• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/namei.h>
48 
49 /* [Feb-1997 T. Schoebel-Theuer]
50  * Fundamental changes in the pathname lookup mechanisms (namei)
51  * were necessary because of omirr.  The reason is that omirr needs
52  * to know the _real_ pathname, not the user-supplied one, in case
53  * of symlinks (and also when transname replacements occur).
54  *
55  * The new code replaces the old recursive symlink resolution with
56  * an iterative one (in case of non-nested symlink chains).  It does
57  * this with calls to <fs>_follow_link().
58  * As a side effect, dir_namei(), _namei() and follow_link() are now
59  * replaced with a single function lookup_dentry() that can handle all
60  * the special cases of the former code.
61  *
62  * With the new dcache, the pathname is stored at each inode, at least as
63  * long as the refcount of the inode is positive.  As a side effect, the
64  * size of the dcache depends on the inode cache and thus is dynamic.
65  *
66  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
67  * resolution to correspond with current state of the code.
68  *
69  * Note that the symlink resolution is not *completely* iterative.
70  * There is still a significant amount of tail- and mid- recursion in
71  * the algorithm.  Also, note that <fs>_readlink() is not used in
72  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
73  * may return different results than <fs>_follow_link().  Many virtual
74  * filesystems (including /proc) exhibit this behavior.
75  */
76 
77 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
78  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
79  * and the name already exists in form of a symlink, try to create the new
80  * name indicated by the symlink. The old code always complained that the
81  * name already exists, due to not following the symlink even if its target
82  * is nonexistent.  The new semantics affects also mknod() and link() when
83  * the name is a symlink pointing to a non-existent name.
84  *
85  * I don't know which semantics is the right one, since I have no access
86  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
87  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
88  * "old" one. Personally, I think the new semantics is much more logical.
89  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
90  * file does succeed in both HP-UX and SunOs, but not in Solaris
91  * and in the old Linux semantics.
92  */
93 
94 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
95  * semantics.  See the comments in "open_namei" and "do_link" below.
96  *
97  * [10-Sep-98 Alan Modra] Another symlink change.
98  */
99 
100 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
101  *	inside the path - always follow.
102  *	in the last component in creation/removal/renaming - never follow.
103  *	if LOOKUP_FOLLOW passed - follow.
104  *	if the pathname has trailing slashes - follow.
105  *	otherwise - don't follow.
106  * (applied in that order).
107  *
108  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
109  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
110  * During the 2.4 we need to fix the userland stuff depending on it -
111  * hopefully we will be able to get rid of that wart in 2.5. So far only
112  * XEmacs seems to be relying on it...
113  */
114 /*
115  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
116  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
117  * any extra contention...
118  */
119 
120 /* In order to reduce some races, while at the same time doing additional
121  * checking and hopefully speeding things up, we copy filenames to the
122  * kernel data space before using them..
123  *
124  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
125  * PATH_MAX includes the nul terminator --RR.
126  */
127 
128 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
129 
130 struct filename *
getname_flags(const char __user * filename,int flags,int * empty)131 getname_flags(const char __user *filename, int flags, int *empty)
132 {
133 	struct filename *result;
134 	char *kname;
135 	int len;
136 
137 	result = audit_reusename(filename);
138 	if (result)
139 		return result;
140 
141 	result = __getname();
142 	if (unlikely(!result))
143 		return ERR_PTR(-ENOMEM);
144 
145 	/*
146 	 * First, try to embed the struct filename inside the names_cache
147 	 * allocation
148 	 */
149 	kname = (char *)result->iname;
150 	result->name = kname;
151 
152 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
153 	if (unlikely(len < 0)) {
154 		__putname(result);
155 		return ERR_PTR(len);
156 	}
157 
158 	/*
159 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
160 	 * separate struct filename so we can dedicate the entire
161 	 * names_cache allocation for the pathname, and re-do the copy from
162 	 * userland.
163 	 */
164 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
165 		const size_t size = offsetof(struct filename, iname[1]);
166 		kname = (char *)result;
167 
168 		/*
169 		 * size is chosen that way we to guarantee that
170 		 * result->iname[0] is within the same object and that
171 		 * kname can't be equal to result->iname, no matter what.
172 		 */
173 		result = kzalloc(size, GFP_KERNEL);
174 		if (unlikely(!result)) {
175 			__putname(kname);
176 			return ERR_PTR(-ENOMEM);
177 		}
178 		result->name = kname;
179 		len = strncpy_from_user(kname, filename, PATH_MAX);
180 		if (unlikely(len < 0)) {
181 			__putname(kname);
182 			kfree(result);
183 			return ERR_PTR(len);
184 		}
185 		if (unlikely(len == PATH_MAX)) {
186 			__putname(kname);
187 			kfree(result);
188 			return ERR_PTR(-ENAMETOOLONG);
189 		}
190 	}
191 
192 	result->refcnt = 1;
193 	/* The empty path is special. */
194 	if (unlikely(!len)) {
195 		if (empty)
196 			*empty = 1;
197 		if (!(flags & LOOKUP_EMPTY)) {
198 			putname(result);
199 			return ERR_PTR(-ENOENT);
200 		}
201 	}
202 
203 	result->uptr = filename;
204 	result->aname = NULL;
205 	audit_getname(result);
206 	return result;
207 }
208 
209 struct filename *
getname(const char __user * filename)210 getname(const char __user * filename)
211 {
212 	return getname_flags(filename, 0, NULL);
213 }
214 
215 struct filename *
getname_kernel(const char * filename)216 getname_kernel(const char * filename)
217 {
218 	struct filename *result;
219 	int len = strlen(filename) + 1;
220 
221 	result = __getname();
222 	if (unlikely(!result))
223 		return ERR_PTR(-ENOMEM);
224 
225 	if (len <= EMBEDDED_NAME_MAX) {
226 		result->name = (char *)result->iname;
227 	} else if (len <= PATH_MAX) {
228 		const size_t size = offsetof(struct filename, iname[1]);
229 		struct filename *tmp;
230 
231 		tmp = kmalloc(size, GFP_KERNEL);
232 		if (unlikely(!tmp)) {
233 			__putname(result);
234 			return ERR_PTR(-ENOMEM);
235 		}
236 		tmp->name = (char *)result;
237 		result = tmp;
238 	} else {
239 		__putname(result);
240 		return ERR_PTR(-ENAMETOOLONG);
241 	}
242 	memcpy((char *)result->name, filename, len);
243 	result->uptr = NULL;
244 	result->aname = NULL;
245 	result->refcnt = 1;
246 	audit_getname(result);
247 
248 	return result;
249 }
250 
putname(struct filename * name)251 void putname(struct filename *name)
252 {
253 	BUG_ON(name->refcnt <= 0);
254 
255 	if (--name->refcnt > 0)
256 		return;
257 
258 	if (name->name != name->iname) {
259 		__putname(name->name);
260 		kfree(name);
261 	} else
262 		__putname(name);
263 }
264 
check_acl(struct inode * inode,int mask)265 static int check_acl(struct inode *inode, int mask)
266 {
267 #ifdef CONFIG_FS_POSIX_ACL
268 	struct posix_acl *acl;
269 
270 	if (mask & MAY_NOT_BLOCK) {
271 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
272 	        if (!acl)
273 	                return -EAGAIN;
274 		/* no ->get_acl() calls in RCU mode... */
275 		if (is_uncached_acl(acl))
276 			return -ECHILD;
277 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
278 	}
279 
280 	acl = get_acl(inode, ACL_TYPE_ACCESS);
281 	if (IS_ERR(acl))
282 		return PTR_ERR(acl);
283 	if (acl) {
284 	        int error = posix_acl_permission(inode, acl, mask);
285 	        posix_acl_release(acl);
286 	        return error;
287 	}
288 #endif
289 
290 	return -EAGAIN;
291 }
292 
293 /*
294  * This does the basic permission checking
295  */
acl_permission_check(struct inode * inode,int mask)296 static int acl_permission_check(struct inode *inode, int mask)
297 {
298 	unsigned int mode = inode->i_mode;
299 
300 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
301 		mode >>= 6;
302 	else {
303 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
304 			int error = check_acl(inode, mask);
305 			if (error != -EAGAIN)
306 				return error;
307 		}
308 
309 		if (in_group_p(inode->i_gid))
310 			mode >>= 3;
311 	}
312 
313 	/*
314 	 * If the DACs are ok we don't need any capability check.
315 	 */
316 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
317 		return 0;
318 	return -EACCES;
319 }
320 
321 /**
322  * generic_permission -  check for access rights on a Posix-like filesystem
323  * @inode:	inode to check access rights for
324  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
325  *
326  * Used to check for read/write/execute permissions on a file.
327  * We use "fsuid" for this, letting us set arbitrary permissions
328  * for filesystem access without changing the "normal" uids which
329  * are used for other things.
330  *
331  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
332  * request cannot be satisfied (eg. requires blocking or too much complexity).
333  * It would then be called again in ref-walk mode.
334  */
generic_permission(struct inode * inode,int mask)335 int generic_permission(struct inode *inode, int mask)
336 {
337 	int ret;
338 
339 	/*
340 	 * Do the basic permission checks.
341 	 */
342 	ret = acl_permission_check(inode, mask);
343 	if (ret != -EACCES)
344 		return ret;
345 
346 	if (S_ISDIR(inode->i_mode)) {
347 		/* DACs are overridable for directories */
348 		if (!(mask & MAY_WRITE))
349 			if (capable_wrt_inode_uidgid(inode,
350 						     CAP_DAC_READ_SEARCH))
351 				return 0;
352 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
353 			return 0;
354 		return -EACCES;
355 	}
356 
357 	/*
358 	 * Searching includes executable on directories, else just read.
359 	 */
360 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
361 	if (mask == MAY_READ)
362 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
363 			return 0;
364 	/*
365 	 * Read/write DACs are always overridable.
366 	 * Executable DACs are overridable when there is
367 	 * at least one exec bit set.
368 	 */
369 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
370 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
371 			return 0;
372 
373 	return -EACCES;
374 }
375 EXPORT_SYMBOL(generic_permission);
376 
377 /*
378  * We _really_ want to just do "generic_permission()" without
379  * even looking at the inode->i_op values. So we keep a cache
380  * flag in inode->i_opflags, that says "this has not special
381  * permission function, use the fast case".
382  */
do_inode_permission(struct inode * inode,int mask)383 static inline int do_inode_permission(struct inode *inode, int mask)
384 {
385 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
386 		if (likely(inode->i_op->permission))
387 			return inode->i_op->permission(inode, mask);
388 
389 		/* This gets set once for the inode lifetime */
390 		spin_lock(&inode->i_lock);
391 		inode->i_opflags |= IOP_FASTPERM;
392 		spin_unlock(&inode->i_lock);
393 	}
394 	return generic_permission(inode, mask);
395 }
396 
397 /**
398  * sb_permission - Check superblock-level permissions
399  * @sb: Superblock of inode to check permission on
400  * @inode: Inode to check permission on
401  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
402  *
403  * Separate out file-system wide checks from inode-specific permission checks.
404  */
sb_permission(struct super_block * sb,struct inode * inode,int mask)405 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
406 {
407 	if (unlikely(mask & MAY_WRITE)) {
408 		umode_t mode = inode->i_mode;
409 
410 		/* Nobody gets write access to a read-only fs. */
411 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
412 			return -EROFS;
413 	}
414 	return 0;
415 }
416 
417 /**
418  * inode_permission - Check for access rights to a given inode
419  * @inode: Inode to check permission on
420  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
421  *
422  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
423  * this, letting us set arbitrary permissions for filesystem access without
424  * changing the "normal" UIDs which are used for other things.
425  *
426  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
427  */
inode_permission(struct inode * inode,int mask)428 int inode_permission(struct inode *inode, int mask)
429 {
430 	int retval;
431 
432 	retval = sb_permission(inode->i_sb, inode, mask);
433 	if (retval)
434 		return retval;
435 
436 	if (unlikely(mask & MAY_WRITE)) {
437 		/*
438 		 * Nobody gets write access to an immutable file.
439 		 */
440 		if (IS_IMMUTABLE(inode))
441 			return -EPERM;
442 
443 		/*
444 		 * Updating mtime will likely cause i_uid and i_gid to be
445 		 * written back improperly if their true value is unknown
446 		 * to the vfs.
447 		 */
448 		if (HAS_UNMAPPED_ID(inode))
449 			return -EACCES;
450 	}
451 
452 	retval = do_inode_permission(inode, mask);
453 	if (retval)
454 		return retval;
455 
456 	retval = devcgroup_inode_permission(inode, mask);
457 	if (retval)
458 		return retval;
459 
460 	return security_inode_permission(inode, mask);
461 }
462 EXPORT_SYMBOL(inode_permission);
463 
464 /**
465  * path_get - get a reference to a path
466  * @path: path to get the reference to
467  *
468  * Given a path increment the reference count to the dentry and the vfsmount.
469  */
path_get(const struct path * path)470 void path_get(const struct path *path)
471 {
472 	mntget(path->mnt);
473 	dget(path->dentry);
474 }
475 EXPORT_SYMBOL(path_get);
476 
477 /**
478  * path_put - put a reference to a path
479  * @path: path to put the reference to
480  *
481  * Given a path decrement the reference count to the dentry and the vfsmount.
482  */
path_put(const struct path * path)483 void path_put(const struct path *path)
484 {
485 	dput(path->dentry);
486 	mntput(path->mnt);
487 }
488 EXPORT_SYMBOL(path_put);
489 
490 #define EMBEDDED_LEVELS 2
491 struct nameidata {
492 	struct path	path;
493 	struct qstr	last;
494 	struct path	root;
495 	struct inode	*inode; /* path.dentry.d_inode */
496 	unsigned int	flags;
497 	unsigned	seq, m_seq;
498 	int		last_type;
499 	unsigned	depth;
500 	int		total_link_count;
501 	struct saved {
502 		struct path link;
503 		struct delayed_call done;
504 		const char *name;
505 		unsigned seq;
506 	} *stack, internal[EMBEDDED_LEVELS];
507 	struct filename	*name;
508 	struct nameidata *saved;
509 	struct inode	*link_inode;
510 	unsigned	root_seq;
511 	int		dfd;
512 } __randomize_layout;
513 
set_nameidata(struct nameidata * p,int dfd,struct filename * name)514 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
515 {
516 	struct nameidata *old = current->nameidata;
517 	p->stack = p->internal;
518 	p->dfd = dfd;
519 	p->name = name;
520 	p->total_link_count = old ? old->total_link_count : 0;
521 	p->saved = old;
522 	current->nameidata = p;
523 }
524 
restore_nameidata(void)525 static void restore_nameidata(void)
526 {
527 	struct nameidata *now = current->nameidata, *old = now->saved;
528 
529 	current->nameidata = old;
530 	if (old)
531 		old->total_link_count = now->total_link_count;
532 	if (now->stack != now->internal)
533 		kfree(now->stack);
534 }
535 
__nd_alloc_stack(struct nameidata * nd)536 static int __nd_alloc_stack(struct nameidata *nd)
537 {
538 	struct saved *p;
539 
540 	if (nd->flags & LOOKUP_RCU) {
541 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
542 				  GFP_ATOMIC);
543 		if (unlikely(!p))
544 			return -ECHILD;
545 	} else {
546 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
547 				  GFP_KERNEL);
548 		if (unlikely(!p))
549 			return -ENOMEM;
550 	}
551 	memcpy(p, nd->internal, sizeof(nd->internal));
552 	nd->stack = p;
553 	return 0;
554 }
555 
556 /**
557  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
558  * @path: nameidate to verify
559  *
560  * Rename can sometimes move a file or directory outside of a bind
561  * mount, path_connected allows those cases to be detected.
562  */
path_connected(const struct path * path)563 static bool path_connected(const struct path *path)
564 {
565 	struct vfsmount *mnt = path->mnt;
566 	struct super_block *sb = mnt->mnt_sb;
567 
568 	/* Bind mounts and multi-root filesystems can have disconnected paths */
569 	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
570 		return true;
571 
572 	return is_subdir(path->dentry, mnt->mnt_root);
573 }
574 
nd_alloc_stack(struct nameidata * nd)575 static inline int nd_alloc_stack(struct nameidata *nd)
576 {
577 	if (likely(nd->depth != EMBEDDED_LEVELS))
578 		return 0;
579 	if (likely(nd->stack != nd->internal))
580 		return 0;
581 	return __nd_alloc_stack(nd);
582 }
583 
drop_links(struct nameidata * nd)584 static void drop_links(struct nameidata *nd)
585 {
586 	int i = nd->depth;
587 	while (i--) {
588 		struct saved *last = nd->stack + i;
589 		do_delayed_call(&last->done);
590 		clear_delayed_call(&last->done);
591 	}
592 }
593 
terminate_walk(struct nameidata * nd)594 static void terminate_walk(struct nameidata *nd)
595 {
596 	drop_links(nd);
597 	if (!(nd->flags & LOOKUP_RCU)) {
598 		int i;
599 		path_put(&nd->path);
600 		for (i = 0; i < nd->depth; i++)
601 			path_put(&nd->stack[i].link);
602 		if (nd->flags & LOOKUP_ROOT_GRABBED) {
603 			path_put(&nd->root);
604 			nd->flags &= ~LOOKUP_ROOT_GRABBED;
605 		}
606 	} else {
607 		nd->flags &= ~LOOKUP_RCU;
608 		rcu_read_unlock();
609 	}
610 	nd->depth = 0;
611 }
612 
613 /* path_put is needed afterwards regardless of success or failure */
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)614 static bool legitimize_path(struct nameidata *nd,
615 			    struct path *path, unsigned seq)
616 {
617 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
618 	if (unlikely(res)) {
619 		if (res > 0)
620 			path->mnt = NULL;
621 		path->dentry = NULL;
622 		return false;
623 	}
624 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
625 		path->dentry = NULL;
626 		return false;
627 	}
628 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
629 }
630 
legitimize_links(struct nameidata * nd)631 static bool legitimize_links(struct nameidata *nd)
632 {
633 	int i;
634 	for (i = 0; i < nd->depth; i++) {
635 		struct saved *last = nd->stack + i;
636 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
637 			drop_links(nd);
638 			nd->depth = i + 1;
639 			return false;
640 		}
641 	}
642 	return true;
643 }
644 
legitimize_root(struct nameidata * nd)645 static bool legitimize_root(struct nameidata *nd)
646 {
647 	if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
648 		return true;
649 	nd->flags |= LOOKUP_ROOT_GRABBED;
650 	return legitimize_path(nd, &nd->root, nd->root_seq);
651 }
652 
653 /*
654  * Path walking has 2 modes, rcu-walk and ref-walk (see
655  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
656  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
657  * normal reference counts on dentries and vfsmounts to transition to ref-walk
658  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
659  * got stuck, so ref-walk may continue from there. If this is not successful
660  * (eg. a seqcount has changed), then failure is returned and it's up to caller
661  * to restart the path walk from the beginning in ref-walk mode.
662  */
663 
664 /**
665  * unlazy_walk - try to switch to ref-walk mode.
666  * @nd: nameidata pathwalk data
667  * Returns: 0 on success, -ECHILD on failure
668  *
669  * unlazy_walk attempts to legitimize the current nd->path and nd->root
670  * for ref-walk mode.
671  * Must be called from rcu-walk context.
672  * Nothing should touch nameidata between unlazy_walk() failure and
673  * terminate_walk().
674  */
unlazy_walk(struct nameidata * nd)675 static int unlazy_walk(struct nameidata *nd)
676 {
677 	struct dentry *parent = nd->path.dentry;
678 
679 	BUG_ON(!(nd->flags & LOOKUP_RCU));
680 
681 	nd->flags &= ~LOOKUP_RCU;
682 	if (unlikely(!legitimize_links(nd)))
683 		goto out1;
684 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
685 		goto out;
686 	if (unlikely(!legitimize_root(nd)))
687 		goto out;
688 	rcu_read_unlock();
689 	BUG_ON(nd->inode != parent->d_inode);
690 	return 0;
691 
692 out1:
693 	nd->path.mnt = NULL;
694 	nd->path.dentry = NULL;
695 out:
696 	rcu_read_unlock();
697 	return -ECHILD;
698 }
699 
700 /**
701  * unlazy_child - try to switch to ref-walk mode.
702  * @nd: nameidata pathwalk data
703  * @dentry: child of nd->path.dentry
704  * @seq: seq number to check dentry against
705  * Returns: 0 on success, -ECHILD on failure
706  *
707  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
708  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
709  * @nd.  Must be called from rcu-walk context.
710  * Nothing should touch nameidata between unlazy_child() failure and
711  * terminate_walk().
712  */
unlazy_child(struct nameidata * nd,struct dentry * dentry,unsigned seq)713 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
714 {
715 	BUG_ON(!(nd->flags & LOOKUP_RCU));
716 
717 	nd->flags &= ~LOOKUP_RCU;
718 	if (unlikely(!legitimize_links(nd)))
719 		goto out2;
720 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
721 		goto out2;
722 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
723 		goto out1;
724 
725 	/*
726 	 * We need to move both the parent and the dentry from the RCU domain
727 	 * to be properly refcounted. And the sequence number in the dentry
728 	 * validates *both* dentry counters, since we checked the sequence
729 	 * number of the parent after we got the child sequence number. So we
730 	 * know the parent must still be valid if the child sequence number is
731 	 */
732 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
733 		goto out;
734 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
735 		goto out_dput;
736 	/*
737 	 * Sequence counts matched. Now make sure that the root is
738 	 * still valid and get it if required.
739 	 */
740 	if (unlikely(!legitimize_root(nd)))
741 		goto out_dput;
742 	rcu_read_unlock();
743 	return 0;
744 
745 out2:
746 	nd->path.mnt = NULL;
747 out1:
748 	nd->path.dentry = NULL;
749 out:
750 	rcu_read_unlock();
751 	return -ECHILD;
752 out_dput:
753 	rcu_read_unlock();
754 	dput(dentry);
755 	return -ECHILD;
756 }
757 
d_revalidate(struct dentry * dentry,unsigned int flags)758 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
759 {
760 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
761 		return dentry->d_op->d_revalidate(dentry, flags);
762 	else
763 		return 1;
764 }
765 
766 #define INIT_PATH_SIZE 64
767 
success_walk_trace(struct nameidata * nd)768 static void success_walk_trace(struct nameidata *nd)
769 {
770 	struct path *pt = &nd->path;
771 	struct inode *i = nd->inode;
772 	char buf[INIT_PATH_SIZE], *try_buf;
773 	int cur_path_size;
774 	char *p;
775 
776 	/* When eBPF/ tracepoint is disabled, keep overhead low. */
777 	if (!trace_inodepath_enabled())
778 		return;
779 
780 	/* First try stack allocated buffer. */
781 	try_buf = buf;
782 	cur_path_size = INIT_PATH_SIZE;
783 
784 	while (cur_path_size <= PATH_MAX) {
785 		/* Free previous heap allocation if we are now trying
786 		 * a second or later heap allocation.
787 		 */
788 		if (try_buf != buf)
789 			kfree(try_buf);
790 
791 		/* All but the first alloc are on the heap. */
792 		if (cur_path_size != INIT_PATH_SIZE) {
793 			try_buf = kmalloc(cur_path_size, GFP_KERNEL);
794 			if (!try_buf) {
795 				try_buf = buf;
796 				sprintf(try_buf, "error:buf_alloc_failed");
797 				break;
798 			}
799 		}
800 
801 		p = d_path(pt, try_buf, cur_path_size);
802 
803 		if (!IS_ERR(p)) {
804 			char *end = mangle_path(try_buf, p, "\n");
805 
806 			if (end) {
807 				try_buf[end - try_buf] = 0;
808 				break;
809 			} else {
810 				/* On mangle errors, double path size
811 				 * till PATH_MAX.
812 				 */
813 				cur_path_size = cur_path_size << 1;
814 				continue;
815 			}
816 		}
817 
818 		if (PTR_ERR(p) == -ENAMETOOLONG) {
819 			/* If d_path complains that name is too long,
820 			 * then double path size till PATH_MAX.
821 			 */
822 			cur_path_size = cur_path_size << 1;
823 			continue;
824 		}
825 
826 		sprintf(try_buf, "error:d_path_failed_%lu",
827 			-1 * PTR_ERR(p));
828 		break;
829 	}
830 
831 	if (cur_path_size > PATH_MAX)
832 		sprintf(try_buf, "error:d_path_name_too_long");
833 
834 	trace_inodepath(i, try_buf);
835 
836 	if (try_buf != buf)
837 		kfree(try_buf);
838 	return;
839 }
840 
841 /**
842  * complete_walk - successful completion of path walk
843  * @nd:  pointer nameidata
844  *
845  * If we had been in RCU mode, drop out of it and legitimize nd->path.
846  * Revalidate the final result, unless we'd already done that during
847  * the path walk or the filesystem doesn't ask for it.  Return 0 on
848  * success, -error on failure.  In case of failure caller does not
849  * need to drop nd->path.
850  */
complete_walk(struct nameidata * nd)851 static int complete_walk(struct nameidata *nd)
852 {
853 	struct dentry *dentry = nd->path.dentry;
854 	int status;
855 
856 	if (nd->flags & LOOKUP_RCU) {
857 		if (!(nd->flags & LOOKUP_ROOT))
858 			nd->root.mnt = NULL;
859 		if (unlikely(unlazy_walk(nd)))
860 			return -ECHILD;
861 	}
862 
863 	if (likely(!(nd->flags & LOOKUP_JUMPED))) {
864 		success_walk_trace(nd);
865 		return 0;
866 	}
867 
868 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) {
869 		success_walk_trace(nd);
870 		return 0;
871 	}
872 
873 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
874 	if (status > 0) {
875 		success_walk_trace(nd);
876 		return 0;
877 	}
878 
879 	if (!status)
880 		status = -ESTALE;
881 
882 	return status;
883 }
884 
set_root(struct nameidata * nd)885 static void set_root(struct nameidata *nd)
886 {
887 	struct fs_struct *fs = current->fs;
888 
889 	if (nd->flags & LOOKUP_RCU) {
890 		unsigned seq;
891 
892 		do {
893 			seq = read_seqcount_begin(&fs->seq);
894 			nd->root = fs->root;
895 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
896 		} while (read_seqcount_retry(&fs->seq, seq));
897 	} else {
898 		get_fs_root(fs, &nd->root);
899 		nd->flags |= LOOKUP_ROOT_GRABBED;
900 	}
901 }
902 
path_put_conditional(struct path * path,struct nameidata * nd)903 static void path_put_conditional(struct path *path, struct nameidata *nd)
904 {
905 	dput(path->dentry);
906 	if (path->mnt != nd->path.mnt)
907 		mntput(path->mnt);
908 }
909 
path_to_nameidata(const struct path * path,struct nameidata * nd)910 static inline void path_to_nameidata(const struct path *path,
911 					struct nameidata *nd)
912 {
913 	if (!(nd->flags & LOOKUP_RCU)) {
914 		dput(nd->path.dentry);
915 		if (nd->path.mnt != path->mnt)
916 			mntput(nd->path.mnt);
917 	}
918 	nd->path.mnt = path->mnt;
919 	nd->path.dentry = path->dentry;
920 }
921 
nd_jump_root(struct nameidata * nd)922 static int nd_jump_root(struct nameidata *nd)
923 {
924 	if (nd->flags & LOOKUP_RCU) {
925 		struct dentry *d;
926 		nd->path = nd->root;
927 		d = nd->path.dentry;
928 		nd->inode = d->d_inode;
929 		nd->seq = nd->root_seq;
930 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
931 			return -ECHILD;
932 	} else {
933 		path_put(&nd->path);
934 		nd->path = nd->root;
935 		path_get(&nd->path);
936 		nd->inode = nd->path.dentry->d_inode;
937 	}
938 	nd->flags |= LOOKUP_JUMPED;
939 	return 0;
940 }
941 
942 /*
943  * Helper to directly jump to a known parsed path from ->get_link,
944  * caller must have taken a reference to path beforehand.
945  */
nd_jump_link(struct path * path)946 void nd_jump_link(struct path *path)
947 {
948 	struct nameidata *nd = current->nameidata;
949 	path_put(&nd->path);
950 
951 	nd->path = *path;
952 	nd->inode = nd->path.dentry->d_inode;
953 	nd->flags |= LOOKUP_JUMPED;
954 }
955 
put_link(struct nameidata * nd)956 static inline void put_link(struct nameidata *nd)
957 {
958 	struct saved *last = nd->stack + --nd->depth;
959 	do_delayed_call(&last->done);
960 	if (!(nd->flags & LOOKUP_RCU))
961 		path_put(&last->link);
962 }
963 
964 int sysctl_protected_symlinks __read_mostly = 0;
965 int sysctl_protected_hardlinks __read_mostly = 0;
966 int sysctl_protected_fifos __read_mostly;
967 int sysctl_protected_regular __read_mostly;
968 
969 /**
970  * may_follow_link - Check symlink following for unsafe situations
971  * @nd: nameidata pathwalk data
972  *
973  * In the case of the sysctl_protected_symlinks sysctl being enabled,
974  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
975  * in a sticky world-writable directory. This is to protect privileged
976  * processes from failing races against path names that may change out
977  * from under them by way of other users creating malicious symlinks.
978  * It will permit symlinks to be followed only when outside a sticky
979  * world-writable directory, or when the uid of the symlink and follower
980  * match, or when the directory owner matches the symlink's owner.
981  *
982  * Returns 0 if following the symlink is allowed, -ve on error.
983  */
may_follow_link(struct nameidata * nd)984 static inline int may_follow_link(struct nameidata *nd)
985 {
986 	const struct inode *inode;
987 	const struct inode *parent;
988 	kuid_t puid;
989 
990 	if (!sysctl_protected_symlinks)
991 		return 0;
992 
993 	/* Allowed if owner and follower match. */
994 	inode = nd->link_inode;
995 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
996 		return 0;
997 
998 	/* Allowed if parent directory not sticky and world-writable. */
999 	parent = nd->inode;
1000 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1001 		return 0;
1002 
1003 	/* Allowed if parent directory and link owner match. */
1004 	puid = parent->i_uid;
1005 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
1006 		return 0;
1007 
1008 	if (nd->flags & LOOKUP_RCU)
1009 		return -ECHILD;
1010 
1011 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1012 	audit_log_link_denied("follow_link");
1013 	return -EACCES;
1014 }
1015 
1016 /**
1017  * safe_hardlink_source - Check for safe hardlink conditions
1018  * @inode: the source inode to hardlink from
1019  *
1020  * Return false if at least one of the following conditions:
1021  *    - inode is not a regular file
1022  *    - inode is setuid
1023  *    - inode is setgid and group-exec
1024  *    - access failure for read and write
1025  *
1026  * Otherwise returns true.
1027  */
safe_hardlink_source(struct inode * inode)1028 static bool safe_hardlink_source(struct inode *inode)
1029 {
1030 	umode_t mode = inode->i_mode;
1031 
1032 	/* Special files should not get pinned to the filesystem. */
1033 	if (!S_ISREG(mode))
1034 		return false;
1035 
1036 	/* Setuid files should not get pinned to the filesystem. */
1037 	if (mode & S_ISUID)
1038 		return false;
1039 
1040 	/* Executable setgid files should not get pinned to the filesystem. */
1041 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1042 		return false;
1043 
1044 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1045 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
1046 		return false;
1047 
1048 	return true;
1049 }
1050 
1051 /**
1052  * may_linkat - Check permissions for creating a hardlink
1053  * @link: the source to hardlink from
1054  *
1055  * Block hardlink when all of:
1056  *  - sysctl_protected_hardlinks enabled
1057  *  - fsuid does not match inode
1058  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1059  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1060  *
1061  * Returns 0 if successful, -ve on error.
1062  */
may_linkat(struct path * link)1063 static int may_linkat(struct path *link)
1064 {
1065 	struct inode *inode = link->dentry->d_inode;
1066 
1067 	/* Inode writeback is not safe when the uid or gid are invalid. */
1068 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
1069 		return -EOVERFLOW;
1070 
1071 	if (!sysctl_protected_hardlinks)
1072 		return 0;
1073 
1074 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1075 	 * otherwise, it must be a safe source.
1076 	 */
1077 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1078 		return 0;
1079 
1080 	audit_log_link_denied("linkat");
1081 	return -EPERM;
1082 }
1083 
1084 /**
1085  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1086  *			  should be allowed, or not, on files that already
1087  *			  exist.
1088  * @dir_mode: mode bits of directory
1089  * @dir_uid: owner of directory
1090  * @inode: the inode of the file to open
1091  *
1092  * Block an O_CREAT open of a FIFO (or a regular file) when:
1093  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1094  *   - the file already exists
1095  *   - we are in a sticky directory
1096  *   - we don't own the file
1097  *   - the owner of the directory doesn't own the file
1098  *   - the directory is world writable
1099  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1100  * the directory doesn't have to be world writable: being group writable will
1101  * be enough.
1102  *
1103  * Returns 0 if the open is allowed, -ve on error.
1104  */
may_create_in_sticky(umode_t dir_mode,kuid_t dir_uid,struct inode * const inode)1105 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1106 				struct inode * const inode)
1107 {
1108 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1109 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1110 	    likely(!(dir_mode & S_ISVTX)) ||
1111 	    uid_eq(inode->i_uid, dir_uid) ||
1112 	    uid_eq(current_fsuid(), inode->i_uid))
1113 		return 0;
1114 
1115 	if (likely(dir_mode & 0002) ||
1116 	    (dir_mode & 0020 &&
1117 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1118 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1119 		return -EACCES;
1120 	}
1121 	return 0;
1122 }
1123 
1124 static __always_inline
get_link(struct nameidata * nd)1125 const char *get_link(struct nameidata *nd)
1126 {
1127 	struct saved *last = nd->stack + nd->depth - 1;
1128 	struct dentry *dentry = last->link.dentry;
1129 	struct inode *inode = nd->link_inode;
1130 	int error;
1131 	const char *res;
1132 
1133 	if (!(nd->flags & LOOKUP_RCU)) {
1134 		touch_atime(&last->link);
1135 		cond_resched();
1136 	} else if (atime_needs_update(&last->link, inode)) {
1137 		if (unlikely(unlazy_walk(nd)))
1138 			return ERR_PTR(-ECHILD);
1139 		touch_atime(&last->link);
1140 	}
1141 
1142 	error = security_inode_follow_link(dentry, inode,
1143 					   nd->flags & LOOKUP_RCU);
1144 	if (unlikely(error))
1145 		return ERR_PTR(error);
1146 
1147 	nd->last_type = LAST_BIND;
1148 	res = READ_ONCE(inode->i_link);
1149 	if (!res) {
1150 		const char * (*get)(struct dentry *, struct inode *,
1151 				struct delayed_call *);
1152 		get = inode->i_op->get_link;
1153 		if (nd->flags & LOOKUP_RCU) {
1154 			res = get(NULL, inode, &last->done);
1155 			if (res == ERR_PTR(-ECHILD)) {
1156 				if (unlikely(unlazy_walk(nd)))
1157 					return ERR_PTR(-ECHILD);
1158 				res = get(dentry, inode, &last->done);
1159 			}
1160 		} else {
1161 			res = get(dentry, inode, &last->done);
1162 		}
1163 		if (IS_ERR_OR_NULL(res))
1164 			return res;
1165 	}
1166 	if (*res == '/') {
1167 		if (!nd->root.mnt)
1168 			set_root(nd);
1169 		if (unlikely(nd_jump_root(nd)))
1170 			return ERR_PTR(-ECHILD);
1171 		while (unlikely(*++res == '/'))
1172 			;
1173 	}
1174 	if (!*res)
1175 		res = NULL;
1176 	return res;
1177 }
1178 
1179 /*
1180  * follow_up - Find the mountpoint of path's vfsmount
1181  *
1182  * Given a path, find the mountpoint of its source file system.
1183  * Replace @path with the path of the mountpoint in the parent mount.
1184  * Up is towards /.
1185  *
1186  * Return 1 if we went up a level and 0 if we were already at the
1187  * root.
1188  */
follow_up(struct path * path)1189 int follow_up(struct path *path)
1190 {
1191 	struct mount *mnt = real_mount(path->mnt);
1192 	struct mount *parent;
1193 	struct dentry *mountpoint;
1194 
1195 	read_seqlock_excl(&mount_lock);
1196 	parent = mnt->mnt_parent;
1197 	if (parent == mnt) {
1198 		read_sequnlock_excl(&mount_lock);
1199 		return 0;
1200 	}
1201 	mntget(&parent->mnt);
1202 	mountpoint = dget(mnt->mnt_mountpoint);
1203 	read_sequnlock_excl(&mount_lock);
1204 	dput(path->dentry);
1205 	path->dentry = mountpoint;
1206 	mntput(path->mnt);
1207 	path->mnt = &parent->mnt;
1208 	return 1;
1209 }
1210 EXPORT_SYMBOL(follow_up);
1211 
1212 /*
1213  * Perform an automount
1214  * - return -EISDIR to tell follow_managed() to stop and return the path we
1215  *   were called with.
1216  */
follow_automount(struct path * path,struct nameidata * nd,bool * need_mntput)1217 static int follow_automount(struct path *path, struct nameidata *nd,
1218 			    bool *need_mntput)
1219 {
1220 	struct vfsmount *mnt;
1221 	int err;
1222 
1223 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1224 		return -EREMOTE;
1225 
1226 	/* We don't want to mount if someone's just doing a stat -
1227 	 * unless they're stat'ing a directory and appended a '/' to
1228 	 * the name.
1229 	 *
1230 	 * We do, however, want to mount if someone wants to open or
1231 	 * create a file of any type under the mountpoint, wants to
1232 	 * traverse through the mountpoint or wants to open the
1233 	 * mounted directory.  Also, autofs may mark negative dentries
1234 	 * as being automount points.  These will need the attentions
1235 	 * of the daemon to instantiate them before they can be used.
1236 	 */
1237 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1238 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1239 	    path->dentry->d_inode)
1240 		return -EISDIR;
1241 
1242 	nd->total_link_count++;
1243 	if (nd->total_link_count >= 40)
1244 		return -ELOOP;
1245 
1246 	mnt = path->dentry->d_op->d_automount(path);
1247 	if (IS_ERR(mnt)) {
1248 		/*
1249 		 * The filesystem is allowed to return -EISDIR here to indicate
1250 		 * it doesn't want to automount.  For instance, autofs would do
1251 		 * this so that its userspace daemon can mount on this dentry.
1252 		 *
1253 		 * However, we can only permit this if it's a terminal point in
1254 		 * the path being looked up; if it wasn't then the remainder of
1255 		 * the path is inaccessible and we should say so.
1256 		 */
1257 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1258 			return -EREMOTE;
1259 		return PTR_ERR(mnt);
1260 	}
1261 
1262 	if (!mnt) /* mount collision */
1263 		return 0;
1264 
1265 	if (!*need_mntput) {
1266 		/* lock_mount() may release path->mnt on error */
1267 		mntget(path->mnt);
1268 		*need_mntput = true;
1269 	}
1270 	err = finish_automount(mnt, path);
1271 
1272 	switch (err) {
1273 	case -EBUSY:
1274 		/* Someone else made a mount here whilst we were busy */
1275 		return 0;
1276 	case 0:
1277 		path_put(path);
1278 		path->mnt = mnt;
1279 		path->dentry = dget(mnt->mnt_root);
1280 		return 0;
1281 	default:
1282 		return err;
1283 	}
1284 
1285 }
1286 
1287 /*
1288  * Handle a dentry that is managed in some way.
1289  * - Flagged for transit management (autofs)
1290  * - Flagged as mountpoint
1291  * - Flagged as automount point
1292  *
1293  * This may only be called in refwalk mode.
1294  *
1295  * Serialization is taken care of in namespace.c
1296  */
follow_managed(struct path * path,struct nameidata * nd)1297 static int follow_managed(struct path *path, struct nameidata *nd)
1298 {
1299 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1300 	unsigned managed;
1301 	bool need_mntput = false;
1302 	int ret = 0;
1303 
1304 	/* Given that we're not holding a lock here, we retain the value in a
1305 	 * local variable for each dentry as we look at it so that we don't see
1306 	 * the components of that value change under us */
1307 	while (managed = READ_ONCE(path->dentry->d_flags),
1308 	       managed &= DCACHE_MANAGED_DENTRY,
1309 	       unlikely(managed != 0)) {
1310 		/* Allow the filesystem to manage the transit without i_mutex
1311 		 * being held. */
1312 		if (managed & DCACHE_MANAGE_TRANSIT) {
1313 			BUG_ON(!path->dentry->d_op);
1314 			BUG_ON(!path->dentry->d_op->d_manage);
1315 			ret = path->dentry->d_op->d_manage(path, false);
1316 			if (ret < 0)
1317 				break;
1318 		}
1319 
1320 		/* Transit to a mounted filesystem. */
1321 		if (managed & DCACHE_MOUNTED) {
1322 			struct vfsmount *mounted = lookup_mnt(path);
1323 			if (mounted) {
1324 				dput(path->dentry);
1325 				if (need_mntput)
1326 					mntput(path->mnt);
1327 				path->mnt = mounted;
1328 				path->dentry = dget(mounted->mnt_root);
1329 				need_mntput = true;
1330 				continue;
1331 			}
1332 
1333 			/* Something is mounted on this dentry in another
1334 			 * namespace and/or whatever was mounted there in this
1335 			 * namespace got unmounted before lookup_mnt() could
1336 			 * get it */
1337 		}
1338 
1339 		/* Handle an automount point */
1340 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1341 			ret = follow_automount(path, nd, &need_mntput);
1342 			if (ret < 0)
1343 				break;
1344 			continue;
1345 		}
1346 
1347 		/* We didn't change the current path point */
1348 		break;
1349 	}
1350 
1351 	if (need_mntput && path->mnt == mnt)
1352 		mntput(path->mnt);
1353 	if (ret == -EISDIR || !ret)
1354 		ret = 1;
1355 	if (need_mntput)
1356 		nd->flags |= LOOKUP_JUMPED;
1357 	if (unlikely(ret < 0))
1358 		path_put_conditional(path, nd);
1359 	return ret;
1360 }
1361 
follow_down_one(struct path * path)1362 int follow_down_one(struct path *path)
1363 {
1364 	struct vfsmount *mounted;
1365 
1366 	mounted = lookup_mnt(path);
1367 	if (mounted) {
1368 		dput(path->dentry);
1369 		mntput(path->mnt);
1370 		path->mnt = mounted;
1371 		path->dentry = dget(mounted->mnt_root);
1372 		return 1;
1373 	}
1374 	return 0;
1375 }
1376 EXPORT_SYMBOL(follow_down_one);
1377 
managed_dentry_rcu(const struct path * path)1378 static inline int managed_dentry_rcu(const struct path *path)
1379 {
1380 	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1381 		path->dentry->d_op->d_manage(path, true) : 0;
1382 }
1383 
1384 /*
1385  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1386  * we meet a managed dentry that would need blocking.
1387  */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode,unsigned * seqp)1388 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1389 			       struct inode **inode, unsigned *seqp)
1390 {
1391 	for (;;) {
1392 		struct mount *mounted;
1393 		/*
1394 		 * Don't forget we might have a non-mountpoint managed dentry
1395 		 * that wants to block transit.
1396 		 */
1397 		switch (managed_dentry_rcu(path)) {
1398 		case -ECHILD:
1399 		default:
1400 			return false;
1401 		case -EISDIR:
1402 			return true;
1403 		case 0:
1404 			break;
1405 		}
1406 
1407 		if (!d_mountpoint(path->dentry))
1408 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1409 
1410 		mounted = __lookup_mnt(path->mnt, path->dentry);
1411 		if (!mounted)
1412 			break;
1413 		path->mnt = &mounted->mnt;
1414 		path->dentry = mounted->mnt.mnt_root;
1415 		nd->flags |= LOOKUP_JUMPED;
1416 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1417 		/*
1418 		 * Update the inode too. We don't need to re-check the
1419 		 * dentry sequence number here after this d_inode read,
1420 		 * because a mount-point is always pinned.
1421 		 */
1422 		*inode = path->dentry->d_inode;
1423 	}
1424 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1425 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1426 }
1427 
follow_dotdot_rcu(struct nameidata * nd)1428 static int follow_dotdot_rcu(struct nameidata *nd)
1429 {
1430 	struct inode *inode = nd->inode;
1431 
1432 	while (1) {
1433 		if (path_equal(&nd->path, &nd->root))
1434 			break;
1435 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1436 			struct dentry *old = nd->path.dentry;
1437 			struct dentry *parent = old->d_parent;
1438 			unsigned seq;
1439 
1440 			inode = parent->d_inode;
1441 			seq = read_seqcount_begin(&parent->d_seq);
1442 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1443 				return -ECHILD;
1444 			nd->path.dentry = parent;
1445 			nd->seq = seq;
1446 			if (unlikely(!path_connected(&nd->path)))
1447 				return -ECHILD;
1448 			break;
1449 		} else {
1450 			struct mount *mnt = real_mount(nd->path.mnt);
1451 			struct mount *mparent = mnt->mnt_parent;
1452 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1453 			struct inode *inode2 = mountpoint->d_inode;
1454 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1455 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1456 				return -ECHILD;
1457 			if (&mparent->mnt == nd->path.mnt)
1458 				break;
1459 			/* we know that mountpoint was pinned */
1460 			nd->path.dentry = mountpoint;
1461 			nd->path.mnt = &mparent->mnt;
1462 			inode = inode2;
1463 			nd->seq = seq;
1464 		}
1465 	}
1466 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1467 		struct mount *mounted;
1468 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1469 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1470 			return -ECHILD;
1471 		if (!mounted)
1472 			break;
1473 		nd->path.mnt = &mounted->mnt;
1474 		nd->path.dentry = mounted->mnt.mnt_root;
1475 		inode = nd->path.dentry->d_inode;
1476 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1477 	}
1478 	nd->inode = inode;
1479 	return 0;
1480 }
1481 
1482 /*
1483  * Follow down to the covering mount currently visible to userspace.  At each
1484  * point, the filesystem owning that dentry may be queried as to whether the
1485  * caller is permitted to proceed or not.
1486  */
follow_down(struct path * path)1487 int follow_down(struct path *path)
1488 {
1489 	unsigned managed;
1490 	int ret;
1491 
1492 	while (managed = READ_ONCE(path->dentry->d_flags),
1493 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1494 		/* Allow the filesystem to manage the transit without i_mutex
1495 		 * being held.
1496 		 *
1497 		 * We indicate to the filesystem if someone is trying to mount
1498 		 * something here.  This gives autofs the chance to deny anyone
1499 		 * other than its daemon the right to mount on its
1500 		 * superstructure.
1501 		 *
1502 		 * The filesystem may sleep at this point.
1503 		 */
1504 		if (managed & DCACHE_MANAGE_TRANSIT) {
1505 			BUG_ON(!path->dentry->d_op);
1506 			BUG_ON(!path->dentry->d_op->d_manage);
1507 			ret = path->dentry->d_op->d_manage(path, false);
1508 			if (ret < 0)
1509 				return ret == -EISDIR ? 0 : ret;
1510 		}
1511 
1512 		/* Transit to a mounted filesystem. */
1513 		if (managed & DCACHE_MOUNTED) {
1514 			struct vfsmount *mounted = lookup_mnt(path);
1515 			if (!mounted)
1516 				break;
1517 			dput(path->dentry);
1518 			mntput(path->mnt);
1519 			path->mnt = mounted;
1520 			path->dentry = dget(mounted->mnt_root);
1521 			continue;
1522 		}
1523 
1524 		/* Don't handle automount points here */
1525 		break;
1526 	}
1527 	return 0;
1528 }
1529 EXPORT_SYMBOL(follow_down);
1530 
1531 /*
1532  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1533  */
follow_mount(struct path * path)1534 static void follow_mount(struct path *path)
1535 {
1536 	while (d_mountpoint(path->dentry)) {
1537 		struct vfsmount *mounted = lookup_mnt(path);
1538 		if (!mounted)
1539 			break;
1540 		dput(path->dentry);
1541 		mntput(path->mnt);
1542 		path->mnt = mounted;
1543 		path->dentry = dget(mounted->mnt_root);
1544 	}
1545 }
1546 
path_parent_directory(struct path * path)1547 static int path_parent_directory(struct path *path)
1548 {
1549 	struct dentry *old = path->dentry;
1550 	/* rare case of legitimate dget_parent()... */
1551 	path->dentry = dget_parent(path->dentry);
1552 	dput(old);
1553 	if (unlikely(!path_connected(path)))
1554 		return -ENOENT;
1555 	return 0;
1556 }
1557 
follow_dotdot(struct nameidata * nd)1558 static int follow_dotdot(struct nameidata *nd)
1559 {
1560 	while(1) {
1561 		if (path_equal(&nd->path, &nd->root))
1562 			break;
1563 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1564 			int ret = path_parent_directory(&nd->path);
1565 			if (ret)
1566 				return ret;
1567 			break;
1568 		}
1569 		if (!follow_up(&nd->path))
1570 			break;
1571 	}
1572 	follow_mount(&nd->path);
1573 	nd->inode = nd->path.dentry->d_inode;
1574 	return 0;
1575 }
1576 
1577 /*
1578  * This looks up the name in dcache and possibly revalidates the found dentry.
1579  * NULL is returned if the dentry does not exist in the cache.
1580  */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1581 static struct dentry *lookup_dcache(const struct qstr *name,
1582 				    struct dentry *dir,
1583 				    unsigned int flags)
1584 {
1585 	struct dentry *dentry = d_lookup(dir, name);
1586 	if (dentry) {
1587 		int error = d_revalidate(dentry, flags);
1588 		if (unlikely(error <= 0)) {
1589 			if (!error)
1590 				d_invalidate(dentry);
1591 			dput(dentry);
1592 			return ERR_PTR(error);
1593 		}
1594 	}
1595 	return dentry;
1596 }
1597 
1598 /*
1599  * Parent directory has inode locked exclusive.  This is one
1600  * and only case when ->lookup() gets called on non in-lookup
1601  * dentries - as the matter of fact, this only gets called
1602  * when directory is guaranteed to have no in-lookup children
1603  * at all.
1604  */
__lookup_hash(const struct qstr * name,struct dentry * base,unsigned int flags)1605 static struct dentry *__lookup_hash(const struct qstr *name,
1606 		struct dentry *base, unsigned int flags)
1607 {
1608 	struct dentry *dentry = lookup_dcache(name, base, flags);
1609 	struct dentry *old;
1610 	struct inode *dir = base->d_inode;
1611 
1612 	if (dentry)
1613 		return dentry;
1614 
1615 	/* Don't create child dentry for a dead directory. */
1616 	if (unlikely(IS_DEADDIR(dir)))
1617 		return ERR_PTR(-ENOENT);
1618 
1619 	dentry = d_alloc(base, name);
1620 	if (unlikely(!dentry))
1621 		return ERR_PTR(-ENOMEM);
1622 
1623 	old = dir->i_op->lookup(dir, dentry, flags);
1624 	if (unlikely(old)) {
1625 		dput(dentry);
1626 		dentry = old;
1627 	}
1628 	return dentry;
1629 }
1630 
lookup_fast(struct nameidata * nd,struct path * path,struct inode ** inode,unsigned * seqp)1631 static int lookup_fast(struct nameidata *nd,
1632 		       struct path *path, struct inode **inode,
1633 		       unsigned *seqp)
1634 {
1635 	struct vfsmount *mnt = nd->path.mnt;
1636 	struct dentry *dentry, *parent = nd->path.dentry;
1637 	int status = 1;
1638 	int err;
1639 
1640 	/*
1641 	 * Rename seqlock is not required here because in the off chance
1642 	 * of a false negative due to a concurrent rename, the caller is
1643 	 * going to fall back to non-racy lookup.
1644 	 */
1645 	if (nd->flags & LOOKUP_RCU) {
1646 		unsigned seq;
1647 		bool negative;
1648 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1649 		if (unlikely(!dentry)) {
1650 			if (unlazy_walk(nd))
1651 				return -ECHILD;
1652 			return 0;
1653 		}
1654 
1655 		/*
1656 		 * This sequence count validates that the inode matches
1657 		 * the dentry name information from lookup.
1658 		 */
1659 		*inode = d_backing_inode(dentry);
1660 		negative = d_is_negative(dentry);
1661 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1662 			return -ECHILD;
1663 
1664 		/*
1665 		 * This sequence count validates that the parent had no
1666 		 * changes while we did the lookup of the dentry above.
1667 		 *
1668 		 * The memory barrier in read_seqcount_begin of child is
1669 		 *  enough, we can use __read_seqcount_retry here.
1670 		 */
1671 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1672 			return -ECHILD;
1673 
1674 		*seqp = seq;
1675 		status = d_revalidate(dentry, nd->flags);
1676 		if (likely(status > 0)) {
1677 			/*
1678 			 * Note: do negative dentry check after revalidation in
1679 			 * case that drops it.
1680 			 */
1681 			if (unlikely(negative))
1682 				return -ENOENT;
1683 			path->mnt = mnt;
1684 			path->dentry = dentry;
1685 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1686 				return 1;
1687 		}
1688 		if (unlazy_child(nd, dentry, seq))
1689 			return -ECHILD;
1690 		if (unlikely(status == -ECHILD))
1691 			/* we'd been told to redo it in non-rcu mode */
1692 			status = d_revalidate(dentry, nd->flags);
1693 	} else {
1694 		dentry = __d_lookup(parent, &nd->last);
1695 		if (unlikely(!dentry))
1696 			return 0;
1697 		status = d_revalidate(dentry, nd->flags);
1698 	}
1699 	if (unlikely(status <= 0)) {
1700 		if (!status)
1701 			d_invalidate(dentry);
1702 		dput(dentry);
1703 		return status;
1704 	}
1705 	if (unlikely(d_is_negative(dentry))) {
1706 		dput(dentry);
1707 		return -ENOENT;
1708 	}
1709 
1710 	path->mnt = mnt;
1711 	path->dentry = dentry;
1712 	err = follow_managed(path, nd);
1713 	if (likely(err > 0))
1714 		*inode = d_backing_inode(path->dentry);
1715 	return err;
1716 }
1717 
1718 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1719 static struct dentry *__lookup_slow(const struct qstr *name,
1720 				    struct dentry *dir,
1721 				    unsigned int flags)
1722 {
1723 	struct dentry *dentry, *old;
1724 	struct inode *inode = dir->d_inode;
1725 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1726 
1727 	/* Don't go there if it's already dead */
1728 	if (unlikely(IS_DEADDIR(inode)))
1729 		return ERR_PTR(-ENOENT);
1730 again:
1731 	dentry = d_alloc_parallel(dir, name, &wq);
1732 	if (IS_ERR(dentry))
1733 		return dentry;
1734 	if (unlikely(!d_in_lookup(dentry))) {
1735 		if (!(flags & LOOKUP_NO_REVAL)) {
1736 			int error = d_revalidate(dentry, flags);
1737 			if (unlikely(error <= 0)) {
1738 				if (!error) {
1739 					d_invalidate(dentry);
1740 					dput(dentry);
1741 					goto again;
1742 				}
1743 				dput(dentry);
1744 				dentry = ERR_PTR(error);
1745 			}
1746 		}
1747 	} else {
1748 		old = inode->i_op->lookup(inode, dentry, flags);
1749 		d_lookup_done(dentry);
1750 		if (unlikely(old)) {
1751 			dput(dentry);
1752 			dentry = old;
1753 		}
1754 	}
1755 	return dentry;
1756 }
1757 
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1758 static struct dentry *lookup_slow(const struct qstr *name,
1759 				  struct dentry *dir,
1760 				  unsigned int flags)
1761 {
1762 	struct inode *inode = dir->d_inode;
1763 	struct dentry *res;
1764 	inode_lock_shared(inode);
1765 	res = __lookup_slow(name, dir, flags);
1766 	inode_unlock_shared(inode);
1767 	return res;
1768 }
1769 
may_lookup(struct nameidata * nd)1770 static inline int may_lookup(struct nameidata *nd)
1771 {
1772 	if (nd->flags & LOOKUP_RCU) {
1773 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1774 		if (err != -ECHILD)
1775 			return err;
1776 		if (unlazy_walk(nd))
1777 			return -ECHILD;
1778 	}
1779 	return inode_permission(nd->inode, MAY_EXEC);
1780 }
1781 
handle_dots(struct nameidata * nd,int type)1782 static inline int handle_dots(struct nameidata *nd, int type)
1783 {
1784 	if (type == LAST_DOTDOT) {
1785 		if (!nd->root.mnt)
1786 			set_root(nd);
1787 		if (nd->flags & LOOKUP_RCU) {
1788 			return follow_dotdot_rcu(nd);
1789 		} else
1790 			return follow_dotdot(nd);
1791 	}
1792 	return 0;
1793 }
1794 
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,unsigned seq)1795 static int pick_link(struct nameidata *nd, struct path *link,
1796 		     struct inode *inode, unsigned seq)
1797 {
1798 	int error;
1799 	struct saved *last;
1800 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1801 		path_to_nameidata(link, nd);
1802 		return -ELOOP;
1803 	}
1804 	if (!(nd->flags & LOOKUP_RCU)) {
1805 		if (link->mnt == nd->path.mnt)
1806 			mntget(link->mnt);
1807 	}
1808 	error = nd_alloc_stack(nd);
1809 	if (unlikely(error)) {
1810 		if (error == -ECHILD) {
1811 			if (unlikely(!legitimize_path(nd, link, seq))) {
1812 				drop_links(nd);
1813 				nd->depth = 0;
1814 				nd->flags &= ~LOOKUP_RCU;
1815 				nd->path.mnt = NULL;
1816 				nd->path.dentry = NULL;
1817 				rcu_read_unlock();
1818 			} else if (likely(unlazy_walk(nd)) == 0)
1819 				error = nd_alloc_stack(nd);
1820 		}
1821 		if (error) {
1822 			path_put(link);
1823 			return error;
1824 		}
1825 	}
1826 
1827 	last = nd->stack + nd->depth++;
1828 	last->link = *link;
1829 	clear_delayed_call(&last->done);
1830 	nd->link_inode = inode;
1831 	last->seq = seq;
1832 	return 1;
1833 }
1834 
1835 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1836 
1837 /*
1838  * Do we need to follow links? We _really_ want to be able
1839  * to do this check without having to look at inode->i_op,
1840  * so we keep a cache of "no, this doesn't need follow_link"
1841  * for the common case.
1842  */
step_into(struct nameidata * nd,struct path * path,int flags,struct inode * inode,unsigned seq)1843 static inline int step_into(struct nameidata *nd, struct path *path,
1844 			    int flags, struct inode *inode, unsigned seq)
1845 {
1846 	if (!(flags & WALK_MORE) && nd->depth)
1847 		put_link(nd);
1848 	if (likely(!d_is_symlink(path->dentry)) ||
1849 	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1850 		/* not a symlink or should not follow */
1851 		path_to_nameidata(path, nd);
1852 		nd->inode = inode;
1853 		nd->seq = seq;
1854 		return 0;
1855 	}
1856 	/* make sure that d_is_symlink above matches inode */
1857 	if (nd->flags & LOOKUP_RCU) {
1858 		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1859 			return -ECHILD;
1860 	}
1861 	return pick_link(nd, path, inode, seq);
1862 }
1863 
walk_component(struct nameidata * nd,int flags)1864 static int walk_component(struct nameidata *nd, int flags)
1865 {
1866 	struct path path;
1867 	struct inode *inode;
1868 	unsigned seq;
1869 	int err;
1870 	/*
1871 	 * "." and ".." are special - ".." especially so because it has
1872 	 * to be able to know about the current root directory and
1873 	 * parent relationships.
1874 	 */
1875 	if (unlikely(nd->last_type != LAST_NORM)) {
1876 		err = handle_dots(nd, nd->last_type);
1877 		if (!(flags & WALK_MORE) && nd->depth)
1878 			put_link(nd);
1879 		return err;
1880 	}
1881 	err = lookup_fast(nd, &path, &inode, &seq);
1882 	if (unlikely(err <= 0)) {
1883 		if (err < 0)
1884 			return err;
1885 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1886 					  nd->flags);
1887 		if (IS_ERR(path.dentry))
1888 			return PTR_ERR(path.dentry);
1889 
1890 		path.mnt = nd->path.mnt;
1891 		err = follow_managed(&path, nd);
1892 		if (unlikely(err < 0))
1893 			return err;
1894 
1895 		if (unlikely(d_is_negative(path.dentry))) {
1896 			path_to_nameidata(&path, nd);
1897 			return -ENOENT;
1898 		}
1899 
1900 		seq = 0;	/* we are already out of RCU mode */
1901 		inode = d_backing_inode(path.dentry);
1902 	}
1903 
1904 	return step_into(nd, &path, flags, inode, seq);
1905 }
1906 
1907 /*
1908  * We can do the critical dentry name comparison and hashing
1909  * operations one word at a time, but we are limited to:
1910  *
1911  * - Architectures with fast unaligned word accesses. We could
1912  *   do a "get_unaligned()" if this helps and is sufficiently
1913  *   fast.
1914  *
1915  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1916  *   do not trap on the (extremely unlikely) case of a page
1917  *   crossing operation.
1918  *
1919  * - Furthermore, we need an efficient 64-bit compile for the
1920  *   64-bit case in order to generate the "number of bytes in
1921  *   the final mask". Again, that could be replaced with a
1922  *   efficient population count instruction or similar.
1923  */
1924 #ifdef CONFIG_DCACHE_WORD_ACCESS
1925 
1926 #include <asm/word-at-a-time.h>
1927 
1928 #ifdef HASH_MIX
1929 
1930 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1931 
1932 #elif defined(CONFIG_64BIT)
1933 /*
1934  * Register pressure in the mixing function is an issue, particularly
1935  * on 32-bit x86, but almost any function requires one state value and
1936  * one temporary.  Instead, use a function designed for two state values
1937  * and no temporaries.
1938  *
1939  * This function cannot create a collision in only two iterations, so
1940  * we have two iterations to achieve avalanche.  In those two iterations,
1941  * we have six layers of mixing, which is enough to spread one bit's
1942  * influence out to 2^6 = 64 state bits.
1943  *
1944  * Rotate constants are scored by considering either 64 one-bit input
1945  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1946  * probability of that delta causing a change to each of the 128 output
1947  * bits, using a sample of random initial states.
1948  *
1949  * The Shannon entropy of the computed probabilities is then summed
1950  * to produce a score.  Ideally, any input change has a 50% chance of
1951  * toggling any given output bit.
1952  *
1953  * Mixing scores (in bits) for (12,45):
1954  * Input delta: 1-bit      2-bit
1955  * 1 round:     713.3    42542.6
1956  * 2 rounds:   2753.7   140389.8
1957  * 3 rounds:   5954.1   233458.2
1958  * 4 rounds:   7862.6   256672.2
1959  * Perfect:    8192     258048
1960  *            (64*128) (64*63/2 * 128)
1961  */
1962 #define HASH_MIX(x, y, a)	\
1963 	(	x ^= (a),	\
1964 	y ^= x,	x = rol64(x,12),\
1965 	x += y,	y = rol64(y,45),\
1966 	y *= 9			)
1967 
1968 /*
1969  * Fold two longs into one 32-bit hash value.  This must be fast, but
1970  * latency isn't quite as critical, as there is a fair bit of additional
1971  * work done before the hash value is used.
1972  */
fold_hash(unsigned long x,unsigned long y)1973 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1974 {
1975 	y ^= x * GOLDEN_RATIO_64;
1976 	y *= GOLDEN_RATIO_64;
1977 	return y >> 32;
1978 }
1979 
1980 #else	/* 32-bit case */
1981 
1982 /*
1983  * Mixing scores (in bits) for (7,20):
1984  * Input delta: 1-bit      2-bit
1985  * 1 round:     330.3     9201.6
1986  * 2 rounds:   1246.4    25475.4
1987  * 3 rounds:   1907.1    31295.1
1988  * 4 rounds:   2042.3    31718.6
1989  * Perfect:    2048      31744
1990  *            (32*64)   (32*31/2 * 64)
1991  */
1992 #define HASH_MIX(x, y, a)	\
1993 	(	x ^= (a),	\
1994 	y ^= x,	x = rol32(x, 7),\
1995 	x += y,	y = rol32(y,20),\
1996 	y *= 9			)
1997 
fold_hash(unsigned long x,unsigned long y)1998 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1999 {
2000 	/* Use arch-optimized multiply if one exists */
2001 	return __hash_32(y ^ __hash_32(x));
2002 }
2003 
2004 #endif
2005 
2006 /*
2007  * Return the hash of a string of known length.  This is carfully
2008  * designed to match hash_name(), which is the more critical function.
2009  * In particular, we must end by hashing a final word containing 0..7
2010  * payload bytes, to match the way that hash_name() iterates until it
2011  * finds the delimiter after the name.
2012  */
full_name_hash(const void * salt,const char * name,unsigned int len)2013 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2014 {
2015 	unsigned long a, x = 0, y = (unsigned long)salt;
2016 
2017 	for (;;) {
2018 		if (!len)
2019 			goto done;
2020 		a = load_unaligned_zeropad(name);
2021 		if (len < sizeof(unsigned long))
2022 			break;
2023 		HASH_MIX(x, y, a);
2024 		name += sizeof(unsigned long);
2025 		len -= sizeof(unsigned long);
2026 	}
2027 	x ^= a & bytemask_from_count(len);
2028 done:
2029 	return fold_hash(x, y);
2030 }
2031 EXPORT_SYMBOL(full_name_hash);
2032 
2033 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2034 u64 hashlen_string(const void *salt, const char *name)
2035 {
2036 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2037 	unsigned long adata, mask, len;
2038 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2039 
2040 	len = 0;
2041 	goto inside;
2042 
2043 	do {
2044 		HASH_MIX(x, y, a);
2045 		len += sizeof(unsigned long);
2046 inside:
2047 		a = load_unaligned_zeropad(name+len);
2048 	} while (!has_zero(a, &adata, &constants));
2049 
2050 	adata = prep_zero_mask(a, adata, &constants);
2051 	mask = create_zero_mask(adata);
2052 	x ^= a & zero_bytemask(mask);
2053 
2054 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2055 }
2056 EXPORT_SYMBOL(hashlen_string);
2057 
2058 /*
2059  * Calculate the length and hash of the path component, and
2060  * return the "hash_len" as the result.
2061  */
hash_name(const void * salt,const char * name)2062 static inline u64 hash_name(const void *salt, const char *name)
2063 {
2064 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2065 	unsigned long adata, bdata, mask, len;
2066 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2067 
2068 	len = 0;
2069 	goto inside;
2070 
2071 	do {
2072 		HASH_MIX(x, y, a);
2073 		len += sizeof(unsigned long);
2074 inside:
2075 		a = load_unaligned_zeropad(name+len);
2076 		b = a ^ REPEAT_BYTE('/');
2077 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2078 
2079 	adata = prep_zero_mask(a, adata, &constants);
2080 	bdata = prep_zero_mask(b, bdata, &constants);
2081 	mask = create_zero_mask(adata | bdata);
2082 	x ^= a & zero_bytemask(mask);
2083 
2084 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2085 }
2086 
2087 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2088 
2089 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2090 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2091 {
2092 	unsigned long hash = init_name_hash(salt);
2093 	while (len--)
2094 		hash = partial_name_hash((unsigned char)*name++, hash);
2095 	return end_name_hash(hash);
2096 }
2097 EXPORT_SYMBOL(full_name_hash);
2098 
2099 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2100 u64 hashlen_string(const void *salt, const char *name)
2101 {
2102 	unsigned long hash = init_name_hash(salt);
2103 	unsigned long len = 0, c;
2104 
2105 	c = (unsigned char)*name;
2106 	while (c) {
2107 		len++;
2108 		hash = partial_name_hash(c, hash);
2109 		c = (unsigned char)name[len];
2110 	}
2111 	return hashlen_create(end_name_hash(hash), len);
2112 }
2113 EXPORT_SYMBOL(hashlen_string);
2114 
2115 /*
2116  * We know there's a real path component here of at least
2117  * one character.
2118  */
hash_name(const void * salt,const char * name)2119 static inline u64 hash_name(const void *salt, const char *name)
2120 {
2121 	unsigned long hash = init_name_hash(salt);
2122 	unsigned long len = 0, c;
2123 
2124 	c = (unsigned char)*name;
2125 	do {
2126 		len++;
2127 		hash = partial_name_hash(c, hash);
2128 		c = (unsigned char)name[len];
2129 	} while (c && c != '/');
2130 	return hashlen_create(end_name_hash(hash), len);
2131 }
2132 
2133 #endif
2134 
2135 /*
2136  * Name resolution.
2137  * This is the basic name resolution function, turning a pathname into
2138  * the final dentry. We expect 'base' to be positive and a directory.
2139  *
2140  * Returns 0 and nd will have valid dentry and mnt on success.
2141  * Returns error and drops reference to input namei data on failure.
2142  */
link_path_walk(const char * name,struct nameidata * nd)2143 static int link_path_walk(const char *name, struct nameidata *nd)
2144 {
2145 	int err;
2146 
2147 	if (IS_ERR(name))
2148 		return PTR_ERR(name);
2149 	while (*name=='/')
2150 		name++;
2151 	if (!*name)
2152 		return 0;
2153 
2154 	/* At this point we know we have a real path component. */
2155 	for(;;) {
2156 		u64 hash_len;
2157 		int type;
2158 
2159 		err = may_lookup(nd);
2160 		if (err)
2161 			return err;
2162 
2163 		hash_len = hash_name(nd->path.dentry, name);
2164 
2165 		type = LAST_NORM;
2166 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2167 			case 2:
2168 				if (name[1] == '.') {
2169 					type = LAST_DOTDOT;
2170 					nd->flags |= LOOKUP_JUMPED;
2171 				}
2172 				break;
2173 			case 1:
2174 				type = LAST_DOT;
2175 		}
2176 		if (likely(type == LAST_NORM)) {
2177 			struct dentry *parent = nd->path.dentry;
2178 			nd->flags &= ~LOOKUP_JUMPED;
2179 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2180 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2181 				err = parent->d_op->d_hash(parent, &this);
2182 				if (err < 0)
2183 					return err;
2184 				hash_len = this.hash_len;
2185 				name = this.name;
2186 			}
2187 		}
2188 
2189 		nd->last.hash_len = hash_len;
2190 		nd->last.name = name;
2191 		nd->last_type = type;
2192 
2193 		name += hashlen_len(hash_len);
2194 		if (!*name)
2195 			goto OK;
2196 		/*
2197 		 * If it wasn't NUL, we know it was '/'. Skip that
2198 		 * slash, and continue until no more slashes.
2199 		 */
2200 		do {
2201 			name++;
2202 		} while (unlikely(*name == '/'));
2203 		if (unlikely(!*name)) {
2204 OK:
2205 			/* pathname body, done */
2206 			if (!nd->depth)
2207 				return 0;
2208 			name = nd->stack[nd->depth - 1].name;
2209 			/* trailing symlink, done */
2210 			if (!name)
2211 				return 0;
2212 			/* last component of nested symlink */
2213 			err = walk_component(nd, WALK_FOLLOW);
2214 		} else {
2215 			/* not the last component */
2216 			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2217 		}
2218 		if (err < 0)
2219 			return err;
2220 
2221 		if (err) {
2222 			const char *s = get_link(nd);
2223 
2224 			if (IS_ERR(s))
2225 				return PTR_ERR(s);
2226 			err = 0;
2227 			if (unlikely(!s)) {
2228 				/* jumped */
2229 				put_link(nd);
2230 			} else {
2231 				nd->stack[nd->depth - 1].name = name;
2232 				name = s;
2233 				continue;
2234 			}
2235 		}
2236 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2237 			if (nd->flags & LOOKUP_RCU) {
2238 				if (unlazy_walk(nd))
2239 					return -ECHILD;
2240 			}
2241 			return -ENOTDIR;
2242 		}
2243 	}
2244 }
2245 
2246 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2247 static const char *path_init(struct nameidata *nd, unsigned flags)
2248 {
2249 	const char *s = nd->name->name;
2250 
2251 	if (!*s)
2252 		flags &= ~LOOKUP_RCU;
2253 	if (flags & LOOKUP_RCU)
2254 		rcu_read_lock();
2255 
2256 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2257 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2258 	nd->depth = 0;
2259 	if (flags & LOOKUP_ROOT) {
2260 		struct dentry *root = nd->root.dentry;
2261 		struct inode *inode = root->d_inode;
2262 		if (*s && unlikely(!d_can_lookup(root)))
2263 			return ERR_PTR(-ENOTDIR);
2264 		nd->path = nd->root;
2265 		nd->inode = inode;
2266 		if (flags & LOOKUP_RCU) {
2267 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2268 			nd->root_seq = nd->seq;
2269 			nd->m_seq = read_seqbegin(&mount_lock);
2270 		} else {
2271 			path_get(&nd->path);
2272 		}
2273 		return s;
2274 	}
2275 
2276 	nd->root.mnt = NULL;
2277 	nd->path.mnt = NULL;
2278 	nd->path.dentry = NULL;
2279 
2280 	nd->m_seq = read_seqbegin(&mount_lock);
2281 	if (*s == '/') {
2282 		set_root(nd);
2283 		if (likely(!nd_jump_root(nd)))
2284 			return s;
2285 		return ERR_PTR(-ECHILD);
2286 	} else if (nd->dfd == AT_FDCWD) {
2287 		if (flags & LOOKUP_RCU) {
2288 			struct fs_struct *fs = current->fs;
2289 			unsigned seq;
2290 
2291 			do {
2292 				seq = read_seqcount_begin(&fs->seq);
2293 				nd->path = fs->pwd;
2294 				nd->inode = nd->path.dentry->d_inode;
2295 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2296 			} while (read_seqcount_retry(&fs->seq, seq));
2297 		} else {
2298 			get_fs_pwd(current->fs, &nd->path);
2299 			nd->inode = nd->path.dentry->d_inode;
2300 		}
2301 		return s;
2302 	} else {
2303 		/* Caller must check execute permissions on the starting path component */
2304 		struct fd f = fdget_raw(nd->dfd);
2305 		struct dentry *dentry;
2306 
2307 		if (!f.file)
2308 			return ERR_PTR(-EBADF);
2309 
2310 		dentry = f.file->f_path.dentry;
2311 
2312 		if (*s && unlikely(!d_can_lookup(dentry))) {
2313 			fdput(f);
2314 			return ERR_PTR(-ENOTDIR);
2315 		}
2316 
2317 		nd->path = f.file->f_path;
2318 		if (flags & LOOKUP_RCU) {
2319 			nd->inode = nd->path.dentry->d_inode;
2320 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2321 		} else {
2322 			path_get(&nd->path);
2323 			nd->inode = nd->path.dentry->d_inode;
2324 		}
2325 		fdput(f);
2326 		return s;
2327 	}
2328 }
2329 
trailing_symlink(struct nameidata * nd)2330 static const char *trailing_symlink(struct nameidata *nd)
2331 {
2332 	const char *s;
2333 	int error = may_follow_link(nd);
2334 	if (unlikely(error))
2335 		return ERR_PTR(error);
2336 	nd->flags |= LOOKUP_PARENT;
2337 	nd->stack[0].name = NULL;
2338 	s = get_link(nd);
2339 	return s ? s : "";
2340 }
2341 
lookup_last(struct nameidata * nd)2342 static inline int lookup_last(struct nameidata *nd)
2343 {
2344 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2345 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2346 
2347 	nd->flags &= ~LOOKUP_PARENT;
2348 	return walk_component(nd, 0);
2349 }
2350 
handle_lookup_down(struct nameidata * nd)2351 static int handle_lookup_down(struct nameidata *nd)
2352 {
2353 	struct path path = nd->path;
2354 	struct inode *inode = nd->inode;
2355 	unsigned seq = nd->seq;
2356 	int err;
2357 
2358 	if (nd->flags & LOOKUP_RCU) {
2359 		/*
2360 		 * don't bother with unlazy_walk on failure - we are
2361 		 * at the very beginning of walk, so we lose nothing
2362 		 * if we simply redo everything in non-RCU mode
2363 		 */
2364 		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2365 			return -ECHILD;
2366 	} else {
2367 		dget(path.dentry);
2368 		err = follow_managed(&path, nd);
2369 		if (unlikely(err < 0))
2370 			return err;
2371 		inode = d_backing_inode(path.dentry);
2372 		seq = 0;
2373 	}
2374 	path_to_nameidata(&path, nd);
2375 	nd->inode = inode;
2376 	nd->seq = seq;
2377 	return 0;
2378 }
2379 
2380 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2381 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2382 {
2383 	const char *s = path_init(nd, flags);
2384 	int err;
2385 
2386 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2387 		err = handle_lookup_down(nd);
2388 		if (unlikely(err < 0))
2389 			s = ERR_PTR(err);
2390 	}
2391 
2392 	while (!(err = link_path_walk(s, nd))
2393 		&& ((err = lookup_last(nd)) > 0)) {
2394 		s = trailing_symlink(nd);
2395 	}
2396 	if (!err)
2397 		err = complete_walk(nd);
2398 
2399 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2400 		if (!d_can_lookup(nd->path.dentry))
2401 			err = -ENOTDIR;
2402 	if (!err) {
2403 		*path = nd->path;
2404 		nd->path.mnt = NULL;
2405 		nd->path.dentry = NULL;
2406 	}
2407 	terminate_walk(nd);
2408 	return err;
2409 }
2410 
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2411 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2412 		    struct path *path, struct path *root)
2413 {
2414 	int retval;
2415 	struct nameidata nd;
2416 	if (IS_ERR(name))
2417 		return PTR_ERR(name);
2418 	if (unlikely(root)) {
2419 		nd.root = *root;
2420 		flags |= LOOKUP_ROOT;
2421 	}
2422 	set_nameidata(&nd, dfd, name);
2423 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2424 	if (unlikely(retval == -ECHILD))
2425 		retval = path_lookupat(&nd, flags, path);
2426 	if (unlikely(retval == -ESTALE))
2427 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2428 
2429 	if (likely(!retval))
2430 		audit_inode(name, path->dentry, 0);
2431 	restore_nameidata();
2432 	putname(name);
2433 	return retval;
2434 }
2435 
2436 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2437 static int path_parentat(struct nameidata *nd, unsigned flags,
2438 				struct path *parent)
2439 {
2440 	const char *s = path_init(nd, flags);
2441 	int err = link_path_walk(s, nd);
2442 	if (!err)
2443 		err = complete_walk(nd);
2444 	if (!err) {
2445 		*parent = nd->path;
2446 		nd->path.mnt = NULL;
2447 		nd->path.dentry = NULL;
2448 	}
2449 	terminate_walk(nd);
2450 	return err;
2451 }
2452 
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2453 static struct filename *filename_parentat(int dfd, struct filename *name,
2454 				unsigned int flags, struct path *parent,
2455 				struct qstr *last, int *type)
2456 {
2457 	int retval;
2458 	struct nameidata nd;
2459 
2460 	if (IS_ERR(name))
2461 		return name;
2462 	set_nameidata(&nd, dfd, name);
2463 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2464 	if (unlikely(retval == -ECHILD))
2465 		retval = path_parentat(&nd, flags, parent);
2466 	if (unlikely(retval == -ESTALE))
2467 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2468 	if (likely(!retval)) {
2469 		*last = nd.last;
2470 		*type = nd.last_type;
2471 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2472 	} else {
2473 		putname(name);
2474 		name = ERR_PTR(retval);
2475 	}
2476 	restore_nameidata();
2477 	return name;
2478 }
2479 
2480 /* does lookup, returns the object with parent locked */
kern_path_locked(const char * name,struct path * path)2481 struct dentry *kern_path_locked(const char *name, struct path *path)
2482 {
2483 	struct filename *filename;
2484 	struct dentry *d;
2485 	struct qstr last;
2486 	int type;
2487 
2488 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2489 				    &last, &type);
2490 	if (IS_ERR(filename))
2491 		return ERR_CAST(filename);
2492 	if (unlikely(type != LAST_NORM)) {
2493 		path_put(path);
2494 		putname(filename);
2495 		return ERR_PTR(-EINVAL);
2496 	}
2497 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2498 	d = __lookup_hash(&last, path->dentry, 0);
2499 	if (IS_ERR(d)) {
2500 		inode_unlock(path->dentry->d_inode);
2501 		path_put(path);
2502 	}
2503 	putname(filename);
2504 	return d;
2505 }
2506 
kern_path(const char * name,unsigned int flags,struct path * path)2507 int kern_path(const char *name, unsigned int flags, struct path *path)
2508 {
2509 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2510 			       flags, path, NULL);
2511 }
2512 EXPORT_SYMBOL_NS(kern_path, ANDROID_GKI_VFS_EXPORT_ONLY);
2513 
2514 /**
2515  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2516  * @dentry:  pointer to dentry of the base directory
2517  * @mnt: pointer to vfs mount of the base directory
2518  * @name: pointer to file name
2519  * @flags: lookup flags
2520  * @path: pointer to struct path to fill
2521  */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2522 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2523 		    const char *name, unsigned int flags,
2524 		    struct path *path)
2525 {
2526 	struct path root = {.mnt = mnt, .dentry = dentry};
2527 	/* the first argument of filename_lookup() is ignored with root */
2528 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2529 			       flags , path, &root);
2530 }
2531 EXPORT_SYMBOL(vfs_path_lookup);
2532 
lookup_one_len_common(const char * name,struct dentry * base,int len,struct qstr * this)2533 static int lookup_one_len_common(const char *name, struct dentry *base,
2534 				 int len, struct qstr *this)
2535 {
2536 	this->name = name;
2537 	this->len = len;
2538 	this->hash = full_name_hash(base, name, len);
2539 	if (!len)
2540 		return -EACCES;
2541 
2542 	if (unlikely(name[0] == '.')) {
2543 		if (len < 2 || (len == 2 && name[1] == '.'))
2544 			return -EACCES;
2545 	}
2546 
2547 	while (len--) {
2548 		unsigned int c = *(const unsigned char *)name++;
2549 		if (c == '/' || c == '\0')
2550 			return -EACCES;
2551 	}
2552 	/*
2553 	 * See if the low-level filesystem might want
2554 	 * to use its own hash..
2555 	 */
2556 	if (base->d_flags & DCACHE_OP_HASH) {
2557 		int err = base->d_op->d_hash(base, this);
2558 		if (err < 0)
2559 			return err;
2560 	}
2561 
2562 	return inode_permission(base->d_inode, MAY_EXEC);
2563 }
2564 
2565 /**
2566  * try_lookup_one_len - filesystem helper to lookup single pathname component
2567  * @name:	pathname component to lookup
2568  * @base:	base directory to lookup from
2569  * @len:	maximum length @len should be interpreted to
2570  *
2571  * Look up a dentry by name in the dcache, returning NULL if it does not
2572  * currently exist.  The function does not try to create a dentry.
2573  *
2574  * Note that this routine is purely a helper for filesystem usage and should
2575  * not be called by generic code.
2576  *
2577  * The caller must hold base->i_mutex.
2578  */
try_lookup_one_len(const char * name,struct dentry * base,int len)2579 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2580 {
2581 	struct qstr this;
2582 	int err;
2583 
2584 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2585 
2586 	err = lookup_one_len_common(name, base, len, &this);
2587 	if (err)
2588 		return ERR_PTR(err);
2589 
2590 	return lookup_dcache(&this, base, 0);
2591 }
2592 EXPORT_SYMBOL(try_lookup_one_len);
2593 
2594 /**
2595  * lookup_one_len - filesystem helper to lookup single pathname component
2596  * @name:	pathname component to lookup
2597  * @base:	base directory to lookup from
2598  * @len:	maximum length @len should be interpreted to
2599  *
2600  * Note that this routine is purely a helper for filesystem usage and should
2601  * not be called by generic code.
2602  *
2603  * The caller must hold base->i_mutex.
2604  */
lookup_one_len(const char * name,struct dentry * base,int len)2605 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2606 {
2607 	struct dentry *dentry;
2608 	struct qstr this;
2609 	int err;
2610 
2611 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2612 
2613 	err = lookup_one_len_common(name, base, len, &this);
2614 	if (err)
2615 		return ERR_PTR(err);
2616 
2617 	dentry = lookup_dcache(&this, base, 0);
2618 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2619 }
2620 EXPORT_SYMBOL(lookup_one_len);
2621 
2622 /**
2623  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2624  * @name:	pathname component to lookup
2625  * @base:	base directory to lookup from
2626  * @len:	maximum length @len should be interpreted to
2627  *
2628  * Note that this routine is purely a helper for filesystem usage and should
2629  * not be called by generic code.
2630  *
2631  * Unlike lookup_one_len, it should be called without the parent
2632  * i_mutex held, and will take the i_mutex itself if necessary.
2633  */
lookup_one_len_unlocked(const char * name,struct dentry * base,int len)2634 struct dentry *lookup_one_len_unlocked(const char *name,
2635 				       struct dentry *base, int len)
2636 {
2637 	struct qstr this;
2638 	int err;
2639 	struct dentry *ret;
2640 
2641 	err = lookup_one_len_common(name, base, len, &this);
2642 	if (err)
2643 		return ERR_PTR(err);
2644 
2645 	ret = lookup_dcache(&this, base, 0);
2646 	if (!ret)
2647 		ret = lookup_slow(&this, base, 0);
2648 	return ret;
2649 }
2650 EXPORT_SYMBOL(lookup_one_len_unlocked);
2651 
2652 /*
2653  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2654  * on negatives.  Returns known positive or ERR_PTR(); that's what
2655  * most of the users want.  Note that pinned negative with unlocked parent
2656  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2657  * need to be very careful; pinned positives have ->d_inode stable, so
2658  * this one avoids such problems.
2659  */
lookup_positive_unlocked(const char * name,struct dentry * base,int len)2660 struct dentry *lookup_positive_unlocked(const char *name,
2661 				       struct dentry *base, int len)
2662 {
2663 	struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2664 	if (!IS_ERR(ret) && d_is_negative(ret)) {
2665 		dput(ret);
2666 		ret = ERR_PTR(-ENOENT);
2667 	}
2668 	return ret;
2669 }
2670 EXPORT_SYMBOL(lookup_positive_unlocked);
2671 
2672 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)2673 int path_pts(struct path *path)
2674 {
2675 	/* Find something mounted on "pts" in the same directory as
2676 	 * the input path.
2677 	 */
2678 	struct dentry *child, *parent;
2679 	struct qstr this;
2680 	int ret;
2681 
2682 	ret = path_parent_directory(path);
2683 	if (ret)
2684 		return ret;
2685 
2686 	parent = path->dentry;
2687 	this.name = "pts";
2688 	this.len = 3;
2689 	child = d_hash_and_lookup(parent, &this);
2690 	if (IS_ERR_OR_NULL(child))
2691 		return -ENOENT;
2692 
2693 	path->dentry = child;
2694 	dput(parent);
2695 	follow_mount(path);
2696 	return 0;
2697 }
2698 #endif
2699 
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)2700 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2701 		 struct path *path, int *empty)
2702 {
2703 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2704 			       flags, path, NULL);
2705 }
2706 EXPORT_SYMBOL(user_path_at_empty);
2707 
2708 /**
2709  * mountpoint_last - look up last component for umount
2710  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2711  *
2712  * This is a special lookup_last function just for umount. In this case, we
2713  * need to resolve the path without doing any revalidation.
2714  *
2715  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2716  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2717  * in almost all cases, this lookup will be served out of the dcache. The only
2718  * cases where it won't are if nd->last refers to a symlink or the path is
2719  * bogus and it doesn't exist.
2720  *
2721  * Returns:
2722  * -error: if there was an error during lookup. This includes -ENOENT if the
2723  *         lookup found a negative dentry.
2724  *
2725  * 0:      if we successfully resolved nd->last and found it to not to be a
2726  *         symlink that needs to be followed.
2727  *
2728  * 1:      if we successfully resolved nd->last and found it to be a symlink
2729  *         that needs to be followed.
2730  */
2731 static int
mountpoint_last(struct nameidata * nd)2732 mountpoint_last(struct nameidata *nd)
2733 {
2734 	int error = 0;
2735 	struct dentry *dir = nd->path.dentry;
2736 	struct path path;
2737 
2738 	/* If we're in rcuwalk, drop out of it to handle last component */
2739 	if (nd->flags & LOOKUP_RCU) {
2740 		if (unlazy_walk(nd))
2741 			return -ECHILD;
2742 	}
2743 
2744 	nd->flags &= ~LOOKUP_PARENT;
2745 
2746 	if (unlikely(nd->last_type != LAST_NORM)) {
2747 		error = handle_dots(nd, nd->last_type);
2748 		if (error)
2749 			return error;
2750 		path.dentry = dget(nd->path.dentry);
2751 	} else {
2752 		path.dentry = d_lookup(dir, &nd->last);
2753 		if (!path.dentry) {
2754 			/*
2755 			 * No cached dentry. Mounted dentries are pinned in the
2756 			 * cache, so that means that this dentry is probably
2757 			 * a symlink or the path doesn't actually point
2758 			 * to a mounted dentry.
2759 			 */
2760 			path.dentry = lookup_slow(&nd->last, dir,
2761 					     nd->flags | LOOKUP_NO_REVAL);
2762 			if (IS_ERR(path.dentry))
2763 				return PTR_ERR(path.dentry);
2764 		}
2765 	}
2766 	if (d_is_negative(path.dentry)) {
2767 		dput(path.dentry);
2768 		return -ENOENT;
2769 	}
2770 	path.mnt = nd->path.mnt;
2771 	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2772 }
2773 
2774 /**
2775  * path_mountpoint - look up a path to be umounted
2776  * @nd:		lookup context
2777  * @flags:	lookup flags
2778  * @path:	pointer to container for result
2779  *
2780  * Look up the given name, but don't attempt to revalidate the last component.
2781  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2782  */
2783 static int
path_mountpoint(struct nameidata * nd,unsigned flags,struct path * path)2784 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2785 {
2786 	const char *s = path_init(nd, flags);
2787 	int err;
2788 
2789 	while (!(err = link_path_walk(s, nd)) &&
2790 		(err = mountpoint_last(nd)) > 0) {
2791 		s = trailing_symlink(nd);
2792 	}
2793 	if (!err) {
2794 		*path = nd->path;
2795 		nd->path.mnt = NULL;
2796 		nd->path.dentry = NULL;
2797 		follow_mount(path);
2798 	}
2799 	terminate_walk(nd);
2800 	return err;
2801 }
2802 
2803 static int
filename_mountpoint(int dfd,struct filename * name,struct path * path,unsigned int flags)2804 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2805 			unsigned int flags)
2806 {
2807 	struct nameidata nd;
2808 	int error;
2809 	if (IS_ERR(name))
2810 		return PTR_ERR(name);
2811 	set_nameidata(&nd, dfd, name);
2812 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2813 	if (unlikely(error == -ECHILD))
2814 		error = path_mountpoint(&nd, flags, path);
2815 	if (unlikely(error == -ESTALE))
2816 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2817 	if (likely(!error))
2818 		audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL);
2819 	restore_nameidata();
2820 	putname(name);
2821 	return error;
2822 }
2823 
2824 /**
2825  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2826  * @dfd:	directory file descriptor
2827  * @name:	pathname from userland
2828  * @flags:	lookup flags
2829  * @path:	pointer to container to hold result
2830  *
2831  * A umount is a special case for path walking. We're not actually interested
2832  * in the inode in this situation, and ESTALE errors can be a problem. We
2833  * simply want track down the dentry and vfsmount attached at the mountpoint
2834  * and avoid revalidating the last component.
2835  *
2836  * Returns 0 and populates "path" on success.
2837  */
2838 int
user_path_mountpoint_at(int dfd,const char __user * name,unsigned int flags,struct path * path)2839 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2840 			struct path *path)
2841 {
2842 	return filename_mountpoint(dfd, getname(name), path, flags);
2843 }
2844 
2845 int
kern_path_mountpoint(int dfd,const char * name,struct path * path,unsigned int flags)2846 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2847 			unsigned int flags)
2848 {
2849 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2850 }
2851 EXPORT_SYMBOL(kern_path_mountpoint);
2852 
__check_sticky(struct inode * dir,struct inode * inode)2853 int __check_sticky(struct inode *dir, struct inode *inode)
2854 {
2855 	kuid_t fsuid = current_fsuid();
2856 
2857 	if (uid_eq(inode->i_uid, fsuid))
2858 		return 0;
2859 	if (uid_eq(dir->i_uid, fsuid))
2860 		return 0;
2861 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2862 }
2863 EXPORT_SYMBOL(__check_sticky);
2864 
2865 /*
2866  *	Check whether we can remove a link victim from directory dir, check
2867  *  whether the type of victim is right.
2868  *  1. We can't do it if dir is read-only (done in permission())
2869  *  2. We should have write and exec permissions on dir
2870  *  3. We can't remove anything from append-only dir
2871  *  4. We can't do anything with immutable dir (done in permission())
2872  *  5. If the sticky bit on dir is set we should either
2873  *	a. be owner of dir, or
2874  *	b. be owner of victim, or
2875  *	c. have CAP_FOWNER capability
2876  *  6. If the victim is append-only or immutable we can't do antyhing with
2877  *     links pointing to it.
2878  *  7. If the victim has an unknown uid or gid we can't change the inode.
2879  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2880  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2881  * 10. We can't remove a root or mountpoint.
2882  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2883  *     nfs_async_unlink().
2884  */
may_delete(struct inode * dir,struct dentry * victim,bool isdir)2885 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2886 {
2887 	struct inode *inode = d_backing_inode(victim);
2888 	int error;
2889 
2890 	if (d_is_negative(victim))
2891 		return -ENOENT;
2892 	BUG_ON(!inode);
2893 
2894 	BUG_ON(victim->d_parent->d_inode != dir);
2895 
2896 	/* Inode writeback is not safe when the uid or gid are invalid. */
2897 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2898 		return -EOVERFLOW;
2899 
2900 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2901 
2902 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2903 	if (error)
2904 		return error;
2905 	if (IS_APPEND(dir))
2906 		return -EPERM;
2907 
2908 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2909 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2910 		return -EPERM;
2911 	if (isdir) {
2912 		if (!d_is_dir(victim))
2913 			return -ENOTDIR;
2914 		if (IS_ROOT(victim))
2915 			return -EBUSY;
2916 	} else if (d_is_dir(victim))
2917 		return -EISDIR;
2918 	if (IS_DEADDIR(dir))
2919 		return -ENOENT;
2920 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2921 		return -EBUSY;
2922 	return 0;
2923 }
2924 
2925 /*	Check whether we can create an object with dentry child in directory
2926  *  dir.
2927  *  1. We can't do it if child already exists (open has special treatment for
2928  *     this case, but since we are inlined it's OK)
2929  *  2. We can't do it if dir is read-only (done in permission())
2930  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2931  *  4. We should have write and exec permissions on dir
2932  *  5. We can't do it if dir is immutable (done in permission())
2933  */
may_create(struct inode * dir,struct dentry * child)2934 static inline int may_create(struct inode *dir, struct dentry *child)
2935 {
2936 	struct user_namespace *s_user_ns;
2937 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2938 	if (child->d_inode)
2939 		return -EEXIST;
2940 	if (IS_DEADDIR(dir))
2941 		return -ENOENT;
2942 	s_user_ns = dir->i_sb->s_user_ns;
2943 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2944 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2945 		return -EOVERFLOW;
2946 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2947 }
2948 
2949 /*
2950  * p1 and p2 should be directories on the same fs.
2951  */
lock_rename(struct dentry * p1,struct dentry * p2)2952 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2953 {
2954 	struct dentry *p;
2955 
2956 	if (p1 == p2) {
2957 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2958 		return NULL;
2959 	}
2960 
2961 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2962 
2963 	p = d_ancestor(p2, p1);
2964 	if (p) {
2965 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2966 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
2967 		return p;
2968 	}
2969 
2970 	p = d_ancestor(p1, p2);
2971 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2972 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2973 	return p;
2974 }
2975 EXPORT_SYMBOL(lock_rename);
2976 
unlock_rename(struct dentry * p1,struct dentry * p2)2977 void unlock_rename(struct dentry *p1, struct dentry *p2)
2978 {
2979 	inode_unlock(p1->d_inode);
2980 	if (p1 != p2) {
2981 		inode_unlock(p2->d_inode);
2982 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2983 	}
2984 }
2985 EXPORT_SYMBOL(unlock_rename);
2986 
2987 /**
2988  * mode_strip_umask - handle vfs umask stripping
2989  * @dir:	parent directory of the new inode
2990  * @mode:	mode of the new inode to be created in @dir
2991  *
2992  * Umask stripping depends on whether or not the filesystem supports POSIX
2993  * ACLs. If the filesystem doesn't support it umask stripping is done directly
2994  * in here. If the filesystem does support POSIX ACLs umask stripping is
2995  * deferred until the filesystem calls posix_acl_create().
2996  *
2997  * Returns: mode
2998  */
mode_strip_umask(const struct inode * dir,umode_t mode)2999 static inline umode_t mode_strip_umask(const struct inode *dir, umode_t mode)
3000 {
3001 	if (!IS_POSIXACL(dir))
3002 		mode &= ~current_umask();
3003 	return mode;
3004 }
3005 
3006 /**
3007  * vfs_prepare_mode - prepare the mode to be used for a new inode
3008  * @dir:	parent directory of the new inode
3009  * @mode:	mode of the new inode
3010  * @mask_perms:	allowed permission by the vfs
3011  * @type:	type of file to be created
3012  *
3013  * This helper consolidates and enforces vfs restrictions on the @mode of a new
3014  * object to be created.
3015  *
3016  * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3017  * the kernel documentation for mode_strip_umask()). Moving umask stripping
3018  * after setgid stripping allows the same ordering for both non-POSIX ACL and
3019  * POSIX ACL supporting filesystems.
3020  *
3021  * Note that it's currently valid for @type to be 0 if a directory is created.
3022  * Filesystems raise that flag individually and we need to check whether each
3023  * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3024  * non-zero type.
3025  *
3026  * Returns: mode to be passed to the filesystem
3027  */
vfs_prepare_mode(const struct inode * dir,umode_t mode,umode_t mask_perms,umode_t type)3028 static inline umode_t vfs_prepare_mode(const struct inode *dir, umode_t mode,
3029 				       umode_t mask_perms, umode_t type)
3030 {
3031 	mode = mode_strip_sgid(dir, mode);
3032 	mode = mode_strip_umask(dir, mode);
3033 
3034 	/*
3035 	 * Apply the vfs mandated allowed permission mask and set the type of
3036 	 * file to be created before we call into the filesystem.
3037 	 */
3038 	mode &= (mask_perms & ~S_IFMT);
3039 	mode |= (type & S_IFMT);
3040 
3041 	return mode;
3042 }
3043 
vfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)3044 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3045 		bool want_excl)
3046 {
3047 	int error = may_create(dir, dentry);
3048 	if (error)
3049 		return error;
3050 
3051 	if (!dir->i_op->create)
3052 		return -EACCES;	/* shouldn't it be ENOSYS? */
3053 
3054 	mode = vfs_prepare_mode(dir, mode, S_IALLUGO, S_IFREG);
3055 	error = security_inode_create(dir, dentry, mode);
3056 	if (error)
3057 		return error;
3058 	error = dir->i_op->create(dir, dentry, mode, want_excl);
3059 	if (!error)
3060 		fsnotify_create(dir, dentry);
3061 	return error;
3062 }
3063 EXPORT_SYMBOL_NS(vfs_create, ANDROID_GKI_VFS_EXPORT_ONLY);
3064 
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)3065 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3066 		int (*f)(struct dentry *, umode_t, void *),
3067 		void *arg)
3068 {
3069 	struct inode *dir = dentry->d_parent->d_inode;
3070 	int error = may_create(dir, dentry);
3071 	if (error)
3072 		return error;
3073 
3074 	mode &= S_IALLUGO;
3075 	mode |= S_IFREG;
3076 	error = security_inode_create(dir, dentry, mode);
3077 	if (error)
3078 		return error;
3079 	error = f(dentry, mode, arg);
3080 	if (!error)
3081 		fsnotify_create(dir, dentry);
3082 	return error;
3083 }
3084 EXPORT_SYMBOL(vfs_mkobj);
3085 
may_open_dev(const struct path * path)3086 bool may_open_dev(const struct path *path)
3087 {
3088 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3089 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3090 }
3091 
may_open(const struct path * path,int acc_mode,int flag)3092 static int may_open(const struct path *path, int acc_mode, int flag)
3093 {
3094 	struct dentry *dentry = path->dentry;
3095 	struct inode *inode = dentry->d_inode;
3096 	int error;
3097 
3098 	if (!inode)
3099 		return -ENOENT;
3100 
3101 	switch (inode->i_mode & S_IFMT) {
3102 	case S_IFLNK:
3103 		return -ELOOP;
3104 	case S_IFDIR:
3105 		if (acc_mode & MAY_WRITE)
3106 			return -EISDIR;
3107 		break;
3108 	case S_IFBLK:
3109 	case S_IFCHR:
3110 		if (!may_open_dev(path))
3111 			return -EACCES;
3112 		/*FALLTHRU*/
3113 	case S_IFIFO:
3114 	case S_IFSOCK:
3115 		flag &= ~O_TRUNC;
3116 		break;
3117 	}
3118 
3119 	error = inode_permission(inode, MAY_OPEN | acc_mode);
3120 	if (error)
3121 		return error;
3122 
3123 	/*
3124 	 * An append-only file must be opened in append mode for writing.
3125 	 */
3126 	if (IS_APPEND(inode)) {
3127 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3128 			return -EPERM;
3129 		if (flag & O_TRUNC)
3130 			return -EPERM;
3131 	}
3132 
3133 	/* O_NOATIME can only be set by the owner or superuser */
3134 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
3135 		return -EPERM;
3136 
3137 	return 0;
3138 }
3139 
handle_truncate(struct file * filp)3140 static int handle_truncate(struct file *filp)
3141 {
3142 	const struct path *path = &filp->f_path;
3143 	struct inode *inode = path->dentry->d_inode;
3144 	int error = get_write_access(inode);
3145 	if (error)
3146 		return error;
3147 	/*
3148 	 * Refuse to truncate files with mandatory locks held on them.
3149 	 */
3150 	error = locks_verify_locked(filp);
3151 	if (!error)
3152 		error = security_path_truncate(path);
3153 	if (!error) {
3154 		error = do_truncate(path->dentry, 0,
3155 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3156 				    filp);
3157 	}
3158 	put_write_access(inode);
3159 	return error;
3160 }
3161 
open_to_namei_flags(int flag)3162 static inline int open_to_namei_flags(int flag)
3163 {
3164 	if ((flag & O_ACCMODE) == 3)
3165 		flag--;
3166 	return flag;
3167 }
3168 
may_o_create(const struct path * dir,struct dentry * dentry,umode_t mode)3169 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3170 {
3171 	struct user_namespace *s_user_ns;
3172 	int error = security_path_mknod(dir, dentry, mode, 0);
3173 	if (error)
3174 		return error;
3175 
3176 	s_user_ns = dir->dentry->d_sb->s_user_ns;
3177 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3178 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
3179 		return -EOVERFLOW;
3180 
3181 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3182 	if (error)
3183 		return error;
3184 
3185 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3186 }
3187 
3188 /*
3189  * Attempt to atomically look up, create and open a file from a negative
3190  * dentry.
3191  *
3192  * Returns 0 if successful.  The file will have been created and attached to
3193  * @file by the filesystem calling finish_open().
3194  *
3195  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3196  * be set.  The caller will need to perform the open themselves.  @path will
3197  * have been updated to point to the new dentry.  This may be negative.
3198  *
3199  * Returns an error code otherwise.
3200  */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct path * path,struct file * file,const struct open_flags * op,int open_flag,umode_t mode)3201 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3202 			struct path *path, struct file *file,
3203 			const struct open_flags *op,
3204 			int open_flag, umode_t mode)
3205 {
3206 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3207 	struct inode *dir =  nd->path.dentry->d_inode;
3208 	int error;
3209 
3210 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3211 		open_flag &= ~O_TRUNC;
3212 
3213 	if (nd->flags & LOOKUP_DIRECTORY)
3214 		open_flag |= O_DIRECTORY;
3215 
3216 	file->f_path.dentry = DENTRY_NOT_SET;
3217 	file->f_path.mnt = nd->path.mnt;
3218 	error = dir->i_op->atomic_open(dir, dentry, file,
3219 				       open_to_namei_flags(open_flag), mode);
3220 	d_lookup_done(dentry);
3221 	if (!error) {
3222 		if (file->f_mode & FMODE_OPENED) {
3223 			/*
3224 			 * We didn't have the inode before the open, so check open
3225 			 * permission here.
3226 			 */
3227 			int acc_mode = op->acc_mode;
3228 			if (file->f_mode & FMODE_CREATED) {
3229 				WARN_ON(!(open_flag & O_CREAT));
3230 				fsnotify_create(dir, dentry);
3231 				acc_mode = 0;
3232 			}
3233 			error = may_open(&file->f_path, acc_mode, open_flag);
3234 			if (WARN_ON(error > 0))
3235 				error = -EINVAL;
3236 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3237 			error = -EIO;
3238 		} else {
3239 			if (file->f_path.dentry) {
3240 				dput(dentry);
3241 				dentry = file->f_path.dentry;
3242 			}
3243 			if (file->f_mode & FMODE_CREATED)
3244 				fsnotify_create(dir, dentry);
3245 			if (unlikely(d_is_negative(dentry))) {
3246 				error = -ENOENT;
3247 			} else {
3248 				path->dentry = dentry;
3249 				path->mnt = nd->path.mnt;
3250 				return 0;
3251 			}
3252 		}
3253 	}
3254 	dput(dentry);
3255 	return error;
3256 }
3257 
3258 /*
3259  * Look up and maybe create and open the last component.
3260  *
3261  * Must be called with parent locked (exclusive in O_CREAT case).
3262  *
3263  * Returns 0 on success, that is, if
3264  *  the file was successfully atomically created (if necessary) and opened, or
3265  *  the file was not completely opened at this time, though lookups and
3266  *  creations were performed.
3267  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3268  * In the latter case dentry returned in @path might be negative if O_CREAT
3269  * hadn't been specified.
3270  *
3271  * An error code is returned on failure.
3272  */
lookup_open(struct nameidata * nd,struct path * path,struct file * file,const struct open_flags * op,bool got_write)3273 static int lookup_open(struct nameidata *nd, struct path *path,
3274 			struct file *file,
3275 			const struct open_flags *op,
3276 			bool got_write)
3277 {
3278 	struct dentry *dir = nd->path.dentry;
3279 	struct inode *dir_inode = dir->d_inode;
3280 	int open_flag = op->open_flag;
3281 	struct dentry *dentry;
3282 	int error, create_error = 0;
3283 	umode_t mode = op->mode;
3284 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3285 
3286 	if (unlikely(IS_DEADDIR(dir_inode)))
3287 		return -ENOENT;
3288 
3289 	file->f_mode &= ~FMODE_CREATED;
3290 	dentry = d_lookup(dir, &nd->last);
3291 	for (;;) {
3292 		if (!dentry) {
3293 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3294 			if (IS_ERR(dentry))
3295 				return PTR_ERR(dentry);
3296 		}
3297 		if (d_in_lookup(dentry))
3298 			break;
3299 
3300 		error = d_revalidate(dentry, nd->flags);
3301 		if (likely(error > 0))
3302 			break;
3303 		if (error)
3304 			goto out_dput;
3305 		d_invalidate(dentry);
3306 		dput(dentry);
3307 		dentry = NULL;
3308 	}
3309 	if (dentry->d_inode) {
3310 		/* Cached positive dentry: will open in f_op->open */
3311 		goto out_no_open;
3312 	}
3313 
3314 	/*
3315 	 * Checking write permission is tricky, bacuse we don't know if we are
3316 	 * going to actually need it: O_CREAT opens should work as long as the
3317 	 * file exists.  But checking existence breaks atomicity.  The trick is
3318 	 * to check access and if not granted clear O_CREAT from the flags.
3319 	 *
3320 	 * Another problem is returing the "right" error value (e.g. for an
3321 	 * O_EXCL open we want to return EEXIST not EROFS).
3322 	 */
3323 	if (open_flag & O_CREAT) {
3324 		mode = vfs_prepare_mode(dir->d_inode, mode, mode, mode);
3325 		if (unlikely(!got_write)) {
3326 			create_error = -EROFS;
3327 			open_flag &= ~O_CREAT;
3328 			if (open_flag & (O_EXCL | O_TRUNC))
3329 				goto no_open;
3330 			/* No side effects, safe to clear O_CREAT */
3331 		} else {
3332 			create_error = may_o_create(&nd->path, dentry, mode);
3333 			if (create_error) {
3334 				open_flag &= ~O_CREAT;
3335 				if (open_flag & O_EXCL)
3336 					goto no_open;
3337 			}
3338 		}
3339 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3340 		   unlikely(!got_write)) {
3341 		/*
3342 		 * No O_CREATE -> atomicity not a requirement -> fall
3343 		 * back to lookup + open
3344 		 */
3345 		goto no_open;
3346 	}
3347 
3348 	if (dir_inode->i_op->atomic_open) {
3349 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3350 				    mode);
3351 		if (unlikely(error == -ENOENT) && create_error)
3352 			error = create_error;
3353 		return error;
3354 	}
3355 
3356 no_open:
3357 	if (d_in_lookup(dentry)) {
3358 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3359 							     nd->flags);
3360 		d_lookup_done(dentry);
3361 		if (unlikely(res)) {
3362 			if (IS_ERR(res)) {
3363 				error = PTR_ERR(res);
3364 				goto out_dput;
3365 			}
3366 			dput(dentry);
3367 			dentry = res;
3368 		}
3369 	}
3370 
3371 	/* Negative dentry, just create the file */
3372 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3373 		file->f_mode |= FMODE_CREATED;
3374 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3375 		if (!dir_inode->i_op->create) {
3376 			error = -EACCES;
3377 			goto out_dput;
3378 		}
3379 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3380 						open_flag & O_EXCL);
3381 		if (error)
3382 			goto out_dput;
3383 		fsnotify_create(dir_inode, dentry);
3384 	}
3385 	if (unlikely(create_error) && !dentry->d_inode) {
3386 		error = create_error;
3387 		goto out_dput;
3388 	}
3389 out_no_open:
3390 	path->dentry = dentry;
3391 	path->mnt = nd->path.mnt;
3392 	return 0;
3393 
3394 out_dput:
3395 	dput(dentry);
3396 	return error;
3397 }
3398 
3399 /*
3400  * Handle the last step of open()
3401  */
do_last(struct nameidata * nd,struct file * file,const struct open_flags * op)3402 static int do_last(struct nameidata *nd,
3403 		   struct file *file, const struct open_flags *op)
3404 {
3405 	struct dentry *dir = nd->path.dentry;
3406 	kuid_t dir_uid = nd->inode->i_uid;
3407 	umode_t dir_mode = nd->inode->i_mode;
3408 	int open_flag = op->open_flag;
3409 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3410 	bool got_write = false;
3411 	int acc_mode = op->acc_mode;
3412 	unsigned seq;
3413 	struct inode *inode;
3414 	struct path path;
3415 	int error;
3416 
3417 	nd->flags &= ~LOOKUP_PARENT;
3418 	nd->flags |= op->intent;
3419 
3420 	if (nd->last_type != LAST_NORM) {
3421 		error = handle_dots(nd, nd->last_type);
3422 		if (unlikely(error))
3423 			return error;
3424 		goto finish_open;
3425 	}
3426 
3427 	if (!(open_flag & O_CREAT)) {
3428 		if (nd->last.name[nd->last.len])
3429 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3430 		/* we _can_ be in RCU mode here */
3431 		error = lookup_fast(nd, &path, &inode, &seq);
3432 		if (likely(error > 0))
3433 			goto finish_lookup;
3434 
3435 		if (error < 0)
3436 			return error;
3437 
3438 		BUG_ON(nd->inode != dir->d_inode);
3439 		BUG_ON(nd->flags & LOOKUP_RCU);
3440 	} else {
3441 		/* create side of things */
3442 		/*
3443 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3444 		 * has been cleared when we got to the last component we are
3445 		 * about to look up
3446 		 */
3447 		error = complete_walk(nd);
3448 		if (error)
3449 			return error;
3450 
3451 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3452 		/* trailing slashes? */
3453 		if (unlikely(nd->last.name[nd->last.len]))
3454 			return -EISDIR;
3455 	}
3456 
3457 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3458 		error = mnt_want_write(nd->path.mnt);
3459 		if (!error)
3460 			got_write = true;
3461 		/*
3462 		 * do _not_ fail yet - we might not need that or fail with
3463 		 * a different error; let lookup_open() decide; we'll be
3464 		 * dropping this one anyway.
3465 		 */
3466 	}
3467 	if (open_flag & O_CREAT)
3468 		inode_lock(dir->d_inode);
3469 	else
3470 		inode_lock_shared(dir->d_inode);
3471 	error = lookup_open(nd, &path, file, op, got_write);
3472 	if (open_flag & O_CREAT)
3473 		inode_unlock(dir->d_inode);
3474 	else
3475 		inode_unlock_shared(dir->d_inode);
3476 
3477 	if (error)
3478 		goto out;
3479 
3480 	if (file->f_mode & FMODE_OPENED) {
3481 		if ((file->f_mode & FMODE_CREATED) ||
3482 		    !S_ISREG(file_inode(file)->i_mode))
3483 			will_truncate = false;
3484 
3485 		audit_inode(nd->name, file->f_path.dentry, 0);
3486 		goto opened;
3487 	}
3488 
3489 	if (file->f_mode & FMODE_CREATED) {
3490 		/* Don't check for write permission, don't truncate */
3491 		open_flag &= ~O_TRUNC;
3492 		will_truncate = false;
3493 		acc_mode = 0;
3494 		path_to_nameidata(&path, nd);
3495 		goto finish_open_created;
3496 	}
3497 
3498 	/*
3499 	 * If atomic_open() acquired write access it is dropped now due to
3500 	 * possible mount and symlink following (this might be optimized away if
3501 	 * necessary...)
3502 	 */
3503 	if (got_write) {
3504 		mnt_drop_write(nd->path.mnt);
3505 		got_write = false;
3506 	}
3507 
3508 	error = follow_managed(&path, nd);
3509 	if (unlikely(error < 0))
3510 		return error;
3511 
3512 	if (unlikely(d_is_negative(path.dentry))) {
3513 		path_to_nameidata(&path, nd);
3514 		return -ENOENT;
3515 	}
3516 
3517 	/*
3518 	 * create/update audit record if it already exists.
3519 	 */
3520 	audit_inode(nd->name, path.dentry, 0);
3521 
3522 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3523 		path_to_nameidata(&path, nd);
3524 		return -EEXIST;
3525 	}
3526 
3527 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3528 	inode = d_backing_inode(path.dentry);
3529 finish_lookup:
3530 	error = step_into(nd, &path, 0, inode, seq);
3531 	if (unlikely(error))
3532 		return error;
3533 finish_open:
3534 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3535 	error = complete_walk(nd);
3536 	if (error)
3537 		return error;
3538 	audit_inode(nd->name, nd->path.dentry, 0);
3539 	if (open_flag & O_CREAT) {
3540 		error = -EISDIR;
3541 		if (d_is_dir(nd->path.dentry))
3542 			goto out;
3543 		error = may_create_in_sticky(dir_mode, dir_uid,
3544 					     d_backing_inode(nd->path.dentry));
3545 		if (unlikely(error))
3546 			goto out;
3547 	}
3548 	error = -ENOTDIR;
3549 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3550 		goto out;
3551 	if (!d_is_reg(nd->path.dentry))
3552 		will_truncate = false;
3553 
3554 	if (will_truncate) {
3555 		error = mnt_want_write(nd->path.mnt);
3556 		if (error)
3557 			goto out;
3558 		got_write = true;
3559 	}
3560 finish_open_created:
3561 	error = may_open(&nd->path, acc_mode, open_flag);
3562 	if (error)
3563 		goto out;
3564 	BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3565 	error = vfs_open(&nd->path, file);
3566 	if (error)
3567 		goto out;
3568 opened:
3569 	error = ima_file_check(file, op->acc_mode);
3570 	if (!error && will_truncate)
3571 		error = handle_truncate(file);
3572 out:
3573 	if (unlikely(error > 0)) {
3574 		WARN_ON(1);
3575 		error = -EINVAL;
3576 	}
3577 	if (got_write)
3578 		mnt_drop_write(nd->path.mnt);
3579 	return error;
3580 }
3581 
vfs_tmpfile(struct dentry * dentry,umode_t mode,int open_flag)3582 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3583 {
3584 	struct dentry *child = NULL;
3585 	struct inode *dir = dentry->d_inode;
3586 	struct inode *inode;
3587 	int error;
3588 
3589 	/* we want directory to be writable */
3590 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3591 	if (error)
3592 		goto out_err;
3593 	error = -EOPNOTSUPP;
3594 	if (!dir->i_op->tmpfile)
3595 		goto out_err;
3596 	error = -ENOMEM;
3597 	child = d_alloc(dentry, &slash_name);
3598 	if (unlikely(!child))
3599 		goto out_err;
3600 	mode = vfs_prepare_mode(dir, mode, mode, mode);
3601 	error = dir->i_op->tmpfile(dir, child, mode);
3602 	if (error)
3603 		goto out_err;
3604 	error = -ENOENT;
3605 	inode = child->d_inode;
3606 	if (unlikely(!inode))
3607 		goto out_err;
3608 	if (!(open_flag & O_EXCL)) {
3609 		spin_lock(&inode->i_lock);
3610 		inode->i_state |= I_LINKABLE;
3611 		spin_unlock(&inode->i_lock);
3612 	}
3613 	ima_post_create_tmpfile(inode);
3614 	return child;
3615 
3616 out_err:
3617 	dput(child);
3618 	return ERR_PTR(error);
3619 }
3620 EXPORT_SYMBOL(vfs_tmpfile);
3621 
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)3622 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3623 		const struct open_flags *op,
3624 		struct file *file)
3625 {
3626 	struct dentry *child;
3627 	struct path path;
3628 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3629 	if (unlikely(error))
3630 		return error;
3631 	error = mnt_want_write(path.mnt);
3632 	if (unlikely(error))
3633 		goto out;
3634 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3635 	error = PTR_ERR(child);
3636 	if (IS_ERR(child))
3637 		goto out2;
3638 	dput(path.dentry);
3639 	path.dentry = child;
3640 	audit_inode(nd->name, child, 0);
3641 	/* Don't check for other permissions, the inode was just created */
3642 	error = may_open(&path, 0, op->open_flag);
3643 	if (error)
3644 		goto out2;
3645 	file->f_path.mnt = path.mnt;
3646 	error = finish_open(file, child, NULL);
3647 out2:
3648 	mnt_drop_write(path.mnt);
3649 out:
3650 	path_put(&path);
3651 	return error;
3652 }
3653 
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)3654 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3655 {
3656 	struct path path;
3657 	int error = path_lookupat(nd, flags, &path);
3658 	if (!error) {
3659 		audit_inode(nd->name, path.dentry, 0);
3660 		error = vfs_open(&path, file);
3661 		path_put(&path);
3662 	}
3663 	return error;
3664 }
3665 
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)3666 static struct file *path_openat(struct nameidata *nd,
3667 			const struct open_flags *op, unsigned flags)
3668 {
3669 	struct file *file;
3670 	int error;
3671 
3672 	file = alloc_empty_file(op->open_flag, current_cred());
3673 	if (IS_ERR(file))
3674 		return file;
3675 
3676 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3677 		error = do_tmpfile(nd, flags, op, file);
3678 	} else if (unlikely(file->f_flags & O_PATH)) {
3679 		error = do_o_path(nd, flags, file);
3680 	} else {
3681 		const char *s = path_init(nd, flags);
3682 		while (!(error = link_path_walk(s, nd)) &&
3683 			(error = do_last(nd, file, op)) > 0) {
3684 			nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3685 			s = trailing_symlink(nd);
3686 		}
3687 		terminate_walk(nd);
3688 	}
3689 	if (likely(!error)) {
3690 		if (likely(file->f_mode & FMODE_OPENED))
3691 			return file;
3692 		WARN_ON(1);
3693 		error = -EINVAL;
3694 	}
3695 	fput(file);
3696 	if (error == -EOPENSTALE) {
3697 		if (flags & LOOKUP_RCU)
3698 			error = -ECHILD;
3699 		else
3700 			error = -ESTALE;
3701 	}
3702 	return ERR_PTR(error);
3703 }
3704 
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)3705 struct file *do_filp_open(int dfd, struct filename *pathname,
3706 		const struct open_flags *op)
3707 {
3708 	struct nameidata nd;
3709 	int flags = op->lookup_flags;
3710 	struct file *filp;
3711 
3712 	set_nameidata(&nd, dfd, pathname);
3713 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3714 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3715 		filp = path_openat(&nd, op, flags);
3716 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3717 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3718 	restore_nameidata();
3719 	return filp;
3720 }
3721 
do_file_open_root(struct dentry * dentry,struct vfsmount * mnt,const char * name,const struct open_flags * op)3722 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3723 		const char *name, const struct open_flags *op)
3724 {
3725 	struct nameidata nd;
3726 	struct file *file;
3727 	struct filename *filename;
3728 	int flags = op->lookup_flags | LOOKUP_ROOT;
3729 
3730 	nd.root.mnt = mnt;
3731 	nd.root.dentry = dentry;
3732 
3733 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3734 		return ERR_PTR(-ELOOP);
3735 
3736 	filename = getname_kernel(name);
3737 	if (IS_ERR(filename))
3738 		return ERR_CAST(filename);
3739 
3740 	set_nameidata(&nd, -1, filename);
3741 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3742 	if (unlikely(file == ERR_PTR(-ECHILD)))
3743 		file = path_openat(&nd, op, flags);
3744 	if (unlikely(file == ERR_PTR(-ESTALE)))
3745 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3746 	restore_nameidata();
3747 	putname(filename);
3748 	return file;
3749 }
3750 
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)3751 static struct dentry *filename_create(int dfd, struct filename *name,
3752 				struct path *path, unsigned int lookup_flags)
3753 {
3754 	struct dentry *dentry = ERR_PTR(-EEXIST);
3755 	struct qstr last;
3756 	int type;
3757 	int err2;
3758 	int error;
3759 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3760 
3761 	/*
3762 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3763 	 * other flags passed in are ignored!
3764 	 */
3765 	lookup_flags &= LOOKUP_REVAL;
3766 
3767 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3768 	if (IS_ERR(name))
3769 		return ERR_CAST(name);
3770 
3771 	/*
3772 	 * Yucky last component or no last component at all?
3773 	 * (foo/., foo/.., /////)
3774 	 */
3775 	if (unlikely(type != LAST_NORM))
3776 		goto out;
3777 
3778 	/* don't fail immediately if it's r/o, at least try to report other errors */
3779 	err2 = mnt_want_write(path->mnt);
3780 	/*
3781 	 * Do the final lookup.
3782 	 */
3783 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3784 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3785 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3786 	if (IS_ERR(dentry))
3787 		goto unlock;
3788 
3789 	error = -EEXIST;
3790 	if (d_is_positive(dentry))
3791 		goto fail;
3792 
3793 	/*
3794 	 * Special case - lookup gave negative, but... we had foo/bar/
3795 	 * From the vfs_mknod() POV we just have a negative dentry -
3796 	 * all is fine. Let's be bastards - you had / on the end, you've
3797 	 * been asking for (non-existent) directory. -ENOENT for you.
3798 	 */
3799 	if (unlikely(!is_dir && last.name[last.len])) {
3800 		error = -ENOENT;
3801 		goto fail;
3802 	}
3803 	if (unlikely(err2)) {
3804 		error = err2;
3805 		goto fail;
3806 	}
3807 	putname(name);
3808 	return dentry;
3809 fail:
3810 	dput(dentry);
3811 	dentry = ERR_PTR(error);
3812 unlock:
3813 	inode_unlock(path->dentry->d_inode);
3814 	if (!err2)
3815 		mnt_drop_write(path->mnt);
3816 out:
3817 	path_put(path);
3818 	putname(name);
3819 	return dentry;
3820 }
3821 
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)3822 struct dentry *kern_path_create(int dfd, const char *pathname,
3823 				struct path *path, unsigned int lookup_flags)
3824 {
3825 	return filename_create(dfd, getname_kernel(pathname),
3826 				path, lookup_flags);
3827 }
3828 EXPORT_SYMBOL(kern_path_create);
3829 
done_path_create(struct path * path,struct dentry * dentry)3830 void done_path_create(struct path *path, struct dentry *dentry)
3831 {
3832 	dput(dentry);
3833 	inode_unlock(path->dentry->d_inode);
3834 	mnt_drop_write(path->mnt);
3835 	path_put(path);
3836 }
3837 EXPORT_SYMBOL(done_path_create);
3838 
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)3839 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3840 				struct path *path, unsigned int lookup_flags)
3841 {
3842 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3843 }
3844 EXPORT_SYMBOL(user_path_create);
3845 
vfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3846 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3847 {
3848 	int error = may_create(dir, dentry);
3849 
3850 	if (error)
3851 		return error;
3852 
3853 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3854 		return -EPERM;
3855 
3856 	if (!dir->i_op->mknod)
3857 		return -EPERM;
3858 
3859 	mode = vfs_prepare_mode(dir, mode, mode, mode);
3860 	error = devcgroup_inode_mknod(mode, dev);
3861 	if (error)
3862 		return error;
3863 
3864 	error = security_inode_mknod(dir, dentry, mode, dev);
3865 	if (error)
3866 		return error;
3867 
3868 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3869 	if (!error)
3870 		fsnotify_create(dir, dentry);
3871 	return error;
3872 }
3873 EXPORT_SYMBOL(vfs_mknod);
3874 
may_mknod(umode_t mode)3875 static int may_mknod(umode_t mode)
3876 {
3877 	switch (mode & S_IFMT) {
3878 	case S_IFREG:
3879 	case S_IFCHR:
3880 	case S_IFBLK:
3881 	case S_IFIFO:
3882 	case S_IFSOCK:
3883 	case 0: /* zero mode translates to S_IFREG */
3884 		return 0;
3885 	case S_IFDIR:
3886 		return -EPERM;
3887 	default:
3888 		return -EINVAL;
3889 	}
3890 }
3891 
do_mknodat(int dfd,const char __user * filename,umode_t mode,unsigned int dev)3892 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3893 		unsigned int dev)
3894 {
3895 	struct dentry *dentry;
3896 	struct path path;
3897 	int error;
3898 	unsigned int lookup_flags = 0;
3899 
3900 	error = may_mknod(mode);
3901 	if (error)
3902 		return error;
3903 retry:
3904 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3905 	if (IS_ERR(dentry))
3906 		return PTR_ERR(dentry);
3907 
3908 	error = security_path_mknod(&path, dentry,
3909 			mode_strip_umask(path.dentry->d_inode, mode), dev);
3910 	if (error)
3911 		goto out;
3912 	switch (mode & S_IFMT) {
3913 		case 0: case S_IFREG:
3914 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3915 			if (!error)
3916 				ima_post_path_mknod(dentry);
3917 			break;
3918 		case S_IFCHR: case S_IFBLK:
3919 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3920 					new_decode_dev(dev));
3921 			break;
3922 		case S_IFIFO: case S_IFSOCK:
3923 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3924 			break;
3925 	}
3926 out:
3927 	done_path_create(&path, dentry);
3928 	if (retry_estale(error, lookup_flags)) {
3929 		lookup_flags |= LOOKUP_REVAL;
3930 		goto retry;
3931 	}
3932 	return error;
3933 }
3934 
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)3935 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3936 		unsigned int, dev)
3937 {
3938 	return do_mknodat(dfd, filename, mode, dev);
3939 }
3940 
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)3941 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3942 {
3943 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3944 }
3945 
vfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)3946 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3947 {
3948 	int error = may_create(dir, dentry);
3949 	unsigned max_links = dir->i_sb->s_max_links;
3950 
3951 	if (error)
3952 		return error;
3953 
3954 	if (!dir->i_op->mkdir)
3955 		return -EPERM;
3956 
3957 	mode = vfs_prepare_mode(dir, mode, S_IRWXUGO | S_ISVTX, 0);
3958 	error = security_inode_mkdir(dir, dentry, mode);
3959 	if (error)
3960 		return error;
3961 
3962 	if (max_links && dir->i_nlink >= max_links)
3963 		return -EMLINK;
3964 
3965 	error = dir->i_op->mkdir(dir, dentry, mode);
3966 	if (!error)
3967 		fsnotify_mkdir(dir, dentry);
3968 	return error;
3969 }
3970 EXPORT_SYMBOL_NS(vfs_mkdir, ANDROID_GKI_VFS_EXPORT_ONLY);
3971 
do_mkdirat(int dfd,const char __user * pathname,umode_t mode)3972 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3973 {
3974 	struct dentry *dentry;
3975 	struct path path;
3976 	int error;
3977 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3978 
3979 retry:
3980 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3981 	if (IS_ERR(dentry))
3982 		return PTR_ERR(dentry);
3983 
3984 	error = security_path_mkdir(&path, dentry,
3985 			mode_strip_umask(path.dentry->d_inode, mode));
3986 	if (!error)
3987 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3988 	done_path_create(&path, dentry);
3989 	if (retry_estale(error, lookup_flags)) {
3990 		lookup_flags |= LOOKUP_REVAL;
3991 		goto retry;
3992 	}
3993 	return error;
3994 }
3995 
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)3996 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3997 {
3998 	return do_mkdirat(dfd, pathname, mode);
3999 }
4000 
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)4001 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4002 {
4003 	return do_mkdirat(AT_FDCWD, pathname, mode);
4004 }
4005 
vfs_rmdir(struct inode * dir,struct dentry * dentry)4006 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
4007 {
4008 	int error = may_delete(dir, dentry, 1);
4009 
4010 	if (error)
4011 		return error;
4012 
4013 	if (!dir->i_op->rmdir)
4014 		return -EPERM;
4015 
4016 	dget(dentry);
4017 	inode_lock(dentry->d_inode);
4018 
4019 	error = -EBUSY;
4020 	if (is_local_mountpoint(dentry))
4021 		goto out;
4022 
4023 	error = security_inode_rmdir(dir, dentry);
4024 	if (error)
4025 		goto out;
4026 
4027 	error = dir->i_op->rmdir(dir, dentry);
4028 	if (error)
4029 		goto out;
4030 
4031 	shrink_dcache_parent(dentry);
4032 	dentry->d_inode->i_flags |= S_DEAD;
4033 	dont_mount(dentry);
4034 	detach_mounts(dentry);
4035 
4036 out:
4037 	inode_unlock(dentry->d_inode);
4038 	dput(dentry);
4039 	if (!error)
4040 		d_delete_notify(dir, dentry);
4041 	return error;
4042 }
4043 EXPORT_SYMBOL_NS(vfs_rmdir, ANDROID_GKI_VFS_EXPORT_ONLY);
4044 
do_rmdir(int dfd,const char __user * pathname)4045 long do_rmdir(int dfd, const char __user *pathname)
4046 {
4047 	int error = 0;
4048 	struct filename *name;
4049 	struct dentry *dentry;
4050 	struct path path;
4051 	struct qstr last;
4052 	int type;
4053 	unsigned int lookup_flags = 0;
4054 retry:
4055 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
4056 				&path, &last, &type);
4057 	if (IS_ERR(name))
4058 		return PTR_ERR(name);
4059 
4060 	switch (type) {
4061 	case LAST_DOTDOT:
4062 		error = -ENOTEMPTY;
4063 		goto exit1;
4064 	case LAST_DOT:
4065 		error = -EINVAL;
4066 		goto exit1;
4067 	case LAST_ROOT:
4068 		error = -EBUSY;
4069 		goto exit1;
4070 	}
4071 
4072 	error = mnt_want_write(path.mnt);
4073 	if (error)
4074 		goto exit1;
4075 
4076 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4077 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4078 	error = PTR_ERR(dentry);
4079 	if (IS_ERR(dentry))
4080 		goto exit2;
4081 	if (!dentry->d_inode) {
4082 		error = -ENOENT;
4083 		goto exit3;
4084 	}
4085 	error = security_path_rmdir(&path, dentry);
4086 	if (error)
4087 		goto exit3;
4088 	error = vfs_rmdir(path.dentry->d_inode, dentry);
4089 exit3:
4090 	dput(dentry);
4091 exit2:
4092 	inode_unlock(path.dentry->d_inode);
4093 	mnt_drop_write(path.mnt);
4094 exit1:
4095 	path_put(&path);
4096 	putname(name);
4097 	if (retry_estale(error, lookup_flags)) {
4098 		lookup_flags |= LOOKUP_REVAL;
4099 		goto retry;
4100 	}
4101 	return error;
4102 }
4103 
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)4104 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4105 {
4106 	return do_rmdir(AT_FDCWD, pathname);
4107 }
4108 
4109 /**
4110  * vfs_unlink - unlink a filesystem object
4111  * @dir:	parent directory
4112  * @dentry:	victim
4113  * @delegated_inode: returns victim inode, if the inode is delegated.
4114  *
4115  * The caller must hold dir->i_mutex.
4116  *
4117  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4118  * return a reference to the inode in delegated_inode.  The caller
4119  * should then break the delegation on that inode and retry.  Because
4120  * breaking a delegation may take a long time, the caller should drop
4121  * dir->i_mutex before doing so.
4122  *
4123  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4124  * be appropriate for callers that expect the underlying filesystem not
4125  * to be NFS exported.
4126  */
vfs_unlink(struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4127 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
4128 {
4129 	struct inode *target = dentry->d_inode;
4130 	int error = may_delete(dir, dentry, 0);
4131 
4132 	if (error)
4133 		return error;
4134 
4135 	if (!dir->i_op->unlink)
4136 		return -EPERM;
4137 
4138 	inode_lock(target);
4139 	if (is_local_mountpoint(dentry))
4140 		error = -EBUSY;
4141 	else {
4142 		error = security_inode_unlink(dir, dentry);
4143 		if (!error) {
4144 			error = try_break_deleg(target, delegated_inode);
4145 			if (error)
4146 				goto out;
4147 			error = dir->i_op->unlink(dir, dentry);
4148 			if (!error) {
4149 				dont_mount(dentry);
4150 				detach_mounts(dentry);
4151 			}
4152 		}
4153 	}
4154 out:
4155 	inode_unlock(target);
4156 
4157 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4158 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4159 		fsnotify_unlink(dir, dentry);
4160 	} else if (!error) {
4161 		fsnotify_link_count(target);
4162 		d_delete_notify(dir, dentry);
4163 	}
4164 
4165 	return error;
4166 }
4167 EXPORT_SYMBOL_NS(vfs_unlink, ANDROID_GKI_VFS_EXPORT_ONLY);
4168 
4169 /*
4170  * Make sure that the actual truncation of the file will occur outside its
4171  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4172  * writeout happening, and we don't want to prevent access to the directory
4173  * while waiting on the I/O.
4174  */
do_unlinkat(int dfd,struct filename * name)4175 long do_unlinkat(int dfd, struct filename *name)
4176 {
4177 	int error;
4178 	struct dentry *dentry;
4179 	struct path path;
4180 	struct qstr last;
4181 	int type;
4182 	struct inode *inode = NULL;
4183 	struct inode *delegated_inode = NULL;
4184 	unsigned int lookup_flags = 0;
4185 retry:
4186 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4187 	if (IS_ERR(name))
4188 		return PTR_ERR(name);
4189 
4190 	error = -EISDIR;
4191 	if (type != LAST_NORM)
4192 		goto exit1;
4193 
4194 	error = mnt_want_write(path.mnt);
4195 	if (error)
4196 		goto exit1;
4197 retry_deleg:
4198 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4199 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4200 	error = PTR_ERR(dentry);
4201 	if (!IS_ERR(dentry)) {
4202 		/* Why not before? Because we want correct error value */
4203 		if (last.name[last.len])
4204 			goto slashes;
4205 		inode = dentry->d_inode;
4206 		if (d_is_negative(dentry))
4207 			goto slashes;
4208 		ihold(inode);
4209 		error = security_path_unlink(&path, dentry);
4210 		if (error)
4211 			goto exit2;
4212 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4213 exit2:
4214 		dput(dentry);
4215 	}
4216 	inode_unlock(path.dentry->d_inode);
4217 	if (inode)
4218 		iput(inode);	/* truncate the inode here */
4219 	inode = NULL;
4220 	if (delegated_inode) {
4221 		error = break_deleg_wait(&delegated_inode);
4222 		if (!error)
4223 			goto retry_deleg;
4224 	}
4225 	mnt_drop_write(path.mnt);
4226 exit1:
4227 	path_put(&path);
4228 	if (retry_estale(error, lookup_flags)) {
4229 		lookup_flags |= LOOKUP_REVAL;
4230 		inode = NULL;
4231 		goto retry;
4232 	}
4233 	putname(name);
4234 	return error;
4235 
4236 slashes:
4237 	if (d_is_negative(dentry))
4238 		error = -ENOENT;
4239 	else if (d_is_dir(dentry))
4240 		error = -EISDIR;
4241 	else
4242 		error = -ENOTDIR;
4243 	goto exit2;
4244 }
4245 
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4246 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4247 {
4248 	if ((flag & ~AT_REMOVEDIR) != 0)
4249 		return -EINVAL;
4250 
4251 	if (flag & AT_REMOVEDIR)
4252 		return do_rmdir(dfd, pathname);
4253 
4254 	return do_unlinkat(dfd, getname(pathname));
4255 }
4256 
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4257 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4258 {
4259 	return do_unlinkat(AT_FDCWD, getname(pathname));
4260 }
4261 
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)4262 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4263 {
4264 	int error = may_create(dir, dentry);
4265 
4266 	if (error)
4267 		return error;
4268 
4269 	if (!dir->i_op->symlink)
4270 		return -EPERM;
4271 
4272 	error = security_inode_symlink(dir, dentry, oldname);
4273 	if (error)
4274 		return error;
4275 
4276 	error = dir->i_op->symlink(dir, dentry, oldname);
4277 	if (!error)
4278 		fsnotify_create(dir, dentry);
4279 	return error;
4280 }
4281 EXPORT_SYMBOL(vfs_symlink);
4282 
do_symlinkat(const char __user * oldname,int newdfd,const char __user * newname)4283 long do_symlinkat(const char __user *oldname, int newdfd,
4284 		  const char __user *newname)
4285 {
4286 	int error;
4287 	struct filename *from;
4288 	struct dentry *dentry;
4289 	struct path path;
4290 	unsigned int lookup_flags = 0;
4291 
4292 	from = getname(oldname);
4293 	if (IS_ERR(from))
4294 		return PTR_ERR(from);
4295 retry:
4296 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4297 	error = PTR_ERR(dentry);
4298 	if (IS_ERR(dentry))
4299 		goto out_putname;
4300 
4301 	error = security_path_symlink(&path, dentry, from->name);
4302 	if (!error)
4303 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4304 	done_path_create(&path, dentry);
4305 	if (retry_estale(error, lookup_flags)) {
4306 		lookup_flags |= LOOKUP_REVAL;
4307 		goto retry;
4308 	}
4309 out_putname:
4310 	putname(from);
4311 	return error;
4312 }
4313 
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4314 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4315 		int, newdfd, const char __user *, newname)
4316 {
4317 	return do_symlinkat(oldname, newdfd, newname);
4318 }
4319 
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4320 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4321 {
4322 	return do_symlinkat(oldname, AT_FDCWD, newname);
4323 }
4324 
4325 /**
4326  * vfs_link - create a new link
4327  * @old_dentry:	object to be linked
4328  * @dir:	new parent
4329  * @new_dentry:	where to create the new link
4330  * @delegated_inode: returns inode needing a delegation break
4331  *
4332  * The caller must hold dir->i_mutex
4333  *
4334  * If vfs_link discovers a delegation on the to-be-linked file in need
4335  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4336  * inode in delegated_inode.  The caller should then break the delegation
4337  * and retry.  Because breaking a delegation may take a long time, the
4338  * caller should drop the i_mutex before doing so.
4339  *
4340  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4341  * be appropriate for callers that expect the underlying filesystem not
4342  * to be NFS exported.
4343  */
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4344 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4345 {
4346 	struct inode *inode = old_dentry->d_inode;
4347 	unsigned max_links = dir->i_sb->s_max_links;
4348 	int error;
4349 
4350 	if (!inode)
4351 		return -ENOENT;
4352 
4353 	error = may_create(dir, new_dentry);
4354 	if (error)
4355 		return error;
4356 
4357 	if (dir->i_sb != inode->i_sb)
4358 		return -EXDEV;
4359 
4360 	/*
4361 	 * A link to an append-only or immutable file cannot be created.
4362 	 */
4363 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4364 		return -EPERM;
4365 	/*
4366 	 * Updating the link count will likely cause i_uid and i_gid to
4367 	 * be writen back improperly if their true value is unknown to
4368 	 * the vfs.
4369 	 */
4370 	if (HAS_UNMAPPED_ID(inode))
4371 		return -EPERM;
4372 	if (!dir->i_op->link)
4373 		return -EPERM;
4374 	if (S_ISDIR(inode->i_mode))
4375 		return -EPERM;
4376 
4377 	error = security_inode_link(old_dentry, dir, new_dentry);
4378 	if (error)
4379 		return error;
4380 
4381 	inode_lock(inode);
4382 	/* Make sure we don't allow creating hardlink to an unlinked file */
4383 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4384 		error =  -ENOENT;
4385 	else if (max_links && inode->i_nlink >= max_links)
4386 		error = -EMLINK;
4387 	else {
4388 		error = try_break_deleg(inode, delegated_inode);
4389 		if (!error)
4390 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4391 	}
4392 
4393 	if (!error && (inode->i_state & I_LINKABLE)) {
4394 		spin_lock(&inode->i_lock);
4395 		inode->i_state &= ~I_LINKABLE;
4396 		spin_unlock(&inode->i_lock);
4397 	}
4398 	inode_unlock(inode);
4399 	if (!error)
4400 		fsnotify_link(dir, inode, new_dentry);
4401 	return error;
4402 }
4403 EXPORT_SYMBOL_NS(vfs_link, ANDROID_GKI_VFS_EXPORT_ONLY);
4404 
4405 /*
4406  * Hardlinks are often used in delicate situations.  We avoid
4407  * security-related surprises by not following symlinks on the
4408  * newname.  --KAB
4409  *
4410  * We don't follow them on the oldname either to be compatible
4411  * with linux 2.0, and to avoid hard-linking to directories
4412  * and other special files.  --ADM
4413  */
do_linkat(int olddfd,const char __user * oldname,int newdfd,const char __user * newname,int flags)4414 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4415 	      const char __user *newname, int flags)
4416 {
4417 	struct dentry *new_dentry;
4418 	struct path old_path, new_path;
4419 	struct inode *delegated_inode = NULL;
4420 	int how = 0;
4421 	int error;
4422 
4423 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4424 		return -EINVAL;
4425 	/*
4426 	 * To use null names we require CAP_DAC_READ_SEARCH
4427 	 * This ensures that not everyone will be able to create
4428 	 * handlink using the passed filedescriptor.
4429 	 */
4430 	if (flags & AT_EMPTY_PATH) {
4431 		if (!capable(CAP_DAC_READ_SEARCH))
4432 			return -ENOENT;
4433 		how = LOOKUP_EMPTY;
4434 	}
4435 
4436 	if (flags & AT_SYMLINK_FOLLOW)
4437 		how |= LOOKUP_FOLLOW;
4438 retry:
4439 	error = user_path_at(olddfd, oldname, how, &old_path);
4440 	if (error)
4441 		return error;
4442 
4443 	new_dentry = user_path_create(newdfd, newname, &new_path,
4444 					(how & LOOKUP_REVAL));
4445 	error = PTR_ERR(new_dentry);
4446 	if (IS_ERR(new_dentry))
4447 		goto out;
4448 
4449 	error = -EXDEV;
4450 	if (old_path.mnt != new_path.mnt)
4451 		goto out_dput;
4452 	error = may_linkat(&old_path);
4453 	if (unlikely(error))
4454 		goto out_dput;
4455 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4456 	if (error)
4457 		goto out_dput;
4458 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4459 out_dput:
4460 	done_path_create(&new_path, new_dentry);
4461 	if (delegated_inode) {
4462 		error = break_deleg_wait(&delegated_inode);
4463 		if (!error) {
4464 			path_put(&old_path);
4465 			goto retry;
4466 		}
4467 	}
4468 	if (retry_estale(error, how)) {
4469 		path_put(&old_path);
4470 		how |= LOOKUP_REVAL;
4471 		goto retry;
4472 	}
4473 out:
4474 	path_put(&old_path);
4475 
4476 	return error;
4477 }
4478 
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4479 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4480 		int, newdfd, const char __user *, newname, int, flags)
4481 {
4482 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4483 }
4484 
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4485 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4486 {
4487 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4488 }
4489 
4490 /**
4491  * vfs_rename - rename a filesystem object
4492  * @old_dir:	parent of source
4493  * @old_dentry:	source
4494  * @new_dir:	parent of destination
4495  * @new_dentry:	destination
4496  * @delegated_inode: returns an inode needing a delegation break
4497  * @flags:	rename flags
4498  *
4499  * The caller must hold multiple mutexes--see lock_rename()).
4500  *
4501  * If vfs_rename discovers a delegation in need of breaking at either
4502  * the source or destination, it will return -EWOULDBLOCK and return a
4503  * reference to the inode in delegated_inode.  The caller should then
4504  * break the delegation and retry.  Because breaking a delegation may
4505  * take a long time, the caller should drop all locks before doing
4506  * so.
4507  *
4508  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4509  * be appropriate for callers that expect the underlying filesystem not
4510  * to be NFS exported.
4511  *
4512  * The worst of all namespace operations - renaming directory. "Perverted"
4513  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4514  * Problems:
4515  *
4516  *	a) we can get into loop creation.
4517  *	b) race potential - two innocent renames can create a loop together.
4518  *	   That's where 4.4BSD screws up. Current fix: serialization on
4519  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4520  *	   story.
4521  *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4522  *	   and source (if it's a non-directory or a subdirectory that moves to
4523  *	   different parent).
4524  *	   And that - after we got ->i_mutex on parents (until then we don't know
4525  *	   whether the target exists).  Solution: try to be smart with locking
4526  *	   order for inodes.  We rely on the fact that tree topology may change
4527  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4528  *	   move will be locked.  Thus we can rank directories by the tree
4529  *	   (ancestors first) and rank all non-directories after them.
4530  *	   That works since everybody except rename does "lock parent, lookup,
4531  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4532  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4533  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4534  *	   we'd better make sure that there's no link(2) for them.
4535  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4536  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4537  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4538  *	   ->i_mutex on parents, which works but leads to some truly excessive
4539  *	   locking].
4540  */
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,struct inode ** delegated_inode,unsigned int flags)4541 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4542 	       struct inode *new_dir, struct dentry *new_dentry,
4543 	       struct inode **delegated_inode, unsigned int flags)
4544 {
4545 	int error;
4546 	bool is_dir = d_is_dir(old_dentry);
4547 	struct inode *source = old_dentry->d_inode;
4548 	struct inode *target = new_dentry->d_inode;
4549 	bool new_is_dir = false;
4550 	unsigned max_links = new_dir->i_sb->s_max_links;
4551 	struct name_snapshot old_name;
4552 	bool lock_old_subdir, lock_new_subdir;
4553 
4554 	if (source == target)
4555 		return 0;
4556 
4557 	error = may_delete(old_dir, old_dentry, is_dir);
4558 	if (error)
4559 		return error;
4560 
4561 	if (!target) {
4562 		error = may_create(new_dir, new_dentry);
4563 	} else {
4564 		new_is_dir = d_is_dir(new_dentry);
4565 
4566 		if (!(flags & RENAME_EXCHANGE))
4567 			error = may_delete(new_dir, new_dentry, is_dir);
4568 		else
4569 			error = may_delete(new_dir, new_dentry, new_is_dir);
4570 	}
4571 	if (error)
4572 		return error;
4573 
4574 	if (!old_dir->i_op->rename)
4575 		return -EPERM;
4576 
4577 	/*
4578 	 * If we are going to change the parent - check write permissions,
4579 	 * we'll need to flip '..'.
4580 	 */
4581 	if (new_dir != old_dir) {
4582 		if (is_dir) {
4583 			error = inode_permission(source, MAY_WRITE);
4584 			if (error)
4585 				return error;
4586 		}
4587 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4588 			error = inode_permission(target, MAY_WRITE);
4589 			if (error)
4590 				return error;
4591 		}
4592 	}
4593 
4594 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4595 				      flags);
4596 	if (error)
4597 		return error;
4598 
4599 	take_dentry_name_snapshot(&old_name, old_dentry);
4600 	dget(new_dentry);
4601 	/*
4602 	 * Lock children.
4603 	 * The source subdirectory needs to be locked on cross-directory
4604 	 * rename or cross-directory exchange since its parent changes.
4605 	 * The target subdirectory needs to be locked on cross-directory
4606 	 * exchange due to parent change and on any rename due to becoming
4607 	 * a victim.
4608 	 * Non-directories need locking in all cases (for NFS reasons);
4609 	 * they get locked after any subdirectories (in inode address order).
4610 	 *
4611 	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
4612 	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
4613 	 */
4614 	lock_old_subdir = new_dir != old_dir;
4615 	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
4616 	if (is_dir) {
4617 		if (lock_old_subdir)
4618 			inode_lock_nested(source, I_MUTEX_CHILD);
4619 		if (target && (!new_is_dir || lock_new_subdir))
4620 			inode_lock(target);
4621 	} else if (new_is_dir) {
4622 		if (lock_new_subdir)
4623 			inode_lock_nested(target, I_MUTEX_CHILD);
4624 		inode_lock(source);
4625 	} else {
4626 		lock_two_nondirectories(source, target);
4627 	}
4628 
4629 	error = -EBUSY;
4630 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4631 		goto out;
4632 
4633 	if (max_links && new_dir != old_dir) {
4634 		error = -EMLINK;
4635 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4636 			goto out;
4637 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4638 		    old_dir->i_nlink >= max_links)
4639 			goto out;
4640 	}
4641 	if (!is_dir) {
4642 		error = try_break_deleg(source, delegated_inode);
4643 		if (error)
4644 			goto out;
4645 	}
4646 	if (target && !new_is_dir) {
4647 		error = try_break_deleg(target, delegated_inode);
4648 		if (error)
4649 			goto out;
4650 	}
4651 	error = old_dir->i_op->rename(old_dir, old_dentry,
4652 				       new_dir, new_dentry, flags);
4653 	if (error)
4654 		goto out;
4655 
4656 	if (!(flags & RENAME_EXCHANGE) && target) {
4657 		if (is_dir) {
4658 			shrink_dcache_parent(new_dentry);
4659 			target->i_flags |= S_DEAD;
4660 		}
4661 		dont_mount(new_dentry);
4662 		detach_mounts(new_dentry);
4663 	}
4664 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4665 		if (!(flags & RENAME_EXCHANGE))
4666 			d_move(old_dentry, new_dentry);
4667 		else
4668 			d_exchange(old_dentry, new_dentry);
4669 	}
4670 out:
4671 	if (!is_dir || lock_old_subdir)
4672 		inode_unlock(source);
4673 	if (target && (!new_is_dir || lock_new_subdir))
4674 		inode_unlock(target);
4675 	dput(new_dentry);
4676 	if (!error) {
4677 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4678 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4679 		if (flags & RENAME_EXCHANGE) {
4680 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4681 				      new_is_dir, NULL, new_dentry);
4682 		}
4683 	}
4684 	release_dentry_name_snapshot(&old_name);
4685 
4686 	return error;
4687 }
4688 EXPORT_SYMBOL_NS(vfs_rename, ANDROID_GKI_VFS_EXPORT_ONLY);
4689 
do_renameat2(int olddfd,const char __user * oldname,int newdfd,const char __user * newname,unsigned int flags)4690 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4691 			const char __user *newname, unsigned int flags)
4692 {
4693 	struct dentry *old_dentry, *new_dentry;
4694 	struct dentry *trap;
4695 	struct path old_path, new_path;
4696 	struct qstr old_last, new_last;
4697 	int old_type, new_type;
4698 	struct inode *delegated_inode = NULL;
4699 	struct filename *from;
4700 	struct filename *to;
4701 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4702 	bool should_retry = false;
4703 	int error;
4704 
4705 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4706 		return -EINVAL;
4707 
4708 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4709 	    (flags & RENAME_EXCHANGE))
4710 		return -EINVAL;
4711 
4712 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4713 		return -EPERM;
4714 
4715 	if (flags & RENAME_EXCHANGE)
4716 		target_flags = 0;
4717 
4718 retry:
4719 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4720 				&old_path, &old_last, &old_type);
4721 	if (IS_ERR(from)) {
4722 		error = PTR_ERR(from);
4723 		goto exit;
4724 	}
4725 
4726 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4727 				&new_path, &new_last, &new_type);
4728 	if (IS_ERR(to)) {
4729 		error = PTR_ERR(to);
4730 		goto exit1;
4731 	}
4732 
4733 	error = -EXDEV;
4734 	if (old_path.mnt != new_path.mnt)
4735 		goto exit2;
4736 
4737 	error = -EBUSY;
4738 	if (old_type != LAST_NORM)
4739 		goto exit2;
4740 
4741 	if (flags & RENAME_NOREPLACE)
4742 		error = -EEXIST;
4743 	if (new_type != LAST_NORM)
4744 		goto exit2;
4745 
4746 	error = mnt_want_write(old_path.mnt);
4747 	if (error)
4748 		goto exit2;
4749 
4750 retry_deleg:
4751 	trap = lock_rename(new_path.dentry, old_path.dentry);
4752 
4753 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4754 	error = PTR_ERR(old_dentry);
4755 	if (IS_ERR(old_dentry))
4756 		goto exit3;
4757 	/* source must exist */
4758 	error = -ENOENT;
4759 	if (d_is_negative(old_dentry))
4760 		goto exit4;
4761 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4762 	error = PTR_ERR(new_dentry);
4763 	if (IS_ERR(new_dentry))
4764 		goto exit4;
4765 	error = -EEXIST;
4766 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4767 		goto exit5;
4768 	if (flags & RENAME_EXCHANGE) {
4769 		error = -ENOENT;
4770 		if (d_is_negative(new_dentry))
4771 			goto exit5;
4772 
4773 		if (!d_is_dir(new_dentry)) {
4774 			error = -ENOTDIR;
4775 			if (new_last.name[new_last.len])
4776 				goto exit5;
4777 		}
4778 	}
4779 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4780 	if (!d_is_dir(old_dentry)) {
4781 		error = -ENOTDIR;
4782 		if (old_last.name[old_last.len])
4783 			goto exit5;
4784 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4785 			goto exit5;
4786 	}
4787 	/* source should not be ancestor of target */
4788 	error = -EINVAL;
4789 	if (old_dentry == trap)
4790 		goto exit5;
4791 	/* target should not be an ancestor of source */
4792 	if (!(flags & RENAME_EXCHANGE))
4793 		error = -ENOTEMPTY;
4794 	if (new_dentry == trap)
4795 		goto exit5;
4796 
4797 	error = security_path_rename(&old_path, old_dentry,
4798 				     &new_path, new_dentry, flags);
4799 	if (error)
4800 		goto exit5;
4801 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4802 			   new_path.dentry->d_inode, new_dentry,
4803 			   &delegated_inode, flags);
4804 exit5:
4805 	dput(new_dentry);
4806 exit4:
4807 	dput(old_dentry);
4808 exit3:
4809 	unlock_rename(new_path.dentry, old_path.dentry);
4810 	if (delegated_inode) {
4811 		error = break_deleg_wait(&delegated_inode);
4812 		if (!error)
4813 			goto retry_deleg;
4814 	}
4815 	mnt_drop_write(old_path.mnt);
4816 exit2:
4817 	if (retry_estale(error, lookup_flags))
4818 		should_retry = true;
4819 	path_put(&new_path);
4820 	putname(to);
4821 exit1:
4822 	path_put(&old_path);
4823 	putname(from);
4824 	if (should_retry) {
4825 		should_retry = false;
4826 		lookup_flags |= LOOKUP_REVAL;
4827 		goto retry;
4828 	}
4829 exit:
4830 	return error;
4831 }
4832 
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)4833 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4834 		int, newdfd, const char __user *, newname, unsigned int, flags)
4835 {
4836 	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4837 }
4838 
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)4839 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4840 		int, newdfd, const char __user *, newname)
4841 {
4842 	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4843 }
4844 
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)4845 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4846 {
4847 	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4848 }
4849 
vfs_whiteout(struct inode * dir,struct dentry * dentry)4850 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4851 {
4852 	int error = may_create(dir, dentry);
4853 	if (error)
4854 		return error;
4855 
4856 	if (!dir->i_op->mknod)
4857 		return -EPERM;
4858 
4859 	return dir->i_op->mknod(dir, dentry,
4860 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4861 }
4862 EXPORT_SYMBOL(vfs_whiteout);
4863 
readlink_copy(char __user * buffer,int buflen,const char * link)4864 int readlink_copy(char __user *buffer, int buflen, const char *link)
4865 {
4866 	int len = PTR_ERR(link);
4867 	if (IS_ERR(link))
4868 		goto out;
4869 
4870 	len = strlen(link);
4871 	if (len > (unsigned) buflen)
4872 		len = buflen;
4873 	if (copy_to_user(buffer, link, len))
4874 		len = -EFAULT;
4875 out:
4876 	return len;
4877 }
4878 
4879 /**
4880  * vfs_readlink - copy symlink body into userspace buffer
4881  * @dentry: dentry on which to get symbolic link
4882  * @buffer: user memory pointer
4883  * @buflen: size of buffer
4884  *
4885  * Does not touch atime.  That's up to the caller if necessary
4886  *
4887  * Does not call security hook.
4888  */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)4889 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4890 {
4891 	struct inode *inode = d_inode(dentry);
4892 	DEFINE_DELAYED_CALL(done);
4893 	const char *link;
4894 	int res;
4895 
4896 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4897 		if (unlikely(inode->i_op->readlink))
4898 			return inode->i_op->readlink(dentry, buffer, buflen);
4899 
4900 		if (!d_is_symlink(dentry))
4901 			return -EINVAL;
4902 
4903 		spin_lock(&inode->i_lock);
4904 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4905 		spin_unlock(&inode->i_lock);
4906 	}
4907 
4908 	link = READ_ONCE(inode->i_link);
4909 	if (!link) {
4910 		link = inode->i_op->get_link(dentry, inode, &done);
4911 		if (IS_ERR(link))
4912 			return PTR_ERR(link);
4913 	}
4914 	res = readlink_copy(buffer, buflen, link);
4915 	do_delayed_call(&done);
4916 	return res;
4917 }
4918 EXPORT_SYMBOL(vfs_readlink);
4919 
4920 /**
4921  * vfs_get_link - get symlink body
4922  * @dentry: dentry on which to get symbolic link
4923  * @done: caller needs to free returned data with this
4924  *
4925  * Calls security hook and i_op->get_link() on the supplied inode.
4926  *
4927  * It does not touch atime.  That's up to the caller if necessary.
4928  *
4929  * Does not work on "special" symlinks like /proc/$$/fd/N
4930  */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)4931 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4932 {
4933 	const char *res = ERR_PTR(-EINVAL);
4934 	struct inode *inode = d_inode(dentry);
4935 
4936 	if (d_is_symlink(dentry)) {
4937 		res = ERR_PTR(security_inode_readlink(dentry));
4938 		if (!res)
4939 			res = inode->i_op->get_link(dentry, inode, done);
4940 	}
4941 	return res;
4942 }
4943 EXPORT_SYMBOL(vfs_get_link);
4944 
4945 /* get the link contents into pagecache */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)4946 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4947 			  struct delayed_call *callback)
4948 {
4949 	char *kaddr;
4950 	struct page *page;
4951 	struct address_space *mapping = inode->i_mapping;
4952 
4953 	if (!dentry) {
4954 		page = find_get_page(mapping, 0);
4955 		if (!page)
4956 			return ERR_PTR(-ECHILD);
4957 		if (!PageUptodate(page)) {
4958 			put_page(page);
4959 			return ERR_PTR(-ECHILD);
4960 		}
4961 	} else {
4962 		page = read_mapping_page(mapping, 0, NULL);
4963 		if (IS_ERR(page))
4964 			return (char*)page;
4965 	}
4966 	set_delayed_call(callback, page_put_link, page);
4967 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4968 	kaddr = page_address(page);
4969 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4970 	return kaddr;
4971 }
4972 
4973 EXPORT_SYMBOL(page_get_link);
4974 
page_put_link(void * arg)4975 void page_put_link(void *arg)
4976 {
4977 	put_page(arg);
4978 }
4979 EXPORT_SYMBOL(page_put_link);
4980 
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)4981 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4982 {
4983 	DEFINE_DELAYED_CALL(done);
4984 	int res = readlink_copy(buffer, buflen,
4985 				page_get_link(dentry, d_inode(dentry),
4986 					      &done));
4987 	do_delayed_call(&done);
4988 	return res;
4989 }
4990 EXPORT_SYMBOL(page_readlink);
4991 
4992 /*
4993  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4994  */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)4995 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4996 {
4997 	struct address_space *mapping = inode->i_mapping;
4998 	struct page *page;
4999 	void *fsdata = NULL;
5000 	int err;
5001 	unsigned int flags = 0;
5002 	if (nofs)
5003 		flags |= AOP_FLAG_NOFS;
5004 
5005 retry:
5006 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
5007 				flags, &page, &fsdata);
5008 	if (err)
5009 		goto fail;
5010 
5011 	memcpy(page_address(page), symname, len-1);
5012 
5013 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
5014 							page, fsdata);
5015 	if (err < 0)
5016 		goto fail;
5017 	if (err < len-1)
5018 		goto retry;
5019 
5020 	mark_inode_dirty(inode);
5021 	return 0;
5022 fail:
5023 	return err;
5024 }
5025 EXPORT_SYMBOL(__page_symlink);
5026 
page_symlink(struct inode * inode,const char * symname,int len)5027 int page_symlink(struct inode *inode, const char *symname, int len)
5028 {
5029 	return __page_symlink(inode, symname, len,
5030 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
5031 }
5032 EXPORT_SYMBOL(page_symlink);
5033 
5034 const struct inode_operations page_symlink_inode_operations = {
5035 	.get_link	= page_get_link,
5036 };
5037 EXPORT_SYMBOL(page_symlink_inode_operations);
5038