1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 *
4 * Copyright (c) 2011, Microsoft Corporation.
5 *
6 * Authors:
7 * Haiyang Zhang <haiyangz@microsoft.com>
8 * Hank Janssen <hjanssen@microsoft.com>
9 * K. Y. Srinivasan <kys@microsoft.com>
10 */
11
12 #ifndef _HYPERV_H
13 #define _HYPERV_H
14
15 #include <uapi/linux/hyperv.h>
16
17 #include <linux/types.h>
18 #include <linux/scatterlist.h>
19 #include <linux/list.h>
20 #include <linux/timer.h>
21 #include <linux/completion.h>
22 #include <linux/device.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/reciprocal_div.h>
26
27 #define MAX_PAGE_BUFFER_COUNT 32
28 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
29
30 #pragma pack(push, 1)
31
32 /* Single-page buffer */
33 struct hv_page_buffer {
34 u32 len;
35 u32 offset;
36 u64 pfn;
37 };
38
39 /* Multiple-page buffer */
40 struct hv_multipage_buffer {
41 /* Length and Offset determines the # of pfns in the array */
42 u32 len;
43 u32 offset;
44 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
45 };
46
47 /*
48 * Multiple-page buffer array; the pfn array is variable size:
49 * The number of entries in the PFN array is determined by
50 * "len" and "offset".
51 */
52 struct hv_mpb_array {
53 /* Length and Offset determines the # of pfns in the array */
54 u32 len;
55 u32 offset;
56 u64 pfn_array[];
57 };
58
59 /* 0x18 includes the proprietary packet header */
60 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
61 (sizeof(struct hv_page_buffer) * \
62 MAX_PAGE_BUFFER_COUNT))
63 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
64 sizeof(struct hv_multipage_buffer))
65
66
67 #pragma pack(pop)
68
69 struct hv_ring_buffer {
70 /* Offset in bytes from the start of ring data below */
71 u32 write_index;
72
73 /* Offset in bytes from the start of ring data below */
74 u32 read_index;
75
76 u32 interrupt_mask;
77
78 /*
79 * WS2012/Win8 and later versions of Hyper-V implement interrupt
80 * driven flow management. The feature bit feat_pending_send_sz
81 * is set by the host on the host->guest ring buffer, and by the
82 * guest on the guest->host ring buffer.
83 *
84 * The meaning of the feature bit is a bit complex in that it has
85 * semantics that apply to both ring buffers. If the guest sets
86 * the feature bit in the guest->host ring buffer, the guest is
87 * telling the host that:
88 * 1) It will set the pending_send_sz field in the guest->host ring
89 * buffer when it is waiting for space to become available, and
90 * 2) It will read the pending_send_sz field in the host->guest
91 * ring buffer and interrupt the host when it frees enough space
92 *
93 * Similarly, if the host sets the feature bit in the host->guest
94 * ring buffer, the host is telling the guest that:
95 * 1) It will set the pending_send_sz field in the host->guest ring
96 * buffer when it is waiting for space to become available, and
97 * 2) It will read the pending_send_sz field in the guest->host
98 * ring buffer and interrupt the guest when it frees enough space
99 *
100 * If either the guest or host does not set the feature bit that it
101 * owns, that guest or host must do polling if it encounters a full
102 * ring buffer, and not signal the other end with an interrupt.
103 */
104 u32 pending_send_sz;
105 u32 reserved1[12];
106 union {
107 struct {
108 u32 feat_pending_send_sz:1;
109 };
110 u32 value;
111 } feature_bits;
112
113 /* Pad it to PAGE_SIZE so that data starts on page boundary */
114 u8 reserved2[4028];
115
116 /*
117 * Ring data starts here + RingDataStartOffset
118 * !!! DO NOT place any fields below this !!!
119 */
120 u8 buffer[0];
121 } __packed;
122
123 struct hv_ring_buffer_info {
124 struct hv_ring_buffer *ring_buffer;
125 u32 ring_size; /* Include the shared header */
126 struct reciprocal_value ring_size_div10_reciprocal;
127 spinlock_t ring_lock;
128
129 u32 ring_datasize; /* < ring_size */
130 u32 priv_read_index;
131 /*
132 * The ring buffer mutex lock. This lock prevents the ring buffer from
133 * being freed while the ring buffer is being accessed.
134 */
135 struct mutex ring_buffer_mutex;
136 };
137
138
hv_get_bytes_to_read(const struct hv_ring_buffer_info * rbi)139 static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
140 {
141 u32 read_loc, write_loc, dsize, read;
142
143 dsize = rbi->ring_datasize;
144 read_loc = rbi->ring_buffer->read_index;
145 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
146
147 read = write_loc >= read_loc ? (write_loc - read_loc) :
148 (dsize - read_loc) + write_loc;
149
150 return read;
151 }
152
hv_get_bytes_to_write(const struct hv_ring_buffer_info * rbi)153 static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
154 {
155 u32 read_loc, write_loc, dsize, write;
156
157 dsize = rbi->ring_datasize;
158 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
159 write_loc = rbi->ring_buffer->write_index;
160
161 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
162 read_loc - write_loc;
163 return write;
164 }
165
hv_get_avail_to_write_percent(const struct hv_ring_buffer_info * rbi)166 static inline u32 hv_get_avail_to_write_percent(
167 const struct hv_ring_buffer_info *rbi)
168 {
169 u32 avail_write = hv_get_bytes_to_write(rbi);
170
171 return reciprocal_divide(
172 (avail_write << 3) + (avail_write << 1),
173 rbi->ring_size_div10_reciprocal);
174 }
175
176 /*
177 * VMBUS version is 32 bit entity broken up into
178 * two 16 bit quantities: major_number. minor_number.
179 *
180 * 0 . 13 (Windows Server 2008)
181 * 1 . 1 (Windows 7)
182 * 2 . 4 (Windows 8)
183 * 3 . 0 (Windows 8 R2)
184 * 4 . 0 (Windows 10)
185 * 5 . 0 (Newer Windows 10)
186 */
187
188 #define VERSION_WS2008 ((0 << 16) | (13))
189 #define VERSION_WIN7 ((1 << 16) | (1))
190 #define VERSION_WIN8 ((2 << 16) | (4))
191 #define VERSION_WIN8_1 ((3 << 16) | (0))
192 #define VERSION_WIN10 ((4 << 16) | (0))
193 #define VERSION_WIN10_V5 ((5 << 16) | (0))
194
195 #define VERSION_INVAL -1
196
197 #define VERSION_CURRENT VERSION_WIN10_V5
198
199 /* Make maximum size of pipe payload of 16K */
200 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
201
202 /* Define PipeMode values. */
203 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
204 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
205
206 /* The size of the user defined data buffer for non-pipe offers. */
207 #define MAX_USER_DEFINED_BYTES 120
208
209 /* The size of the user defined data buffer for pipe offers. */
210 #define MAX_PIPE_USER_DEFINED_BYTES 116
211
212 /*
213 * At the center of the Channel Management library is the Channel Offer. This
214 * struct contains the fundamental information about an offer.
215 */
216 struct vmbus_channel_offer {
217 guid_t if_type;
218 guid_t if_instance;
219
220 /*
221 * These two fields are not currently used.
222 */
223 u64 reserved1;
224 u64 reserved2;
225
226 u16 chn_flags;
227 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
228
229 union {
230 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
231 struct {
232 unsigned char user_def[MAX_USER_DEFINED_BYTES];
233 } std;
234
235 /*
236 * Pipes:
237 * The following sructure is an integrated pipe protocol, which
238 * is implemented on top of standard user-defined data. Pipe
239 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
240 * use.
241 */
242 struct {
243 u32 pipe_mode;
244 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
245 } pipe;
246 } u;
247 /*
248 * The sub_channel_index is defined in Win8: a value of zero means a
249 * primary channel and a value of non-zero means a sub-channel.
250 *
251 * Before Win8, the field is reserved, meaning it's always zero.
252 */
253 u16 sub_channel_index;
254 u16 reserved3;
255 } __packed;
256
257 /* Server Flags */
258 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
259 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
260 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
261 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
262 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
263 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
264 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
265 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
266
267 struct vmpacket_descriptor {
268 u16 type;
269 u16 offset8;
270 u16 len8;
271 u16 flags;
272 u64 trans_id;
273 } __packed;
274
275 struct vmpacket_header {
276 u32 prev_pkt_start_offset;
277 struct vmpacket_descriptor descriptor;
278 } __packed;
279
280 struct vmtransfer_page_range {
281 u32 byte_count;
282 u32 byte_offset;
283 } __packed;
284
285 struct vmtransfer_page_packet_header {
286 struct vmpacket_descriptor d;
287 u16 xfer_pageset_id;
288 u8 sender_owns_set;
289 u8 reserved;
290 u32 range_cnt;
291 struct vmtransfer_page_range ranges[1];
292 } __packed;
293
294 struct vmgpadl_packet_header {
295 struct vmpacket_descriptor d;
296 u32 gpadl;
297 u32 reserved;
298 } __packed;
299
300 struct vmadd_remove_transfer_page_set {
301 struct vmpacket_descriptor d;
302 u32 gpadl;
303 u16 xfer_pageset_id;
304 u16 reserved;
305 } __packed;
306
307 /*
308 * This structure defines a range in guest physical space that can be made to
309 * look virtually contiguous.
310 */
311 struct gpa_range {
312 u32 byte_count;
313 u32 byte_offset;
314 u64 pfn_array[0];
315 };
316
317 /*
318 * This is the format for an Establish Gpadl packet, which contains a handle by
319 * which this GPADL will be known and a set of GPA ranges associated with it.
320 * This can be converted to a MDL by the guest OS. If there are multiple GPA
321 * ranges, then the resulting MDL will be "chained," representing multiple VA
322 * ranges.
323 */
324 struct vmestablish_gpadl {
325 struct vmpacket_descriptor d;
326 u32 gpadl;
327 u32 range_cnt;
328 struct gpa_range range[1];
329 } __packed;
330
331 /*
332 * This is the format for a Teardown Gpadl packet, which indicates that the
333 * GPADL handle in the Establish Gpadl packet will never be referenced again.
334 */
335 struct vmteardown_gpadl {
336 struct vmpacket_descriptor d;
337 u32 gpadl;
338 u32 reserved; /* for alignment to a 8-byte boundary */
339 } __packed;
340
341 /*
342 * This is the format for a GPA-Direct packet, which contains a set of GPA
343 * ranges, in addition to commands and/or data.
344 */
345 struct vmdata_gpa_direct {
346 struct vmpacket_descriptor d;
347 u32 reserved;
348 u32 range_cnt;
349 struct gpa_range range[1];
350 } __packed;
351
352 /* This is the format for a Additional Data Packet. */
353 struct vmadditional_data {
354 struct vmpacket_descriptor d;
355 u64 total_bytes;
356 u32 offset;
357 u32 byte_cnt;
358 unsigned char data[1];
359 } __packed;
360
361 union vmpacket_largest_possible_header {
362 struct vmpacket_descriptor simple_hdr;
363 struct vmtransfer_page_packet_header xfer_page_hdr;
364 struct vmgpadl_packet_header gpadl_hdr;
365 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
366 struct vmestablish_gpadl establish_gpadl_hdr;
367 struct vmteardown_gpadl teardown_gpadl_hdr;
368 struct vmdata_gpa_direct data_gpa_direct_hdr;
369 };
370
371 #define VMPACKET_DATA_START_ADDRESS(__packet) \
372 (void *)(((unsigned char *)__packet) + \
373 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
374
375 #define VMPACKET_DATA_LENGTH(__packet) \
376 ((((struct vmpacket_descriptor)__packet)->len8 - \
377 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
378
379 #define VMPACKET_TRANSFER_MODE(__packet) \
380 (((struct IMPACT)__packet)->type)
381
382 enum vmbus_packet_type {
383 VM_PKT_INVALID = 0x0,
384 VM_PKT_SYNCH = 0x1,
385 VM_PKT_ADD_XFER_PAGESET = 0x2,
386 VM_PKT_RM_XFER_PAGESET = 0x3,
387 VM_PKT_ESTABLISH_GPADL = 0x4,
388 VM_PKT_TEARDOWN_GPADL = 0x5,
389 VM_PKT_DATA_INBAND = 0x6,
390 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
391 VM_PKT_DATA_USING_GPADL = 0x8,
392 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
393 VM_PKT_CANCEL_REQUEST = 0xa,
394 VM_PKT_COMP = 0xb,
395 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
396 VM_PKT_ADDITIONAL_DATA = 0xd
397 };
398
399 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
400
401
402 /* Version 1 messages */
403 enum vmbus_channel_message_type {
404 CHANNELMSG_INVALID = 0,
405 CHANNELMSG_OFFERCHANNEL = 1,
406 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
407 CHANNELMSG_REQUESTOFFERS = 3,
408 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
409 CHANNELMSG_OPENCHANNEL = 5,
410 CHANNELMSG_OPENCHANNEL_RESULT = 6,
411 CHANNELMSG_CLOSECHANNEL = 7,
412 CHANNELMSG_GPADL_HEADER = 8,
413 CHANNELMSG_GPADL_BODY = 9,
414 CHANNELMSG_GPADL_CREATED = 10,
415 CHANNELMSG_GPADL_TEARDOWN = 11,
416 CHANNELMSG_GPADL_TORNDOWN = 12,
417 CHANNELMSG_RELID_RELEASED = 13,
418 CHANNELMSG_INITIATE_CONTACT = 14,
419 CHANNELMSG_VERSION_RESPONSE = 15,
420 CHANNELMSG_UNLOAD = 16,
421 CHANNELMSG_UNLOAD_RESPONSE = 17,
422 CHANNELMSG_18 = 18,
423 CHANNELMSG_19 = 19,
424 CHANNELMSG_20 = 20,
425 CHANNELMSG_TL_CONNECT_REQUEST = 21,
426 CHANNELMSG_22 = 22,
427 CHANNELMSG_TL_CONNECT_RESULT = 23,
428 CHANNELMSG_COUNT
429 };
430
431 /* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */
432 #define INVALID_RELID U32_MAX
433
434 struct vmbus_channel_message_header {
435 enum vmbus_channel_message_type msgtype;
436 u32 padding;
437 } __packed;
438
439 /* Query VMBus Version parameters */
440 struct vmbus_channel_query_vmbus_version {
441 struct vmbus_channel_message_header header;
442 u32 version;
443 } __packed;
444
445 /* VMBus Version Supported parameters */
446 struct vmbus_channel_version_supported {
447 struct vmbus_channel_message_header header;
448 u8 version_supported;
449 } __packed;
450
451 /* Offer Channel parameters */
452 struct vmbus_channel_offer_channel {
453 struct vmbus_channel_message_header header;
454 struct vmbus_channel_offer offer;
455 u32 child_relid;
456 u8 monitorid;
457 /*
458 * win7 and beyond splits this field into a bit field.
459 */
460 u8 monitor_allocated:1;
461 u8 reserved:7;
462 /*
463 * These are new fields added in win7 and later.
464 * Do not access these fields without checking the
465 * negotiated protocol.
466 *
467 * If "is_dedicated_interrupt" is set, we must not set the
468 * associated bit in the channel bitmap while sending the
469 * interrupt to the host.
470 *
471 * connection_id is to be used in signaling the host.
472 */
473 u16 is_dedicated_interrupt:1;
474 u16 reserved1:15;
475 u32 connection_id;
476 } __packed;
477
478 /* Rescind Offer parameters */
479 struct vmbus_channel_rescind_offer {
480 struct vmbus_channel_message_header header;
481 u32 child_relid;
482 } __packed;
483
484 static inline u32
hv_ringbuffer_pending_size(const struct hv_ring_buffer_info * rbi)485 hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
486 {
487 return rbi->ring_buffer->pending_send_sz;
488 }
489
490 /*
491 * Request Offer -- no parameters, SynIC message contains the partition ID
492 * Set Snoop -- no parameters, SynIC message contains the partition ID
493 * Clear Snoop -- no parameters, SynIC message contains the partition ID
494 * All Offers Delivered -- no parameters, SynIC message contains the partition
495 * ID
496 * Flush Client -- no parameters, SynIC message contains the partition ID
497 */
498
499 /* Open Channel parameters */
500 struct vmbus_channel_open_channel {
501 struct vmbus_channel_message_header header;
502
503 /* Identifies the specific VMBus channel that is being opened. */
504 u32 child_relid;
505
506 /* ID making a particular open request at a channel offer unique. */
507 u32 openid;
508
509 /* GPADL for the channel's ring buffer. */
510 u32 ringbuffer_gpadlhandle;
511
512 /*
513 * Starting with win8, this field will be used to specify
514 * the target virtual processor on which to deliver the interrupt for
515 * the host to guest communication.
516 * Prior to win8, incoming channel interrupts would only
517 * be delivered on cpu 0. Setting this value to 0 would
518 * preserve the earlier behavior.
519 */
520 u32 target_vp;
521
522 /*
523 * The upstream ring buffer begins at offset zero in the memory
524 * described by RingBufferGpadlHandle. The downstream ring buffer
525 * follows it at this offset (in pages).
526 */
527 u32 downstream_ringbuffer_pageoffset;
528
529 /* User-specific data to be passed along to the server endpoint. */
530 unsigned char userdata[MAX_USER_DEFINED_BYTES];
531 } __packed;
532
533 /* Open Channel Result parameters */
534 struct vmbus_channel_open_result {
535 struct vmbus_channel_message_header header;
536 u32 child_relid;
537 u32 openid;
538 u32 status;
539 } __packed;
540
541 /* Close channel parameters; */
542 struct vmbus_channel_close_channel {
543 struct vmbus_channel_message_header header;
544 u32 child_relid;
545 } __packed;
546
547 /* Channel Message GPADL */
548 #define GPADL_TYPE_RING_BUFFER 1
549 #define GPADL_TYPE_SERVER_SAVE_AREA 2
550 #define GPADL_TYPE_TRANSACTION 8
551
552 /*
553 * The number of PFNs in a GPADL message is defined by the number of
554 * pages that would be spanned by ByteCount and ByteOffset. If the
555 * implied number of PFNs won't fit in this packet, there will be a
556 * follow-up packet that contains more.
557 */
558 struct vmbus_channel_gpadl_header {
559 struct vmbus_channel_message_header header;
560 u32 child_relid;
561 u32 gpadl;
562 u16 range_buflen;
563 u16 rangecount;
564 struct gpa_range range[0];
565 } __packed;
566
567 /* This is the followup packet that contains more PFNs. */
568 struct vmbus_channel_gpadl_body {
569 struct vmbus_channel_message_header header;
570 u32 msgnumber;
571 u32 gpadl;
572 u64 pfn[0];
573 } __packed;
574
575 struct vmbus_channel_gpadl_created {
576 struct vmbus_channel_message_header header;
577 u32 child_relid;
578 u32 gpadl;
579 u32 creation_status;
580 } __packed;
581
582 struct vmbus_channel_gpadl_teardown {
583 struct vmbus_channel_message_header header;
584 u32 child_relid;
585 u32 gpadl;
586 } __packed;
587
588 struct vmbus_channel_gpadl_torndown {
589 struct vmbus_channel_message_header header;
590 u32 gpadl;
591 } __packed;
592
593 struct vmbus_channel_relid_released {
594 struct vmbus_channel_message_header header;
595 u32 child_relid;
596 } __packed;
597
598 struct vmbus_channel_initiate_contact {
599 struct vmbus_channel_message_header header;
600 u32 vmbus_version_requested;
601 u32 target_vcpu; /* The VCPU the host should respond to */
602 union {
603 u64 interrupt_page;
604 struct {
605 u8 msg_sint;
606 u8 padding1[3];
607 u32 padding2;
608 };
609 };
610 u64 monitor_page1;
611 u64 monitor_page2;
612 } __packed;
613
614 /* Hyper-V socket: guest's connect()-ing to host */
615 struct vmbus_channel_tl_connect_request {
616 struct vmbus_channel_message_header header;
617 guid_t guest_endpoint_id;
618 guid_t host_service_id;
619 } __packed;
620
621 struct vmbus_channel_version_response {
622 struct vmbus_channel_message_header header;
623 u8 version_supported;
624
625 u8 connection_state;
626 u16 padding;
627
628 /*
629 * On new hosts that support VMBus protocol 5.0, we must use
630 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
631 * and for subsequent messages, we must use the Message Connection ID
632 * field in the host-returned Version Response Message.
633 *
634 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
635 */
636 u32 msg_conn_id;
637 } __packed;
638
639 enum vmbus_channel_state {
640 CHANNEL_OFFER_STATE,
641 CHANNEL_OPENING_STATE,
642 CHANNEL_OPEN_STATE,
643 CHANNEL_OPENED_STATE,
644 };
645
646 /*
647 * Represents each channel msg on the vmbus connection This is a
648 * variable-size data structure depending on the msg type itself
649 */
650 struct vmbus_channel_msginfo {
651 /* Bookkeeping stuff */
652 struct list_head msglistentry;
653
654 /* So far, this is only used to handle gpadl body message */
655 struct list_head submsglist;
656
657 /* Synchronize the request/response if needed */
658 struct completion waitevent;
659 struct vmbus_channel *waiting_channel;
660 union {
661 struct vmbus_channel_version_supported version_supported;
662 struct vmbus_channel_open_result open_result;
663 struct vmbus_channel_gpadl_torndown gpadl_torndown;
664 struct vmbus_channel_gpadl_created gpadl_created;
665 struct vmbus_channel_version_response version_response;
666 } response;
667
668 u32 msgsize;
669 /*
670 * The channel message that goes out on the "wire".
671 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
672 */
673 unsigned char msg[0];
674 };
675
676 struct vmbus_close_msg {
677 struct vmbus_channel_msginfo info;
678 struct vmbus_channel_close_channel msg;
679 };
680
681 /* Define connection identifier type. */
682 union hv_connection_id {
683 u32 asu32;
684 struct {
685 u32 id:24;
686 u32 reserved:8;
687 } u;
688 };
689
690 enum hv_numa_policy {
691 HV_BALANCED = 0,
692 HV_LOCALIZED,
693 };
694
695 enum vmbus_device_type {
696 HV_IDE = 0,
697 HV_SCSI,
698 HV_FC,
699 HV_NIC,
700 HV_ND,
701 HV_PCIE,
702 HV_FB,
703 HV_KBD,
704 HV_MOUSE,
705 HV_KVP,
706 HV_TS,
707 HV_HB,
708 HV_SHUTDOWN,
709 HV_FCOPY,
710 HV_BACKUP,
711 HV_DM,
712 HV_UNKNOWN,
713 };
714
715 struct vmbus_device {
716 u16 dev_type;
717 guid_t guid;
718 bool perf_device;
719 };
720
721 struct vmbus_channel {
722 struct list_head listentry;
723
724 struct hv_device *device_obj;
725
726 enum vmbus_channel_state state;
727
728 struct vmbus_channel_offer_channel offermsg;
729 /*
730 * These are based on the OfferMsg.MonitorId.
731 * Save it here for easy access.
732 */
733 u8 monitor_grp;
734 u8 monitor_bit;
735
736 bool rescind; /* got rescind msg */
737 struct completion rescind_event;
738
739 u32 ringbuffer_gpadlhandle;
740
741 /* Allocated memory for ring buffer */
742 struct page *ringbuffer_page;
743 u32 ringbuffer_pagecount;
744 u32 ringbuffer_send_offset;
745 struct hv_ring_buffer_info outbound; /* send to parent */
746 struct hv_ring_buffer_info inbound; /* receive from parent */
747
748 struct vmbus_close_msg close_msg;
749
750 /* Statistics */
751 u64 interrupts; /* Host to Guest interrupts */
752 u64 sig_events; /* Guest to Host events */
753
754 /*
755 * Guest to host interrupts caused by the outbound ring buffer changing
756 * from empty to not empty.
757 */
758 u64 intr_out_empty;
759
760 /*
761 * Indicates that a full outbound ring buffer was encountered. The flag
762 * is set to true when a full outbound ring buffer is encountered and
763 * set to false when a write to the outbound ring buffer is completed.
764 */
765 bool out_full_flag;
766
767 /* Channel callback's invoked in softirq context */
768 struct tasklet_struct callback_event;
769 void (*onchannel_callback)(void *context);
770 void *channel_callback_context;
771
772 /*
773 * A channel can be marked for one of three modes of reading:
774 * BATCHED - callback called from taslket and should read
775 * channel until empty. Interrupts from the host
776 * are masked while read is in process (default).
777 * DIRECT - callback called from tasklet (softirq).
778 * ISR - callback called in interrupt context and must
779 * invoke its own deferred processing.
780 * Host interrupts are disabled and must be re-enabled
781 * when ring is empty.
782 */
783 enum hv_callback_mode {
784 HV_CALL_BATCHED,
785 HV_CALL_DIRECT,
786 HV_CALL_ISR
787 } callback_mode;
788
789 bool is_dedicated_interrupt;
790 u64 sig_event;
791
792 /*
793 * Starting with win8, this field will be used to specify
794 * the target virtual processor on which to deliver the interrupt for
795 * the host to guest communication.
796 * Prior to win8, incoming channel interrupts would only
797 * be delivered on cpu 0. Setting this value to 0 would
798 * preserve the earlier behavior.
799 */
800 u32 target_vp;
801 /* The corresponding CPUID in the guest */
802 u32 target_cpu;
803 /*
804 * State to manage the CPU affiliation of channels.
805 */
806 struct cpumask alloced_cpus_in_node;
807 int numa_node;
808 /*
809 * Support for sub-channels. For high performance devices,
810 * it will be useful to have multiple sub-channels to support
811 * a scalable communication infrastructure with the host.
812 * The support for sub-channels is implemented as an extention
813 * to the current infrastructure.
814 * The initial offer is considered the primary channel and this
815 * offer message will indicate if the host supports sub-channels.
816 * The guest is free to ask for sub-channels to be offerred and can
817 * open these sub-channels as a normal "primary" channel. However,
818 * all sub-channels will have the same type and instance guids as the
819 * primary channel. Requests sent on a given channel will result in a
820 * response on the same channel.
821 */
822
823 /*
824 * Sub-channel creation callback. This callback will be called in
825 * process context when a sub-channel offer is received from the host.
826 * The guest can open the sub-channel in the context of this callback.
827 */
828 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
829
830 /*
831 * Channel rescind callback. Some channels (the hvsock ones), need to
832 * register a callback which is invoked in vmbus_onoffer_rescind().
833 */
834 void (*chn_rescind_callback)(struct vmbus_channel *channel);
835
836 /*
837 * The spinlock to protect the structure. It is being used to protect
838 * test-and-set access to various attributes of the structure as well
839 * as all sc_list operations.
840 */
841 spinlock_t lock;
842 /*
843 * All Sub-channels of a primary channel are linked here.
844 */
845 struct list_head sc_list;
846 /*
847 * The primary channel this sub-channel belongs to.
848 * This will be NULL for the primary channel.
849 */
850 struct vmbus_channel *primary_channel;
851 /*
852 * Support per-channel state for use by vmbus drivers.
853 */
854 void *per_channel_state;
855 /*
856 * To support per-cpu lookup mapping of relid to channel,
857 * link up channels based on their CPU affinity.
858 */
859 struct list_head percpu_list;
860
861 /*
862 * Defer freeing channel until after all cpu's have
863 * gone through grace period.
864 */
865 struct rcu_head rcu;
866
867 /*
868 * For sysfs per-channel properties.
869 */
870 struct kobject kobj;
871
872 /*
873 * For performance critical channels (storage, networking
874 * etc,), Hyper-V has a mechanism to enhance the throughput
875 * at the expense of latency:
876 * When the host is to be signaled, we just set a bit in a shared page
877 * and this bit will be inspected by the hypervisor within a certain
878 * window and if the bit is set, the host will be signaled. The window
879 * of time is the monitor latency - currently around 100 usecs. This
880 * mechanism improves throughput by:
881 *
882 * A) Making the host more efficient - each time it wakes up,
883 * potentially it will process morev number of packets. The
884 * monitor latency allows a batch to build up.
885 * B) By deferring the hypercall to signal, we will also minimize
886 * the interrupts.
887 *
888 * Clearly, these optimizations improve throughput at the expense of
889 * latency. Furthermore, since the channel is shared for both
890 * control and data messages, control messages currently suffer
891 * unnecessary latency adversley impacting performance and boot
892 * time. To fix this issue, permit tagging the channel as being
893 * in "low latency" mode. In this mode, we will bypass the monitor
894 * mechanism.
895 */
896 bool low_latency;
897
898 /*
899 * NUMA distribution policy:
900 * We support two policies:
901 * 1) Balanced: Here all performance critical channels are
902 * distributed evenly amongst all the NUMA nodes.
903 * This policy will be the default policy.
904 * 2) Localized: All channels of a given instance of a
905 * performance critical service will be assigned CPUs
906 * within a selected NUMA node.
907 */
908 enum hv_numa_policy affinity_policy;
909
910 bool probe_done;
911
912 /*
913 * We must offload the handling of the primary/sub channels
914 * from the single-threaded vmbus_connection.work_queue to
915 * two different workqueue, otherwise we can block
916 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
917 */
918 struct work_struct add_channel_work;
919
920 /*
921 * Guest to host interrupts caused by the inbound ring buffer changing
922 * from full to not full while a packet is waiting.
923 */
924 u64 intr_in_full;
925
926 /*
927 * The total number of write operations that encountered a full
928 * outbound ring buffer.
929 */
930 u64 out_full_total;
931
932 /*
933 * The number of write operations that were the first to encounter a
934 * full outbound ring buffer.
935 */
936 u64 out_full_first;
937 };
938
is_hvsock_channel(const struct vmbus_channel * c)939 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
940 {
941 return !!(c->offermsg.offer.chn_flags &
942 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
943 }
944
is_sub_channel(const struct vmbus_channel * c)945 static inline bool is_sub_channel(const struct vmbus_channel *c)
946 {
947 return c->offermsg.offer.sub_channel_index != 0;
948 }
949
set_channel_affinity_state(struct vmbus_channel * c,enum hv_numa_policy policy)950 static inline void set_channel_affinity_state(struct vmbus_channel *c,
951 enum hv_numa_policy policy)
952 {
953 c->affinity_policy = policy;
954 }
955
set_channel_read_mode(struct vmbus_channel * c,enum hv_callback_mode mode)956 static inline void set_channel_read_mode(struct vmbus_channel *c,
957 enum hv_callback_mode mode)
958 {
959 c->callback_mode = mode;
960 }
961
set_per_channel_state(struct vmbus_channel * c,void * s)962 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
963 {
964 c->per_channel_state = s;
965 }
966
get_per_channel_state(struct vmbus_channel * c)967 static inline void *get_per_channel_state(struct vmbus_channel *c)
968 {
969 return c->per_channel_state;
970 }
971
set_channel_pending_send_size(struct vmbus_channel * c,u32 size)972 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
973 u32 size)
974 {
975 unsigned long flags;
976
977 if (size) {
978 spin_lock_irqsave(&c->outbound.ring_lock, flags);
979 ++c->out_full_total;
980
981 if (!c->out_full_flag) {
982 ++c->out_full_first;
983 c->out_full_flag = true;
984 }
985 spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
986 } else {
987 c->out_full_flag = false;
988 }
989
990 c->outbound.ring_buffer->pending_send_sz = size;
991 }
992
set_low_latency_mode(struct vmbus_channel * c)993 static inline void set_low_latency_mode(struct vmbus_channel *c)
994 {
995 c->low_latency = true;
996 }
997
clear_low_latency_mode(struct vmbus_channel * c)998 static inline void clear_low_latency_mode(struct vmbus_channel *c)
999 {
1000 c->low_latency = false;
1001 }
1002
1003 void vmbus_onmessage(void *context);
1004
1005 int vmbus_request_offers(void);
1006
1007 /*
1008 * APIs for managing sub-channels.
1009 */
1010
1011 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1012 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1013
1014 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1015 void (*chn_rescind_cb)(struct vmbus_channel *));
1016
1017 /*
1018 * Check if sub-channels have already been offerred. This API will be useful
1019 * when the driver is unloaded after establishing sub-channels. In this case,
1020 * when the driver is re-loaded, the driver would have to check if the
1021 * subchannels have already been established before attempting to request
1022 * the creation of sub-channels.
1023 * This function returns TRUE to indicate that subchannels have already been
1024 * created.
1025 * This function should be invoked after setting the callback function for
1026 * sub-channel creation.
1027 */
1028 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
1029
1030 /* The format must be the same as struct vmdata_gpa_direct */
1031 struct vmbus_channel_packet_page_buffer {
1032 u16 type;
1033 u16 dataoffset8;
1034 u16 length8;
1035 u16 flags;
1036 u64 transactionid;
1037 u32 reserved;
1038 u32 rangecount;
1039 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1040 } __packed;
1041
1042 /* The format must be the same as struct vmdata_gpa_direct */
1043 struct vmbus_channel_packet_multipage_buffer {
1044 u16 type;
1045 u16 dataoffset8;
1046 u16 length8;
1047 u16 flags;
1048 u64 transactionid;
1049 u32 reserved;
1050 u32 rangecount; /* Always 1 in this case */
1051 struct hv_multipage_buffer range;
1052 } __packed;
1053
1054 /* The format must be the same as struct vmdata_gpa_direct */
1055 struct vmbus_packet_mpb_array {
1056 u16 type;
1057 u16 dataoffset8;
1058 u16 length8;
1059 u16 flags;
1060 u64 transactionid;
1061 u32 reserved;
1062 u32 rangecount; /* Always 1 in this case */
1063 struct hv_mpb_array range;
1064 } __packed;
1065
1066 int vmbus_alloc_ring(struct vmbus_channel *channel,
1067 u32 send_size, u32 recv_size);
1068 void vmbus_free_ring(struct vmbus_channel *channel);
1069
1070 int vmbus_connect_ring(struct vmbus_channel *channel,
1071 void (*onchannel_callback)(void *context),
1072 void *context);
1073 int vmbus_disconnect_ring(struct vmbus_channel *channel);
1074
1075 extern int vmbus_open(struct vmbus_channel *channel,
1076 u32 send_ringbuffersize,
1077 u32 recv_ringbuffersize,
1078 void *userdata,
1079 u32 userdatalen,
1080 void (*onchannel_callback)(void *context),
1081 void *context);
1082
1083 extern void vmbus_close(struct vmbus_channel *channel);
1084
1085 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1086 void *buffer,
1087 u32 bufferLen,
1088 u64 requestid,
1089 enum vmbus_packet_type type,
1090 u32 flags);
1091
1092 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1093 struct hv_page_buffer pagebuffers[],
1094 u32 pagecount,
1095 void *buffer,
1096 u32 bufferlen,
1097 u64 requestid);
1098
1099 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1100 struct vmbus_packet_mpb_array *mpb,
1101 u32 desc_size,
1102 void *buffer,
1103 u32 bufferlen,
1104 u64 requestid);
1105
1106 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1107 void *kbuffer,
1108 u32 size,
1109 u32 *gpadl_handle);
1110
1111 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1112 u32 gpadl_handle);
1113
1114 void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1115
1116 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1117 void *buffer,
1118 u32 bufferlen,
1119 u32 *buffer_actual_len,
1120 u64 *requestid);
1121
1122 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1123 void *buffer,
1124 u32 bufferlen,
1125 u32 *buffer_actual_len,
1126 u64 *requestid);
1127
1128
1129 extern void vmbus_ontimer(unsigned long data);
1130
1131 /* Base driver object */
1132 struct hv_driver {
1133 const char *name;
1134
1135 /*
1136 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1137 * channel flag, actually doesn't mean a synthetic device because the
1138 * offer's if_type/if_instance can change for every new hvsock
1139 * connection.
1140 *
1141 * However, to facilitate the notification of new-offer/rescind-offer
1142 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1143 * a special vmbus device, and hence we need the below flag to
1144 * indicate if the driver is the hvsock driver or not: we need to
1145 * specially treat the hvosck offer & driver in vmbus_match().
1146 */
1147 bool hvsock;
1148
1149 /* the device type supported by this driver */
1150 guid_t dev_type;
1151 const struct hv_vmbus_device_id *id_table;
1152
1153 struct device_driver driver;
1154
1155 /* dynamic device GUID's */
1156 struct {
1157 spinlock_t lock;
1158 struct list_head list;
1159 } dynids;
1160
1161 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1162 int (*remove)(struct hv_device *);
1163 void (*shutdown)(struct hv_device *);
1164
1165 int (*suspend)(struct hv_device *);
1166 int (*resume)(struct hv_device *);
1167
1168 };
1169
1170 /* Base device object */
1171 struct hv_device {
1172 /* the device type id of this device */
1173 guid_t dev_type;
1174
1175 /* the device instance id of this device */
1176 guid_t dev_instance;
1177 u16 vendor_id;
1178 u16 device_id;
1179
1180 struct device device;
1181 char *driver_override; /* Driver name to force a match */
1182
1183 struct vmbus_channel *channel;
1184 struct kset *channels_kset;
1185 };
1186
1187
device_to_hv_device(struct device * d)1188 static inline struct hv_device *device_to_hv_device(struct device *d)
1189 {
1190 return container_of(d, struct hv_device, device);
1191 }
1192
drv_to_hv_drv(struct device_driver * d)1193 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1194 {
1195 return container_of(d, struct hv_driver, driver);
1196 }
1197
hv_set_drvdata(struct hv_device * dev,void * data)1198 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1199 {
1200 dev_set_drvdata(&dev->device, data);
1201 }
1202
hv_get_drvdata(struct hv_device * dev)1203 static inline void *hv_get_drvdata(struct hv_device *dev)
1204 {
1205 return dev_get_drvdata(&dev->device);
1206 }
1207
1208 struct hv_ring_buffer_debug_info {
1209 u32 current_interrupt_mask;
1210 u32 current_read_index;
1211 u32 current_write_index;
1212 u32 bytes_avail_toread;
1213 u32 bytes_avail_towrite;
1214 };
1215
1216
1217 int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1218 struct hv_ring_buffer_debug_info *debug_info);
1219
1220 /* Vmbus interface */
1221 #define vmbus_driver_register(driver) \
1222 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1223 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1224 struct module *owner,
1225 const char *mod_name);
1226 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1227
1228 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1229
1230 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1231 resource_size_t min, resource_size_t max,
1232 resource_size_t size, resource_size_t align,
1233 bool fb_overlap_ok);
1234 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1235
1236 /*
1237 * GUID definitions of various offer types - services offered to the guest.
1238 */
1239
1240 /*
1241 * Network GUID
1242 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1243 */
1244 #define HV_NIC_GUID \
1245 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1246 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1247
1248 /*
1249 * IDE GUID
1250 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1251 */
1252 #define HV_IDE_GUID \
1253 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1254 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1255
1256 /*
1257 * SCSI GUID
1258 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1259 */
1260 #define HV_SCSI_GUID \
1261 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1262 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1263
1264 /*
1265 * Shutdown GUID
1266 * {0e0b6031-5213-4934-818b-38d90ced39db}
1267 */
1268 #define HV_SHUTDOWN_GUID \
1269 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1270 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1271
1272 /*
1273 * Time Synch GUID
1274 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1275 */
1276 #define HV_TS_GUID \
1277 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1278 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1279
1280 /*
1281 * Heartbeat GUID
1282 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1283 */
1284 #define HV_HEART_BEAT_GUID \
1285 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1286 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1287
1288 /*
1289 * KVP GUID
1290 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1291 */
1292 #define HV_KVP_GUID \
1293 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1294 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1295
1296 /*
1297 * Dynamic memory GUID
1298 * {525074dc-8985-46e2-8057-a307dc18a502}
1299 */
1300 #define HV_DM_GUID \
1301 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1302 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1303
1304 /*
1305 * Mouse GUID
1306 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1307 */
1308 #define HV_MOUSE_GUID \
1309 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1310 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1311
1312 /*
1313 * Keyboard GUID
1314 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1315 */
1316 #define HV_KBD_GUID \
1317 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1318 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1319
1320 /*
1321 * VSS (Backup/Restore) GUID
1322 */
1323 #define HV_VSS_GUID \
1324 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1325 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1326 /*
1327 * Synthetic Video GUID
1328 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1329 */
1330 #define HV_SYNTHVID_GUID \
1331 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1332 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1333
1334 /*
1335 * Synthetic FC GUID
1336 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1337 */
1338 #define HV_SYNTHFC_GUID \
1339 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1340 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1341
1342 /*
1343 * Guest File Copy Service
1344 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1345 */
1346
1347 #define HV_FCOPY_GUID \
1348 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1349 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1350
1351 /*
1352 * NetworkDirect. This is the guest RDMA service.
1353 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1354 */
1355 #define HV_ND_GUID \
1356 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1357 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1358
1359 /*
1360 * PCI Express Pass Through
1361 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1362 */
1363
1364 #define HV_PCIE_GUID \
1365 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1366 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1367
1368 /*
1369 * Linux doesn't support the 3 devices: the first two are for
1370 * Automatic Virtual Machine Activation, and the third is for
1371 * Remote Desktop Virtualization.
1372 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1373 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1374 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1375 */
1376
1377 #define HV_AVMA1_GUID \
1378 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1379 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1380
1381 #define HV_AVMA2_GUID \
1382 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1383 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1384
1385 #define HV_RDV_GUID \
1386 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1387 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1388
1389 /*
1390 * Common header for Hyper-V ICs
1391 */
1392
1393 #define ICMSGTYPE_NEGOTIATE 0
1394 #define ICMSGTYPE_HEARTBEAT 1
1395 #define ICMSGTYPE_KVPEXCHANGE 2
1396 #define ICMSGTYPE_SHUTDOWN 3
1397 #define ICMSGTYPE_TIMESYNC 4
1398 #define ICMSGTYPE_VSS 5
1399
1400 #define ICMSGHDRFLAG_TRANSACTION 1
1401 #define ICMSGHDRFLAG_REQUEST 2
1402 #define ICMSGHDRFLAG_RESPONSE 4
1403
1404
1405 /*
1406 * While we want to handle util services as regular devices,
1407 * there is only one instance of each of these services; so
1408 * we statically allocate the service specific state.
1409 */
1410
1411 struct hv_util_service {
1412 u8 *recv_buffer;
1413 void *channel;
1414 void (*util_cb)(void *);
1415 int (*util_init)(struct hv_util_service *);
1416 void (*util_deinit)(void);
1417 };
1418
1419 struct vmbuspipe_hdr {
1420 u32 flags;
1421 u32 msgsize;
1422 } __packed;
1423
1424 struct ic_version {
1425 u16 major;
1426 u16 minor;
1427 } __packed;
1428
1429 struct icmsg_hdr {
1430 struct ic_version icverframe;
1431 u16 icmsgtype;
1432 struct ic_version icvermsg;
1433 u16 icmsgsize;
1434 u32 status;
1435 u8 ictransaction_id;
1436 u8 icflags;
1437 u8 reserved[2];
1438 } __packed;
1439
1440 struct icmsg_negotiate {
1441 u16 icframe_vercnt;
1442 u16 icmsg_vercnt;
1443 u32 reserved;
1444 struct ic_version icversion_data[1]; /* any size array */
1445 } __packed;
1446
1447 struct shutdown_msg_data {
1448 u32 reason_code;
1449 u32 timeout_seconds;
1450 u32 flags;
1451 u8 display_message[2048];
1452 } __packed;
1453
1454 struct heartbeat_msg_data {
1455 u64 seq_num;
1456 u32 reserved[8];
1457 } __packed;
1458
1459 /* Time Sync IC defs */
1460 #define ICTIMESYNCFLAG_PROBE 0
1461 #define ICTIMESYNCFLAG_SYNC 1
1462 #define ICTIMESYNCFLAG_SAMPLE 2
1463
1464 #ifdef __x86_64__
1465 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1466 #else
1467 #define WLTIMEDELTA 116444736000000000LL
1468 #endif
1469
1470 struct ictimesync_data {
1471 u64 parenttime;
1472 u64 childtime;
1473 u64 roundtriptime;
1474 u8 flags;
1475 } __packed;
1476
1477 struct ictimesync_ref_data {
1478 u64 parenttime;
1479 u64 vmreferencetime;
1480 u8 flags;
1481 char leapflags;
1482 char stratum;
1483 u8 reserved[3];
1484 } __packed;
1485
1486 struct hyperv_service_callback {
1487 u8 msg_type;
1488 char *log_msg;
1489 guid_t data;
1490 struct vmbus_channel *channel;
1491 void (*callback)(void *context);
1492 };
1493
1494 #define MAX_SRV_VER 0x7ffffff
1495 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
1496 const int *fw_version, int fw_vercnt,
1497 const int *srv_version, int srv_vercnt,
1498 int *nego_fw_version, int *nego_srv_version);
1499
1500 void hv_process_channel_removal(struct vmbus_channel *channel);
1501
1502 void vmbus_setevent(struct vmbus_channel *channel);
1503 /*
1504 * Negotiated version with the Host.
1505 */
1506
1507 extern __u32 vmbus_proto_version;
1508
1509 int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1510 const guid_t *shv_host_servie_id);
1511 void vmbus_set_event(struct vmbus_channel *channel);
1512
1513 /* Get the start of the ring buffer. */
1514 static inline void *
hv_get_ring_buffer(const struct hv_ring_buffer_info * ring_info)1515 hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1516 {
1517 return ring_info->ring_buffer->buffer;
1518 }
1519
1520 /*
1521 * Mask off host interrupt callback notifications
1522 */
hv_begin_read(struct hv_ring_buffer_info * rbi)1523 static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1524 {
1525 rbi->ring_buffer->interrupt_mask = 1;
1526
1527 /* make sure mask update is not reordered */
1528 virt_mb();
1529 }
1530
1531 /*
1532 * Re-enable host callback and return number of outstanding bytes
1533 */
hv_end_read(struct hv_ring_buffer_info * rbi)1534 static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1535 {
1536
1537 rbi->ring_buffer->interrupt_mask = 0;
1538
1539 /* make sure mask update is not reordered */
1540 virt_mb();
1541
1542 /*
1543 * Now check to see if the ring buffer is still empty.
1544 * If it is not, we raced and we need to process new
1545 * incoming messages.
1546 */
1547 return hv_get_bytes_to_read(rbi);
1548 }
1549
1550 /*
1551 * An API to support in-place processing of incoming VMBUS packets.
1552 */
1553
1554 /* Get data payload associated with descriptor */
hv_pkt_data(const struct vmpacket_descriptor * desc)1555 static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1556 {
1557 return (void *)((unsigned long)desc + (desc->offset8 << 3));
1558 }
1559
1560 /* Get data size associated with descriptor */
hv_pkt_datalen(const struct vmpacket_descriptor * desc)1561 static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1562 {
1563 return (desc->len8 << 3) - (desc->offset8 << 3);
1564 }
1565
1566
1567 struct vmpacket_descriptor *
1568 hv_pkt_iter_first(struct vmbus_channel *channel);
1569
1570 struct vmpacket_descriptor *
1571 __hv_pkt_iter_next(struct vmbus_channel *channel,
1572 const struct vmpacket_descriptor *pkt);
1573
1574 void hv_pkt_iter_close(struct vmbus_channel *channel);
1575
1576 /*
1577 * Get next packet descriptor from iterator
1578 * If at end of list, return NULL and update host.
1579 */
1580 static inline struct vmpacket_descriptor *
hv_pkt_iter_next(struct vmbus_channel * channel,const struct vmpacket_descriptor * pkt)1581 hv_pkt_iter_next(struct vmbus_channel *channel,
1582 const struct vmpacket_descriptor *pkt)
1583 {
1584 struct vmpacket_descriptor *nxt;
1585
1586 nxt = __hv_pkt_iter_next(channel, pkt);
1587 if (!nxt)
1588 hv_pkt_iter_close(channel);
1589
1590 return nxt;
1591 }
1592
1593 #define foreach_vmbus_pkt(pkt, channel) \
1594 for (pkt = hv_pkt_iter_first(channel); pkt; \
1595 pkt = hv_pkt_iter_next(channel, pkt))
1596
1597 /*
1598 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver
1599 * sends requests to read and write blocks. Each block must be 128 bytes or
1600 * smaller. Optionally, the VF driver can register a callback function which
1601 * will be invoked when the host says that one or more of the first 64 block
1602 * IDs is "invalid" which means that the VF driver should reread them.
1603 */
1604 #define HV_CONFIG_BLOCK_SIZE_MAX 128
1605
1606 int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len,
1607 unsigned int block_id, unsigned int *bytes_returned);
1608 int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len,
1609 unsigned int block_id);
1610 int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context,
1611 void (*block_invalidate)(void *context,
1612 u64 block_mask));
1613
1614 struct hyperv_pci_block_ops {
1615 int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len,
1616 unsigned int block_id, unsigned int *bytes_returned);
1617 int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len,
1618 unsigned int block_id);
1619 int (*reg_blk_invalidate)(struct pci_dev *dev, void *context,
1620 void (*block_invalidate)(void *context,
1621 u64 block_mask));
1622 };
1623
1624 extern struct hyperv_pci_block_ops hvpci_block_ops;
1625
1626 #endif /* _HYPERV_H */
1627