• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Scatterlist Cryptographic API.
4  *
5  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
6  * Copyright (c) 2002 David S. Miller (davem@redhat.com)
7  * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
8  *
9  * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
10  * and Nettle, by Niels Möller.
11  */
12 #ifndef _LINUX_CRYPTO_H
13 #define _LINUX_CRYPTO_H
14 
15 #include <linux/atomic.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/bug.h>
19 #include <linux/slab.h>
20 #include <linux/string.h>
21 #include <linux/uaccess.h>
22 #include <linux/completion.h>
23 
24 /*
25  * Autoloaded crypto modules should only use a prefixed name to avoid allowing
26  * arbitrary modules to be loaded. Loading from userspace may still need the
27  * unprefixed names, so retains those aliases as well.
28  * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
29  * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
30  * expands twice on the same line. Instead, use a separate base name for the
31  * alias.
32  */
33 #define MODULE_ALIAS_CRYPTO(name)	\
34 		__MODULE_INFO(alias, alias_userspace, name);	\
35 		__MODULE_INFO(alias, alias_crypto, "crypto-" name)
36 
37 /*
38  * Algorithm masks and types.
39  */
40 #define CRYPTO_ALG_TYPE_MASK		0x0000000f
41 #define CRYPTO_ALG_TYPE_CIPHER		0x00000001
42 #define CRYPTO_ALG_TYPE_COMPRESS	0x00000002
43 #define CRYPTO_ALG_TYPE_AEAD		0x00000003
44 #define CRYPTO_ALG_TYPE_BLKCIPHER	0x00000004
45 #define CRYPTO_ALG_TYPE_ABLKCIPHER	0x00000005
46 #define CRYPTO_ALG_TYPE_SKCIPHER	0x00000005
47 #define CRYPTO_ALG_TYPE_KPP		0x00000008
48 #define CRYPTO_ALG_TYPE_ACOMPRESS	0x0000000a
49 #define CRYPTO_ALG_TYPE_SCOMPRESS	0x0000000b
50 #define CRYPTO_ALG_TYPE_RNG		0x0000000c
51 #define CRYPTO_ALG_TYPE_AKCIPHER	0x0000000d
52 #define CRYPTO_ALG_TYPE_HASH		0x0000000e
53 #define CRYPTO_ALG_TYPE_SHASH		0x0000000e
54 #define CRYPTO_ALG_TYPE_AHASH		0x0000000f
55 
56 #define CRYPTO_ALG_TYPE_HASH_MASK	0x0000000e
57 #define CRYPTO_ALG_TYPE_AHASH_MASK	0x0000000e
58 #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK	0x0000000c
59 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK	0x0000000e
60 
61 #define CRYPTO_ALG_LARVAL		0x00000010
62 #define CRYPTO_ALG_DEAD			0x00000020
63 #define CRYPTO_ALG_DYING		0x00000040
64 #define CRYPTO_ALG_ASYNC		0x00000080
65 
66 /*
67  * Set this bit if and only if the algorithm requires another algorithm of
68  * the same type to handle corner cases.
69  */
70 #define CRYPTO_ALG_NEED_FALLBACK	0x00000100
71 
72 /*
73  * Set if the algorithm has passed automated run-time testing.  Note that
74  * if there is no run-time testing for a given algorithm it is considered
75  * to have passed.
76  */
77 
78 #define CRYPTO_ALG_TESTED		0x00000400
79 
80 /*
81  * Set if the algorithm is an instance that is built from templates.
82  */
83 #define CRYPTO_ALG_INSTANCE		0x00000800
84 
85 /* Set this bit if the algorithm provided is hardware accelerated but
86  * not available to userspace via instruction set or so.
87  */
88 #define CRYPTO_ALG_KERN_DRIVER_ONLY	0x00001000
89 
90 /*
91  * Mark a cipher as a service implementation only usable by another
92  * cipher and never by a normal user of the kernel crypto API
93  */
94 #define CRYPTO_ALG_INTERNAL		0x00002000
95 
96 /*
97  * Set if the algorithm has a ->setkey() method but can be used without
98  * calling it first, i.e. there is a default key.
99  */
100 #define CRYPTO_ALG_OPTIONAL_KEY		0x00004000
101 
102 /*
103  * Don't trigger module loading
104  */
105 #define CRYPTO_NOLOAD			0x00008000
106 
107 /*
108  * Transform masks and values (for crt_flags).
109  */
110 #define CRYPTO_TFM_NEED_KEY		0x00000001
111 
112 #define CRYPTO_TFM_REQ_MASK		0x000fff00
113 #define CRYPTO_TFM_RES_MASK		0xfff00000
114 
115 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS	0x00000100
116 #define CRYPTO_TFM_REQ_MAY_SLEEP	0x00000200
117 #define CRYPTO_TFM_REQ_MAY_BACKLOG	0x00000400
118 #define CRYPTO_TFM_RES_WEAK_KEY		0x00100000
119 #define CRYPTO_TFM_RES_BAD_KEY_LEN   	0x00200000
120 #define CRYPTO_TFM_RES_BAD_KEY_SCHED 	0x00400000
121 #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 	0x00800000
122 #define CRYPTO_TFM_RES_BAD_FLAGS 	0x01000000
123 
124 /*
125  * Miscellaneous stuff.
126  */
127 #define CRYPTO_MAX_ALG_NAME		128
128 
129 /*
130  * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
131  * declaration) is used to ensure that the crypto_tfm context structure is
132  * aligned correctly for the given architecture so that there are no alignment
133  * faults for C data types.  In particular, this is required on platforms such
134  * as arm where pointers are 32-bit aligned but there are data types such as
135  * u64 which require 64-bit alignment.
136  */
137 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
138 
139 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
140 
141 struct scatterlist;
142 struct crypto_ablkcipher;
143 struct crypto_async_request;
144 struct crypto_blkcipher;
145 struct crypto_tfm;
146 struct crypto_type;
147 
148 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
149 
150 /**
151  * DOC: Block Cipher Context Data Structures
152  *
153  * These data structures define the operating context for each block cipher
154  * type.
155  */
156 
157 struct crypto_async_request {
158 	struct list_head list;
159 	crypto_completion_t complete;
160 	void *data;
161 	struct crypto_tfm *tfm;
162 
163 	u32 flags;
164 };
165 
166 struct ablkcipher_request {
167 	struct crypto_async_request base;
168 
169 	unsigned int nbytes;
170 
171 	void *info;
172 
173 	struct scatterlist *src;
174 	struct scatterlist *dst;
175 
176 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
177 };
178 
179 struct blkcipher_desc {
180 	struct crypto_blkcipher *tfm;
181 	void *info;
182 	u32 flags;
183 };
184 
185 /**
186  * DOC: Block Cipher Algorithm Definitions
187  *
188  * These data structures define modular crypto algorithm implementations,
189  * managed via crypto_register_alg() and crypto_unregister_alg().
190  */
191 
192 /**
193  * struct ablkcipher_alg - asynchronous block cipher definition
194  * @min_keysize: Minimum key size supported by the transformation. This is the
195  *		 smallest key length supported by this transformation algorithm.
196  *		 This must be set to one of the pre-defined values as this is
197  *		 not hardware specific. Possible values for this field can be
198  *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
199  * @max_keysize: Maximum key size supported by the transformation. This is the
200  *		 largest key length supported by this transformation algorithm.
201  *		 This must be set to one of the pre-defined values as this is
202  *		 not hardware specific. Possible values for this field can be
203  *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
204  * @setkey: Set key for the transformation. This function is used to either
205  *	    program a supplied key into the hardware or store the key in the
206  *	    transformation context for programming it later. Note that this
207  *	    function does modify the transformation context. This function can
208  *	    be called multiple times during the existence of the transformation
209  *	    object, so one must make sure the key is properly reprogrammed into
210  *	    the hardware. This function is also responsible for checking the key
211  *	    length for validity. In case a software fallback was put in place in
212  *	    the @cra_init call, this function might need to use the fallback if
213  *	    the algorithm doesn't support all of the key sizes.
214  * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
215  *	     the supplied scatterlist containing the blocks of data. The crypto
216  *	     API consumer is responsible for aligning the entries of the
217  *	     scatterlist properly and making sure the chunks are correctly
218  *	     sized. In case a software fallback was put in place in the
219  *	     @cra_init call, this function might need to use the fallback if
220  *	     the algorithm doesn't support all of the key sizes. In case the
221  *	     key was stored in transformation context, the key might need to be
222  *	     re-programmed into the hardware in this function. This function
223  *	     shall not modify the transformation context, as this function may
224  *	     be called in parallel with the same transformation object.
225  * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
226  *	     and the conditions are exactly the same.
227  * @ivsize: IV size applicable for transformation. The consumer must provide an
228  *	    IV of exactly that size to perform the encrypt or decrypt operation.
229  *
230  * All fields except @ivsize are mandatory and must be filled.
231  */
232 struct ablkcipher_alg {
233 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
234 	              unsigned int keylen);
235 	int (*encrypt)(struct ablkcipher_request *req);
236 	int (*decrypt)(struct ablkcipher_request *req);
237 
238 	unsigned int min_keysize;
239 	unsigned int max_keysize;
240 	unsigned int ivsize;
241 };
242 
243 /**
244  * struct blkcipher_alg - synchronous block cipher definition
245  * @min_keysize: see struct ablkcipher_alg
246  * @max_keysize: see struct ablkcipher_alg
247  * @setkey: see struct ablkcipher_alg
248  * @encrypt: see struct ablkcipher_alg
249  * @decrypt: see struct ablkcipher_alg
250  * @ivsize: see struct ablkcipher_alg
251  *
252  * All fields except @ivsize are mandatory and must be filled.
253  */
254 struct blkcipher_alg {
255 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
256 	              unsigned int keylen);
257 	int (*encrypt)(struct blkcipher_desc *desc,
258 		       struct scatterlist *dst, struct scatterlist *src,
259 		       unsigned int nbytes);
260 	int (*decrypt)(struct blkcipher_desc *desc,
261 		       struct scatterlist *dst, struct scatterlist *src,
262 		       unsigned int nbytes);
263 
264 	unsigned int min_keysize;
265 	unsigned int max_keysize;
266 	unsigned int ivsize;
267 };
268 
269 /**
270  * struct cipher_alg - single-block symmetric ciphers definition
271  * @cia_min_keysize: Minimum key size supported by the transformation. This is
272  *		     the smallest key length supported by this transformation
273  *		     algorithm. This must be set to one of the pre-defined
274  *		     values as this is not hardware specific. Possible values
275  *		     for this field can be found via git grep "_MIN_KEY_SIZE"
276  *		     include/crypto/
277  * @cia_max_keysize: Maximum key size supported by the transformation. This is
278  *		    the largest key length supported by this transformation
279  *		    algorithm. This must be set to one of the pre-defined values
280  *		    as this is not hardware specific. Possible values for this
281  *		    field can be found via git grep "_MAX_KEY_SIZE"
282  *		    include/crypto/
283  * @cia_setkey: Set key for the transformation. This function is used to either
284  *	        program a supplied key into the hardware or store the key in the
285  *	        transformation context for programming it later. Note that this
286  *	        function does modify the transformation context. This function
287  *	        can be called multiple times during the existence of the
288  *	        transformation object, so one must make sure the key is properly
289  *	        reprogrammed into the hardware. This function is also
290  *	        responsible for checking the key length for validity.
291  * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
292  *		 single block of data, which must be @cra_blocksize big. This
293  *		 always operates on a full @cra_blocksize and it is not possible
294  *		 to encrypt a block of smaller size. The supplied buffers must
295  *		 therefore also be at least of @cra_blocksize size. Both the
296  *		 input and output buffers are always aligned to @cra_alignmask.
297  *		 In case either of the input or output buffer supplied by user
298  *		 of the crypto API is not aligned to @cra_alignmask, the crypto
299  *		 API will re-align the buffers. The re-alignment means that a
300  *		 new buffer will be allocated, the data will be copied into the
301  *		 new buffer, then the processing will happen on the new buffer,
302  *		 then the data will be copied back into the original buffer and
303  *		 finally the new buffer will be freed. In case a software
304  *		 fallback was put in place in the @cra_init call, this function
305  *		 might need to use the fallback if the algorithm doesn't support
306  *		 all of the key sizes. In case the key was stored in
307  *		 transformation context, the key might need to be re-programmed
308  *		 into the hardware in this function. This function shall not
309  *		 modify the transformation context, as this function may be
310  *		 called in parallel with the same transformation object.
311  * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
312  *		 @cia_encrypt, and the conditions are exactly the same.
313  *
314  * All fields are mandatory and must be filled.
315  */
316 struct cipher_alg {
317 	unsigned int cia_min_keysize;
318 	unsigned int cia_max_keysize;
319 	int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
320 	                  unsigned int keylen);
321 	void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
322 	void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
323 };
324 
325 /**
326  * struct compress_alg - compression/decompression algorithm
327  * @coa_compress: Compress a buffer of specified length, storing the resulting
328  *		  data in the specified buffer. Return the length of the
329  *		  compressed data in dlen.
330  * @coa_decompress: Decompress the source buffer, storing the uncompressed
331  *		    data in the specified buffer. The length of the data is
332  *		    returned in dlen.
333  *
334  * All fields are mandatory.
335  */
336 struct compress_alg {
337 	int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
338 			    unsigned int slen, u8 *dst, unsigned int *dlen);
339 	int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
340 			      unsigned int slen, u8 *dst, unsigned int *dlen);
341 };
342 
343 #ifdef CONFIG_CRYPTO_STATS
344 /*
345  * struct crypto_istat_aead - statistics for AEAD algorithm
346  * @encrypt_cnt:	number of encrypt requests
347  * @encrypt_tlen:	total data size handled by encrypt requests
348  * @decrypt_cnt:	number of decrypt requests
349  * @decrypt_tlen:	total data size handled by decrypt requests
350  * @err_cnt:		number of error for AEAD requests
351  */
352 struct crypto_istat_aead {
353 	atomic64_t encrypt_cnt;
354 	atomic64_t encrypt_tlen;
355 	atomic64_t decrypt_cnt;
356 	atomic64_t decrypt_tlen;
357 	atomic64_t err_cnt;
358 };
359 
360 /*
361  * struct crypto_istat_akcipher - statistics for akcipher algorithm
362  * @encrypt_cnt:	number of encrypt requests
363  * @encrypt_tlen:	total data size handled by encrypt requests
364  * @decrypt_cnt:	number of decrypt requests
365  * @decrypt_tlen:	total data size handled by decrypt requests
366  * @verify_cnt:		number of verify operation
367  * @sign_cnt:		number of sign requests
368  * @err_cnt:		number of error for akcipher requests
369  */
370 struct crypto_istat_akcipher {
371 	atomic64_t encrypt_cnt;
372 	atomic64_t encrypt_tlen;
373 	atomic64_t decrypt_cnt;
374 	atomic64_t decrypt_tlen;
375 	atomic64_t verify_cnt;
376 	atomic64_t sign_cnt;
377 	atomic64_t err_cnt;
378 };
379 
380 /*
381  * struct crypto_istat_cipher - statistics for cipher algorithm
382  * @encrypt_cnt:	number of encrypt requests
383  * @encrypt_tlen:	total data size handled by encrypt requests
384  * @decrypt_cnt:	number of decrypt requests
385  * @decrypt_tlen:	total data size handled by decrypt requests
386  * @err_cnt:		number of error for cipher requests
387  */
388 struct crypto_istat_cipher {
389 	atomic64_t encrypt_cnt;
390 	atomic64_t encrypt_tlen;
391 	atomic64_t decrypt_cnt;
392 	atomic64_t decrypt_tlen;
393 	atomic64_t err_cnt;
394 };
395 
396 /*
397  * struct crypto_istat_compress - statistics for compress algorithm
398  * @compress_cnt:	number of compress requests
399  * @compress_tlen:	total data size handled by compress requests
400  * @decompress_cnt:	number of decompress requests
401  * @decompress_tlen:	total data size handled by decompress requests
402  * @err_cnt:		number of error for compress requests
403  */
404 struct crypto_istat_compress {
405 	atomic64_t compress_cnt;
406 	atomic64_t compress_tlen;
407 	atomic64_t decompress_cnt;
408 	atomic64_t decompress_tlen;
409 	atomic64_t err_cnt;
410 };
411 
412 /*
413  * struct crypto_istat_hash - statistics for has algorithm
414  * @hash_cnt:		number of hash requests
415  * @hash_tlen:		total data size hashed
416  * @err_cnt:		number of error for hash requests
417  */
418 struct crypto_istat_hash {
419 	atomic64_t hash_cnt;
420 	atomic64_t hash_tlen;
421 	atomic64_t err_cnt;
422 };
423 
424 /*
425  * struct crypto_istat_kpp - statistics for KPP algorithm
426  * @setsecret_cnt:		number of setsecrey operation
427  * @generate_public_key_cnt:	number of generate_public_key operation
428  * @compute_shared_secret_cnt:	number of compute_shared_secret operation
429  * @err_cnt:			number of error for KPP requests
430  */
431 struct crypto_istat_kpp {
432 	atomic64_t setsecret_cnt;
433 	atomic64_t generate_public_key_cnt;
434 	atomic64_t compute_shared_secret_cnt;
435 	atomic64_t err_cnt;
436 };
437 
438 /*
439  * struct crypto_istat_rng: statistics for RNG algorithm
440  * @generate_cnt:	number of RNG generate requests
441  * @generate_tlen:	total data size of generated data by the RNG
442  * @seed_cnt:		number of times the RNG was seeded
443  * @err_cnt:		number of error for RNG requests
444  */
445 struct crypto_istat_rng {
446 	atomic64_t generate_cnt;
447 	atomic64_t generate_tlen;
448 	atomic64_t seed_cnt;
449 	atomic64_t err_cnt;
450 };
451 #endif /* CONFIG_CRYPTO_STATS */
452 
453 #define cra_ablkcipher	cra_u.ablkcipher
454 #define cra_blkcipher	cra_u.blkcipher
455 #define cra_cipher	cra_u.cipher
456 #define cra_compress	cra_u.compress
457 
458 /**
459  * struct crypto_alg - definition of a cryptograpic cipher algorithm
460  * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
461  *	       CRYPTO_ALG_* flags for the flags which go in here. Those are
462  *	       used for fine-tuning the description of the transformation
463  *	       algorithm.
464  * @cra_blocksize: Minimum block size of this transformation. The size in bytes
465  *		   of the smallest possible unit which can be transformed with
466  *		   this algorithm. The users must respect this value.
467  *		   In case of HASH transformation, it is possible for a smaller
468  *		   block than @cra_blocksize to be passed to the crypto API for
469  *		   transformation, in case of any other transformation type, an
470  * 		   error will be returned upon any attempt to transform smaller
471  *		   than @cra_blocksize chunks.
472  * @cra_ctxsize: Size of the operational context of the transformation. This
473  *		 value informs the kernel crypto API about the memory size
474  *		 needed to be allocated for the transformation context.
475  * @cra_alignmask: Alignment mask for the input and output data buffer. The data
476  *		   buffer containing the input data for the algorithm must be
477  *		   aligned to this alignment mask. The data buffer for the
478  *		   output data must be aligned to this alignment mask. Note that
479  *		   the Crypto API will do the re-alignment in software, but
480  *		   only under special conditions and there is a performance hit.
481  *		   The re-alignment happens at these occasions for different
482  *		   @cra_u types: cipher -- For both input data and output data
483  *		   buffer; ahash -- For output hash destination buf; shash --
484  *		   For output hash destination buf.
485  *		   This is needed on hardware which is flawed by design and
486  *		   cannot pick data from arbitrary addresses.
487  * @cra_priority: Priority of this transformation implementation. In case
488  *		  multiple transformations with same @cra_name are available to
489  *		  the Crypto API, the kernel will use the one with highest
490  *		  @cra_priority.
491  * @cra_name: Generic name (usable by multiple implementations) of the
492  *	      transformation algorithm. This is the name of the transformation
493  *	      itself. This field is used by the kernel when looking up the
494  *	      providers of particular transformation.
495  * @cra_driver_name: Unique name of the transformation provider. This is the
496  *		     name of the provider of the transformation. This can be any
497  *		     arbitrary value, but in the usual case, this contains the
498  *		     name of the chip or provider and the name of the
499  *		     transformation algorithm.
500  * @cra_type: Type of the cryptographic transformation. This is a pointer to
501  *	      struct crypto_type, which implements callbacks common for all
502  *	      transformation types. There are multiple options:
503  *	      &crypto_blkcipher_type, &crypto_ablkcipher_type,
504  *	      &crypto_ahash_type, &crypto_rng_type.
505  *	      This field might be empty. In that case, there are no common
506  *	      callbacks. This is the case for: cipher, compress, shash.
507  * @cra_u: Callbacks implementing the transformation. This is a union of
508  *	   multiple structures. Depending on the type of transformation selected
509  *	   by @cra_type and @cra_flags above, the associated structure must be
510  *	   filled with callbacks. This field might be empty. This is the case
511  *	   for ahash, shash.
512  * @cra_init: Initialize the cryptographic transformation object. This function
513  *	      is used to initialize the cryptographic transformation object.
514  *	      This function is called only once at the instantiation time, right
515  *	      after the transformation context was allocated. In case the
516  *	      cryptographic hardware has some special requirements which need to
517  *	      be handled by software, this function shall check for the precise
518  *	      requirement of the transformation and put any software fallbacks
519  *	      in place.
520  * @cra_exit: Deinitialize the cryptographic transformation object. This is a
521  *	      counterpart to @cra_init, used to remove various changes set in
522  *	      @cra_init.
523  * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher
524  *		      definition. See @struct @ablkcipher_alg.
525  * @cra_u.blkcipher: Union member which contains a synchronous block cipher
526  * 		     definition See @struct @blkcipher_alg.
527  * @cra_u.cipher: Union member which contains a single-block symmetric cipher
528  *		  definition. See @struct @cipher_alg.
529  * @cra_u.compress: Union member which contains a (de)compression algorithm.
530  *		    See @struct @compress_alg.
531  * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
532  * @cra_list: internally used
533  * @cra_users: internally used
534  * @cra_refcnt: internally used
535  * @cra_destroy: internally used
536  *
537  * @stats: union of all possible crypto_istat_xxx structures
538  * @stats.aead:		statistics for AEAD algorithm
539  * @stats.akcipher:	statistics for akcipher algorithm
540  * @stats.cipher:	statistics for cipher algorithm
541  * @stats.compress:	statistics for compress algorithm
542  * @stats.hash:		statistics for hash algorithm
543  * @stats.rng:		statistics for rng algorithm
544  * @stats.kpp:		statistics for KPP algorithm
545  *
546  * The struct crypto_alg describes a generic Crypto API algorithm and is common
547  * for all of the transformations. Any variable not documented here shall not
548  * be used by a cipher implementation as it is internal to the Crypto API.
549  */
550 struct crypto_alg {
551 	struct list_head cra_list;
552 	struct list_head cra_users;
553 
554 	u32 cra_flags;
555 	unsigned int cra_blocksize;
556 	unsigned int cra_ctxsize;
557 	unsigned int cra_alignmask;
558 
559 	int cra_priority;
560 	refcount_t cra_refcnt;
561 
562 	char cra_name[CRYPTO_MAX_ALG_NAME];
563 	char cra_driver_name[CRYPTO_MAX_ALG_NAME];
564 
565 	const struct crypto_type *cra_type;
566 
567 	union {
568 		struct ablkcipher_alg ablkcipher;
569 		struct blkcipher_alg blkcipher;
570 		struct cipher_alg cipher;
571 		struct compress_alg compress;
572 	} cra_u;
573 
574 	int (*cra_init)(struct crypto_tfm *tfm);
575 	void (*cra_exit)(struct crypto_tfm *tfm);
576 	void (*cra_destroy)(struct crypto_alg *alg);
577 
578 	struct module *cra_module;
579 
580 #ifdef CONFIG_CRYPTO_STATS
581 	union {
582 		struct crypto_istat_aead aead;
583 		struct crypto_istat_akcipher akcipher;
584 		struct crypto_istat_cipher cipher;
585 		struct crypto_istat_compress compress;
586 		struct crypto_istat_hash hash;
587 		struct crypto_istat_rng rng;
588 		struct crypto_istat_kpp kpp;
589 	} stats;
590 #endif /* CONFIG_CRYPTO_STATS */
591 
592 } CRYPTO_MINALIGN_ATTR;
593 
594 #ifdef CONFIG_CRYPTO_STATS
595 void crypto_stats_init(struct crypto_alg *alg);
596 void crypto_stats_get(struct crypto_alg *alg);
597 void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg);
598 void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg);
599 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
600 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
601 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
602 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
603 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
604 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
605 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
606 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
607 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
608 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
609 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
610 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
611 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
612 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
613 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
614 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
615 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
616 #else
crypto_stats_init(struct crypto_alg * alg)617 static inline void crypto_stats_init(struct crypto_alg *alg)
618 {}
crypto_stats_get(struct crypto_alg * alg)619 static inline void crypto_stats_get(struct crypto_alg *alg)
620 {}
crypto_stats_ablkcipher_encrypt(unsigned int nbytes,int ret,struct crypto_alg * alg)621 static inline void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg)
622 {}
crypto_stats_ablkcipher_decrypt(unsigned int nbytes,int ret,struct crypto_alg * alg)623 static inline void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg)
624 {}
crypto_stats_aead_encrypt(unsigned int cryptlen,struct crypto_alg * alg,int ret)625 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
626 {}
crypto_stats_aead_decrypt(unsigned int cryptlen,struct crypto_alg * alg,int ret)627 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
628 {}
crypto_stats_ahash_update(unsigned int nbytes,int ret,struct crypto_alg * alg)629 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
630 {}
crypto_stats_ahash_final(unsigned int nbytes,int ret,struct crypto_alg * alg)631 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
632 {}
crypto_stats_akcipher_encrypt(unsigned int src_len,int ret,struct crypto_alg * alg)633 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
634 {}
crypto_stats_akcipher_decrypt(unsigned int src_len,int ret,struct crypto_alg * alg)635 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
636 {}
crypto_stats_akcipher_sign(int ret,struct crypto_alg * alg)637 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
638 {}
crypto_stats_akcipher_verify(int ret,struct crypto_alg * alg)639 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
640 {}
crypto_stats_compress(unsigned int slen,int ret,struct crypto_alg * alg)641 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
642 {}
crypto_stats_decompress(unsigned int slen,int ret,struct crypto_alg * alg)643 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
644 {}
crypto_stats_kpp_set_secret(struct crypto_alg * alg,int ret)645 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
646 {}
crypto_stats_kpp_generate_public_key(struct crypto_alg * alg,int ret)647 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
648 {}
crypto_stats_kpp_compute_shared_secret(struct crypto_alg * alg,int ret)649 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
650 {}
crypto_stats_rng_seed(struct crypto_alg * alg,int ret)651 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
652 {}
crypto_stats_rng_generate(struct crypto_alg * alg,unsigned int dlen,int ret)653 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
654 {}
crypto_stats_skcipher_encrypt(unsigned int cryptlen,int ret,struct crypto_alg * alg)655 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
656 {}
crypto_stats_skcipher_decrypt(unsigned int cryptlen,int ret,struct crypto_alg * alg)657 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
658 {}
659 #endif
660 /*
661  * A helper struct for waiting for completion of async crypto ops
662  */
663 struct crypto_wait {
664 	struct completion completion;
665 	int err;
666 };
667 
668 /*
669  * Macro for declaring a crypto op async wait object on stack
670  */
671 #define DECLARE_CRYPTO_WAIT(_wait) \
672 	struct crypto_wait _wait = { \
673 		COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
674 
675 /*
676  * Async ops completion helper functioons
677  */
678 void crypto_req_done(struct crypto_async_request *req, int err);
679 
crypto_wait_req(int err,struct crypto_wait * wait)680 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
681 {
682 	switch (err) {
683 	case -EINPROGRESS:
684 	case -EBUSY:
685 		wait_for_completion(&wait->completion);
686 		reinit_completion(&wait->completion);
687 		err = wait->err;
688 		break;
689 	};
690 
691 	return err;
692 }
693 
crypto_init_wait(struct crypto_wait * wait)694 static inline void crypto_init_wait(struct crypto_wait *wait)
695 {
696 	init_completion(&wait->completion);
697 }
698 
699 /*
700  * Algorithm registration interface.
701  */
702 int crypto_register_alg(struct crypto_alg *alg);
703 int crypto_unregister_alg(struct crypto_alg *alg);
704 int crypto_register_algs(struct crypto_alg *algs, int count);
705 int crypto_unregister_algs(struct crypto_alg *algs, int count);
706 
707 /*
708  * Algorithm query interface.
709  */
710 int crypto_has_alg(const char *name, u32 type, u32 mask);
711 
712 /*
713  * Transforms: user-instantiated objects which encapsulate algorithms
714  * and core processing logic.  Managed via crypto_alloc_*() and
715  * crypto_free_*(), as well as the various helpers below.
716  */
717 
718 struct ablkcipher_tfm {
719 	int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
720 	              unsigned int keylen);
721 	int (*encrypt)(struct ablkcipher_request *req);
722 	int (*decrypt)(struct ablkcipher_request *req);
723 
724 	struct crypto_ablkcipher *base;
725 
726 	unsigned int ivsize;
727 	unsigned int reqsize;
728 };
729 
730 struct blkcipher_tfm {
731 	void *iv;
732 	int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
733 		      unsigned int keylen);
734 	int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
735 		       struct scatterlist *src, unsigned int nbytes);
736 	int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
737 		       struct scatterlist *src, unsigned int nbytes);
738 };
739 
740 struct cipher_tfm {
741 	int (*cit_setkey)(struct crypto_tfm *tfm,
742 	                  const u8 *key, unsigned int keylen);
743 	void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
744 	void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
745 };
746 
747 struct compress_tfm {
748 	int (*cot_compress)(struct crypto_tfm *tfm,
749 	                    const u8 *src, unsigned int slen,
750 	                    u8 *dst, unsigned int *dlen);
751 	int (*cot_decompress)(struct crypto_tfm *tfm,
752 	                      const u8 *src, unsigned int slen,
753 	                      u8 *dst, unsigned int *dlen);
754 };
755 
756 #define crt_ablkcipher	crt_u.ablkcipher
757 #define crt_blkcipher	crt_u.blkcipher
758 #define crt_cipher	crt_u.cipher
759 #define crt_compress	crt_u.compress
760 
761 struct crypto_tfm {
762 
763 	u32 crt_flags;
764 
765 	union {
766 		struct ablkcipher_tfm ablkcipher;
767 		struct blkcipher_tfm blkcipher;
768 		struct cipher_tfm cipher;
769 		struct compress_tfm compress;
770 	} crt_u;
771 
772 	void (*exit)(struct crypto_tfm *tfm);
773 
774 	struct crypto_alg *__crt_alg;
775 
776 	void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
777 };
778 
779 struct crypto_ablkcipher {
780 	struct crypto_tfm base;
781 };
782 
783 struct crypto_blkcipher {
784 	struct crypto_tfm base;
785 };
786 
787 struct crypto_cipher {
788 	struct crypto_tfm base;
789 };
790 
791 struct crypto_comp {
792 	struct crypto_tfm base;
793 };
794 
795 enum {
796 	CRYPTOA_UNSPEC,
797 	CRYPTOA_ALG,
798 	CRYPTOA_TYPE,
799 	CRYPTOA_U32,
800 	__CRYPTOA_MAX,
801 };
802 
803 #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
804 
805 /* Maximum number of (rtattr) parameters for each template. */
806 #define CRYPTO_MAX_ATTRS 32
807 
808 struct crypto_attr_alg {
809 	char name[CRYPTO_MAX_ALG_NAME];
810 };
811 
812 struct crypto_attr_type {
813 	u32 type;
814 	u32 mask;
815 };
816 
817 struct crypto_attr_u32 {
818 	u32 num;
819 };
820 
821 /*
822  * Transform user interface.
823  */
824 
825 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
826 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
827 
crypto_free_tfm(struct crypto_tfm * tfm)828 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
829 {
830 	return crypto_destroy_tfm(tfm, tfm);
831 }
832 
833 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
834 
835 /*
836  * Transform helpers which query the underlying algorithm.
837  */
crypto_tfm_alg_name(struct crypto_tfm * tfm)838 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
839 {
840 	return tfm->__crt_alg->cra_name;
841 }
842 
crypto_tfm_alg_driver_name(struct crypto_tfm * tfm)843 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
844 {
845 	return tfm->__crt_alg->cra_driver_name;
846 }
847 
crypto_tfm_alg_priority(struct crypto_tfm * tfm)848 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
849 {
850 	return tfm->__crt_alg->cra_priority;
851 }
852 
crypto_tfm_alg_type(struct crypto_tfm * tfm)853 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
854 {
855 	return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
856 }
857 
crypto_tfm_alg_blocksize(struct crypto_tfm * tfm)858 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
859 {
860 	return tfm->__crt_alg->cra_blocksize;
861 }
862 
crypto_tfm_alg_alignmask(struct crypto_tfm * tfm)863 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
864 {
865 	return tfm->__crt_alg->cra_alignmask;
866 }
867 
crypto_tfm_get_flags(struct crypto_tfm * tfm)868 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
869 {
870 	return tfm->crt_flags;
871 }
872 
crypto_tfm_set_flags(struct crypto_tfm * tfm,u32 flags)873 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
874 {
875 	tfm->crt_flags |= flags;
876 }
877 
crypto_tfm_clear_flags(struct crypto_tfm * tfm,u32 flags)878 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
879 {
880 	tfm->crt_flags &= ~flags;
881 }
882 
crypto_tfm_ctx(struct crypto_tfm * tfm)883 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
884 {
885 	return tfm->__crt_ctx;
886 }
887 
crypto_tfm_ctx_alignment(void)888 static inline unsigned int crypto_tfm_ctx_alignment(void)
889 {
890 	struct crypto_tfm *tfm;
891 	return __alignof__(tfm->__crt_ctx);
892 }
893 
894 /*
895  * API wrappers.
896  */
__crypto_ablkcipher_cast(struct crypto_tfm * tfm)897 static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
898 	struct crypto_tfm *tfm)
899 {
900 	return (struct crypto_ablkcipher *)tfm;
901 }
902 
crypto_skcipher_type(u32 type)903 static inline u32 crypto_skcipher_type(u32 type)
904 {
905 	type &= ~CRYPTO_ALG_TYPE_MASK;
906 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
907 	return type;
908 }
909 
crypto_skcipher_mask(u32 mask)910 static inline u32 crypto_skcipher_mask(u32 mask)
911 {
912 	mask &= ~CRYPTO_ALG_TYPE_MASK;
913 	mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
914 	return mask;
915 }
916 
917 /**
918  * DOC: Asynchronous Block Cipher API
919  *
920  * Asynchronous block cipher API is used with the ciphers of type
921  * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
922  *
923  * Asynchronous cipher operations imply that the function invocation for a
924  * cipher request returns immediately before the completion of the operation.
925  * The cipher request is scheduled as a separate kernel thread and therefore
926  * load-balanced on the different CPUs via the process scheduler. To allow
927  * the kernel crypto API to inform the caller about the completion of a cipher
928  * request, the caller must provide a callback function. That function is
929  * invoked with the cipher handle when the request completes.
930  *
931  * To support the asynchronous operation, additional information than just the
932  * cipher handle must be supplied to the kernel crypto API. That additional
933  * information is given by filling in the ablkcipher_request data structure.
934  *
935  * For the asynchronous block cipher API, the state is maintained with the tfm
936  * cipher handle. A single tfm can be used across multiple calls and in
937  * parallel. For asynchronous block cipher calls, context data supplied and
938  * only used by the caller can be referenced the request data structure in
939  * addition to the IV used for the cipher request. The maintenance of such
940  * state information would be important for a crypto driver implementer to
941  * have, because when calling the callback function upon completion of the
942  * cipher operation, that callback function may need some information about
943  * which operation just finished if it invoked multiple in parallel. This
944  * state information is unused by the kernel crypto API.
945  */
946 
crypto_ablkcipher_tfm(struct crypto_ablkcipher * tfm)947 static inline struct crypto_tfm *crypto_ablkcipher_tfm(
948 	struct crypto_ablkcipher *tfm)
949 {
950 	return &tfm->base;
951 }
952 
953 /**
954  * crypto_free_ablkcipher() - zeroize and free cipher handle
955  * @tfm: cipher handle to be freed
956  */
crypto_free_ablkcipher(struct crypto_ablkcipher * tfm)957 static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
958 {
959 	crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
960 }
961 
962 /**
963  * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
964  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
965  *	      ablkcipher
966  * @type: specifies the type of the cipher
967  * @mask: specifies the mask for the cipher
968  *
969  * Return: true when the ablkcipher is known to the kernel crypto API; false
970  *	   otherwise
971  */
crypto_has_ablkcipher(const char * alg_name,u32 type,u32 mask)972 static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
973 					u32 mask)
974 {
975 	return crypto_has_alg(alg_name, crypto_skcipher_type(type),
976 			      crypto_skcipher_mask(mask));
977 }
978 
crypto_ablkcipher_crt(struct crypto_ablkcipher * tfm)979 static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
980 	struct crypto_ablkcipher *tfm)
981 {
982 	return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
983 }
984 
985 /**
986  * crypto_ablkcipher_ivsize() - obtain IV size
987  * @tfm: cipher handle
988  *
989  * The size of the IV for the ablkcipher referenced by the cipher handle is
990  * returned. This IV size may be zero if the cipher does not need an IV.
991  *
992  * Return: IV size in bytes
993  */
crypto_ablkcipher_ivsize(struct crypto_ablkcipher * tfm)994 static inline unsigned int crypto_ablkcipher_ivsize(
995 	struct crypto_ablkcipher *tfm)
996 {
997 	return crypto_ablkcipher_crt(tfm)->ivsize;
998 }
999 
1000 /**
1001  * crypto_ablkcipher_blocksize() - obtain block size of cipher
1002  * @tfm: cipher handle
1003  *
1004  * The block size for the ablkcipher referenced with the cipher handle is
1005  * returned. The caller may use that information to allocate appropriate
1006  * memory for the data returned by the encryption or decryption operation
1007  *
1008  * Return: block size of cipher
1009  */
crypto_ablkcipher_blocksize(struct crypto_ablkcipher * tfm)1010 static inline unsigned int crypto_ablkcipher_blocksize(
1011 	struct crypto_ablkcipher *tfm)
1012 {
1013 	return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
1014 }
1015 
crypto_ablkcipher_alignmask(struct crypto_ablkcipher * tfm)1016 static inline unsigned int crypto_ablkcipher_alignmask(
1017 	struct crypto_ablkcipher *tfm)
1018 {
1019 	return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
1020 }
1021 
crypto_ablkcipher_get_flags(struct crypto_ablkcipher * tfm)1022 static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
1023 {
1024 	return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
1025 }
1026 
crypto_ablkcipher_set_flags(struct crypto_ablkcipher * tfm,u32 flags)1027 static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
1028 					       u32 flags)
1029 {
1030 	crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
1031 }
1032 
crypto_ablkcipher_clear_flags(struct crypto_ablkcipher * tfm,u32 flags)1033 static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
1034 						 u32 flags)
1035 {
1036 	crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
1037 }
1038 
1039 /**
1040  * crypto_ablkcipher_setkey() - set key for cipher
1041  * @tfm: cipher handle
1042  * @key: buffer holding the key
1043  * @keylen: length of the key in bytes
1044  *
1045  * The caller provided key is set for the ablkcipher referenced by the cipher
1046  * handle.
1047  *
1048  * Note, the key length determines the cipher type. Many block ciphers implement
1049  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1050  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1051  * is performed.
1052  *
1053  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1054  */
crypto_ablkcipher_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int keylen)1055 static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
1056 					   const u8 *key, unsigned int keylen)
1057 {
1058 	struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
1059 
1060 	return crt->setkey(crt->base, key, keylen);
1061 }
1062 
1063 /**
1064  * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
1065  * @req: ablkcipher_request out of which the cipher handle is to be obtained
1066  *
1067  * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
1068  * data structure.
1069  *
1070  * Return: crypto_ablkcipher handle
1071  */
crypto_ablkcipher_reqtfm(struct ablkcipher_request * req)1072 static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
1073 	struct ablkcipher_request *req)
1074 {
1075 	return __crypto_ablkcipher_cast(req->base.tfm);
1076 }
1077 
1078 /**
1079  * crypto_ablkcipher_encrypt() - encrypt plaintext
1080  * @req: reference to the ablkcipher_request handle that holds all information
1081  *	 needed to perform the cipher operation
1082  *
1083  * Encrypt plaintext data using the ablkcipher_request handle. That data
1084  * structure and how it is filled with data is discussed with the
1085  * ablkcipher_request_* functions.
1086  *
1087  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1088  */
crypto_ablkcipher_encrypt(struct ablkcipher_request * req)1089 static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
1090 {
1091 	struct ablkcipher_tfm *crt =
1092 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1093 	struct crypto_alg *alg = crt->base->base.__crt_alg;
1094 	unsigned int nbytes = req->nbytes;
1095 	int ret;
1096 
1097 	crypto_stats_get(alg);
1098 	ret = crt->encrypt(req);
1099 	crypto_stats_ablkcipher_encrypt(nbytes, ret, alg);
1100 	return ret;
1101 }
1102 
1103 /**
1104  * crypto_ablkcipher_decrypt() - decrypt ciphertext
1105  * @req: reference to the ablkcipher_request handle that holds all information
1106  *	 needed to perform the cipher operation
1107  *
1108  * Decrypt ciphertext data using the ablkcipher_request handle. That data
1109  * structure and how it is filled with data is discussed with the
1110  * ablkcipher_request_* functions.
1111  *
1112  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1113  */
crypto_ablkcipher_decrypt(struct ablkcipher_request * req)1114 static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
1115 {
1116 	struct ablkcipher_tfm *crt =
1117 		crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1118 	struct crypto_alg *alg = crt->base->base.__crt_alg;
1119 	unsigned int nbytes = req->nbytes;
1120 	int ret;
1121 
1122 	crypto_stats_get(alg);
1123 	ret = crt->decrypt(req);
1124 	crypto_stats_ablkcipher_decrypt(nbytes, ret, alg);
1125 	return ret;
1126 }
1127 
1128 /**
1129  * DOC: Asynchronous Cipher Request Handle
1130  *
1131  * The ablkcipher_request data structure contains all pointers to data
1132  * required for the asynchronous cipher operation. This includes the cipher
1133  * handle (which can be used by multiple ablkcipher_request instances), pointer
1134  * to plaintext and ciphertext, asynchronous callback function, etc. It acts
1135  * as a handle to the ablkcipher_request_* API calls in a similar way as
1136  * ablkcipher handle to the crypto_ablkcipher_* API calls.
1137  */
1138 
1139 /**
1140  * crypto_ablkcipher_reqsize() - obtain size of the request data structure
1141  * @tfm: cipher handle
1142  *
1143  * Return: number of bytes
1144  */
crypto_ablkcipher_reqsize(struct crypto_ablkcipher * tfm)1145 static inline unsigned int crypto_ablkcipher_reqsize(
1146 	struct crypto_ablkcipher *tfm)
1147 {
1148 	return crypto_ablkcipher_crt(tfm)->reqsize;
1149 }
1150 
1151 /**
1152  * ablkcipher_request_set_tfm() - update cipher handle reference in request
1153  * @req: request handle to be modified
1154  * @tfm: cipher handle that shall be added to the request handle
1155  *
1156  * Allow the caller to replace the existing ablkcipher handle in the request
1157  * data structure with a different one.
1158  */
ablkcipher_request_set_tfm(struct ablkcipher_request * req,struct crypto_ablkcipher * tfm)1159 static inline void ablkcipher_request_set_tfm(
1160 	struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
1161 {
1162 	req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
1163 }
1164 
ablkcipher_request_cast(struct crypto_async_request * req)1165 static inline struct ablkcipher_request *ablkcipher_request_cast(
1166 	struct crypto_async_request *req)
1167 {
1168 	return container_of(req, struct ablkcipher_request, base);
1169 }
1170 
1171 /**
1172  * ablkcipher_request_alloc() - allocate request data structure
1173  * @tfm: cipher handle to be registered with the request
1174  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1175  *
1176  * Allocate the request data structure that must be used with the ablkcipher
1177  * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1178  * handle is registered in the request data structure.
1179  *
1180  * Return: allocated request handle in case of success, or NULL if out of memory
1181  */
ablkcipher_request_alloc(struct crypto_ablkcipher * tfm,gfp_t gfp)1182 static inline struct ablkcipher_request *ablkcipher_request_alloc(
1183 	struct crypto_ablkcipher *tfm, gfp_t gfp)
1184 {
1185 	struct ablkcipher_request *req;
1186 
1187 	req = kmalloc(sizeof(struct ablkcipher_request) +
1188 		      crypto_ablkcipher_reqsize(tfm), gfp);
1189 
1190 	if (likely(req))
1191 		ablkcipher_request_set_tfm(req, tfm);
1192 
1193 	return req;
1194 }
1195 
1196 /**
1197  * ablkcipher_request_free() - zeroize and free request data structure
1198  * @req: request data structure cipher handle to be freed
1199  */
ablkcipher_request_free(struct ablkcipher_request * req)1200 static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1201 {
1202 	kzfree(req);
1203 }
1204 
1205 /**
1206  * ablkcipher_request_set_callback() - set asynchronous callback function
1207  * @req: request handle
1208  * @flags: specify zero or an ORing of the flags
1209  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1210  *	   increase the wait queue beyond the initial maximum size;
1211  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1212  * @compl: callback function pointer to be registered with the request handle
1213  * @data: The data pointer refers to memory that is not used by the kernel
1214  *	  crypto API, but provided to the callback function for it to use. Here,
1215  *	  the caller can provide a reference to memory the callback function can
1216  *	  operate on. As the callback function is invoked asynchronously to the
1217  *	  related functionality, it may need to access data structures of the
1218  *	  related functionality which can be referenced using this pointer. The
1219  *	  callback function can access the memory via the "data" field in the
1220  *	  crypto_async_request data structure provided to the callback function.
1221  *
1222  * This function allows setting the callback function that is triggered once the
1223  * cipher operation completes.
1224  *
1225  * The callback function is registered with the ablkcipher_request handle and
1226  * must comply with the following template::
1227  *
1228  *	void callback_function(struct crypto_async_request *req, int error)
1229  */
ablkcipher_request_set_callback(struct ablkcipher_request * req,u32 flags,crypto_completion_t compl,void * data)1230 static inline void ablkcipher_request_set_callback(
1231 	struct ablkcipher_request *req,
1232 	u32 flags, crypto_completion_t compl, void *data)
1233 {
1234 	req->base.complete = compl;
1235 	req->base.data = data;
1236 	req->base.flags = flags;
1237 }
1238 
1239 /**
1240  * ablkcipher_request_set_crypt() - set data buffers
1241  * @req: request handle
1242  * @src: source scatter / gather list
1243  * @dst: destination scatter / gather list
1244  * @nbytes: number of bytes to process from @src
1245  * @iv: IV for the cipher operation which must comply with the IV size defined
1246  *      by crypto_ablkcipher_ivsize
1247  *
1248  * This function allows setting of the source data and destination data
1249  * scatter / gather lists.
1250  *
1251  * For encryption, the source is treated as the plaintext and the
1252  * destination is the ciphertext. For a decryption operation, the use is
1253  * reversed - the source is the ciphertext and the destination is the plaintext.
1254  */
ablkcipher_request_set_crypt(struct ablkcipher_request * req,struct scatterlist * src,struct scatterlist * dst,unsigned int nbytes,void * iv)1255 static inline void ablkcipher_request_set_crypt(
1256 	struct ablkcipher_request *req,
1257 	struct scatterlist *src, struct scatterlist *dst,
1258 	unsigned int nbytes, void *iv)
1259 {
1260 	req->src = src;
1261 	req->dst = dst;
1262 	req->nbytes = nbytes;
1263 	req->info = iv;
1264 }
1265 
1266 /**
1267  * DOC: Synchronous Block Cipher API
1268  *
1269  * The synchronous block cipher API is used with the ciphers of type
1270  * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1271  *
1272  * Synchronous calls, have a context in the tfm. But since a single tfm can be
1273  * used in multiple calls and in parallel, this info should not be changeable
1274  * (unless a lock is used). This applies, for example, to the symmetric key.
1275  * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1276  * structure for synchronous blkcipher api. So, its the only state info that can
1277  * be kept for synchronous calls without using a big lock across a tfm.
1278  *
1279  * The block cipher API allows the use of a complete cipher, i.e. a cipher
1280  * consisting of a template (a block chaining mode) and a single block cipher
1281  * primitive (e.g. AES).
1282  *
1283  * The plaintext data buffer and the ciphertext data buffer are pointed to
1284  * by using scatter/gather lists. The cipher operation is performed
1285  * on all segments of the provided scatter/gather lists.
1286  *
1287  * The kernel crypto API supports a cipher operation "in-place" which means that
1288  * the caller may provide the same scatter/gather list for the plaintext and
1289  * cipher text. After the completion of the cipher operation, the plaintext
1290  * data is replaced with the ciphertext data in case of an encryption and vice
1291  * versa for a decryption. The caller must ensure that the scatter/gather lists
1292  * for the output data point to sufficiently large buffers, i.e. multiples of
1293  * the block size of the cipher.
1294  */
1295 
__crypto_blkcipher_cast(struct crypto_tfm * tfm)1296 static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1297 	struct crypto_tfm *tfm)
1298 {
1299 	return (struct crypto_blkcipher *)tfm;
1300 }
1301 
crypto_blkcipher_cast(struct crypto_tfm * tfm)1302 static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1303 	struct crypto_tfm *tfm)
1304 {
1305 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1306 	return __crypto_blkcipher_cast(tfm);
1307 }
1308 
1309 /**
1310  * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1311  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1312  *	      blkcipher cipher
1313  * @type: specifies the type of the cipher
1314  * @mask: specifies the mask for the cipher
1315  *
1316  * Allocate a cipher handle for a block cipher. The returned struct
1317  * crypto_blkcipher is the cipher handle that is required for any subsequent
1318  * API invocation for that block cipher.
1319  *
1320  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1321  *	   of an error, PTR_ERR() returns the error code.
1322  */
crypto_alloc_blkcipher(const char * alg_name,u32 type,u32 mask)1323 static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1324 	const char *alg_name, u32 type, u32 mask)
1325 {
1326 	type &= ~CRYPTO_ALG_TYPE_MASK;
1327 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1328 	mask |= CRYPTO_ALG_TYPE_MASK;
1329 
1330 	return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1331 }
1332 
crypto_blkcipher_tfm(struct crypto_blkcipher * tfm)1333 static inline struct crypto_tfm *crypto_blkcipher_tfm(
1334 	struct crypto_blkcipher *tfm)
1335 {
1336 	return &tfm->base;
1337 }
1338 
1339 /**
1340  * crypto_free_blkcipher() - zeroize and free the block cipher handle
1341  * @tfm: cipher handle to be freed
1342  */
crypto_free_blkcipher(struct crypto_blkcipher * tfm)1343 static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1344 {
1345 	crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1346 }
1347 
1348 /**
1349  * crypto_has_blkcipher() - Search for the availability of a block cipher
1350  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1351  *	      block cipher
1352  * @type: specifies the type of the cipher
1353  * @mask: specifies the mask for the cipher
1354  *
1355  * Return: true when the block cipher is known to the kernel crypto API; false
1356  *	   otherwise
1357  */
crypto_has_blkcipher(const char * alg_name,u32 type,u32 mask)1358 static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1359 {
1360 	type &= ~CRYPTO_ALG_TYPE_MASK;
1361 	type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1362 	mask |= CRYPTO_ALG_TYPE_MASK;
1363 
1364 	return crypto_has_alg(alg_name, type, mask);
1365 }
1366 
1367 /**
1368  * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1369  * @tfm: cipher handle
1370  *
1371  * Return: The character string holding the name of the cipher
1372  */
crypto_blkcipher_name(struct crypto_blkcipher * tfm)1373 static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1374 {
1375 	return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1376 }
1377 
crypto_blkcipher_crt(struct crypto_blkcipher * tfm)1378 static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1379 	struct crypto_blkcipher *tfm)
1380 {
1381 	return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1382 }
1383 
crypto_blkcipher_alg(struct crypto_blkcipher * tfm)1384 static inline struct blkcipher_alg *crypto_blkcipher_alg(
1385 	struct crypto_blkcipher *tfm)
1386 {
1387 	return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1388 }
1389 
1390 /**
1391  * crypto_blkcipher_ivsize() - obtain IV size
1392  * @tfm: cipher handle
1393  *
1394  * The size of the IV for the block cipher referenced by the cipher handle is
1395  * returned. This IV size may be zero if the cipher does not need an IV.
1396  *
1397  * Return: IV size in bytes
1398  */
crypto_blkcipher_ivsize(struct crypto_blkcipher * tfm)1399 static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1400 {
1401 	return crypto_blkcipher_alg(tfm)->ivsize;
1402 }
1403 
1404 /**
1405  * crypto_blkcipher_blocksize() - obtain block size of cipher
1406  * @tfm: cipher handle
1407  *
1408  * The block size for the block cipher referenced with the cipher handle is
1409  * returned. The caller may use that information to allocate appropriate
1410  * memory for the data returned by the encryption or decryption operation.
1411  *
1412  * Return: block size of cipher
1413  */
crypto_blkcipher_blocksize(struct crypto_blkcipher * tfm)1414 static inline unsigned int crypto_blkcipher_blocksize(
1415 	struct crypto_blkcipher *tfm)
1416 {
1417 	return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1418 }
1419 
crypto_blkcipher_alignmask(struct crypto_blkcipher * tfm)1420 static inline unsigned int crypto_blkcipher_alignmask(
1421 	struct crypto_blkcipher *tfm)
1422 {
1423 	return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1424 }
1425 
crypto_blkcipher_get_flags(struct crypto_blkcipher * tfm)1426 static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1427 {
1428 	return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1429 }
1430 
crypto_blkcipher_set_flags(struct crypto_blkcipher * tfm,u32 flags)1431 static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1432 					      u32 flags)
1433 {
1434 	crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1435 }
1436 
crypto_blkcipher_clear_flags(struct crypto_blkcipher * tfm,u32 flags)1437 static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1438 						u32 flags)
1439 {
1440 	crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1441 }
1442 
1443 /**
1444  * crypto_blkcipher_setkey() - set key for cipher
1445  * @tfm: cipher handle
1446  * @key: buffer holding the key
1447  * @keylen: length of the key in bytes
1448  *
1449  * The caller provided key is set for the block cipher referenced by the cipher
1450  * handle.
1451  *
1452  * Note, the key length determines the cipher type. Many block ciphers implement
1453  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1454  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1455  * is performed.
1456  *
1457  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1458  */
crypto_blkcipher_setkey(struct crypto_blkcipher * tfm,const u8 * key,unsigned int keylen)1459 static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1460 					  const u8 *key, unsigned int keylen)
1461 {
1462 	return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1463 						 key, keylen);
1464 }
1465 
1466 /**
1467  * crypto_blkcipher_encrypt() - encrypt plaintext
1468  * @desc: reference to the block cipher handle with meta data
1469  * @dst: scatter/gather list that is filled by the cipher operation with the
1470  *	ciphertext
1471  * @src: scatter/gather list that holds the plaintext
1472  * @nbytes: number of bytes of the plaintext to encrypt.
1473  *
1474  * Encrypt plaintext data using the IV set by the caller with a preceding
1475  * call of crypto_blkcipher_set_iv.
1476  *
1477  * The blkcipher_desc data structure must be filled by the caller and can
1478  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1479  * with the block cipher handle; desc.flags is filled with either
1480  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1481  *
1482  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1483  */
crypto_blkcipher_encrypt(struct blkcipher_desc * desc,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes)1484 static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1485 					   struct scatterlist *dst,
1486 					   struct scatterlist *src,
1487 					   unsigned int nbytes)
1488 {
1489 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1490 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1491 }
1492 
1493 /**
1494  * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1495  * @desc: reference to the block cipher handle with meta data
1496  * @dst: scatter/gather list that is filled by the cipher operation with the
1497  *	ciphertext
1498  * @src: scatter/gather list that holds the plaintext
1499  * @nbytes: number of bytes of the plaintext to encrypt.
1500  *
1501  * Encrypt plaintext data with the use of an IV that is solely used for this
1502  * cipher operation. Any previously set IV is not used.
1503  *
1504  * The blkcipher_desc data structure must be filled by the caller and can
1505  * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1506  * with the block cipher handle; desc.info is filled with the IV to be used for
1507  * the current operation; desc.flags is filled with either
1508  * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1509  *
1510  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1511  */
crypto_blkcipher_encrypt_iv(struct blkcipher_desc * desc,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes)1512 static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1513 					      struct scatterlist *dst,
1514 					      struct scatterlist *src,
1515 					      unsigned int nbytes)
1516 {
1517 	return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1518 }
1519 
1520 /**
1521  * crypto_blkcipher_decrypt() - decrypt ciphertext
1522  * @desc: reference to the block cipher handle with meta data
1523  * @dst: scatter/gather list that is filled by the cipher operation with the
1524  *	plaintext
1525  * @src: scatter/gather list that holds the ciphertext
1526  * @nbytes: number of bytes of the ciphertext to decrypt.
1527  *
1528  * Decrypt ciphertext data using the IV set by the caller with a preceding
1529  * call of crypto_blkcipher_set_iv.
1530  *
1531  * The blkcipher_desc data structure must be filled by the caller as documented
1532  * for the crypto_blkcipher_encrypt call above.
1533  *
1534  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1535  *
1536  */
crypto_blkcipher_decrypt(struct blkcipher_desc * desc,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes)1537 static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1538 					   struct scatterlist *dst,
1539 					   struct scatterlist *src,
1540 					   unsigned int nbytes)
1541 {
1542 	desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1543 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1544 }
1545 
1546 /**
1547  * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1548  * @desc: reference to the block cipher handle with meta data
1549  * @dst: scatter/gather list that is filled by the cipher operation with the
1550  *	plaintext
1551  * @src: scatter/gather list that holds the ciphertext
1552  * @nbytes: number of bytes of the ciphertext to decrypt.
1553  *
1554  * Decrypt ciphertext data with the use of an IV that is solely used for this
1555  * cipher operation. Any previously set IV is not used.
1556  *
1557  * The blkcipher_desc data structure must be filled by the caller as documented
1558  * for the crypto_blkcipher_encrypt_iv call above.
1559  *
1560  * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1561  */
crypto_blkcipher_decrypt_iv(struct blkcipher_desc * desc,struct scatterlist * dst,struct scatterlist * src,unsigned int nbytes)1562 static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1563 					      struct scatterlist *dst,
1564 					      struct scatterlist *src,
1565 					      unsigned int nbytes)
1566 {
1567 	return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1568 }
1569 
1570 /**
1571  * crypto_blkcipher_set_iv() - set IV for cipher
1572  * @tfm: cipher handle
1573  * @src: buffer holding the IV
1574  * @len: length of the IV in bytes
1575  *
1576  * The caller provided IV is set for the block cipher referenced by the cipher
1577  * handle.
1578  */
crypto_blkcipher_set_iv(struct crypto_blkcipher * tfm,const u8 * src,unsigned int len)1579 static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1580 					   const u8 *src, unsigned int len)
1581 {
1582 	memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1583 }
1584 
1585 /**
1586  * crypto_blkcipher_get_iv() - obtain IV from cipher
1587  * @tfm: cipher handle
1588  * @dst: buffer filled with the IV
1589  * @len: length of the buffer dst
1590  *
1591  * The caller can obtain the IV set for the block cipher referenced by the
1592  * cipher handle and store it into the user-provided buffer. If the buffer
1593  * has an insufficient space, the IV is truncated to fit the buffer.
1594  */
crypto_blkcipher_get_iv(struct crypto_blkcipher * tfm,u8 * dst,unsigned int len)1595 static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1596 					   u8 *dst, unsigned int len)
1597 {
1598 	memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1599 }
1600 
1601 /**
1602  * DOC: Single Block Cipher API
1603  *
1604  * The single block cipher API is used with the ciphers of type
1605  * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1606  *
1607  * Using the single block cipher API calls, operations with the basic cipher
1608  * primitive can be implemented. These cipher primitives exclude any block
1609  * chaining operations including IV handling.
1610  *
1611  * The purpose of this single block cipher API is to support the implementation
1612  * of templates or other concepts that only need to perform the cipher operation
1613  * on one block at a time. Templates invoke the underlying cipher primitive
1614  * block-wise and process either the input or the output data of these cipher
1615  * operations.
1616  */
1617 
__crypto_cipher_cast(struct crypto_tfm * tfm)1618 static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1619 {
1620 	return (struct crypto_cipher *)tfm;
1621 }
1622 
crypto_cipher_cast(struct crypto_tfm * tfm)1623 static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1624 {
1625 	BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1626 	return __crypto_cipher_cast(tfm);
1627 }
1628 
1629 /**
1630  * crypto_alloc_cipher() - allocate single block cipher handle
1631  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1632  *	     single block cipher
1633  * @type: specifies the type of the cipher
1634  * @mask: specifies the mask for the cipher
1635  *
1636  * Allocate a cipher handle for a single block cipher. The returned struct
1637  * crypto_cipher is the cipher handle that is required for any subsequent API
1638  * invocation for that single block cipher.
1639  *
1640  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1641  *	   of an error, PTR_ERR() returns the error code.
1642  */
crypto_alloc_cipher(const char * alg_name,u32 type,u32 mask)1643 static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1644 							u32 type, u32 mask)
1645 {
1646 	type &= ~CRYPTO_ALG_TYPE_MASK;
1647 	type |= CRYPTO_ALG_TYPE_CIPHER;
1648 	mask |= CRYPTO_ALG_TYPE_MASK;
1649 
1650 	return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1651 }
1652 
crypto_cipher_tfm(struct crypto_cipher * tfm)1653 static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1654 {
1655 	return &tfm->base;
1656 }
1657 
1658 /**
1659  * crypto_free_cipher() - zeroize and free the single block cipher handle
1660  * @tfm: cipher handle to be freed
1661  */
crypto_free_cipher(struct crypto_cipher * tfm)1662 static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1663 {
1664 	crypto_free_tfm(crypto_cipher_tfm(tfm));
1665 }
1666 
1667 /**
1668  * crypto_has_cipher() - Search for the availability of a single block cipher
1669  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1670  *	     single block cipher
1671  * @type: specifies the type of the cipher
1672  * @mask: specifies the mask for the cipher
1673  *
1674  * Return: true when the single block cipher is known to the kernel crypto API;
1675  *	   false otherwise
1676  */
crypto_has_cipher(const char * alg_name,u32 type,u32 mask)1677 static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1678 {
1679 	type &= ~CRYPTO_ALG_TYPE_MASK;
1680 	type |= CRYPTO_ALG_TYPE_CIPHER;
1681 	mask |= CRYPTO_ALG_TYPE_MASK;
1682 
1683 	return crypto_has_alg(alg_name, type, mask);
1684 }
1685 
crypto_cipher_crt(struct crypto_cipher * tfm)1686 static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1687 {
1688 	return &crypto_cipher_tfm(tfm)->crt_cipher;
1689 }
1690 
1691 /**
1692  * crypto_cipher_blocksize() - obtain block size for cipher
1693  * @tfm: cipher handle
1694  *
1695  * The block size for the single block cipher referenced with the cipher handle
1696  * tfm is returned. The caller may use that information to allocate appropriate
1697  * memory for the data returned by the encryption or decryption operation
1698  *
1699  * Return: block size of cipher
1700  */
crypto_cipher_blocksize(struct crypto_cipher * tfm)1701 static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1702 {
1703 	return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1704 }
1705 
crypto_cipher_alignmask(struct crypto_cipher * tfm)1706 static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1707 {
1708 	return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1709 }
1710 
crypto_cipher_get_flags(struct crypto_cipher * tfm)1711 static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1712 {
1713 	return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1714 }
1715 
crypto_cipher_set_flags(struct crypto_cipher * tfm,u32 flags)1716 static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1717 					   u32 flags)
1718 {
1719 	crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1720 }
1721 
crypto_cipher_clear_flags(struct crypto_cipher * tfm,u32 flags)1722 static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1723 					     u32 flags)
1724 {
1725 	crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1726 }
1727 
1728 /**
1729  * crypto_cipher_setkey() - set key for cipher
1730  * @tfm: cipher handle
1731  * @key: buffer holding the key
1732  * @keylen: length of the key in bytes
1733  *
1734  * The caller provided key is set for the single block cipher referenced by the
1735  * cipher handle.
1736  *
1737  * Note, the key length determines the cipher type. Many block ciphers implement
1738  * different cipher modes depending on the key size, such as AES-128 vs AES-192
1739  * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1740  * is performed.
1741  *
1742  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1743  */
crypto_cipher_setkey(struct crypto_cipher * tfm,const u8 * key,unsigned int keylen)1744 static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1745                                        const u8 *key, unsigned int keylen)
1746 {
1747 	return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1748 						  key, keylen);
1749 }
1750 
1751 /**
1752  * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1753  * @tfm: cipher handle
1754  * @dst: points to the buffer that will be filled with the ciphertext
1755  * @src: buffer holding the plaintext to be encrypted
1756  *
1757  * Invoke the encryption operation of one block. The caller must ensure that
1758  * the plaintext and ciphertext buffers are at least one block in size.
1759  */
crypto_cipher_encrypt_one(struct crypto_cipher * tfm,u8 * dst,const u8 * src)1760 static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1761 					     u8 *dst, const u8 *src)
1762 {
1763 	crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1764 						dst, src);
1765 }
1766 
1767 /**
1768  * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1769  * @tfm: cipher handle
1770  * @dst: points to the buffer that will be filled with the plaintext
1771  * @src: buffer holding the ciphertext to be decrypted
1772  *
1773  * Invoke the decryption operation of one block. The caller must ensure that
1774  * the plaintext and ciphertext buffers are at least one block in size.
1775  */
crypto_cipher_decrypt_one(struct crypto_cipher * tfm,u8 * dst,const u8 * src)1776 static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1777 					     u8 *dst, const u8 *src)
1778 {
1779 	crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1780 						dst, src);
1781 }
1782 
__crypto_comp_cast(struct crypto_tfm * tfm)1783 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1784 {
1785 	return (struct crypto_comp *)tfm;
1786 }
1787 
crypto_comp_cast(struct crypto_tfm * tfm)1788 static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1789 {
1790 	BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1791 	       CRYPTO_ALG_TYPE_MASK);
1792 	return __crypto_comp_cast(tfm);
1793 }
1794 
crypto_alloc_comp(const char * alg_name,u32 type,u32 mask)1795 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1796 						    u32 type, u32 mask)
1797 {
1798 	type &= ~CRYPTO_ALG_TYPE_MASK;
1799 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1800 	mask |= CRYPTO_ALG_TYPE_MASK;
1801 
1802 	return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1803 }
1804 
crypto_comp_tfm(struct crypto_comp * tfm)1805 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1806 {
1807 	return &tfm->base;
1808 }
1809 
crypto_free_comp(struct crypto_comp * tfm)1810 static inline void crypto_free_comp(struct crypto_comp *tfm)
1811 {
1812 	crypto_free_tfm(crypto_comp_tfm(tfm));
1813 }
1814 
crypto_has_comp(const char * alg_name,u32 type,u32 mask)1815 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1816 {
1817 	type &= ~CRYPTO_ALG_TYPE_MASK;
1818 	type |= CRYPTO_ALG_TYPE_COMPRESS;
1819 	mask |= CRYPTO_ALG_TYPE_MASK;
1820 
1821 	return crypto_has_alg(alg_name, type, mask);
1822 }
1823 
crypto_comp_name(struct crypto_comp * tfm)1824 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1825 {
1826 	return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1827 }
1828 
crypto_comp_crt(struct crypto_comp * tfm)1829 static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1830 {
1831 	return &crypto_comp_tfm(tfm)->crt_compress;
1832 }
1833 
crypto_comp_compress(struct crypto_comp * tfm,const u8 * src,unsigned int slen,u8 * dst,unsigned int * dlen)1834 static inline int crypto_comp_compress(struct crypto_comp *tfm,
1835                                        const u8 *src, unsigned int slen,
1836                                        u8 *dst, unsigned int *dlen)
1837 {
1838 	return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1839 						  src, slen, dst, dlen);
1840 }
1841 
crypto_comp_decompress(struct crypto_comp * tfm,const u8 * src,unsigned int slen,u8 * dst,unsigned int * dlen)1842 static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1843                                          const u8 *src, unsigned int slen,
1844                                          u8 *dst, unsigned int *dlen)
1845 {
1846 	return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1847 						    src, slen, dst, dlen);
1848 }
1849 
1850 #endif	/* _LINUX_CRYPTO_H */
1851 
1852