed to return some non-empty
3375 * subset of node_states[N_MEMORY], even if this means going outside the
3376 * tasks cpuset.
3377 **/
3378
cpuset_mems_allowed(struct task_struct * tsk)3379 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3380 {
3381 nodemask_t mask;
3382 unsigned long flags;
3383
3384 spin_lock_irqsave(&callback_lock, flags);
3385 rcu_read_lock();
3386 guarantee_online_mems(task_cs(tsk), &mask);
3387 rcu_read_unlock();
3388 spin_unlock_irqrestore(&callback_lock, flags);
3389
3390 return mask;
3391 }
3392
3393 /**
3394 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3395 * @nodemask: the nodemask to be checked
3396 *
3397 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3398 */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)3399 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3400 {
3401 return nodes_intersects(*nodemask, current->mems_allowed);
3402 }
3403
3404 /*
3405 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3406 * mem_hardwall ancestor to the specified cpuset. Call holding
3407 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3408 * (an unusual configuration), then returns the root cpuset.
3409 */
nearest_hardwall_ancestor(struct cpuset * cs)3410 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3411 {
3412 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3413 cs = parent_cs(cs);
3414 return cs;
3415 }
3416
3417 /**
3418 * cpuset_node_allowed - Can we allocate on a memory node?
3419 * @node: is this an allowed node?
3420 * @gfp_mask: memory allocation flags
3421 *
3422 * If we're in interrupt, yes, we can always allocate. If @node is set in
3423 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3424 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3425 * yes. If current has access to memory reserves as an oom victim, yes.
3426 * Otherwise, no.
3427 *
3428 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3429 * and do not allow allocations outside the current tasks cpuset
3430 * unless the task has been OOM killed.
3431 * GFP_KERNEL allocations are not so marked, so can escape to the
3432 * nearest enclosing hardwalled ancestor cpuset.
3433 *
3434 * Scanning up parent cpusets requires callback_lock. The
3435 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3436 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3437 * current tasks mems_allowed came up empty on the first pass over
3438 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3439 * cpuset are short of memory, might require taking the callback_lock.
3440 *
3441 * The first call here from mm/page_alloc:get_page_from_freelist()
3442 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3443 * so no allocation on a node outside the cpuset is allowed (unless
3444 * in interrupt, of course).
3445 *
3446 * The second pass through get_page_from_freelist() doesn't even call
3447 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3448 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3449 * in alloc_flags. That logic and the checks below have the combined
3450 * affect that:
3451 * in_interrupt - any node ok (current task context irrelevant)
3452 * GFP_ATOMIC - any node ok
3453 * tsk_is_oom_victim - any node ok
3454 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3455 * GFP_USER - only nodes in current tasks mems allowed ok.
3456 */
__cpuset_node_allowed(int node,gfp_t gfp_mask)3457 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3458 {
3459 struct cpuset *cs; /* current cpuset ancestors */
3460 int allowed; /* is allocation in zone z allowed? */
3461 unsigned long flags;
3462
3463 if (in_interrupt())
3464 return true;
3465 if (node_isset(node, current->mems_allowed))
3466 return true;
3467 /*
3468 * Allow tasks that have access to memory reserves because they have
3469 * been OOM killed to get memory anywhere.
3470 */
3471 if (unlikely(tsk_is_oom_victim(current)))
3472 return true;
3473 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
3474 return false;
3475
3476 if (current->flags & PF_EXITING) /* Let dying task have memory */
3477 return true;
3478
3479 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3480 spin_lock_irqsave(&callback_lock, flags);
3481
3482 rcu_read_lock();
3483 cs = nearest_hardwall_ancestor(task_cs(current));
3484 allowed = node_isset(node, cs->mems_allowed);
3485 rcu_read_unlock();
3486
3487 spin_unlock_irqrestore(&callback_lock, flags);
3488 return allowed;
3489 }
3490
3491 /**
3492 * cpuset_mem_spread_node() - On which node to begin search for a file page
3493 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3494 *
3495 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3496 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3497 * and if the memory allocation used cpuset_mem_spread_node()
3498 * to determine on which node to start looking, as it will for
3499 * certain page cache or slab cache pages such as used for file
3500 * system buffers and inode caches, then instead of starting on the
3501 * local node to look for a free page, rather spread the starting
3502 * node around the tasks mems_allowed nodes.
3503 *
3504 * We don't have to worry about the returned node being offline
3505 * because "it can't happen", and even if it did, it would be ok.
3506 *
3507 * The routines calling guarantee_online_mems() are careful to
3508 * only set nodes in task->mems_allowed that are online. So it
3509 * should not be possible for the following code to return an
3510 * offline node. But if it did, that would be ok, as this routine
3511 * is not returning the node where the allocation must be, only
3512 * the node where the search should start. The zonelist passed to
3513 * __alloc_pages() will include all nodes. If the slab allocator
3514 * is passed an offline node, it will fall back to the local node.
3515 * See kmem_cache_alloc_node().
3516 */
3517
cpuset_spread_node(int * rotor)3518 static int cpuset_spread_node(int *rotor)
3519 {
3520 return *rotor = next_node_in(*rotor, current->mems_allowed);
3521 }
3522
cpuset_mem_spread_node(void)3523 int cpuset_mem_spread_node(void)
3524 {
3525 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3526 current->cpuset_mem_spread_rotor =
3527 node_random(¤t->mems_allowed);
3528
3529 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
3530 }
3531
cpuset_slab_spread_node(void)3532 int cpuset_slab_spread_node(void)
3533 {
3534 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3535 current->cpuset_slab_spread_rotor =
3536 node_random(¤t->mems_allowed);
3537
3538 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);
3539 }
3540
3541 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3542
3543 /**
3544 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3545 * @tsk1: pointer to task_struct of some task.
3546 * @tsk2: pointer to task_struct of some other task.
3547 *
3548 * Description: Return true if @tsk1's mems_allowed intersects the
3549 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3550 * one of the task's memory usage might impact the memory available
3551 * to the other.
3552 **/
3553
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)3554 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3555 const struct task_struct *tsk2)
3556 {
3557 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3558 }
3559
3560 /**
3561 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3562 *
3563 * Description: Prints current's name, cpuset name, and cached copy of its
3564 * mems_allowed to the kernel log.
3565 */
cpuset_print_current_mems_allowed(void)3566 void cpuset_print_current_mems_allowed(void)
3567 {
3568 struct cgroup *cgrp;
3569
3570 rcu_read_lock();
3571
3572 cgrp = task_cs(current)->css.cgroup;
3573 pr_cont(",cpuset=");
3574 pr_cont_cgroup_name(cgrp);
3575 pr_cont(",mems_allowed=%*pbl",
3576 nodemask_pr_args(¤t->mems_allowed));
3577
3578 rcu_read_unlock();
3579 }
3580
3581 /*
3582 * Collection of memory_pressure is suppressed unless
3583 * this flag is enabled by writing "1" to the special
3584 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3585 */
3586
3587 int cpuset_memory_pressure_enabled __read_mostly;
3588
3589 /**
3590 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3591 *
3592 * Keep a running average of the rate of synchronous (direct)
3593 * page reclaim efforts initiated by tasks in each cpuset.
3594 *
3595 * This represents the rate at which some task in the cpuset
3596 * ran low on memory on all nodes it was allowed to use, and
3597 * had to enter the kernels page reclaim code in an effort to
3598 * create more free memory by tossing clean pages or swapping
3599 * or writing dirty pages.
3600 *
3601 * Display to user space in the per-cpuset read-only file
3602 * "memory_pressure". Value displayed is an integer
3603 * representing the recent rate of entry into the synchronous
3604 * (direct) page reclaim by any task attached to the cpuset.
3605 **/
3606
__cpuset_memory_pressure_bump(void)3607 void __cpuset_memory_pressure_bump(void)
3608 {
3609 rcu_read_lock();
3610 fmeter_markevent(&task_cs(current)->fmeter);
3611 rcu_read_unlock();
3612 }
3613
3614 #ifdef CONFIG_PROC_PID_CPUSET
3615 /*
3616 * proc_cpuset_show()
3617 * - Print tasks cpuset path into seq_file.
3618 * - Used for /proc/<pid>/cpuset.
3619 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3620 * doesn't really matter if tsk->cpuset changes after we read it,
3621 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
3622 * anyway.
3623 */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)3624 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3625 struct pid *pid, struct task_struct *tsk)
3626 {
3627 char *buf;
3628 struct cgroup_subsys_state *css;
3629 int retval;
3630
3631 retval = -ENOMEM;
3632 buf = kmalloc(PATH_MAX, GFP_KERNEL);
3633 if (!buf)
3634 goto out;
3635
3636 css = task_get_css(tsk, cpuset_cgrp_id);
3637 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3638 current->nsproxy->cgroup_ns);
3639 css_put(css);
3640 if (retval >= PATH_MAX)
3641 retval = -ENAMETOOLONG;
3642 if (retval < 0)
3643 goto out_free;
3644 seq_puts(m, buf);
3645 seq_putc(m, '\n');
3646 retval = 0;
3647 out_free:
3648 kfree(buf);
3649 out:
3650 return retval;
3651 }
3652 #endif /* CONFIG_PROC_PID_CPUSET */
3653
3654 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)3655 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3656 {
3657 seq_printf(m, "Mems_allowed:\t%*pb\n",
3658 nodemask_pr_args(&task->mems_allowed));
3659 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3660 nodemask_pr_args(&task->mems_allowed));
3661 }
3662