• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/debug.h>
28 #include <linux/smp.h>
29 #include <linux/spinlock.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memblock.h>
32 #include <linux/interrupt.h>
33 #include <linux/ptrace.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdebug.h>
36 #include <linux/kprobes.h>
37 #include <linux/notifier.h>
38 #include <linux/kdb.h>
39 #include <linux/irq.h>
40 #include <linux/perf_event.h>
41 
42 #include <asm/addrspace.h>
43 #include <asm/bootinfo.h>
44 #include <asm/branch.h>
45 #include <asm/break.h>
46 #include <asm/cop2.h>
47 #include <asm/cpu.h>
48 #include <asm/cpu-type.h>
49 #include <asm/dsp.h>
50 #include <asm/fpu.h>
51 #include <asm/fpu_emulator.h>
52 #include <asm/idle.h>
53 #include <asm/isa-rev.h>
54 #include <asm/mips-cps.h>
55 #include <asm/mips-r2-to-r6-emul.h>
56 #include <asm/mipsregs.h>
57 #include <asm/mipsmtregs.h>
58 #include <asm/module.h>
59 #include <asm/msa.h>
60 #include <asm/pgtable.h>
61 #include <asm/ptrace.h>
62 #include <asm/sections.h>
63 #include <asm/siginfo.h>
64 #include <asm/tlbdebug.h>
65 #include <asm/traps.h>
66 #include <linux/uaccess.h>
67 #include <asm/watch.h>
68 #include <asm/mmu_context.h>
69 #include <asm/types.h>
70 #include <asm/stacktrace.h>
71 #include <asm/tlbex.h>
72 #include <asm/uasm.h>
73 
74 extern void check_wait(void);
75 extern asmlinkage void rollback_handle_int(void);
76 extern asmlinkage void handle_int(void);
77 extern asmlinkage void handle_adel(void);
78 extern asmlinkage void handle_ades(void);
79 extern asmlinkage void handle_ibe(void);
80 extern asmlinkage void handle_dbe(void);
81 extern asmlinkage void handle_sys(void);
82 extern asmlinkage void handle_bp(void);
83 extern asmlinkage void handle_ri(void);
84 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
85 extern asmlinkage void handle_ri_rdhwr(void);
86 extern asmlinkage void handle_cpu(void);
87 extern asmlinkage void handle_ov(void);
88 extern asmlinkage void handle_tr(void);
89 extern asmlinkage void handle_msa_fpe(void);
90 extern asmlinkage void handle_fpe(void);
91 extern asmlinkage void handle_ftlb(void);
92 extern asmlinkage void handle_msa(void);
93 extern asmlinkage void handle_mdmx(void);
94 extern asmlinkage void handle_watch(void);
95 extern asmlinkage void handle_mt(void);
96 extern asmlinkage void handle_dsp(void);
97 extern asmlinkage void handle_mcheck(void);
98 extern asmlinkage void handle_reserved(void);
99 extern void tlb_do_page_fault_0(void);
100 
101 void (*board_be_init)(void);
102 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
103 void (*board_nmi_handler_setup)(void);
104 void (*board_ejtag_handler_setup)(void);
105 void (*board_bind_eic_interrupt)(int irq, int regset);
106 void (*board_ebase_setup)(void);
107 void(*board_cache_error_setup)(void);
108 
show_raw_backtrace(unsigned long reg29)109 static void show_raw_backtrace(unsigned long reg29)
110 {
111 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
112 	unsigned long addr;
113 
114 	printk("Call Trace:");
115 #ifdef CONFIG_KALLSYMS
116 	printk("\n");
117 #endif
118 	while (!kstack_end(sp)) {
119 		unsigned long __user *p =
120 			(unsigned long __user *)(unsigned long)sp++;
121 		if (__get_user(addr, p)) {
122 			printk(" (Bad stack address)");
123 			break;
124 		}
125 		if (__kernel_text_address(addr))
126 			print_ip_sym(addr);
127 	}
128 	printk("\n");
129 }
130 
131 #ifdef CONFIG_KALLSYMS
132 int raw_show_trace;
set_raw_show_trace(char * str)133 static int __init set_raw_show_trace(char *str)
134 {
135 	raw_show_trace = 1;
136 	return 1;
137 }
138 __setup("raw_show_trace", set_raw_show_trace);
139 #endif
140 
show_backtrace(struct task_struct * task,const struct pt_regs * regs)141 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
142 {
143 	unsigned long sp = regs->regs[29];
144 	unsigned long ra = regs->regs[31];
145 	unsigned long pc = regs->cp0_epc;
146 
147 	if (!task)
148 		task = current;
149 
150 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
151 		show_raw_backtrace(sp);
152 		return;
153 	}
154 	printk("Call Trace:\n");
155 	do {
156 		print_ip_sym(pc);
157 		pc = unwind_stack(task, &sp, pc, &ra);
158 	} while (pc);
159 	pr_cont("\n");
160 }
161 
162 /*
163  * This routine abuses get_user()/put_user() to reference pointers
164  * with at least a bit of error checking ...
165  */
show_stacktrace(struct task_struct * task,const struct pt_regs * regs)166 static void show_stacktrace(struct task_struct *task,
167 	const struct pt_regs *regs)
168 {
169 	const int field = 2 * sizeof(unsigned long);
170 	long stackdata;
171 	int i;
172 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
173 
174 	printk("Stack :");
175 	i = 0;
176 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
177 		if (i && ((i % (64 / field)) == 0)) {
178 			pr_cont("\n");
179 			printk("       ");
180 		}
181 		if (i > 39) {
182 			pr_cont(" ...");
183 			break;
184 		}
185 
186 		if (__get_user(stackdata, sp++)) {
187 			pr_cont(" (Bad stack address)");
188 			break;
189 		}
190 
191 		pr_cont(" %0*lx", field, stackdata);
192 		i++;
193 	}
194 	pr_cont("\n");
195 	show_backtrace(task, regs);
196 }
197 
show_stack(struct task_struct * task,unsigned long * sp)198 void show_stack(struct task_struct *task, unsigned long *sp)
199 {
200 	struct pt_regs regs;
201 	mm_segment_t old_fs = get_fs();
202 
203 	regs.cp0_status = KSU_KERNEL;
204 	if (sp) {
205 		regs.regs[29] = (unsigned long)sp;
206 		regs.regs[31] = 0;
207 		regs.cp0_epc = 0;
208 	} else {
209 		if (task && task != current) {
210 			regs.regs[29] = task->thread.reg29;
211 			regs.regs[31] = 0;
212 			regs.cp0_epc = task->thread.reg31;
213 #ifdef CONFIG_KGDB_KDB
214 		} else if (atomic_read(&kgdb_active) != -1 &&
215 			   kdb_current_regs) {
216 			memcpy(&regs, kdb_current_regs, sizeof(regs));
217 #endif /* CONFIG_KGDB_KDB */
218 		} else {
219 			prepare_frametrace(&regs);
220 		}
221 	}
222 	/*
223 	 * show_stack() deals exclusively with kernel mode, so be sure to access
224 	 * the stack in the kernel (not user) address space.
225 	 */
226 	set_fs(KERNEL_DS);
227 	show_stacktrace(task, &regs);
228 	set_fs(old_fs);
229 }
230 
show_code(unsigned int __user * pc)231 static void show_code(unsigned int __user *pc)
232 {
233 	long i;
234 	unsigned short __user *pc16 = NULL;
235 
236 	printk("Code:");
237 
238 	if ((unsigned long)pc & 1)
239 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
240 	for(i = -3 ; i < 6 ; i++) {
241 		unsigned int insn;
242 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
243 			pr_cont(" (Bad address in epc)\n");
244 			break;
245 		}
246 		pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
247 	}
248 	pr_cont("\n");
249 }
250 
__show_regs(const struct pt_regs * regs)251 static void __show_regs(const struct pt_regs *regs)
252 {
253 	const int field = 2 * sizeof(unsigned long);
254 	unsigned int cause = regs->cp0_cause;
255 	unsigned int exccode;
256 	int i;
257 
258 	show_regs_print_info(KERN_DEFAULT);
259 
260 	/*
261 	 * Saved main processor registers
262 	 */
263 	for (i = 0; i < 32; ) {
264 		if ((i % 4) == 0)
265 			printk("$%2d   :", i);
266 		if (i == 0)
267 			pr_cont(" %0*lx", field, 0UL);
268 		else if (i == 26 || i == 27)
269 			pr_cont(" %*s", field, "");
270 		else
271 			pr_cont(" %0*lx", field, regs->regs[i]);
272 
273 		i++;
274 		if ((i % 4) == 0)
275 			pr_cont("\n");
276 	}
277 
278 #ifdef CONFIG_CPU_HAS_SMARTMIPS
279 	printk("Acx    : %0*lx\n", field, regs->acx);
280 #endif
281 	if (MIPS_ISA_REV < 6) {
282 		printk("Hi    : %0*lx\n", field, regs->hi);
283 		printk("Lo    : %0*lx\n", field, regs->lo);
284 	}
285 
286 	/*
287 	 * Saved cp0 registers
288 	 */
289 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
290 	       (void *) regs->cp0_epc);
291 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
292 	       (void *) regs->regs[31]);
293 
294 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
295 
296 	if (cpu_has_3kex) {
297 		if (regs->cp0_status & ST0_KUO)
298 			pr_cont("KUo ");
299 		if (regs->cp0_status & ST0_IEO)
300 			pr_cont("IEo ");
301 		if (regs->cp0_status & ST0_KUP)
302 			pr_cont("KUp ");
303 		if (regs->cp0_status & ST0_IEP)
304 			pr_cont("IEp ");
305 		if (regs->cp0_status & ST0_KUC)
306 			pr_cont("KUc ");
307 		if (regs->cp0_status & ST0_IEC)
308 			pr_cont("IEc ");
309 	} else if (cpu_has_4kex) {
310 		if (regs->cp0_status & ST0_KX)
311 			pr_cont("KX ");
312 		if (regs->cp0_status & ST0_SX)
313 			pr_cont("SX ");
314 		if (regs->cp0_status & ST0_UX)
315 			pr_cont("UX ");
316 		switch (regs->cp0_status & ST0_KSU) {
317 		case KSU_USER:
318 			pr_cont("USER ");
319 			break;
320 		case KSU_SUPERVISOR:
321 			pr_cont("SUPERVISOR ");
322 			break;
323 		case KSU_KERNEL:
324 			pr_cont("KERNEL ");
325 			break;
326 		default:
327 			pr_cont("BAD_MODE ");
328 			break;
329 		}
330 		if (regs->cp0_status & ST0_ERL)
331 			pr_cont("ERL ");
332 		if (regs->cp0_status & ST0_EXL)
333 			pr_cont("EXL ");
334 		if (regs->cp0_status & ST0_IE)
335 			pr_cont("IE ");
336 	}
337 	pr_cont("\n");
338 
339 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
340 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
341 
342 	if (1 <= exccode && exccode <= 5)
343 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
344 
345 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
346 	       cpu_name_string());
347 }
348 
349 /*
350  * FIXME: really the generic show_regs should take a const pointer argument.
351  */
show_regs(struct pt_regs * regs)352 void show_regs(struct pt_regs *regs)
353 {
354 	__show_regs(regs);
355 	dump_stack();
356 }
357 
show_registers(struct pt_regs * regs)358 void show_registers(struct pt_regs *regs)
359 {
360 	const int field = 2 * sizeof(unsigned long);
361 	mm_segment_t old_fs = get_fs();
362 
363 	__show_regs(regs);
364 	print_modules();
365 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
366 	       current->comm, current->pid, current_thread_info(), current,
367 	      field, current_thread_info()->tp_value);
368 	if (cpu_has_userlocal) {
369 		unsigned long tls;
370 
371 		tls = read_c0_userlocal();
372 		if (tls != current_thread_info()->tp_value)
373 			printk("*HwTLS: %0*lx\n", field, tls);
374 	}
375 
376 	if (!user_mode(regs))
377 		/* Necessary for getting the correct stack content */
378 		set_fs(KERNEL_DS);
379 	show_stacktrace(current, regs);
380 	show_code((unsigned int __user *) regs->cp0_epc);
381 	printk("\n");
382 	set_fs(old_fs);
383 }
384 
385 static DEFINE_RAW_SPINLOCK(die_lock);
386 
die(const char * str,struct pt_regs * regs)387 void __noreturn die(const char *str, struct pt_regs *regs)
388 {
389 	static int die_counter;
390 	int sig = SIGSEGV;
391 
392 	oops_enter();
393 
394 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
395 		       SIGSEGV) == NOTIFY_STOP)
396 		sig = 0;
397 
398 	console_verbose();
399 	raw_spin_lock_irq(&die_lock);
400 	bust_spinlocks(1);
401 
402 	printk("%s[#%d]:\n", str, ++die_counter);
403 	show_registers(regs);
404 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
405 	raw_spin_unlock_irq(&die_lock);
406 
407 	oops_exit();
408 
409 	if (in_interrupt())
410 		panic("Fatal exception in interrupt");
411 
412 	if (panic_on_oops)
413 		panic("Fatal exception");
414 
415 	if (regs && kexec_should_crash(current))
416 		crash_kexec(regs);
417 
418 	make_task_dead(sig);
419 }
420 
421 extern struct exception_table_entry __start___dbe_table[];
422 extern struct exception_table_entry __stop___dbe_table[];
423 
424 __asm__(
425 "	.section	__dbe_table, \"a\"\n"
426 "	.previous			\n");
427 
428 /* Given an address, look for it in the exception tables. */
search_dbe_tables(unsigned long addr)429 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
430 {
431 	const struct exception_table_entry *e;
432 
433 	e = search_extable(__start___dbe_table,
434 			   __stop___dbe_table - __start___dbe_table, addr);
435 	if (!e)
436 		e = search_module_dbetables(addr);
437 	return e;
438 }
439 
do_be(struct pt_regs * regs)440 asmlinkage void do_be(struct pt_regs *regs)
441 {
442 	const int field = 2 * sizeof(unsigned long);
443 	const struct exception_table_entry *fixup = NULL;
444 	int data = regs->cp0_cause & 4;
445 	int action = MIPS_BE_FATAL;
446 	enum ctx_state prev_state;
447 
448 	prev_state = exception_enter();
449 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
450 	if (data && !user_mode(regs))
451 		fixup = search_dbe_tables(exception_epc(regs));
452 
453 	if (fixup)
454 		action = MIPS_BE_FIXUP;
455 
456 	if (board_be_handler)
457 		action = board_be_handler(regs, fixup != NULL);
458 	else
459 		mips_cm_error_report();
460 
461 	switch (action) {
462 	case MIPS_BE_DISCARD:
463 		goto out;
464 	case MIPS_BE_FIXUP:
465 		if (fixup) {
466 			regs->cp0_epc = fixup->nextinsn;
467 			goto out;
468 		}
469 		break;
470 	default:
471 		break;
472 	}
473 
474 	/*
475 	 * Assume it would be too dangerous to continue ...
476 	 */
477 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
478 	       data ? "Data" : "Instruction",
479 	       field, regs->cp0_epc, field, regs->regs[31]);
480 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
481 		       SIGBUS) == NOTIFY_STOP)
482 		goto out;
483 
484 	die_if_kernel("Oops", regs);
485 	force_sig(SIGBUS);
486 
487 out:
488 	exception_exit(prev_state);
489 }
490 
491 /*
492  * ll/sc, rdhwr, sync emulation
493  */
494 
495 #define OPCODE 0xfc000000
496 #define BASE   0x03e00000
497 #define RT     0x001f0000
498 #define OFFSET 0x0000ffff
499 #define LL     0xc0000000
500 #define SC     0xe0000000
501 #define SPEC0  0x00000000
502 #define SPEC3  0x7c000000
503 #define RD     0x0000f800
504 #define FUNC   0x0000003f
505 #define SYNC   0x0000000f
506 #define RDHWR  0x0000003b
507 
508 /*  microMIPS definitions   */
509 #define MM_POOL32A_FUNC 0xfc00ffff
510 #define MM_RDHWR        0x00006b3c
511 #define MM_RS           0x001f0000
512 #define MM_RT           0x03e00000
513 
514 /*
515  * The ll_bit is cleared by r*_switch.S
516  */
517 
518 unsigned int ll_bit;
519 struct task_struct *ll_task;
520 
simulate_ll(struct pt_regs * regs,unsigned int opcode)521 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
522 {
523 	unsigned long value, __user *vaddr;
524 	long offset;
525 
526 	/*
527 	 * analyse the ll instruction that just caused a ri exception
528 	 * and put the referenced address to addr.
529 	 */
530 
531 	/* sign extend offset */
532 	offset = opcode & OFFSET;
533 	offset <<= 16;
534 	offset >>= 16;
535 
536 	vaddr = (unsigned long __user *)
537 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
538 
539 	if ((unsigned long)vaddr & 3)
540 		return SIGBUS;
541 	if (get_user(value, vaddr))
542 		return SIGSEGV;
543 
544 	preempt_disable();
545 
546 	if (ll_task == NULL || ll_task == current) {
547 		ll_bit = 1;
548 	} else {
549 		ll_bit = 0;
550 	}
551 	ll_task = current;
552 
553 	preempt_enable();
554 
555 	regs->regs[(opcode & RT) >> 16] = value;
556 
557 	return 0;
558 }
559 
simulate_sc(struct pt_regs * regs,unsigned int opcode)560 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
561 {
562 	unsigned long __user *vaddr;
563 	unsigned long reg;
564 	long offset;
565 
566 	/*
567 	 * analyse the sc instruction that just caused a ri exception
568 	 * and put the referenced address to addr.
569 	 */
570 
571 	/* sign extend offset */
572 	offset = opcode & OFFSET;
573 	offset <<= 16;
574 	offset >>= 16;
575 
576 	vaddr = (unsigned long __user *)
577 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
578 	reg = (opcode & RT) >> 16;
579 
580 	if ((unsigned long)vaddr & 3)
581 		return SIGBUS;
582 
583 	preempt_disable();
584 
585 	if (ll_bit == 0 || ll_task != current) {
586 		regs->regs[reg] = 0;
587 		preempt_enable();
588 		return 0;
589 	}
590 
591 	preempt_enable();
592 
593 	if (put_user(regs->regs[reg], vaddr))
594 		return SIGSEGV;
595 
596 	regs->regs[reg] = 1;
597 
598 	return 0;
599 }
600 
601 /*
602  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
603  * opcodes are supposed to result in coprocessor unusable exceptions if
604  * executed on ll/sc-less processors.  That's the theory.  In practice a
605  * few processors such as NEC's VR4100 throw reserved instruction exceptions
606  * instead, so we're doing the emulation thing in both exception handlers.
607  */
simulate_llsc(struct pt_regs * regs,unsigned int opcode)608 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
609 {
610 	if ((opcode & OPCODE) == LL) {
611 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
612 				1, regs, 0);
613 		return simulate_ll(regs, opcode);
614 	}
615 	if ((opcode & OPCODE) == SC) {
616 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
617 				1, regs, 0);
618 		return simulate_sc(regs, opcode);
619 	}
620 
621 	return -1;			/* Must be something else ... */
622 }
623 
624 /*
625  * Simulate trapping 'rdhwr' instructions to provide user accessible
626  * registers not implemented in hardware.
627  */
simulate_rdhwr(struct pt_regs * regs,int rd,int rt)628 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
629 {
630 	struct thread_info *ti = task_thread_info(current);
631 
632 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
633 			1, regs, 0);
634 	switch (rd) {
635 	case MIPS_HWR_CPUNUM:		/* CPU number */
636 		regs->regs[rt] = smp_processor_id();
637 		return 0;
638 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
639 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
640 				     current_cpu_data.icache.linesz);
641 		return 0;
642 	case MIPS_HWR_CC:		/* Read count register */
643 		regs->regs[rt] = read_c0_count();
644 		return 0;
645 	case MIPS_HWR_CCRES:		/* Count register resolution */
646 		switch (current_cpu_type()) {
647 		case CPU_20KC:
648 		case CPU_25KF:
649 			regs->regs[rt] = 1;
650 			break;
651 		default:
652 			regs->regs[rt] = 2;
653 		}
654 		return 0;
655 	case MIPS_HWR_ULR:		/* Read UserLocal register */
656 		regs->regs[rt] = ti->tp_value;
657 		return 0;
658 	default:
659 		return -1;
660 	}
661 }
662 
simulate_rdhwr_normal(struct pt_regs * regs,unsigned int opcode)663 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
664 {
665 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
666 		int rd = (opcode & RD) >> 11;
667 		int rt = (opcode & RT) >> 16;
668 
669 		simulate_rdhwr(regs, rd, rt);
670 		return 0;
671 	}
672 
673 	/* Not ours.  */
674 	return -1;
675 }
676 
simulate_rdhwr_mm(struct pt_regs * regs,unsigned int opcode)677 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
678 {
679 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
680 		int rd = (opcode & MM_RS) >> 16;
681 		int rt = (opcode & MM_RT) >> 21;
682 		simulate_rdhwr(regs, rd, rt);
683 		return 0;
684 	}
685 
686 	/* Not ours.  */
687 	return -1;
688 }
689 
simulate_sync(struct pt_regs * regs,unsigned int opcode)690 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
691 {
692 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
693 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
694 				1, regs, 0);
695 		return 0;
696 	}
697 
698 	return -1;			/* Must be something else ... */
699 }
700 
do_ov(struct pt_regs * regs)701 asmlinkage void do_ov(struct pt_regs *regs)
702 {
703 	enum ctx_state prev_state;
704 
705 	prev_state = exception_enter();
706 	die_if_kernel("Integer overflow", regs);
707 
708 	force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
709 	exception_exit(prev_state);
710 }
711 
712 #ifdef CONFIG_MIPS_FP_SUPPORT
713 
714 /*
715  * Send SIGFPE according to FCSR Cause bits, which must have already
716  * been masked against Enable bits.  This is impotant as Inexact can
717  * happen together with Overflow or Underflow, and `ptrace' can set
718  * any bits.
719  */
force_fcr31_sig(unsigned long fcr31,void __user * fault_addr,struct task_struct * tsk)720 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
721 		     struct task_struct *tsk)
722 {
723 	int si_code = FPE_FLTUNK;
724 
725 	if (fcr31 & FPU_CSR_INV_X)
726 		si_code = FPE_FLTINV;
727 	else if (fcr31 & FPU_CSR_DIV_X)
728 		si_code = FPE_FLTDIV;
729 	else if (fcr31 & FPU_CSR_OVF_X)
730 		si_code = FPE_FLTOVF;
731 	else if (fcr31 & FPU_CSR_UDF_X)
732 		si_code = FPE_FLTUND;
733 	else if (fcr31 & FPU_CSR_INE_X)
734 		si_code = FPE_FLTRES;
735 
736 	force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
737 }
738 
process_fpemu_return(int sig,void __user * fault_addr,unsigned long fcr31)739 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
740 {
741 	int si_code;
742 	struct vm_area_struct *vma;
743 
744 	switch (sig) {
745 	case 0:
746 		return 0;
747 
748 	case SIGFPE:
749 		force_fcr31_sig(fcr31, fault_addr, current);
750 		return 1;
751 
752 	case SIGBUS:
753 		force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
754 		return 1;
755 
756 	case SIGSEGV:
757 		down_read(&current->mm->mmap_sem);
758 		vma = find_vma(current->mm, (unsigned long)fault_addr);
759 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
760 			si_code = SEGV_ACCERR;
761 		else
762 			si_code = SEGV_MAPERR;
763 		up_read(&current->mm->mmap_sem);
764 		force_sig_fault(SIGSEGV, si_code, fault_addr);
765 		return 1;
766 
767 	default:
768 		force_sig(sig);
769 		return 1;
770 	}
771 }
772 
simulate_fp(struct pt_regs * regs,unsigned int opcode,unsigned long old_epc,unsigned long old_ra)773 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
774 		       unsigned long old_epc, unsigned long old_ra)
775 {
776 	union mips_instruction inst = { .word = opcode };
777 	void __user *fault_addr;
778 	unsigned long fcr31;
779 	int sig;
780 
781 	/* If it's obviously not an FP instruction, skip it */
782 	switch (inst.i_format.opcode) {
783 	case cop1_op:
784 	case cop1x_op:
785 	case lwc1_op:
786 	case ldc1_op:
787 	case swc1_op:
788 	case sdc1_op:
789 		break;
790 
791 	default:
792 		return -1;
793 	}
794 
795 	/*
796 	 * do_ri skipped over the instruction via compute_return_epc, undo
797 	 * that for the FPU emulator.
798 	 */
799 	regs->cp0_epc = old_epc;
800 	regs->regs[31] = old_ra;
801 
802 	/* Run the emulator */
803 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
804 				       &fault_addr);
805 
806 	/*
807 	 * We can't allow the emulated instruction to leave any
808 	 * enabled Cause bits set in $fcr31.
809 	 */
810 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
811 	current->thread.fpu.fcr31 &= ~fcr31;
812 
813 	/* Restore the hardware register state */
814 	own_fpu(1);
815 
816 	/* Send a signal if required.  */
817 	process_fpemu_return(sig, fault_addr, fcr31);
818 
819 	return 0;
820 }
821 
822 /*
823  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
824  */
do_fpe(struct pt_regs * regs,unsigned long fcr31)825 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
826 {
827 	enum ctx_state prev_state;
828 	void __user *fault_addr;
829 	int sig;
830 
831 	prev_state = exception_enter();
832 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
833 		       SIGFPE) == NOTIFY_STOP)
834 		goto out;
835 
836 	/* Clear FCSR.Cause before enabling interrupts */
837 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
838 	local_irq_enable();
839 
840 	die_if_kernel("FP exception in kernel code", regs);
841 
842 	if (fcr31 & FPU_CSR_UNI_X) {
843 		/*
844 		 * Unimplemented operation exception.  If we've got the full
845 		 * software emulator on-board, let's use it...
846 		 *
847 		 * Force FPU to dump state into task/thread context.  We're
848 		 * moving a lot of data here for what is probably a single
849 		 * instruction, but the alternative is to pre-decode the FP
850 		 * register operands before invoking the emulator, which seems
851 		 * a bit extreme for what should be an infrequent event.
852 		 */
853 
854 		/* Run the emulator */
855 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
856 					       &fault_addr);
857 
858 		/*
859 		 * We can't allow the emulated instruction to leave any
860 		 * enabled Cause bits set in $fcr31.
861 		 */
862 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
863 		current->thread.fpu.fcr31 &= ~fcr31;
864 
865 		/* Restore the hardware register state */
866 		own_fpu(1);	/* Using the FPU again.	 */
867 	} else {
868 		sig = SIGFPE;
869 		fault_addr = (void __user *) regs->cp0_epc;
870 	}
871 
872 	/* Send a signal if required.  */
873 	process_fpemu_return(sig, fault_addr, fcr31);
874 
875 out:
876 	exception_exit(prev_state);
877 }
878 
879 /*
880  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
881  * emulated more than some threshold number of instructions, force migration to
882  * a "CPU" that has FP support.
883  */
mt_ase_fp_affinity(void)884 static void mt_ase_fp_affinity(void)
885 {
886 #ifdef CONFIG_MIPS_MT_FPAFF
887 	if (mt_fpemul_threshold > 0 &&
888 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
889 		/*
890 		 * If there's no FPU present, or if the application has already
891 		 * restricted the allowed set to exclude any CPUs with FPUs,
892 		 * we'll skip the procedure.
893 		 */
894 		if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) {
895 			cpumask_t tmask;
896 
897 			current->thread.user_cpus_allowed
898 				= current->cpus_mask;
899 			cpumask_and(&tmask, &current->cpus_mask,
900 				    &mt_fpu_cpumask);
901 			set_cpus_allowed_ptr(current, &tmask);
902 			set_thread_flag(TIF_FPUBOUND);
903 		}
904 	}
905 #endif /* CONFIG_MIPS_MT_FPAFF */
906 }
907 
908 #else /* !CONFIG_MIPS_FP_SUPPORT */
909 
simulate_fp(struct pt_regs * regs,unsigned int opcode,unsigned long old_epc,unsigned long old_ra)910 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
911 		       unsigned long old_epc, unsigned long old_ra)
912 {
913 	return -1;
914 }
915 
916 #endif /* !CONFIG_MIPS_FP_SUPPORT */
917 
do_trap_or_bp(struct pt_regs * regs,unsigned int code,int si_code,const char * str)918 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
919 	const char *str)
920 {
921 	char b[40];
922 
923 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
924 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
925 			 SIGTRAP) == NOTIFY_STOP)
926 		return;
927 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
928 
929 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
930 		       SIGTRAP) == NOTIFY_STOP)
931 		return;
932 
933 	/*
934 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
935 	 * insns, even for trap and break codes that indicate arithmetic
936 	 * failures.  Weird ...
937 	 * But should we continue the brokenness???  --macro
938 	 */
939 	switch (code) {
940 	case BRK_OVERFLOW:
941 	case BRK_DIVZERO:
942 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
943 		die_if_kernel(b, regs);
944 		force_sig_fault(SIGFPE,
945 				code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
946 				(void __user *) regs->cp0_epc);
947 		break;
948 	case BRK_BUG:
949 		die_if_kernel("Kernel bug detected", regs);
950 		force_sig(SIGTRAP);
951 		break;
952 	case BRK_MEMU:
953 		/*
954 		 * This breakpoint code is used by the FPU emulator to retake
955 		 * control of the CPU after executing the instruction from the
956 		 * delay slot of an emulated branch.
957 		 *
958 		 * Terminate if exception was recognized as a delay slot return
959 		 * otherwise handle as normal.
960 		 */
961 		if (do_dsemulret(regs))
962 			return;
963 
964 		die_if_kernel("Math emu break/trap", regs);
965 		force_sig(SIGTRAP);
966 		break;
967 	default:
968 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
969 		die_if_kernel(b, regs);
970 		if (si_code) {
971 			force_sig_fault(SIGTRAP, si_code, NULL);
972 		} else {
973 			force_sig(SIGTRAP);
974 		}
975 	}
976 }
977 
do_bp(struct pt_regs * regs)978 asmlinkage void do_bp(struct pt_regs *regs)
979 {
980 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
981 	unsigned int opcode, bcode;
982 	enum ctx_state prev_state;
983 	mm_segment_t seg;
984 
985 	seg = get_fs();
986 	if (!user_mode(regs))
987 		set_fs(KERNEL_DS);
988 
989 	prev_state = exception_enter();
990 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
991 	if (get_isa16_mode(regs->cp0_epc)) {
992 		u16 instr[2];
993 
994 		if (__get_user(instr[0], (u16 __user *)epc))
995 			goto out_sigsegv;
996 
997 		if (!cpu_has_mmips) {
998 			/* MIPS16e mode */
999 			bcode = (instr[0] >> 5) & 0x3f;
1000 		} else if (mm_insn_16bit(instr[0])) {
1001 			/* 16-bit microMIPS BREAK */
1002 			bcode = instr[0] & 0xf;
1003 		} else {
1004 			/* 32-bit microMIPS BREAK */
1005 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
1006 				goto out_sigsegv;
1007 			opcode = (instr[0] << 16) | instr[1];
1008 			bcode = (opcode >> 6) & ((1 << 20) - 1);
1009 		}
1010 	} else {
1011 		if (__get_user(opcode, (unsigned int __user *)epc))
1012 			goto out_sigsegv;
1013 		bcode = (opcode >> 6) & ((1 << 20) - 1);
1014 	}
1015 
1016 	/*
1017 	 * There is the ancient bug in the MIPS assemblers that the break
1018 	 * code starts left to bit 16 instead to bit 6 in the opcode.
1019 	 * Gas is bug-compatible, but not always, grrr...
1020 	 * We handle both cases with a simple heuristics.  --macro
1021 	 */
1022 	if (bcode >= (1 << 10))
1023 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1024 
1025 	/*
1026 	 * notify the kprobe handlers, if instruction is likely to
1027 	 * pertain to them.
1028 	 */
1029 	switch (bcode) {
1030 	case BRK_UPROBE:
1031 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1032 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1033 			goto out;
1034 		else
1035 			break;
1036 	case BRK_UPROBE_XOL:
1037 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1038 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1039 			goto out;
1040 		else
1041 			break;
1042 	case BRK_KPROBE_BP:
1043 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1044 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1045 			goto out;
1046 		else
1047 			break;
1048 	case BRK_KPROBE_SSTEPBP:
1049 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1050 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1051 			goto out;
1052 		else
1053 			break;
1054 	default:
1055 		break;
1056 	}
1057 
1058 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1059 
1060 out:
1061 	set_fs(seg);
1062 	exception_exit(prev_state);
1063 	return;
1064 
1065 out_sigsegv:
1066 	force_sig(SIGSEGV);
1067 	goto out;
1068 }
1069 
do_tr(struct pt_regs * regs)1070 asmlinkage void do_tr(struct pt_regs *regs)
1071 {
1072 	u32 opcode, tcode = 0;
1073 	enum ctx_state prev_state;
1074 	u16 instr[2];
1075 	mm_segment_t seg;
1076 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1077 
1078 	seg = get_fs();
1079 	if (!user_mode(regs))
1080 		set_fs(KERNEL_DS);
1081 
1082 	prev_state = exception_enter();
1083 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1084 	if (get_isa16_mode(regs->cp0_epc)) {
1085 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1086 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1087 			goto out_sigsegv;
1088 		opcode = (instr[0] << 16) | instr[1];
1089 		/* Immediate versions don't provide a code.  */
1090 		if (!(opcode & OPCODE))
1091 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1092 	} else {
1093 		if (__get_user(opcode, (u32 __user *)epc))
1094 			goto out_sigsegv;
1095 		/* Immediate versions don't provide a code.  */
1096 		if (!(opcode & OPCODE))
1097 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1098 	}
1099 
1100 	do_trap_or_bp(regs, tcode, 0, "Trap");
1101 
1102 out:
1103 	set_fs(seg);
1104 	exception_exit(prev_state);
1105 	return;
1106 
1107 out_sigsegv:
1108 	force_sig(SIGSEGV);
1109 	goto out;
1110 }
1111 
do_ri(struct pt_regs * regs)1112 asmlinkage void do_ri(struct pt_regs *regs)
1113 {
1114 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1115 	unsigned long old_epc = regs->cp0_epc;
1116 	unsigned long old31 = regs->regs[31];
1117 	enum ctx_state prev_state;
1118 	unsigned int opcode = 0;
1119 	int status = -1;
1120 
1121 	/*
1122 	 * Avoid any kernel code. Just emulate the R2 instruction
1123 	 * as quickly as possible.
1124 	 */
1125 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1126 	    likely(user_mode(regs)) &&
1127 	    likely(get_user(opcode, epc) >= 0)) {
1128 		unsigned long fcr31 = 0;
1129 
1130 		status = mipsr2_decoder(regs, opcode, &fcr31);
1131 		switch (status) {
1132 		case 0:
1133 		case SIGEMT:
1134 			return;
1135 		case SIGILL:
1136 			goto no_r2_instr;
1137 		default:
1138 			process_fpemu_return(status,
1139 					     &current->thread.cp0_baduaddr,
1140 					     fcr31);
1141 			return;
1142 		}
1143 	}
1144 
1145 no_r2_instr:
1146 
1147 	prev_state = exception_enter();
1148 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1149 
1150 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1151 		       SIGILL) == NOTIFY_STOP)
1152 		goto out;
1153 
1154 	die_if_kernel("Reserved instruction in kernel code", regs);
1155 
1156 	if (unlikely(compute_return_epc(regs) < 0))
1157 		goto out;
1158 
1159 	if (!get_isa16_mode(regs->cp0_epc)) {
1160 		if (unlikely(get_user(opcode, epc) < 0))
1161 			status = SIGSEGV;
1162 
1163 		if (!cpu_has_llsc && status < 0)
1164 			status = simulate_llsc(regs, opcode);
1165 
1166 		if (status < 0)
1167 			status = simulate_rdhwr_normal(regs, opcode);
1168 
1169 		if (status < 0)
1170 			status = simulate_sync(regs, opcode);
1171 
1172 		if (status < 0)
1173 			status = simulate_fp(regs, opcode, old_epc, old31);
1174 	} else if (cpu_has_mmips) {
1175 		unsigned short mmop[2] = { 0 };
1176 
1177 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1178 			status = SIGSEGV;
1179 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1180 			status = SIGSEGV;
1181 		opcode = mmop[0];
1182 		opcode = (opcode << 16) | mmop[1];
1183 
1184 		if (status < 0)
1185 			status = simulate_rdhwr_mm(regs, opcode);
1186 	}
1187 
1188 	if (status < 0)
1189 		status = SIGILL;
1190 
1191 	if (unlikely(status > 0)) {
1192 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1193 		regs->regs[31] = old31;
1194 		force_sig(status);
1195 	}
1196 
1197 out:
1198 	exception_exit(prev_state);
1199 }
1200 
1201 /*
1202  * No lock; only written during early bootup by CPU 0.
1203  */
1204 static RAW_NOTIFIER_HEAD(cu2_chain);
1205 
register_cu2_notifier(struct notifier_block * nb)1206 int __ref register_cu2_notifier(struct notifier_block *nb)
1207 {
1208 	return raw_notifier_chain_register(&cu2_chain, nb);
1209 }
1210 
cu2_notifier_call_chain(unsigned long val,void * v)1211 int cu2_notifier_call_chain(unsigned long val, void *v)
1212 {
1213 	return raw_notifier_call_chain(&cu2_chain, val, v);
1214 }
1215 
default_cu2_call(struct notifier_block * nfb,unsigned long action,void * data)1216 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1217 	void *data)
1218 {
1219 	struct pt_regs *regs = data;
1220 
1221 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1222 			      "instruction", regs);
1223 	force_sig(SIGILL);
1224 
1225 	return NOTIFY_OK;
1226 }
1227 
1228 #ifdef CONFIG_MIPS_FP_SUPPORT
1229 
enable_restore_fp_context(int msa)1230 static int enable_restore_fp_context(int msa)
1231 {
1232 	int err, was_fpu_owner, prior_msa;
1233 	bool first_fp;
1234 
1235 	/* Initialize context if it hasn't been used already */
1236 	first_fp = init_fp_ctx(current);
1237 
1238 	if (first_fp) {
1239 		preempt_disable();
1240 		err = own_fpu_inatomic(1);
1241 		if (msa && !err) {
1242 			enable_msa();
1243 			/*
1244 			 * with MSA enabled, userspace can see MSACSR
1245 			 * and MSA regs, but the values in them are from
1246 			 * other task before current task, restore them
1247 			 * from saved fp/msa context
1248 			 */
1249 			write_msa_csr(current->thread.fpu.msacsr);
1250 			/*
1251 			 * own_fpu_inatomic(1) just restore low 64bit,
1252 			 * fix the high 64bit
1253 			 */
1254 			init_msa_upper();
1255 			set_thread_flag(TIF_USEDMSA);
1256 			set_thread_flag(TIF_MSA_CTX_LIVE);
1257 		}
1258 		preempt_enable();
1259 		return err;
1260 	}
1261 
1262 	/*
1263 	 * This task has formerly used the FP context.
1264 	 *
1265 	 * If this thread has no live MSA vector context then we can simply
1266 	 * restore the scalar FP context. If it has live MSA vector context
1267 	 * (that is, it has or may have used MSA since last performing a
1268 	 * function call) then we'll need to restore the vector context. This
1269 	 * applies even if we're currently only executing a scalar FP
1270 	 * instruction. This is because if we were to later execute an MSA
1271 	 * instruction then we'd either have to:
1272 	 *
1273 	 *  - Restore the vector context & clobber any registers modified by
1274 	 *    scalar FP instructions between now & then.
1275 	 *
1276 	 * or
1277 	 *
1278 	 *  - Not restore the vector context & lose the most significant bits
1279 	 *    of all vector registers.
1280 	 *
1281 	 * Neither of those options is acceptable. We cannot restore the least
1282 	 * significant bits of the registers now & only restore the most
1283 	 * significant bits later because the most significant bits of any
1284 	 * vector registers whose aliased FP register is modified now will have
1285 	 * been zeroed. We'd have no way to know that when restoring the vector
1286 	 * context & thus may load an outdated value for the most significant
1287 	 * bits of a vector register.
1288 	 */
1289 	if (!msa && !thread_msa_context_live())
1290 		return own_fpu(1);
1291 
1292 	/*
1293 	 * This task is using or has previously used MSA. Thus we require
1294 	 * that Status.FR == 1.
1295 	 */
1296 	preempt_disable();
1297 	was_fpu_owner = is_fpu_owner();
1298 	err = own_fpu_inatomic(0);
1299 	if (err)
1300 		goto out;
1301 
1302 	enable_msa();
1303 	write_msa_csr(current->thread.fpu.msacsr);
1304 	set_thread_flag(TIF_USEDMSA);
1305 
1306 	/*
1307 	 * If this is the first time that the task is using MSA and it has
1308 	 * previously used scalar FP in this time slice then we already nave
1309 	 * FP context which we shouldn't clobber. We do however need to clear
1310 	 * the upper 64b of each vector register so that this task has no
1311 	 * opportunity to see data left behind by another.
1312 	 */
1313 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1314 	if (!prior_msa && was_fpu_owner) {
1315 		init_msa_upper();
1316 
1317 		goto out;
1318 	}
1319 
1320 	if (!prior_msa) {
1321 		/*
1322 		 * Restore the least significant 64b of each vector register
1323 		 * from the existing scalar FP context.
1324 		 */
1325 		_restore_fp(current);
1326 
1327 		/*
1328 		 * The task has not formerly used MSA, so clear the upper 64b
1329 		 * of each vector register such that it cannot see data left
1330 		 * behind by another task.
1331 		 */
1332 		init_msa_upper();
1333 	} else {
1334 		/* We need to restore the vector context. */
1335 		restore_msa(current);
1336 
1337 		/* Restore the scalar FP control & status register */
1338 		if (!was_fpu_owner)
1339 			write_32bit_cp1_register(CP1_STATUS,
1340 						 current->thread.fpu.fcr31);
1341 	}
1342 
1343 out:
1344 	preempt_enable();
1345 
1346 	return 0;
1347 }
1348 
1349 #else /* !CONFIG_MIPS_FP_SUPPORT */
1350 
enable_restore_fp_context(int msa)1351 static int enable_restore_fp_context(int msa)
1352 {
1353 	return SIGILL;
1354 }
1355 
1356 #endif /* CONFIG_MIPS_FP_SUPPORT */
1357 
do_cpu(struct pt_regs * regs)1358 asmlinkage void do_cpu(struct pt_regs *regs)
1359 {
1360 	enum ctx_state prev_state;
1361 	unsigned int __user *epc;
1362 	unsigned long old_epc, old31;
1363 	unsigned int opcode;
1364 	unsigned int cpid;
1365 	int status;
1366 
1367 	prev_state = exception_enter();
1368 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1369 
1370 	if (cpid != 2)
1371 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1372 
1373 	switch (cpid) {
1374 	case 0:
1375 		epc = (unsigned int __user *)exception_epc(regs);
1376 		old_epc = regs->cp0_epc;
1377 		old31 = regs->regs[31];
1378 		opcode = 0;
1379 		status = -1;
1380 
1381 		if (unlikely(compute_return_epc(regs) < 0))
1382 			break;
1383 
1384 		if (!get_isa16_mode(regs->cp0_epc)) {
1385 			if (unlikely(get_user(opcode, epc) < 0))
1386 				status = SIGSEGV;
1387 
1388 			if (!cpu_has_llsc && status < 0)
1389 				status = simulate_llsc(regs, opcode);
1390 		}
1391 
1392 		if (status < 0)
1393 			status = SIGILL;
1394 
1395 		if (unlikely(status > 0)) {
1396 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1397 			regs->regs[31] = old31;
1398 			force_sig(status);
1399 		}
1400 
1401 		break;
1402 
1403 #ifdef CONFIG_MIPS_FP_SUPPORT
1404 	case 3:
1405 		/*
1406 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1407 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1408 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1409 		 * up the space has been reused for COP1X instructions, that
1410 		 * are enabled by the CP0.Status.CU1 bit and consequently
1411 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1412 		 * exceptions.  Some FPU-less processors that implement one
1413 		 * of these ISAs however use this code erroneously for COP1X
1414 		 * instructions.  Therefore we redirect this trap to the FP
1415 		 * emulator too.
1416 		 */
1417 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1418 			force_sig(SIGILL);
1419 			break;
1420 		}
1421 		/* Fall through.  */
1422 
1423 	case 1: {
1424 		void __user *fault_addr;
1425 		unsigned long fcr31;
1426 		int err, sig;
1427 
1428 		err = enable_restore_fp_context(0);
1429 
1430 		if (raw_cpu_has_fpu && !err)
1431 			break;
1432 
1433 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1434 					       &fault_addr);
1435 
1436 		/*
1437 		 * We can't allow the emulated instruction to leave
1438 		 * any enabled Cause bits set in $fcr31.
1439 		 */
1440 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1441 		current->thread.fpu.fcr31 &= ~fcr31;
1442 
1443 		/* Send a signal if required.  */
1444 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1445 			mt_ase_fp_affinity();
1446 
1447 		break;
1448 	}
1449 #else /* CONFIG_MIPS_FP_SUPPORT */
1450 	case 1:
1451 	case 3:
1452 		force_sig(SIGILL);
1453 		break;
1454 #endif /* CONFIG_MIPS_FP_SUPPORT */
1455 
1456 	case 2:
1457 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1458 		break;
1459 	}
1460 
1461 	exception_exit(prev_state);
1462 }
1463 
do_msa_fpe(struct pt_regs * regs,unsigned int msacsr)1464 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1465 {
1466 	enum ctx_state prev_state;
1467 
1468 	prev_state = exception_enter();
1469 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1470 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1471 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1472 		goto out;
1473 
1474 	/* Clear MSACSR.Cause before enabling interrupts */
1475 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1476 	local_irq_enable();
1477 
1478 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1479 	force_sig(SIGFPE);
1480 out:
1481 	exception_exit(prev_state);
1482 }
1483 
do_msa(struct pt_regs * regs)1484 asmlinkage void do_msa(struct pt_regs *regs)
1485 {
1486 	enum ctx_state prev_state;
1487 	int err;
1488 
1489 	prev_state = exception_enter();
1490 
1491 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1492 		force_sig(SIGILL);
1493 		goto out;
1494 	}
1495 
1496 	die_if_kernel("do_msa invoked from kernel context!", regs);
1497 
1498 	err = enable_restore_fp_context(1);
1499 	if (err)
1500 		force_sig(SIGILL);
1501 out:
1502 	exception_exit(prev_state);
1503 }
1504 
do_mdmx(struct pt_regs * regs)1505 asmlinkage void do_mdmx(struct pt_regs *regs)
1506 {
1507 	enum ctx_state prev_state;
1508 
1509 	prev_state = exception_enter();
1510 	force_sig(SIGILL);
1511 	exception_exit(prev_state);
1512 }
1513 
1514 /*
1515  * Called with interrupts disabled.
1516  */
do_watch(struct pt_regs * regs)1517 asmlinkage void do_watch(struct pt_regs *regs)
1518 {
1519 	enum ctx_state prev_state;
1520 
1521 	prev_state = exception_enter();
1522 	/*
1523 	 * Clear WP (bit 22) bit of cause register so we don't loop
1524 	 * forever.
1525 	 */
1526 	clear_c0_cause(CAUSEF_WP);
1527 
1528 	/*
1529 	 * If the current thread has the watch registers loaded, save
1530 	 * their values and send SIGTRAP.  Otherwise another thread
1531 	 * left the registers set, clear them and continue.
1532 	 */
1533 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1534 		mips_read_watch_registers();
1535 		local_irq_enable();
1536 		force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1537 	} else {
1538 		mips_clear_watch_registers();
1539 		local_irq_enable();
1540 	}
1541 	exception_exit(prev_state);
1542 }
1543 
do_mcheck(struct pt_regs * regs)1544 asmlinkage void do_mcheck(struct pt_regs *regs)
1545 {
1546 	int multi_match = regs->cp0_status & ST0_TS;
1547 	enum ctx_state prev_state;
1548 	mm_segment_t old_fs = get_fs();
1549 
1550 	prev_state = exception_enter();
1551 	show_regs(regs);
1552 
1553 	if (multi_match) {
1554 		dump_tlb_regs();
1555 		pr_info("\n");
1556 		dump_tlb_all();
1557 	}
1558 
1559 	if (!user_mode(regs))
1560 		set_fs(KERNEL_DS);
1561 
1562 	show_code((unsigned int __user *) regs->cp0_epc);
1563 
1564 	set_fs(old_fs);
1565 
1566 	/*
1567 	 * Some chips may have other causes of machine check (e.g. SB1
1568 	 * graduation timer)
1569 	 */
1570 	panic("Caught Machine Check exception - %scaused by multiple "
1571 	      "matching entries in the TLB.",
1572 	      (multi_match) ? "" : "not ");
1573 }
1574 
do_mt(struct pt_regs * regs)1575 asmlinkage void do_mt(struct pt_regs *regs)
1576 {
1577 	int subcode;
1578 
1579 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1580 			>> VPECONTROL_EXCPT_SHIFT;
1581 	switch (subcode) {
1582 	case 0:
1583 		printk(KERN_DEBUG "Thread Underflow\n");
1584 		break;
1585 	case 1:
1586 		printk(KERN_DEBUG "Thread Overflow\n");
1587 		break;
1588 	case 2:
1589 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1590 		break;
1591 	case 3:
1592 		printk(KERN_DEBUG "Gating Storage Exception\n");
1593 		break;
1594 	case 4:
1595 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1596 		break;
1597 	case 5:
1598 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1599 		break;
1600 	default:
1601 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1602 			subcode);
1603 		break;
1604 	}
1605 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1606 
1607 	force_sig(SIGILL);
1608 }
1609 
1610 
do_dsp(struct pt_regs * regs)1611 asmlinkage void do_dsp(struct pt_regs *regs)
1612 {
1613 	if (cpu_has_dsp)
1614 		panic("Unexpected DSP exception");
1615 
1616 	force_sig(SIGILL);
1617 }
1618 
do_reserved(struct pt_regs * regs)1619 asmlinkage void do_reserved(struct pt_regs *regs)
1620 {
1621 	/*
1622 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1623 	 * caused by a new unknown cpu type or after another deadly
1624 	 * hard/software error.
1625 	 */
1626 	show_regs(regs);
1627 	panic("Caught reserved exception %ld - should not happen.",
1628 	      (regs->cp0_cause & 0x7f) >> 2);
1629 }
1630 
1631 static int __initdata l1parity = 1;
nol1parity(char * s)1632 static int __init nol1parity(char *s)
1633 {
1634 	l1parity = 0;
1635 	return 1;
1636 }
1637 __setup("nol1par", nol1parity);
1638 static int __initdata l2parity = 1;
nol2parity(char * s)1639 static int __init nol2parity(char *s)
1640 {
1641 	l2parity = 0;
1642 	return 1;
1643 }
1644 __setup("nol2par", nol2parity);
1645 
1646 /*
1647  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1648  * it different ways.
1649  */
parity_protection_init(void)1650 static inline void parity_protection_init(void)
1651 {
1652 #define ERRCTL_PE	0x80000000
1653 #define ERRCTL_L2P	0x00800000
1654 
1655 	if (mips_cm_revision() >= CM_REV_CM3) {
1656 		ulong gcr_ectl, cp0_ectl;
1657 
1658 		/*
1659 		 * With CM3 systems we need to ensure that the L1 & L2
1660 		 * parity enables are set to the same value, since this
1661 		 * is presumed by the hardware engineers.
1662 		 *
1663 		 * If the user disabled either of L1 or L2 ECC checking,
1664 		 * disable both.
1665 		 */
1666 		l1parity &= l2parity;
1667 		l2parity &= l1parity;
1668 
1669 		/* Probe L1 ECC support */
1670 		cp0_ectl = read_c0_ecc();
1671 		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1672 		back_to_back_c0_hazard();
1673 		cp0_ectl = read_c0_ecc();
1674 
1675 		/* Probe L2 ECC support */
1676 		gcr_ectl = read_gcr_err_control();
1677 
1678 		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1679 		    !(cp0_ectl & ERRCTL_PE)) {
1680 			/*
1681 			 * One of L1 or L2 ECC checking isn't supported,
1682 			 * so we cannot enable either.
1683 			 */
1684 			l1parity = l2parity = 0;
1685 		}
1686 
1687 		/* Configure L1 ECC checking */
1688 		if (l1parity)
1689 			cp0_ectl |= ERRCTL_PE;
1690 		else
1691 			cp0_ectl &= ~ERRCTL_PE;
1692 		write_c0_ecc(cp0_ectl);
1693 		back_to_back_c0_hazard();
1694 		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1695 
1696 		/* Configure L2 ECC checking */
1697 		if (l2parity)
1698 			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1699 		else
1700 			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1701 		write_gcr_err_control(gcr_ectl);
1702 		gcr_ectl = read_gcr_err_control();
1703 		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1704 		WARN_ON(!!gcr_ectl != l2parity);
1705 
1706 		pr_info("Cache parity protection %sabled\n",
1707 			l1parity ? "en" : "dis");
1708 		return;
1709 	}
1710 
1711 	switch (current_cpu_type()) {
1712 	case CPU_24K:
1713 	case CPU_34K:
1714 	case CPU_74K:
1715 	case CPU_1004K:
1716 	case CPU_1074K:
1717 	case CPU_INTERAPTIV:
1718 	case CPU_PROAPTIV:
1719 	case CPU_P5600:
1720 	case CPU_QEMU_GENERIC:
1721 	case CPU_P6600:
1722 		{
1723 			unsigned long errctl;
1724 			unsigned int l1parity_present, l2parity_present;
1725 
1726 			errctl = read_c0_ecc();
1727 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1728 
1729 			/* probe L1 parity support */
1730 			write_c0_ecc(errctl | ERRCTL_PE);
1731 			back_to_back_c0_hazard();
1732 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1733 
1734 			/* probe L2 parity support */
1735 			write_c0_ecc(errctl|ERRCTL_L2P);
1736 			back_to_back_c0_hazard();
1737 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1738 
1739 			if (l1parity_present && l2parity_present) {
1740 				if (l1parity)
1741 					errctl |= ERRCTL_PE;
1742 				if (l1parity ^ l2parity)
1743 					errctl |= ERRCTL_L2P;
1744 			} else if (l1parity_present) {
1745 				if (l1parity)
1746 					errctl |= ERRCTL_PE;
1747 			} else if (l2parity_present) {
1748 				if (l2parity)
1749 					errctl |= ERRCTL_L2P;
1750 			} else {
1751 				/* No parity available */
1752 			}
1753 
1754 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1755 
1756 			write_c0_ecc(errctl);
1757 			back_to_back_c0_hazard();
1758 			errctl = read_c0_ecc();
1759 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1760 
1761 			if (l1parity_present)
1762 				printk(KERN_INFO "Cache parity protection %sabled\n",
1763 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1764 
1765 			if (l2parity_present) {
1766 				if (l1parity_present && l1parity)
1767 					errctl ^= ERRCTL_L2P;
1768 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1769 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1770 			}
1771 		}
1772 		break;
1773 
1774 	case CPU_5KC:
1775 	case CPU_5KE:
1776 	case CPU_LOONGSON1:
1777 		write_c0_ecc(0x80000000);
1778 		back_to_back_c0_hazard();
1779 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1780 		printk(KERN_INFO "Cache parity protection %sabled\n",
1781 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1782 		break;
1783 	case CPU_20KC:
1784 	case CPU_25KF:
1785 		/* Clear the DE bit (bit 16) in the c0_status register. */
1786 		printk(KERN_INFO "Enable cache parity protection for "
1787 		       "MIPS 20KC/25KF CPUs.\n");
1788 		clear_c0_status(ST0_DE);
1789 		break;
1790 	default:
1791 		break;
1792 	}
1793 }
1794 
cache_parity_error(void)1795 asmlinkage void cache_parity_error(void)
1796 {
1797 	const int field = 2 * sizeof(unsigned long);
1798 	unsigned int reg_val;
1799 
1800 	/* For the moment, report the problem and hang. */
1801 	printk("Cache error exception:\n");
1802 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1803 	reg_val = read_c0_cacheerr();
1804 	printk("c0_cacheerr == %08x\n", reg_val);
1805 
1806 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1807 	       reg_val & (1<<30) ? "secondary" : "primary",
1808 	       reg_val & (1<<31) ? "data" : "insn");
1809 	if ((cpu_has_mips_r2_r6) &&
1810 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1811 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1812 			reg_val & (1<<29) ? "ED " : "",
1813 			reg_val & (1<<28) ? "ET " : "",
1814 			reg_val & (1<<27) ? "ES " : "",
1815 			reg_val & (1<<26) ? "EE " : "",
1816 			reg_val & (1<<25) ? "EB " : "",
1817 			reg_val & (1<<24) ? "EI " : "",
1818 			reg_val & (1<<23) ? "E1 " : "",
1819 			reg_val & (1<<22) ? "E0 " : "");
1820 	} else {
1821 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1822 			reg_val & (1<<29) ? "ED " : "",
1823 			reg_val & (1<<28) ? "ET " : "",
1824 			reg_val & (1<<26) ? "EE " : "",
1825 			reg_val & (1<<25) ? "EB " : "",
1826 			reg_val & (1<<24) ? "EI " : "",
1827 			reg_val & (1<<23) ? "E1 " : "",
1828 			reg_val & (1<<22) ? "E0 " : "");
1829 	}
1830 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1831 
1832 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1833 	if (reg_val & (1<<22))
1834 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1835 
1836 	if (reg_val & (1<<23))
1837 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1838 #endif
1839 
1840 	panic("Can't handle the cache error!");
1841 }
1842 
do_ftlb(void)1843 asmlinkage void do_ftlb(void)
1844 {
1845 	const int field = 2 * sizeof(unsigned long);
1846 	unsigned int reg_val;
1847 
1848 	/* For the moment, report the problem and hang. */
1849 	if ((cpu_has_mips_r2_r6) &&
1850 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1851 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1852 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1853 		       read_c0_ecc());
1854 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1855 		reg_val = read_c0_cacheerr();
1856 		pr_err("c0_cacheerr == %08x\n", reg_val);
1857 
1858 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1859 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1860 		} else {
1861 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1862 			       reg_val & (1<<30) ? "secondary" : "primary",
1863 			       reg_val & (1<<31) ? "data" : "insn");
1864 		}
1865 	} else {
1866 		pr_err("FTLB error exception\n");
1867 	}
1868 	/* Just print the cacheerr bits for now */
1869 	cache_parity_error();
1870 }
1871 
1872 /*
1873  * SDBBP EJTAG debug exception handler.
1874  * We skip the instruction and return to the next instruction.
1875  */
ejtag_exception_handler(struct pt_regs * regs)1876 void ejtag_exception_handler(struct pt_regs *regs)
1877 {
1878 	const int field = 2 * sizeof(unsigned long);
1879 	unsigned long depc, old_epc, old_ra;
1880 	unsigned int debug;
1881 
1882 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1883 	depc = read_c0_depc();
1884 	debug = read_c0_debug();
1885 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1886 	if (debug & 0x80000000) {
1887 		/*
1888 		 * In branch delay slot.
1889 		 * We cheat a little bit here and use EPC to calculate the
1890 		 * debug return address (DEPC). EPC is restored after the
1891 		 * calculation.
1892 		 */
1893 		old_epc = regs->cp0_epc;
1894 		old_ra = regs->regs[31];
1895 		regs->cp0_epc = depc;
1896 		compute_return_epc(regs);
1897 		depc = regs->cp0_epc;
1898 		regs->cp0_epc = old_epc;
1899 		regs->regs[31] = old_ra;
1900 	} else
1901 		depc += 4;
1902 	write_c0_depc(depc);
1903 
1904 #if 0
1905 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1906 	write_c0_debug(debug | 0x100);
1907 #endif
1908 }
1909 
1910 /*
1911  * NMI exception handler.
1912  * No lock; only written during early bootup by CPU 0.
1913  */
1914 static RAW_NOTIFIER_HEAD(nmi_chain);
1915 
register_nmi_notifier(struct notifier_block * nb)1916 int register_nmi_notifier(struct notifier_block *nb)
1917 {
1918 	return raw_notifier_chain_register(&nmi_chain, nb);
1919 }
1920 
nmi_exception_handler(struct pt_regs * regs)1921 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1922 {
1923 	char str[100];
1924 
1925 	nmi_enter();
1926 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1927 	bust_spinlocks(1);
1928 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1929 		 smp_processor_id(), regs->cp0_epc);
1930 	regs->cp0_epc = read_c0_errorepc();
1931 	die(str, regs);
1932 	nmi_exit();
1933 }
1934 
1935 #define VECTORSPACING 0x100	/* for EI/VI mode */
1936 
1937 unsigned long ebase;
1938 EXPORT_SYMBOL_GPL(ebase);
1939 unsigned long exception_handlers[32];
1940 unsigned long vi_handlers[64];
1941 
set_except_vector(int n,void * addr)1942 void __init *set_except_vector(int n, void *addr)
1943 {
1944 	unsigned long handler = (unsigned long) addr;
1945 	unsigned long old_handler;
1946 
1947 #ifdef CONFIG_CPU_MICROMIPS
1948 	/*
1949 	 * Only the TLB handlers are cache aligned with an even
1950 	 * address. All other handlers are on an odd address and
1951 	 * require no modification. Otherwise, MIPS32 mode will
1952 	 * be entered when handling any TLB exceptions. That
1953 	 * would be bad...since we must stay in microMIPS mode.
1954 	 */
1955 	if (!(handler & 0x1))
1956 		handler |= 1;
1957 #endif
1958 	old_handler = xchg(&exception_handlers[n], handler);
1959 
1960 	if (n == 0 && cpu_has_divec) {
1961 #ifdef CONFIG_CPU_MICROMIPS
1962 		unsigned long jump_mask = ~((1 << 27) - 1);
1963 #else
1964 		unsigned long jump_mask = ~((1 << 28) - 1);
1965 #endif
1966 		u32 *buf = (u32 *)(ebase + 0x200);
1967 		unsigned int k0 = 26;
1968 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1969 			uasm_i_j(&buf, handler & ~jump_mask);
1970 			uasm_i_nop(&buf);
1971 		} else {
1972 			UASM_i_LA(&buf, k0, handler);
1973 			uasm_i_jr(&buf, k0);
1974 			uasm_i_nop(&buf);
1975 		}
1976 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1977 	}
1978 	return (void *)old_handler;
1979 }
1980 
do_default_vi(void)1981 static void do_default_vi(void)
1982 {
1983 	show_regs(get_irq_regs());
1984 	panic("Caught unexpected vectored interrupt.");
1985 }
1986 
set_vi_srs_handler(int n,vi_handler_t addr,int srs)1987 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1988 {
1989 	unsigned long handler;
1990 	unsigned long old_handler = vi_handlers[n];
1991 	int srssets = current_cpu_data.srsets;
1992 	u16 *h;
1993 	unsigned char *b;
1994 
1995 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1996 
1997 	if (addr == NULL) {
1998 		handler = (unsigned long) do_default_vi;
1999 		srs = 0;
2000 	} else
2001 		handler = (unsigned long) addr;
2002 	vi_handlers[n] = handler;
2003 
2004 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2005 
2006 	if (srs >= srssets)
2007 		panic("Shadow register set %d not supported", srs);
2008 
2009 	if (cpu_has_veic) {
2010 		if (board_bind_eic_interrupt)
2011 			board_bind_eic_interrupt(n, srs);
2012 	} else if (cpu_has_vint) {
2013 		/* SRSMap is only defined if shadow sets are implemented */
2014 		if (srssets > 1)
2015 			change_c0_srsmap(0xf << n*4, srs << n*4);
2016 	}
2017 
2018 	if (srs == 0) {
2019 		/*
2020 		 * If no shadow set is selected then use the default handler
2021 		 * that does normal register saving and standard interrupt exit
2022 		 */
2023 		extern const u8 except_vec_vi[], except_vec_vi_lui[];
2024 		extern const u8 except_vec_vi_ori[], except_vec_vi_end[];
2025 		extern const u8 rollback_except_vec_vi[];
2026 		const u8 *vec_start = using_rollback_handler() ?
2027 				      rollback_except_vec_vi : except_vec_vi;
2028 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2029 		const int lui_offset = except_vec_vi_lui - vec_start + 2;
2030 		const int ori_offset = except_vec_vi_ori - vec_start + 2;
2031 #else
2032 		const int lui_offset = except_vec_vi_lui - vec_start;
2033 		const int ori_offset = except_vec_vi_ori - vec_start;
2034 #endif
2035 		const int handler_len = except_vec_vi_end - vec_start;
2036 
2037 		if (handler_len > VECTORSPACING) {
2038 			/*
2039 			 * Sigh... panicing won't help as the console
2040 			 * is probably not configured :(
2041 			 */
2042 			panic("VECTORSPACING too small");
2043 		}
2044 
2045 		set_handler(((unsigned long)b - ebase), vec_start,
2046 #ifdef CONFIG_CPU_MICROMIPS
2047 				(handler_len - 1));
2048 #else
2049 				handler_len);
2050 #endif
2051 		h = (u16 *)(b + lui_offset);
2052 		*h = (handler >> 16) & 0xffff;
2053 		h = (u16 *)(b + ori_offset);
2054 		*h = (handler & 0xffff);
2055 		local_flush_icache_range((unsigned long)b,
2056 					 (unsigned long)(b+handler_len));
2057 	}
2058 	else {
2059 		/*
2060 		 * In other cases jump directly to the interrupt handler. It
2061 		 * is the handler's responsibility to save registers if required
2062 		 * (eg hi/lo) and return from the exception using "eret".
2063 		 */
2064 		u32 insn;
2065 
2066 		h = (u16 *)b;
2067 		/* j handler */
2068 #ifdef CONFIG_CPU_MICROMIPS
2069 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2070 #else
2071 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2072 #endif
2073 		h[0] = (insn >> 16) & 0xffff;
2074 		h[1] = insn & 0xffff;
2075 		h[2] = 0;
2076 		h[3] = 0;
2077 		local_flush_icache_range((unsigned long)b,
2078 					 (unsigned long)(b+8));
2079 	}
2080 
2081 	return (void *)old_handler;
2082 }
2083 
set_vi_handler(int n,vi_handler_t addr)2084 void *set_vi_handler(int n, vi_handler_t addr)
2085 {
2086 	return set_vi_srs_handler(n, addr, 0);
2087 }
2088 
2089 extern void tlb_init(void);
2090 
2091 /*
2092  * Timer interrupt
2093  */
2094 int cp0_compare_irq;
2095 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2096 int cp0_compare_irq_shift;
2097 
2098 /*
2099  * Performance counter IRQ or -1 if shared with timer
2100  */
2101 int cp0_perfcount_irq;
2102 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2103 
2104 /*
2105  * Fast debug channel IRQ or -1 if not present
2106  */
2107 int cp0_fdc_irq;
2108 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2109 
2110 static int noulri;
2111 
ulri_disable(char * s)2112 static int __init ulri_disable(char *s)
2113 {
2114 	pr_info("Disabling ulri\n");
2115 	noulri = 1;
2116 
2117 	return 1;
2118 }
2119 __setup("noulri", ulri_disable);
2120 
2121 /* configure STATUS register */
configure_status(void)2122 static void configure_status(void)
2123 {
2124 	/*
2125 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2126 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2127 	 * flag that some firmware may have left set and the TS bit (for
2128 	 * IP27).  Set XX for ISA IV code to work.
2129 	 */
2130 	unsigned int status_set = ST0_CU0;
2131 #ifdef CONFIG_64BIT
2132 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2133 #endif
2134 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2135 		status_set |= ST0_XX;
2136 	if (cpu_has_dsp)
2137 		status_set |= ST0_MX;
2138 
2139 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2140 			 status_set);
2141 	back_to_back_c0_hazard();
2142 }
2143 
2144 unsigned int hwrena;
2145 EXPORT_SYMBOL_GPL(hwrena);
2146 
2147 /* configure HWRENA register */
configure_hwrena(void)2148 static void configure_hwrena(void)
2149 {
2150 	hwrena = cpu_hwrena_impl_bits;
2151 
2152 	if (cpu_has_mips_r2_r6)
2153 		hwrena |= MIPS_HWRENA_CPUNUM |
2154 			  MIPS_HWRENA_SYNCISTEP |
2155 			  MIPS_HWRENA_CC |
2156 			  MIPS_HWRENA_CCRES;
2157 
2158 	if (!noulri && cpu_has_userlocal)
2159 		hwrena |= MIPS_HWRENA_ULR;
2160 
2161 	if (hwrena)
2162 		write_c0_hwrena(hwrena);
2163 }
2164 
configure_exception_vector(void)2165 static void configure_exception_vector(void)
2166 {
2167 	if (cpu_has_mips_r2_r6) {
2168 		unsigned long sr = set_c0_status(ST0_BEV);
2169 		/* If available, use WG to set top bits of EBASE */
2170 		if (cpu_has_ebase_wg) {
2171 #ifdef CONFIG_64BIT
2172 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2173 #else
2174 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2175 #endif
2176 		}
2177 		write_c0_ebase(ebase);
2178 		write_c0_status(sr);
2179 	}
2180 	if (cpu_has_veic || cpu_has_vint) {
2181 		/* Setting vector spacing enables EI/VI mode  */
2182 		change_c0_intctl(0x3e0, VECTORSPACING);
2183 	}
2184 	if (cpu_has_divec) {
2185 		if (cpu_has_mipsmt) {
2186 			unsigned int vpflags = dvpe();
2187 			set_c0_cause(CAUSEF_IV);
2188 			evpe(vpflags);
2189 		} else
2190 			set_c0_cause(CAUSEF_IV);
2191 	}
2192 }
2193 
per_cpu_trap_init(bool is_boot_cpu)2194 void per_cpu_trap_init(bool is_boot_cpu)
2195 {
2196 	unsigned int cpu = smp_processor_id();
2197 
2198 	configure_status();
2199 	configure_hwrena();
2200 
2201 	configure_exception_vector();
2202 
2203 	/*
2204 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2205 	 *
2206 	 *  o read IntCtl.IPTI to determine the timer interrupt
2207 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2208 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2209 	 */
2210 	if (cpu_has_mips_r2_r6) {
2211 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2212 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2213 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2214 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2215 		if (!cp0_fdc_irq)
2216 			cp0_fdc_irq = -1;
2217 
2218 	} else {
2219 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2220 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2221 		cp0_perfcount_irq = -1;
2222 		cp0_fdc_irq = -1;
2223 	}
2224 
2225 	if (cpu_has_mmid)
2226 		cpu_data[cpu].asid_cache = 0;
2227 	else if (!cpu_data[cpu].asid_cache)
2228 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2229 
2230 	mmgrab(&init_mm);
2231 	current->active_mm = &init_mm;
2232 	BUG_ON(current->mm);
2233 	enter_lazy_tlb(&init_mm, current);
2234 
2235 	/* Boot CPU's cache setup in setup_arch(). */
2236 	if (!is_boot_cpu)
2237 		cpu_cache_init();
2238 	tlb_init();
2239 	TLBMISS_HANDLER_SETUP();
2240 }
2241 
2242 /* Install CPU exception handler */
set_handler(unsigned long offset,const void * addr,unsigned long size)2243 void set_handler(unsigned long offset, const void *addr, unsigned long size)
2244 {
2245 #ifdef CONFIG_CPU_MICROMIPS
2246 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2247 #else
2248 	memcpy((void *)(ebase + offset), addr, size);
2249 #endif
2250 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2251 }
2252 
2253 static const char panic_null_cerr[] =
2254 	"Trying to set NULL cache error exception handler\n";
2255 
2256 /*
2257  * Install uncached CPU exception handler.
2258  * This is suitable only for the cache error exception which is the only
2259  * exception handler that is being run uncached.
2260  */
set_uncached_handler(unsigned long offset,void * addr,unsigned long size)2261 void set_uncached_handler(unsigned long offset, void *addr,
2262 	unsigned long size)
2263 {
2264 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2265 
2266 	if (!addr)
2267 		panic(panic_null_cerr);
2268 
2269 	memcpy((void *)(uncached_ebase + offset), addr, size);
2270 }
2271 
2272 static int __initdata rdhwr_noopt;
set_rdhwr_noopt(char * str)2273 static int __init set_rdhwr_noopt(char *str)
2274 {
2275 	rdhwr_noopt = 1;
2276 	return 1;
2277 }
2278 
2279 __setup("rdhwr_noopt", set_rdhwr_noopt);
2280 
trap_init(void)2281 void __init trap_init(void)
2282 {
2283 	extern char except_vec3_generic;
2284 	extern char except_vec4;
2285 	extern char except_vec3_r4000;
2286 	unsigned long i, vec_size;
2287 	phys_addr_t ebase_pa;
2288 
2289 	check_wait();
2290 
2291 	if (!cpu_has_mips_r2_r6) {
2292 		ebase = CAC_BASE;
2293 		ebase_pa = virt_to_phys((void *)ebase);
2294 		vec_size = 0x400;
2295 
2296 		memblock_reserve(ebase_pa, vec_size);
2297 	} else {
2298 		if (cpu_has_veic || cpu_has_vint)
2299 			vec_size = 0x200 + VECTORSPACING*64;
2300 		else
2301 			vec_size = PAGE_SIZE;
2302 
2303 		ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2304 		if (!ebase_pa)
2305 			panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2306 			      __func__, vec_size, 1 << fls(vec_size));
2307 
2308 		/*
2309 		 * Try to ensure ebase resides in KSeg0 if possible.
2310 		 *
2311 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2312 		 * hitting a poorly defined exception base for Cache Errors.
2313 		 * The allocation is likely to be in the low 512MB of physical,
2314 		 * in which case we should be able to convert to KSeg0.
2315 		 *
2316 		 * EVA is special though as it allows segments to be rearranged
2317 		 * and to become uncached during cache error handling.
2318 		 */
2319 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2320 			ebase = CKSEG0ADDR(ebase_pa);
2321 		else
2322 			ebase = (unsigned long)phys_to_virt(ebase_pa);
2323 	}
2324 
2325 	if (cpu_has_mmips) {
2326 		unsigned int config3 = read_c0_config3();
2327 
2328 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2329 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2330 		else
2331 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2332 	}
2333 
2334 	if (board_ebase_setup)
2335 		board_ebase_setup();
2336 	per_cpu_trap_init(true);
2337 	memblock_set_bottom_up(false);
2338 
2339 	/*
2340 	 * Copy the generic exception handlers to their final destination.
2341 	 * This will be overridden later as suitable for a particular
2342 	 * configuration.
2343 	 */
2344 	set_handler(0x180, &except_vec3_generic, 0x80);
2345 
2346 	/*
2347 	 * Setup default vectors
2348 	 */
2349 	for (i = 0; i <= 31; i++)
2350 		set_except_vector(i, handle_reserved);
2351 
2352 	/*
2353 	 * Copy the EJTAG debug exception vector handler code to it's final
2354 	 * destination.
2355 	 */
2356 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2357 		board_ejtag_handler_setup();
2358 
2359 	/*
2360 	 * Only some CPUs have the watch exceptions.
2361 	 */
2362 	if (cpu_has_watch)
2363 		set_except_vector(EXCCODE_WATCH, handle_watch);
2364 
2365 	/*
2366 	 * Initialise interrupt handlers
2367 	 */
2368 	if (cpu_has_veic || cpu_has_vint) {
2369 		int nvec = cpu_has_veic ? 64 : 8;
2370 		for (i = 0; i < nvec; i++)
2371 			set_vi_handler(i, NULL);
2372 	}
2373 	else if (cpu_has_divec)
2374 		set_handler(0x200, &except_vec4, 0x8);
2375 
2376 	/*
2377 	 * Some CPUs can enable/disable for cache parity detection, but does
2378 	 * it different ways.
2379 	 */
2380 	parity_protection_init();
2381 
2382 	/*
2383 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2384 	 * by external hardware.  Therefore these two exceptions
2385 	 * may have board specific handlers.
2386 	 */
2387 	if (board_be_init)
2388 		board_be_init();
2389 
2390 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2391 					rollback_handle_int : handle_int);
2392 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2393 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2394 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2395 
2396 	set_except_vector(EXCCODE_ADEL, handle_adel);
2397 	set_except_vector(EXCCODE_ADES, handle_ades);
2398 
2399 	set_except_vector(EXCCODE_IBE, handle_ibe);
2400 	set_except_vector(EXCCODE_DBE, handle_dbe);
2401 
2402 	set_except_vector(EXCCODE_SYS, handle_sys);
2403 	set_except_vector(EXCCODE_BP, handle_bp);
2404 
2405 	if (rdhwr_noopt)
2406 		set_except_vector(EXCCODE_RI, handle_ri);
2407 	else {
2408 		if (cpu_has_vtag_icache)
2409 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2410 		else if (current_cpu_type() == CPU_LOONGSON3)
2411 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2412 		else
2413 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2414 	}
2415 
2416 	set_except_vector(EXCCODE_CPU, handle_cpu);
2417 	set_except_vector(EXCCODE_OV, handle_ov);
2418 	set_except_vector(EXCCODE_TR, handle_tr);
2419 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2420 
2421 	if (board_nmi_handler_setup)
2422 		board_nmi_handler_setup();
2423 
2424 	if (cpu_has_fpu && !cpu_has_nofpuex)
2425 		set_except_vector(EXCCODE_FPE, handle_fpe);
2426 
2427 	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2428 
2429 	if (cpu_has_rixiex) {
2430 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2431 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2432 	}
2433 
2434 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2435 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2436 
2437 	if (cpu_has_mcheck)
2438 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2439 
2440 	if (cpu_has_mipsmt)
2441 		set_except_vector(EXCCODE_THREAD, handle_mt);
2442 
2443 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2444 
2445 	if (board_cache_error_setup)
2446 		board_cache_error_setup();
2447 
2448 	if (cpu_has_vce)
2449 		/* Special exception: R4[04]00 uses also the divec space. */
2450 		set_handler(0x180, &except_vec3_r4000, 0x100);
2451 	else if (cpu_has_4kex)
2452 		set_handler(0x180, &except_vec3_generic, 0x80);
2453 	else
2454 		set_handler(0x080, &except_vec3_generic, 0x80);
2455 
2456 	local_flush_icache_range(ebase, ebase + vec_size);
2457 
2458 	sort_extable(__start___dbe_table, __stop___dbe_table);
2459 
2460 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2461 }
2462 
trap_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2463 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2464 			    void *v)
2465 {
2466 	switch (cmd) {
2467 	case CPU_PM_ENTER_FAILED:
2468 	case CPU_PM_EXIT:
2469 		configure_status();
2470 		configure_hwrena();
2471 		configure_exception_vector();
2472 
2473 		/* Restore register with CPU number for TLB handlers */
2474 		TLBMISS_HANDLER_RESTORE();
2475 
2476 		break;
2477 	}
2478 
2479 	return NOTIFY_OK;
2480 }
2481 
2482 static struct notifier_block trap_pm_notifier_block = {
2483 	.notifier_call = trap_pm_notifier,
2484 };
2485 
trap_pm_init(void)2486 static int __init trap_pm_init(void)
2487 {
2488 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2489 }
2490 arch_initcall(trap_pm_init);
2491